WorldWideScience

Sample records for network cnn based

  1. CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes.

    Science.gov (United States)

    White, Clarence; Ismail, Hamid D; Saigo, Hiroto; Kc, Dukka B

    2017-12-28

    The β-Lactamase (BL) enzyme family is an important class of enzymes that plays a key role in bacterial resistance to antibiotics. As the newly identified number of BL enzymes is increasing daily, it is imperative to develop a computational tool to classify the newly identified BL enzymes into one of its classes. There are two types of classification of BL enzymes: Molecular Classification and Functional Classification. Existing computational methods only address Molecular Classification and the performance of these existing methods is unsatisfactory. We addressed the unsatisfactory performance of the existing methods by implementing a Deep Learning approach called Convolutional Neural Network (CNN). We developed CNN-BLPred, an approach for the classification of BL proteins. The CNN-BLPred uses Gradient Boosted Feature Selection (GBFS) in order to select the ideal feature set for each BL classification. Based on the rigorous benchmarking of CCN-BLPred using both leave-one-out cross-validation and independent test sets, CCN-BLPred performed better than the other existing algorithms. Compared with other architectures of CNN, Recurrent Neural Network, and Random Forest, the simple CNN architecture with only one convolutional layer performs the best. After feature extraction, we were able to remove ~95% of the 10,912 features using Gradient Boosted Trees. During 10-fold cross validation, we increased the accuracy of the classic BL predictions by 7%. We also increased the accuracy of Class A, Class B, Class C, and Class D performance by an average of 25.64%. The independent test results followed a similar trend. We implemented a deep learning algorithm known as Convolutional Neural Network (CNN) to develop a classifier for BL classification. Combined with feature selection on an exhaustive feature set and using balancing method such as Random Oversampling (ROS), Random Undersampling (RUS) and Synthetic Minority Oversampling Technique (SMOTE), CNN-BLPred performs

  2. Electroencephalography Based Fusion Two-Dimensional (2D-Convolution Neural Networks (CNN Model for Emotion Recognition System

    Directory of Open Access Journals (Sweden)

    Yea-Hoon Kwon

    2018-04-01

    Full Text Available The purpose of this study is to improve human emotional classification accuracy using a convolution neural networks (CNN model and to suggest an overall method to classify emotion based on multimodal data. We improved classification performance by combining electroencephalogram (EEG and galvanic skin response (GSR signals. GSR signals are preprocessed using by the zero-crossing rate. Sufficient EEG feature extraction can be obtained through CNN. Therefore, we propose a suitable CNN model for feature extraction by tuning hyper parameters in convolution filters. The EEG signal is preprocessed prior to convolution by a wavelet transform while considering time and frequency simultaneously. We use a database for emotion analysis using the physiological signals open dataset to verify the proposed process, achieving 73.4% accuracy, showing significant performance improvement over the current best practice models.

  3. CNN-based ranking for biomedical entity normalization.

    Science.gov (United States)

    Li, Haodi; Chen, Qingcai; Tang, Buzhou; Wang, Xiaolong; Xu, Hua; Wang, Baohua; Huang, Dong

    2017-10-03

    Most state-of-the-art biomedical entity normalization systems, such as rule-based systems, merely rely on morphological information of entity mentions, but rarely consider their semantic information. In this paper, we introduce a novel convolutional neural network (CNN) architecture that regards biomedical entity normalization as a ranking problem and benefits from semantic information of biomedical entities. The CNN-based ranking method first generates candidates using handcrafted rules, and then ranks the candidates according to their semantic information modeled by CNN as well as their morphological information. Experiments on two benchmark datasets for biomedical entity normalization show that our proposed CNN-based ranking method outperforms traditional rule-based method with state-of-the-art performance. We propose a CNN architecture that regards biomedical entity normalization as a ranking problem. Comparison results show that semantic information is beneficial to biomedical entity normalization and can be well combined with morphological information in our CNN architecture for further improvement.

  4. Understanding of Object Detection Based on CNN Family and YOLO

    Science.gov (United States)

    Du, Juan

    2018-04-01

    As a key use of image processing, object detection has boomed along with the unprecedented advancement of Convolutional Neural Network (CNN) and its variants since 2012. When CNN series develops to Faster Region with CNN (R-CNN), the Mean Average Precision (mAP) has reached 76.4, whereas, the Frame Per Second (FPS) of Faster R-CNN remains 5 to 18 which is far slower than the real-time effect. Thus, the most urgent requirement of object detection improvement is to accelerate the speed. Based on the general introduction to the background and the core solution CNN, this paper exhibits one of the best CNN representatives You Only Look Once (YOLO), which breaks through the CNN family’s tradition and innovates a complete new way of solving the object detection with most simple and high efficient way. Its fastest speed has achieved the exciting unparalleled result with FPS 155, and its mAP can also reach up to 78.6, both of which have surpassed the performance of Faster R-CNN greatly. Additionally, compared with the latest most advanced solution, YOLOv2 achieves an excellent tradeoff between speed and accuracy as well as an object detector with strong generalization ability to represent the whole image.

  5. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.

    Science.gov (United States)

    Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan

    2017-02-01

    We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Region Based CNN for Foreign Object Debris Detection on Airfield Pavement.

    Science.gov (United States)

    Cao, Xiaoguang; Wang, Peng; Meng, Cai; Bai, Xiangzhi; Gong, Guoping; Liu, Miaoming; Qi, Jun

    2018-03-01

    In this paper, a novel algorithm based on convolutional neural network (CNN) is proposed to detect foreign object debris (FOD) based on optical imaging sensors. It contains two modules, the improved region proposal network (RPN) and spatial transformer network (STN) based CNN classifier. In the improved RPN, some extra select rules are designed and deployed to generate high quality candidates with fewer numbers. Moreover, the efficiency of CNN detector is significantly improved by introducing STN layer. Compared to faster R-CNN and single shot multiBox detector (SSD), the proposed algorithm achieves better result for FOD detection on airfield pavement in the experiment.

  7. CNN-PROMOTER, NEW CONSENSUS PROMOTER PREDICTION PROGRAM BASED ON NEURAL NETWORKS CNN-PROMOTER, NUEVO PROGRAMA PARA LA PREDICCIÓN DE PROMOTORES BASADO EN REDES NEURONALES CNN-PROMOTER, NOVO PROGRAMA PARA A PREDIÇÃO DE PROMOTORES BASEADO EM REDES NEURONAIS

    Directory of Open Access Journals (Sweden)

    Óscar Bedoya

    2011-06-01

    Full Text Available A new promoter prediction program called CNN-Promoter is presented. CNN-Promoter allows DNA sequences to be submitted and predicts them as promoter or non-promoter. Several methods have been developed to predict the promoter regions of genomes in eukaryotic organisms including algorithms based on Markov's models, decision trees, and statistical methods. Although there are plenty of programs proposed, there is still a need to improve the sensitivity and specificity values. In this paper, a new program is proposed; it is based on the consensus strategy of using experts to make a better prediction. The consensus strategy is developed by using neural networks. During the training process, the sensitivity and specificity were 100 % and during the test process the model reaches a sensitivity of 74.5 % and a specificity of 82.7 %.En este artículo se presenta un programa nuevo para la predicción de promotores llamado CNN-Promoter, que toma como entrada secuencias de ADN y las clasifica como promotor o no promotor. Se han desarrollado diversos métodos para predecir las regiones promotoras en organismos eucariotas, muchos de los cuales se basan en modelos de Markov, árboles de decisión y métodos estadísticos. A pesar de la variedad de programas existentes para la predicción de promotores, se necesita aún mejorar los valores de sensibilidad y especificidad. Se propone un nuevo programa que se basa en la estrategia de mezcla de expertos usando redes neuronales. Los resultados obtenidos en las pruebas alcanzan valores de sensibilidad y especificidad de 100 % en el entrenamiento y de 74,5 % de sensibilidad y 82,7 % de especificidad en los conjuntos de validación y prueba.Neste artigo a presenta-se um novo programa para a predição de promotores chamado CNN-Promoter, que toma como entrada sequências de DNA e as classifica como promotor ou não promotor. Desenvolveramse diversos métodos para predizer as regiões promotoras em organismos eucariotas

  8. Three-Class Mammogram Classification Based on Descriptive CNN Features

    Directory of Open Access Journals (Sweden)

    M. Mohsin Jadoon

    2017-01-01

    Full Text Available In this paper, a novel classification technique for large data set of mammograms using a deep learning method is proposed. The proposed model targets a three-class classification study (normal, malignant, and benign cases. In our model we have presented two methods, namely, convolutional neural network-discrete wavelet (CNN-DW and convolutional neural network-curvelet transform (CNN-CT. An augmented data set is generated by using mammogram patches. To enhance the contrast of mammogram images, the data set is filtered by contrast limited adaptive histogram equalization (CLAHE. In the CNN-DW method, enhanced mammogram images are decomposed as its four subbands by means of two-dimensional discrete wavelet transform (2D-DWT, while in the second method discrete curvelet transform (DCT is used. In both methods, dense scale invariant feature (DSIFT for all subbands is extracted. Input data matrix containing these subband features of all the mammogram patches is created that is processed as input to convolutional neural network (CNN. Softmax layer and support vector machine (SVM layer are used to train CNN for classification. Proposed methods have been compared with existing methods in terms of accuracy rate, error rate, and various validation assessment measures. CNN-DW and CNN-CT have achieved accuracy rate of 81.83% and 83.74%, respectively. Simulation results clearly validate the significance and impact of our proposed model as compared to other well-known existing techniques.

  9. Multi-stream CNN: Learning representations based on human-related regions for action recognition

    NARCIS (Netherlands)

    Tu, Zhigang; Xie, Wei; Qin, Qianqing; Poppe, R.W.; Veltkamp, R.C.; Li, Baoxin; Yuan, Junsong

    2018-01-01

    The most successful video-based human action recognition methods rely on feature representations extracted using Convolutional Neural Networks (CNNs). Inspired by the two-stream network (TS-Net), we propose a multi-stream Convolutional Neural Network (CNN) architecture to recognize human actions. We

  10. Small-size pedestrian detection in large scene based on fast R-CNN

    Science.gov (United States)

    Wang, Shengke; Yang, Na; Duan, Lianghua; Liu, Lu; Dong, Junyu

    2018-04-01

    Pedestrian detection is a canonical sub-problem of object detection with high demand during recent years. Although recent deep learning object detectors such as Fast/Faster R-CNN have shown excellent performance for general object detection, they have limited success for small size pedestrian detection in large-view scene. We study that the insufficient resolution of feature maps lead to the unsatisfactory accuracy when handling small instances. In this paper, we investigate issues involving Fast R-CNN for pedestrian detection. Driven by the observations, we propose a very simple but effective baseline for pedestrian detection based on Fast R-CNN, employing the DPM detector to generate proposals for accuracy, and training a fast R-CNN style network to jointly optimize small size pedestrian detection with skip connection concatenating feature from different layers to solving coarseness of feature maps. And the accuracy is improved in our research for small size pedestrian detection in the real large scene.

  11. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.

    Science.gov (United States)

    Zhao, Yu; Ge, Fangfei; Liu, Tianming

    2018-07-01

    fMRI data decomposition techniques have advanced significantly from shallow models such as Independent Component Analysis (ICA) and Sparse Coding and Dictionary Learning (SCDL) to deep learning models such Deep Belief Networks (DBN) and Convolutional Autoencoder (DCAE). However, interpretations of those decomposed networks are still open questions due to the lack of functional brain atlases, no correspondence across decomposed or reconstructed networks across different subjects, and significant individual variabilities. Recent studies showed that deep learning, especially deep convolutional neural networks (CNN), has extraordinary ability of accommodating spatial object patterns, e.g., our recent works using 3D CNN for fMRI-derived network classifications achieved high accuracy with a remarkable tolerance for mistakenly labelled training brain networks. However, the training data preparation is one of the biggest obstacles in these supervised deep learning models for functional brain network map recognitions, since manual labelling requires tedious and time-consuming labours which will sometimes even introduce label mistakes. Especially for mapping functional networks in large scale datasets such as hundreds of thousands of brain networks used in this paper, the manual labelling method will become almost infeasible. In response, in this work, we tackled both the network recognition and training data labelling tasks by proposing a new iteratively optimized deep learning CNN (IO-CNN) framework with an automatic weak label initialization, which enables the functional brain networks recognition task to a fully automatic large-scale classification procedure. Our extensive experiments based on ABIDE-II 1099 brains' fMRI data showed the great promise of our IO-CNN framework. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. CNN for breaking text-based CAPTCHA with noise

    Science.gov (United States)

    Liu, Kaixuan; Zhang, Rong; Qing, Ke

    2017-07-01

    A CAPTCHA ("Completely Automated Public Turing test to tell Computers and Human Apart") system is a program that most humans can pass but current computer programs could hardly pass. As the most common type of CAPTCHAs , text-based CAPTCHA has been widely used in different websites to defense network bots. In order to breaking textbased CAPTCHA, in this paper, two trained CNN models are connected for the segmentation and classification of CAPTCHA images. Then base on these two models, we apply sliding window segmentation and voting classification methods realize an end-to-end CAPTCHA breaking system with high success rate. The experiment results show that our method is robust and effective in breaking text-based CAPTCHA with noise.

  13. A CNN Based Approach for Garments Texture Design Classification

    Directory of Open Access Journals (Sweden)

    S.M. Sofiqul Islam

    2017-05-01

    Full Text Available Identifying garments texture design automatically for recommending the fashion trends is important nowadays because of the rapid growth of online shopping. By learning the properties of images efficiently, a machine can give better accuracy of classification. Several Hand-Engineered feature coding exists for identifying garments design classes. Recently, Deep Convolutional Neural Networks (CNNs have shown better performances for different object recognition. Deep CNN uses multiple levels of representation and abstraction that helps a machine to understand the types of data more accurately. In this paper, a CNN model for identifying garments design classes has been proposed. Experimental results on two different datasets show better results than existing two well-known CNN models (AlexNet and VGGNet and some state-of-the-art Hand-Engineered feature extraction methods.

  14. Mining key elements for severe convection prediction based on CNN

    Science.gov (United States)

    Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng

    2017-04-01

    Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with

  15. Interchange Recognition Method Based on CNN

    Directory of Open Access Journals (Sweden)

    HE Haiwei

    2018-03-01

    Full Text Available The identification and classification of interchange structures in OSM data can provide important information for the construction of multi-scale model, navigation and location services, congestion analysis, etc. The traditional method of interchange identification relies on the low-level characteristics of artificial design, and cannot distinguish the complex interchange structure with interference section effectively. In this paper, a new method based on convolutional neural network for identification of the interchange is proposed. The method combines vector data with raster image, and uses neural network to learn the fuzzy characteristics of the interchange, and classifies the complex interchange structure in OSM. Experiments show that this method has strong anti-interference, and has achieved good results in the classification of complex interchange shape, and there is room for further improvement with the expansion of the case base and the optimization of neural network model.

  16. Evaluation of CNN architectures for gait recognition based on optical flow maps

    OpenAIRE

    Castro, F. M.; Marín-Jiménez, M.J.; Guil, N.; López-Tapia, S.; Pérez de la Blanca, N.

    2017-01-01

    This work targets people identification in video based on the way they walk (\\ie gait) by using deep learning architectures. We explore the use of convolutional neural networks (CNN) for learning high-level descriptors from low-level motion features (\\ie optical flow components). The low number of training samples for each subject and the use of a test set containing subjects different from the training ones makes the search of a good CNN architecture a challenging task. Universidad de Mál...

  17. Chinese character recognition based on Gabor feature extraction and CNN

    Science.gov (United States)

    Xiong, Yudian; Lu, Tongwei; Jiang, Yongyuan

    2018-03-01

    As an important application in the field of text line recognition and office automation, Chinese character recognition has become an important subject of pattern recognition. However, due to the large number of Chinese characters and the complexity of its structure, there is a great difficulty in the Chinese character recognition. In order to solve this problem, this paper proposes a method of printed Chinese character recognition based on Gabor feature extraction and Convolution Neural Network(CNN). The main steps are preprocessing, feature extraction, training classification. First, the gray-scale Chinese character image is binarized and normalized to reduce the redundancy of the image data. Second, each image is convoluted with Gabor filter with different orientations, and the feature map of the eight orientations of Chinese characters is extracted. Third, the feature map through Gabor filters and the original image are convoluted with learning kernels, and the results of the convolution is the input of pooling layer. Finally, the feature vector is used to classify and recognition. In addition, the generalization capacity of the network is improved by Dropout technology. The experimental results show that this method can effectively extract the characteristics of Chinese characters and recognize Chinese characters.

  18. How Transferable are CNN-based Features for Age and Gender Classification?

    OpenAIRE

    Özbulak, Gökhan; Aytar, Yusuf; Ekenel, Hazım Kemal

    2016-01-01

    Age and gender are complementary soft biometric traits for face recognition. Successful estimation of age and gender from facial images taken under real-world conditions can contribute improving the identification results in the wild. In this study, in order to achieve robust age and gender classification in the wild, we have benefited from Deep Convolutional Neural Networks based representation. We have explored transferability of existing deep convolutional neural network (CNN) models for a...

  19. Taxonomy of multi-focal nematode image stacks by a CNN based image fusion approach.

    Science.gov (United States)

    Liu, Min; Wang, Xueping; Zhang, Hongzhong

    2018-03-01

    In the biomedical field, digital multi-focal images are very important for documentation and communication of specimen data, because the morphological information for a transparent specimen can be captured in form of a stack of high-quality images. Given biomedical image stacks containing multi-focal images, how to efficiently extract effective features from all layers to classify the image stacks is still an open question. We present to use a deep convolutional neural network (CNN) image fusion based multilinear approach for the taxonomy of multi-focal image stacks. A deep CNN based image fusion technique is used to combine relevant information of multi-focal images within a given image stack into a single image, which is more informative and complete than any single image in the given stack. Besides, multi-focal images within a stack are fused along 3 orthogonal directions, and multiple features extracted from the fused images along different directions are combined by canonical correlation analysis (CCA). Because multi-focal image stacks represent the effect of different factors - texture, shape, different instances within the same class and different classes of objects, we embed the deep CNN based image fusion method within a multilinear framework to propose an image fusion based multilinear classifier. The experimental results on nematode multi-focal image stacks demonstrated that the deep CNN image fusion based multilinear classifier can reach a higher classification rate (95.7%) than that by the previous multilinear based approach (88.7%), even we only use the texture feature instead of the combination of texture and shape features as in the previous work. The proposed deep CNN image fusion based multilinear approach shows great potential in building an automated nematode taxonomy system for nematologists. It is effective to classify multi-focal image stacks. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos

    OpenAIRE

    Kang, Kai; Li, Hongsheng; Yan, Junjie; Zeng, Xingyu; Yang, Bin; Xiao, Tong; Zhang, Cong; Wang, Zhe; Wang, Ruohui; Wang, Xiaogang; Ouyang, Wanli

    2016-01-01

    The state-of-the-art performance for object detection has been significantly improved over the past two years. Besides the introduction of powerful deep neural networks such as GoogleNet and VGG, novel object detection frameworks such as R-CNN and its successors, Fast R-CNN and Faster R-CNN, play an essential role in improving the state-of-the-art. Despite their effectiveness on still images, those frameworks are not specifically designed for object detection from videos. Temporal and context...

  1. Comparison of hand-craft feature based SVM and CNN based deep learning framework for automatic polyp classification.

    Science.gov (United States)

    Younghak Shin; Balasingham, Ilangko

    2017-07-01

    Colonoscopy is a standard method for screening polyps by highly trained physicians. Miss-detected polyps in colonoscopy are potential risk factor for colorectal cancer. In this study, we investigate an automatic polyp classification framework. We aim to compare two different approaches named hand-craft feature method and convolutional neural network (CNN) based deep learning method. Combined shape and color features are used for hand craft feature extraction and support vector machine (SVM) method is adopted for classification. For CNN approach, three convolution and pooling based deep learning framework is used for classification purpose. The proposed framework is evaluated using three public polyp databases. From the experimental results, we have shown that the CNN based deep learning framework shows better classification performance than the hand-craft feature based methods. It achieves over 90% of classification accuracy, sensitivity, specificity and precision.

  2. Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharpening.

    Science.gov (United States)

    Cho, Heeryon; Yoon, Sang Min

    2018-04-01

    Human Activity Recognition (HAR) aims to identify the actions performed by humans using signals collected from various sensors embedded in mobile devices. In recent years, deep learning techniques have further improved HAR performance on several benchmark datasets. In this paper, we propose one-dimensional Convolutional Neural Network (1D CNN) for HAR that employs a divide and conquer-based classifier learning coupled with test data sharpening. Our approach leverages a two-stage learning of multiple 1D CNN models; we first build a binary classifier for recognizing abstract activities, and then build two multi-class 1D CNN models for recognizing individual activities. We then introduce test data sharpening during prediction phase to further improve the activity recognition accuracy. While there have been numerous researches exploring the benefits of activity signal denoising for HAR, few researches have examined the effect of test data sharpening for HAR. We evaluate the effectiveness of our approach on two popular HAR benchmark datasets, and show that our approach outperforms both the two-stage 1D CNN-only method and other state of the art approaches.

  3. Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharpening

    Directory of Open Access Journals (Sweden)

    Heeryon Cho

    2018-04-01

    Full Text Available Human Activity Recognition (HAR aims to identify the actions performed by humans using signals collected from various sensors embedded in mobile devices. In recent years, deep learning techniques have further improved HAR performance on several benchmark datasets. In this paper, we propose one-dimensional Convolutional Neural Network (1D CNN for HAR that employs a divide and conquer-based classifier learning coupled with test data sharpening. Our approach leverages a two-stage learning of multiple 1D CNN models; we first build a binary classifier for recognizing abstract activities, and then build two multi-class 1D CNN models for recognizing individual activities. We then introduce test data sharpening during prediction phase to further improve the activity recognition accuracy. While there have been numerous researches exploring the benefits of activity signal denoising for HAR, few researches have examined the effect of test data sharpening for HAR. We evaluate the effectiveness of our approach on two popular HAR benchmark datasets, and show that our approach outperforms both the two-stage 1D CNN-only method and other state of the art approaches.

  4. Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharpening †

    Science.gov (United States)

    Yoon, Sang Min

    2018-01-01

    Human Activity Recognition (HAR) aims to identify the actions performed by humans using signals collected from various sensors embedded in mobile devices. In recent years, deep learning techniques have further improved HAR performance on several benchmark datasets. In this paper, we propose one-dimensional Convolutional Neural Network (1D CNN) for HAR that employs a divide and conquer-based classifier learning coupled with test data sharpening. Our approach leverages a two-stage learning of multiple 1D CNN models; we first build a binary classifier for recognizing abstract activities, and then build two multi-class 1D CNN models for recognizing individual activities. We then introduce test data sharpening during prediction phase to further improve the activity recognition accuracy. While there have been numerous researches exploring the benefits of activity signal denoising for HAR, few researches have examined the effect of test data sharpening for HAR. We evaluate the effectiveness of our approach on two popular HAR benchmark datasets, and show that our approach outperforms both the two-stage 1D CNN-only method and other state of the art approaches. PMID:29614767

  5. Application of cellular neural network (CNN) method to the nuclear reactor dynamics equations

    International Nuclear Information System (INIS)

    Hadad, K.; Piroozmand, A.

    2007-01-01

    This paper describes the application of a multilayer cellular neural network (CNN) to model and solve the nuclear reactor dynamic equations. An equivalent electrical circuit is analyzed and the governing equations of a bare, homogeneous reactor core are modeled via CNN. The validity of the CNN result is compared with numerical solution of the system of nonlinear governing partial differential equations (PDE) using MATLAB. Steady state as well as transient simulations, show very good comparison between the two methods. We used our CNN model to simulate space-time response of different reactivity excursions in a typical nuclear reactor. On line solution of reactor dynamic equations is used as an aid to reactor operation decision making. The complete algorithm could also be implemented using very large scale integrated circuit (VLSI) circuitry. The efficiency of the calculation method makes it useful for small size nuclear reactors such as the ones used in space missions

  6. SampleCNN: End-to-End Deep Convolutional Neural Networks Using Very Small Filters for Music Classification

    Directory of Open Access Journals (Sweden)

    Jongpil Lee

    2018-01-01

    Full Text Available Convolutional Neural Networks (CNN have been applied to diverse machine learning tasks for different modalities of raw data in an end-to-end fashion. In the audio domain, a raw waveform-based approach has been explored to directly learn hierarchical characteristics of audio. However, the majority of previous studies have limited their model capacity by taking a frame-level structure similar to short-time Fourier transforms. We previously proposed a CNN architecture which learns representations using sample-level filters beyond typical frame-level input representations. The architecture showed comparable performance to the spectrogram-based CNN model in music auto-tagging. In this paper, we extend the previous work in three ways. First, considering the sample-level model requires much longer training time, we progressively downsample the input signals and examine how it affects the performance. Second, we extend the model using multi-level and multi-scale feature aggregation technique and subsequently conduct transfer learning for several music classification tasks. Finally, we visualize filters learned by the sample-level CNN in each layer to identify hierarchically learned features and show that they are sensitive to log-scaled frequency.

  7. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    OpenAIRE

    Ren, Shaoqing; He, Kaiming; Girshick, Ross; Sun, Jian

    2015-01-01

    State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet and Fast R-CNN have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultan...

  8. PARTICLE SWARM OPTIMIZATION (PSO FOR TRAINING OPTIMIZATION ON CONVOLUTIONAL NEURAL NETWORK (CNN

    Directory of Open Access Journals (Sweden)

    Arie Rachmad Syulistyo

    2016-02-01

    Full Text Available Neural network attracts plenty of researchers lately. Substantial number of renowned universities have developed neural network for various both academically and industrially applications. Neural network shows considerable performance on various purposes. Nevertheless, for complex applications, neural network’s accuracy significantly deteriorates. To tackle the aforementioned drawback, lot of researches had been undertaken on the improvement of the standard neural network. One of the most promising modifications on standard neural network for complex applications is deep learning method. In this paper, we proposed the utilization of Particle Swarm Optimization (PSO in Convolutional Neural Networks (CNNs, which is one of the basic methods in deep learning. The use of PSO on the training process aims to optimize the results of the solution vectors on CNN in order to improve the recognition accuracy. The data used in this research is handwritten digit from MNIST. The experiments exhibited that the accuracy can be attained in 4 epoch is 95.08%. This result was better than the conventional CNN and DBN.  The execution time was also almost similar to the conventional CNN. Therefore, the proposed method was a promising method.

  9. DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites

    Science.gov (United States)

    Kalia, S.; Li, S.; Ganguly, S.; Nemani, R. R.

    2017-12-01

    Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remotesensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud/shadow mask from geostationary satellite data iscritical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds, which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classifycloud/shadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoder-decoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multi-spectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions.

  10. Fusing Panchromatic and SWIR Bands Based on Cnn - a Preliminary Study Over WORLDVIEW-3 Datasets

    Science.gov (United States)

    Guo, M.; Ma, H.; Bao, Y.; Wang, L.

    2018-04-01

    The traditional fusion methods are based on the fact that the spectral ranges of the Panchromatic (PAN) and multispectral bands (MS) are almost overlapping. In this paper, we propose a new pan-sharpening method for the fusion of PAN and SWIR (short-wave infrared) bands, whose spectral coverages are not overlapping. This problem is addressed with a convolutional neural network (CNN), which is trained by WorldView-3 dataset. CNN can learn the complex relationship among bands, and thus alleviate spectral distortion. Consequently, in our network, we use the simple three-layer basic architecture with 16 × 16 kernels to conduct the experiment. Every layer use different receptive field. The first two layers compute 512 feature maps by using the 16 × 16 and 1 × 1 receptive field respectively and the third layer with a 8 × 8 receptive field. The fusion results are optimized by continuous training. As for assessment, four evaluation indexes including Entropy, CC, SAM and UIQI are selected built on subjective visual effect and quantitative evaluation. The preliminary experimental results demonstrate that the fusion algorithms can effectively enhance the spatial information. Unfortunately, the fusion image has spectral distortion, it cannot maintain the spectral information of the SWIR image.

  11. Hybrid case-neural network (CNN) diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    recently, the mobile health care has a great attention for the researcher and people all over the world. Case based reasoning (CBR) systems have proved their performance as world wide web (WWW) medical diagnostic systems. They were preferred rather than different reasoning approaches due to their high performance and results' explanation. But, their operations require a complex knowledge acquisition and management processes. On the other hand, it is found that, artificial neural network (ANN) has a great acceptance as a classifier methodology using a little amount of knowledge. But, ANN lacks of an explanation capability .The present research introduces a new web-based hybrid diagnostic system that can use the ANN inside the CBR , cycle.It can provide higher performance for the web diagnostic systems. Besides, the proposed system can be used as a web diagnostic system. It can be applied for diagnosis different types of systems in several domains. It has been applied in diagnosis of the cancer diseases that has a great spreading in recent years as a case of study . However, the suggested system has proved its acceptance in the manner.

  12. S-CNN-BASED SHIP DETECTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2016-06-01

    Full Text Available Reliable ship detection plays an important role in both military and civil fields. However, it makes the task difficult with high-resolution remote sensing images with complex background and various types of ships with different poses, shapes and scales. Related works mostly used gray and shape features to detect ships, which obtain results with poor robustness and efficiency. To detect ships more automatically and robustly, we propose a novel ship detection method based on the convolutional neural networks (CNNs, called SCNN, fed with specifically designed proposals extracted from the ship model combined with an improved saliency detection method. Firstly we creatively propose two ship models, the “V” ship head model and the “||” ship body one, to localize the ship proposals from the line segments extracted from a test image. Next, for offshore ships with relatively small sizes, which cannot be efficiently picked out by the ship models due to the lack of reliable line segments, we propose an improved saliency detection method to find these proposals. Therefore, these two kinds of ship proposals are fed to the trained CNN for robust and efficient detection. Experimental results on a large amount of representative remote sensing images with different kinds of ships with varied poses, shapes and scales demonstrate the efficiency and robustness of our proposed S-CNN-Based ship detector.

  13. Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity

    Directory of Open Access Journals (Sweden)

    Paolo Napoletano

    2018-01-01

    Full Text Available Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.

  14. Real-time vehicle detection and tracking in video based on faster R-CNN

    Science.gov (United States)

    Zhang, Yongjie; Wang, Jian; Yang, Xin

    2017-08-01

    Vehicle detection and tracking is a significant part in auxiliary vehicle driving system. Using the traditional detection method based on image information has encountered enormous difficulties, especially in complex background. To solve this problem, a detection method based on deep learning, Faster R-CNN, which has very high detection accuracy and flexibility, is introduced. An algorithm of target tracking with the combination of Camshift and Kalman filter is proposed for vehicle tracking. The computation time of Faster R-CNN cannot achieve realtime detection. We use multi-thread technique to detect and track vehicle by parallel computation for real-time application.

  15. Lane marking detection based on waveform analysis and CNN

    Science.gov (United States)

    Ye, Yang Yang; Chen, Hou Jin; Hao, Xiao Li

    2017-06-01

    Lane markings detection is a very important part of the ADAS to avoid traffic accidents. In order to obtain accurate lane markings, in this work, a novel and efficient algorithm is proposed, which analyses the waveform generated from the road image after inverse perspective mapping (IPM). The algorithm includes two main stages: the first stage uses an image preprocessing including a CNN to reduce the background and enhance the lane markings. The second stage obtains the waveform of the road image and analyzes the waveform to get lanes. The contribution of this work is that we introduce local and global features of the waveform to detect the lane markings. The results indicate the proposed method is robust in detecting and fitting the lane markings.

  16. Evaluation of CNN as anthropomorphic model observer

    Science.gov (United States)

    Massanes, Francesc; Brankov, Jovan G.

    2017-03-01

    Model observers (MO) are widely used in medical imaging to act as surrogates of human observers in task-based image quality evaluation, frequently towards optimization of reconstruction algorithms. In this paper, we explore the use of convolutional neural networks (CNN) to be used as MO. We will compare CNN MO to alternative MO currently being proposed and used such as the relevance vector machine based MO and channelized Hotelling observer (CHO). As the success of the CNN, and other deep learning approaches, is rooted in large data sets availability, which is rarely the case in medical imaging systems task-performance evaluation, we will evaluate CNN performance on both large and small training data sets.

  17. Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN).

    Science.gov (United States)

    Iqbal, Sajid; Ghani, M Usman; Saba, Tanzila; Rehman, Amjad

    2018-04-01

    A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of promising techniques that could provide better results as compared to nondeep learning techniques for segmenting timorous part inside a brain. This article presents a deep convolutional neural network (CNN) to segment brain tumors in MRIs. The proposed network uses BRATS segmentation challenge dataset which is composed of images obtained through four different modalities. Accordingly, we present an extended version of existing network to solve segmentation problem. The network architecture consists of multiple neural network layers connected in sequential order with the feeding of Convolutional feature maps at the peer level. Experimental results on BRATS 2015 benchmark data thus show the usability of the proposed approach and its superiority over the other approaches in this area of research. © 2018 Wiley Periodicals, Inc.

  18. A CNN-Based Fusion Method for Feature Extraction from Sentinel Data

    Directory of Open Access Journals (Sweden)

    Giuseppe Scarpa

    2018-02-01

    Full Text Available Sensitivity to weather conditions, and specially to clouds, is a severe limiting factor to the use of optical remote sensing for Earth monitoring applications. A possible alternative is to benefit from weather-insensitive synthetic aperture radar (SAR images. In many real-world applications, critical decisions are made based on some informative optical or radar features related to items such as water, vegetation or soil. Under cloudy conditions, however, optical-based features are not available, and they are commonly reconstructed through linear interpolation between data available at temporally-close time instants. In this work, we propose to estimate missing optical features through data fusion and deep-learning. Several sources of information are taken into account—optical sequences, SAR sequences, digital elevation model—so as to exploit both temporal and cross-sensor dependencies. Based on these data and a tiny cloud-free fraction of the target image, a compact convolutional neural network (CNN is trained to perform the desired estimation. To validate the proposed approach, we focus on the estimation of the normalized difference vegetation index (NDVI, using coupled Sentinel-1 and Sentinel-2 time-series acquired over an agricultural region of Burkina Faso from May–November 2016. Several fusion schemes are considered, causal and non-causal, single-sensor or joint-sensor, corresponding to different operating conditions. Experimental results are very promising, showing a significant gain over baseline methods according to all performance indicators.

  19. SAR image classification based on CNN in real and simulation datasets

    Science.gov (United States)

    Peng, Lijiang; Liu, Ming; Liu, Xiaohua; Dong, Liquan; Hui, Mei; Zhao, Yuejin

    2018-04-01

    Convolution neural network (CNN) has made great success in image classification tasks. Even in the field of synthetic aperture radar automatic target recognition (SAR-ATR), state-of-art results has been obtained by learning deep representation of features on the MSTAR benchmark. However, the raw data of MSTAR have shortcomings in training a SAR-ATR model because of high similarity in background among the SAR images of each kind. This indicates that the CNN would learn the hierarchies of features of backgrounds as well as the targets. To validate the influence of the background, some other SAR images datasets have been made which contains the simulation SAR images of 10 manufactured targets such as tank and fighter aircraft, and the backgrounds of simulation SAR images are sampled from the whole original MSTAR data. The simulation datasets contain the dataset that the backgrounds of each kind images correspond to the one kind of backgrounds of MSTAR targets or clutters and the dataset that each image shares the random background of whole MSTAR targets or clutters. In addition, mixed datasets of MSTAR and simulation datasets had been made to use in the experiments. The CNN architecture proposed in this paper are trained on all datasets mentioned above. The experimental results shows that the architecture can get high performances on all datasets even the backgrounds of the images are miscellaneous, which indicates the architecture can learn a good representation of the targets even though the drastic changes on background.

  20. Low-Grade Glioma Segmentation Based on CNN with Fully Connected CRF

    Directory of Open Access Journals (Sweden)

    Zeju Li

    2017-01-01

    Full Text Available This work proposed a novel automatic three-dimensional (3D magnetic resonance imaging (MRI segmentation method which would be widely used in the clinical diagnosis of the most common and aggressive brain tumor, namely, glioma. The method combined a multipathway convolutional neural network (CNN and fully connected conditional random field (CRF. Firstly, 3D information was introduced into the CNN which makes more accurate recognition of glioma with low contrast. Then, fully connected CRF was added as a postprocessing step which purposed more delicate delineation of glioma boundary. The method was applied to T2flair MRI images of 160 low-grade glioma patients. With 59 cases of data training and manual segmentation as the ground truth, the Dice similarity coefficient (DSC of our method was 0.85 for the test set of 101 MRI images. The results of our method were better than those of another state-of-the-art CNN method, which gained the DSC of 0.76 for the same dataset. It proved that our method could produce better results for the segmentation of low-grade gliomas.

  1. Cnn Based Retinal Image Upscaling Using Zero Component Analysis

    Science.gov (United States)

    Nasonov, A.; Chesnakov, K.; Krylov, A.

    2017-05-01

    The aim of the paper is to obtain high quality of image upscaling for noisy images that are typical in medical image processing. A new training scenario for convolutional neural network based image upscaling method is proposed. Its main idea is a novel dataset preparation method for deep learning. The dataset contains pairs of noisy low-resolution images and corresponding noiseless highresolution images. To achieve better results at edges and textured areas, Zero Component Analysis is applied to these images. The upscaling results are compared with other state-of-the-art methods like DCCI, SI-3 and SRCNN on noisy medical ophthalmological images. Objective evaluation of the results confirms high quality of the proposed method. Visual analysis shows that fine details and structures like blood vessels are preserved, noise level is reduced and no artifacts or non-existing details are added. These properties are essential in retinal diagnosis establishment, so the proposed algorithm is recommended to be used in real medical applications.

  2. H31G-1596: DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites

    Science.gov (United States)

    Kalia, Subodh; Ganguly, Sangram; Li, Shuang; Nemani, Ramakrishna R.

    2017-01-01

    Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remote sensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud shadow mask from geostationary satellite data is critical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds,which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classify cloudshadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoderdecoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multispectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions.

  3. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo

    Directory of Open Access Journals (Sweden)

    Liang Lu

    2018-03-01

    Full Text Available Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods.

  4. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo

    Science.gov (United States)

    Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu

    2018-01-01

    Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods. PMID:29498703

  5. A CNN-Specific Integrated Processor

    Directory of Open Access Journals (Sweden)

    Suleyman Malki

    2009-01-01

    Full Text Available Integrated Processors (IP are algorithm-specific cores that either by programming or by configuration can be re-used within many microelectronic systems. This paper looks at Cellular Neural Networks (CNN to become realized as IP. First current digital implementations are reviewed, and the memoryprocessor bandwidth issues are analyzed. Then a generic view is taken on the structure of the network, and a new intra-communication protocol based on rotating wheels is proposed. It is shown that this provides for guaranteed high-performance with a minimal network interface. The resulting node is small and supports multi-level CNN designs, giving the system a 30-fold increase in capacity compared to classical designs. As it facilitates multiple operations on a single image, and single operations on multiple images, with minimal access to the external image memory, balancing the internal and external data transfer requirements optimizes the system operation. In conventional digital CNN designs, the treatment of boundary nodes requires additional logic to handle the CNN value propagation scheme. In the new architecture, only a slight modification of the existing cells is necessary to model the boundary effect. A typical prototype for visual pattern recognition will house 4096 CNN cells with a 2% overhead for making it an IP.

  6. A ROUGH SET DECISION TREE BASED MLP-CNN FOR VERY HIGH RESOLUTION REMOTELY SENSED IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-09-01

    Full Text Available Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP, which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  7. Cellular neural networks (CNN) simulation for the TN approximation of the time dependent neutron transport equation in slab geometry

    International Nuclear Information System (INIS)

    Hadad, Kamal; Pirouzmand, Ahmad; Ayoobian, Navid

    2008-01-01

    This paper describes the application of a multilayer cellular neural network (CNN) to model and solve the time dependent one-speed neutron transport equation in slab geometry. We use a neutron angular flux in terms of the Chebyshev polynomials (T N ) of the first kind and then we attempt to implement the equations in an equivalent electrical circuit. We apply this equivalent circuit to analyze the T N moments equation in a uniform finite slab using Marshak type vacuum boundary condition. The validity of the CNN results is evaluated with numerical solution of the steady state T N moments equations by MATLAB. Steady state, as well as transient simulations, shows a very good comparison between the two methods. We used our CNN model to simulate space-time response of total flux and its moments for various c (where c is the mean number of secondary neutrons per collision). The complete algorithm could be implemented using very large-scale integrated circuit (VLSI) circuitry. The efficiency of the calculation method makes it useful for neutron transport calculations

  8. A CNN-Based Method of Vehicle Detection from Aerial Images Using Hard Example Mining

    Directory of Open Access Journals (Sweden)

    Yohei Koga

    2018-01-01

    Full Text Available Recently, deep learning techniques have had a practical role in vehicle detection. While much effort has been spent on applying deep learning to vehicle detection, the effective use of training data has not been thoroughly studied, although it has great potential for improving training results, especially in cases where the training data are sparse. In this paper, we proposed using hard example mining (HEM in the training process of a convolutional neural network (CNN for vehicle detection in aerial images. We applied HEM to stochastic gradient descent (SGD to choose the most informative training data by calculating the loss values in each batch and employing the examples with the largest losses. We picked 100 out of both 500 and 1000 examples for training in one iteration, and we tested different ratios of positive to negative examples in the training data to evaluate how the balance of positive and negative examples would affect the performance. In any case, our method always outperformed the plain SGD. The experimental results for images from New York showed improved performance over a CNN trained in plain SGD where the F1 score of our method was 0.02 higher.

  9. Understanding Intra-Class Knowledge Inside CNN

    OpenAIRE

    Wei, Donglai; Zhou, Bolei; Torrabla, Antonio; Freeman, William

    2015-01-01

    Convolutional Neural Network (CNN) has been successful in image recognition tasks, and recent works shed lights on how CNN separates different classes with the learned inter-class knowledge through visualization. In this work, we instead visualize the intra-class knowledge inside CNN to better understand how an object class is represented in the fully-connected layers. To invert the intra-class knowledge into more interpretable images, we propose a non-parametric patch prior upon previous CNN...

  10. CNN a paradigm for complexity

    CERN Document Server

    Chua, Leon O

    1998-01-01

    Revolutionary and original, this treatise presents a new paradigm of EMERGENCE and COMPLEXITY, with applications drawn from numerous disciplines, including artificial life, biology, chemistry, computation, physics, image processing, information science, etc.CNN is an acronym for Cellular Neural Networks when used in the context of brain science, or Cellular Nonlinear Networks, when used in the context of emergence and complexity. A CNN is modeled by cells and interactions: cells are defined as dynamical systems and interactions are defined via coupling laws. The CNN paradigm is a universal Tur

  11. Detecting lung cancer symptoms with analogic CNN algorithms based on a constrained diffusion template

    International Nuclear Information System (INIS)

    Hirakawa, Satoshi; Nishio, Yoshifumi; Ushida, Akio; Ueno, Junji; Kasem, I.; Nishitani, Hiromu; Rekeczky, C.; Roska, T.

    1997-01-01

    In this article, a new type of diffusion template and an analogic CNN algorithm using this diffusion template for detecting some lung cancer symptoms in X-ray films are proposed. The performance of the diffusion template is investigated and our CNN algorithm is verified to detect some key lung cancer symptoms, successfully. (author)

  12. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification

    Science.gov (United States)

    Zhang, Ce; Pan, Xin; Li, Huapeng; Gardiner, Andy; Sargent, Isabel; Hare, Jonathon; Atkinson, Peter M.

    2018-06-01

    The contextual-based convolutional neural network (CNN) with deep architecture and pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized neural network algorithms, representing the state-of-the-art deep learning method and the classical non-parametric machine learning approach, respectively. The two algorithms, which have very different behaviours, were integrated in a concise and effective way using a rule-based decision fusion approach for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, designed primarily based on the classification confidence of the CNN, reflect the generally complementary patterns of the individual classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the complementary results acquired from the CNN based on deep spatial feature representation and from the MLP based on spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of convolutional filters such as the uncertainty in object boundary partition and loss of useful fine spatial resolution detail were compensated. The effectiveness of the ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial photography together with an additional satellite sensor dataset. The MLP-CNN classifier achieved promising performance, consistently outperforming the pixel-based MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of classification accuracy. This research paves the way to effectively address the complicated problem of VFSR image classification.

  13. Nonlinear Circuits and Neural Networks: Chip Implementation and Applications of the TeraOPS CNN Dynamic Array Supercomputer

    National Research Council Canada - National Science Library

    Chua, L

    1998-01-01

    .... Advances in research have been made in the following areas: (1) The design and implementation of the first-ever ARAM in the CNN Chip Set Architecture was successfully competed, and the samples were successfully tested; (2...

  14. GPU Boosted CNN Simulator Library for Graphical Flow-Based Programmability

    Directory of Open Access Journals (Sweden)

    Balázs Gergely Soós

    2009-01-01

    Full Text Available A graphical environment for CNN algorithm development is presented. The new generation of graphical cards with many general purpose processing units introduces the massively parallel computing into PC environment. Universal Machine on Flows- (UMF like notation, highlighting image flows and operations, is a useful tool to describe image processing algorithms. This documentation step can be turned into modeling using our framework backed with MATLAB Simulink and the power of a video card. This latter relatively cheap extension enables a convenient and fast analysis of CNN dynamics and complex algorithms. Comparison with other PC solutions is also presented. For single template execution, our approach yields run times 40x faster than that of the widely used Candy simulator. In the case of simpler algorithms, real-time execution is also possible.

  15. New Digital Approach to CNN On-chip Implementation for Pattern Recognition

    OpenAIRE

    Durackova, Daniela

    2008-01-01

    We developed a novel simulator for the CNN using the program tool Visual Basic for Application. Its algorithm is based on the same principle as the planned designed circuit. The network can process the patterns with 400 point recognition. The created universal simulator can change various simulation parameters. We found that the rounding at multiplication is not as important as we previously expected. On the basis of the simulations we designed a novel digital CNN cell implemented on a chip. ...

  16. SIFT Meets CNN: A Decade Survey of Instance Retrieval.

    Science.gov (United States)

    Zheng, Liang; Yang, Yi; Tian, Qi

    2018-05-01

    In the early days, content-based image retrieval (CBIR) was studied with global features. Since 2003, image retrieval based on local descriptors (de facto SIFT) has been extensively studied for over a decade due to the advantage of SIFT in dealing with image transformations. Recently, image representations based on the convolutional neural network (CNN) have attracted increasing interest in the community and demonstrated impressive performance. Given this time of rapid evolution, this article provides a comprehensive survey of instance retrieval over the last decade. Two broad categories, SIFT-based and CNN-based methods, are presented. For the former, according to the codebook size, we organize the literature into using large/medium-sized/small codebooks. For the latter, we discuss three lines of methods, i.e., using pre-trained or fine-tuned CNN models, and hybrid methods. The first two perform a single-pass of an image to the network, while the last category employs a patch-based feature extraction scheme. This survey presents milestones in modern instance retrieval, reviews a broad selection of previous works in different categories, and provides insights on the connection between SIFT and CNN-based methods. After analyzing and comparing retrieval performance of different categories on several datasets, we discuss promising directions towards generic and specialized instance retrieval.

  17. Generalized Synchronization in AN Array of Nonlinear Dynamic Systems with Applications to Chaotic Cnn

    Science.gov (United States)

    Min, Lequan; Chen, Guanrong

    This paper establishes some generalized synchronization (GS) theorems for a coupled discrete array of difference systems (CDADS) and a coupled continuous array of differential systems (CCADS). These constructive theorems provide general representations of GS in CDADS and CCADS. Based on these theorems, one can design GS-driven CDADS and CCADS via appropriate (invertible) transformations. As applications, the results are applied to autonomous and nonautonomous coupled Chen cellular neural network (CNN) CDADS and CCADS, discrete bidirectional Lorenz CNN CDADS, nonautonomous bidirectional Chua CNN CCADS, and nonautonomously bidirectional Chen CNN CDADS and CCADS, respectively. Extensive numerical simulations show their complex dynamic behaviors. These theorems provide new means for understanding the GS phenomena of complex discrete and continuously differentiable networks.

  18. Continuous Chinese sign language recognition with CNN-LSTM

    Science.gov (United States)

    Yang, Su; Zhu, Qing

    2017-07-01

    The goal of sign language recognition (SLR) is to translate the sign language into text, and provide a convenient tool for the communication between the deaf-mute and the ordinary. In this paper, we formulate an appropriate model based on convolutional neural network (CNN) combined with Long Short-Term Memory (LSTM) network, in order to accomplish the continuous recognition work. With the strong ability of CNN, the information of pictures captured from Chinese sign language (CSL) videos can be learned and transformed into vector. Since the video can be regarded as an ordered sequence of frames, LSTM model is employed to connect with the fully-connected layer of CNN. As a recurrent neural network (RNN), it is suitable for sequence learning tasks with the capability of recognizing patterns defined by temporal distance. Compared with traditional RNN, LSTM has performed better on storing and accessing information. We evaluate this method on our self-built dataset including 40 daily vocabularies. The experimental results show that the recognition method with CNN-LSTM can achieve a high recognition rate with small training sets, which will meet the needs of real-time SLR system.

  19. Advanced Camera Image Cropping Approach for CNN-Based End-to-End Controls on Sustainable Computing

    Directory of Open Access Journals (Sweden)

    Yunsick Sung

    2018-03-01

    Full Text Available Recent research on deep learning has been applied to a diversity of fields. In particular, numerous studies have been conducted on self-driving vehicles using end-to-end approaches based on images captured by a single camera. End-to-end controls learn the output vectors of output devices directly from the input vectors of available input devices. In other words, an end-to-end approach learns not by analyzing the meaning of input vectors, but by extracting optimal output vectors based on input vectors. Generally, when end-to-end control is applied to self-driving vehicles, the steering wheel and pedals are controlled autonomously by learning from the images captured by a camera. However, high-resolution images captured from a car cannot be directly used as inputs to Convolutional Neural Networks (CNNs owing to memory limitations; the image size needs to be efficiently reduced. Therefore, it is necessary to extract features from captured images automatically and to generate input images by merging the parts of the images that contain the extracted features. This paper proposes a learning method for end-to-end control that generates input images for CNNs by extracting road parts from input images, identifying the edges of the extracted road parts, and merging the parts of the images that contain the detected edges. In addition, a CNN model for end-to-end control is introduced. Experiments involving the Open Racing Car Simulator (TORCS, a sustainable computing environment for cars, confirmed the effectiveness of the proposed method for self-driving by comparing the accumulated difference in the angle of the steering wheel in the images generated by it with those of resized images containing the entire captured area and cropped images containing only a part of the captured area. The results showed that the proposed method reduced the accumulated difference by 0.839% and 0.850% compared to those yielded by the resized images and cropped images

  20. Detection of vehicle parts based on Faster R-CNN and relative position information

    Science.gov (United States)

    Zhang, Mingwen; Sang, Nong; Chen, Youbin; Gao, Changxin; Wang, Yongzhong

    2018-03-01

    Detection and recognition of vehicles are two essential tasks in intelligent transportation system (ITS). Currently, a prevalent method is to detect vehicle body, logo or license plate at first, and then recognize them. So the detection task is the most basic, but also the most important work. Besides the logo and license plate, some other parts, such as vehicle face, lamp, windshield and rearview mirror, are also key parts which can reflect the characteristics of vehicle and be used to improve the accuracy of recognition task. In this paper, the detection of vehicle parts is studied, and the work is novel. We choose Faster R-CNN as the basic algorithm, and take the local area of an image where vehicle body locates as input, then can get multiple bounding boxes with their own scores. If the box with maximum score is chosen as final result directly, it is often not the best one, especially for small objects. This paper presents a method which corrects original score with relative position information between two parts. Then we choose the box with maximum comprehensive score as the final result. Compared with original output strategy, the proposed method performs better.

  1. A new method of machine vision reprocessing based on cellular neural networks

    International Nuclear Information System (INIS)

    Jianhua, W.; Liping, Z.; Fenfang, Z.; Guojian, H.

    1996-01-01

    This paper proposed a method of image preprocessing in machine vision based on Cellular Neural Network (CNN). CNN is introduced to design image smoothing, image recovering, image boundary detecting and other image preprocessing problems. The proposed methods are so simple that the speed of algorithms are increased greatly to suit the needs of real-time image processing. The experimental results show a satisfactory reply

  2. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text.

    Science.gov (United States)

    Zhu, Qile; Li, Xiaolin; Conesa, Ana; Pereira, Cécile

    2018-05-01

    Best performing named entity recognition (NER) methods for biomedical literature are based on hand-crafted features or task-specific rules, which are costly to produce and difficult to generalize to other corpora. End-to-end neural networks achieve state-of-the-art performance without hand-crafted features and task-specific knowledge in non-biomedical NER tasks. However, in the biomedical domain, using the same architecture does not yield competitive performance compared with conventional machine learning models. We propose a novel end-to-end deep learning approach for biomedical NER tasks that leverages the local contexts based on n-gram character and word embeddings via Convolutional Neural Network (CNN). We call this approach GRAM-CNN. To automatically label a word, this method uses the local information around a word. Therefore, the GRAM-CNN method does not require any specific knowledge or feature engineering and can be theoretically applied to a wide range of existing NER problems. The GRAM-CNN approach was evaluated on three well-known biomedical datasets containing different BioNER entities. It obtained an F1-score of 87.26% on the Biocreative II dataset, 87.26% on the NCBI dataset and 72.57% on the JNLPBA dataset. Those results put GRAM-CNN in the lead of the biological NER methods. To the best of our knowledge, we are the first to apply CNN based structures to BioNER problems. The GRAM-CNN source code, datasets and pre-trained model are available online at: https://github.com/valdersoul/GRAM-CNN. andyli@ece.ufl.edu or aconesa@ufl.edu. Supplementary data are available at Bioinformatics online.

  3. Cellular Neural Network-Based Methods for Distributed Network Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2015-01-01

    Full Text Available According to the problems of current distributed architecture intrusion detection systems (DIDS, a new online distributed intrusion detection model based on cellular neural network (CNN was proposed, in which discrete-time CNN (DTCNN was used as weak classifier in each local node and state-controlled CNN (SCCNN was used as global detection method, respectively. We further proposed a new method for design template parameters of SCCNN via solving Linear Matrix Inequality. Experimental results based on KDD CUP 99 dataset show its feasibility and effectiveness. Emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation which allows the distributed intrusion detection to be performed better.

  4. Classification of CT brain images based on deep learning networks.

    Science.gov (United States)

    Gao, Xiaohong W; Hui, Rui; Tian, Zengmin

    2017-01-01

    While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information

  5. CNN Newsroom Classroom Guides, October 2000.

    Science.gov (United States)

    Turner Educational Services, Inc., Newtown, PA.

    These classroom guides, designed to accompany the daily CNN (Cable News Network) Newsroom broadcasts for the month of October 2000, provide program rundowns, suggestions for class activities and discussion, student handouts, and a list of related news terms. Top stories include: Chinese authorities detain Falun Gong protesters on Tiananmen Square…

  6. Image processing with a cellular nonlinear network

    International Nuclear Information System (INIS)

    Morfu, S.

    2005-01-01

    A cellular nonlinear network (CNN) based on uncoupled nonlinear oscillators is proposed for image processing purposes. It is shown theoretically and numerically that the contrast of an image loaded at the nodes of the CNN is strongly enhanced, even if this one is initially weak. An image inversion can be also obtained without reconfiguration of the network whereas a gray levels extraction can be performed with an additional threshold filtering. Lastly, an electronic implementation of this CNN is presented

  7. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    Science.gov (United States)

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  8. The CNN Effect: Stretegic Enabler or Operational Risk?

    National Research Council Canada - National Science Library

    Belknap, Margaret

    2001-01-01

    .... Satellite technology and the proliferation of 2417 news networks have created and increased the so-called 'CNN effect' on strategic level decision-making and how warfighters direct their commands...

  9. Relation Classification via Recurrent Neural Network

    OpenAIRE

    Zhang, Dongxu; Wang, Dong

    2015-01-01

    Deep learning has gained much success in sentence-level relation classification. For example, convolutional neural networks (CNN) have delivered competitive performance without much effort on feature engineering as the conventional pattern-based methods. Thus a lot of works have been produced based on CNN structures. However, a key issue that has not been well addressed by the CNN-based method is the lack of capability to learn temporal features, especially long-distance dependency between no...

  10. Spatio-Temporal Pain Recognition in CNN-based Super-Resolved Facial Images

    DEFF Research Database (Denmark)

    Bellantonio, Marco; Haque, Mohammad Ahsanul; Rodriguez, Pau

    2017-01-01

    Automatic pain detection is a long expected solution to a prevalent medical problem of pain management. This is more relevant when the subject of pain is young children or patients with limited ability to communicate about their pain experience. Computer vision-based analysis of facial pain...

  11. Classification of Land Cover and Land Use Based on Convolutional Neural Networks

    Science.gov (United States)

    Yang, Chun; Rottensteiner, Franz; Heipke, Christian

    2018-04-01

    Land cover describes the physical material of the earth's surface, whereas land use describes the socio-economic function of a piece of land. Land use information is typically collected in geospatial databases. As such databases become outdated quickly, an automatic update process is required. This paper presents a new approach to determine land cover and to classify land use objects based on convolutional neural networks (CNN). The input data are aerial images and derived data such as digital surface models. Firstly, we apply a CNN to determine the land cover for each pixel of the input image. We compare different CNN structures, all of them based on an encoder-decoder structure for obtaining dense class predictions. Secondly, we propose a new CNN-based methodology for the prediction of the land use label of objects from a geospatial database. In this context, we present a strategy for generating image patches of identical size from the input data, which are classified by a CNN. Again, we compare different CNN architectures. Our experiments show that an overall accuracy of up to 85.7 % and 77.4 % can be achieved for land cover and land use, respectively. The classification of land cover has a positive contribution to the classification of the land use classification.

  12. Adaptive Steganalysis Based on Selection Region and Combined Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Donghui Hu

    2017-01-01

    Full Text Available Digital image steganalysis is the art of detecting the presence of information hiding in carrier images. When detecting recently developed adaptive image steganography methods, state-of-art steganalysis methods cannot achieve satisfactory detection accuracy, because the adaptive steganography methods can adaptively embed information into regions with rich textures via the guidance of distortion function and thus make the effective steganalysis features hard to be extracted. Inspired by the promising success which convolutional neural network (CNN has achieved in the fields of digital image analysis, increasing researchers are devoted to designing CNN based steganalysis methods. But as for detecting adaptive steganography methods, the results achieved by CNN based methods are still far from expected. In this paper, we propose a hybrid approach by designing a region selection method and a new CNN framework. In order to make the CNN focus on the regions with complex textures, we design a region selection method by finding a region with the maximal sum of the embedding probabilities. To evolve more diverse and effective steganalysis features, we design a new CNN framework consisting of three separate subnets with independent structure and configuration parameters and then merge and split the three subnets repeatedly. Experimental results indicate that our approach can lead to performance improvement in detecting adaptive steganography.

  13. CNN - en succes i krise

    DEFF Research Database (Denmark)

    Böss, Michael

    1994-01-01

    Om CNN og den krise, netværket hele tiden må bekæmpe og dække. Udgivelsesdato: 26. september......Om CNN og den krise, netværket hele tiden må bekæmpe og dække. Udgivelsesdato: 26. september...

  14. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    Science.gov (United States)

    Zhu, Aichun; Wang, Tian; Snoussi, Hichem

    2018-03-01

    This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  15. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    Directory of Open Access Journals (Sweden)

    Aichun Zhu

    2018-03-01

    Full Text Available This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN. Firstly, a Relative Mixture Deformable Model (RMDM is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  16. Inspecting rapidly moving surfaces for small defects using CNN cameras

    Science.gov (United States)

    Blug, Andreas; Carl, Daniel; Höfler, Heinrich

    2013-04-01

    A continuous increase in production speed and manufacturing precision raises a demand for the automated detection of small image features on rapidly moving surfaces. An example are wire drawing processes where kilometers of cylindrical metal surfaces moving with 10 m/s have to be inspected for defects such as scratches, dents, grooves, or chatter marks with a lateral size of 100 μm in real time. Up to now, complex eddy current systems are used for quality control instead of line cameras, because the ratio between lateral feature size and surface speed is limited by the data transport between camera and computer. This bottleneck is avoided by "cellular neural network" (CNN) cameras which enable image processing directly on the camera chip. This article reports results achieved with a demonstrator based on this novel analogue camera - computer system. The results show that computational speed and accuracy of the analogue computer system are sufficient to detect and discriminate the different types of defects. Area images with 176 x 144 pixels are acquired and evaluated in real time with frame rates of 4 to 10 kHz - depending on the number of defects to be detected. These frame rates correspond to equivalent line rates on line cameras between 360 and 880 kHz, a number far beyond the available features. Using the relation between lateral feature size and surface speed as a figure of merit, the CNN based system outperforms conventional image processing systems by an order of magnitude.

  17. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining.

    Science.gov (United States)

    Tang, Tianyu; Zhou, Shilin; Deng, Zhipeng; Zou, Huanxin; Lei, Lin

    2017-02-10

    Detecting vehicles in aerial imagery plays an important role in a wide range of applications. The current vehicle detection methods are mostly based on sliding-window search and handcrafted or shallow-learning-based features, having limited description capability and heavy computational costs. Recently, due to the powerful feature representations, region convolutional neural networks (CNN) based detection methods have achieved state-of-the-art performance in computer vision, especially Faster R-CNN. However, directly using it for vehicle detection in aerial images has many limitations: (1) region proposal network (RPN) in Faster R-CNN has poor performance for accurately locating small-sized vehicles, due to the relatively coarse feature maps; and (2) the classifier after RPN cannot distinguish vehicles and complex backgrounds well. In this study, an improved detection method based on Faster R-CNN is proposed in order to accomplish the two challenges mentioned above. Firstly, to improve the recall, we employ a hyper region proposal network (HRPN) to extract vehicle-like targets with a combination of hierarchical feature maps. Then, we replace the classifier after RPN by a cascade of boosted classifiers to verify the candidate regions, aiming at reducing false detection by negative example mining. We evaluate our method on the Munich vehicle dataset and the collected vehicle dataset, with improvements in accuracy and robustness compared to existing methods.

  18. Traffic Command Gesture Recognition for Virtual Urban Scenes Based on a Spatiotemporal Convolution Neural Network

    Directory of Open Access Journals (Sweden)

    Chunyong Ma

    2018-01-01

    Full Text Available Intelligent recognition of traffic police command gestures increases authenticity and interactivity in virtual urban scenes. To actualize real-time traffic gesture recognition, a novel spatiotemporal convolution neural network (ST-CNN model is presented. We utilized Kinect 2.0 to construct a traffic police command gesture skeleton (TPCGS dataset collected from 10 volunteers. Subsequently, convolution operations on the locational change of each skeletal point were performed to extract temporal features, analyze the relative positions of skeletal points, and extract spatial features. After temporal and spatial features based on the three-dimensional positional information of traffic police skeleton points were extracted, the ST-CNN model classified positional information into eight types of Chinese traffic police gestures. The test accuracy of the ST-CNN model was 96.67%. In addition, a virtual urban traffic scene in which real-time command tests were carried out was set up, and a real-time test accuracy rate of 93.0% was achieved. The proposed ST-CNN model ensured a high level of accuracy and robustness. The ST-CNN model recognized traffic command gestures, and such recognition was found to control vehicles in virtual traffic environments, which enriches the interactive mode of the virtual city scene. Traffic command gesture recognition contributes to smart city construction.

  19. Finger vein recognition based on convolutional neural network

    Directory of Open Access Journals (Sweden)

    Meng Gesi

    2017-01-01

    Full Text Available Biometric Authentication Technology has been widely used in this information age. As one of the most important technology of authentication, finger vein recognition attracts our attention because of its high security, reliable accuracy and excellent performance. However, the current finger vein recognition system is difficult to be applied widely because its complicated image pre-processing and not representative feature vectors. To solve this problem, a finger vein recognition method based on the convolution neural network (CNN is proposed in the paper. The image samples are directly input into the CNN model to extract its feature vector so that we can make authentication by comparing the Euclidean distance between these vectors. Finally, the Deep Learning Framework Caffe is adopted to verify this method. The result shows that there are great improvements in both speed and accuracy rate compared to the previous research. And the model has nice robustness in illumination and rotation.

  20. Pattern Recognition of Momentary Mental Workload Based on Multi-Channel Electrophysiological Data and Ensemble Convolutional Neural Networks.

    Science.gov (United States)

    Zhang, Jianhua; Li, Sunan; Wang, Rubin

    2017-01-01

    In this paper, we deal with the Mental Workload (MWL) classification problem based on the measured physiological data. First we discussed the optimal depth (i.e., the number of hidden layers) and parameter optimization algorithms for the Convolutional Neural Networks (CNN). The base CNNs designed were tested according to five classification performance indices, namely Accuracy, Precision, F-measure, G-mean, and required training time. Then we developed an Ensemble Convolutional Neural Network (ECNN) to enhance the accuracy and robustness of the individual CNN model. For the ECNN design, three model aggregation approaches (weighted averaging, majority voting and stacking) were examined and a resampling strategy was used to enhance the diversity of individual CNN models. The results of MWL classification performance comparison indicated that the proposed ECNN framework can effectively improve MWL classification performance and is featured by entirely automatic feature extraction and MWL classification, when compared with traditional machine learning methods.

  1. A Study of Deep CNN-Based Classification of Open and Closed Eyes Using a Visible Light Camera Sensor

    Directory of Open Access Journals (Sweden)

    Ki Wan Kim

    2017-06-01

    Full Text Available The necessity for the classification of open and closed eyes is increasing in various fields, including analysis of eye fatigue in 3D TVs, analysis of the psychological states of test subjects, and eye status tracking-based driver drowsiness detection. Previous studies have used various methods to distinguish between open and closed eyes, such as classifiers based on the features obtained from image binarization, edge operators, or texture analysis. However, when it comes to eye images with different lighting conditions and resolutions, it can be difficult to find an optimal threshold for image binarization or optimal filters for edge and texture extraction. In order to address this issue, we propose a method to classify open and closed eye images with different conditions, acquired by a visible light camera, using a deep residual convolutional neural network. After conducting performance analysis on both self-collected and open databases, we have determined that the classification accuracy of the proposed method is superior to that of existing methods.

  2. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.

    Science.gov (United States)

    Ma, Jinlian; Wu, Fa; Jiang, Tian'an; Zhao, Qiyu; Kong, Dexing

    2017-11-01

    Delineation of thyroid nodule boundaries from ultrasound images plays an important role in calculation of clinical indices and diagnosis of thyroid diseases. However, it is challenging for accurate and automatic segmentation of thyroid nodules because of their heterogeneous appearance and components similar to the background. In this study, we employ a deep convolutional neural network (CNN) to automatically segment thyroid nodules from ultrasound images. Our CNN-based method formulates a thyroid nodule segmentation problem as a patch classification task, where the relationship among patches is ignored. Specifically, the CNN used image patches from images of normal thyroids and thyroid nodules as inputs and then generated the segmentation probability maps as outputs. A multi-view strategy is used to improve the performance of the CNN-based model. Additionally, we compared the performance of our approach with that of the commonly used segmentation methods on the same dataset. The experimental results suggest that our proposed method outperforms prior methods on thyroid nodule segmentation. Moreover, the results show that the CNN-based model is able to delineate multiple nodules in thyroid ultrasound images accurately and effectively. In detail, our CNN-based model can achieve an average of the overlap metric, dice ratio, true positive rate, false positive rate, and modified Hausdorff distance as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] on overall folds, respectively. Our proposed method is fully automatic without any user interaction. Quantitative results also indicate that our method is so efficient and accurate that it can be good enough to replace the time-consuming and tedious manual segmentation approach, demonstrating the potential clinical applications.

  3. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm.

    Science.gov (United States)

    Lee, Jae-Hong; Kim, Do-Hyung; Jeong, Seong-Nyum; Choi, Seong-Ho

    2018-04-01

    The aim of the current study was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the potential usefulness and accuracy of this system for the diagnosis and prediction of periodontally compromised teeth (PCT). Combining pretrained deep CNN architecture and a self-trained network, periapical radiographic images were used to determine the optimal CNN algorithm and weights. The diagnostic and predictive accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve, area under the ROC curve, confusion matrix, and 95% confidence intervals (CIs) were calculated using our deep CNN algorithm, based on a Keras framework in Python. The periapical radiographic dataset was split into training (n=1,044), validation (n=348), and test (n=348) datasets. With the deep learning algorithm, the diagnostic accuracy for PCT was 81.0% for premolars and 76.7% for molars. Using 64 premolars and 64 molars that were clinically diagnosed as severe PCT, the accuracy of predicting extraction was 82.8% (95% CI, 70.1%-91.2%) for premolars and 73.4% (95% CI, 59.9%-84.0%) for molars. We demonstrated that the deep CNN algorithm was useful for assessing the diagnosis and predictability of PCT. Therefore, with further optimization of the PCT dataset and improvements in the algorithm, a computer-aided detection system can be expected to become an effective and efficient method of diagnosing and predicting PCT.

  4. Village Building Identification Based on Ensemble Convolutional Neural Networks

    Science.gov (United States)

    Guo, Zhiling; Chen, Qi; Xu, Yongwei; Shibasaki, Ryosuke; Shao, Xiaowei

    2017-01-01

    In this study, we present the Ensemble Convolutional Neural Network (ECNN), an elaborate CNN frame formulated based on ensembling state-of-the-art CNN models, to identify village buildings from open high-resolution remote sensing (HRRS) images. First, to optimize and mine the capability of CNN for village mapping and to ensure compatibility with our classification targets, a few state-of-the-art models were carefully optimized and enhanced based on a series of rigorous analyses and evaluations. Second, rather than directly implementing building identification by using these models, we exploited most of their advantages by ensembling their feature extractor parts into a stronger model called ECNN based on the multiscale feature learning method. Finally, the generated ECNN was applied to a pixel-level classification frame to implement object identification. The proposed method can serve as a viable tool for village building identification with high accuracy and efficiency. The experimental results obtained from the test area in Savannakhet province, Laos, prove that the proposed ECNN model significantly outperforms existing methods, improving overall accuracy from 96.64% to 99.26%, and kappa from 0.57 to 0.86. PMID:29084154

  5. CNN Newsroom Classroom Guides. June 1-30, 1994.

    Science.gov (United States)

    Cable News Network, Atlanta, GA.

    These classroom guides for the daily CNN (Cable News Network) Newsroom broadcasts for the month of June provide program rundowns, suggestions for class activities and discussion, student handouts, and a list of related news terms. Topics covered by the guides include: (1) Congressman Dan Rostenkowski, D-Day, cars and Singapore, Rodney King civil…

  6. CNN Newsroom Classroom Guides. September 1-30, 1994.

    Science.gov (United States)

    Cable News Network, Atlanta, GA.

    These classroom guides for the daily CNN (Cable News Network) Newsroom broadcasts for the month of August provide program rundowns, suggestions for class activities and discussion, student handouts, and a list of related news terms. Topics covered by the guides include: (1) truce in Northern Ireland, school censorship, scientific method, burial…

  7. Multi-Pixel Simultaneous Classification of PolSAR Image Using Convolutional Neural Networks

    Science.gov (United States)

    Xu, Xin; Gui, Rong; Pu, Fangling

    2018-01-01

    Convolutional neural networks (CNN) have achieved great success in the optical image processing field. Because of the excellent performance of CNN, more and more methods based on CNN are applied to polarimetric synthetic aperture radar (PolSAR) image classification. Most CNN-based PolSAR image classification methods can only classify one pixel each time. Because all the pixels of a PolSAR image are classified independently, the inherent interrelation of different land covers is ignored. We use a fixed-feature-size CNN (FFS-CNN) to classify all pixels in a patch simultaneously. The proposed method has several advantages. First, FFS-CNN can classify all the pixels in a small patch simultaneously. When classifying a whole PolSAR image, it is faster than common CNNs. Second, FFS-CNN is trained to learn the interrelation of different land covers in a patch, so it can use the interrelation of land covers to improve the classification results. The experiments of FFS-CNN are evaluated on a Chinese Gaofen-3 PolSAR image and other two real PolSAR images. Experiment results show that FFS-CNN is comparable with the state-of-the-art PolSAR image classification methods. PMID:29510499

  8. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    Science.gov (United States)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio

  9. Convolutional neural network features based change detection in satellite images

    Science.gov (United States)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  10. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.

    Science.gov (United States)

    Zhong, Jiandan; Lei, Tao; Yao, Guangle

    2017-11-24

    Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.

  11. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Shunping Ji

    2018-01-01

    Full Text Available This study describes a novel three-dimensional (3D convolutional neural networks (CNN based method that automatically classifies crops from spatio-temporal remote sensing images. First, 3D kernel is designed according to the structure of multi-spectral multi-temporal remote sensing data. Secondly, the 3D CNN framework with fine-tuned parameters is designed for training 3D crop samples and learning spatio-temporal discriminative representations, with the full crop growth cycles being preserved. In addition, we introduce an active learning strategy to the CNN model to improve labelling accuracy up to a required threshold with the most efficiency. Finally, experiments are carried out to test the advantage of the 3D CNN, in comparison to the two-dimensional (2D CNN and other conventional methods. Our experiments show that the 3D CNN is especially suitable in characterizing the dynamics of crop growth and outperformed the other mainstream methods.

  12. Convolutional neural networks based on augmented training samples for synthetic aperture radar target recognition

    Science.gov (United States)

    Yan, Yue

    2018-03-01

    A synthetic aperture radar (SAR) automatic target recognition (ATR) method based on the convolutional neural networks (CNN) trained by augmented training samples is proposed. To enhance the robustness of CNN to various extended operating conditions (EOCs), the original training images are used to generate the noisy samples at different signal-to-noise ratios (SNRs), multiresolution representations, and partially occluded images. Then, the generated images together with the original ones are used to train a designed CNN for target recognition. The augmented training samples can contrapuntally improve the robustness of the trained CNN to the covered EOCs, i.e., the noise corruption, resolution variance, and partial occlusion. Moreover, the significantly larger training set effectively enhances the representation capability for other conditions, e.g., the standard operating condition (SOC), as well as the stability of the network. Therefore, better performance can be achieved by the proposed method for SAR ATR. For experimental evaluation, extensive experiments are conducted on the Moving and Stationary Target Acquisition and Recognition dataset under SOC and several typical EOCs.

  13. Cellular Neural Networks: A genetic algorithm for parameters optimization in artificial vision applications

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione; Zanela, A. [Rome Univ. `La Sapienza` (Italy). Dipt. di Fisica

    1997-03-01

    An optimization method for some of the CNN`s (Cellular Neural Network) parameters, based on evolutionary strategies, is proposed. The new class of feedback template found is more effective in extracting features from the images that an autonomous vehicle acquires, than in the previous CNN`s literature.

  14. Cellular Neural Networks: A genetic algorithm for parameters optimization in artificial vision applications

    International Nuclear Information System (INIS)

    Taraglio, S.; Zanela, A.

    1997-03-01

    An optimization method for some of the CNN's (Cellular Neural Network) parameters, based on evolutionary strategies, is proposed. The new class of feedback template found is more effective in extracting features from the images that an autonomous vehicle acquires, than in the previous CNN's literature

  15. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Matched Filtering and Convolutional Neural Network.

    Science.gov (United States)

    Chen, Shuo; Luo, Chenggao; Wang, Hongqiang; Deng, Bin; Cheng, Yongqiang; Zhuang, Zhaowen

    2018-04-26

    As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. However, there are still two problems in three-dimensional (3D) TCAI. Firstly, the large-scale reference-signal matrix based on meshing the 3D imaging area creates a heavy computational burden, thus leading to unsatisfactory efficiency. Secondly, it is difficult to resolve the target under low signal-to-noise ratio (SNR). In this paper, we propose a 3D imaging method based on matched filtering (MF) and convolutional neural network (CNN), which can reduce the computational burden and achieve high-resolution imaging for low SNR targets. In terms of the frequency-hopping (FH) signal, the original echo is processed with MF. By extracting the processed echo in different spike pulses separately, targets in different imaging planes are reconstructed simultaneously to decompose the global computational complexity, and then are synthesized together to reconstruct the 3D target. Based on the conventional TCAI model, we deduce and build a new TCAI model based on MF. Furthermore, the convolutional neural network (CNN) is designed to teach the MF-TCAI how to reconstruct the low SNR target better. The experimental results demonstrate that the MF-TCAI achieves impressive performance on imaging ability and efficiency under low SNR. Moreover, the MF-TCAI has learned to better resolve the low-SNR 3D target with the help of CNN. In summary, the proposed 3D TCAI can achieve: (1) low-SNR high-resolution imaging by using MF; (2) efficient 3D imaging by downsizing the large-scale reference-signal matrix; and (3) intelligent imaging with CNN. Therefore, the TCAI based on MF and CNN has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.

  16. [Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network].

    Science.gov (United States)

    Wang, Yuanyuan; Zhou, Tao; Lu, Huiling; Wu, Cuiying; Yang, Pengfei

    2017-08-01

    The convolutional neural network (CNN) could be used on computer-aided diagnosis of lung tumor with positron emission tomography (PET)/computed tomography (CT), which can provide accurate quantitative analysis to compensate for visual inertia and defects in gray-scale sensitivity, and help doctors diagnose accurately. Firstly, parameter migration method is used to build three CNNs (CT-CNN, PET-CNN, and PET/CT-CNN) for lung tumor recognition in CT, PET, and PET/CT image, respectively. Then, we aimed at CT-CNN to obtain the appropriate model parameters for CNN training through analysis the influence of model parameters such as epochs, batchsize and image scale on recognition rate and training time. Finally, three single CNNs are used to construct ensemble CNN, and then lung tumor PET/CT recognition was completed through relative majority vote method and the performance between ensemble CNN and single CNN was compared. The experiment results show that the ensemble CNN is better than single CNN on computer-aided diagnosis of lung tumor.

  17. Image-based corrosion recognition for ship steel structures

    Science.gov (United States)

    Ma, Yucong; Yang, Yang; Yao, Yuan; Li, Shengyuan; Zhao, Xuefeng

    2018-03-01

    Ship structures are subjected to corrosion inevitably in service. Existed image-based methods are influenced by the noises in images because they recognize corrosion by extracting features. In this paper, a novel method of image-based corrosion recognition for ship steel structures is proposed. The method utilizes convolutional neural networks (CNN) and will not be affected by noises in images. A CNN used to recognize corrosion was designed through fine-turning an existing CNN architecture and trained by datasets built using lots of images. Combining the trained CNN classifier with a sliding window technique, the corrosion zone in an image can be recognized.

  18. Drug-Drug Interaction Extraction via Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Shengyu Liu

    2016-01-01

    Full Text Available Drug-drug interaction (DDI extraction as a typical relation extraction task in natural language processing (NLP has always attracted great attention. Most state-of-the-art DDI extraction systems are based on support vector machines (SVM with a large number of manually defined features. Recently, convolutional neural networks (CNN, a robust machine learning method which almost does not need manually defined features, has exhibited great potential for many NLP tasks. It is worth employing CNN for DDI extraction, which has never been investigated. We proposed a CNN-based method for DDI extraction. Experiments conducted on the 2013 DDIExtraction challenge corpus demonstrate that CNN is a good choice for DDI extraction. The CNN-based DDI extraction method achieves an F-score of 69.75%, which outperforms the existing best performing method by 2.75%.

  19. A patch-based convolutional neural network for remote sensing image classification.

    Science.gov (United States)

    Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di

    2017-11-01

    Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A universal concept based on cellular neural networks for ultrafast and flexible solving of differential equations.

    Science.gov (United States)

    Chedjou, Jean Chamberlain; Kyamakya, Kyandoghere

    2015-04-01

    This paper develops and validates a comprehensive and universally applicable computational concept for solving nonlinear differential equations (NDEs) through a neurocomputing concept based on cellular neural networks (CNNs). High-precision, stability, convergence, and lowest-possible memory requirements are ensured by the CNN processor architecture. A significant challenge solved in this paper is that all these cited computing features are ensured in all system-states (regular or chaotic ones) and in all bifurcation conditions that may be experienced by NDEs.One particular quintessence of this paper is to develop and demonstrate a solver concept that shows and ensures that CNN processors (realized either in hardware or in software) are universal solvers of NDE models. The solving logic or algorithm of given NDEs (possible examples are: Duffing, Mathieu, Van der Pol, Jerk, Chua, Rössler, Lorenz, Burgers, and the transport equations) through a CNN processor system is provided by a set of templates that are computed by our comprehensive templates calculation technique that we call nonlinear adaptive optimization. This paper is therefore a significant contribution and represents a cutting-edge real-time computational engineering approach, especially while considering the various scientific and engineering applications of this ultrafast, energy-and-memory-efficient, and high-precise NDE solver concept. For illustration purposes, three NDE models are demonstratively solved, and related CNN templates are derived and used: the periodically excited Duffing equation, the Mathieu equation, and the transport equation.

  1. New second-order difference algorithm for image segmentation based on cellular neural networks (CNNs)

    Science.gov (United States)

    Meng, Shukai; Mo, Yu L.

    2001-09-01

    Image segmentation is one of the most important operations in many image analysis problems, which is the process that subdivides an image into its constituents and extracts those parts of interest. In this paper, we present a new second order difference gray-scale image segmentation algorithm based on cellular neural networks. A 3x3 CNN cloning template is applied, which can make smooth processing and has a good ability to deal with the conflict between the capability of noise resistance and the edge detection of complex shapes. We use second order difference operator to calculate the coefficients of the control template, which are not constant but rather depend on the input gray-scale values. It is similar to Contour Extraction CNN in construction, but there are some different in algorithm. The result of experiment shows that the second order difference CNN has a good capability in edge detection. It is better than Contour Extraction CNN in detail detection and more effective than the Laplacian of Gauss (LOG) algorithm.

  2. Chinese Sentence Classification Based on Convolutional Neural Network

    Science.gov (United States)

    Gu, Chengwei; Wu, Ming; Zhang, Chuang

    2017-10-01

    Sentence classification is one of the significant issues in Natural Language Processing (NLP). Feature extraction is often regarded as the key point for natural language processing. Traditional ways based on machine learning can not take high level features into consideration, such as Naive Bayesian Model. The neural network for sentence classification can make use of contextual information to achieve greater results in sentence classification tasks. In this paper, we focus on classifying Chinese sentences. And the most important is that we post a novel architecture of Convolutional Neural Network (CNN) to apply on Chinese sentence classification. In particular, most of the previous methods often use softmax classifier for prediction, we embed a linear support vector machine to substitute softmax in the deep neural network model, minimizing a margin-based loss to get a better result. And we use tanh as an activation function, instead of ReLU. The CNN model improve the result of Chinese sentence classification tasks. Experimental results on the Chinese news title database validate the effectiveness of our model.

  3. Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation

    Science.gov (United States)

    Qin, Wenjian; Wu, Jia; Han, Fei; Yuan, Yixuan; Zhao, Wei; Ibragimov, Bulat; Gu, Jia; Xing, Lei

    2018-05-01

    Segmentation of liver in abdominal computed tomography (CT) is an important step for radiation therapy planning of hepatocellular carcinoma. Practically, a fully automatic segmentation of liver remains challenging because of low soft tissue contrast between liver and its surrounding organs, and its highly deformable shape. The purpose of this work is to develop a novel superpixel-based and boundary sensitive convolutional neural network (SBBS-CNN) pipeline for automated liver segmentation. The entire CT images were first partitioned into superpixel regions, where nearby pixels with similar CT number were aggregated. Secondly, we converted the conventional binary segmentation into a multinomial classification by labeling the superpixels into three classes: interior liver, liver boundary, and non-liver background. By doing this, the boundary region of the liver was explicitly identified and highlighted for the subsequent classification. Thirdly, we computed an entropy-based saliency map for each CT volume, and leveraged this map to guide the sampling of image patches over the superpixels. In this way, more patches were extracted from informative regions (e.g. the liver boundary with irregular changes) and fewer patches were extracted from homogeneous regions. Finally, deep CNN pipeline was built and trained to predict the probability map of the liver boundary. We tested the proposed algorithm in a cohort of 100 patients. With 10-fold cross validation, the SBBS-CNN achieved mean Dice similarity coefficients of 97.31  ±  0.36% and average symmetric surface distance of 1.77  ±  0.49 mm. Moreover, it showed superior performance in comparison with state-of-art methods, including U-Net, pixel-based CNN, active contour, level-sets and graph-cut algorithms. SBBS-CNN provides an accurate and effective tool for automated liver segmentation. It is also envisioned that the proposed framework is directly applicable in other medical image segmentation scenarios.

  4. Cellular Neural Networks for NP-Hard Optimization

    Directory of Open Access Journals (Sweden)

    Mária Ercsey-Ravasz

    2009-02-01

    Full Text Available A cellular neural/nonlinear network (CNN is used for NP-hard optimization. We prove that a CNN in which the parameters of all cells can be separately controlled is the analog correspondent of a two-dimensional Ising-type (Edwards-Anderson spin-glass system. Using the properties of CNN, we show that one single operation (template always yields a local minimum of the spin-glass energy function. This way, a very fast optimization method, similar to simulated annealing, can be built. Estimating the simulation time needed on CNN-based computers, and comparing it with the time needed on normal digital computers using the simulated annealing algorithm, the results are astonishing. CNN computers could be faster than digital computers already at 10×10 lattice sizes. The local control of the template parameters was already partially realized on some of the hardwares, we think this study could further motivate their development in this direction.

  5. Cellular neural networks for the stereo matching problem

    International Nuclear Information System (INIS)

    Taraglio, S.; Zanela, A.

    1997-03-01

    The applicability of the Cellular Neural Network (CNN) paradigm to the problem of recovering information on the tridimensional structure of the environment is investigated. The approach proposed is the stereo matching of video images. The starting point of this work is the Zhou-Chellappa neural network implementation for the same problem. The CNN based system we present here yields the same results as the previous approach, but without the many existing drawbacks

  6. Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models.

    Science.gov (United States)

    Karimi, Davood; Samei, Golnoosh; Kesch, Claudia; Nir, Guy; Salcudean, Septimiu E

    2018-05-15

    Most of the existing convolutional neural network (CNN)-based medical image segmentation methods are based on methods that have originally been developed for segmentation of natural images. Therefore, they largely ignore the differences between the two domains, such as the smaller degree of variability in the shape and appearance of the target volume and the smaller amounts of training data in medical applications. We propose a CNN-based method for prostate segmentation in MRI that employs statistical shape models to address these issues. Our CNN predicts the location of the prostate center and the parameters of the shape model, which determine the position of prostate surface keypoints. To train such a large model for segmentation of 3D images using small data (1) we adopt a stage-wise training strategy by first training the network to predict the prostate center and subsequently adding modules for predicting the parameters of the shape model and prostate rotation, (2) we propose a data augmentation method whereby the training images and their prostate surface keypoints are deformed according to the displacements computed based on the shape model, and (3) we employ various regularization techniques. Our proposed method achieves a Dice score of 0.88, which is obtained by using both elastic-net and spectral dropout for regularization. Compared with a standard CNN-based method, our method shows significantly better segmentation performance on the prostate base and apex. Our experiments also show that data augmentation using the shape model significantly improves the segmentation results. Prior knowledge about the shape of the target organ can improve the performance of CNN-based segmentation methods, especially where image features are not sufficient for a precise segmentation. Statistical shape models can also be employed to synthesize additional training data that can ease the training of large CNNs.

  7. Convolutional Neural Network Based on Extreme Learning Machine for Maritime Ships Recognition in Infrared Images.

    Science.gov (United States)

    Khellal, Atmane; Ma, Hongbin; Fei, Qing

    2018-05-09

    The success of Deep Learning models, notably convolutional neural networks (CNNs), makes them the favorable solution for object recognition systems in both visible and infrared domains. However, the lack of training data in the case of maritime ships research leads to poor performance due to the problem of overfitting. In addition, the back-propagation algorithm used to train CNN is very slow and requires tuning many hyperparameters. To overcome these weaknesses, we introduce a new approach fully based on Extreme Learning Machine (ELM) to learn useful CNN features and perform a fast and accurate classification, which is suitable for infrared-based recognition systems. The proposed approach combines an ELM based learning algorithm to train CNN for discriminative features extraction and an ELM based ensemble for classification. The experimental results on VAIS dataset, which is the largest dataset of maritime ships, confirm that the proposed approach outperforms the state-of-the-art models in term of generalization performance and training speed. For instance, the proposed model is up to 950 times faster than the traditional back-propagation based training of convolutional neural networks, primarily for low-level features extraction.

  8. Resting State EEG-based biometrics for individual identification using convolutional neural networks.

    Science.gov (United States)

    Lan Ma; Minett, James W; Blu, Thierry; Wang, William S-Y

    2015-08-01

    Biometrics is a growing field, which permits identification of individuals by means of unique physical features. Electroencephalography (EEG)-based biometrics utilizes the small intra-personal differences and large inter-personal differences between individuals' brainwave patterns. In the past, such methods have used features derived from manually-designed procedures for this purpose. Another possibility is to use convolutional neural networks (CNN) to automatically extract an individual's best and most unique neural features and conduct classification, using EEG data derived from both Resting State with Open Eyes (REO) and Resting State with Closed Eyes (REC). Results indicate that this CNN-based joint-optimized EEG-based Biometric System yields a high degree of accuracy of identification (88%) for 10-class classification. Furthermore, rich inter-personal difference can be found using a very low frequency band (0-2Hz). Additionally, results suggest that the temporal portions over which subjects can be individualized is less than 200 ms.

  9. Numerical Analysis of Modeling Based on Improved Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Shao Jie

    2014-01-01

    Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.

  10. Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Muthu Subash Kavitha

    Full Text Available Pluripotent stem cells can potentially be used in clinical applications as a model for studying disease progress. This tracking of disease-causing events in cells requires constant assessment of the quality of stem cells. Existing approaches are inadequate for robust and automated differentiation of stem cell colonies. In this study, we developed a new model of vector-based convolutional neural network (V-CNN with respect to extracted features of the induced pluripotent stem cell (iPSC colony for distinguishing colony characteristics. A transfer function from the feature vectors to the virtual image was generated at the front of the CNN in order for classification of feature vectors of healthy and unhealthy colonies. The robustness of the proposed V-CNN model in distinguishing colonies was compared with that of the competitive support vector machine (SVM classifier based on morphological, textural, and combined features. Additionally, five-fold cross-validation was used to investigate the performance of the V-CNN model. The precision, recall, and F-measure values of the V-CNN model were comparatively higher than those of the SVM classifier, with a range of 87-93%, indicating fewer false positives and false negative rates. Furthermore, for determining the quality of colonies, the V-CNN model showed higher accuracy values based on morphological (95.5%, textural (91.0%, and combined (93.2% features than those estimated with the SVM classifier (86.7, 83.3, and 83.4%, respectively. Similarly, the accuracy of the feature sets using five-fold cross-validation was above 90% for the V-CNN model, whereas that yielded by the SVM model was in the range of 75-77%. We thus concluded that the proposed V-CNN model outperforms the conventional SVM classifier, which strongly suggests that it as a reliable framework for robust colony classification of iPSCs. It can also serve as a cost-effective quality recognition tool during culture and other experimental

  11. Infrared variation reduction by simultaneous background suppression and target contrast enhancement for deep convolutional neural network-based automatic target recognition

    Science.gov (United States)

    Kim, Sungho

    2017-06-01

    Automatic target recognition (ATR) is a traditionally challenging problem in military applications because of the wide range of infrared (IR) image variations and the limited number of training images. IR variations are caused by various three-dimensional target poses, noncooperative weather conditions (fog and rain), and difficult target acquisition environments. Recently, deep convolutional neural network-based approaches for RGB images (RGB-CNN) showed breakthrough performance in computer vision problems, such as object detection and classification. The direct use of RGB-CNN to the IR ATR problem fails to work because of the IR database problems (limited database size and IR image variations). An IR variation-reduced deep CNN (IVR-CNN) to cope with the problems is presented. The problem of limited IR database size is solved by a commercial thermal simulator (OKTAL-SE). The second problem of IR variations is mitigated by the proposed shifted ramp function-based intensity transformation. This can suppress the background and enhance the target contrast simultaneously. The experimental results on the synthesized IR images generated by the thermal simulator (OKTAL-SE) validated the feasibility of IVR-CNN for military ATR applications.

  12. Tongue Images Classification Based on Constrained High Dispersal Network

    Directory of Open Access Journals (Sweden)

    Dan Meng

    2017-01-01

    Full Text Available Computer aided tongue diagnosis has a great potential to play important roles in traditional Chinese medicine (TCM. However, the majority of the existing tongue image analyses and classification methods are based on the low-level features, which may not provide a holistic view of the tongue. Inspired by deep convolutional neural network (CNN, we propose a novel feature extraction framework called constrained high dispersal neural networks (CHDNet to extract unbiased features and reduce human labor for tongue diagnosis in TCM. Previous CNN models have mostly focused on learning convolutional filters and adapting weights between them, but these models have two major issues: redundancy and insufficient capability in handling unbalanced sample distribution. We introduce high dispersal and local response normalization operation to address the issue of redundancy. We also add multiscale feature analysis to avoid the problem of sensitivity to deformation. Our proposed CHDNet learns high-level features and provides more classification information during training time, which may result in higher accuracy when predicting testing samples. We tested the proposed method on a set of 267 gastritis patients and a control group of 48 healthy volunteers. Test results show that CHDNet is a promising method in tongue image classification for the TCM study.

  13. Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection.

    Science.gov (United States)

    Wahab, Noorul; Khan, Asifullah; Lee, Yeon Soo

    2017-06-01

    Different types of breast cancer are affecting lives of women across the world. Common types include Ductal carcinoma in situ (DCIS), Invasive ductal carcinoma (IDC), Tubular carcinoma, Medullary carcinoma, and Invasive lobular carcinoma (ILC). While detecting cancer, one important factor is mitotic count - showing how rapidly the cells are dividing. But the class imbalance problem, due to the small number of mitotic nuclei in comparison to the overwhelming number of non-mitotic nuclei, affects the performance of classification models. This work presents a two-phase model to mitigate the class biasness issue while classifying mitotic and non-mitotic nuclei in breast cancer histopathology images through a deep convolutional neural network (CNN). First, nuclei are segmented out using blue ratio and global binary thresholding. In Phase-1 a CNN is then trained on the segmented out 80×80 pixel patches based on a standard dataset. Hard non-mitotic examples are identified and augmented; mitotic examples are oversampled by rotation and flipping; whereas non-mitotic examples are undersampled by blue ratio histogram based k-means clustering. Based on this information from Phase-1, the dataset is modified for Phase-2 in order to reduce the effects of class imbalance. The proposed CNN architecture and data balancing technique yielded an F-measure of 0.79, and outperformed all the methods relying on specific handcrafted features, as well as those using a combination of handcrafted and CNN-generated features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning

    Science.gov (United States)

    Cruz-Roa, Angel; Arévalo, John; Judkins, Alexander; Madabhushi, Anant; González, Fabio

    2015-12-01

    Convolutional neural networks (CNN) have been very successful at addressing different computer vision tasks thanks to their ability to learn image representations directly from large amounts of labeled data. Features learned from a dataset can be used to represent images from a different dataset via an approach called transfer learning. In this paper we apply transfer learning to the challenging task of medulloblastoma tumor differentiation. We compare two different CNN models which were previously trained in two different domains (natural and histopathology images). The first CNN is a state-of-the-art approach in computer vision, a large and deep CNN with 16-layers, Visual Geometry Group (VGG) CNN. The second (IBCa-CNN) is a 2-layer CNN trained for invasive breast cancer tumor classification. Both CNNs are used as visual feature extractors of histopathology image regions of anaplastic and non-anaplastic medulloblastoma tumor from digitized whole-slide images. The features from the two models are used, separately, to train a softmax classifier to discriminate between anaplastic and non-anaplastic medulloblastoma image regions. Experimental results show that the transfer learning approach produce competitive results in comparison with the state of the art approaches for IBCa detection. Results also show that features extracted from the IBCa-CNN have better performance in comparison with features extracted from the VGG-CNN. The former obtains 89.8% while the latter obtains 76.6% in terms of average accuracy.

  15. Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram.

    Science.gov (United States)

    Urtnasan, Erdenebayar; Park, Jong-Uk; Lee, Kyoung-Joung

    2018-05-24

    In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many subjects who suffer from OSAH remain undiagnosed; thus, early detection of OSAH is important. In this study, automatic classification of three classes-normal, hypopnea, and apnea-based on a CNN is performed. An optimal six-layer CNN model is trained on a training dataset (45,096 events) and evaluated on a test dataset (11,274 events). The training set (69 subjects) and test set (17 subjects) were collected from 86 subjects with length of approximately 6 h and segmented into 10 s durations. The proposed CNN model reaches a mean -score of 93.0 for the training dataset and 87.0 for the test dataset. Thus, proposed deep learning architecture achieved a high performance for multiclass classification of OSAH using single-lead ECG recordings. The proposed method can be employed in screening of patients suspected of having OSAH. © 2018 Institute of Physics and Engineering in Medicine.

  16. A novel image block cryptosystem based on a spatiotemporal chaotic system and a chaotic neural network

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Bao Xue-Mei

    2013-01-01

    In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hardware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosystem is secure and practical, and suitable for image encryption. (general)

  17. Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network

    Science.gov (United States)

    Wang, Li-Hua; Zhao, Xiao-Ping; Wu, Jia-Xin; Xie, Yang-Yang; Zhang, Yong-Hong

    2017-11-01

    With the rapid development of mechanical equipment, the mechanical health monitoring field has entered the era of big data. However, the method of manual feature extraction has the disadvantages of low efficiency and poor accuracy, when handling big data. In this study, the research object was the asynchronous motor in the drivetrain diagnostics simulator system. The vibration signals of different fault motors were collected. The raw signal was pretreated using short time Fourier transform (STFT) to obtain the corresponding time-frequency map. Then, the feature of the time-frequency map was adaptively extracted by using a convolutional neural network (CNN). The effects of the pretreatment method, and the hyper parameters of network diagnostic accuracy, were investigated experimentally. The experimental results showed that the influence of the preprocessing method is small, and that the batch-size is the main factor affecting accuracy and training efficiency. By investigating feature visualization, it was shown that, in the case of big data, the extracted CNN features can represent complex mapping relationships between signal and health status, and can also overcome the prior knowledge and engineering experience requirement for feature extraction, which is used by traditional diagnosis methods. This paper proposes a new method, based on STFT and CNN, which can complete motor fault diagnosis tasks more intelligently and accurately.

  18. Wrist sensor-based tremor severity quantification in Parkinson's disease using convolutional neural network.

    Science.gov (United States)

    Kim, Han Byul; Lee, Woong Woo; Kim, Aryun; Lee, Hong Ji; Park, Hye Young; Jeon, Hyo Seon; Kim, Sang Kyong; Jeon, Beomseok; Park, Kwang S

    2018-04-01

    Tremor is a commonly observed symptom in patients of Parkinson's disease (PD), and accurate measurement of tremor severity is essential in prescribing appropriate treatment to relieve its symptoms. We propose a tremor assessment system based on the use of a convolutional neural network (CNN) to differentiate the severity of symptoms as measured in data collected from a wearable device. Tremor signals were recorded from 92 PD patients using a custom-developed device (SNUMAP) equipped with an accelerometer and gyroscope mounted on a wrist module. Neurologists assessed the tremor symptoms on the Unified Parkinson's Disease Rating Scale (UPDRS) from simultaneously recorded video footages. The measured data were transformed into the frequency domain and used to construct a two-dimensional image for training the network, and the CNN model was trained by convolving tremor signal images with kernels. The proposed CNN architecture was compared to previously studied machine learning algorithms and found to outperform them (accuracy = 0.85, linear weighted kappa = 0.85). More precise monitoring of PD tremor symptoms in daily life could be possible using our proposed method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ...) to increase competitive advantage, innovation, and mission effectiveness. Network-based effectiveness occurs due to the influence of various factors such as people, procedures, technology, and organizations...

  20. HIGH QUALITY FACADE SEGMENTATION BASED ON STRUCTURED RANDOM FOREST, REGION PROPOSAL NETWORK AND RECTANGULAR FITTING

    Directory of Open Access Journals (Sweden)

    K. Rahmani

    2018-05-01

    Full Text Available In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF, Region Proposal Network (RPN based on a Convolutional Neural Network (CNN as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.

  1. Convolutional neural network architectures for predicting DNA–protein binding

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  2. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN.

    Science.gov (United States)

    Guo, Hao; Wu, Danni; An, Jubai

    2017-08-09

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features.

  3. Target recognition based on convolutional neural network

    Science.gov (United States)

    Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian

    2017-11-01

    One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.

  4. Pedestrian Detection Based on Adaptive Selection of Visible Light or Far-Infrared Light Camera Image by Fuzzy Inference System and Convolutional Neural Network-Based Verification.

    Science.gov (United States)

    Kang, Jin Kyu; Hong, Hyung Gil; Park, Kang Ryoung

    2017-07-08

    A number of studies have been conducted to enhance the pedestrian detection accuracy of intelligent surveillance systems. However, detecting pedestrians under outdoor conditions is a challenging problem due to the varying lighting, shadows, and occlusions. In recent times, a growing number of studies have been performed on visible light camera-based pedestrian detection systems using a convolutional neural network (CNN) in order to make the pedestrian detection process more resilient to such conditions. However, visible light cameras still cannot detect pedestrians during nighttime, and are easily affected by shadows and lighting. There are many studies on CNN-based pedestrian detection through the use of far-infrared (FIR) light cameras (i.e., thermal cameras) to address such difficulties. However, when the solar radiation increases and the background temperature reaches the same level as the body temperature, it remains difficult for the FIR light camera to detect pedestrians due to the insignificant difference between the pedestrian and non-pedestrian features within the images. Researchers have been trying to solve this issue by inputting both the visible light and the FIR camera images into the CNN as the input. This, however, takes a longer time to process, and makes the system structure more complex as the CNN needs to process both camera images. This research adaptively selects a more appropriate candidate between two pedestrian images from visible light and FIR cameras based on a fuzzy inference system (FIS), and the selected candidate is verified with a CNN. Three types of databases were tested, taking into account various environmental factors using visible light and FIR cameras. The results showed that the proposed method performs better than the previously reported methods.

  5. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ... (extended from Leavitt, 1965). This text identifies aspects of network-based effectiveness that can benefit from a better understanding of leadership and management development of people, procedures, technology, and organizations...

  6. Modified Convolutional Neural Network Based on Dropout and the Stochastic Gradient Descent Optimizer

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-03-01

    Full Text Available This study proposes a modified convolutional neural network (CNN algorithm that is based on dropout and the stochastic gradient descent (SGD optimizer (MCNN-DS, after analyzing the problems of CNNs in extracting the convolution features, to improve the feature recognition rate and reduce the time-cost of CNNs. The MCNN-DS has a quadratic CNN structure and adopts the rectified linear unit as the activation function to avoid the gradient problem and accelerate convergence. To address the overfitting problem, the algorithm uses an SGD optimizer, which is implemented by inserting a dropout layer into the all-connected and output layers, to minimize cross entropy. This study used the datasets MNIST, HCL2000, and EnglishHand as the benchmark data, analyzed the performance of the SGD optimizer under different learning parameters, and found that the proposed algorithm exhibited good recognition performance when the learning rate was set to [0.05, 0.07]. The performances of WCNN, MLP-CNN, SVM-ELM, and MCNN-DS were compared. Statistical results showed the following: (1 For the benchmark MNIST, the MCNN-DS exhibited a high recognition rate of 99.97%, and the time-cost of the proposed algorithm was merely 21.95% of MLP-CNN, and 10.02% of SVM-ELM; (2 Compared with SVM-ELM, the average improvement in the recognition rate of MCNN-DS was 2.35% for the benchmark HCL2000, and the time-cost of MCNN-DS was only 15.41%; (3 For the EnglishHand test set, the lowest recognition rate of the algorithm was 84.93%, the highest recognition rate was 95.29%, and the average recognition rate was 89.77%.

  7. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.

    Science.gov (United States)

    Nakao, Takahiro; Hanaoka, Shouhei; Nomura, Yukihiro; Sato, Issei; Nemoto, Mitsutaka; Miki, Soichiro; Maeda, Eriko; Yoshikawa, Takeharu; Hayashi, Naoto; Abe, Osamu

    2018-04-01

    The usefulness of computer-assisted detection (CAD) for detecting cerebral aneurysms has been reported; therefore, the improved performance of CAD will help to detect cerebral aneurysms. To develop a CAD system for intracranial aneurysms on unenhanced magnetic resonance angiography (MRA) images based on a deep convolutional neural network (CNN) and a maximum intensity projection (MIP) algorithm, and to demonstrate the usefulness of the system by training and evaluating it using a large dataset. Retrospective study. There were 450 cases with intracranial aneurysms. The diagnoses of brain aneurysms were made on the basis of MRA, which was performed as part of a brain screening program. Noncontrast-enhanced 3D time-of-flight (TOF) MRA on 3T MR scanners. In our CAD, we used a CNN classifier that predicts whether each voxel is inside or outside aneurysms by inputting MIP images generated from a volume of interest (VOI) around the voxel. The CNN was trained in advance using manually inputted labels. We evaluated our method using 450 cases with intracranial aneurysms, 300 of which were used for training, 50 for parameter tuning, and 100 for the final evaluation. Free-response receiver operating characteristic (FROC) analysis. Our CAD system detected 94.2% (98/104) of aneurysms with 2.9 false positives per case (FPs/case). At a sensitivity of 70%, the number of FPs/case was 0.26. We showed that the combination of a CNN and an MIP algorithm is useful for the detection of intracranial aneurysms. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:948-953. © 2017 International Society for Magnetic Resonance in Medicine.

  8. A CLOUD BOUNDARY DETECTION SCHEME COMBINED WITH ASLIC AND CNN USING ZY-3, GF-1/2 SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    Z. Guo

    2018-04-01

    Full Text Available Remote sensing optical image cloud detection is one of the most important problems in remote sensing data processing. Aiming at the information loss caused by cloud cover, a cloud detection method based on convolution neural network (CNN is presented in this paper. Firstly, a deep CNN network is used to extract the multi-level feature generation model of cloud from the training samples. Secondly, the adaptive simple linear iterative clustering (ASLIC method is used to divide the detected images into superpixels. Finally, the probability of each superpixel belonging to the cloud region is predicted by the trained network model, thereby generating a cloud probability map. The typical region of GF-1/2 and ZY-3 were selected to carry out the cloud detection test, and compared with the traditional SLIC method. The experiment results show that the average accuracy of cloud detection is increased by more than 5 %, and it can detected thin-thick cloud and the whole cloud boundary well on different imaging platforms.

  9. Accurate lithography simulation model based on convolutional neural networks

    Science.gov (United States)

    Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki

    2017-07-01

    Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.

  10. Hourglass-ShapeNetwork Based Semantic Segmentation for High Resolution Aerial Imagery

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2017-05-01

    Full Text Available A new convolution neural network (CNN architecture for semantic segmentation of high resolution aerial imagery is proposed in this paper. The proposed architecture follows an hourglass-shaped network (HSN design being structured into encoding and decoding stages. By taking advantage of recent advances in CNN designs, we use the composed inception module to replace common convolutional layers, providing the network with multi-scale receptive areas with rich context. Additionally, in order to reduce spatial ambiguities in the up-sampling stage, skip connections with residual units are also employed to feed forward encoding-stage information directly to the decoder. Moreover, overlap inference is employed to alleviate boundary effects occurring when high resolution images are inferred from small-sized patches. Finally, we also propose a post-processing method based on weighted belief propagation to visually enhance the classification results. Extensive experiments based on the Vaihingen and Potsdam datasets demonstrate that the proposed architectures outperform three reference state-of-the-art network designs both numerically and visually.

  11. A fast button surface defects detection method based on convolutional neural network

    Science.gov (United States)

    Liu, Lizhe; Cao, Danhua; Wu, Songlin; Wu, Yubin; Wei, Taoran

    2018-01-01

    Considering the complexity of the button surface texture and the variety of buttons and defects, we propose a fast visual method for button surface defect detection, based on convolutional neural network (CNN). CNN has the ability to extract the essential features by training, avoiding designing complex feature operators adapted to different kinds of buttons, textures and defects. Firstly, we obtain the normalized button region and then use HOG-SVM method to identify the front and back side of the button. Finally, a convolutional neural network is developed to recognize the defects. Aiming at detecting the subtle defects, we propose a network structure with multiple feature channels input. To deal with the defects of different scales, we take a strategy of multi-scale image block detection. The experimental results show that our method is valid for a variety of buttons and able to recognize all kinds of defects that have occurred, including dent, crack, stain, hole, wrong paint and uneven. The detection rate exceeds 96%, which is much better than traditional methods based on SVM and methods based on template match. Our method can reach the speed of 5 fps on DSP based smart camera with 600 MHz frequency.

  12. Tectonic modeling of Konya-Beysehir Region (Turkey using cellular neural networks

    Directory of Open Access Journals (Sweden)

    D. Aydogan

    2007-06-01

    Full Text Available In this paper, to separate regional-residual anomaly maps and to detect borders of buried geological bodies, we applied the Cellular Neural Network (CNN approach to gravity and magnetic anomaly maps. CNN is a stochastic image processing technique, based optimization of templates, which imply relationships of neighborhood pixels in 2-Dimensional (2D potential anomalies. Here, CNN performance in geophysics, tested by various synthetic examples and the results are compared to classical methods such as boundary analysis and second vertical derivatives. After we obtained satisfactory results in synthetic models, we applied CNN to Bouguer anomaly map of Konya-Beysehir Region, which has complex tectonic structure with various fault combinations. We evaluated CNN outputs and 2D/3D models, which are constructed using forward and inversion methods. Then we presented a new tectonic structure of Konya-Beysehir Region. We have denoted (F1, F2, …, F7 and (Konya1, Konya2 faults according to our evaluations of CNN outputs. Thus, we have concluded that CNN is a compromising stochastic image processing technique in geophysics.

  13. CNN-SVM for Microvascular Morphological Type Recognition with Data Augmentation.

    Science.gov (United States)

    Xue, Di-Xiu; Zhang, Rong; Feng, Hui; Wang, Ya-Lei

    2016-01-01

    This paper focuses on the problem of feature extraction and the classification of microvascular morphological types to aid esophageal cancer detection. We present a patch-based system with a hybrid SVM model with data augmentation for intraepithelial papillary capillary loop recognition. A greedy patch-generating algorithm and a specialized CNN named NBI-Net are designed to extract hierarchical features from patches. We investigate a series of data augmentation techniques to progressively improve the prediction invariance of image scaling and rotation. For classifier boosting, SVM is used as an alternative to softmax to enhance generalization ability. The effectiveness of CNN feature representation ability is discussed for a set of widely used CNN models, including AlexNet, VGG-16, and GoogLeNet. Experiments are conducted on the NBI-ME dataset. The recognition rate is up to 92.74% on the patch level with data augmentation and classifier boosting. The results show that the combined CNN-SVM model beats models of traditional features with SVM as well as the original CNN with softmax. The synthesis results indicate that our system is able to assist clinical diagnosis to a certain extent.

  14. Classification of Urban Aerial Data Based on Pixel Labelling with Deep Convolutional Neural Networks and Logistic Regression

    Science.gov (United States)

    Yao, W.; Poleswki, P.; Krzystek, P.

    2016-06-01

    The recent success of deep convolutional neural networks (CNN) on a large number of applications can be attributed to large amounts of available training data and increasing computing power. In this paper, a semantic pixel labelling scheme for urban areas using multi-resolution CNN and hand-crafted spatial-spectral features of airborne remotely sensed data is presented. Both CNN and hand-crafted features are applied to image/DSM patches to produce per-pixel class probabilities with a L1-norm regularized logistical regression classifier. The evidence theory infers a degree of belief for pixel labelling from different sources to smooth regions by handling the conflicts present in the both classifiers while reducing the uncertainty. The aerial data used in this study were provided by ISPRS as benchmark datasets for 2D semantic labelling tasks in urban areas, which consists of two data sources from LiDAR and color infrared camera. The test sites are parts of a city in Germany which is assumed to consist of typical object classes including impervious surfaces, trees, buildings, low vegetation, vehicles and clutter. The evaluation is based on the computation of pixel-based confusion matrices by random sampling. The performance of the strategy with respect to scene characteristics and method combination strategies is analyzed and discussed. The competitive classification accuracy could be not only explained by the nature of input data sources: e.g. the above-ground height of nDSM highlight the vertical dimension of houses, trees even cars and the nearinfrared spectrum indicates vegetation, but also attributed to decision-level fusion of CNN's texture-based approach with multichannel spatial-spectral hand-crafted features based on the evidence combination theory.

  15. Squeezeposenet: Image Based Pose Regression with Small Convolutional Neural Networks for Real Time Uas Navigation

    Science.gov (United States)

    Müller, M. S.; Urban, S.; Jutzi, B.

    2017-08-01

    The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users. The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, local image-based solutions like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) can e.g. be used to support the GNSS solution by closing trajectory gaps but are computationally expensive. However, if the trajectory estimation is interrupted or not available a re-localization is mandatory. In this paper we will provide a novel method for a GNSS-free and fast image-based pose regression in a known area by utilizing a small convolutional neural network (CNN). With on-board processing in mind, we employ a lightweight CNN called SqueezeNet and use transfer learning to adapt the network to pose regression. Our experiments show promising results for GNSS-free and fast localization.

  16. PSNet: prostate segmentation on MRI based on a convolutional neural network.

    Science.gov (United States)

    Tian, Zhiqiang; Liu, Lizhi; Zhang, Zhenfeng; Fei, Baowei

    2018-04-01

    Automatic segmentation of the prostate on magnetic resonance images (MRI) has many applications in prostate cancer diagnosis and therapy. We proposed a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage, which uses prostate MRI and the corresponding ground truths as inputs. The learned CNN model can be used to make an inference for pixel-wise segmentation. Experiments were performed on three data sets, which contain prostate MRI of 140 patients. The proposed CNN model of prostate segmentation (PSNet) obtained a mean Dice similarity coefficient of [Formula: see text] as compared to the manually labeled ground truth. Experimental results show that the proposed model could yield satisfactory segmentation of the prostate on MRI.

  17. Agile convolutional neural network for pulmonary nodule classification using CT images.

    Science.gov (United States)

    Zhao, Xinzhuo; Liu, Liyao; Qi, Shouliang; Teng, Yueyang; Li, Jianhua; Qian, Wei

    2018-04-01

    To distinguish benign from malignant pulmonary nodules using CT images is critical for their precise diagnosis and treatment. A new Agile convolutional neural network (CNN) framework is proposed to conquer the challenges of a small-scale medical image database and the small size of the nodules, and it improves the performance of pulmonary nodule classification using CT images. A hybrid CNN of LeNet and AlexNet is constructed through combining the layer settings of LeNet and the parameter settings of AlexNet. A dataset with 743 CT image nodule samples is built up based on the 1018 CT scans of LIDC to train and evaluate the Agile CNN model. Through adjusting the parameters of the kernel size, learning rate, and other factors, the effect of these parameters on the performance of the CNN model is investigated, and an optimized setting of the CNN is obtained finally. After finely optimizing the settings of the CNN, the estimation accuracy and the area under the curve can reach 0.822 and 0.877, respectively. The accuracy of the CNN is significantly dependent on the kernel size, learning rate, training batch size, dropout, and weight initializations. The best performance is achieved when the kernel size is set to [Formula: see text], the learning rate is 0.005, the batch size is 32, and dropout and Gaussian initialization are used. This competitive performance demonstrates that our proposed CNN framework and the optimization strategy of the CNN parameters are suitable for pulmonary nodule classification characterized by small medical datasets and small targets. The classification model might help diagnose and treat pulmonary nodules effectively.

  18. Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR

    Science.gov (United States)

    Xu, Chengjin; Guan, Junjun; Bao, Ming; Lu, Jiangang; Ye, Wei

    2018-01-01

    Based on vibration signals detected by a phase-sensitive optical time-domain reflectometer distributed optical fiber sensing system, this paper presents an implement of time-frequency analysis and convolutional neural network (CNN), used to classify different types of vibrational events. First, spectral subtraction and the short-time Fourier transform are used to enhance time-frequency features of vibration signals and transform different types of vibration signals into spectrograms, which are input to the CNN for automatic feature extraction and classification. Finally, by replacing the soft-max layer in the CNN with a multiclass support vector machine, the performance of the classifier is enhanced. Experiments show that after using this method to process 4000 vibration signal samples generated by four different vibration events, namely, digging, walking, vehicles passing, and damaging, the recognition rates of vibration events are over 90%. The experimental results prove that this method can automatically make an effective feature selection and greatly improve the classification accuracy of vibrational events in distributed optical fiber sensing systems.

  19. Classification of Alzheimer's Disease Based on Eight-Layer Convolutional Neural Network with Leaky Rectified Linear Unit and Max Pooling.

    Science.gov (United States)

    Wang, Shui-Hua; Phillips, Preetha; Sui, Yuxiu; Liu, Bin; Yang, Ming; Cheng, Hong

    2018-03-26

    Alzheimer's disease (AD) is a progressive brain disease. The goal of this study is to provide a new computer-vision based technique to detect it in an efficient way. The brain-imaging data of 98 AD patients and 98 healthy controls was collected using data augmentation method. Then, convolutional neural network (CNN) was used, CNN is the most successful tool in deep learning. An 8-layer CNN was created with optimal structure obtained by experiences. Three activation functions (AFs): sigmoid, rectified linear unit (ReLU), and leaky ReLU. The three pooling-functions were also tested: average pooling, max pooling, and stochastic pooling. The numerical experiments demonstrated that leaky ReLU and max pooling gave the greatest result in terms of performance. It achieved a sensitivity of 97.96%, a specificity of 97.35%, and an accuracy of 97.65%, respectively. In addition, the proposed approach was compared with eight state-of-the-art approaches. The method increased the classification accuracy by approximately 5% compared to state-of-the-art methods.

  20. A pre-trained convolutional neural network based method for thyroid nodule diagnosis.

    Science.gov (United States)

    Ma, Jinlian; Wu, Fa; Zhu, Jiang; Xu, Dong; Kong, Dexing

    2017-01-01

    In ultrasound images, most thyroid nodules are in heterogeneous appearances with various internal components and also have vague boundaries, so it is difficult for physicians to discriminate malignant thyroid nodules from benign ones. In this study, we propose a hybrid method for thyroid nodule diagnosis, which is a fusion of two pre-trained convolutional neural networks (CNNs) with different convolutional layers and fully-connected layers. Firstly, the two networks pre-trained with ImageNet database are separately trained. Secondly, we fuse feature maps learned by trained convolutional filters, pooling and normalization operations of the two CNNs. Finally, with the fused feature maps, a softmax classifier is used to diagnose thyroid nodules. The proposed method is validated on 15,000 ultrasound images collected from two local hospitals. Experiment results show that the proposed CNN based methods can accurately and effectively diagnose thyroid nodules. In addition, the fusion of the two CNN based models lead to significant performance improvement, with an accuracy of 83.02%±0.72%. These demonstrate the potential clinical applications of this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Classification of polycystic ovary based on ultrasound images using competitive neural network

    Science.gov (United States)

    Dewi, R. M.; Adiwijaya; Wisesty, U. N.; Jondri

    2018-03-01

    Infertility in the women reproduction system due to inhibition of follicles maturation process causing the number of follicles which is called polycystic ovaries (PCO). PCO detection is still operated manually by a gynecologist by counting the number and size of follicles in the ovaries, so it takes a long time and needs high accuracy. In general, PCO can be detected by calculating stereology or feature extraction and classification. In this paper, we designed a system to classify PCO by using the feature extraction (Gabor Wavelet method) and Competitive Neural Network (CNN). CNN was selected because this method is the combination between Hemming Net and The Max Net so that the data classification can be performed based on the specific characteristics of ultrasound data. Based on the result of system testing, Competitive Neural Network obtained the highest accuracy is 80.84% and the time process is 60.64 seconds (when using 32 feature vectors as well as weight and bias values respectively of 0.03 and 0.002).

  2. Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data.

    Science.gov (United States)

    Sun, Wenqing; Tseng, Tzu-Liang Bill; Zhang, Jianying; Qian, Wei

    2017-04-01

    In this study we developed a graph based semi-supervised learning (SSL) scheme using deep convolutional neural network (CNN) for breast cancer diagnosis. CNN usually needs a large amount of labeled data for training and fine tuning the parameters, and our proposed scheme only requires a small portion of labeled data in training set. Four modules were included in the diagnosis system: data weighing, feature selection, dividing co-training data labeling, and CNN. 3158 region of interests (ROIs) with each containing a mass extracted from 1874 pairs of mammogram images were used for this study. Among them 100 ROIs were treated as labeled data while the rest were treated as unlabeled. The area under the curve (AUC) observed in our study was 0.8818, and the accuracy of CNN is 0.8243 using the mixed labeled and unlabeled data. Copyright © 2016. Published by Elsevier Ltd.

  3. Classification of crystal structure using a convolutional neural network.

    Science.gov (United States)

    Park, Woon Bae; Chung, Jiyong; Jung, Jaeyoung; Sohn, Keemin; Singh, Satendra Pal; Pyo, Myoungho; Shin, Namsoo; Sohn, Kee-Sun

    2017-07-01

    A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds.

  4. Learning-induced pattern classification in a chaotic neural network

    International Nuclear Information System (INIS)

    Li, Yang; Zhu, Ping; Xie, Xiaoping; He, Guoguang; Aihara, Kazuyuki

    2012-01-01

    In this Letter, we propose a Hebbian learning rule with passive forgetting (HLRPF) for use in a chaotic neural network (CNN). We then define the indices based on the Euclidean distance to investigate the evolution of the weights in a simplified way. Numerical simulations demonstrate that, under suitable external stimulations, the CNN with the proposed HLRPF acts as a fuzzy-like pattern classifier that performs much better than an ordinary CNN. The results imply relationship between learning and recognition. -- Highlights: ► Proposing a Hebbian learning rule with passive forgetting (HLRPF). ► Defining indices to investigate the evolution of the weights simply. ► The chaotic neural network with HLRPF acts as a fuzzy-like pattern classifier. ► The pattern classifier ability of the network is improved much.

  5. Yarn-dyed fabric defect classification based on convolutional neural network

    Science.gov (United States)

    Jing, Junfeng; Dong, Amei; Li, Pengfei; Zhang, Kaibing

    2017-09-01

    Considering that manual inspection of the yarn-dyed fabric can be time consuming and inefficient, we propose a yarn-dyed fabric defect classification method by using a convolutional neural network (CNN) based on a modified AlexNet. CNN shows powerful ability in performing feature extraction and fusion by simulating the learning mechanism of human brain. The local response normalization layers in AlexNet are replaced by the batch normalization layers, which can enhance both the computational efficiency and classification accuracy. In the training process of the network, the characteristics of the defect are extracted step by step and the essential features of the image can be obtained from the fusion of the edge details with several convolution operations. Then the max-pooling layers, the dropout layers, and the fully connected layers are employed in the classification model to reduce the computation cost and extract more precise features of the defective fabric. Finally, the results of the defect classification are predicted by the softmax function. The experimental results show promising performance with an acceptable average classification rate and strong robustness on yarn-dyed fabric defect classification.

  6. Exploring the effects of transducer models when training convolutional neural networks to eliminate reflection artifacts in experimental photoacoustic images

    Science.gov (United States)

    Allman, Derek; Reiter, Austin; Bell, Muyinatu

    2018-02-01

    We previously proposed a method of removing reflection artifacts in photoacoustic images that uses deep learning. Our approach generally relies on using simulated photoacoustic channel data to train a convolutional neural network (CNN) that is capable of distinguishing sources from artifacts based on unique differences in their spatial impulse responses (manifested as depth-based differences in wavefront shapes). In this paper, we directly compare a CNN trained with our previous continuous transducer model to a CNN trained with an updated discrete acoustic receiver model that more closely matches an experimental ultrasound transducer. These two CNNs were trained with simulated data and tested on experimental data. The CNN trained using the continuous receiver model correctly classified 100% of sources and 70.3% of artifacts in the experimental data. In contrast, the CNN trained using the discrete receiver model correctly classified 100% of sources and 89.7% of artifacts in the experimental images. The 19.4% increase in artifact classification accuracy indicates that an acoustic receiver model that closely mimics the experimental transducer plays an important role in improving the classification of artifacts in experimental photoacoustic data. Results are promising for developing a method to display CNN-based images that remove artifacts in addition to only displaying network-identified sources as previously proposed.

  7. Convolutional neural network-based classification system design with compressed wireless sensor network images.

    Science.gov (United States)

    Ahn, Jungmo; Park, JaeYeon; Park, Donghwan; Paek, Jeongyeup; Ko, JeongGil

    2018-01-01

    With the introduction of various advanced deep learning algorithms, initiatives for image classification systems have transitioned over from traditional machine learning algorithms (e.g., SVM) to Convolutional Neural Networks (CNNs) using deep learning software tools. A prerequisite in applying CNN to real world applications is a system that collects meaningful and useful data. For such purposes, Wireless Image Sensor Networks (WISNs), that are capable of monitoring natural environment phenomena using tiny and low-power cameras on resource-limited embedded devices, can be considered as an effective means of data collection. However, with limited battery resources, sending high-resolution raw images to the backend server is a burdensome task that has direct impact on network lifetime. To address this problem, we propose an energy-efficient pre- and post- processing mechanism using image resizing and color quantization that can significantly reduce the amount of data transferred while maintaining the classification accuracy in the CNN at the backend server. We show that, if well designed, an image in its highly compressed form can be well-classified with a CNN model trained in advance using adequately compressed data. Our evaluation using a real image dataset shows that an embedded device can reduce the amount of transmitted data by ∼71% while maintaining a classification accuracy of ∼98%. Under the same conditions, this process naturally reduces energy consumption by ∼71% compared to a WISN that sends the original uncompressed images.

  8. IReport for CNN Transmedia Storytelling On The Brazilian Protests in 2013

    Directory of Open Access Journals (Sweden)

    Geane Alzamora

    2015-12-01

    Full Text Available This study discusses the limits and potentials of the concept of transmedia storytelling to describe citizen coverage of the 2013 protests in Brazil in the collaborative section iReport for CNN on CNN.com. The section is characteristically intermedia because it connects to online social networks and doubles as a monthly television program with the same name. But to what extent could it also be characterized as transmedia? Systematic observation of the citizen coverage between June and July 2013 revealed a restructuring of certain editorial spaces on the site aimed at user-proposed perspectives as well as communicational activity across online social networks; both important aspects for its transmedia characterization. Furthermore, the visible hierarchical differentiation of journalistic reporting puts the transmediatic potential of the collaborative experiment into perspective by reducing the importance of expanding the narrative horizontally despite the study showing regular social scheduling for journalistic coverage as evidence of the dynamics of transmedia.

  9. One-Dimensional Convolutional Neural Network Land-Cover Classification of Multi-Seasonal Hyperspectral Imagery in the San Francisco Bay Area, California

    Directory of Open Access Journals (Sweden)

    Daniel Guidici

    2017-06-01

    Full Text Available In this study, a 1-D Convolutional Neural Network (CNN architecture was developed, trained and utilized to classify single (summer and three seasons (spring, summer, fall of hyperspectral imagery over the San Francisco Bay Area, California for the year 2015. For comparison, the Random Forests (RF and Support Vector Machine (SVM classifiers were trained and tested with the same data. In order to support space-based hyperspectral applications, all analyses were performed with simulated Hyperspectral Infrared Imager (HyspIRI imagery. Three-season data improved classifier overall accuracy by 2.0% (SVM, 1.9% (CNN to 3.5% (RF over single-season data. The three-season CNN provided an overall classification accuracy of 89.9%, which was comparable to overall accuracy of 89.5% for SVM. Both three-season CNN and SVM outperformed RF by over 7% overall accuracy. Analysis and visualization of the inner products for the CNN provided insight to distinctive features within the spectral-temporal domain. A method for CNN kernel tuning was presented to assess the importance of learned features. We concluded that CNN is a promising candidate for hyperspectral remote sensing applications because of the high classification accuracy and interpretability of its inner products.

  10. Robustness Design for CNN Templates with Performance of Extracting Closed Domain

    International Nuclear Information System (INIS)

    Li Weidong; Min Lequan

    2006-01-01

    The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, robotic and biological visions. This paper introduces a kind of CNNs with performance of extracting closed domains in binary images, and gives a general method for designing templates of such a kind of CNNs. One theorem provides parameter inequalities for determining parameter intervals for implementing prescribed image processing functions, respectively. Examples for extracting closed domains in binary scale images are given.

  11. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

    Science.gov (United States)

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  12. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images.

    Science.gov (United States)

    Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao

    2017-06-12

    Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.

  13. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images

    Directory of Open Access Journals (Sweden)

    Lingyan Ran

    2017-06-01

    Full Text Available Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN, trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.

  14. Analog computing for a new nuclear reactor dynamic model based on a time-dependent second order form of the neutron transport equation

    International Nuclear Information System (INIS)

    Pirouzmand, Ahmad; Hadad, Kamal; Suh, Kune Y.

    2011-01-01

    This paper considers the concept of analog computing based on a cellular neural network (CNN) paradigm to simulate nuclear reactor dynamics using a time-dependent second order form of the neutron transport equation. Instead of solving nuclear reactor dynamic equations numerically, which is time-consuming and suffers from such weaknesses as vulnerability to transient phenomena, accumulation of round-off errors and floating-point overflows, use is made of a new method based on a cellular neural network. The state-of-the-art shows the CNN as being an alternative solution to the conventional numerical computation method. Indeed CNN is an analog computing paradigm that performs ultra-fast calculations and provides accurate results. In this study use is made of the CNN model to simulate the space-time response of scalar flux distribution in steady state and transient conditions. The CNN model also is used to simulate step perturbation in the core. The accuracy and capability of the CNN model are examined in 2D Cartesian geometry for two fixed source problems, a mini-BWR assembly, and a TWIGL Seed/Blanket problem. We also use the CNN model concurrently for a typical small PWR assembly to simulate the effect of temperature feedback, poisons, and control rods on the scalar flux distribution

  15. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    Science.gov (United States)

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-01-01

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510

  16. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction.

    Science.gov (United States)

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-03-20

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  17. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2017-03-01

    Full Text Available Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT, speed-up robust feature (SURF, local binary patterns (LBP, histogram of oriented gradients (HOG, and weighted HOG. Recently, the convolutional neural network (CNN method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  18. Recoupling and decoupling of nuclear spin interactions at high MAS frequencies: numerical design of CNnν symmetry-based RF pulse schemes

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    The CN n ν class of RF pulse schemes, commonly employed for recoupling and decoupling of nuclear spin interactions in magic angle spinning solid state NMR studies of biological systems, involves the application of a basic 'C' element corresponding to an RF cycle with unity propagator. In this study, the design of CN n ν symmetry-based RF pulse sequences for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated 13 C- 13 C chemical shift correlation has been examined at high MAS frequencies employing broadband, constant-amplitude, phase-modulated basic 'C' elements. The basic elements were implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by an RF phase value. The phase-modulation profile of the 'C' element was optimised numerically so as to generate efficient RF pulse sequences. The performances of the sequences were evaluated via numerical simulations and experimental measurements and are presented here

  19. The Extraction of Post-Earthquake Building Damage Informatiom Based on Convolutional Neural Network

    Science.gov (United States)

    Chen, M.; Wang, X.; Dou, A.; Wu, X.

    2018-04-01

    The seismic damage information of buildings extracted from remote sensing (RS) imagery is meaningful for supporting relief and effective reduction of losses caused by earthquake. Both traditional pixel-based and object-oriented methods have some shortcoming in extracting information of object. Pixel-based method can't make fully use of contextual information of objects. Object-oriented method faces problem that segmentation of image is not ideal, and the choice of feature space is difficult. In this paper, a new stratage is proposed which combines Convolution Neural Network (CNN) with imagery segmentation to extract building damage information from remote sensing imagery. the key idea of this method includes two steps. First to use CNN to predicate the probability of each pixel and then integrate the probability within each segmentation spot. The method is tested through extracting the collapsed building and uncollapsed building from the aerial image which is acquired in Longtoushan Town after Ms 6.5 Ludian County, Yunnan Province earthquake. The results show that the proposed method indicates its effectiveness in extracting damage information of buildings after earthquake.

  20. Learning Low Dimensional Convolutional Neural Networks for High-Resolution Remote Sensing Image Retrieval

    Directory of Open Access Journals (Sweden)

    Weixun Zhou

    2017-05-01

    Full Text Available Learning powerful feature representations for image retrieval has always been a challenging task in the field of remote sensing. Traditional methods focus on extracting low-level hand-crafted features which are not only time-consuming but also tend to achieve unsatisfactory performance due to the complexity of remote sensing images. In this paper, we investigate how to extract deep feature representations based on convolutional neural networks (CNNs for high-resolution remote sensing image retrieval (HRRSIR. To this end, several effective schemes are proposed to generate powerful feature representations for HRRSIR. In the first scheme, a CNN pre-trained on a different problem is treated as a feature extractor since there are no sufficiently-sized remote sensing datasets to train a CNN from scratch. In the second scheme, we investigate learning features that are specific to our problem by first fine-tuning the pre-trained CNN on a remote sensing dataset and then proposing a novel CNN architecture based on convolutional layers and a three-layer perceptron. The novel CNN has fewer parameters than the pre-trained and fine-tuned CNNs and can learn low dimensional features from limited labelled images. The schemes are evaluated on several challenging, publicly available datasets. The results indicate that the proposed schemes, particularly the novel CNN, achieve state-of-the-art performance.

  1. Cellular neural network to the spherical harmonics approximation of neutron transport equation in x-y geometry. Part I: Modeling and verification for time-independent solution

    International Nuclear Information System (INIS)

    Pirouzmand, Ahmad; Hadad, Kamal

    2011-01-01

    Highlights: → This paper describes the solution of time-independent neutron transport equation. → Using a novel method based on cellular neural networks (CNNs) coupled with P N method. → Utilize the CNN model to simulate spatial scalar flux distribution in steady state. → The accuracy, stability, and capabilities of CNN model are examined in x-y geometry. - Abstract: This paper describes a novel method based on using cellular neural networks (CNN) coupled with spherical harmonics method (P N ) to solve the time-independent neutron transport equation in x-y geometry. To achieve this, an equivalent electrical circuit based on second-order form of neutron transport equation and relevant boundary conditions is obtained using CNN method. We use the CNN model to simulate spatial response of scalar flux distribution in the steady state condition for different order of spherical harmonics approximations. The accuracy, stability, and capabilities of CNN model are examined in 2D Cartesian geometry for fixed source and criticality problems.

  2. Fluid region segmentation in OCT images based on convolution neural network

    Science.gov (United States)

    Liu, Dong; Liu, Xiaoming; Fu, Tianyu; Yang, Zhou

    2017-07-01

    In the retinal image, characteristics of fluid have great significance for diagnosis in eye disease. In the clinical, the segmentation of fluid is usually conducted manually, but is time-consuming and the accuracy is highly depend on the expert's experience. In this paper, we proposed a segmentation method based on convolution neural network (CNN) for segmenting the fluid from fundus image. The B-scans of OCT are segmented into layers, and patches from specific region with annotation are used for training. After the data set being divided into training set and test set, network training is performed and a good segmentation result is obtained, which has a significant advantage over traditional methods such as threshold method.

  3. Ship detection in optical remote sensing images based on deep convolutional neural networks

    Science.gov (United States)

    Yao, Yuan; Jiang, Zhiguo; Zhang, Haopeng; Zhao, Danpei; Cai, Bowen

    2017-10-01

    Automatic ship detection in optical remote sensing images has attracted wide attention for its broad applications. Major challenges for this task include the interference of cloud, wave, wake, and the high computational expenses. We propose a fast and robust ship detection algorithm to solve these issues. The framework for ship detection is designed based on deep convolutional neural networks (CNNs), which provide the accurate locations of ship targets in an efficient way. First, the deep CNN is designed to extract features. Then, a region proposal network (RPN) is applied to discriminate ship targets and regress the detection bounding boxes, in which the anchors are designed by intrinsic shape of ship targets. Experimental results on numerous panchromatic images demonstrate that, in comparison with other state-of-the-art ship detection methods, our method is more efficient and achieves higher detection accuracy and more precise bounding boxes in different complex backgrounds.

  4. Classification of amyotrophic lateral sclerosis disease based on convolutional neural network and reinforcement sample learning algorithm.

    Science.gov (United States)

    Sengur, Abdulkadir; Akbulut, Yaman; Guo, Yanhui; Bajaj, Varun

    2017-12-01

    Electromyogram (EMG) signals contain useful information of the neuromuscular diseases like amyotrophic lateral sclerosis (ALS). ALS is a well-known brain disease, which can progressively degenerate the motor neurons. In this paper, we propose a deep learning based method for efficient classification of ALS and normal EMG signals. Spectrogram, continuous wavelet transform (CWT), and smoothed pseudo Wigner-Ville distribution (SPWVD) have been employed for time-frequency (T-F) representation of EMG signals. A convolutional neural network is employed to classify these features. In it, Two convolution layers, two pooling layer, a fully connected layer and a lost function layer is considered in CNN architecture. The CNN architecture is trained with the reinforcement sample learning strategy. The efficiency of the proposed implementation is tested on publicly available EMG dataset. The dataset contains 89 ALS and 133 normal EMG signals with 24 kHz sampling frequency. Experimental results show 96.80% accuracy. The obtained results are also compared with other methods, which show the superiority of the proposed method.

  5. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS treatment planning. In this work, we developed a deep learning convolutional neural network (CNN algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.

  6. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    selection in Wi-Fi networks and predictive handover optimization in heterogeneous wireless networks. The investigations in this work have indicated that location based network optimizations are beneficial compared to typical link measurement based approaches. Especially the knowledge of geographical...

  7. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  8. Knowledge Based 3d Building Model Recognition Using Convolutional Neural Networks from LIDAR and Aerial Imageries

    Science.gov (United States)

    Alidoost, F.; Arefi, H.

    2016-06-01

    In recent years, with the development of the high resolution data acquisition technologies, many different approaches and algorithms have been presented to extract the accurate and timely updated 3D models of buildings as a key element of city structures for numerous applications in urban mapping. In this paper, a novel and model-based approach is proposed for automatic recognition of buildings' roof models such as flat, gable, hip, and pyramid hip roof models based on deep structures for hierarchical learning of features that are extracted from both LiDAR and aerial ortho-photos. The main steps of this approach include building segmentation, feature extraction and learning, and finally building roof labeling in a supervised pre-trained Convolutional Neural Network (CNN) framework to have an automatic recognition system for various types of buildings over an urban area. In this framework, the height information provides invariant geometric features for convolutional neural network to localize the boundary of each individual roofs. CNN is a kind of feed-forward neural network with the multilayer perceptron concept which consists of a number of convolutional and subsampling layers in an adaptable structure and it is widely used in pattern recognition and object detection application. Since the training dataset is a small library of labeled models for different shapes of roofs, the computation time of learning can be decreased significantly using the pre-trained models. The experimental results highlight the effectiveness of the deep learning approach to detect and extract the pattern of buildings' roofs automatically considering the complementary nature of height and RGB information.

  9. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience.

    Science.gov (United States)

    Komeda, Yoriaki; Handa, Hisashi; Watanabe, Tomohiro; Nomura, Takanobu; Kitahashi, Misaki; Sakurai, Toshiharu; Okamoto, Ayana; Minami, Tomohiro; Kono, Masashi; Arizumi, Tadaaki; Takenaka, Mamoru; Hagiwara, Satoru; Matsui, Shigenaga; Nishida, Naoshi; Kashida, Hiroshi; Kudo, Masatoshi

    2017-01-01

    Computer-aided diagnosis (CAD) is becoming a next-generation tool for the diagnosis of human disease. CAD for colon polyps has been suggested as a particularly useful tool for trainee colonoscopists, as the use of a CAD system avoids the complications associated with endoscopic resections. In addition to conventional CAD, a convolutional neural network (CNN) system utilizing artificial intelligence (AI) has been developing rapidly over the past 5 years. We attempted to generate a unique CNN-CAD system with an AI function that studied endoscopic images extracted from movies obtained with colonoscopes used in routine examinations. Here, we report our preliminary results of this novel CNN-CAD system for the diagnosis of colon polyps. A total of 1,200 images from cases of colonoscopy performed between January 2010 and December 2016 at Kindai University Hospital were used. These images were extracted from the video of actual endoscopic examinations. Additional video images from 10 cases of unlearned processes were retrospectively assessed in a pilot study. They were simply diagnosed as either an adenomatous or nonadenomatous polyp. The number of images used by AI to learn to distinguish adenomatous from nonadenomatous was 1,200:600. These images were extracted from the videos of actual endoscopic examinations. The size of each image was adjusted to 256 × 256 pixels. A 10-hold cross-validation was carried out. The accuracy of the 10-hold cross-validation is 0.751, where the accuracy is the ratio of the number of correct answers over the number of all the answers produced by the CNN. The decisions by the CNN were correct in 7 of 10 cases. A CNN-CAD system using routine colonoscopy might be useful for the rapid diagnosis of colorectal polyp classification. Further prospective studies in an in vivo setting are required to confirm the effectiveness of a CNN-CAD system in routine colonoscopy. © 2017 S. Karger AG, Basel.

  10. First Steps Toward Incorporating Image Based Diagnostics Into Particle Accelerator Control Systems Using Convolutional Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, A. L.; Biedron, S. G.; Milton, S. V.; Edelen, J. P.

    2016-12-16

    At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science and Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.

  11. Global detection of live virtual machine migration based on cellular neural networks.

    Science.gov (United States)

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better.

  12. Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors.

    Science.gov (United States)

    Hong, Hyung Gil; Lee, Min Beom; Park, Kang Ryoung

    2017-06-06

    Conventional finger-vein recognition systems perform recognition based on the finger-vein lines extracted from the input images or image enhancement, and texture feature extraction from the finger-vein images. In these cases, however, the inaccurate detection of finger-vein lines lowers the recognition accuracy. In the case of texture feature extraction, the developer must experimentally decide on a form of the optimal filter for extraction considering the characteristics of the image database. To address this problem, this research proposes a finger-vein recognition method that is robust to various database types and environmental changes based on the convolutional neural network (CNN). In the experiments using the two finger-vein databases constructed in this research and the SDUMLA-HMT finger-vein database, which is an open database, the method proposed in this research showed a better performance compared to the conventional methods.

  13. Global Detection of Live Virtual Machine Migration Based on Cellular Neural Networks

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2014-01-01

    Full Text Available In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM migration detection algorithm based on the cellular neural networks (CNNs, is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation allowing the VM migration detection to be performed better.

  14. Convolutional neural networks with balanced batches for facial expressions recognition

    Science.gov (United States)

    Battini Sönmez, Elena; Cangelosi, Angelo

    2017-03-01

    This paper considers the issue of fully automatic emotion classification on 2D faces. In spite of the great effort done in recent years, traditional machine learning approaches based on hand-crafted feature extraction followed by the classification stage failed to develop a real-time automatic facial expression recognition system. The proposed architecture uses Convolutional Neural Networks (CNN), which are built as a collection of interconnected processing elements to simulate the brain of human beings. The basic idea of CNNs is to learn a hierarchical representation of the input data, which results in a better classification performance. In this work we present a block-based CNN algorithm, which uses noise, as data augmentation technique, and builds batches with a balanced number of samples per class. The proposed architecture is a very simple yet powerful CNN, which can yield state-of-the-art accuracy on the very competitive benchmark algorithm of the Extended Cohn Kanade database.

  15. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1998-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  16. CLASSIFICATION OF URBAN AERIAL DATA BASED ON PIXEL LABELLING WITH DEEP CONVOLUTIONAL NEURAL NETWORKS AND LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    W. Yao

    2016-06-01

    Full Text Available The recent success of deep convolutional neural networks (CNN on a large number of applications can be attributed to large amounts of available training data and increasing computing power. In this paper, a semantic pixel labelling scheme for urban areas using multi-resolution CNN and hand-crafted spatial-spectral features of airborne remotely sensed data is presented. Both CNN and hand-crafted features are applied to image/DSM patches to produce per-pixel class probabilities with a L1-norm regularized logistical regression classifier. The evidence theory infers a degree of belief for pixel labelling from different sources to smooth regions by handling the conflicts present in the both classifiers while reducing the uncertainty. The aerial data used in this study were provided by ISPRS as benchmark datasets for 2D semantic labelling tasks in urban areas, which consists of two data sources from LiDAR and color infrared camera. The test sites are parts of a city in Germany which is assumed to consist of typical object classes including impervious surfaces, trees, buildings, low vegetation, vehicles and clutter. The evaluation is based on the computation of pixel-based confusion matrices by random sampling. The performance of the strategy with respect to scene characteristics and method combination strategies is analyzed and discussed. The competitive classification accuracy could be not only explained by the nature of input data sources: e.g. the above-ground height of nDSM highlight the vertical dimension of houses, trees even cars and the nearinfrared spectrum indicates vegetation, but also attributed to decision-level fusion of CNN’s texture-based approach with multichannel spatial-spectral hand-crafted features based on the evidence combination theory.

  17. Using CNN Features to Better Understand What Makes Visual Artworks Special

    Directory of Open Access Journals (Sweden)

    Anselm Brachmann

    2017-05-01

    Full Text Available One of the goal of computational aesthetics is to understand what is special about visual artworks. By analyzing image statistics, contemporary methods in computer vision enable researchers to identify properties that distinguish artworks from other (non-art types of images. Such knowledge will eventually allow inferences with regard to the possible neural mechanisms that underlie aesthetic perception in the human visual system. In the present study, we define measures that capture variances of features of a well-established Convolutional Neural Network (CNN, which was trained on millions of images to recognize objects. Using an image dataset that represents traditional Western, Islamic and Chinese art, as well as various types of non-art images, we show that we need only two variance measures to distinguish between the artworks and non-art images with a high classification accuracy of 93.0%. Results for the first variance measure imply that, in the artworks, the subregions of an image tend to be filled with pictorial elements, to which many diverse CNN features respond (richness of feature responses. Results for the second measure imply that this diversity is tied to a relatively large variability of the responses of individual CNN feature across the subregions of an image. We hypothesize that this combination of richness and variability of CNN feature responses is one of properties that makes traditional visual artworks special. We discuss the possible neural underpinnings of this perceptual quality of artworks and propose to study the same quality also in other types of aesthetic stimuli, such as music and literature.

  18. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network

    Science.gov (United States)

    Zhang, Kai; Long, Erping; Cui, Jiangtao; Zhu, Mingmin; An, Yingying; Zhang, Jia; Liu, Zhenzhen; Lin, Zhuoling; Li, Xiaoyan; Chen, Jingjing; Cao, Qianzhong; Li, Jing; Wu, Xiaohang; Wang, Dongni

    2017-01-01

    Slit-lamp images play an essential role for diagnosis of pediatric cataracts. We present a computer vision-based framework for the automatic localization and diagnosis of slit-lamp images by identifying the lens region of interest (ROI) and employing a deep learning convolutional neural network (CNN). First, three grading degrees for slit-lamp images are proposed in conjunction with three leading ophthalmologists. The lens ROI is located in an automated manner in the original image using two successive applications of Candy detection and the Hough transform, which are cropped, resized to a fixed size and used to form pediatric cataract datasets. These datasets are fed into the CNN to extract high-level features and implement automatic classification and grading. To demonstrate the performance and effectiveness of the deep features extracted in the CNN, we investigate the features combined with support vector machine (SVM) and softmax classifier and compare these with the traditional representative methods. The qualitative and quantitative experimental results demonstrate that our proposed method offers exceptional mean accuracy, sensitivity and specificity: classification (97.07%, 97.28%, and 96.83%) and a three-degree grading area (89.02%, 86.63%, and 90.75%), density (92.68%, 91.05%, and 93.94%) and location (89.28%, 82.70%, and 93.08%). Finally, we developed and deployed a potential automatic diagnostic software for ophthalmologists and patients in clinical applications to implement the validated model. PMID:28306716

  19. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network.

    Directory of Open Access Journals (Sweden)

    Xiyang Liu

    Full Text Available Slit-lamp images play an essential role for diagnosis of pediatric cataracts. We present a computer vision-based framework for the automatic localization and diagnosis of slit-lamp images by identifying the lens region of interest (ROI and employing a deep learning convolutional neural network (CNN. First, three grading degrees for slit-lamp images are proposed in conjunction with three leading ophthalmologists. The lens ROI is located in an automated manner in the original image using two successive applications of Candy detection and the Hough transform, which are cropped, resized to a fixed size and used to form pediatric cataract datasets. These datasets are fed into the CNN to extract high-level features and implement automatic classification and grading. To demonstrate the performance and effectiveness of the deep features extracted in the CNN, we investigate the features combined with support vector machine (SVM and softmax classifier and compare these with the traditional representative methods. The qualitative and quantitative experimental results demonstrate that our proposed method offers exceptional mean accuracy, sensitivity and specificity: classification (97.07%, 97.28%, and 96.83% and a three-degree grading area (89.02%, 86.63%, and 90.75%, density (92.68%, 91.05%, and 93.94% and location (89.28%, 82.70%, and 93.08%. Finally, we developed and deployed a potential automatic diagnostic software for ophthalmologists and patients in clinical applications to implement the validated model.

  20. Brain tumor segmentation with Deep Neural Networks.

    Science.gov (United States)

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Multi-National Banknote Classification Based on Visible-light Line Sensor and Convolutional Neural Network.

    Science.gov (United States)

    Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung

    2017-07-08

    Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods.

  2. Network-based functional enrichment

    Directory of Open Access Journals (Sweden)

    Poirel Christopher L

    2011-11-01

    Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are

  3. Remote Sensing Scene Classification Based on Convolutional Neural Networks Pre-Trained Using Attention-Guided Sparse Filters

    Directory of Open Access Journals (Sweden)

    Jingbo Chen

    2018-02-01

    Full Text Available Semantic-level land-use scene classification is a challenging problem, in which deep learning methods, e.g., convolutional neural networks (CNNs, have shown remarkable capacity. However, a lack of sufficient labeled images has proved a hindrance to increasing the land-use scene classification accuracy of CNNs. Aiming at this problem, this paper proposes a CNN pre-training method under the guidance of a human visual attention mechanism. Specifically, a computational visual attention model is used to automatically extract salient regions in unlabeled images. Then, sparse filters are adopted to learn features from these salient regions, with the learnt parameters used to initialize the convolutional layers of the CNN. Finally, the CNN is further fine-tuned on labeled images. Experiments are performed on the UCMerced and AID datasets, which show that when combined with a demonstrative CNN, our method can achieve 2.24% higher accuracy than a plain CNN and can obtain an overall accuracy of 92.43% when combined with AlexNet. The results indicate that the proposed method can effectively improve CNN performance using easy-to-access unlabeled images and thus will enhance the performance of land-use scene classification especially when a large-scale labeled dataset is unavailable.

  4. An Automatic Diagnosis Method of Facial Acne Vulgaris Based on Convolutional Neural Network.

    Science.gov (United States)

    Shen, Xiaolei; Zhang, Jiachi; Yan, Chenjun; Zhou, Hong

    2018-04-11

    In this paper, we present a new automatic diagnosis method for facial acne vulgaris which is based on convolutional neural networks (CNNs). To overcome the shortcomings of previous methods which were the inability to classify enough types of acne vulgaris. The core of our method is to extract features of images based on CNNs and achieve classification by classifier. A binary-classifier of skin-and-non-skin is used to detect skin area and a seven-classifier is used to achieve the classification task of facial acne vulgaris and healthy skin. In the experiments, we compare the effectiveness of our CNN and the VGG16 neural network which is pre-trained on the ImageNet data set. We use a ROC curve to evaluate the performance of binary-classifier and use a normalized confusion matrix to evaluate the performance of seven-classifier. The results of our experiments show that the pre-trained VGG16 neural network is effective in extracting features from facial acne vulgaris images. And the features are very useful for the follow-up classifiers. Finally, we try applying the classifiers both based on the pre-trained VGG16 neural network to assist doctors in facial acne vulgaris diagnosis.

  5. Filtering and spectral processing of 1-D signals using cellular neural networks

    NARCIS (Netherlands)

    Moreira-Tamayo, O.; Pineda de Gyvez, J.

    1996-01-01

    This paper presents cellular neural networks (CNN) for one-dimensional discrete signal processing. Although CNN has been extensively used in image processing applications, little has been done for 1-dimensional signal processing. We propose a novel CNN architecture to carry out these tasks. This

  6. Cephalometric landmark detection in dental x-ray images using convolutional neural networks

    Science.gov (United States)

    Lee, Hansang; Park, Minseok; Kim, Junmo

    2017-03-01

    In dental X-ray images, an accurate detection of cephalometric landmarks plays an important role in clinical diagnosis, treatment and surgical decisions for dental problems. In this work, we propose an end-to-end deep learning system for cephalometric landmark detection in dental X-ray images, using convolutional neural networks (CNN). For detecting 19 cephalometric landmarks in dental X-ray images, we develop a detection system using CNN-based coordinate-wise regression systems. By viewing x- and y-coordinates of all landmarks as 38 independent variables, multiple CNN-based regression systems are constructed to predict the coordinate variables from input X-ray images. First, each coordinate variable is normalized by the length of either height or width of an image. For each normalized coordinate variable, a CNN-based regression system is trained on training images and corresponding coordinate variable, which is a variable to be regressed. We train 38 regression systems with the same CNN structure on coordinate variables, respectively. Finally, we compute 38 coordinate variables with these trained systems from unseen images and extract 19 landmarks by pairing the regressed coordinates. In experiments, the public database from the Grand Challenges in Dental X-ray Image Analysis in ISBI 2015 was used and the proposed system showed promising performance by successfully locating the cephalometric landmarks within considerable margins from the ground truths.

  7. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.

    Science.gov (United States)

    Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng

    2017-04-10

    This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.

  8. Composability-Centered Convolutional Neural Network Pruning

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xipeng [North Carolina State University; Guan, Hui [North Carolina State University; Lim, Seung-Hwan [ORNL; Patton, Robert M. [ORNL

    2018-02-01

    This work studies the composability of the building blocks ofstructural CNN models (e.g., GoogleLeNet and Residual Networks) in thecontext of network pruning. We empirically validate that a networkcomposed of pre-trained building blocks (e.g. residual blocks andInception modules) not only gives a better initial setting fortraining, but also allows the training process to converge at asignificantly higher accuracy in much less time. Based on thatinsight, we propose a {\\em composability-centered} design for CNNnetwork pruning. Experiments show that this new scheme shortens theconfiguration process in CNN network pruning by up to 186.8X forResNet-50 and up to 30.2X for Inception-V3, and meanwhile, the modelsit finds that meet the accuracy requirement are significantly morecompact than those found by default schemes.

  9. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.

    Science.gov (United States)

    Zhao, Yongjia; Zhou, Suiping

    2017-02-28

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN's input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  10. Dimensionality-varied deep convolutional neural network for spectral-spatial classification of hyperspectral data

    Science.gov (United States)

    Qu, Haicheng; Liang, Xuejian; Liang, Shichao; Liu, Wanjun

    2018-01-01

    Many methods of hyperspectral image classification have been proposed recently, and the convolutional neural network (CNN) achieves outstanding performance. However, spectral-spatial classification of CNN requires an excessively large model, tremendous computations, and complex network, and CNN is generally unable to use the noisy bands caused by water-vapor absorption. A dimensionality-varied CNN (DV-CNN) is proposed to address these issues. There are four stages in DV-CNN and the dimensionalities of spectral-spatial feature maps vary with the stages. DV-CNN can reduce the computation and simplify the structure of the network. All feature maps are processed by more kernels in higher stages to extract more precise features. DV-CNN also improves the classification accuracy and enhances the robustness to water-vapor absorption bands. The experiments are performed on data sets of Indian Pines and Pavia University scene. The classification performance of DV-CNN is compared with state-of-the-art methods, which contain the variations of CNN, traditional, and other deep learning methods. The experiment of performance analysis about DV-CNN itself is also carried out. The experimental results demonstrate that DV-CNN outperforms state-of-the-art methods for spectral-spatial classification and it is also robust to water-vapor absorption bands. Moreover, reasonable parameters selection is effective to improve classification accuracy.

  11. A novel deep learning-based approach to high accuracy breast density estimation in digital mammography

    Science.gov (United States)

    Ahn, Chul Kyun; Heo, Changyong; Jin, Heongmin; Kim, Jong Hyo

    2017-03-01

    Mammographic breast density is a well-established marker for breast cancer risk. However, accurate measurement of dense tissue is a difficult task due to faint contrast and significant variations in background fatty tissue. This study presents a novel method for automated mammographic density estimation based on Convolutional Neural Network (CNN). A total of 397 full-field digital mammograms were selected from Seoul National University Hospital. Among them, 297 mammograms were randomly selected as a training set and the rest 100 mammograms were used for a test set. We designed a CNN architecture suitable to learn the imaging characteristic from a multitudes of sub-images and classify them into dense and fatty tissues. To train the CNN, not only local statistics but also global statistics extracted from an image set were used. The image set was composed of original mammogram and eigen-image which was able to capture the X-ray characteristics in despite of the fact that CNN is well known to effectively extract features on original image. The 100 test images which was not used in training the CNN was used to validate the performance. The correlation coefficient between the breast estimates by the CNN and those by the expert's manual measurement was 0.96. Our study demonstrated the feasibility of incorporating the deep learning technology into radiology practice, especially for breast density estimation. The proposed method has a potential to be used as an automated and quantitative assessment tool for mammographic breast density in routine practice.

  12. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks

    Science.gov (United States)

    Le, Minh Hung; Chen, Jingyu; Wang, Liang; Wang, Zhiwei; Liu, Wenyu; (Tim Cheng, Kwang-Ting; Yang, Xin

    2017-08-01

    Automated methods for prostate cancer (PCa) diagnosis in multi-parametric magnetic resonance imaging (MP-MRIs) are critical for alleviating requirements for interpretation of radiographs while helping to improve diagnostic accuracy (Artan et al 2010 IEEE Trans. Image Process. 19 2444-55, Litjens et al 2014 IEEE Trans. Med. Imaging 33 1083-92, Liu et al 2013 SPIE Medical Imaging (International Society for Optics and Photonics) p 86701G, Moradi et al 2012 J. Magn. Reson. Imaging 35 1403-13, Niaf et al 2014 IEEE Trans. Image Process. 23 979-91, Niaf et al 2012 Phys. Med. Biol. 57 3833, Peng et al 2013a SPIE Medical Imaging (International Society for Optics and Photonics) p 86701H, Peng et al 2013b Radiology 267 787-96, Wang et al 2014 BioMed. Res. Int. 2014). This paper presents an automated method based on multimodal convolutional neural networks (CNNs) for two PCa diagnostic tasks: (1) distinguishing between cancerous and noncancerous tissues and (2) distinguishing between clinically significant (CS) and indolent PCa. Specifically, our multimodal CNNs effectively fuse apparent diffusion coefficients (ADCs) and T2-weighted MP-MRI images (T2WIs). To effectively fuse ADCs and T2WIs we design a new similarity loss function to enforce consistent features being extracted from both ADCs and T2WIs. The similarity loss is combined with the conventional classification loss functions and integrated into the back-propagation procedure of CNN training. The similarity loss enables better fusion results than existing methods as the feature learning processes of both modalities are mutually guided, jointly facilitating CNN to ‘see’ the true visual patterns of PCa. The classification results of multimodal CNNs are further combined with the results based on handcrafted features using a support vector machine classifier. To achieve a satisfactory accuracy for clinical use, we comprehensively investigate three critical factors which could greatly affect the performance of our

  13. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  14. Strong convective storm nowcasting using a hybrid approach of convolutional neural network and hidden Markov model

    Science.gov (United States)

    Zhang, Wei; Jiang, Ling; Han, Lei

    2018-04-01

    Convective storm nowcasting refers to the prediction of the convective weather initiation, development, and decay in a very short term (typically 0 2 h) .Despite marked progress over the past years, severe convective storm nowcasting still remains a challenge. With the boom of machine learning, it has been well applied in various fields, especially convolutional neural network (CNN). In this paper, we build a servere convective weather nowcasting system based on CNN and hidden Markov model (HMM) using reanalysis meteorological data. The goal of convective storm nowcasting is to predict if there is a convective storm in 30min. In this paper, we compress the VDRAS reanalysis data to low-dimensional data by CNN as the observation vector of HMM, then obtain the development trend of strong convective weather in the form of time series. It shows that, our method can extract robust features without any artificial selection of features, and can capture the development trend of strong convective storm.

  15. REAL-TIME VIDEO SCALING BASED ON CONVOLUTION NEURAL NETWORK ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    S Safinaz

    2017-08-01

    Full Text Available In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames to high resolution frames. We compare our outcomes with multiple exiting algorithms. Our extensive results of proposed technique RemCNN (Reconstruction error minimization Convolution Neural Network shows that our model outperforms the existing technologies such as bicubic, bilinear, MCResNet and provide better reconstructed motioning images and video frames. The experimental results shows that our average PSNR result is 47.80474 considering upscale-2, 41.70209 for upscale-3 and 36.24503 for upscale-4 for Myanmar dataset which is very high in contrast to other existing techniques. This results proves our proposed model real-time video scaling based on convolution neural network architecture’s high efficiency and better performance.

  16. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network.

    Directory of Open Access Journals (Sweden)

    Seung Seog Han

    Full Text Available Although there have been reports of the successful diagnosis of skin disorders using deep learning, unrealistically large clinical image datasets are required for artificial intelligence (AI training. We created datasets of standardized nail images using a region-based convolutional neural network (R-CNN trained to distinguish the nail from the background. We used R-CNN to generate training datasets of 49,567 images, which we then used to fine-tune the ResNet-152 and VGG-19 models. The validation datasets comprised 100 and 194 images from Inje University (B1 and B2 datasets, respectively, 125 images from Hallym University (C dataset, and 939 images from Seoul National University (D dataset. The AI (ensemble model; ResNet-152 + VGG-19 + feedforward neural networks results showed test sensitivity/specificity/ area under the curve values of (96.0 / 94.7 / 0.98, (82.7 / 96.7 / 0.95, (92.3 / 79.3 / 0.93, (87.7 / 69.3 / 0.82 for the B1, B2, C, and D datasets. With a combination of the B1 and C datasets, the AI Youden index was significantly (p = 0.01 higher than that of 42 dermatologists doing the same assessment manually. For B1+C and B2+ D dataset combinations, almost none of the dermatologists performed as well as the AI. By training with a dataset comprising 49,567 images, we achieved a diagnostic accuracy for onychomycosis using deep learning that was superior to that of most of the dermatologists who participated in this study.

  17. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network.

    Science.gov (United States)

    Han, Seung Seog; Park, Gyeong Hun; Lim, Woohyung; Kim, Myoung Shin; Na, Jung Im; Park, Ilwoo; Chang, Sung Eun

    2018-01-01

    Although there have been reports of the successful diagnosis of skin disorders using deep learning, unrealistically large clinical image datasets are required for artificial intelligence (AI) training. We created datasets of standardized nail images using a region-based convolutional neural network (R-CNN) trained to distinguish the nail from the background. We used R-CNN to generate training datasets of 49,567 images, which we then used to fine-tune the ResNet-152 and VGG-19 models. The validation datasets comprised 100 and 194 images from Inje University (B1 and B2 datasets, respectively), 125 images from Hallym University (C dataset), and 939 images from Seoul National University (D dataset). The AI (ensemble model; ResNet-152 + VGG-19 + feedforward neural networks) results showed test sensitivity/specificity/ area under the curve values of (96.0 / 94.7 / 0.98), (82.7 / 96.7 / 0.95), (92.3 / 79.3 / 0.93), (87.7 / 69.3 / 0.82) for the B1, B2, C, and D datasets. With a combination of the B1 and C datasets, the AI Youden index was significantly (p = 0.01) higher than that of 42 dermatologists doing the same assessment manually. For B1+C and B2+ D dataset combinations, almost none of the dermatologists performed as well as the AI. By training with a dataset comprising 49,567 images, we achieved a diagnostic accuracy for onychomycosis using deep learning that was superior to that of most of the dermatologists who participated in this study.

  18. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.

    Science.gov (United States)

    Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun

    2016-01-01

    Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.

  19. Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network.

    Science.gov (United States)

    Yang, Zhongliang; Huang, Yongfeng; Jiang, Yiran; Sun, Yuxi; Zhang, Yu-Jin; Luo, Pengcheng

    2018-04-20

    Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67% accuracy and 96.02% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.

  20. Classification of Two Comic Books based on Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Miki UENO

    2017-03-01

    Full Text Available Unphotographic images are the powerful representations described various situations. Thus, understanding intellectual products such as comics and picture books is one of the important topics in the field of artificial intelligence. Hence, stepwise analysis of a comic story, i.e., features of a part of the image, information features, features relating to continuous scene etc., was pursued. Especially, the length and each scene of four-scene comics are limited so as to ensure a clear interpretation of the contents.In this study, as the first step in this direction, the problem to classify two four-scene comics by the same artists were focused as the example. Several classifiers were constructed by utilizing a Convolutional Neural Network(CNN, and the results of classification by a human annotator and by a computational method were compared.From these experiments, we have clearly shown that CNN is efficient way to classify unphotographic gray scaled images and found that characteristic features of images to classify incorrectly.

  1. On Tree-Based Phylogenetic Networks.

    Science.gov (United States)

    Zhang, Louxin

    2016-07-01

    A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.

  2. Nonbinary Tree-Based Phylogenetic Networks.

    Science.gov (United States)

    Jetten, Laura; van Iersel, Leo

    2018-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can, for example, represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and strictly-tree-based nonbinary phylogenetic networks. We give simple graph-theoretic characterizations of tree-based and strictly-tree-based nonbinary phylogenetic networks. Moreover, we show for each of these two classes that it can be decided in polynomial time whether a given network is contained in the class. Our approach also provides a new view on tree-based binary phylogenetic networks. Finally, we discuss two examples of nonbinary phylogenetic networks in biology and show how our results can be applied to them.

  3. A convolutional neural network neutrino event classifier

    International Nuclear Information System (INIS)

    Aurisano, A.; Sousa, A.; Radovic, A.; Vahle, P.; Rocco, D.; Pawloski, G.; Himmel, A.; Niner, E.; Messier, M.D.; Psihas, F.

    2016-01-01

    Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.

  4. 5W1H Information Extraction with CNN-Bidirectional LSTM

    Science.gov (United States)

    Nurdin, A.; Maulidevi, N. U.

    2018-03-01

    In this work, information about who, did what, when, where, why, and how on Indonesian news articles were extracted by combining Convolutional Neural Network and Bidirectional Long Short-Term Memory. Convolutional Neural Network can learn semantically meaningful representations of sentences. Bidirectional LSTM can analyze the relations among words in the sequence. We also use word embedding word2vec for word representation. By combining these algorithms, we obtained F-measure 0.808. Our experiments show that CNN-BLSTM outperforms other shallow methods, namely IBk, C4.5, and Naïve Bayes with the F-measure 0.655, 0.645, and 0.595, respectively.

  5. SAR target recognition and posture estimation using spatial pyramid pooling within CNN

    Science.gov (United States)

    Peng, Lijiang; Liu, Xiaohua; Liu, Ming; Dong, Liquan; Hui, Mei; Zhao, Yuejin

    2018-01-01

    Many convolution neural networks(CNN) architectures have been proposed to strengthen the performance on synthetic aperture radar automatic target recognition (SAR-ATR) and obtained state-of-art results on targets classification on MSTAR database, but few methods concern about the estimation of depression angle and azimuth angle of targets. To get better effect on learning representation of hierarchies of features on both 10-class target classification task and target posture estimation tasks, we propose a new CNN architecture with spatial pyramid pooling(SPP) which can build high hierarchy of features map by dividing the convolved feature maps from finer to coarser levels to aggregate local features of SAR images. Experimental results on MSTAR database show that the proposed architecture can get high recognition accuracy as 99.57% on 10-class target classification task as the most current state-of-art methods, and also get excellent performance on target posture estimation tasks which pays attention to depression angle variety and azimuth angle variety. What's more, the results inspire us the application of deep learning on SAR target posture description.

  6. Between the headlines of the Israeli - Arabic conflict: the coverage of CNN and Al Jazeera

    OpenAIRE

    Hemelberg, Stephany

    2015-01-01

    The purpose of this article is to analyze the coverage made by CNN and Al Jazeera (in Arabic) to operation Caste Lead and the Goldstone Report during 2008 and 2009. This investigation is based in the theory of Qualitative Analysis of Content, by Wildemuth and Zhang. The methodology follows up with the one proposed by the authors in the main theory, complementing it with the Gamson and Modigliani´s Framing theory. The methodology mention above display the different in the coverage development,...

  7. Bearings Fault Diagnosis Based on Convolutional Neural Networks with 2-D Representation of Vibration Signals as Input

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available Periodic vibration signals captured by the accelerometers carry rich information for bearing fault diagnosis. Existing methods mostly rely on hand-crafted time-consuming preprocessing of data to acquire suitable features. In this paper, we use an easy and effective method to transform the 1-D temporal vibration signal into a 2-D image. With the signal image, convolutional Neural Network (CNN is used to train the raw vibration data. As powerful feature extractor and classifier for image recognition, CNN can learn to acquire features most suitable for the classification task by being trained. With the image format of vibration signals, the neuron in fully-connected layer of CNN can see farther and capture the periodic feature of signals. According to the results of the experiments, when fed in enough training samples, the proposed method outperforms other common methods. The proposed method can also be applied to solve intelligent diagnosis problems of other machine systems.

  8. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder

    Science.gov (United States)

    Jin, Xiaowei; Cheng, Peng; Chen, Wen-Li; Li, Hui

    2018-04-01

    A data-driven model is proposed for the prediction of the velocity field around a cylinder by fusion convolutional neural networks (CNNs) using measurements of the pressure field on the cylinder. The model is based on the close relationship between the Reynolds stresses in the wake, the wake formation length, and the base pressure. Numerical simulations of flow around a cylinder at various Reynolds numbers are carried out to establish a dataset capturing the effect of the Reynolds number on various flow properties. The time series of pressure fluctuations on the cylinder is converted into a grid-like spatial-temporal topology to be handled as the input of a CNN. A CNN architecture composed of a fusion of paths with and without a pooling layer is designed. This architecture can capture both accurate spatial-temporal information and the features that are invariant of small translations in the temporal dimension of pressure fluctuations on the cylinder. The CNN is trained using the computational fluid dynamics (CFD) dataset to establish the mapping relationship between the pressure fluctuations on the cylinder and the velocity field around the cylinder. Adam (adaptive moment estimation), an efficient method for processing large-scale and high-dimensional machine learning problems, is employed to implement the optimization algorithm. The trained model is then tested over various Reynolds numbers. The predictions of this model are found to agree well with the CFD results, and the data-driven model successfully learns the underlying flow regimes, i.e., the relationship between wake structure and pressure experienced on the surface of a cylinder is well established.

  9. Automated EEG-based screening of depression using deep convolutional neural network.

    Science.gov (United States)

    Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adeli, Hojjat; Subha, D P

    2018-07-01

    In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI). Copyright © 2018 Elsevier B.V. All rights reserved.

  10. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  11. Optical burst switching based satellite backbone network

    Science.gov (United States)

    Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian

    2018-02-01

    We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.

  12. Electricity price forecast using Combinatorial Neural Network trained by a new stochastic search method

    International Nuclear Information System (INIS)

    Abedinia, O.; Amjady, N.; Shafie-khah, M.; Catalão, J.P.S.

    2015-01-01

    Highlights: • Presenting a Combinatorial Neural Network. • Suggesting a new stochastic search method. • Adapting the suggested method as a training mechanism. • Proposing a new forecast strategy. • Testing the proposed strategy on real-world electricity markets. - Abstract: Electricity price forecast is key information for successful operation of electricity market participants. However, the time series of electricity price has nonlinear, non-stationary and volatile behaviour and so its forecast method should have high learning capability to extract the complex input/output mapping function of electricity price. In this paper, a Combinatorial Neural Network (CNN) based forecasting engine is proposed to predict the future values of price data. The CNN-based forecasting engine is equipped with a new training mechanism for optimizing the weights of the CNN. This training mechanism is based on an efficient stochastic search method, which is a modified version of chemical reaction optimization algorithm, giving high learning ability to the CNN. The proposed price forecast strategy is tested on the real-world electricity markets of Pennsylvania–New Jersey–Maryland (PJM) and mainland Spain and its obtained results are extensively compared with the results obtained from several other forecast methods. These comparisons illustrate effectiveness of the proposed strategy.

  13. A Quantum Cryptography Communication Network Based on Software Defined Network

    Directory of Open Access Journals (Sweden)

    Zhang Hongliang

    2018-01-01

    Full Text Available With the development of the Internet, information security has attracted great attention in today’s society, and quantum cryptography communication network based on quantum key distribution (QKD is a very important part of this field, since the quantum key distribution combined with one-time-pad encryption scheme can guarantee the unconditional security of the information. The secret key generated by quantum key distribution protocols is a very valuable resource, so making full use of key resources is particularly important. Software definition network (SDN is a new type of network architecture, and it separates the control plane and the data plane of network devices through OpenFlow technology, thus it realizes the flexible control of the network resources. In this paper, a quantum cryptography communication network model based on SDN is proposed to realize the flexible control of quantum key resources in the whole cryptography communication network. Moreover, we propose a routing algorithm which takes into account both the hops and the end-to-end availible keys, so that the secret key generated by QKD can be used effectively. We also simulate this quantum cryptography communication network, and the result shows that based on SDN and the proposed routing algorithm the performance of this network is improved since the effective use of the quantum key resources.

  14. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images.

    Science.gov (United States)

    Hirasawa, Toshiaki; Aoyama, Kazuharu; Tanimoto, Tetsuya; Ishihara, Soichiro; Shichijo, Satoki; Ozawa, Tsuyoshi; Ohnishi, Tatsuya; Fujishiro, Mitsuhiro; Matsuo, Keigo; Fujisaki, Junko; Tada, Tomohiro

    2018-07-01

    Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images. A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN. The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface. The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.

  15. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    Directory of Open Access Journals (Sweden)

    Srdjan Sladojevic

    2016-01-01

    Full Text Available The latest generation of convolutional neural networks (CNNs has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%.

  16. Phylogenetic convolutional neural networks in metagenomics.

    Science.gov (United States)

    Fioravanti, Diego; Giarratano, Ylenia; Maggio, Valerio; Agostinelli, Claudio; Chierici, Marco; Jurman, Giuseppe; Furlanello, Cesare

    2018-03-08

    Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.

  17. Image quality assessment using deep convolutional networks

    Science.gov (United States)

    Li, Yezhou; Ye, Xiang; Li, Yong

    2017-12-01

    This paper proposes a method of accurately assessing image quality without a reference image by using a deep convolutional neural network. Existing training based methods usually utilize a compact set of linear filters for learning features of images captured by different sensors to assess their quality. These methods may not be able to learn the semantic features that are intimately related with the features used in human subject assessment. Observing this drawback, this work proposes training a deep convolutional neural network (CNN) with labelled images for image quality assessment. The ReLU in the CNN allows non-linear transformations for extracting high-level image features, providing a more reliable assessment of image quality than linear filters. To enable the neural network to take images of any arbitrary size as input, the spatial pyramid pooling (SPP) is introduced connecting the top convolutional layer and the fully-connected layer. In addition, the SPP makes the CNN robust to object deformations to a certain extent. The proposed method taking an image as input carries out an end-to-end learning process, and outputs the quality of the image. It is tested on public datasets. Experimental results show that it outperforms existing methods by a large margin and can accurately assess the image quality on images taken by different sensors of varying sizes.

  18. Image processing for medical diagnosis using CNN

    International Nuclear Information System (INIS)

    Arena, Paolo; Basile, Adriano; Bucolo, Maide; Fortuna, Luigi

    2003-01-01

    Medical diagnosis is one of the most important area in which image processing procedures are usefully applied. Image processing is an important phase in order to improve the accuracy both for diagnosis procedure and for surgical operation. One of these fields is tumor/cancer detection by using Microarray analysis. The research studies in the Cancer Genetics Branch are mainly involved in a range of experiments including the identification of inherited mutations predisposing family members to malignant melanoma, prostate and breast cancer. In bio-medical field the real-time processing is very important, but often image processing is a quite time-consuming phase. Therefore techniques able to speed up the elaboration play an important rule. From this point of view, in this work a novel approach to image processing has been developed. The new idea is to use the Cellular Neural Networks to investigate on diagnostic images, like: Magnetic Resonance Imaging, Computed Tomography, and fluorescent cDNA microarray images

  19. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Chaudhari

    2011-06-01

    Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.

  20. Deep 3D convolution neural network for CT brain hemorrhage classification

    Science.gov (United States)

    Jnawali, Kamal; Arbabshirani, Mohammad R.; Rao, Navalgund; Patel, Alpen A.

    2018-02-01

    Intracranial hemorrhage is a critical conditional with the high mortality rate that is typically diagnosed based on head computer tomography (CT) images. Deep learning algorithms, in particular, convolution neural networks (CNN), are becoming the methodology of choice in medical image analysis for a variety of applications such as computer-aided diagnosis, and segmentation. In this study, we propose a fully automated deep learning framework which learns to detect brain hemorrhage based on cross sectional CT images. The dataset for this work consists of 40,367 3D head CT studies (over 1.5 million 2D images) acquired retrospectively over a decade from multiple radiology facilities at Geisinger Health System. The proposed algorithm first extracts features using 3D CNN and then detects brain hemorrhage using the logistic function as the last layer of the network. Finally, we created an ensemble of three different 3D CNN architectures to improve the classification accuracy. The area under the curve (AUC) of the receiver operator characteristic (ROC) curve of the ensemble of three architectures was 0.87. Their results are very promising considering the fact that the head CT studies were not controlled for slice thickness, scanner type, study protocol or any other settings. Moreover, the proposed algorithm reliably detected various types of hemorrhage within the skull. This work is one of the first applications of 3D CNN trained on a large dataset of cross sectional medical images for detection of a critical radiological condition

  1. Opinion mining on book review using CNN-L2-SVM algorithm

    Science.gov (United States)

    Rozi, M. F.; Mukhlash, I.; Soetrisno; Kimura, M.

    2018-03-01

    Review of a product can represent quality of a product itself. An extraction to that review can be used to know sentiment of that opinion. Process to extract useful information of user review is called Opinion Mining. Review extraction model that is enhancing nowadays is Deep Learning model. This Model has been used by many researchers to obtain excellent performance on Natural Language Processing. In this research, one of deep learning model, Convolutional Neural Network (CNN) is used for feature extraction and L2 Support Vector Machine (SVM) as classifier. These methods are implemented to know the sentiment of book review data. The result of this method shows state-of-the art performance in 83.23% for training phase and 64.6% for testing phase.

  2. Nonbinary tree-based phylogenetic networks

    OpenAIRE

    Jetten, Laura; van Iersel, Leo

    2016-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can for example represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and st...

  3. Directory Enabled Policy Based Networking; TOPICAL

    International Nuclear Information System (INIS)

    KELIIAA, CURTIS M.

    2001-01-01

    This report presents a discussion of directory-enabled policy-based networking with an emphasis on its role as the foundation for securely scalable enterprise networks. A directory service provides the object-oriented logical environment for interactive cyber-policy implementation. Cyber-policy implementation includes security, network management, operational process and quality of service policies. The leading network-technology vendors have invested in these technologies for secure universal connectivity that transverses Internet, extranet and intranet boundaries. Industry standards are established that provide the fundamental guidelines for directory deployment scalable to global networks. The integration of policy-based networking with directory-service technologies provides for intelligent management of the enterprise network environment as an end-to-end system of related clients, services and resources. This architecture allows logical policies to protect data, manage security and provision critical network services permitting a proactive defense-in-depth cyber-security posture. Enterprise networking imposes the consideration of supporting multiple computing platforms, sites and business-operation models. An industry-standards based approach combined with principled systems engineering in the deployment of these technologies allows these issues to be successfully addressed. This discussion is focused on a directory-based policy architecture for the heterogeneous enterprise network-computing environment and does not propose specific vendor solutions. This document is written to present practical design methodology and provide an understanding of the risks, complexities and most important, the benefits of directory-enabled policy-based networking

  4. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  5. Can a CNN recognize Catalan diet?

    Science.gov (United States)

    Herruzo, P.; Bolaños, M.; Radeva, P.

    2016-10-01

    Nowadays, we can find several diseases related to the unhealthy diet habits of the population, such as diabetes, obesity, anemia, bulimia and anorexia. In many cases, these diseases are related to the food consumption of people. Mediterranean diet is scientifically known as a healthy diet that helps to prevent many metabolic diseases. In particular, our work focuses on the recognition of Mediterranean food and dishes. The development of this methodology would allow to analise the daily habits of users with wearable cameras, within the topic of lifelogging. By using automatic mechanisms we could build an objective tool for the analysis of the patient's behavior, allowing specialists to discover unhealthy food patterns and understand the user's lifestyle. With the aim to automatically recognize a complete diet, we introduce a challenging multi-labeled dataset related to Mediter-ranean diet called FoodCAT. The first type of label provided consists of 115 food classes with an average of 400 images per dish, and the second one consists of 12 food categories with an average of 3800 pictures per class. This dataset will serve as a basis for the development of automatic diet recognition. In this context, deep learning and more specifically, Convolutional Neural Networks (CNNs), currently are state-of-the-art methods for automatic food recognition. In our work, we compare several architectures for image classification, with the purpose of diet recognition. Applying the best model for recognising food categories, we achieve a top-1 accuracy of 72.29%, and top-5 of 97.07%. In a complete diet recognition of dishes from Mediterranean diet, enlarged with the Food-101 dataset for international dishes recognition, we achieve a top-1 accuracy of 68.07%, and top-5 of 89.53%, for a total of 115+101 food classes.

  6. Automated Detection of Clinically Significant Prostate Cancer in mp-MRI Images Based on an End-to-End Deep Neural Network.

    Science.gov (United States)

    Wang, Zhiwei; Liu, Chaoyue; Cheng, Danpeng; Wang, Liang; Yang, Xin; Cheng, Kwang-Ting

    2018-05-01

    Automated methods for detecting clinically significant (CS) prostate cancer (PCa) in multi-parameter magnetic resonance images (mp-MRI) are of high demand. Existing methods typically employ several separate steps, each of which is optimized individually without considering the error tolerance of other steps. As a result, they could either involve unnecessary computational cost or suffer from errors accumulated over steps. In this paper, we present an automated CS PCa detection system, where all steps are optimized jointly in an end-to-end trainable deep neural network. The proposed neural network consists of concatenated subnets: 1) a novel tissue deformation network (TDN) for automated prostate detection and multimodal registration and 2) a dual-path convolutional neural network (CNN) for CS PCa detection. Three types of loss functions, i.e., classification loss, inconsistency loss, and overlap loss, are employed for optimizing all parameters of the proposed TDN and CNN. In the training phase, the two nets mutually affect each other and effectively guide registration and extraction of representative CS PCa-relevant features to achieve results with sufficient accuracy. The entire network is trained in a weakly supervised manner by providing only image-level annotations (i.e., presence/absence of PCa) without exact priors of lesions' locations. Compared with most existing systems which require supervised labels, e.g., manual delineation of PCa lesions, it is much more convenient for clinical usage. Comprehensive evaluation based on fivefold cross validation using 360 patient data demonstrates that our system achieves a high accuracy for CS PCa detection, i.e., a sensitivity of 0.6374 and 0.8978 at 0.1 and 1 false positives per normal/benign patient.

  7. A random network based, node attraction facilitated network evolution method

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2016-03-01

    Full Text Available In present study, I present a method of network evolution that based on random network, and facilitated by node attraction. In this method, I assume that the initial network is a random network, or a given initial network. When a node is ready to connect, it tends to link to the node already owning the most connections, which coincides with the general rule (Barabasi and Albert, 1999 of node connecting. In addition, a node may randomly disconnect a connection i.e., the addition of connections in the network is accompanied by the pruning of some connections. The dynamics of network evolution is determined of the attraction factor Lamda of nodes, the probability of node connection, the probability of node disconnection, and the expected initial connectance. The attraction factor of nodes, the probability of node connection, and the probability of node disconnection are time and node varying. Various dynamics can be achieved by adjusting these parameters. Effects of simplified parameters on network evolution are analyzed. The changes of attraction factor Lamda can reflect various effects of the node degree on connection mechanism. Even the changes of Lamda only will generate various networks from the random to the complex. Therefore, the present algorithm can be treated as a general model for network evolution. Modeling results show that to generate a power-law type of network, the likelihood of a node attracting connections is dependent upon the power function of the node's degree with a higher-order power. Matlab codes for simplified version of the method are provided.

  8. Classifying Wheat Hyperspectral Pixels of Healthy Heads and Fusarium Head Blight Disease Using a Deep Neural Network in the Wild Field

    Directory of Open Access Journals (Sweden)

    Xiu Jin

    2018-03-01

    Full Text Available Classification of healthy and diseased wheat heads in a rapid and non-destructive manner for the early diagnosis of Fusarium head blight disease research is difficult. Our work applies a deep neural network classification algorithm to the pixels of hyperspectral image to accurately discern the disease area. The spectra of hyperspectral image pixels in a manually selected region of interest are preprocessed via mean removal to eliminate interference, due to the time interval and the environment. The generalization of the classification model is considered, and two improvements are made to the model framework. First, the pixel spectra data are reshaped into a two-dimensional data structure for the input layer of a Convolutional Neural Network (CNN. After training two types of CNNs, the assessment shows that a two-dimensional CNN model is more efficient than a one-dimensional CNN. Second, a hybrid neural network with a convolutional layer and bidirectional recurrent layer is reconstructed to improve the generalization of the model. When considering the characteristics of the dataset and models, the confusion matrices that are based on the testing dataset indicate that the classification model is effective for background and disease classification of hyperspectral image pixels. The results of the model show that the two-dimensional convolutional bidirectional gated recurrent unit neural network (2D-CNN-BidGRU has an F1 score and accuracy of 0.75 and 0.743, respectively, for the total testing dataset. A comparison of all the models shows that the hybrid neural network of 2D-CNN-BidGRU is the best at preventing over-fitting and optimize the generalization. Our results illustrate that the hybrid structure deep neural network is an excellent classification algorithm for healthy and Fusarium head blight diseased classification in the field of hyperspectral imagery.

  9. Ear Detection under Uncontrolled Conditions with Multiple Scale Faster Region-Based Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-04-01

    Full Text Available Ear detection is an important step in ear recognition approaches. Most existing ear detection techniques are based on manually designing features or shallow learning algorithms. However, researchers found that the pose variation, occlusion, and imaging conditions provide a great challenge to the traditional ear detection methods under uncontrolled conditions. This paper proposes an efficient technique involving Multiple Scale Faster Region-based Convolutional Neural Networks (Faster R-CNN to detect ears from 2D profile images in natural images automatically. Firstly, three regions of different scales are detected to infer the information about the ear location context within the image. Then an ear region filtering approach is proposed to extract the correct ear region and eliminate the false positives automatically. In an experiment with a test set of 200 web images (with variable photographic conditions, 98% of ears were accurately detected. Experiments were likewise conducted on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2 and University of Beira Interior Ear dataset (UBEAR, which contain large occlusion, scale, and pose variations. Detection rates of 100% and 98.22%, respectively, demonstrate the effectiveness of the proposed approach.

  10. Lidar-based individual tree species classification using convolutional neural network

    Science.gov (United States)

    Mizoguchi, Tomohiro; Ishii, Akira; Nakamura, Hiroyuki; Inoue, Tsuyoshi; Takamatsu, Hisashi

    2017-06-01

    Terrestrial lidar is commonly used for detailed documentation in the field of forest inventory investigation. Recent improvements of point cloud processing techniques enabled efficient and precise computation of an individual tree shape parameters, such as breast-height diameter, height, and volume. However, tree species are manually specified by skilled workers to date. Previous works for automatic tree species classification mainly focused on aerial or satellite images, and few works have been reported for classification techniques using ground-based sensor data. Several candidate sensors can be considered for classification, such as RGB or multi/hyper spectral cameras. Above all candidates, we use terrestrial lidar because it can obtain high resolution point cloud in the dark forest. We selected bark texture for the classification criteria, since they clearly represent unique characteristics of each tree and do not change their appearance under seasonable variation and aged deterioration. In this paper, we propose a new method for automatic individual tree species classification based on terrestrial lidar using Convolutional Neural Network (CNN). The key component is the creation step of a depth image which well describe the characteristics of each species from a point cloud. We focus on Japanese cedar and cypress which cover the large part of domestic forest. Our experimental results demonstrate the effectiveness of our proposed method.

  11. Bluetooth-based wireless sensor networks

    Science.gov (United States)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  12. Cellular neural network to the spherical harmonics approximation of neutron transport equation in x–y geometry

    International Nuclear Information System (INIS)

    Pirouzmand, Ahmad; Hadad, Kamal

    2012-01-01

    Highlights: ► This paper describes the solution of time-dependent neutron transport equation. ► We use a novel method based on cellular neural networks (CNNs) coupled with the spherical harmonics method. ► We apply the CNN model to simulate step and ramp perturbation transients in a core. ► The accuracy and capabilities of the CNN model are examined for x–y geometry. - Abstract: In an earlier paper we utilized a novel method using cellular neural networks (CNNs) coupled with spherical harmonics method to solve the steady state neutron transport equation in x–y geometry. Here, the previous work is extended to the study of time-dependent neutron transport equation. To achieve this goal, an equivalent electrical circuit based on a second-order form of time-dependent neutron transport equation and one equivalent group of neutron precursor density is obtained by the CNN method. The CNN model is used to simulate step and ramp perturbation transients in a typical 2D core.

  13. A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection.

    Science.gov (United States)

    Jin, Hongsheng; Li, Zongyao; Tong, Ruofeng; Lin, Lanfen

    2018-05-01

    The automatic detection of pulmonary nodules using CT scans improves the efficiency of lung cancer diagnosis, and false-positive reduction plays a significant role in the detection. In this paper, we focus on the false-positive reduction task and propose an effective method for this task. We construct a deep 3D residual CNN (convolution neural network) to reduce false-positive nodules from candidate nodules. The proposed network is much deeper than the traditional 3D CNNs used in medical image processing. Specifically, in the network, we design a spatial pooling and cropping (SPC) layer to extract multilevel contextual information of CT data. Moreover, we employ an online hard sample selection strategy in the training process to make the network better fit hard samples (e.g., nodules with irregular shapes). Our method is evaluated on 888 CT scans from the dataset of the LUNA16 Challenge. The free-response receiver operating characteristic (FROC) curve shows that the proposed method achieves a high detection performance. Our experiments confirm that our method is robust and that the SPC layer helps increase the prediction accuracy. Additionally, the proposed method can easily be extended to other 3D object detection tasks in medical image processing. © 2018 American Association of Physicists in Medicine.

  14. Memristor-based neural networks

    International Nuclear Information System (INIS)

    Thomas, Andy

    2013-01-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them. (topical review)

  15. Community Based Networks and 5G

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2016-01-01

    The deployment of previous wireless standards has provided more benefits for urban dwellers than rural dwellers. 5G deployment may not be different. This paper identifies that Community Based Networks as carriers that deserve recognition as potential 5G providers may change this. The argument....... The findings indicate that 5G connectivity can be extended to rural areas by these networks, via heterogenous networks. Hence the delivery of 5G data rates delivery via Wireless WAN in rural areas can be achieved by utilizing the causal factors of the identified models for Community Based Networks....

  16. Application of deep learning in determining IR precipitation occurrence: a Convolutional Neural Network model

    Science.gov (United States)

    Wang, C.; Hong, Y.

    2017-12-01

    Infrared (IR) information from Geostationary satellites can be used to retrieve precipitation at pretty high spatiotemporal resolutions. Traditional artificial intelligence (AI) methodologies, such as artificial neural networks (ANN), have been designed to build the relationship between near-surface precipitation and manually derived IR features in products including PERSIANN and PERSIANN-CCS. This study builds an automatic precipitation detection model based on IR data using Convolutional Neural Network (CNN) which is implemented by the newly developed deep learning framework, Caffe. The model judges whether there is rain or no rain at pixel level. Compared with traditional ANN methods, CNN can extract features inside the raw data automatically and thoroughly. In this study, IR data from GOES satellites and precipitation estimates from the next generation QPE (Q2) over the central United States are used as inputs and labels, respectively. The whole datasets during the study period (June to August in 2012) are randomly partitioned to three sub datasets (train, validation and test) to establish the model at the spatial resolution of 0.08°×0.08° and the temporal resolution of 1 hour. The experiments show great improvements of CNN in rain identification compared to the widely used IR-based precipitation product, i.e., PERSIANN-CCS. The overall gain in performance is about 30% for critical success index (CSI), 32% for probability of detection (POD) and 12% for false alarm ratio (FAR). Compared to other recent IR-based precipitation retrieval methods (e.g., PERSIANN-DL developed by University of California Irvine), our model is simpler with less parameters, but achieves equally or even better results. CNN has been applied in computer vision domain successfully, and our results prove the method is suitable for IR precipitation detection. Future studies can expand the application of CNN from precipitation occurrence decision to precipitation amount retrieval.

  17. An Efficient Neural-Network-Based Microseismic Monitoring Platform for Hydraulic Fracture on an Edge Computing Architecture.

    Science.gov (United States)

    Zhang, Xiaopu; Lin, Jun; Chen, Zubin; Sun, Feng; Zhu, Xi; Fang, Gengfa

    2018-06-05

    Microseismic monitoring is one of the most critical technologies for hydraulic fracturing in oil and gas production. To detect events in an accurate and efficient way, there are two major challenges. One challenge is how to achieve high accuracy due to a poor signal-to-noise ratio (SNR). The other one is concerned with real-time data transmission. Taking these challenges into consideration, an edge-computing-based platform, namely Edge-to-Center LearnReduce, is presented in this work. The platform consists of a data center with many edge components. At the data center, a neural network model combined with convolutional neural network (CNN) and long short-term memory (LSTM) is designed and this model is trained by using previously obtained data. Once the model is fully trained, it is sent to edge components for events detection and data reduction. At each edge component, a probabilistic inference is added to the neural network model to improve its accuracy. Finally, the reduced data is delivered to the data center. Based on experiment results, a high detection accuracy (over 96%) with less transmitted data (about 90%) was achieved by using the proposed approach on a microseismic monitoring system. These results show that the platform can simultaneously improve the accuracy and efficiency of microseismic monitoring.

  18. An Efficient Neural-Network-Based Microseismic Monitoring Platform for Hydraulic Fracture on an Edge Computing Architecture

    Directory of Open Access Journals (Sweden)

    Xiaopu Zhang

    2018-06-01

    Full Text Available Microseismic monitoring is one of the most critical technologies for hydraulic fracturing in oil and gas production. To detect events in an accurate and efficient way, there are two major challenges. One challenge is how to achieve high accuracy due to a poor signal-to-noise ratio (SNR. The other one is concerned with real-time data transmission. Taking these challenges into consideration, an edge-computing-based platform, namely Edge-to-Center LearnReduce, is presented in this work. The platform consists of a data center with many edge components. At the data center, a neural network model combined with convolutional neural network (CNN and long short-term memory (LSTM is designed and this model is trained by using previously obtained data. Once the model is fully trained, it is sent to edge components for events detection and data reduction. At each edge component, a probabilistic inference is added to the neural network model to improve its accuracy. Finally, the reduced data is delivered to the data center. Based on experiment results, a high detection accuracy (over 96% with less transmitted data (about 90% was achieved by using the proposed approach on a microseismic monitoring system. These results show that the platform can simultaneously improve the accuracy and efficiency of microseismic monitoring.

  19. Centrioles regulate centrosome size by controlling the rate of Cnn incorporation into the PCM.

    Science.gov (United States)

    Conduit, Paul T; Brunk, Kathrin; Dobbelaere, Jeroen; Dix, Carly I; Lucas, Eliana P; Raff, Jordan W

    2010-12-21

    centrosomes are major microtubule organizing centers in animal cells, and they comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM). Centrosome size is tightly regulated during the cell cycle, and it has recently been shown that the two centrosomes in certain stem cells are often asymmetric in size. There is compelling evidence that centrioles influence centrosome size, but how centrosome size is set remains mysterious. we show that the conserved Drosophila PCM protein Cnn exhibits an unusual dynamic behavior, because Cnn molecules only incorporate into the PCM closest to the centrioles and then spread outward through the rest of the PCM. Cnn incorporation into the PCM is driven by an interaction with the conserved centriolar proteins Asl (Cep152 in humans) and DSpd-2 (Cep192 in humans). The rate of Cnn incorporation into the PCM is tightly regulated during the cell cycle, and this rate influences the amount of Cnn in the PCM, which in turn is an important determinant of overall centrosome size. Intriguingly, daughter centrioles in syncytial embryos only start to incorporate Cnn as they disengage from their mothers; this generates a centrosome size asymmetry, with mother centrioles always initially organizing more Cnn than their daughters. centrioles can control the amount of PCM they organize by regulating the rate of Cnn incorporation into the PCM. This mechanism can explain how centrosome size is regulated during the cell cycle and also allows mother and daughter centrioles to set centrosome size independently of one another.

  20. CNN-coupled Humanoid Panoramic Annular Lens (PAL)-Optical System for Military Applications (Feasibility Study)

    National Research Council Canada - National Science Library

    Greguss, Pal

    2002-01-01

    ...) and the CNN chip for a few military applications. A polar beam splitter will be placed immediately after the relay lens to obtain two image planes, one will be used by the existing 64X64 CNN-UM focal plane array processor chip...

  1. Detecting Malware with an Ensemble Method Based on Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Jinpei Yan

    2018-01-01

    Full Text Available Malware detection plays a crucial role in computer security. Recent researches mainly use machine learning based methods heavily relying on domain knowledge for manually extracting malicious features. In this paper, we propose MalNet, a novel malware detection method that learns features automatically from the raw data. Concretely, we first generate a grayscale image from malware file, meanwhile extracting its opcode sequences with the decompilation tool IDA. Then MalNet uses CNN and LSTM networks to learn from grayscale image and opcode sequence, respectively, and takes a stacking ensemble for malware classification. We perform experiments on more than 40,000 samples including 20,650 benign files collected from online software providers and 21,736 malwares provided by Microsoft. The evaluation result shows that MalNet achieves 99.88% validation accuracy for malware detection. In addition, we also take malware family classification experiment on 9 malware families to compare MalNet with other related works, in which MalNet outperforms most of related works with 99.36% detection accuracy and achieves a considerable speed-up on detecting efficiency comparing with two state-of-the-art results on Microsoft malware dataset.

  2. High-speed railway real-time localization auxiliary method based on deep neural network

    Science.gov (United States)

    Chen, Dongjie; Zhang, Wensheng; Yang, Yang

    2017-11-01

    High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.

  3. Cut Based Method for Comparing Complex Networks.

    Science.gov (United States)

    Liu, Qun; Dong, Zhishan; Wang, En

    2018-03-23

    Revealing the underlying similarity of various complex networks has become both a popular and interdisciplinary topic, with a plethora of relevant application domains. The essence of the similarity here is that network features of the same network type are highly similar, while the features of different kinds of networks present low similarity. In this paper, we introduce and explore a new method for comparing various complex networks based on the cut distance. We show correspondence between the cut distance and the similarity of two networks. This correspondence allows us to consider a broad range of complex networks and explicitly compare various networks with high accuracy. Various machine learning technologies such as genetic algorithms, nearest neighbor classification, and model selection are employed during the comparison process. Our cut method is shown to be suited for comparisons of undirected networks and directed networks, as well as weighted networks. In the model selection process, the results demonstrate that our approach outperforms other state-of-the-art methods with respect to accuracy.

  4. A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network.

    Science.gov (United States)

    Guo, Sheng; Yang, Tao; Gao, Wei; Zhang, Chen

    2018-05-04

    Fault diagnosis is critical to ensure the safety and reliable operation of rotating machinery. Most methods used in fault diagnosis of rotating machinery extract a few feature values from vibration signals for fault diagnosis, which is a dimensionality reduction from the original signal and may omit some important fault messages in the original signal. Thus, a novel diagnosis method is proposed involving the use of a convolutional neural network (CNN) to directly classify the continuous wavelet transform scalogram (CWTS), which is a time-frequency domain transform of the original signal and can contain most of the information of the vibration signals. In this method, CWTS is formed by discomposing vibration signals of rotating machinery in different scales using wavelet transform. Then the CNN is trained to diagnose faults, with CWTS as the input. A series of experiments is conducted on the rotor experiment platform using this method. The results indicate that the proposed method can diagnose the faults accurately. To verify the universality of this method, the trained CNN was also used to perform fault diagnosis for another piece of rotor equipment, and a good result was achieved.

  5. A deep convolutional neural network model to classify heartbeats.

    Science.gov (United States)

    Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adam, Muhammad; Gertych, Arkadiusz; Tan, Ru San

    2017-10-01

    The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart. Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a general term that refers to an abnormal heart rhythm. The basis of arrhythmia diagnosis is the identification of normal versus abnormal individual heart beats, and their correct classification into different diagnoses, based on ECG morphology. Heartbeats can be sub-divided into five categories namely non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is challenging and time-consuming to distinguish these heartbeats on ECG as these signals are typically corrupted by noise. We developed a 9-layer deep convolutional neural network (CNN) to automatically identify 5 different categories of heartbeats in ECG signals. Our experiment was conducted in original and noise attenuated sets of ECG signals derived from a publicly available database. This set was artificially augmented to even out the number of instances the 5 classes of heartbeats and filtered to remove high-frequency noise. The CNN was trained using the augmented data and achieved an accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in original and noise free ECGs, respectively. When the CNN was trained with highly imbalanced data (original dataset), the accuracy of the CNN reduced to 89.07%% and 89.3% in noisy and noise-free ECGs. When properly trained, the proposed CNN model can serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmic heartbeats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Multi-focus image fusion with the all convolutional neural network

    Science.gov (United States)

    Du, Chao-ben; Gao, She-sheng

    2018-01-01

    A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image fusion effect, getting a decision map is very necessary and usually difficult to finish. In this letter, we address this problem with convolutional neural network (CNN), aiming to get a state-of-the-art decision map. The main idea is that the max-pooling of CNN is replaced by a convolution layer, the residuals are propagated backwards by gradient descent, and the training parameters of the individual layers of the CNN are updated layer by layer. Based on this, we propose a new all CNN (ACNN)-based multi-focus image fusion method in spatial domain. We demonstrate that the decision map obtained from the ACNN is reliable and can lead to high-quality fusion results. Experimental results clearly validate that the proposed algorithm can obtain state-of-the-art fusion performance in terms of both qualitative and quantitative evaluations.

  7. Network-based Approaches in Pharmacology.

    Science.gov (United States)

    Boezio, Baptiste; Audouze, Karine; Ducrot, Pierre; Taboureau, Olivier

    2017-10-01

    In drug discovery, network-based approaches are expected to spotlight our understanding of drug action across multiple layers of information. On one hand, network pharmacology considers the drug response in the context of a cellular or phenotypic network. On the other hand, a chemical-based network is a promising alternative for characterizing the chemical space. Both can provide complementary support for the development of rational drug design and better knowledge of the mechanisms underlying the multiple actions of drugs. Recent progress in both concepts is discussed here. In addition, a network-based approach using drug-target-therapy data is introduced as an example. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cognitive Radio-based Home Area Networks

    NARCIS (Netherlands)

    Sarijari, M.A.B.

    2016-01-01

    A future home area network (HAN) is envisaged to consist of a large number of devices that support various applications such as smart grid, security and safety systems, voice call, and video streaming. Most of these home devices are communicating based on various wireless networking technologies

  9. VLSI Based Multiprocessor Communications Networks.

    Science.gov (United States)

    1982-09-01

    Networks". The contract began on September 1,1980 and was approved on scientific /technical grounds for a duration of three years. Incremental funding was...values for the individual delays will vary from comunicating modules (ij) are shown in Figure 4 module to module due to processing and fabrication

  10. Synthesis of technetium-99m labeled clinafloxacin (99mTc-CNN) complex and biological evaluation as a potential Staphylococcus aureus infection imaging agent

    International Nuclear Information System (INIS)

    Syed Qaiser Shah; Muhammad Rafiullah Khan

    2011-01-01

    In the present study synthesis of the 99m Tc-CNN complex and its efficacy as a prospective Staphylococcus aureus (S. aureus) infection imaging agent was assessed. The 99m Tc-CNN complex was characterized in terms of stability in saline, serum, in vitro binding with S. aureus and in vivo percent absorption in male Wister rats (MWR) infected with live and heat killed S. aureus. Radiochemically the 99m Tc-CNN complex showed stable behavior in saline and serum at different intervals. At 30 min after reconstitution the complex showed maximum radiochemical purity (RCP) yield of 97.55 ± 0.22%. The RCP yield decreased to 90.50 ± 0.18% within 240 min. In serum, 18.15% unwanted side product was appeared within 16 h of the incubation. In vitro saturated binding with S. aureus was observed at different intervals with a 62.00% maximum at 90 min. Normal percent in vivo uptake was observed in MWR artificially infected with live S. aureus with a five times higher in the infected muscle as compared to the inflamed and normal muscles. No difference in the percent uptake of the complex in MWR infected with heat killed S. aureus in the infected, inflamed and normal muscles were observed. Based on the promising in vitro and in vivo radiochemical and biological characteristics, we recommend the 99m Tc-CNN complex for in vivo localization of the S. aureus infectious foci. (author)

  11. Distribution network topology identification based on synchrophasor

    Directory of Open Access Journals (Sweden)

    Stefania Conti

    2018-03-01

    Full Text Available A distribution system upgrade moving towards Smart Grid implementation is necessary to face the proliferation of distributed generators and electric vehicles, in order to satisfy the increasing demand for high quality, efficient, secure, reliable energy supply. This perspective requires taking into account system vulnerability to cyber attacks. An effective attack could destroy stored information about network structure, historical data and so on. Countermeasures and network applications could be made impracticable since most of them are based on the knowledge of network topology. Usually, the location of each link between nodes in a network is known. Therefore, the methods used for topology identification determine if a link is open or closed. When no information on the location of the network links is available, these methods become totally unfeasible. This paper presents a method to identify the network topology using only nodal measures obtained by means of phasor measurement units.

  12. Modeling the interdependent network based on two-mode networks

    Science.gov (United States)

    An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian

    2017-10-01

    Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.

  13. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  14. Dynamics-based centrality for directed networks.

    Science.gov (United States)

    Masuda, Naoki; Kori, Hiroshi

    2010-11-01

    Determining the relative importance of nodes in directed networks is important in, for example, ranking websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied to strongly connected networks, to the case of general directed networks such that we can quantitatively compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality defined as the stationary density of the continuous-time random walk with random jumps is shown to be equivalent to the absorption probability of the random walk with sinks at each node but without random jumps. Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network supplied with sinks but not with random jumps.

  15. An effective convolutional neural network model for Chinese sentiment analysis

    Science.gov (United States)

    Zhang, Yu; Chen, Mengdong; Liu, Lianzhong; Wang, Yadong

    2017-06-01

    Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo's sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.

  16. Generative Adversarial Networks for Noise Reduction in Low-Dose CT.

    Science.gov (United States)

    Wolterink, Jelmer M; Leiner, Tim; Viergever, Max A; Isgum, Ivana

    2017-12-01

    Noise is inherent to low-dose CT acquisition. We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise. A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization. An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images. The performance of this discriminator was used as an adversarial loss for the generator. Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images. The phantom and patients were scanned at 20% and 100% routine clinical dose. Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss. The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images. However, CNNs trained with adversarial loss captured image statistics of routine-dose images better. Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels. Testing took less than 10 s per CT volume. CNN-based low-dose CT noise reduction in the image domain is feasible. Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images.

  17. Deep convolutional neural networks as strong gravitational lens detectors

    Science.gov (United States)

    Schaefer, C.; Geiger, M.; Kuntzer, T.; Kneib, J.-P.

    2018-03-01

    Context. Future large-scale surveys with high-resolution imaging will provide us with approximately 105 new strong galaxy-scale lenses. These strong-lensing systems will be contained in large data amounts, however, which are beyond the capacity of human experts to visually classify in an unbiased way. Aim. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to the strong-lensing challenge organized by the Bologna Lens Factory. It achieved first and third place, respectively, on the space-based data set and the ground-based data set. The goal was to find a fully automated lens finder for ground-based and space-based surveys that minimizes human inspection. Methods: We compared the results of our CNN architecture and three new variations ("invariant" "views" and "residual") on the simulated data of the challenge. Each method was trained separately five times on 17 000 simulated images, cross-validated using 3000 images, and then applied to a test set with 100 000 images. We used two different metrics for evaluation, the area under the receiver operating characteristic curve (AUC) score, and the recall with no false positive (Recall0FP). Results: For ground-based data, our best method achieved an AUC score of 0.977 and a Recall0FP of 0.50. For space-based data, our best method achieved an AUC score of 0.940 and a Recall0FP of 0.32. Adding dihedral invariance to the CNN architecture diminished the overall score on space-based data, but achieved a higher no-contamination recall. We found that using committees of five CNNs produced the best recall at zero contamination and consistently scored better AUC than a single CNN. Conclusions: We found that for every variation of our CNN lensfinder, we achieved AUC scores close to 1 within 6%. A deeper network did not outperform simpler CNN models either. This indicates that more complex networks are not needed to model the simulated lenses. To verify this, more

  18. Cloud-based Networked Visual Servo Control

    OpenAIRE

    Wu, Haiyan; Lu, Lei; Chen, Chih-Chung; Hirche, Sandra; Kühnlenz, Kolja

    2013-01-01

    The performance of vision-based control systems, in particular of highly dynamic vision-based motion control systems, is often limited by the low sampling rate of the visual feedback caused by the long image processing time. In order to overcome this problem, the networked visual servo control, which integrates networked computational resources for cloud image processing, is considered in this article. The main contributions of this article are i) a real-time transport protocol for transmitti...

  19. Network-based Database Course

    DEFF Research Database (Denmark)

    Nielsen, J.N.; Knudsen, Morten; Nielsen, Jens Frederik Dalsgaard

    A course in database design and implementation has been de- signed, utilizing existing network facilities. The course is an elementary course for students of computer engineering. Its purpose is to give the students a theoretical database knowledge as well as practical experience with design...... and implementation. A tutorial relational database and the students self-designed databases are implemented on the UNIX system of Aalborg University, thus giving the teacher the possibility of live demonstrations in the lecture room, and the students the possibility of interactive learning in their working rooms...

  20. NASDA knowledge-based network planning system

    Science.gov (United States)

    Yamaya, K.; Fujiwara, M.; Kosugi, S.; Yambe, M.; Ohmori, M.

    1993-01-01

    One of the SODS (space operation and data system) sub-systems, NP (network planning) was the first expert system used by NASDA (national space development agency of Japan) for tracking and control of satellite. The major responsibilities of the NP system are: first, the allocation of network and satellite control resources and, second, the generation of the network operation plan data (NOP) used in automated control of the stations and control center facilities. Up to now, the first task of network resource scheduling was done by network operators. NP system automatically generates schedules using its knowledge base, which contains information on satellite orbits, station availability, which computer is dedicated to which satellite, and how many stations must be available for a particular satellite pass or a certain time period. The NP system is introduced.

  1. Knowledge-guided golf course detection using a convolutional neural network fine-tuned on temporally augmented data

    Science.gov (United States)

    Chen, Jingbo; Wang, Chengyi; Yue, Anzhi; Chen, Jiansheng; He, Dongxu; Zhang, Xiuyan

    2017-10-01

    The tremendous success of deep learning models such as convolutional neural networks (CNNs) in computer vision provides a method for similar problems in the field of remote sensing. Although research on repurposing pretrained CNN to remote sensing tasks is emerging, the scarcity of labeled samples and the complexity of remote sensing imagery still pose challenges. We developed a knowledge-guided golf course detection approach using a CNN fine-tuned on temporally augmented data. The proposed approach is a combination of knowledge-driven region proposal, data-driven detection based on CNN, and knowledge-driven postprocessing. To confront data complexity, knowledge-derived cooccurrence, composition, and area-based rules are applied sequentially to propose candidate golf regions. To confront sample scarcity, we employed data augmentation in the temporal domain, which extracts samples from multitemporal images. The augmented samples were then used to fine-tune a pretrained CNN for golf detection. Finally, commission error was further suppressed by postprocessing. Experiments conducted on GF-1 imagery prove the effectiveness of the proposed approach.

  2. Toward Measuring Network Aesthetics Based on Symmetry

    Directory of Open Access Journals (Sweden)

    Zengqiang Chen

    2017-05-01

    Full Text Available In this exploratory paper, we discuss quantitative graph-theoretical measures of network aesthetics. Related work in this area has typically focused on geometrical features (e.g., line crossings or edge bendiness of drawings or visual representations of graphs which purportedly affect an observer’s perception. Here we take a very different approach, abandoning reliance on geometrical properties, and apply information-theoretic measures to abstract graphs and networks directly (rather than to their visual representaions as a means of capturing classical appreciation of structural symmetry. Examples are used solely to motivate the approach to measurement, and to elucidate our symmetry-based mathematical theory of network aesthetics.

  3. Cryptography based on neural networks - analytical results

    International Nuclear Information System (INIS)

    Rosen-Zvi, Michal; Kanter, Ido; Kinzel, Wolfgang

    2002-01-01

    The mutual learning process between two parity feed-forward networks with discrete and continuous weights is studied analytically, and we find that the number of steps required to achieve full synchronization between the two networks in the case of discrete weights is finite. The synchronization process is shown to be non-self-averaging and the analytical solution is based on random auxiliary variables. The learning time of an attacker that is trying to imitate one of the networks is examined analytically and is found to be much longer than the synchronization time. Analytical results are found to be in agreement with simulations. (letter to the editor)

  4. Apriori-based network intrusion detection system

    International Nuclear Information System (INIS)

    Wang Wenjin; Liu Junrong; Liu Baoxu

    2012-01-01

    With the development of network communication technology, more and more social activities run by Internet. In the meantime, the network information security is getting increasingly serious. Intrusion Detection System (IDS) has greatly improved the general security level of whole network. But there are still many problem exists in current IDS, e.g. high leak rate detection/false alarm rates and feature library need frequently upgrade. This paper presents an association-rule based IDS. This system can detect unknown attack by generate rules from training data. Experiment in last chapter proved the system has great accuracy on unknown attack detection. (authors)

  5. Leo satellite-based telecommunication network concepts

    Science.gov (United States)

    Aiken, John G.; Swan, Peter A.; Leopold, Ray J.

    1991-01-01

    Design considerations are discussed for Low Earth Orbit (LEO) satellite based telecommunications networks. The satellites are assumed to be connected to each other via intersatellite links. They are connected to the end user either directly or through gateways to other networks. Frequency reuse, circuit switching, packet switching, call handoff, and routing for these systems are discussed by analogy with terrestrial cellular (mobile radio) telecommunication systems.

  6. The Drosophila Pericentrin-like-protein (PLP cooperates with Cnn to maintain the integrity of the outer PCM

    Directory of Open Access Journals (Sweden)

    Jennifer H. Richens

    2015-08-01

    Full Text Available Centrosomes comprise a pair of centrioles surrounded by a matrix of pericentriolar material (PCM. In vertebrate cells, Pericentrin plays an important part in mitotic PCM assembly, but the Drosophila Pericentrin-like protein (PLP appears to have a more minor role in mitotic fly cells. Here we investigate the function of PLP during the rapid mitotic cycles of the early Drosophila embryo. Unexpectedly, we find that PLP is specifically enriched in the outer-most regions of the PCM, where it largely co-localizes with the PCM scaffold protein Cnn. In the absence of PLP the outer PCM appears to be structurally weakened, and it rapidly disperses along the centrosomal microtubules (MTs. As a result, centrosomal MTs are subtly disorganized in embryos lacking PLP, although mitosis is largely unperturbed and these embryos develop and hatch at near-normal rates. Y2H analysis reveals that PLP can potentially form multiple interactions with itself and with the PCM recruiting proteins Asl, Spd-2 and Cnn. A deletion analysis suggests that PLP participates in a complex network of interactions that ultimately help to strengthen the PCM.

  7. Elements of Network-Based Assessment

    Science.gov (United States)

    Gibson, David

    2007-01-01

    Elements of network-based assessment systems are envisioned based on recent advances in knowledge and practice in learning theory, assessment design and delivery, and semantic web interoperability. The architecture takes advantage of the meditating role of technology as well as recent models of assessment systems. This overview of the elements…

  8. Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer

    Science.gov (United States)

    Bychkov, Dmitrii; Turkki, Riku; Haglund, Caj; Linder, Nina; Lundin, Johan

    2016-03-01

    Recent advances in computer vision enable increasingly accurate automated pattern classification. In the current study we evaluate whether a convolutional neural network (CNN) can be trained to predict disease outcome in patients with colorectal cancer based on images of tumor tissue microarray samples. We compare the prognostic accuracy of CNN features extracted from the whole, unsegmented tissue microarray spot image, with that of CNN features extracted from the epithelial and non-epithelial compartments, respectively. The prognostic accuracy of visually assessed histologic grade is used as a reference. The image data set consists of digitized hematoxylin-eosin (H and E) stained tissue microarray samples obtained from 180 patients with colorectal cancer. The patient samples represent a variety of histological grades, have data available on a series of clinicopathological variables including long-term outcome and ground truth annotations performed by experts. The CNN features extracted from images of the epithelial tissue compartment significantly predicted outcome (hazard ratio (HR) 2.08; CI95% 1.04-4.16; area under the curve (AUC) 0.66) in a test set of 60 patients, as compared to the CNN features extracted from unsegmented images (HR 1.67; CI95% 0.84-3.31, AUC 0.57) and visually assessed histologic grade (HR 1.96; CI95% 0.99-3.88, AUC 0.61). As a conclusion, a deep-learning classifier can be trained to predict outcome of colorectal cancer based on images of H and E stained tissue microarray samples and the CNN features extracted from the epithelial compartment only resulted in a prognostic discrimination comparable to that of visually determined histologic grade.

  9. Multi-Input Convolutional Neural Network for Flower Grading

    Directory of Open Access Journals (Sweden)

    Yu Sun

    2017-01-01

    Full Text Available Flower grading is a significant task because it is extremely convenient for managing the flowers in greenhouse and market. With the development of computer vision, flower grading has become an interdisciplinary focus in both botany and computer vision. A new dataset named BjfuGloxinia contains three quality grades; each grade consists of 107 samples and 321 images. A multi-input convolutional neural network is designed for large scale flower grading. Multi-input CNN achieves a satisfactory accuracy of 89.6% on the BjfuGloxinia after data augmentation. Compared with a single-input CNN, the accuracy of multi-input CNN is increased by 5% on average, demonstrating that multi-input convolutional neural network is a promising model for flower grading. Although data augmentation contributes to the model, the accuracy is still limited by lack of samples diversity. Majority of misclassification is derived from the medium class. The image processing based bud detection is useful for reducing the misclassification, increasing the accuracy of flower grading to approximately 93.9%.

  10. Designing Network-based Business Model Ontology

    DEFF Research Database (Denmark)

    Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz

    2015-01-01

    Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....

  11. Some Congruence Properties of a Restricted Bipartition Function cN(n

    Directory of Open Access Journals (Sweden)

    Nipen Saikia

    2016-01-01

    Full Text Available Let cN(n denote the number of bipartitions (λ,μ of a positive integer n subject to the restriction that each part of μ is divisible by N. In this paper, we prove some congruence properties of the function cN(n for N=7, 11, and 5l, for any integer l≥1, by employing Ramanujan’s theta-function identities.

  12. Adaptive function projective synchronization of two-cell Quantum-CNN chaotic oscillators with uncertain parameters

    International Nuclear Information System (INIS)

    Sudheer, K. Sebastian; Sabir, M.

    2009-01-01

    This work investigates function projective synchronization of two-cell Quantum-CNN chaotic oscillators using adaptive method. Quantum-CNN oscillators produce nano scale chaotic oscillations under certain conditions. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.

  13. Relative location prediction in CT scan images using convolutional neural networks.

    Science.gov (United States)

    Guo, Jiajia; Du, Hongwei; Zhu, Jianyue; Yan, Ting; Qiu, Bensheng

    2018-07-01

    Relative location prediction in computed tomography (CT) scan images is a challenging problem. Many traditional machine learning methods have been applied in attempts to alleviate this problem. However, the accuracy and speed of these methods cannot meet the requirement of medical scenario. In this paper, we propose a regression model based on one-dimensional convolutional neural networks (CNN) to determine the relative location of a CT scan image both quickly and precisely. In contrast to other common CNN models that use a two-dimensional image as an input, the input of this CNN model is a feature vector extracted by a shape context algorithm with spatial correlation. Normalization via z-score is first applied as a pre-processing step. Then, in order to prevent overfitting and improve model's performance, 20% of the elements of the feature vectors are randomly set to zero. This CNN model consists primarily of three one-dimensional convolutional layers, three dropout layers and two fully-connected layers with appropriate loss functions. A public dataset is employed to validate the performance of the proposed model using a 5-fold cross validation. Experimental results demonstrate an excellent performance of the proposed model when compared with contemporary techniques, achieving a median absolute error of 1.04 cm and mean absolute error of 1.69 cm. The time taken for each relative location prediction is approximately 2 ms. Results indicate that the proposed CNN method can contribute to a quick and accurate relative location prediction in CT scan images, which can improve efficiency of the medical picture archiving and communication system in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Cellular neural networks for motion estimation and obstacle detection

    Directory of Open Access Journals (Sweden)

    D. Feiden

    2003-01-01

    Full Text Available Obstacle detection is an important part of Video Processing because it is indispensable for a collision prevention of autonomously navigating moving objects. For example, vehicles driving without human guidance need a robust prediction of potential obstacles, like other vehicles or pedestrians. Most of the common approaches of obstacle detection so far use analytical and statistical methods like motion estimation or generation of maps. In the first part of this contribution a statistical algorithm for obstacle detection in monocular video sequences is presented. The proposed procedure is based on a motion estimation and a planar world model which is appropriate to traffic scenes. The different processing steps of the statistical procedure are a feature extraction, a subsequent displacement vector estimation and a robust estimation of the motion parameters. Since the proposed procedure is composed of several processing steps, the error propagation of the successive steps often leads to inaccurate results. In the second part of this contribution it is demonstrated, that the above mentioned problems can be efficiently overcome by using Cellular Neural Networks (CNN. It will be shown, that a direct obstacle detection algorithm can be easily performed, based only on CNN processing of the input images. Beside the enormous computing power of programmable CNN based devices, the proposed method is also very robust in comparison to the statistical method, because is shows much less sensibility to noisy inputs. Using the proposed approach of obstacle detection in planar worlds, a real time processing of large input images has been made possible.

  15. Cascaded ensemble of convolutional neural networks and handcrafted features for mitosis detection

    Science.gov (United States)

    Wang, Haibo; Cruz-Roa, Angel; Basavanhally, Ajay; Gilmore, Hannah; Shih, Natalie; Feldman, Mike; Tomaszewski, John; Gonzalez, Fabio; Madabhushi, Anant

    2014-03-01

    Breast cancer (BCa) grading plays an important role in predicting disease aggressiveness and patient outcome. A key component of BCa grade is mitotic count, which involves quantifying the number of cells in the process of dividing (i.e. undergoing mitosis) at a specific point in time. Currently mitosis counting is done manually by a pathologist looking at multiple high power fields on a glass slide under a microscope, an extremely laborious and time consuming process. The development of computerized systems for automated detection of mitotic nuclei, while highly desirable, is confounded by the highly variable shape and appearance of mitoses. Existing methods use either handcrafted features that capture certain morphological, statistical or textural attributes of mitoses or features learned with convolutional neural networks (CNN). While handcrafted features are inspired by the domain and the particular application, the data-driven CNN models tend to be domain agnostic and attempt to learn additional feature bases that cannot be represented through any of the handcrafted features. On the other hand, CNN is computationally more complex and needs a large number of labeled training instances. Since handcrafted features attempt to model domain pertinent attributes and CNN approaches are largely unsupervised feature generation methods, there is an appeal to attempting to combine these two distinct classes of feature generation strategies to create an integrated set of attributes that can potentially outperform either class of feature extraction strategies individually. In this paper, we present a cascaded approach for mitosis detection that intelligently combines a CNN model and handcrafted features (morphology, color and texture features). By employing a light CNN model, the proposed approach is far less demanding computationally, and the cascaded strategy of combining handcrafted features and CNN-derived features enables the possibility of maximizing performance by

  16. Automated Detection of Fronts using a Deep Learning Convolutional Neural Network

    Science.gov (United States)

    Biard, J. C.; Kunkel, K.; Racah, E.

    2017-12-01

    A deeper understanding of climate model simulations and the future effects of global warming on extreme weather can be attained through direct analyses of the phenomena that produce weather. Such analyses require these phenomena to be identified in automatic, unbiased, and comprehensive ways. Atmospheric fronts are centrally important weather phenomena because of the variety of significant weather events, such as thunderstorms, directly associated with them. In current operational meteorology, fronts are identified and drawn visually based on the approximate spatial coincidence of a number of quasi-linear localized features - a trough (relative minimum) in air pressure in combination with gradients in air temperature and/or humidity and a shift in wind, and are categorized as cold, warm, stationary, or occluded, with each type exhibiting somewhat different characteristics. Fronts are extended in space with one dimension much larger than the other (often represented by complex curved lines), which poses a significant challenge for automated approaches. We addressed this challenge by using a Deep Learning Convolutional Neural Network (CNN) to automatically identify and classify fronts. The CNN was trained using a "truth" dataset of front locations identified by National Weather Service meteorologists as part of operational 3-hourly surface analyses. The input to the CNN is a set of 5 gridded fields of surface atmospheric variables, including 2m temperature, 2m specific humidity, surface pressure, and the two components of the 10m horizontal wind velocity vector at 3-hr resolution. The output is a set of feature maps containing the per - grid cell probabilities for the presence of the 4 front types. The CNN was trained on a subset of the data and then used to produce front probabilities for each 3-hr time snapshot over a 14-year period covering the continental United States and some adjacent areas. The total frequencies of fronts derived from the CNN outputs matches

  17. Nonbinary Tree-Based Phylogenetic Networks

    NARCIS (Netherlands)

    Jetten, L.; van Iersel, L.J.J.

    2018-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can for example

  18. Location-based Forwarding in Vehicular Networks

    NARCIS (Netherlands)

    Klein Wolterink, W.

    2013-01-01

    In this thesis we focus on location-based message forwarding in vehicular networks to support intelligent transportation systems (ITSs). ITSs are transport systems that utilise information and communication technologies to increase their level of automation, in this way levering the performance of

  19. Transforming Musical Signals through a Genre Classifying Convolutional Neural Network

    Science.gov (United States)

    Geng, S.; Ren, G.; Ogihara, M.

    2017-05-01

    Convolutional neural networks (CNNs) have been successfully applied on both discriminative and generative modeling for music-related tasks. For a particular task, the trained CNN contains information representing the decision making or the abstracting process. One can hope to manipulate existing music based on this 'informed' network and create music with new features corresponding to the knowledge obtained by the network. In this paper, we propose a method to utilize the stored information from a CNN trained on musical genre classification task. The network was composed of three convolutional layers, and was trained to classify five-second song clips into five different genres. After training, randomly selected clips were modified by maximizing the sum of outputs from the network layers. In addition to the potential of such CNNs to produce interesting audio transformation, more information about the network and the original music could be obtained from the analysis of the generated features since these features indicate how the network 'understands' the music.

  20. Similarity estimation for reference image retrieval in mammograms using convolutional neural network

    Science.gov (United States)

    Muramatsu, Chisako; Higuchi, Shunichi; Morita, Takako; Oiwa, Mikinao; Fujita, Hiroshi

    2018-02-01

    Periodic breast cancer screening with mammography is considered effective in decreasing breast cancer mortality. For screening programs to be successful, an intelligent image analytic system may support radiologists' efficient image interpretation. In our previous studies, we have investigated image retrieval schemes for diagnostic references of breast lesions on mammograms and ultrasound images. Using a machine learning method, reliable similarity measures that agree with radiologists' similarity were determined and relevant images could be retrieved. However, our previous method includes a feature extraction step, in which hand crafted features were determined based on manual outlines of the masses. Obtaining the manual outlines of masses is not practical in clinical practice and such data would be operator-dependent. In this study, we investigated a similarity estimation scheme using a convolutional neural network (CNN) to skip such procedure and to determine data-driven similarity scores. By using CNN as feature extractor, in which extracted features were employed in determination of similarity measures with a conventional 3-layered neural network, the determined similarity measures were correlated well with the subjective ratings and the precision of retrieving diagnostically relevant images was comparable with that of the conventional method using handcrafted features. By using CNN for determination of similarity measure directly, the result was also comparable. By optimizing the network parameters, results may be further improved. The proposed method has a potential usefulness in determination of similarity measure without precise lesion outlines for retrieval of similar mass images on mammograms.

  1. Neural Network Based Load Frequency Control for Restructuring ...

    African Journals Online (AJOL)

    Neural Network Based Load Frequency Control for Restructuring Power Industry. ... an artificial neural network (ANN) application of load frequency control (LFC) of a Multi-Area power system by using a neural network controller is presented.

  2. Inferring Trust Relationships in Web-Based Social Networks

    National Research Council Canada - National Science Library

    Golbeck, Jennifer; Hendler, James

    2006-01-01

    The growth of web-based social networking and the properties of those networks have created great potential for producing intelligent software that integrates a user's social network and preferences...

  3. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier

    Science.gov (United States)

    Rasti, Reza; Mehridehnavi, Alireza; Rabbani, Hossein; Hajizadeh, Fedra

    2018-03-01

    The present research intends to propose a fully automatic algorithm for the classification of three-dimensional (3-D) optical coherence tomography (OCT) scans of patients suffering from abnormal macula from normal candidates. The method proposed does not require any denoising, segmentation, retinal alignment processes to assess the intraretinal layers, as well as abnormalities or lesion structures. To classify abnormal cases from the control group, a two-stage scheme was utilized, which consists of automatic subsystems for adaptive feature learning and diagnostic scoring. In the first stage, a wavelet-based convolutional neural network (CNN) model was introduced and exploited to generate B-scan representative CNN codes in the spatial-frequency domain, and the cumulative features of 3-D volumes were extracted. In the second stage, the presence of abnormalities in 3-D OCTs was scored over the extracted features. Two different retinal SD-OCT datasets are used for evaluation of the algorithm based on the unbiased fivefold cross-validation (CV) approach. The first set constitutes 3-D OCT images of 30 normal subjects and 30 diabetic macular edema (DME) patients captured from the Topcon device. The second publicly available set consists of 45 subjects with a distribution of 15 patients in age-related macular degeneration, DME, and normal classes from the Heidelberg device. With the application of the algorithm on overall OCT volumes and 10 repetitions of the fivefold CV, the proposed scheme obtained an average precision of 99.33% on dataset1 as a two-class classification problem and 98.67% on dataset2 as a three-class classification task.

  4. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier.

    Science.gov (United States)

    Rasti, Reza; Mehridehnavi, Alireza; Rabbani, Hossein; Hajizadeh, Fedra

    2018-03-01

    The present research intends to propose a fully automatic algorithm for the classification of three-dimensional (3-D) optical coherence tomography (OCT) scans of patients suffering from abnormal macula from normal candidates. The method proposed does not require any denoising, segmentation, retinal alignment processes to assess the intraretinal layers, as well as abnormalities or lesion structures. To classify abnormal cases from the control group, a two-stage scheme was utilized, which consists of automatic subsystems for adaptive feature learning and diagnostic scoring. In the first stage, a wavelet-based convolutional neural network (CNN) model was introduced and exploited to generate B-scan representative CNN codes in the spatial-frequency domain, and the cumulative features of 3-D volumes were extracted. In the second stage, the presence of abnormalities in 3-D OCTs was scored over the extracted features. Two different retinal SD-OCT datasets are used for evaluation of the algorithm based on the unbiased fivefold cross-validation (CV) approach. The first set constitutes 3-D OCT images of 30 normal subjects and 30 diabetic macular edema (DME) patients captured from the Topcon device. The second publicly available set consists of 45 subjects with a distribution of 15 patients in age-related macular degeneration, DME, and normal classes from the Heidelberg device. With the application of the algorithm on overall OCT volumes and 10 repetitions of the fivefold CV, the proposed scheme obtained an average precision of 99.33% on dataset1 as a two-class classification problem and 98.67% on dataset2 as a three-class classification task. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. Deep Learning for Detection of Object-Based Forgery in Advanced Video

    Directory of Open Access Journals (Sweden)

    Ye Yao

    2017-12-01

    Full Text Available Passive video forensics has drawn much attention in recent years. However, research on detection of object-based forgery, especially for forged video encoded with advanced codec frameworks, is still a great challenge. In this paper, we propose a deep learning-based approach to detect object-based forgery in the advanced video. The presented deep learning approach utilizes a convolutional neural network (CNN to automatically extract high-dimension features from the input image patches. Different from the traditional CNN models used in computer vision domain, we let video frames go through three preprocessing layers before being fed into our CNN model. They include a frame absolute difference layer to cut down temporal redundancy between video frames, a max pooling layer to reduce computational complexity of image convolution, and a high-pass filter layer to enhance the residual signal left by video forgery. In addition, an asymmetric data augmentation strategy has been established to get a similar number of positive and negative image patches before the training. The experiments have demonstrated that the proposed CNN-based model with the preprocessing layers has achieved excellent results.

  6. Spectral-spatial classification of hyperspectral image using three-dimensional convolution network

    Science.gov (United States)

    Liu, Bing; Yu, Xuchu; Zhang, Pengqiang; Tan, Xiong; Wang, Ruirui; Zhi, Lu

    2018-01-01

    Recently, hyperspectral image (HSI) classification has become a focus of research. However, the complex structure of an HSI makes feature extraction difficult to achieve. Most current methods build classifiers based on complex handcrafted features computed from the raw inputs. The design of an improved 3-D convolutional neural network (3D-CNN) model for HSI classification is described. This model extracts features from both the spectral and spatial dimensions through the application of 3-D convolutions, thereby capturing the important discrimination information encoded in multiple adjacent bands. The designed model views the HSI cube data altogether without relying on any pre- or postprocessing. In addition, the model is trained in an end-to-end fashion without any handcrafted features. The designed model was applied to three widely used HSI datasets. The experimental results demonstrate that the 3D-CNN-based method outperforms conventional methods even with limited labeled training samples.

  7. Optimising TCP for cloud-based mobile networks

    DEFF Research Database (Denmark)

    Artuso, Matteo; Christiansen, Henrik Lehrmann

    2016-01-01

    Cloud-based mobile networks are foreseen to be a technological enabler for the next generation of mobile networks. Their design requires substantial research as they pose unique challenges, especially from the point of view of additional delays in the fronthaul network. Commonly used network...... implementations of 3 popular operating systems are investigated in our network model. The results on the most influential parameters are used to design an optimized TCP for cloud-based mobile networks....

  8. Pneumothorax detection in chest radiographs using convolutional neural networks

    Science.gov (United States)

    Blumenfeld, Aviel; Konen, Eli; Greenspan, Hayit

    2018-02-01

    This study presents a computer assisted diagnosis system for the detection of pneumothorax (PTX) in chest radiographs based on a convolutional neural network (CNN) for pixel classification. Using a pixel classification approach allows utilization of the texture information in the local environment of each pixel while training a CNN model on millions of training patches extracted from a relatively small dataset. The proposed system uses a pre-processing step of lung field segmentation to overcome the large variability in the input images coming from a variety of imaging sources and protocols. Using a CNN classification, suspected pixel candidates are extracted within each lung segment. A postprocessing step follows to remove non-physiological suspected regions and noisy connected components. The overall percentage of suspected PTX area was used as a robust global decision for the presence of PTX in each lung. The system was trained on a set of 117 chest x-ray images with ground truth segmentations of the PTX regions. The system was tested on a set of 86 images and reached diagnosis accuracy of AUC=0.95. Overall preliminary results are promising and indicate the growing ability of CAD based systems to detect findings in medical imaging on a clinical level accuracy.

  9. Convolutional neural networks for vibrational spectroscopic data analysis.

    Science.gov (United States)

    Acquarelli, Jacopo; van Laarhoven, Twan; Gerretzen, Jan; Tran, Thanh N; Buydens, Lutgarde M C; Marchiori, Elena

    2017-02-15

    In this work we show that convolutional neural networks (CNNs) can be efficiently used to classify vibrational spectroscopic data and identify important spectral regions. CNNs are the current state-of-the-art in image classification and speech recognition and can learn interpretable representations of the data. These characteristics make CNNs a good candidate for reducing the need for preprocessing and for highlighting important spectral regions, both of which are crucial steps in the analysis of vibrational spectroscopic data. Chemometric analysis of vibrational spectroscopic data often relies on preprocessing methods involving baseline correction, scatter correction and noise removal, which are applied to the spectra prior to model building. Preprocessing is a critical step because even in simple problems using 'reasonable' preprocessing methods may decrease the performance of the final model. We develop a new CNN based method and provide an accompanying publicly available software. It is based on a simple CNN architecture with a single convolutional layer (a so-called shallow CNN). Our method outperforms standard classification algorithms used in chemometrics (e.g. PLS) in terms of accuracy when applied to non-preprocessed test data (86% average accuracy compared to the 62% achieved by PLS), and it achieves better performance even on preprocessed test data (96% average accuracy compared to the 89% achieved by PLS). For interpretability purposes, our method includes a procedure for finding important spectral regions, thereby facilitating qualitative interpretation of results. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Pedestrian detection in video surveillance using fully convolutional YOLO neural network

    Science.gov (United States)

    Molchanov, V. V.; Vishnyakov, B. V.; Vizilter, Y. V.; Vishnyakova, O. V.; Knyaz, V. A.

    2017-06-01

    More than 80% of video surveillance systems are used for monitoring people. Old human detection algorithms, based on background and foreground modelling, could not even deal with a group of people, to say nothing of a crowd. Recent robust and highly effective pedestrian detection algorithms are a new milestone of video surveillance systems. Based on modern approaches in deep learning, these algorithms produce very discriminative features that can be used for getting robust inference in real visual scenes. They deal with such tasks as distinguishing different persons in a group, overcome problem with sufficient enclosures of human bodies by the foreground, detect various poses of people. In our work we use a new approach which enables to combine detection and classification tasks into one challenge using convolution neural networks. As a start point we choose YOLO CNN, whose authors propose a very efficient way of combining mentioned above tasks by learning a single neural network. This approach showed competitive results with state-of-the-art models such as FAST R-CNN, significantly overcoming them in speed, which allows us to apply it in real time video surveillance and other video monitoring systems. Despite all advantages it suffers from some known drawbacks, related to the fully-connected layers that obstruct applying the CNN to images with different resolution. Also it limits the ability to distinguish small close human figures in groups which is crucial for our tasks since we work with rather low quality images which often include dense small groups of people. In this work we gradually change network architecture to overcome mentioned above problems, train it on a complex pedestrian dataset and finally get the CNN detecting small pedestrians in real scenes.

  11. Dimensionality-varied convolutional neural network for spectral-spatial classification of hyperspectral data

    Science.gov (United States)

    Liu, Wanjun; Liang, Xuejian; Qu, Haicheng

    2017-11-01

    Hyperspectral image (HSI) classification is one of the most popular topics in remote sensing community. Traditional and deep learning-based classification methods were proposed constantly in recent years. In order to improve the classification accuracy and robustness, a dimensionality-varied convolutional neural network (DVCNN) was proposed in this paper. DVCNN was a novel deep architecture based on convolutional neural network (CNN). The input of DVCNN was a set of 3D patches selected from HSI which contained spectral-spatial joint information. In the following feature extraction process, each patch was transformed into some different 1D vectors by 3D convolution kernels, which were able to extract features from spectral-spatial data. The rest of DVCNN was about the same as general CNN and processed 2D matrix which was constituted by by all 1D data. So that the DVCNN could not only extract more accurate and rich features than CNN, but also fused spectral-spatial information to improve classification accuracy. Moreover, the robustness of network on water-absorption bands was enhanced in the process of spectral-spatial fusion by 3D convolution, and the calculation was simplified by dimensionality varied convolution. Experiments were performed on both Indian Pines and Pavia University scene datasets, and the results showed that the classification accuracy of DVCNN improved by 32.87% on Indian Pines and 19.63% on Pavia University scene than spectral-only CNN. The maximum accuracy improvement of DVCNN achievement was 13.72% compared with other state-of-the-art HSI classification methods, and the robustness of DVCNN on water-absorption bands noise was demonstrated.

  12. Statistical Hypothesis Testing using CNN Features for Synthesis of Adversarial Counterexamples to Human and Object Detection Vision Systems

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Sunny [Univ. of Central Florida, Orlando, FL (United States); Jha, Sumit Kumar [Univ. of Central Florida, Orlando, FL (United States); Pullum, Laura L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ramanathan, Arvind [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    Validating the correctness of human detection vision systems is crucial for safety applications such as pedestrian collision avoidance in autonomous vehicles. The enormous space of possible inputs to such an intelligent system makes it difficult to design test cases for such systems. In this report, we present our tool MAYA that uses an error model derived from a convolutional neural network (CNN) to explore the space of images similar to a given input image, and then tests the correctness of a given human or object detection system on such perturbed images. We demonstrate the capability of our tool on the pre-trained Histogram-of-Oriented-Gradients (HOG) human detection algorithm implemented in the popular OpenCV toolset and the Caffe object detection system pre-trained on the ImageNet benchmark. Our tool may serve as a testing resource for the designers of intelligent human and object detection systems.

  13. Network Based High Speed Product Innovation

    DEFF Research Database (Denmark)

    Lindgren, Peter

    In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...

  14. Quantum networks based on cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Stephan; Bochmann, Joerg; Figueroa, Eden; Hahn, Carolin; Kalb, Norbert; Muecke, Martin; Neuzner, Andreas; Noelleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Rempe, Gerhard [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)

    2014-07-01

    Quantum repeaters require an efficient interface between stationary quantum memories and flying photons. Single atoms in optical cavities are ideally suited as universal quantum network nodes that are capable of sending, storing, retrieving, and even processing quantum information. We demonstrate this by presenting an elementary version of a quantum network based on two identical nodes in remote, independent laboratories. The reversible exchange of quantum information and the creation of remote entanglement are achieved by exchange of a single photon. Quantum teleportation is implemented using a time-resolved photonic Bell-state measurement. Quantum control over all degrees of freedom of the single atom also allows for the nondestructive detection of flying photons and the implementation of a quantum gate between the spin state of the atom and the polarization of a photon upon its reflection from the cavity. Our approach to quantum networking offers a clear perspective for scalability and provides the essential components for the realization of a quantum repeater.

  15. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  16. Tree-Based Unrooted Phylogenetic Networks.

    Science.gov (United States)

    Francis, A; Huber, K T; Moulton, V

    2018-02-01

    Phylogenetic networks are a generalization of phylogenetic trees that are used to represent non-tree-like evolutionary histories that arise in organisms such as plants and bacteria, or uncertainty in evolutionary histories. An unrooted phylogenetic network on a non-empty, finite set X of taxa, or network, is a connected, simple graph in which every vertex has degree 1 or 3 and whose leaf set is X. It is called a phylogenetic tree if the underlying graph is a tree. In this paper we consider properties of tree-based networks, that is, networks that can be constructed by adding edges into a phylogenetic tree. We show that although they have some properties in common with their rooted analogues which have recently drawn much attention in the literature, they have some striking differences in terms of both their structural and computational properties. We expect that our results could eventually have applications to, for example, detecting horizontal gene transfer or hybridization which are important factors in the evolution of many organisms.

  17. Dynamic social networks based on movement

    Science.gov (United States)

    Scharf, Henry; Hooten, Mevin B.; Fosdick, Bailey K.; Johnson, Devin S.; London, Joshua M.; Durban, John W.

    2016-01-01

    Network modeling techniques provide a means for quantifying social structure in populations of individuals. Data used to define social connectivity are often expensive to collect and based on case-specific, ad hoc criteria. Moreover, in applications involving animal social networks, collection of these data is often opportunistic and can be invasive. Frequently, the social network of interest for a given population is closely related to the way individuals move. Thus, telemetry data, which are minimally invasive and relatively inexpensive to collect, present an alternative source of information. We develop a framework for using telemetry data to infer social relationships among animals. To achieve this, we propose a Bayesian hierarchical model with an underlying dynamic social network controlling movement of individuals via two mechanisms: an attractive effect and an aligning effect. We demonstrate the model and its ability to accurately identify complex social behavior in simulation, and apply our model to telemetry data arising from killer whales. Using auxiliary information about the study population, we investigate model validity and find the inferred dynamic social network is consistent with killer whale ecology and expert knowledge.

  18. Paediatric frontal chest radiograph screening with fine-tuned convolutional neural networks

    CSIR Research Space (South Africa)

    Gerrand, Jonathan D

    2017-07-01

    Full Text Available of fine-tuned convolutional neural networks (CNN). We use two popular CNN models that are pre-trained on a large natural image dataset and two distinct datasets containing paediatric and adult radiographs respectively. Evaluation is performed using a 5...

  19. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

    Science.gov (United States)

    Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

    2017-12-01

    Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

  20. Autocorrel I: A Neural Network Based Network Event Correlation Approach

    National Research Council Canada - National Science Library

    Japkowicz, Nathalie; Smith, Reuben

    2005-01-01

    .... We use the autoassociator to build prototype software to cluster network alerts generated by a Snort intrusion detection system, and discuss how the results are significant, and how they can be applied to other types of network events.

  1. Quantitative learning strategies based on word networks

    Science.gov (United States)

    Zhao, Yue-Tian-Yi; Jia, Zi-Yang; Tang, Yong; Xiong, Jason Jie; Zhang, Yi-Cheng

    2018-02-01

    Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network.

  2. Comparison analysis on vulnerability of metro networks based on complex network

    Science.gov (United States)

    Zhang, Jianhua; Wang, Shuliang; Wang, Xiaoyuan

    2018-04-01

    This paper analyzes the networked characteristics of three metro networks, and two malicious attacks are employed to investigate the vulnerability of metro networks based on connectivity vulnerability and functionality vulnerability. Meanwhile, the networked characteristics and vulnerability of three metro networks are compared with each other. The results show that Shanghai metro network has the largest transport capacity, Beijing metro network has the best local connectivity and Guangzhou metro network has the best global connectivity, moreover Beijing metro network has the best homogeneous degree distribution. Furthermore, we find that metro networks are very vulnerable subjected to malicious attacks, and Guangzhou metro network has the best topological structure and reliability among three metro networks. The results indicate that the proposed methodology is feasible and effective to investigate the vulnerability and to explore better topological structure of metro networks.

  3. Investigation of the network delay on Profibus-DP based network

    OpenAIRE

    Yılmaz, C.; Gürdal, O.; Sayan, H.H.

    2008-01-01

    The mathematical model of the network-induced delay control systems (NDCS) is given. Also the role of the NDCS’s components such as controller, sensor and network environment on the network-induced delay are included in the mathematical model of the system. The network delay is investigated on Profibus-DP based network application and experimental results obtained are presented graphically. The experimental results obtained show that the network induced delay is randomly changed according to ...

  4. sEMG-Based Gesture Recognition with Convolution Neural Networks

    Directory of Open Access Journals (Sweden)

    Zhen Ding

    2018-06-01

    Full Text Available The traditional classification methods for limb motion recognition based on sEMG have been deeply researched and shown promising results. However, information loss during feature extraction reduces the recognition accuracy. To obtain higher accuracy, the deep learning method was introduced. In this paper, we propose a parallel multiple-scale convolution architecture. Compared with the state-of-art methods, the proposed architecture fully considers the characteristics of the sEMG signal. Larger sizes of kernel filter than commonly used in other CNN-based hand recognition methods are adopted. Meanwhile, the characteristics of the sEMG signal, that is, muscle independence, is considered when designing the architecture. All the classification methods were evaluated on the NinaPro database. The results show that the proposed architecture has the highest recognition accuracy. Furthermore, the results indicate that parallel multiple-scale convolution architecture with larger size of kernel filter and considering muscle independence can significantly increase the classification accuracy.

  5. Modeling acquaintance networks based on balance theory

    Directory of Open Access Journals (Sweden)

    Vukašinović Vida

    2014-09-01

    Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models

  6. Network-based recommendation algorithms: A review

    Science.gov (United States)

    Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš

    2016-06-01

    Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.

  7. Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors.

    Science.gov (United States)

    Lee, Kwan Woo; Yoon, Hyo Sik; Song, Jong Min; Park, Kang Ryoung

    2018-03-23

    Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.

  8. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network

    Science.gov (United States)

    Zhao, Yongjia; Zhou, Suiping

    2017-01-01

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns. PMID:28264503

  9. A deep convolutional neural network for recognizing foods

    Science.gov (United States)

    Jahani Heravi, Elnaz; Habibi Aghdam, Hamed; Puig, Domenec

    2015-12-01

    Controlling the food intake is an efficient way that each person can undertake to tackle the obesity problem in countries worldwide. This is achievable by developing a smartphone application that is able to recognize foods and compute their calories. State-of-art methods are chiefly based on hand-crafted feature extraction methods such as HOG and Gabor. Recent advances in large-scale object recognition datasets such as ImageNet have revealed that deep Convolutional Neural Networks (CNN) possess more representation power than the hand-crafted features. The main challenge with CNNs is to find the appropriate architecture for each problem. In this paper, we propose a deep CNN which consists of 769; 988 parameters. Our experiments show that the proposed CNN outperforms the state-of-art methods and improves the best result of traditional methods 17%. Moreover, using an ensemble of two CNNs that have been trained two different times, we are able to improve the classification performance 21:5%.

  10. Understanding the Convolutional Neural Networks with Gradient Descent and Backpropagation

    Science.gov (United States)

    Zhou, XueFei

    2018-04-01

    With the development of computer technology, the applications of machine learning are more and more extensive. And machine learning is providing endless opportunities to develop new applications. One of those applications is image recognition by using Convolutional Neural Networks (CNNs). CNN is one of the most common algorithms in image recognition. It is significant to understand its theory and structure for every scholar who is interested in this field. CNN is mainly used in computer identification, especially in voice, text recognition and other aspects of the application. It utilizes hierarchical structure with different layers to accelerate computing speed. In addition, the greatest features of CNNs are the weight sharing and dimension reduction. And all of these consolidate the high effectiveness and efficiency of CNNs with idea computing speed and error rate. With the help of other learning altruisms, CNNs could be used in several scenarios for machine learning, especially for deep learning. Based on the general introduction to the background and the core solution CNN, this paper is going to focus on summarizing how Gradient Descent and Backpropagation work, and how they contribute to the high performances of CNNs. Also, some practical applications will be discussed in the following parts. The last section exhibits the conclusion and some perspectives of future work.

  11. Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images

    International Nuclear Information System (INIS)

    Sahiner, B.; Chan, H.P.; Petrick, N.; Helvie, M.A.; Adler, D.D.; Goodsitt, M.M.; Wei, D.

    1996-01-01

    The authors investigated the classification of regions of interest (ROI's) on mammograms as either mass or normal tissue using a convolution neural network (CNN). A CNN is a back-propagation neural network with two-dimensional (2-D) weight kernels that operate on images. A generalized, fast and stable implementation of the CNN was developed. The input images to the CNN were obtained form the ROI's using two techniques. The first technique employed averaging and subsampling. The second technique employed texture feature extraction methods applied to small subregions inside the ROI. Features computed over different subregions were arranged as texture images, which were subsequently used as CNN inputs. The effects of CNN architecture and texture feature parameters on classification accuracy were studied. Receiver operating characteristic (ROC) methodology was used to evaluate the classification accuracy. A data set consisting of 168 ROI's containing biopsy-proven masses and 504 ROI's containing normal breast tissue was extracted from 168 mammograms by radiologists experienced in mammography. This data set was used for training and testing the CNN. With the best combination of CNN architecture and texture feature parameters, the area under the test ROC curve reached 0.87, which corresponded to a true-positive fraction of 90% at a false positive fraction of 31%. The results demonstrate the feasibility of using a CNN for classification of masses and normal tissue on mammograms

  12. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  13. Extended LaSalle's Invariance Principle for Full-Range Cellular Neural Networks

    Directory of Open Access Journals (Sweden)

    Mauro Di Marco

    2009-01-01

    Full Text Available In several relevant applications to the solution of signal processing tasks in real time, a cellular neural network (CNN is required to be convergent, that is, each solution should tend toward some equilibrium point. The paper develops a Lyapunov method, which is based on a generalized version of LaSalle's invariance principle, for studying convergence and stability of the differential inclusions modeling the dynamics of the full-range (FR model of CNNs. The applicability of the method is demonstrated by obtaining a rigorous proof of convergence for symmetric FR-CNNs. The proof, which is a direct consequence of the fact that a symmetric FR-CNN admits a strict Lyapunov function, is much more simple than the corresponding proof of convergence for symmetric standard CNNs.

  14. Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network

    Science.gov (United States)

    Cao, Xiangyong; Zhou, Feng; Xu, Lin; Meng, Deyu; Xu, Zongben; Paisley, John

    2018-05-01

    This paper presents a new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework. First, we formulate the HSI classification problem from a Bayesian perspective. Then, we adopt a convolutional neural network (CNN) to learn the posterior class distributions using a patch-wise training strategy to better use the spatial information. Next, spatial information is further considered by placing a spatial smoothness prior on the labels. Finally, we iteratively update the CNN parameters using stochastic gradient decent (SGD) and update the class labels of all pixel vectors using an alpha-expansion min-cut-based algorithm. Compared with other state-of-the-art methods, the proposed classification method achieves better performance on one synthetic dataset and two benchmark HSI datasets in a number of experimental settings.

  15. a Novel Deep Convolutional Neural Network for Spectral-Spatial Classification of Hyperspectral Data

    Science.gov (United States)

    Li, N.; Wang, C.; Zhao, H.; Gong, X.; Wang, D.

    2018-04-01

    Spatial and spectral information are obtained simultaneously by hyperspectral remote sensing. Joint extraction of these information of hyperspectral image is one of most import methods for hyperspectral image classification. In this paper, a novel deep convolutional neural network (CNN) is proposed, which extracts spectral-spatial information of hyperspectral images correctly. The proposed model not only learns sufficient knowledge from the limited number of samples, but also has powerful generalization ability. The proposed framework based on three-dimensional convolution can extract spectral-spatial features of labeled samples effectively. Though CNN has shown its robustness to distortion, it cannot extract features of different scales through the traditional pooling layer that only have one size of pooling window. Hence, spatial pyramid pooling (SPP) is introduced into three-dimensional local convolutional filters for hyperspectral classification. Experimental results with a widely used hyperspectral remote sensing dataset show that the proposed model provides competitive performance.

  16. Axillary Lymph Node Evaluation Utilizing Convolutional Neural Networks Using MRI Dataset.

    Science.gov (United States)

    Ha, Richard; Chang, Peter; Karcich, Jenika; Mutasa, Simukayi; Fardanesh, Reza; Wynn, Ralph T; Liu, Michael Z; Jambawalikar, Sachin

    2018-04-25

    The aim of this study is to evaluate the role of convolutional neural network (CNN) in predicting axillary lymph node metastasis, using a breast MRI dataset. An institutional review board (IRB)-approved retrospective review of our database from 1/2013 to 6/2016 identified 275 axillary lymph nodes for this study. Biopsy-proven 133 metastatic axillary lymph nodes and 142 negative control lymph nodes were identified based on benign biopsies (100) and from healthy MRI screening patients (42) with at least 3 years of negative follow-up. For each breast MRI, axillary lymph node was identified on first T1 post contrast dynamic images and underwent 3D segmentation using an open source software platform 3D Slicer. A 32 × 32 patch was then extracted from the center slice of the segmented tumor data. A CNN was designed for lymph node prediction based on each of these cropped images. The CNN consisted of seven convolutional layers and max-pooling layers with 50% dropout applied in the linear layer. In addition, data augmentation and L2 regularization were performed to limit overfitting. Training was implemented using the Adam optimizer, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. Code for this study was written in Python using the TensorFlow module (1.0.0). Experiments and CNN training were done on a Linux workstation with NVIDIA GTX 1070 Pascal GPU. Two class axillary lymph node metastasis prediction models were evaluated. For each lymph node, a final softmax score threshold of 0.5 was used for classification. Based on this, CNN achieved a mean five-fold cross-validation accuracy of 84.3%. It is feasible for current deep CNN architectures to be trained to predict likelihood of axillary lymph node metastasis. Larger dataset will likely improve our prediction model and can potentially be a non-invasive alternative to core needle biopsy and even sentinel lymph node

  17. Detection and recognition of bridge crack based on convolutional neural network

    Directory of Open Access Journals (Sweden)

    Honggong LIU

    2016-10-01

    Full Text Available Aiming at the backward artificial visual detection status of bridge crack in China, which has a great danger coefficient, a digital and intelligent detection method of improving the diagnostic efficiency and reducing the risk coefficient is studied. Combing with machine vision and convolutional neural network technology, Raspberry Pi is used to acquire and pre-process image, and the crack image is analyzed; the processing algorithm which has the best effect in detecting and recognizing is selected; the convolutional neural network(CNN for crack classification is optimized; finally, a new intelligent crack detection method is put forward. The experimental result shows that the system can find all cracks beyond the maximum limit, and effectively identify the type of fracture, and the recognition rate is above 90%. The study provides reference data for engineering detection.

  18. Agent based modeling of energy networks

    International Nuclear Information System (INIS)

    Gonzalez de Durana, José María; Barambones, Oscar; Kremers, Enrique; Varga, Liz

    2014-01-01

    Highlights: • A new approach for energy network modeling is designed and tested. • The agent-based approach is general and no technology dependent. • The models can be easily extended. • The range of applications encompasses from small to large energy infrastructures. - Abstract: Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed

  19. Low-complexity object detection with deep convolutional neural network for embedded systems

    Science.gov (United States)

    Tripathi, Subarna; Kang, Byeongkeun; Dane, Gokce; Nguyen, Truong

    2017-09-01

    We investigate low-complexity convolutional neural networks (CNNs) for object detection for embedded vision applications. It is well-known that consolidation of an embedded system for CNN-based object detection is more challenging due to computation and memory requirement comparing with problems like image classification. To achieve these requirements, we design and develop an end-to-end TensorFlow (TF)-based fully-convolutional deep neural network for generic object detection task inspired by one of the fastest framework, YOLO.1 The proposed network predicts the localization of every object by regressing the coordinates of the corresponding bounding box as in YOLO. Hence, the network is able to detect any objects without any limitations in the size of the objects. However, unlike YOLO, all the layers in the proposed network is fully-convolutional. Thus, it is able to take input images of any size. We pick face detection as an use case. We evaluate the proposed model for face detection on FDDB dataset and Widerface dataset. As another use case of generic object detection, we evaluate its performance on PASCAL VOC dataset. The experimental results demonstrate that the proposed network can predict object instances of different sizes and poses in a single frame. Moreover, the results show that the proposed method achieves comparative accuracy comparing with the state-of-the-art CNN-based object detection methods while reducing the model size by 3× and memory-BW by 3 - 4× comparing with one of the best real-time CNN-based object detectors, YOLO. Our 8-bit fixed-point TF-model provides additional 4× memory reduction while keeping the accuracy nearly as good as the floating-point model. Moreover, the fixed- point model is capable of achieving 20× faster inference speed comparing with the floating-point model. Thus, the proposed method is promising for embedded implementations.

  20. Cost-Effective Class-Imbalance Aware CNN for Vehicle Localization and Categorization in High Resolution Aerial Images

    Directory of Open Access Journals (Sweden)

    Feimo Li

    2017-05-01

    Full Text Available Joint vehicle localization and categorization in high resolution aerial images can provide useful information for applications such as traffic flow structure analysis. To maintain sufficient features to recognize small-scaled vehicles, a regions with convolutional neural network features (R-CNN -like detection structure is employed. In this setting, cascaded localization error can be averted by equally treating the negatives and differently typed positives as a multi-class classification task, but the problem of class-imbalance remains. To address this issue, a cost-effective network extension scheme is proposed. In it, the correlated convolution and connection costs during extension are reduced by feature map selection and bi-partite main-side network construction, which are realized with the assistance of a novel feature map class-importance measurement and a new class-imbalance sensitive main-side loss function. By using an image classification dataset established from a set of traditional real-colored aerial images with 0.13 m ground sampling distance which are taken from the height of 1000 m by an imaging system composed of non-metric cameras, the effectiveness of the proposed network extension is verified by comparing with its similarly shaped strong counter-parts. Experiments show an equivalent or better performance, while requiring the least parameter and memory overheads are required.

  1. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  2. A Cluster- Based Secure Active Network Environment

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-lin; ZHOU Jing-yang; DAI Han; LU Sang-lu; CHEN Gui-hai

    2005-01-01

    We introduce a cluster-based secure active network environment (CSANE) which separates the processing of IP packets from that of active packets in active routers. In this environment, the active code authorized or trusted by privileged users is executed in the secure execution environment (EE) of the active router, while others are executed in the secure EE of the nodes in the distributed shared memory (DSM) cluster. With the supports of a multi-process Java virtual machine and KeyNote, untrusted active packets are controlled to securely consume resource. The DSM consistency management makes that active packets can be parallelly processed in the DSM cluster as if they were processed one by one in ANTS (Active Network Transport System). We demonstrate that CSANE has good security and scalability, but imposing little changes on traditional routers.

  3. Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm.

    Science.gov (United States)

    Savareh, Behrouz Alizadeh; Emami, Hassan; Hajiabadi, Mohamadreza; Azimi, Seyed Majid; Ghafoori, Mahyar

    2018-05-29

    Manual brain tumor segmentation is a challenging task that requires the use of machine learning techniques. One of the machine learning techniques that has been given much attention is the convolutional neural network (CNN). The performance of the CNN can be enhanced by combining other data analysis tools such as wavelet transform. In this study, one of the famous implementations of CNN, a fully convolutional network (FCN), was used in brain tumor segmentation and its architecture was enhanced by wavelet transform. In this combination, a wavelet transform was used as a complementary and enhancing tool for CNN in brain tumor segmentation. Comparing the performance of basic FCN architecture against the wavelet-enhanced form revealed a remarkable superiority of enhanced architecture in brain tumor segmentation tasks. Using mathematical functions and enhancing tools such as wavelet transform and other mathematical functions can improve the performance of CNN in any image processing task such as segmentation and classification.

  4. Vehicle Color Recognition with Vehicle-Color Saliency Detection and Dual-Orientational Dimensionality Reduction of CNN Deep Features

    Science.gov (United States)

    Zhang, Qiang; Li, Jiafeng; Zhuo, Li; Zhang, Hui; Li, Xiaoguang

    2017-12-01

    Color is one of the most stable attributes of vehicles and often used as a valuable cue in some important applications. Various complex environmental factors, such as illumination, weather, noise and etc., result in the visual characteristics of the vehicle color being obvious diversity. Vehicle color recognition in complex environments has been a challenging task. The state-of-the-arts methods roughly take the whole image for color recognition, but many parts of the images such as car windows; wheels and background contain no color information, which will have negative impact on the recognition accuracy. In this paper, a novel vehicle color recognition method using local vehicle-color saliency detection and dual-orientational dimensionality reduction of convolutional neural network (CNN) deep features has been proposed. The novelty of the proposed method includes two parts: (1) a local vehicle-color saliency detection method has been proposed to determine the vehicle color region of the vehicle image and exclude the influence of non-color regions on the recognition accuracy; (2) dual-orientational dimensionality reduction strategy has been designed to greatly reduce the dimensionality of deep features that are learnt from CNN, which will greatly mitigate the storage and computational burden of the subsequent processing, while improving the recognition accuracy. Furthermore, linear support vector machine is adopted as the classifier to train the dimensionality reduced features to obtain the recognition model. The experimental results on public dataset demonstrate that the proposed method can achieve superior recognition performance over the state-of-the-arts methods.

  5. Convolutional Neural Networks with Batch Normalization for Classifying Hi-hat, Snare, and Bass Percussion Sound Samples

    DEFF Research Database (Denmark)

    Gajhede, Nicolai; Beck, Oliver; Purwins, Hendrik

    2016-01-01

    After having revolutionized image and speech processing, convolu- tional neural networks (CNN) are now starting to become more and more successful in music information retrieval as well. We compare four CNN types for classifying a dataset of more than 3000 acoustic and synthesized samples...

  6. Virtualized Network Function Orchestration System and Experimental Network Based QR Recognition for a 5G Mobile Access Network

    Directory of Open Access Journals (Sweden)

    Misun Ahn

    2017-12-01

    Full Text Available This paper proposes a virtualized network function orchestration system based on Network Function Virtualization (NFV, one of the main technologies in 5G mobile networks. This system should provide connectivity between network devices and be able to create flexible network function and distribution. This system focuses more on access networks. By experimenting with various scenarios of user service established and activated in a network, we examine whether rapid adoption of new service is possible and whether network resources can be managed efficiently. The proposed method is based on Bluetooth transfer technology and mesh networking to provide automatic connections between network machines and on a Docker flat form, which is a container virtualization technology for setting and managing key functions. Additionally, the system includes a clustering and recovery measure regarding network function based on the Docker platform. We will briefly introduce the QR code perceived service as a user service to examine the proposal and based on this given service, we evaluate the function of the proposal and present analysis. Through the proposed approach, container relocation has been implemented according to a network device’s CPU usage and we confirm successful service through function evaluation on a real test bed. We estimate QR code recognition speed as the amount of network equipment is gradually increased, improving user service and confirm that the speed of recognition is increased as the assigned number of network devices is increased by the user service.

  7. Network-based analysis of proteomic profiles

    KAUST Repository

    Wong, Limsoon

    2016-01-26

    Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.

  8. Compact Interconnection Networks Based on Quantum Dots

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

    2003-01-01

    Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary

  9. A Scalable Policy and SNMP Based Network Management Framework

    Institute of Scientific and Technical Information of China (English)

    LIU Su-ping; DING Yong-sheng

    2009-01-01

    Traditional SNMP-based network management can not deal with the task of managing large-scaled distributed network,while policy-based management is one of the effective solutions in network and distributed systems management. However,cross-vendor hardware compatibility is one of the limitations in policy-based management. Devices existing in current network mostly support SNMP rather than Common Open Policy Service (COPS) protocol. By analyzing traditional network management and policy-based network management, a scalable network management framework is proposed. It is combined with Internet Engineering Task Force (IETF) framework for policybased management and SNMP-based network management. By interpreting and translating policy decision to SNMP message,policy can be executed in traditional SNMP-based device.

  10. Energy-Efficient Cluster Based Routing Protocol in Mobile Ad Hoc Networks Using Network Coding

    OpenAIRE

    Srinivas Kanakala; Venugopal Reddy Ananthula; Prashanthi Vempaty

    2014-01-01

    In mobile ad hoc networks, all nodes are energy constrained. In such situations, it is important to reduce energy consumption. In this paper, we consider the issues of energy efficient communication in MANETs using network coding. Network coding is an effective method to improve the performance of wireless networks. COPE protocol implements network coding concept to reduce number of transmissions by mixing the packets at intermediate nodes. We incorporate COPE into cluster based routing proto...

  11. Curation-Based Network Marketing: Strategies for Network Growth and Electronic Word-of-Mouth Diffusion

    Science.gov (United States)

    Church, Earnie Mitchell, Jr.

    2013-01-01

    In the last couple of years, a new aspect of online social networking has emerged, in which the strength of social network connections is based not on social ties but mutually shared interests. This dissertation studies these "curation-based" online social networks (CBN) and their suitability for the diffusion of electronic word-of-mouth…

  12. CUFID-query: accurate network querying through random walk based network flow estimation.

    Science.gov (United States)

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive

  13. Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks.

    Science.gov (United States)

    Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo

    2014-04-21

    Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.

  14. Modeling online social networks based on preferential linking

    International Nuclear Information System (INIS)

    Hu Hai-Bo; Chen Jun; Guo Jin-Li

    2012-01-01

    We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro-mechanisms of network growth and the macrostructures of online social networks

  15. Networking activities in technology-based entrepreneurial teams

    DEFF Research Database (Denmark)

    Neergaard, Helle

    2005-01-01

    Based on social network theoy, this article investigates the distribution of networking roles and responsibilities in entrepreneurial founding teams. Its focus is on the team as a collection of individuals, thus allowing the research to address differences in networking patterns. It identifies six...... central networking activities and shows that not all founding team members are equally active 'networkers'. The analyses show that team members prioritize different networking activities and that one member in particular has extensive networking activities whereas other memebrs of the team are more...

  16. Optimal Seamline Detection for Orthoimage Mosaicking by Combining Deep Convolutional Neural Network and Graph Cuts

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-07-01

    Full Text Available When mosaicking orthoimages, especially in urban areas with various obvious ground objects like buildings, roads, cars or trees, the detection of optimal seamlines is one of the key technologies for creating seamless and pleasant image mosaics. In this paper, we propose a new approach to detect optimal seamlines for orthoimage mosaicking with the use of deep convolutional neural network (CNN and graph cuts. Deep CNNs have been widely used in many fields of computer vision and photogrammetry in recent years, and graph cuts is one of the most widely used energy optimization frameworks. We first propose a deep CNN for land cover semantic segmentation in overlap regions between two adjacent images. Then, the energy cost of each pixel in the overlap regions is defined based on the classification probabilities of belonging to each of the specified classes. To find the optimal seamlines globally, we fuse the CNN-classified energy costs of all pixels into the graph cuts energy minimization framework. The main advantage of our proposed method is that the pixel similarity energy costs between two images are defined using the classification results of the CNN based semantic segmentation instead of using the image informations of color, gradient or texture as traditional methods do. Another advantage of our proposed method is that the semantic informations are fully used to guide the process of optimal seamline detection, which is more reasonable than only using the hand designed features defined to represent the image differences. Finally, the experimental results on several groups of challenging orthoimages show that the proposed method is capable of finding high-quality seamlines among urban and non-urban orthoimages, and outperforms the state-of-the-art algorithms and the commercial software based on the visual comparison, statistical evaluation and quantitative evaluation based on the structural similarity (SSIM index.

  17. Shared protection based virtual network mapping in space division multiplexing optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie

    2018-05-01

    Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.

  18. Paper-based synthetic gene networks.

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A; Ferrante, Tom; Cameron, D Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J

    2014-11-06

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides an alternate, versatile venue for synthetic biologists to operate and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze dried onto paper, enabling the inexpensive, sterile, and abiotic distribution of synthetic-biology-based technologies for the clinic, global health, industry, research, and education. For field use, we create circuits with colorimetric outputs for detection by eye and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small-molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors.

  19. Paper-based Synthetic Gene Networks

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.

    2014-01-01

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167

  20. Resilient Disaster Network Based on Software Defined Cognitive Wireless Network Technology

    Directory of Open Access Journals (Sweden)

    Goshi Sato

    2015-01-01

    Full Text Available In order to temporally recover the information network infrastructure in disaster areas from the Great East Japan Earthquake in 2011, various wireless network technologies such as satellite IP network, 3G, and Wi-Fi were effectively used. However, since those wireless networks are individually introduced and installed but not totally integrated, some of networks were congested due to the sudden network traffic generation and unbalanced traffic distribution, and eventually the total network could not effectively function. In this paper, we propose a disaster resilient network which integrates various wireless networks into a cognitive wireless network that users can use as an access network to the Internet at the serious disaster occurrence. We designed and developed the disaster resilient network based on software defined network (SDN technology to automatically select the best network link and route among the possible access networks to the Internet by periodically monitoring their network states and evaluate those using extended AHP method. In order to verify the usefulness of our proposed system, a prototype system is constructed and its performance is evaluated.

  1. Internet-Based Mobile Ad Hoc Networking (Preprint)

    National Research Council Canada - National Science Library

    Corson, M. S; Macker, Joseph P; Cirincione, Gregory H

    1999-01-01

    Internet-based Mobile Ad Hoc Networking is an emerging technology that supports self-organizing, mobile networking infrastructures, and is one which appears well-suited for use in future commercial...

  2. An RSS based location estimation technique for cognitive relay networks

    KAUST Repository

    Qaraqe, Khalid A.; Hussain, Syed Imtiaz; Ç elebi, Hasari Burak; Abdallah, Mohamed M.; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, a received signal strength (RSS) based location estimation method is proposed for a cooperative wireless relay network where the relay is a cognitive radio. We propose a method for the considered cognitive relay network to determine

  3. Artificial organic networks artificial intelligence based on carbon networks

    CERN Document Server

    Ponce-Espinosa, Hiram; Molina, Arturo

    2014-01-01

    This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: ·        approximation; ·        inference; ·        clustering; ·        control; ·        class...

  4. Classifying medical relations in clinical text via convolutional neural networks.

    Science.gov (United States)

    He, Bin; Guan, Yi; Dai, Rui

    2018-05-16

    Deep learning research on relation classification has achieved solid performance in the general domain. This study proposes a convolutional neural network (CNN) architecture with a multi-pooling operation for medical relation classification on clinical records and explores a loss function with a category-level constraint matrix. Experiments using the 2010 i2b2/VA relation corpus demonstrate these models, which do not depend on any external features, outperform previous single-model methods and our best model is competitive with the existing ensemble-based method. Copyright © 2018. Published by Elsevier B.V.

  5. Combining high-speed SVM learning with CNN feature encoding for real-time target recognition in high-definition video for ISR missions

    Science.gov (United States)

    Kroll, Christine; von der Werth, Monika; Leuck, Holger; Stahl, Christoph; Schertler, Klaus

    2017-05-01

    For Intelligence, Surveillance, Reconnaissance (ISR) missions of manned and unmanned air systems typical electrooptical payloads provide high-definition video data which has to be exploited with respect to relevant ground targets in real-time by automatic/assisted target recognition software. Airbus Defence and Space is developing required technologies for real-time sensor exploitation since years and has combined the latest advances of Deep Convolutional Neural Networks (CNN) with a proprietary high-speed Support Vector Machine (SVM) learning method into a powerful object recognition system with impressive results on relevant high-definition video scenes compared to conventional target recognition approaches. This paper describes the principal requirements for real-time target recognition in high-definition video for ISR missions and the Airbus approach of combining an invariant feature extraction using pre-trained CNNs and the high-speed training and classification ability of a novel frequency-domain SVM training method. The frequency-domain approach allows for a highly optimized implementation for General Purpose Computation on a Graphics Processing Unit (GPGPU) and also an efficient training of large training samples. The selected CNN which is pre-trained only once on domain-extrinsic data reveals a highly invariant feature extraction. This allows for a significantly reduced adaptation and training of the target recognition method for new target classes and mission scenarios. A comprehensive training and test dataset was defined and prepared using relevant high-definition airborne video sequences. The assessment concept is explained and performance results are given using the established precision-recall diagrams, average precision and runtime figures on representative test data. A comparison to legacy target recognition approaches shows the impressive performance increase by the proposed CNN+SVM machine-learning approach and the capability of real-time high

  6. EAP-Based Authentication for Ad Hoc Network

    OpenAIRE

    Bhakti, Muhammad Agni Catur; Abdullah, Azween; Jung, Low Tan

    2007-01-01

    Wireless network has been deployed worldwide, but some security issues in wireless network might haveprevented its further acceptance. One of the solutions to overcome the limitation of wireless network security isthe IEEE 802.1X specification, a mechanism for port-based network access control, which is based onExtensible Authentication Protocol (EAP). It is an authentication framework that can support multipleauthentication methods. EAP can run over many types of data-link layer and it is fl...

  7. Automatic QRS complex detection using two-level convolutional neural network.

    Science.gov (United States)

    Xiang, Yande; Lin, Zhitao; Meng, Jianyi

    2018-01-29

    The QRS complex is the most noticeable feature in the electrocardiogram (ECG) signal, therefore, its detection is critical for ECG signal analysis. The existing detection methods largely depend on hand-crafted manual features and parameters, which may introduce significant computational complexity, especially in the transform domains. In addition, fixed features and parameters are not suitable for detecting various kinds of QRS complexes under different circumstances. In this study, based on 1-D convolutional neural network (CNN), an accurate method for QRS complex detection is proposed. The CNN consists of object-level and part-level CNNs for extracting different grained ECG morphological features automatically. All the extracted morphological features are used by multi-layer perceptron (MLP) for QRS complex detection. Additionally, a simple ECG signal preprocessing technique which only contains difference operation in temporal domain is adopted. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed detection method achieves overall sensitivity Sen = 99.77%, positive predictivity rate PPR = 99.91%, and detection error rate DER = 0.32%. In addition, the performance variation is performed according to different signal-to-noise ratio (SNR) values. An automatic QRS detection method using two-level 1-D CNN and simple signal preprocessing technique is proposed for QRS complex detection. Compared with the state-of-the-art QRS complex detection approaches, experimental results show that the proposed method acquires comparable accuracy.

  8. Soil Moisture Retrieval Using Convolutional Neural Networks: Application to Passive Microwave Remote Sensing

    Science.gov (United States)

    Hu, Z.; Xu, L.; Yu, B.

    2018-04-01

    A empirical model is established to analyse the daily retrieval of soil moisture from passive microwave remote sensing using convolutional neural networks (CNN). Soil moisture plays an important role in the water cycle. However, with the rapidly increasing of the acquiring technology for remotely sensed data, it's a hard task for remote sensing practitioners to find a fast and convenient model to deal with the massive data. In this paper, the AMSR-E brightness temperatures are used to train CNN for the prediction of the European centre for medium-range weather forecasts (ECMWF) model. Compared with the classical inversion methods, the deep learning-based method is more suitable for global soil moisture retrieval. It is very well supported by graphics processing unit (GPU) acceleration, which can meet the demand of massive data inversion. Once the model trained, a global soil moisture map can be predicted in less than 10 seconds. What's more, the method of soil moisture retrieval based on deep learning can learn the complex texture features from the big remote sensing data. In this experiment, the results demonstrates that the CNN deployed to retrieve global soil moisture can achieve a better performance than the support vector regression (SVR) for soil moisture retrieval.

  9. SOIL MOISTURE RETRIEVAL USING CONVOLUTIONAL NEURAL NETWORKS: APPLICATION TO PASSIVE MICROWAVE REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Z. Hu

    2018-04-01

    Full Text Available A empirical model is established to analyse the daily retrieval of soil moisture from passive microwave remote sensing using convolutional neural networks (CNN. Soil moisture plays an important role in the water cycle. However, with the rapidly increasing of the acquiring technology for remotely sensed data, it's a hard task for remote sensing practitioners to find a fast and convenient model to deal with the massive data. In this paper, the AMSR-E brightness temperatures are used to train CNN for the prediction of the European centre for medium-range weather forecasts (ECMWF model. Compared with the classical inversion methods, the deep learning-based method is more suitable for global soil moisture retrieval. It is very well supported by graphics processing unit (GPU acceleration, which can meet the demand of massive data inversion. Once the model trained, a global soil moisture map can be predicted in less than 10 seconds. What's more, the method of soil moisture retrieval based on deep learning can learn the complex texture features from the big remote sensing data. In this experiment, the results demonstrates that the CNN deployed to retrieve global soil moisture can achieve a better performance than the support vector regression (SVR for soil moisture retrieval.

  10. Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition

    Science.gov (United States)

    Yin, Xi; Liu, Xiaoming

    2018-02-01

    This paper explores multi-task learning (MTL) for face recognition. We answer the questions of how and why MTL can improve the face recognition performance. First, we propose a multi-task Convolutional Neural Network (CNN) for face recognition where identity classification is the main task and pose, illumination, and expression estimations are the side tasks. Second, we develop a dynamic-weighting scheme to automatically assign the loss weight to each side task, which is a crucial problem in MTL. Third, we propose a pose-directed multi-task CNN by grouping different poses to learn pose-specific identity features, simultaneously across all poses. Last but not least, we propose an energy-based weight analysis method to explore how CNN-based MTL works. We observe that the side tasks serve as regularizations to disentangle the variations from the learnt identity features. Extensive experiments on the entire Multi-PIE dataset demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using all data in Multi-PIE for face recognition. Our approach is also applicable to in-the-wild datasets for pose-invariant face recognition and achieves comparable or better performance than state of the art on LFW, CFP, and IJB-A datasets.

  11. Body-Sensor-Network-Based Spasticity Detection.

    Science.gov (United States)

    Misgeld, Berno J E; Luken, Markus; Heitzmann, Daniel; Wolf, Sebastian I; Leonhardt, Steffen

    2016-05-01

    Spasticity is a common disorder of the skeletal muscle with a high incidence in industrialised countries. A quantitative measure of spasticity using body-worn sensors is important in order to assess rehabilitative motor training and to adjust the rehabilitative therapy accordingly. We present a new approach to spasticity detection using the Integrated Posture and Activity Network by Medit Aachen body sensor network (BSN). For this, a new electromyography (EMG) sensor node was developed and employed in human locomotion. Following an analysis of the clinical gait data of patients with unilateral cerebral palsy, a novel algorithm was developed based on the idea to detect coactivation of antagonistic muscle groups as observed in the exaggerated stretch reflex with associated joint rigidity. The algorithm applies a cross-correlation function to the EMG signals of two antagonistically working muscles and subsequent weighting using a Blackman window. The result is a coactivation index which is also weighted by the signal equivalent energy to exclude positive detection of inactive muscles. Our experimental study indicates good performance in the detection of coactive muscles associated with spasticity from clinical data as well as measurements from a BSN in qualitative comparison with the Modified Ashworth Scale as classified by clinical experts. Possible applications of the new algorithm include (but are not limited to) use in robotic sensorimotor therapy to reduce the effect of spasticity.

  12. Communication Network Architectures Based on Ethernet Passive Optical Network for Offshore Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed

    2016-03-01

    Full Text Available Nowadays, with large-scale offshore wind power farms (WPFs becoming a reality, more efforts are needed to maintain a reliable communication network for WPF monitoring. Deployment topologies, redundancy, and network availability are the main items to enhance the communication reliability between wind turbines (WTs and control centers. Traditional communication networks for monitoring and control (i.e., supervisory control and data acquisition (SCADA systems using switched gigabit Ethernet will not be sufficient for the huge amount of data passing through the network. In this paper, the optical power budget, optical path loss, reliability, and network cost of the proposed Ethernet Passive Optical Network (EPON-based communication network for small-size offshore WPFs have been evaluated for five different network architectures. The proposed network model consists of an optical network unit device (ONU deployed on the WT side for collecting data from different internal networks. All ONUs from different WTs are connected to a central optical line terminal (OLT, placed in the control center. There are no active electronic elements used between the ONUs and the OLT, which reduces the costs and complexity of maintenance and deployment. As fiber access networks without any protection are characterized by poor reliability, three different protection schemes have been configured, explained, and discussed. Considering the cost of network components, the total implementation expense of different architectures with, or without, protection have been calculated and compared. The proposed network model can significantly contribute to the communication network architecture for next generation WPFs.

  13. Network-Aware DHT-Based P2P Systems

    Science.gov (United States)

    Fayçal, Marguerite; Serhrouchni, Ahmed

    P2P networks lay over existing IP networks and infrastructure. This chapter investigates the relation between both layers, details the motivations for network awareness in P2P systems, and elucidates the requirements P2P systems have to meet for efficient network awareness. Since new P2P systems are mostly based on DHTs, we also present and analyse DHT-based architectures. And after a brief presentation of different existing network-awareness solutions, the chapter goes on effective cooperation between P2P traffic and network providers' business agreements, and introduces emerging DHT-based P2P systems that are network aware through a semantic defined for resource sharing. These new systems ensure also a certain context-awareness. So, they are analyzed and compared before an open end on prospects of network awareness in P2P systems.

  14. Analysis of neural networks through base functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  15. Computer Networks as a New Data Base.

    Science.gov (United States)

    Beals, Diane E.

    1992-01-01

    Discusses the use of communication on computer networks as a data source for psychological, social, and linguistic research. Differences between computer-mediated communication and face-to-face communication are described, the Beginning Teacher Computer Network is discussed, and examples of network conversations are appended. (28 references) (LRW)

  16. Personalized Network-Based Treatments in Oncology

    DEFF Research Database (Denmark)

    Robin, Xavier; Creixell, Pau; Radetskaya, Oxana

    2013-01-01

    Network medicine aims at unraveling cell signaling networks to propose personalized treatments for patients suffering from complex diseases. In this short review, we show the relevance of network medicine to cancer treatment by outlining the potential convergence points of the most recent technol...

  17. NM-Net Gigabit-based Implementation on Core Network Facilities and Network Design Hierarchy

    International Nuclear Information System (INIS)

    Raja Murzaferi Raja Moktar; Mohd Fauzi Haris; Siti Nurbahyah Hamdan

    2011-01-01

    Nuclear Malaysia computing network or NM the main backbone of internet working on operational staffs. Main network operating center or NOC is situated in Block 15 and linkup via fiber cabling to adjacent main network blocks (18, 29, 11 connections. Pre 2009 infrastructure; together to form the core networking switch. of the core network infrastructure were limited by the up link between core switches that is the Pair (UTP) Category 6 Cable. Furthermore, majority of the networking infrastructure throughout the agency were mainly built with Fast Ethernet Based specifications to date. With current research and operational tasks highly dependent on IT infrastructure that is being enabled through NM-Net, the performance NM-Net implementing gigabit-based networking system achieve optimal performance of internet networking services in the agency thus catalyze initiative. (author)

  18. Network-based automation for SMEs

    DEFF Research Database (Denmark)

    Parizi, Mohammad Shahabeddini; Radziwon, Agnieszka

    2017-01-01

    The implementation of appropriate automation concepts which increase productivity in Small and Medium Sized Enterprises (SMEs) requires a lot of effort, due to their limited resources. Therefore, it is strongly recommended for small firms to open up for the external sources of knowledge, which...... could be obtained through network interaction. Based on two extreme cases of SMEs representing low-tech industry and an in-depth analysis of their manufacturing facilities this paper presents how collaboration between firms embedded in a regional ecosystem could result in implementation of new...... with other members of the same regional ecosystem. The findings highlight two main automation related areas where manufacturing SMEs could leverage on external sources on knowledge – these are assistance in defining automation problem as well as appropriate solution and provider selection. Consequently...

  19. A NEURAL NETWORK BASED TRAFFIC-AWARE FORWARDING STRATEGY IN NAMED DATA NETWORKING

    OpenAIRE

    Parisa Bazmi; Manijeh Keshtgary

    2016-01-01

    Named Data Networking (NDN) is a new Internet architecture which has been proposed to eliminate TCP/IP Internet architecture restrictions. This architecture is abstracting away the notion of host and working based on naming datagrams. However, one of the major challenges of NDN is supporting QoS-aware forwarding strategy so as to forward Interest packets intelligently over multiple paths based on the current network condition. In this paper, Neural Network (NN) Based Traffic-aware Forwarding ...

  20. Network Traffic Prediction Based on Deep Belief Network and Spatiotemporal Compressive Sensing in Wireless Mesh Backbone Networks

    Directory of Open Access Journals (Sweden)

    Laisen Nie

    2018-01-01

    Full Text Available Wireless mesh network is prevalent for providing a decentralized access for users and other intelligent devices. Meanwhile, it can be employed as the infrastructure of the last few miles connectivity for various network applications, for example, Internet of Things (IoT and mobile networks. For a wireless mesh backbone network, it has obtained extensive attention because of its large capacity and low cost. Network traffic prediction is important for network planning and routing configurations that are implemented to improve the quality of service for users. This paper proposes a network traffic prediction method based on a deep learning architecture and the Spatiotemporal Compressive Sensing method. The proposed method first adopts discrete wavelet transform to extract the low-pass component of network traffic that describes the long-range dependence of itself. Then, a prediction model is built by learning a deep architecture based on the deep belief network from the extracted low-pass component. Otherwise, for the remaining high-pass component that expresses the gusty and irregular fluctuations of network traffic, the Spatiotemporal Compressive Sensing method is adopted to predict it. Based on the predictors of two components, we can obtain a predictor of network traffic. From the simulation, the proposed prediction method outperforms three existing methods.

  1. Analyzing the factors affecting network lifetime cluster-based wireless sensor network

    International Nuclear Information System (INIS)

    Malik, A.S.; Qureshi, A.

    2010-01-01

    Cluster-based wireless sensor networks enable the efficient utilization of the limited energy resources of the deployed sensor nodes and hence prolong the node as well as network lifetime. Low Energy Adaptive Clustering Hierarchy (Leach) is one of the most promising clustering protocol proposed for wireless sensor networks. This paper provides the energy utilization and lifetime analysis for cluster-based wireless sensor networks based upon LEACH protocol. Simulation results identify some important factors that induce unbalanced energy utilization between the sensor nodes and hence affect the network lifetime in these types of networks. These results highlight the need for a standardized, adaptive and distributed clustering technique that can increase the network lifetime by further balancing the energy utilization among sensor nodes. (author)

  2. Scaling architecture-on-demand based optical networks

    NARCIS (Netherlands)

    Meyer, Hugo; Sancho, Jose Carlos; Mrdakovic, Milica; Peng, Shuping; Simeonidou, Dimitra; Miao, Wang; Calabretta, Nicola

    2016-01-01

    This paper analyzes methodologies that allow scaling properly Architecture-On-Demand (AoD) based optical networks. As Data Centers and HPC systems are growing in size and complexity, optical networks seem to be the way to scale the bandwidth of current network infrastructures. To scale the number of

  3. Prediction based chaos control via a new neural network

    International Nuclear Information System (INIS)

    Shen Liqun; Wang Mao; Liu Wanyu; Sun Guanghui

    2008-01-01

    In this Letter, a new chaos control scheme based on chaos prediction is proposed. To perform chaos prediction, a new neural network architecture for complex nonlinear approximation is proposed. And the difficulty in building and training the neural network is also reduced. Simulation results of Logistic map and Lorenz system show the effectiveness of the proposed chaos control scheme and the proposed neural network

  4. Analysis of Computer Network Information Based on "Big Data"

    Science.gov (United States)

    Li, Tianli

    2017-11-01

    With the development of the current era, computer network and large data gradually become part of the people's life, people use the computer to provide convenience for their own life, but at the same time there are many network information problems has to pay attention. This paper analyzes the information security of computer network based on "big data" analysis, and puts forward some solutions.

  5. On Emulation-Based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Abbasi, Ali; Wetzel, Jos; Bokslag, Wouter; Zambon, Emmanuele; Etalle, Sandro

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an in- strumented environment and checking the execution traces for signs of shellcode activity.

  6. On emulation-based network intrusion detection systems

    NARCIS (Netherlands)

    Abbasi, A.; Wetzels, J.; Bokslag, W.; Zambon, E.; Etalle, S.; Stavrou, A.; Bos, H.; Portokalidis, G.

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an instrumented environment and checking the execution traces for signs of shellcode activity.

  7. Novel Ethernet Based Optical Local Area Networks for Computer Interconnection

    NARCIS (Netherlands)

    Radovanovic, Igor; van Etten, Wim; Taniman, R.O.; Kleinkiskamp, Ronny

    2003-01-01

    In this paper we present new optical local area networks for fiber-to-the-desk application. Presented networks are expected to bring a solution for having optical fibers all the way to computers. To bring the overall implementation costs down we have based our networks on short-wavelength optical

  8. ORGANIZATION OF CLOUD COMPUTING INFRASTRUCTURE BASED ON SDN NETWORK

    Directory of Open Access Journals (Sweden)

    Alexey A. Efimenko

    2013-01-01

    Full Text Available The article presents the main approaches to cloud computing infrastructure based on the SDN network in present data processing centers (DPC. The main indexes of management effectiveness of network infrastructure of DPC are determined. The examples of solutions for the creation of virtual network devices are provided.

  9. Classification of Microcalcifications for the Diagnosis of Breast Cancer Using Artificial Neural Networks

    National Research Council Canada - National Science Library

    Wu, Yuzheng

    1997-01-01

    .... A convolution neural network (CNN) was employed to classify benign and malignant microcalcifications in the radiographs of pathological specimen that were digitized at a high resolution of 21 microns x 21 microns...

  10. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.

    Science.gov (United States)

    Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque

    2017-01-01

    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).

  11. APPLICATION OF CONVOLUTIONAL NEURAL NETWORK IN CLASSIFICATION OF HIGH RESOLUTION AGRICULTURAL REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available With the rapid development of Precision Agriculture (PA promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN. For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  12. Arresting Strategy Based on Dynamic Criminal Networks Changing over Time

    Directory of Open Access Journals (Sweden)

    Junqing Yuan

    2013-01-01

    Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.

  13. Next Generation Campus Network Deployment Project Based on Softswitch

    OpenAIRE

    HU Feng; LIU Ziyan

    2011-01-01

    After analyzing the current networks of Guizhou University,we brought forward a scheme of next generation campus networks based on softswitch technology by choosing SoftX3000 switching system of HuaWei and provided the specific solution of accessing campus networks in this paper. It is proved that this scheme is feasible by using OPNET, which not only accomplished the integration of the PSTN and IP networks but also achieved the combining of voice services and data services.

  14. Resource Discovery in Activity-Based Sensor Networks

    DEFF Research Database (Denmark)

    Bucur, Doina; Bardram, Jakob

    This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networks...... (ABSNs) knowledge about their usage even at the network layer. ABSN redesigns classical network-level service discovery protocols to include and use this logical structuring of the network for a more practically applicable service discovery scheme. Noting that in practical settings activity-based sensor...

  15. Abnormality Detection in Mammography using Deep Convolutional Neural Networks

    OpenAIRE

    Xi, Pengcheng; Shu, Chang; Goubran, Rafik

    2018-01-01

    Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be tra...

  16. Community Based Networks and 5G Wi-Fi

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2018-01-01

    This paper argues on why Community Based Networks should be recognized as potential 5G providers using 5G Wi-Fi. The argument is hinged on findings in a research to understand why Community Based Networks deploy telecom and Broadband infrastructure. The study was a qualitative study carried out...... inductively using Grounded Theory. Six cases were investigated. Two Community Based Network Mobilization Models were identified. The findings indicate that 5G Wi-Fi deployment by Community Based Networks is possible if policy initiatives and the 5G Wi-Fi standards are developed to facilitate the causal...

  17. An Improved Car-Following Model in Vehicle Networking Based on Network Control

    Directory of Open Access Journals (Sweden)

    D. Y. Kong

    2014-01-01

    Full Text Available Vehicle networking is a system to realize information interoperability between vehicles and people, vehicles and roads, vehicles and vehicles, and cars and transport facilities, through the network information exchange, in order to achieve the effective monitoring of the vehicle and traffic flow. Realizing information interoperability between vehicles and vehicles, which can affect the traffic flow, is an important application of network control system (NCS. In this paper, a car-following model using vehicle networking theory is established, based on network control principle. The car-following model, which is an improvement of the traditional traffic model, describes the traffic in vehicle networking condition. The impact that vehicle networking has on the traffic flow is quantitatively assessed in a particular scene of one-way, no lane changing highway. The examples show that the capacity of the road is effectively enhanced by using vehicle networking.

  18. Virtual network embedding in cross-domain network based on topology and resource attributes

    Science.gov (United States)

    Zhu, Lei; Zhang, Zhizhong; Feng, Linlin; Liu, Lilan

    2018-03-01

    Aiming at the network architecture ossification and the diversity of access technologies issues, this paper researches the cross-domain virtual network embedding algorithm. By analysing the topological attribute from the local and global perspective of nodes in the virtual network and the physical network, combined with the local network resource property, we rank the embedding priority of the nodes with PCA and TOPSIS methods. Besides, the link load distribution is considered. Above all, We proposed an cross-domain virtual network embedding algorithm based on topology and resource attributes. The simulation results depicts that our algorithm increases the acceptance rate of multi-domain virtual network requests, compared with the existing virtual network embedding algorithm.

  19. Cascade-based attacks on complex networks

    Science.gov (United States)

    Motter, Adilson E.; Lai, Ying-Cheng

    2002-12-01

    We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes, intentional attacks can lead to a cascade of overload failures, which can in turn cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that possess a highly heterogeneous distribution of loads, such as the Internet and power grids. We demonstrate that the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade may be triggered by disabling a single key node. This brings obvious concerns on the security of such systems.

  20. Network-based production quality control

    Science.gov (United States)

    Kwon, Yongjin; Tseng, Bill; Chiou, Richard

    2007-09-01

    This study investigates the feasibility of remote quality control using a host of advanced automation equipment with Internet accessibility. Recent emphasis on product quality and reduction of waste stems from the dynamic, globalized and customer-driven market, which brings opportunities and threats to companies, depending on the response speed and production strategies. The current trends in industry also include a wide spread of distributed manufacturing systems, where design, production, and management facilities are geographically dispersed. This situation mandates not only the accessibility to remotely located production equipment for monitoring and control, but efficient means of responding to changing environment to counter process variations and diverse customer demands. To compete under such an environment, companies are striving to achieve 100%, sensor-based, automated inspection for zero-defect manufacturing. In this study, the Internet-based quality control scheme is referred to as "E-Quality for Manufacturing" or "EQM" for short. By its definition, EQM refers to a holistic approach to design and to embed efficient quality control functions in the context of network integrated manufacturing systems. Such system let designers located far away from the production facility to monitor, control and adjust the quality inspection processes as production design evolves.

  1. Connecting Land-Based Networks to Ships

    Science.gov (United States)

    2013-06-01

    multipoint wireless broadband systems, and WiMAX networks were initially deployed for fixed and nomadic (portable) applications. These standards...CAPABILITIES OF SHIP-TO-SHORE COMMUNICATIONS A. US Navy Automated Digital Network System (ADNS) The U.S. Navy’s Automated Digital Network System (ADNS...submit digitally any necessary documents to the terminal operators, contact their logistics providers, access tidal information and receive

  2. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    Science.gov (United States)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  3. A Secure Network Coding-based Data Gathering Model and Its Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qian Xiao

    2012-09-01

    Full Text Available To provide security for data gathering based on network coding in wireless sensor networks (WSNs, a secure network coding-based data gathering model is proposed, and a data-privacy preserving and pollution preventing (DPPaamp;PP protocol using network coding is designed. DPPaamp;PP makes use of a new proposed pollution symbol selection and pollution (PSSP scheme based on a new obfuscation idea to pollute existing symbols. Analyses of DPPaamp;PP show that it not only requires low overhead on computation and communication, but also provides high security on resisting brute-force attacks.

  4. Carrier ethernet network control plane based on the Next Generation Network

    DEFF Research Database (Denmark)

    Fu, Rong; Wang, Yanmeng; Berger, Michael Stubert

    2008-01-01

    This paper contributes on presenting a step towards the realization of Carrier Ethernet control plane based on the next generation network (NGN). Specifically, transport MPLS (T-MPLS) is taken as the transport technology in Carrier Ethernet. It begins with providing an overview of the evolving...... architecture of the next generation network (NGN). As an essential candidate among the NGN transport technologies, the definition of Carrier Ethernet (CE) is also introduced here. The second part of this paper depicts the contribution on the T-MPLS based Carrier Ethernet network with control plane based on NGN...... at illustrating the improvement of the Carrier Ethernet network with the NGN control plane....

  5. Policy-based Network Management in Home Area Networks: Interim Test Results

    OpenAIRE

    Ibrahim Rana, Annie; Ó Foghlú, Mícheál

    2009-01-01

    This paper argues that Home Area Networks (HANs) are a good candidate for advanced network management automation techniques, such as Policy-Based Network Management (PBNM). What is proposed is a simple use of policy based network management to introduce some level of Quality of Service (QoS) and Security management in the HAN, whilst hiding this complexity from the home user. In this paper we have presented the interim test results of our research experiments (based on a scenario) using the H...

  6. Complex networks-based energy-efficient evolution model for wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)

    2009-08-30

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  7. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun

    2009-01-01

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  8. The guitar chord-generating algorithm based on complex network

    Science.gov (United States)

    Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais

    2016-02-01

    This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.

  9. Dynamics of subway networks based on vehicles operation timetable

    Science.gov (United States)

    Xiao, Xue-mei; Jia, Li-min; Wang, Yan-hui

    2017-05-01

    In this paper, a subway network is represented as a dynamic, directed and weighted graph, in which vertices represent subway stations and weights of edges represent the number of vehicles passing through the edges by considering vehicles operation timetable. Meanwhile the definitions of static and dynamic metrics which can represent vertices' and edges' local and global attributes are proposed. Based on the model and metrics, standard deviation is further introduced to study the dynamic properties (heterogeneity and vulnerability) of subway networks. Through a detailed analysis of the Beijing subway network, we conclude that with the existing network structure, the heterogeneity and vulnerability of the Beijing subway network varies over time when the vehicle operation timetable is taken into consideration, and the distribution of edge weights affects the performance of the network. In other words, although the vehicles operation timetable is restrained by the physical structure of the network, it determines the performances and properties of the Beijing subway network.

  10. Analyzing Brain Functions by Subject Classification of Functional Near-Infrared Spectroscopy Data Using Convolutional Neural Networks Analysis

    Directory of Open Access Journals (Sweden)

    Satoru Hiwa

    2016-01-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is suitable for noninvasive mapping of relative changes in regional cortical activity but is limited for quantitative comparisons among cortical sites, subjects, and populations. We have developed a convolutional neural network (CNN analysis method that learns feature vectors for accurate identification of group differences in fNIRS responses. In this study, subject gender was classified using CNN analysis of fNIRS data. fNIRS data were acquired from male and female subjects during a visual number memory task performed in a white noise environment because previous studies had revealed that the pattern of cortical blood flow during the task differed between males and females. A learned classifier accurately distinguished males from females based on distinct fNIRS signals from regions of interest (ROI including the inferior frontal gyrus and premotor areas that were identified by the learning algorithm. These cortical regions are associated with memory storage, attention, and task motor response. The accuracy of the classifier suggests stable gender-based differences in cerebral blood flow during this task. The proposed CNN analysis method can objectively identify ROIs using fNIRS time series data for machine learning to distinguish features between groups.

  11. Network-Based Community Brings forth Sustainable Society

    Science.gov (United States)

    Kikuchi, Toshiko

    It has already been shown that an artificial society based on the three relations of social configuration (market, communal, and obligatory relations) functioning in balance with each other formed a sustainable society which the social reproduction is possible. In this artificial society model, communal relations exist in a network-based community with alternating members rather than a conventional community with cooperative mutual assistance practiced in some agricultural communities. In this paper, using the comparison between network-based communities with alternating members and conventional communities with fixed members, the significance of a network-based community is considered. In concrete terms, the difference in appearance rate for sustainable society, economic activity and asset inequality between network-based communities and conventional communities is analyzed. The appearance rate for a sustainable society of network-based community is higher than that of conventional community. Moreover, most of network-based communities had a larger total number of trade volume than conventional communities. But, the value of Gini coefficient in conventional community is smaller than that of network-based community. These results show that communal relations based on a network-based community is significant for the social reproduction and economic efficiency. However, in such an artificial society, the inequality is sacrificed.

  12. Understanding Event-based Business Networks

    OpenAIRE

    2008-01-01

    Abstract This article deals with the temporality in business networks. Marketing as networks approach stresses interaction processes and interdependence among actors noting that business markets are mainly socially constructed. The approach has increased our understanding of business marketing but further attention for theory development and empirical validation is needed. Theoretical foundations of the approach are conceptually analysed here, taking time and timing into particular...

  13. Quantum networks based on spins in diamond

    International Nuclear Information System (INIS)

    Ronald Hanson

    2014-01-01

    Entanglement of spatially separated objects is one of the most intriguing phenomena that can occur in physics. Besides being of fundamental interest, entanglement is also a valuable resource in quantum information technology enabling secure quantum communication networks and distributed quantum computing. Here we present our most recent results towards the realization of scalable quantum networks with solid-state qubits. (author)

  14. Neural Network Classifier Based on Growing Hyperspheres

    Czech Academy of Sciences Publication Activity Database

    Jiřina Jr., Marcel; Jiřina, Marcel

    2000-01-01

    Roč. 10, č. 3 (2000), s. 417-428 ISSN 1210-0552. [Neural Network World 2000. Prague, 09.07.2000-12.07.2000] Grant - others:MŠMT ČR(CZ) VS96047; MPO(CZ) RP-4210 Institutional research plan: AV0Z1030915 Keywords : neural network * classifier * hyperspheres * big -dimensional data Subject RIV: BA - General Mathematics

  15. Building Trust-Based Sustainable Networks

    Science.gov (United States)

    2013-06-05

    entities to build sustainable networks with limited resources or misbehaving entities by learning from the lessons in the social sciences. We discuss...their individuality); and ■ Misbehaving nodes in terms of environmental, economic, and social perspectives. The sustainable network concerns...equitable access to particular services which are otherwise abused by misbehaving or malicious users. Such approaches provide a fair and

  16. Rotation Invariance Neural Network

    OpenAIRE

    Li, Shiyuan

    2017-01-01

    Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...

  17. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  18. Network Anomaly Detection Based on Wavelet Analysis

    Science.gov (United States)

    Lu, Wei; Ghorbani, Ali A.

    2008-12-01

    Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  19. Optimization-based topology identification of complex networks

    International Nuclear Information System (INIS)

    Tang Sheng-Xue; Chen Li; He Yi-Gang

    2011-01-01

    In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method. (general)

  20. Evidence That Calls-Based and Mobility Networks Are Isomorphic.

    Directory of Open Access Journals (Sweden)

    Michele Coscia

    Full Text Available Social relations involve both face-to-face interaction as well as telecommunications. We can observe the geography of phone calls and of the mobility of cell phones in space. These two phenomena can be described as networks of connections between different points in space. We use a dataset that includes billions of phone calls made in Colombia during a six-month period. We draw the two networks and find that the call-based network resembles a higher order aggregation of the mobility network and that both are isomorphic except for a higher spatial decay coefficient of the mobility network relative to the call-based network: when we discount distance effects on the call connections with the same decay observed for mobility connections, the two networks are virtually indistinguishable.

  1. Histopathological Breast-Image Classification Using Local and Frequency Domains by Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Abdullah-Al Nahid

    2018-01-01

    Full Text Available Identification of the malignancy of tissues from Histopathological images has always been an issue of concern to doctors and radiologists. This task is time-consuming, tedious and moreover very challenging. Success in finding malignancy from Histopathological images primarily depends on long-term experience, though sometimes experts disagree on their decisions. However, Computer Aided Diagnosis (CAD techniques help the radiologist to give a second opinion that can increase the reliability of the radiologist’s decision. Among the different image analysis techniques, classification of the images has always been a challenging task. Due to the intense complexity of biomedical images, it is always very challenging to provide a reliable decision about an image. The state-of-the-art Convolutional Neural Network (CNN technique has had great success in natural image classification. Utilizing advanced engineering techniques along with the CNN, in this paper, we have classified a set of Histopathological Breast-Cancer (BC images utilizing a state-of-the-art CNN model containing a residual block. Conventional CNN operation takes raw images as input and extracts the global features; however, the object oriented local features also contain significant information—for example, the Local Binary Pattern (LBP represents the effective textural information, Histogram represent the pixel strength distribution, Contourlet Transform (CT gives much detailed information about the smoothness about the edges, and Discrete Fourier Transform (DFT derives frequency-domain information from the image. Utilizing these advantages, along with our proposed novel CNN model, we have examined the performance of the novel CNN model as Histopathological image classifier. To do so, we have introduced five cases: (a Convolutional Neural Network Raw Image (CNN-I; (b Convolutional Neural Network CT Histogram (CNN-CH; (c Convolutional Neural Network CT LBP (CNN-CL; (d Convolutional

  2. On Determining if Tree-based Networks Contain Fixed Trees.

    Science.gov (United States)

    Anaya, Maria; Anipchenko-Ulaj, Olga; Ashfaq, Aisha; Chiu, Joyce; Kaiser, Mahedi; Ohsawa, Max Shoji; Owen, Megan; Pavlechko, Ella; St John, Katherine; Suleria, Shivam; Thompson, Keith; Yap, Corrine

    2016-05-01

    We address an open question of Francis and Steel about phylogenetic networks and trees. They give a polynomial time algorithm to decide if a phylogenetic network, N, is tree-based and pose the problem: given a fixed tree T and network N, is N based on T? We show that it is [Formula: see text]-hard to decide, by reduction from 3-Dimensional Matching (3DM) and further that the problem is fixed-parameter tractable.

  3. Smart Home System Based on GSM Network

    Directory of Open Access Journals (Sweden)

    Bakhtiar Ali Karim

    2018-04-01

    Full Text Available Due to increasing robbery and intrusion, establishing home-security system has become a correlated part of the modern houses, buildings, and offices. As the family members are not at home all the time, the traditional home security system, which makes alarm sound only, may not be efficient enough. Alternatively, Global System for Mobile communications (GSM based security system can provide higher level of security and convenience compared to the traditionally used systems. The main objective of the current paper is to design and implement cost-efficient and reliable security, safety and home automation system for protection and occupants’ convenience. If any undesired events, such as intrusion, gas leakage and fire occurs in the house, our system warns the homeowner in real-time using Short Message Service (SMS. With the proposed system home appliances can also be controlled in three ways, namely sending SMS from the authorized numbers to the system through GSM network, smartphone app using Bluetooth module and infrared (IR control using IR module

  4. A Novel Image Tag Completion Method Based on Convolutional Neural Transformation

    KAUST Repository

    Geng, Yanyan; Zhang, Guohui; Li, Weizhi; Gu, Yi; Liang, Ru-Ze; Liang, Gaoyuan; Wang, Jingbin; Wu, Yanbin; Patil, Nitin; Wang, Jing-Yan

    2017-01-01

    In the problems of image retrieval and annotation, complete textual tag lists of images play critical roles. However, in real-world applications, the image tags are usually incomplete, thus it is important to learn the complete tags for images. In this paper, we study the problem of image tag complete and proposed a novel method for this problem based on a popular image representation method, convolutional neural network (CNN). The method estimates the complete tags from the convolutional filtering outputs of images based on a linear predictor. The CNN parameters, linear predictor, and the complete tags are learned jointly by our method. We build a minimization problem to encourage the consistency between the complete tags and the available incomplete tags, reduce the estimation error, and reduce the model complexity. An iterative algorithm is developed to solve the minimization problem. Experiments over benchmark image data sets show its effectiveness.

  5. A Novel Image Tag Completion Method Based on Convolutional Neural Transformation

    KAUST Repository

    Geng, Yanyan

    2017-10-24

    In the problems of image retrieval and annotation, complete textual tag lists of images play critical roles. However, in real-world applications, the image tags are usually incomplete, thus it is important to learn the complete tags for images. In this paper, we study the problem of image tag complete and proposed a novel method for this problem based on a popular image representation method, convolutional neural network (CNN). The method estimates the complete tags from the convolutional filtering outputs of images based on a linear predictor. The CNN parameters, linear predictor, and the complete tags are learned jointly by our method. We build a minimization problem to encourage the consistency between the complete tags and the available incomplete tags, reduce the estimation error, and reduce the model complexity. An iterative algorithm is developed to solve the minimization problem. Experiments over benchmark image data sets show its effectiveness.

  6. Stabilization of model-based networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Francisco [CIDMA, Universidade de Aveiro, Aveiro (Portugal); Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); Abreu, Carlos [Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); CMEMS-UMINHO, Universidade do Minho, Braga (Portugal); Mendes, Paulo M. [CMEMS-UMINHO, Universidade do Minho, Braga (Portugal)

    2016-06-08

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.

  7. A Spectrum Handoff Scheme for Optimal Network Selection in NEMO Based Cognitive Radio Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2017-01-01

    Full Text Available When a mobile network changes its point of attachments in Cognitive Radio (CR vehicular networks, the Mobile Router (MR requires spectrum handoff. Network Mobility (NEMO in CR vehicular networks is concerned with the management of this movement. In future NEMO based CR vehicular networks deployment, multiple radio access networks may coexist in the overlapping areas having different characteristics in terms of multiple attributes. The CR vehicular node may have the capability to make call for two or more types of nonsafety services such as voice, video, and best effort simultaneously. Hence, it becomes difficult for MR to select optimal network for the spectrum handoff. This can be done by performing spectrum handoff using Multiple Attributes Decision Making (MADM methods which is the objective of the paper. The MADM methods such as grey relational analysis and cost based methods are used. The application of MADM methods provides wider and optimum choice among the available networks with quality of service. Numerical results reveal that the proposed scheme is effective for spectrum handoff decision for optimal network selection with reduced complexity in NEMO based CR vehicular networks.

  8. Improving deep convolutional neural networks with mixed maxout units.

    Directory of Open Access Journals (Sweden)

    Hui-Zhen Zhao

    Full Text Available Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN that "non-maximal features are unable to deliver" and "feature mapping subspace pooling is insufficient," we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance.

  9. Named data networking-based smart home

    OpenAIRE

    Syed Hassan Ahmed; Dongkyun Kim

    2016-01-01

    Named data networking (NDN) treats content/data as a “first class citizen” of the network by giving it a “name”. This content “name” is used to retrieve any information, unlike in device-centric networks (i.e., the current Internet), which depend on physical IP addresses. Meanwhile, the smart home concept has been gaining attention in academia and industries; various low-cost embedded devices are considered that can sense, process, store, and communicate data autonomously. In this paper, we s...

  10. Multiscale Convolutional Neural Networks for Hand Detection

    Directory of Open Access Journals (Sweden)

    Shiyang Yan

    2017-01-01

    Full Text Available Unconstrained hand detection in still images plays an important role in many hand-related vision problems, for example, hand tracking, gesture analysis, human action recognition and human-machine interaction, and sign language recognition. Although hand detection has been extensively studied for decades, it is still a challenging task with many problems to be tackled. The contributing factors for this complexity include heavy occlusion, low resolution, varying illumination conditions, different hand gestures, and the complex interactions between hands and objects or other hands. In this paper, we propose a multiscale deep learning model for unconstrained hand detection in still images. Deep learning models, and deep convolutional neural networks (CNNs in particular, have achieved state-of-the-art performances in many vision benchmarks. Developed from the region-based CNN (R-CNN model, we propose a hand detection scheme based on candidate regions generated by a generic region proposal algorithm, followed by multiscale information fusion from the popular VGG16 model. Two benchmark datasets were applied to validate the proposed method, namely, the Oxford Hand Detection Dataset and the VIVA Hand Detection Challenge. We achieved state-of-the-art results on the Oxford Hand Detection Dataset and had satisfactory performance in the VIVA Hand Detection Challenge.

  11. A Real-Time Solution to the Image Segmentation Problem: CNN-Movels

    OpenAIRE

    Iannizzotto, Giancarlo; Lanzafame, Pietro; Rosa, Francesco La

    2007-01-01

    In this work we have described a re-formulation of a 2D still-image segmentation algorithm, implemented on a single-layer CNN, previously proposed (Iannizzotto, 2003). This algorithm is able to step-over limitation inherent to the class of active contours: sensitivity to insignificant false edges or "edge fragmentation". The approach features an iterative process of uniform shrinking and deformation of the active contour. Guided by statistical properties of edgeness of the image pixels, the c...

  12. Distribution Network Design--literature study based

    OpenAIRE

    LI, ANG

    2012-01-01

    The focus of this research is companies' outbound distribution network design in supply chain management. Within the present competitive market, it is a fundamental importance for companies to achieve high level business performance with an effective supply chain. Outbound distribution network design as an important part in supply chain management, to a large extent decides whether companies can fulfill customers' requirement or not. Therefore, such a study is important for manufacturers and ...

  13. On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.

    Science.gov (United States)

    Amanowicz, Marek; Krygier, Jaroslaw

    2018-05-26

    In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.

  14. Mining human mobility in location-based social networks

    CERN Document Server

    Gao, Huiji

    2015-01-01

    In recent years, there has been a rapid growth of location-based social networking services, such as Foursquare and Facebook Places, which have attracted an increasing number of users and greatly enriched their urban experience. Typical location-based social networking sites allow a user to ""check in"" at a real-world POI (point of interest, e.g., a hotel, restaurant, theater, etc.), leave tips toward the POI, and share the check-in with their online friends. The check-in action bridges the gap between real world and online social networks, resulting in a new type of social networks, namely l

  15. A link prediction method for heterogeneous networks based on BP neural network

    Science.gov (United States)

    Li, Ji-chao; Zhao, Dan-ling; Ge, Bing-Feng; Yang, Ke-Wei; Chen, Ying-Wu

    2018-04-01

    Most real-world systems, composed of different types of objects connected via many interconnections, can be abstracted as various complex heterogeneous networks. Link prediction for heterogeneous networks is of great significance for mining missing links and reconfiguring networks according to observed information, with considerable applications in, for example, friend and location recommendations and disease-gene candidate detection. In this paper, we put forward a novel integrated framework, called MPBP (Meta-Path feature-based BP neural network model), to predict multiple types of links for heterogeneous networks. More specifically, the concept of meta-path is introduced, followed by the extraction of meta-path features for heterogeneous networks. Next, based on the extracted meta-path features, a supervised link prediction model is built with a three-layer BP neural network. Then, the solution algorithm of the proposed link prediction model is put forward to obtain predicted results by iteratively training the network. Last, numerical experiments on the dataset of examples of a gene-disease network and a combat network are conducted to verify the effectiveness and feasibility of the proposed MPBP. It shows that the MPBP with very good performance is superior to the baseline methods.

  16. Cointegration-based financial networks study in Chinese stock market

    Science.gov (United States)

    Tu, Chengyi

    2014-05-01

    We propose a method based on cointegration instead of correlation to construct financial complex network in Chinese stock market. The network is obtained starting from the matrix of p-value calculated by Engle-Granger cointegration test between all pairs of stocks. Then some tools for filtering information in complex network are implemented to prune the complete graph described by the above matrix, such as setting a level of statistical significance as a threshold and Planar Maximally Filtered Graph. We also calculate Partial Correlation Planar Graph of these stocks to compare the above networks. Last, we analyze these directed, weighted and non-symmetric networks by using standard methods of network analysis, including degree centrality, PageRank, HITS, local clustering coefficient, K-shell and strongly and weakly connected components. The results shed a new light on the underlying mechanisms and driving forces in a financial market and deepen our understanding of financial complex network.

  17. Multiagent Based Information Dissemination in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    S.S. Manvi

    2009-01-01

    Full Text Available Vehicular Ad hoc Networks (VANETs are a compelling application of ad hoc networks, because of the potential to access specific context information (e.g. traffic conditions, service updates, route planning and deliver multimedia services (Voice over IP, in-car entertainment, instant messaging, etc.. This paper proposes an agent based information dissemination model for VANETs. A two-tier agent architecture is employed comprising of the following: 1 'lightweight', network-facing, mobile agents; 2 'heavyweight', application-facing, norm-aware agents. The limitations of VANETs lead us to consider a hybrid wireless network architecture that includes Wireless LAN/Cellular and ad hoc networking for analyzing the proposed model. The proposed model provides flexibility, adaptability and maintainability for traffic information dissemination in VANETs as well as supports robust and agile network management. The proposed model has been simulated in various network scenarios to evaluate the effectiveness of the approach.

  18. Road Network Vulnerability Analysis Based on Improved Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2014-01-01

    Full Text Available We present an improved ant colony algorithm-based approach to assess the vulnerability of a road network and identify the critical infrastructures. This approach improves computational efficiency and allows for its applications in large-scale road networks. This research involves defining the vulnerability conception, modeling the traffic utility index and the vulnerability of the road network, and identifying the critical infrastructures of the road network. We apply the approach to a simple test road network and a real road network to verify the methodology. The results show that vulnerability is directly related to traffic demand and increases significantly when the demand approaches capacity. The proposed approach reduces the computational burden and may be applied in large-scale road network analysis. It can be used as a decision-supporting tool for identifying critical infrastructures in transportation planning and management.

  19. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.

    Science.gov (United States)

    Fechter, Tobias; Adebahr, Sonja; Baltas, Dimos; Ben Ayed, Ismail; Desrosiers, Christian; Dolz, Jose

    2017-12-01

    Precise delineation of organs at risk is a crucial task in radiotherapy treatment planning for delivering high doses to the tumor while sparing healthy tissues. In recent years, automated segmentation methods have shown an increasingly high performance for the delineation of various anatomical structures. However, this task remains challenging for organs like the esophagus, which have a versatile shape and poor contrast to neighboring tissues. For human experts, segmenting the esophagus from CT images is a time-consuming and error-prone process. To tackle these issues, we propose a random walker approach driven by a 3D fully convolutional neural network (CNN) to automatically segment the esophagus from CT images. First, a soft probability map is generated by the CNN. Then, an active contour model (ACM) is fitted to the CNN soft probability map to get a first estimation of the esophagus location. The outputs of the CNN and ACM are then used in conjunction with a probability model based on CT Hounsfield (HU) values to drive the random walker. Training and evaluation were done on 50 CTs from two different datasets, with clinically used peer-reviewed esophagus contours. Results were assessed regarding spatial overlap and shape similarity. The esophagus contours generated by the proposed algorithm showed a mean Dice coefficient of 0.76 ± 0.11, an average symmetric square distance of 1.36 ± 0.90 mm, and an average Hausdorff distance of 11.68 ± 6.80, compared to the reference contours. These results translate to a very good agreement with reference contours and an increase in accuracy compared to existing methods. Furthermore, when considering the results reported in the literature for the publicly available Synapse dataset, our method outperformed all existing approaches, which suggests that the proposed method represents the current state-of-the-art for automatic esophagus segmentation. We show that a CNN can yield accurate estimations of esophagus location, and that

  20. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    Science.gov (United States)

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  1. Fair and efficient network congestion control based on minority game

    Science.gov (United States)

    Wang, Zuxi; Wang, Wen; Hu, Hanping; Deng, Zhaozhang

    2011-12-01

    Low link utility, RTT unfairness and unfairness of Multi-Bottleneck network are the existing problems in the present network congestion control algorithms at large. Through the analogy of network congestion control with the "El Farol Bar" problem, we establish a congestion control model based on minority game(MG), and then present a novel network congestion control algorithm based on the model. The result of simulations indicates that the proposed algorithm can make the achievements of link utility closing to 100%, zero packet lose rate, and small of queue size. Besides, the RTT unfairness and the unfairness of Multi-Bottleneck network can be solved, to achieve the max-min fairness in Multi-Bottleneck network, while efficiently weaken the "ping-pong" oscillation caused by the overall synchronization.

  2. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  3. Reconstruction of biological networks based on life science data integration.

    Science.gov (United States)

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-10-27

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH--an integration toolkit for building life science data warehouses, CardioVINEdb--a information system for biological data in cardiovascular-disease and VANESA--a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  4. Deep architecture neural network-based real-time image processing for image-guided radiotherapy.

    Science.gov (United States)

    Mori, Shinichiro

    2017-08-01

    To develop real-time image processing for image-guided radiotherapy, we evaluated several neural network models for use with different imaging modalities, including X-ray fluoroscopic image denoising. Setup images of prostate cancer patients were acquired with two oblique X-ray fluoroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a convolutional neural network (rCNN). We changed the convolutional kernel size and number of convolutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE) method of image processing. Network models were trained to keep the quality of the output image close to that of the ground-truth image from the input image without image processing. For image denoising evaluation, noisy input images were used for the training. More than 6 convolutional layers with convolutional kernels >5×5 improved image quality. However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers to both networks, rCAEs with >3 convolutions each and rCNNs with >12 convolutions with a pair of pooling and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable image quality. Use of our suggested network achieved real-time image processing for contrast enhancement and image denoising by the use of a conventional modern personal computer. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Convolutional Neural Network-Based Classification of Driver’s Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors

    Directory of Open Access Journals (Sweden)

    Kwan Woo Lee

    2018-03-01

    Full Text Available Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG or electrocardiogram (ECG sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver’s body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver’s emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN-based method of detecting emotion to identify aggressive driving using input images of the driver’s face, obtained using near-infrared (NIR light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed driving. Our proposed method demonstrates better performance than existing methods.

  6. A random spatial network model based on elementary postulates

    Science.gov (United States)

    Karlinger, Michael R.; Troutman, Brent M.

    1989-01-01

    A model for generating random spatial networks that is based on elementary postulates comparable to those of the random topology model is proposed. In contrast to the random topology model, this model ascribes a unique spatial specification to generated drainage networks, a distinguishing property of some network growth models. The simplicity of the postulates creates an opportunity for potential analytic investigations of the probabilistic structure of the drainage networks, while the spatial specification enables analyses of spatially dependent network properties. In the random topology model all drainage networks, conditioned on magnitude (number of first-order streams), are equally likely, whereas in this model all spanning trees of a grid, conditioned on area and drainage density, are equally likely. As a result, link lengths in the generated networks are not independent, as usually assumed in the random topology model. For a preliminary model evaluation, scale-dependent network characteristics, such as geometric diameter and link length properties, and topologic characteristics, such as bifurcation ratio, are computed for sets of drainage networks generated on square and rectangular grids. Statistics of the bifurcation and length ratios fall within the range of values reported for natural drainage networks, but geometric diameters tend to be relatively longer than those for natural networks.

  7. Protecting infrastructure networks from cost-based attacks

    International Nuclear Information System (INIS)

    Wang Xingang; Guan Shuguang; Lai, Choy Heng

    2009-01-01

    It is well known that heterogeneous networks are vulnerable to the intentional removal of a small fraction of highly connected or loaded nodes, implying that to protect the network effectively, the important nodes should be allocated more defense resource than the others. However, if too much resource is allocated to the few important nodes, the numerous less-important nodes will be less protected, which if attacked together can still lead to devastating damage. A natural question is therefore how to efficiently distribute the limited defense resource among the network nodes such that the network damage is minimized against any attack strategy. In this paper, taking into account the factor of attack cost, the problem of network security is reconsidered in terms of efficient network defense against cost-based attacks. The results show that, for a general complex network, there exists an optimal distribution of the defense resource with which the network is best protected from cost-based attacks. Furthermore, it is found that the configuration of the optimal defense is dependent on the network parameters. Specifically, networks of larger size, sparser connection and more heterogeneous structure will more likely benefit from the defense optimization.

  8. Convolutional neural network based side attack explosive hazard detection in three dimensional voxel radar

    Science.gov (United States)

    Brockner, Blake; Veal, Charlie; Dowdy, Joshua; Anderson, Derek T.; Williams, Kathryn; Luke, Robert; Sheen, David

    2018-04-01

    The identification followed by avoidance or removal of explosive hazards in past and/or present conflict zones is a serious threat for both civilian and military personnel. This is a challenging task as variability exists with respect to the objects, their environment and emplacement context, to name a few factors. A goal is the development of automatic or human-in-the-loop sensor technologies that leverage signal processing, data fusion and machine learning. Herein, we explore the detection of side attack explosive hazards (SAEHs) in three dimensional voxel space radar via different shallow and deep convolutional neural network (CNN) architectures. Dimensionality reduction is performed by using multiple projected images versus the raw three dimensional voxel data, which leads to noteworthy savings in input size and associated network hyperparameters. Last, we explore the accuracy and interpretation of solutions learned via random versus intelligent network weight initialization. Experiments are provided on a U.S. Army data set collected over different times, weather conditions, target types and concealments. Preliminary results indicate that deep learning can perform as good as, if not better, than a skilled domain expert, even in light of limited training data with a class imbalance.

  9. A Neural Network-Based Interval Pattern Matcher

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-07-01

    Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.

  10. Interconnection network architectures based on integrated orbital angular momentum emitters

    Science.gov (United States)

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  11. Super-resolution reconstruction of MR image with a novel residual learning network algorithm

    Science.gov (United States)

    Shi, Jun; Liu, Qingping; Wang, Chaofeng; Zhang, Qi; Ying, Shihui; Xu, Haoyu

    2018-04-01

    Spatial resolution is one of the key parameters of magnetic resonance imaging (MRI). The image super-resolution (SR) technique offers an alternative approach to improve the spatial resolution of MRI due to its simplicity. Convolutional neural networks (CNN)-based SR algorithms have achieved state-of-the-art performance, in which the global residual learning (GRL) strategy is now commonly used due to its effectiveness for learning image details for SR. However, the partial loss of image details usually happens in a very deep network due to the degradation problem. In this work, we propose a novel residual learning-based SR algorithm for MRI, which combines both multi-scale GRL and shallow network block-based local residual learning (LRL). The proposed LRL module works effectively in capturing high-frequency details by learning local residuals. One simulated MRI dataset and two real MRI datasets have been used to evaluate our algorithm. The experimental results show that the proposed SR algorithm achieves superior performance to all of the other compared CNN-based SR algorithms in this work.

  12. A simple network agreement-based approach for combining evidences in a heterogeneous sensor network

    Directory of Open Access Journals (Sweden)

    Raúl Eusebio-Grande

    2015-12-01

    Full Text Available In this research we investigate how the evidences provided by both static and mobile nodes that are part of a heterogenous sensor network can be combined to have trustworthy results. A solution relying on a network agreement-based approach was implemented and tested.

  13. Anomaly-based Network Intrusion Detection Methods

    Directory of Open Access Journals (Sweden)

    Pavel Nevlud

    2013-01-01

    Full Text Available The article deals with detection of network anomalies. Network anomalies include everything that is quite different from the normal operation. For detection of anomalies were used machine learning systems. Machine learning can be considered as a support or a limited type of artificial intelligence. A machine learning system usually starts with some knowledge and a corresponding knowledge organization so that it can interpret, analyse, and test the knowledge acquired. There are several machine learning techniques available. We tested Decision tree learning and Bayesian networks. The open source data-mining framework WEKA was the tool we used for testing the classify, cluster, association algorithms and for visualization of our results. The WEKA is a collection of machine learning algorithms for data mining tasks.

  14. Named data networking-based smart home

    Directory of Open Access Journals (Sweden)

    Syed Hassan Ahmed

    2016-09-01

    Full Text Available Named data networking (NDN treats content/data as a “first class citizen” of the network by giving it a “name”. This content “name” is used to retrieve any information, unlike in device-centric networks (i.e., the current Internet, which depend on physical IP addresses. Meanwhile, the smart home concept has been gaining attention in academia and industries; various low-cost embedded devices are considered that can sense, process, store, and communicate data autonomously. In this paper, we study NDN in the context of smart-home communications, discuss the preliminary evaluations, and describe the future challenges of applying NDN in smart-home applications.

  15. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study

    Science.gov (United States)

    Zhen, Xin; Chen, Jiawei; Zhong, Zichun; Hrycushko, Brian; Zhou, Linghong; Jiang, Steve; Albuquerque, Kevin; Gu, Xuejun

    2017-11-01

    Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT  +  BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.

  16. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  17. SNMS: an intelligent transportation system network architecture based on WSN and P2P network

    Institute of Scientific and Technical Information of China (English)

    LI Li; LIU Yuan-an; TANG Bi-hua

    2007-01-01

    With the development of city road networks, the question of how to obtain information about the roads is becoming more and more important. In this article, sensor network with mobile station (SNMS), a novel two-tiered intelligent transportation system (ITS) network architecture based on wireless sensor network (WSN) and peer-to-peer (P2P) network, is proposed to provide significant traffic information about the road and thereby, assist travelers to take optimum decisions when they are driving. A detailed explanation with regard to the strategy of each level as well as the design of two main components in the network, sensor unit (SU) and mobile station (MS), is presented. Finally, a representative scenario is described to display the operation of the system.

  18. Partial state feedback control of chaotic neural network and its application

    International Nuclear Information System (INIS)

    He Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki

    2007-01-01

    The chaos control in the chaotic neural network is studied using the partial state feedback with a control signal from a few control neurons. The controlled CNN converges to one of the stored patterns with a period which depends on the initial conditions, i.e., the set of control neurons and other control parameters. We show that the controlled CNN can distinguish between two initial patterns even if they have a small difference. This implies that such a controlled CNN can be feasibly applied to information processing such as pattern recognition

  19. Self-organized topology of recurrence-based complex networks

    International Nuclear Information System (INIS)

    Yang, Hui; Liu, Gang

    2013-01-01

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks

  20. Friend suggestion in social network based on user log

    Science.gov (United States)

    Kaviya, R.; Vanitha, M.; Sumaiya Thaseen, I.; Mangaiyarkarasi, R.

    2017-11-01

    Simple friend recommendation algorithms such as similarity, popularity and social aspects is the basic requirement to be explored to methodically form high-performance social friend recommendation. Suggestion of friends is followed. No tags of character were followed. In the proposed system, we use an algorithm for network correlation-based social friend recommendation (NC-based SFR).It includes user activities like where one lives and works. A new friend recommendation method, based on network correlation, by considering the effect of different social roles. To model the correlation between different networks, we develop a method that aligns these networks through important feature selection. We consider by preserving the network structure for a more better recommendations so that it significantly improves the accuracy for better friend-recommendation.

  1. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    Science.gov (United States)

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  2. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  3. Identifying key nodes in multilayer networks based on tensor decomposition.

    Science.gov (United States)

    Wang, Dingjie; Wang, Haitao; Zou, Xiufen

    2017-06-01

    The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.

  4. Effectiveness of firefly algorithm based neural network in time series ...

    African Journals Online (AJOL)

    Effectiveness of firefly algorithm based neural network in time series forecasting. ... In the experiments, three well known time series were used to evaluate the performance. Results obtained were compared with ... Keywords: Time series, Artificial Neural Network, Firefly Algorithm, Particle Swarm Optimization, Overfitting ...

  5. Distributed network generation based on preferential attachment in ABS

    NARCIS (Netherlands)

    K. Azadbakht (Keyvan); N. Bezirgiannis (Nikolaos); F.S. de Boer (Frank)

    2017-01-01

    textabstractGeneration of social networks using Preferential Attachment (PA) mechanism is proposed in the Barabasi-Albert model. In this mechanism, new nodes are introduced to the network sequentially and they attach to the existing nodes preferentially where the preference can be based on the

  6. Optimization-based Method for Automated Road Network Extraction

    International Nuclear Information System (INIS)

    Xiong, D

    2001-01-01

    Automated road information extraction has significant applicability in transportation. It provides a means for creating, maintaining, and updating transportation network databases that are needed for purposes ranging from traffic management to automated vehicle navigation and guidance. This paper is to review literature on the subject of road extraction and to describe a study of an optimization-based method for automated road network extraction

  7. Energy-Efficient Cluster Based Routing Protocol in Mobile Ad Hoc Networks Using Network Coding

    Directory of Open Access Journals (Sweden)

    Srinivas Kanakala

    2014-01-01

    Full Text Available In mobile ad hoc networks, all nodes are energy constrained. In such situations, it is important to reduce energy consumption. In this paper, we consider the issues of energy efficient communication in MANETs using network coding. Network coding is an effective method to improve the performance of wireless networks. COPE protocol implements network coding concept to reduce number of transmissions by mixing the packets at intermediate nodes. We incorporate COPE into cluster based routing protocol to further reduce the energy consumption. The proposed energy-efficient coding-aware cluster based routing protocol (ECCRP scheme applies network coding at cluster heads to reduce number of transmissions. We also modify the queue management procedure of COPE protocol to further improve coding opportunities. We also use an energy efficient scheme while selecting the cluster head. It helps to increase the life time of the network. We evaluate the performance of proposed energy efficient cluster based protocol using simulation. Simulation results show that the proposed ECCRP algorithm reduces energy consumption and increases life time of the network.

  8. Social networking for web-based communities

    NARCIS (Netherlands)

    Issa, T.; Kommers, Petrus A.M.

    2013-01-01

    In the 21st century, a new technology was introduced to facilitate communication, collaboration, and interaction between individuals and businesses. This technology is called social networking; this technology is now part of Internet commodities like email, browsing and blogging. From the 20th

  9. Cloud-based Networked Visual Servo Control

    DEFF Research Database (Denmark)

    Wu, Haiyan; Lu, Lei; Chen, Chih-Chung

    2013-01-01

    , which integrates networked computational resources for cloud image processing, is considered in this article. The main contributions of this article are i) a real-time transport protocol for transmitting large volume image data on a cloud computing platform, which enables high sampling rate visual...

  10. Based on BP Neural Network Stock Prediction

    Science.gov (United States)

    Liu, Xiangwei; Ma, Xin

    2012-01-01

    The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…

  11. Ontology-Based Peer Exchange Network (OPEN)

    Science.gov (United States)

    Dong, Hui

    2010-01-01

    In current Peer-to-Peer networks, distributed and semantic free indexing is widely used by systems adopting "Distributed Hash Table" ("DHT") mechanisms. Although such systems typically solve a. user query rather fast in a deterministic way, they only support a very narrow search scheme, namely the exact hash key match. Furthermore, DHT systems put…

  12. Two port network analysis for three impedance based oscillators

    KAUST Repository

    Said, Lobna A.

    2011-12-01

    Two-port network representations are applied to analyze complex networks which can be dissolved into sub-networks connected in series, parallel or cascade. In this paper, the concept of two-port network has been studied for oscillators. Three impedance oscillator based on two port concept has been analyzed using different impedance structures. The effect of each structure on the oscillation condition and the frequency of oscillation have been introduced. Two different implementations using MOS and BJT have been introduced. © 2011 IEEE.

  13. Optical-Correlator Neural Network Based On Neocognitron

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  14. Hybrid network defense model based on fuzzy evaluation.

    Science.gov (United States)

    Cho, Ying-Chiang; Pan, Jen-Yi

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  15. Face recognition based on improved BP neural network

    Directory of Open Access Journals (Sweden)

    Yue Gaili

    2017-01-01

    Full Text Available In order to improve the recognition rate of face recognition, face recognition algorithm based on histogram equalization, PCA and BP neural network is proposed. First, the face image is preprocessed by histogram equalization. Then, the classical PCA algorithm is used to extract the features of the histogram equalization image, and extract the principal component of the image. And then train the BP neural network using the trained training samples. This improved BP neural network weight adjustment method is used to train the network because the conventional BP algorithm has the disadvantages of slow convergence, easy to fall into local minima and training process. Finally, the BP neural network with the test sample input is trained to classify and identify the face images, and the recognition rate is obtained. Through the use of ORL database face image simulation experiment, the analysis results show that the improved BP neural network face recognition method can effectively improve the recognition rate of face recognition.

  16. Web-based networking within the framework of ANENT

    International Nuclear Information System (INIS)

    Han, K.W.; Lee, E.J.; Kim, Y.T.; Nam, Y.M.; Kim, H.K.

    2004-01-01

    The Korea Atomic Energy Research Institute (KAERI) is actively participating in the Asian Network for Education in Nuclear Technology (ANENT), which is an IAEA activity to promote nuclear knowledge management. This has led KAERI to conduct a web-based networking for nuclear education and training in Asia. The networking encompasses the establishment of a relevant website and a system for a sustainable operation of the website. The established ANENT website features function as a database providing collected information, a link facilitating a systematic worldwide access to relevant websites, and an activity implementation for supporting the individual tasks of ANENT. The required information is being collected and loaded onto the database, and the website will be improved step by step. Consequently, networking is expected to play an important role, through cooperating with other networks, and thus contributing to a future global network for a sustainable development of nuclear technology. (author)

  17. Physical parameters collection based on wireless senor network

    Science.gov (United States)

    Chen, Xin; Wu, Hong; Ji, Lei

    2013-12-01

    With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.

  18. Rumor Diffusion in an Interests-Based Dynamic Social Network

    Directory of Open Access Journals (Sweden)

    Mingsheng Tang

    2013-01-01

    Full Text Available To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1 positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2 with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3 a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4 a network with a smaller clustering coefficient has a larger efficiency.

  19. Evaluating conducting network based transparent electrodes from geometrical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ankush [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560064 Bangalore (India); Kulkarni, G. U., E-mail: guk@cens.res.in [Centre for Nano and Soft Matter Sciences, 560013 Bangalore (India)

    2016-01-07

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  20. Evaluating conducting network based transparent electrodes from geometrical considerations

    International Nuclear Information System (INIS)

    Kumar, Ankush; Kulkarni, G. U.

    2016-01-01

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  1. Hemispheric asymmetry of electroencephalography-based functional brain networks.

    Science.gov (United States)

    Jalili, Mahdi

    2014-11-12

    Electroencephalography (EEG)-based functional brain networks have been investigated frequently in health and disease. It has been shown that a number of graph theory metrics are disrupted in brain disorders. EEG-based brain networks are often studied in the whole-brain framework, where all the nodes are grouped into a single network. In this study, we studied the brain networks in two hemispheres and assessed whether there are any hemispheric-specific patterns in the properties of the networks. To this end, resting state closed-eyes EEGs from 44 healthy individuals were processed and the network structures were extracted separately for each hemisphere. We examined neurophysiologically meaningful graph theory metrics: global and local efficiency measures. The global efficiency did not show any hemispheric asymmetry, whereas the local connectivity showed rightward asymmetry for a range of intermediate density values for the constructed networks. Furthermore, the age of the participants showed significant direct correlations with the global efficiency of the left hemisphere, but only in the right hemisphere, with local connectivity. These results suggest that only local connectivity of EEG-based functional networks is associated with brain hemispheres.

  2. A network-based dynamical ranking system for competitive sports

    Science.gov (United States)

    Motegi, Shun; Masuda, Naoki

    2012-12-01

    From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking system predicts the outcome of the future games with a higher accuracy than the static counterparts.

  3. An FPGA-based torus communication network

    Energy Technology Data Exchange (ETDEWEB)

    Pivanti, Marcello; Schifano, Sebastiano Fabio [INFN, Ferrara (Italy); Ferrara Univ. (Italy); Simma, Hubert [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC

    2011-02-15

    We describe the design and FPGA implementation of a 3D torus network (TNW) to provide nearest-neighbor communications between commodity multi-core processors. The aim of this project is to build up tightly interconnected and scalable parallel systems for scientific computing. The design includes the VHDL code to implement on latest FPGA devices a network processor, which can be accessed by the CPU through a PCIe interface and which controls the external PHYs of the physical links. Moreover, a Linux driver and a library implementing custom communication APIs are provided. The TNW has been successfully integrated in two recent parallel machine projects, QPACE and AuroraScience. We describe some details of the porting of the TNW for the AuroraScience system and report performance results. (orig.)

  4. An FPGA-based torus communication network

    International Nuclear Information System (INIS)

    Pivanti, Marcello; Schifano, Sebastiano Fabio; Simma, Hubert

    2011-02-01

    We describe the design and FPGA implementation of a 3D torus network (TNW) to provide nearest-neighbor communications between commodity multi-core processors. The aim of this project is to build up tightly interconnected and scalable parallel systems for scientific computing. The design includes the VHDL code to implement on latest FPGA devices a network processor, which can be accessed by the CPU through a PCIe interface and which controls the external PHYs of the physical links. Moreover, a Linux driver and a library implementing custom communication APIs are provided. The TNW has been successfully integrated in two recent parallel machine projects, QPACE and AuroraScience. We describe some details of the porting of the TNW for the AuroraScience system and report performance results. (orig.)

  5. Artificial neural network for bubbles pattern recognition on the images

    International Nuclear Information System (INIS)

    Poletaev, I E; Pervunin, K S; Tokarev, M P

    2016-01-01

    Two-phase bubble flows have been used in many technological and energy processes as processing oil, chemical and nuclear reactors. This explains large interest to experimental and numerical studies of such flows last several decades. Exploiting of optical diagnostics for analysis of the bubble flows allows researchers obtaining of instantaneous velocity fields and gaseous phase distribution with the high spatial resolution non-intrusively. Behavior of light rays exhibits an intricate manner when they cross interphase boundaries of gaseous bubbles hence the identification of the bubbles images is a complicated problem. This work presents a method of bubbles images identification based on a modern technology of deep learning called convolutional neural networks (CNN). Neural networks are able to determine overlapping, blurred, and non-spherical bubble images. They can increase accuracy of the bubble image recognition, reduce the number of outliers, lower data processing time, and significantly decrease the number of settings for the identification in comparison with standard recognition methods developed before. In addition, usage of GPUs speeds up the learning process of CNN owning to the modern adaptive subgradient optimization techniques. (paper)

  6. Automated embolic signal detection using Deep Convolutional Neural Network.

    Science.gov (United States)

    Sombune, Praotasna; Phienphanich, Phongphan; Phuechpanpaisal, Sutanya; Muengtaweepongsa, Sombat; Ruamthanthong, Anuchit; Tantibundhit, Charturong

    2017-07-01

    This work investigated the potential of Deep Neural Network in detection of cerebral embolic signal (ES) from transcranial Doppler ultrasound (TCD). The resulting system is aimed to couple with TCD devices in diagnosing a risk of stroke in real-time with high accuracy. The Adaptive Gain Control (AGC) approach developed in our previous study is employed to capture suspected ESs in real-time. By using spectrograms of the same TCD signal dataset as that of our previous work as inputs and the same experimental setup, Deep Convolutional Neural Network (CNN), which can learn features while training, was investigated for its ability to bypass the traditional handcrafted feature extraction and selection process. Extracted feature vectors from the suspected ESs are later determined whether they are of an ES, artifact (AF) or normal (NR) interval. The effectiveness of the developed system was evaluated over 19 subjects going under procedures generating emboli. The CNN-based system could achieve in average of 83.0% sensitivity, 80.1% specificity, and 81.4% accuracy, with considerably much less time consumption in development. The certainly growing set of training samples and computational resources will contribute to high performance. Besides having potential use in various clinical ES monitoring settings, continuation of this promising study will benefit developments of wearable applications by leveraging learnable features to serve demographic differentials.

  7. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  8. Flexible optical network components based on densely integrated microring resonators

    NARCIS (Netherlands)

    Geuzebroek, D.H.

    2005-01-01

    This thesis addresses the design, realization and characterization of reconfigurable optical network components based on multiple microring resonators. Since thermally tunable microring resonators can be used as wavelength selective space switches, very compact devices with high complexity and

  9. Ensemble of classifiers based network intrusion detection system performance bound

    CSIR Research Space (South Africa)

    Mkuzangwe, Nenekazi NP

    2017-11-01

    Full Text Available This paper provides a performance bound of a network intrusion detection system (NIDS) that uses an ensemble of classifiers. Currently researchers rely on implementing the ensemble of classifiers based NIDS before they can determine the performance...

  10. A street rubbish detection algorithm based on Sift and RCNN

    Science.gov (United States)

    Yu, XiPeng; Chen, Zhong; Zhang, Shuo; Zhang, Ting

    2018-02-01

    This paper presents a street rubbish detection algorithm based on image registration with Sift feature and RCNN. Firstly, obtain the rubbish region proposal on the real-time street image and set up the CNN convolution neural network trained by the rubbish samples set consists of rubbish and non-rubbish images; Secondly, for every clean street image, obtain the Sift feature and do image registration with the real-time street image to obtain the differential image, the differential image filters a lot of background information, obtain the rubbish region proposal rect where the rubbish may appear on the differential image by the selective search algorithm. Then, the CNN model is used to detect the image pixel data in each of the region proposal on the real-time street image. According to the output vector of the CNN, it is judged whether the rubbish is in the region proposal or not. If it is rubbish, the region proposal on the real-time street image is marked. This algorithm avoids the large number of false detection caused by the detection on the whole image because the CNN is used to identify the image only in the region proposal on the real-time street image that may appear rubbish. Different from the traditional object detection algorithm based on the region proposal, the region proposal is obtained on the differential image not whole real-time street image, and the number of the invalid region proposal is greatly reduced. The algorithm has the high mean average precision (mAP).

  11. Trojan detection model based on network behavior analysis

    International Nuclear Information System (INIS)

    Liu Junrong; Liu Baoxu; Wang Wenjin

    2012-01-01

    Based on the analysis of existing Trojan detection technology, this paper presents a Trojan detection model based on network behavior analysis. First of all, we abstract description of the Trojan network behavior, then according to certain rules to establish the characteristic behavior library, and then use the support vector machine algorithm to determine whether a Trojan invasion. Finally, through the intrusion detection experiments, shows that this model can effectively detect Trojans. (authors)

  12. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2016-07-01

    Full Text Available With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC. The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.

  13. Theory of fractional order elements based impedance matching networks

    KAUST Repository

    Radwan, Ahmed G.

    2011-03-01

    Fractional order circuit elements (inductors and capacitors) based impedance matching networks are introduced for the first time. In comparison to the conventional integer based L-type matching networks, fractional matching networks are much simpler and versatile. Any complex load can be matched utilizing a single series fractional element, which generally requires two elements for matching in the conventional approach. It is shown that all the Smith chart circles (resistance and reactance) are actually pairs of completely identical circles. They appear to be single for the conventional integer order case, where the identical circles completely overlap each other. The concept is supported by design equations and impedance matching examples. © 2010 IEEE.

  14. Soft silicone based interpenetrating networks as materials for actuators

    DEFF Research Database (Denmark)

    Yu, Liyun; Gonzalez, Lidia; Hvilsted, Søren

    2014-01-01

    A new approach based on silicone interpenetrating networks with orthogonal chemistries has been investigated with focus on developing soft and flexible elastomers with high energy densities and small viscous losses. The interpenetrating networks are made as simple two pot mixtures...... as for the commercial available silylation based elastomers such as Elastosil RT625. The resulting interpenetrating networks are formulated to be softer than RT625 to increase the actuation caused when applying a voltage due to their softness combined with the significantly higher permittivity than the pure silicone...

  15. Supervised Learning Based on Temporal Coding in Spiking Neural Networks.

    Science.gov (United States)

    Mostafa, Hesham

    2017-08-01

    Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.

  16. Reliability analysis of cluster-based ad-hoc networks

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2008-01-01

    The mobile ad-hoc wireless network (MAWN) is a new and emerging network scheme that is being employed in a variety of applications. The MAWN varies from traditional networks because it is a self-forming and dynamic network. The MAWN is free of infrastructure and, as such, only the mobile nodes comprise the network. Pairs of nodes communicate either directly or through other nodes. To do so, each node acts, in turn, as a source, destination, and relay of messages. The virtue of a MAWN is the flexibility this provides; however, the challenge for reliability analyses is also brought about by this unique feature. The variability and volatility of the MAWN configuration makes typical reliability methods (e.g. reliability block diagram) inappropriate because no single structure or configuration represents all manifestations of a MAWN. For this reason, new methods are being developed to analyze the reliability of this new networking technology. New published methods adapt to this feature by treating the configuration probabilistically or by inclusion of embedded mobility models. This paper joins both methods together and expands upon these works by modifying the problem formulation to address the reliability analysis of a cluster-based MAWN. The cluster-based MAWN is deployed in applications with constraints on networking resources such as bandwidth and energy. This paper presents the problem's formulation, a discussion of applicable reliability metrics for the MAWN, and illustration of a Monte Carlo simulation method through the analysis of several example networks

  17. Mutual information-based LPI optimisation for radar network

    Science.gov (United States)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  18. Topological Embedding Feature Based Resource Allocation in Network Virtualization

    Directory of Open Access Journals (Sweden)

    Hongyan Cui

    2014-01-01

    Full Text Available Virtualization provides a powerful way to run multiple virtual networks on a shared substrate network, which needs accurate and efficient mathematical models. Virtual network embedding is a challenge in network virtualization. In this paper, considering the degree of convergence when mapping a virtual network onto substrate network, we propose a new embedding algorithm based on topology mapping convergence-degree. Convergence-degree means the adjacent degree of virtual network’s nodes when they are mapped onto a substrate network. The contributions of our method are as below. Firstly, we map virtual nodes onto the substrate nodes with the maximum convergence-degree. The simulation results show that our proposed algorithm largely enhances the network utilization efficiency and decreases the complexity of the embedding problem. Secondly, we define the load balance rate to reflect the load balance of substrate links. The simulation results show our proposed algorithm achieves better load balance. Finally, based on the feature of star topology, we further improve our embedding algorithm and make it suitable for application in the star topology. The test result shows it gets better performance than previous works.

  19. ROOF TYPE SELECTION BASED ON PATCH-BASED CLASSIFICATION USING DEEP LEARNING FOR HIGH RESOLUTION SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    T. Partovi

    2017-05-01

    Full Text Available 3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2 for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes extracted from a Digital Surface Model (DSM, the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.

  20. Combining Host-based and network-based intrusion detection system

    African Journals Online (AJOL)

    These attacks were simulated using hping. The proposed system is implemented in Java. The results show that the proposed system is able to detect attacks both from within (host-based) and outside sources (network-based). Key Words: Intrusion Detection System (IDS), Host-based, Network-based, Signature, Security log.

  1. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?

    OpenAIRE

    Tajbakhsh, Nima; Shin, Jae Y.; Gurudu, Suryakanth R.; Hurst, R. Todd; Kendall, Christopher B.; Gotway, Michael B.; Liang, Jianming

    2017-01-01

    Training a deep convolutional neural network (CNN) from scratch is difficult because it requires a large amount of labeled training data and a great deal of expertise to ensure proper convergence. A promising alternative is to fine-tune a CNN that has been pre-trained using, for instance, a large set of labeled natural images. However, the substantial differences between natural and medical images may advise against such knowledge transfer. In this paper, we seek to answer the following centr...

  2. Single Frequency Network Based Distributed Passive Radar Technology

    Directory of Open Access Journals (Sweden)

    Wan Xian-rong

    2015-01-01

    Full Text Available The research and application of passive radar are heading from single transmitter-receiver pair to multiple transmitter-receiver pairs. As an important class of the illuminators of opportunity, most of modern digital broadcasting and television systems work on Single Frequency Network (SFN, which intrinsically determines that the passive radar based on such illuminators must be distributed and networked. In consideration of the remarkable working and processing mode of passive radar under SFN configuration, this paper proposes the concept of SFN-based Distributed Passive Radar (SDPR. The main characteristics and key problems of SDPR are first described. Then several potential solutions are discussed for part of the key technologies. The feasibility of SDPR is demonstrated by preliminary experimental results. Finally, the concept of four network convergence that includes the broadcast based passive radar network is conceived, and its application prospects are discussed.

  3. Passivity-based control and estimation in networked robotics

    CERN Document Server

    Hatanaka, Takeshi; Fujita, Masayuki; Spong, Mark W

    2015-01-01

    Highlighting the control of networked robotic systems, this book synthesizes a unified passivity-based approach to an emerging cross-disciplinary subject. Thanks to this unified approach, readers can access various state-of-the-art research fields by studying only the background foundations associated with passivity. In addition to the theoretical results and techniques,  the authors provide experimental case studies on testbeds of robotic systems  including networked haptic devices, visual robotic systems,  robotic network systems and visual sensor network systems. The text begins with an introduction to passivity and passivity-based control together with the other foundations needed in this book. The main body of the book consists of three parts. The first examines how passivity can be utilized for bilateral teleoperation and demonstrates the inherent robustness of the passivity-based controller against communication delays. The second part emphasizes passivity’s usefulness for visual feedback control ...

  4. Cooperative and Adaptive Network Coding for Gradient Based Routing in Wireless Sensor Networks with Multiple Sinks

    Directory of Open Access Journals (Sweden)

    M. E. Migabo

    2017-01-01

    Full Text Available Despite its low computational cost, the Gradient Based Routing (GBR broadcast of interest messages in Wireless Sensor Networks (WSNs causes significant packets duplications and unnecessary packets transmissions. This results in energy wastage, traffic load imbalance, high network traffic, and low throughput. Thanks to the emergence of fast and powerful processors, the development of efficient network coding strategies is expected to enable efficient packets aggregations and reduce packets retransmissions. For multiple sinks WSNs, the challenge consists of efficiently selecting a suitable network coding scheme. This article proposes a Cooperative and Adaptive Network Coding for GBR (CoAdNC-GBR technique which considers the network density as dynamically defined by the average number of neighbouring nodes, to efficiently aggregate interest messages. The aggregation is performed by means of linear combinations of random coefficients of a finite Galois Field of variable size GF(2S at each node and the decoding is performed by means of Gaussian elimination. The obtained results reveal that, by exploiting the cooperation of the multiple sinks, the CoAdNC-GBR not only improves the transmission reliability of links and lowers the number of transmissions and the propagation latency, but also enhances the energy efficiency of the network when compared to the GBR-network coding (GBR-NC techniques.

  5. Caries treatment in a dental practice-based research network

    DEFF Research Database (Denmark)

    Gilbert, Gregg H; Gordan, Valeria V; Funkhouser, Ellen M

    2012-01-01

    OBJECTIVES: Practice-based research networks (PBRNs) provide a venue to foster evidence-based care. We tested the hypothesis that a higher level of participation in a dental PBRN is associated with greater stated change toward evidence-based practice. METHODS: A total of 565 dental PBRN practitio......OBJECTIVES: Practice-based research networks (PBRNs) provide a venue to foster evidence-based care. We tested the hypothesis that a higher level of participation in a dental PBRN is associated with greater stated change toward evidence-based practice. METHODS: A total of 565 dental PBRN......) of 36.0 (3.8) months later. A total of 224 were 'full participants' (enrolled in clinical studies and attended at least one network meeting); 181 were 'partial participants' (did not meet 'full' criteria). RESULTS: From 10% to 62% of practitioners were 'surgically invasive' at baseline, depending...

  6. Deep hierarchical attention network for video description

    Science.gov (United States)

    Li, Shuohao; Tang, Min; Zhang, Jun

    2018-03-01

    Pairing video to natural language description remains a challenge in computer vision and machine translation. Inspired by image description, which uses an encoder-decoder model for reducing visual scene into a single sentence, we propose a deep hierarchical attention network for video description. The proposed model uses convolutional neural network (CNN) and bidirectional LSTM network as encoders while a hierarchical attention network is used as the decoder. Compared to encoder-decoder models used in video description, the bidirectional LSTM network can capture the temporal structure among video frames. Moreover, the hierarchical attention network has an advantage over single-layer attention network on global context modeling. To make a fair comparison with other methods, we evaluate the proposed architecture with different types of CNN structures and decoders. Experimental results on the standard datasets show that our model has a more superior performance than the state-of-the-art techniques.

  7. Resource Discovery in Activity-Based Sensor Networks

    DEFF Research Database (Denmark)

    Bucur, Doina; Bardram, Jakob

    This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networ....... ABSN enhances the generic Extended Zone Routing Protocol with logical sensor grouping and greatly lowers network overhead during the process of discovery, while keeping discovery latency close to optimal.......This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networks...... (ABSNs) knowledge about their usage even at the network layer. ABSN redesigns classical network-level service discovery protocols to include and use this logical structuring of the network for a more practically applicable service discovery scheme. Noting that in practical settings activity-based sensor...

  8. Efficient Vector-Based Forwarding for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2010-01-01

    Full Text Available Underwater Sensor Networks (UWSNs are significantly different from terrestrial sensor networks in the following aspects: low bandwidth, high latency, node mobility, high error probability, and 3-dimensional space. These new features bring many challenges to the network protocol design of UWSNs. In this paper, we tackle one fundamental problem in UWSNs: robust, scalable, and energy efficient routing. We propose vector-based forwarding (VBF, a geographic routing protocol. In VBF, the forwarding path is guided by a vector from the source to the target, no state information is required on the sensor nodes, and only a small fraction of the nodes is involved in routing. To improve the robustness, packets are forwarded in redundant and interleaved paths. Further, a localized and distributed self-adaptation algorithm allows the nodes to reduce energy consumption by discarding redundant packets. VBF performs well in dense networks. For sparse networks, we propose a hop-by-hop vector-based forwarding (HH-VBF protocol, which adapts the vector-based approach at every hop. We evaluate the performance of VBF and HH-VBF through extensive simulations. The simulation results show that VBF achieves high packet delivery ratio and energy efficiency in dense networks and HH-VBF has high packet delivery ratio even in sparse networks.

  9. FUZZY LOGIC BASED ENERGY EFFICIENT PROTOCOL IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Zhan Wei Siew

    2012-12-01

    Full Text Available Wireless sensor networks (WSNs have been vastly developed due to the advances in microelectromechanical systems (MEMS using WSN to study and monitor the environments towards climates changes. In environmental monitoring, sensors are randomly deployed over the interest area to periodically sense the physical environments for a few months or even a year. Therefore, to prolong the network lifetime with limited battery capacity becomes a challenging issue. Low energy adaptive cluster hierarchical (LEACH is the common clustering protocol that aim to reduce the energy consumption by rotating the heavy workload cluster heads (CHs. The CHs election in LEACH is based on probability model which will lead to inefficient in energy consumption due to least desired CHs location in the network. In WSNs, the CHs location can directly influence the network energy consumption and further affect the network lifetime. In this paper, factors which will affect the network lifetime will be presented and the demonstration of fuzzy logic based CH selection conducted in base station (BS will also be carried out. To select suitable CHs that will prolong the network first node dies (FND round and consistent throughput to the BS, energy level and distance to the BS are selected as fuzzy inputs.

  10. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  11. Incentive-Based Voltage Regulation in Distribution Networks

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baker, Kyri A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhou, Xinyang [University of Colorado; Chen, Lijun [University of Colorado

    2017-07-03

    This paper considers distribution networks fea- turing distributed energy resources, and designs incentive-based mechanisms that allow the network operator and end-customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Two different network-customer coordination mechanisms that require different amounts of information shared between the network operator and end-customers are developed to identify a solution of a well-defined social-welfare maximization prob- lem. Notably, the signals broadcast by the network operator assume the connotation of prices/incentives that induce the end- customers to adjust the generated/consumed powers in order to avoid the violation of the voltage constraints. Stability of the proposed schemes is analytically established and numerically corroborated.

  12. A complex network-based importance measure for mechatronics systems

    Science.gov (United States)

    Wang, Yanhui; Bi, Lifeng; Lin, Shuai; Li, Man; Shi, Hao

    2017-01-01

    In view of the negative impact of functional dependency, this paper attempts to provide an alternative importance measure called Improved-PageRank (IPR) for measuring the importance of components in mechatronics systems. IPR is a meaningful extension of the centrality measures in complex network, which considers usage reliability of components and functional dependency between components to increase importance measures usefulness. Our work makes two important contributions. First, this paper integrates the literature of mechatronic architecture and complex networks theory to define component network. Second, based on the notion of component network, a meaningful IPR is brought into the identifying of important components. In addition, the IPR component importance measures, and an algorithm to perform stochastic ordering of components due to the time-varying nature of usage reliability of components and functional dependency between components, are illustrated with a component network of bogie system that consists of 27 components.

  13. Dynamic Evolution Model Based on Social Network Services

    Science.gov (United States)

    Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen

    2013-11-01

    Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.

  14. Incentive-Based Voltage Regulation in Distribution Networks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinyang; Chen, Lijun; Dall' Anese, Emiliano; Baker, Kyri

    2017-03-03

    This paper considers distribution networks fea- turing distributed energy resources, and designs incentive-based mechanisms that allow the network operator and end-customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Two different network-customer coordination mechanisms that require different amounts of information shared between the network operator and end-customers are developed to identify a solution of a well-defined social-welfare maximization prob- lem. Notably, the signals broadcast by the network operator assume the connotation of prices/incentives that induce the end- customers to adjust the generated/consumed powers in order to avoid the violation of the voltage constraints. Stability of the proposed schemes is analytically established and numerically corroborated.

  15. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  16. VoIP attacks detection engine based on neural network

    Science.gov (United States)

    Safarik, Jakub; Slachta, Jiri

    2015-05-01

    The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.

  17. Constructing financial network based on PMFG and threshold method

    Science.gov (United States)

    Nie, Chun-Xiao; Song, Fu-Tie

    2018-04-01

    Based on planar maximally filtered graph (PMFG) and threshold method, we introduced a correlation-based network named PMFG-based threshold network (PTN). We studied the community structure of PTN and applied ISOMAP algorithm to represent PTN in low-dimensional Euclidean space. The results show that the community corresponds well to the cluster in the Euclidean space. Further, we studied the dynamics of the community structure and constructed the normalized mutual information (NMI) matrix. Based on the real data in the market, we found that the volatility of the market can lead to dramatic changes in the community structure, and the structure is more stable during the financial crisis.

  18. Training Deep Spiking Neural Networks Using Backpropagation.

    Science.gov (United States)

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael

    2016-01-01

    Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.

  19. Classifying magnetic resonance image modalities with convolutional neural networks

    Science.gov (United States)

    Remedios, Samuel; Pham, Dzung L.; Butman, John A.; Roy, Snehashis

    2018-02-01

    Magnetic Resonance (MR) imaging allows the acquisition of images with different contrast properties depending on the acquisition protocol and the magnetic properties of tissues. Many MR brain image processing techniques, such as tissue segmentation, require multiple MR contrasts as inputs, and each contrast is treated differently. Thus it is advantageous to automate the identification of image contrasts for various purposes, such as facilitating image processing pipelines, and managing and maintaining large databases via content-based image retrieval (CBIR). Most automated CBIR techniques focus on a two-step process: extracting features from data and classifying the image based on these features. We present a novel 3D deep convolutional neural network (CNN)- based method for MR image contrast classification. The proposed CNN automatically identifies the MR contrast of an input brain image volume. Specifically, we explored three classification problems: (1) identify T1-weighted (T1-w), T2-weighted (T2-w), and fluid-attenuated inversion recovery (FLAIR) contrasts, (2) identify pre vs postcontrast T1, (3) identify pre vs post-contrast FLAIR. A total of 3418 image volumes acquired from multiple sites and multiple scanners were used. To evaluate each task, the proposed model was trained on 2137 images and tested on the remaining 1281 images. Results showed that image volumes were correctly classified with 97.57% accuracy.

  20. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.

    Science.gov (United States)

    Yang, Xin; Liu, Chaoyue; Wang, Zhiwei; Yang, Jun; Min, Hung Le; Wang, Liang; Cheng, Kwang-Ting Tim

    2017-12-01

    Multi-parameter magnetic resonance imaging (mp-MRI) is increasingly popular for prostate cancer (PCa) detection and diagnosis. However, interpreting mp-MRI data which typically contains multiple unregistered 3D sequences, e.g. apparent diffusion coefficient (ADC) and T2-weighted (T2w) images, is time-consuming and demands special expertise, limiting its usage for large-scale PCa screening. Therefore, solutions to computer-aided detection of PCa in mp-MRI images are highly desirable. Most recent advances in automated methods for PCa detection employ a handcrafted feature based two-stage classification flow, i.e. voxel-level classification followed by a region-level classification. This work presents an automated PCa detection system which can concurrently identify the presence of PCa in an image and localize lesions based on deep convolutional neural network (CNN) features and a single-stage SVM classifier. Specifically, the developed co-trained CNNs consist of two parallel convolutional networks for ADC and T2w images respectively. Each network is trained using images of a single modality in a weakly-supervised manner by providing a set of prostate images with image-level labels indicating only the presence of PCa without priors of lesions' locations. Discriminative visual patterns of lesions can be learned effectively from clutters of prostate and surrounding tissues. A cancer response map with each pixel indicating the likelihood to be cancerous is explicitly generated at the last convolutional layer of the network for each modality. A new back-propagated error E is defined to enforce both optimized classification results and consistent cancer response maps for different modalities, which help capture highly representative PCa-relevant features during the CNN feature learning process. The CNN features of each modality are concatenated and fed into a SVM classifier. For images which are classified to contain cancers, non-maximum suppression and adaptive