WorldWideScience

Sample records for network cnn based

  1. CNN-based ranking for biomedical entity normalization.

    Science.gov (United States)

    Li, Haodi; Chen, Qingcai; Tang, Buzhou; Wang, Xiaolong; Xu, Hua; Wang, Baohua; Huang, Dong

    2017-10-03

    Most state-of-the-art biomedical entity normalization systems, such as rule-based systems, merely rely on morphological information of entity mentions, but rarely consider their semantic information. In this paper, we introduce a novel convolutional neural network (CNN) architecture that regards biomedical entity normalization as a ranking problem and benefits from semantic information of biomedical entities. The CNN-based ranking method first generates candidates using handcrafted rules, and then ranks the candidates according to their semantic information modeled by CNN as well as their morphological information. Experiments on two benchmark datasets for biomedical entity normalization show that our proposed CNN-based ranking method outperforms traditional rule-based method with state-of-the-art performance. We propose a CNN architecture that regards biomedical entity normalization as a ranking problem. Comparison results show that semantic information is beneficial to biomedical entity normalization and can be well combined with morphological information in our CNN architecture for further improvement.

  2. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.

    Science.gov (United States)

    Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan

    2017-02-01

    We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. S-CNN: Subcategory-aware convolutional networks for object detection.

    Science.gov (United States)

    Chen, Tao; Lu, Shijian; Fan, Jiayuan

    2017-09-26

    The marriage between the deep convolutional neural network (CNN) and region proposals has made breakthroughs for object detection in recent years. While the discriminative object features are learned via a deep CNN for classification, the large intra-class variation and deformation still limit the performance of the CNN based object detection. We propose a subcategory-aware CNN (S-CNN) to solve the object intra-class variation problem. In the proposed technique, the training samples are first grouped into multiple subcategories automatically through a novel instance sharing maximum margin clustering process. A multi-component Aggregated Channel Feature (ACF) detector is then trained to produce more latent training samples, where each ACF component corresponds to one clustered subcategory. The produced latent samples together with their subcategory labels are further fed into a CNN classifier to filter out false proposals for object detection. An iterative learning algorithm is designed for the joint optimization of image subcategorization, multi-component ACF detector, and subcategory-aware CNN classifier. Experiments on INRIA Person dataset, Pascal VOC 2007 dataset and MS COCO dataset show that the proposed technique clearly outperforms the state-of-the-art methods for generic object detection.

  4. CNN for breaking text-based CAPTCHA with noise

    Science.gov (United States)

    Liu, Kaixuan; Zhang, Rong; Qing, Ke

    2017-07-01

    A CAPTCHA ("Completely Automated Public Turing test to tell Computers and Human Apart") system is a program that most humans can pass but current computer programs could hardly pass. As the most common type of CAPTCHAs , text-based CAPTCHA has been widely used in different websites to defense network bots. In order to breaking textbased CAPTCHA, in this paper, two trained CNN models are connected for the segmentation and classification of CAPTCHA images. Then base on these two models, we apply sliding window segmentation and voting classification methods realize an end-to-end CAPTCHA breaking system with high success rate. The experiment results show that our method is robust and effective in breaking text-based CAPTCHA with noise.

  5. Mining key elements for severe convection prediction based on CNN

    Science.gov (United States)

    Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng

    2017-04-01

    Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with

  6. Comparison of hand-craft feature based SVM and CNN based deep learning framework for automatic polyp classification.

    Science.gov (United States)

    Younghak Shin; Balasingham, Ilangko

    2017-07-01

    Colonoscopy is a standard method for screening polyps by highly trained physicians. Miss-detected polyps in colonoscopy are potential risk factor for colorectal cancer. In this study, we investigate an automatic polyp classification framework. We aim to compare two different approaches named hand-craft feature method and convolutional neural network (CNN) based deep learning method. Combined shape and color features are used for hand craft feature extraction and support vector machine (SVM) method is adopted for classification. For CNN approach, three convolution and pooling based deep learning framework is used for classification purpose. The proposed framework is evaluated using three public polyp databases. From the experimental results, we have shown that the CNN based deep learning framework shows better classification performance than the hand-craft feature based methods. It achieves over 90% of classification accuracy, sensitivity, specificity and precision.

  7. A CNN based neurobiology inspired approach for retinal image quality assessment.

    Science.gov (United States)

    Mahapatra, Dwarikanath; Roy, Pallab K; Sedai, Suman; Garnavi, Rahil

    2016-08-01

    Retinal image quality assessment (IQA) algorithms use different hand crafted features for training classifiers without considering the working of the human visual system (HVS) which plays an important role in IQA. We propose a convolutional neural network (CNN) based approach that determines image quality using the underlying principles behind the working of the HVS. CNNs provide a principled approach to feature learning and hence higher accuracy in decision making. Experimental results demonstrate the superior performance of our proposed algorithm over competing methods.

  8. Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN pada Caltech 101

    Directory of Open Access Journals (Sweden)

    Wayan Suartika Eka Putra

    2016-04-01

    Full Text Available Deep Learning adalah sebuah bidang keilmuan baru dalam bidang Machine Learning yang akhir-akhir ini berkembang karena perkembangan teknologi GPU accelaration. Deep Learning memiliki kemampuan yang sangat baik dalam visi komputer. Salah satunya adalah pada kasus klasifikasi objek pada citra. Dengan mengimplementasikan salah satu metode machine learning yang dapat digunakan untuk klasifikasi citra objek yaitu CNN. Metode CNN terdiri dari dua tahap. Tahap pertama adalah klasifikasi citra menggunakan feedforward. Tahap kedua merupakan tahap pembelajaran dengan metode backpropagation. Sebelum dilakukan klasifikasi, terlebih dahulu dilakukan praproses dengan metode wrapping dan cropping untuk memfokuskan objek yang akan diklasifikasi. Selanjutnya dilakukan training menggunakan metode feedforward dan backpropagation. Terakhir adalah tahap klasifikasi menggunakan metode feedforward dengan bobot dan bias yang diperbarui. Hasil uji coba dari klasifikasi citra objek dengan tingkat confusion yang berbeda pada basis data Caltech 101 menghasilkan rata-rata nilai akurasi mencapai. Sehingga dapat disimpulkan bahwa metode CNN yang digunakan pada Tugas Akhir ini mampu melakukan klasifikasi dengan baik.

  9. Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN).

    Science.gov (United States)

    Chen, Hu; Zhang, Yi; Kalra, Mannudeep K; Lin, Feng; Chen, Yang; Liao, Peixo; Zhou, Jiliu; Wang, Ge

    2017-06-13

    Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder-decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases. Especially, our method has been favorably evaluated in terms of noise suppression, structural preservation, and lesion detection.

  10. SampleCNN: End-to-End Deep Convolutional Neural Networks Using Very Small Filters for Music Classification

    Directory of Open Access Journals (Sweden)

    Jongpil Lee

    2018-01-01

    Full Text Available Convolutional Neural Networks (CNN have been applied to diverse machine learning tasks for different modalities of raw data in an end-to-end fashion. In the audio domain, a raw waveform-based approach has been explored to directly learn hierarchical characteristics of audio. However, the majority of previous studies have limited their model capacity by taking a frame-level structure similar to short-time Fourier transforms. We previously proposed a CNN architecture which learns representations using sample-level filters beyond typical frame-level input representations. The architecture showed comparable performance to the spectrogram-based CNN model in music auto-tagging. In this paper, we extend the previous work in three ways. First, considering the sample-level model requires much longer training time, we progressively downsample the input signals and examine how it affects the performance. Second, we extend the model using multi-level and multi-scale feature aggregation technique and subsequently conduct transfer learning for several music classification tasks. Finally, we visualize filters learned by the sample-level CNN in each layer to identify hierarchically learned features and show that they are sensitive to log-scaled frequency.

  11. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

    Science.gov (United States)

    Ren, Shaoqing; He, Kaiming; Girshick, Ross; Sun, Jian

    2017-06-01

    State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3] , our detection system has a frame rate of 5 fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.

  12. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning

    Science.gov (United States)

    Hoo-Chang, Shin; Roth, Holger R.; Gao, Mingchen; Lu, Le; Xu, Ziyue; Nogues, Isabella; Yao, Jianhua; Mollura, Daniel

    2016-01-01

    Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets (i.e. ImageNet) and the revival of deep convolutional neural networks (CNN). CNNs enable learning data-driven, highly representative, layered hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models (supervised) pre-trained from natural image dataset to medical image tasks (although domain transfer between two medical image datasets is also possible). In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computeraided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, with 85% sensitivity at 3 false positive per patient, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance

  13. Respiratory motion correction for free-breathing 3D abdominal MRI using CNN based image registration: a feasibility study.

    Science.gov (United States)

    Lv, Jun; Yang, Ming; Zhang, Jue; Wang, Xiaoying

    2017-12-20

    Free-breathing abdomen imaging requires non-rigid motion registration of unavoidable respiratory motion in 3D under-sampled datasets. In this work, we introduce an image registration method based on the convolutional neural network (CNN) to obtain motion-free abdominal images throughout the respiratory cycle. Abdominal data were acquired from 10 volunteers using a 1.5T MRI system. The respiratory signal was extracted from the central-space spokes, and the acquired data were reordered in 3 bins according to the corresponding breathing signal. Retrospective image reconstruction of the 3 near-motion free respiratory phases was performed using non-Cartesian iterative SENSE reconstruction. Then, we trained a CNN to analyse the spatial transform among the different bins. This network could generate the displacement vector field and be applied to perform registration on unseen image pairs. To demonstrate the feasibility of this registration method, we compared the performance of three different registration approaches for accurate image fusion of 3 bins: non-motion corrected (NMC), LREG and CNN. Visualisation of coronal images indicated that LREG had caused broken blood vessels, while the vessels of the CNN were sharper and more consecutive. As shown in the sagittal view, compared to NMC and CNN, distorted and blurred liver contours were caused by LREG. At the same time, zoom-in axial images presented that the vessels were delineated more clearly by CNN than LREG. The statistical results of the signal-to-noise ratio, visual score, vessel sharpness and registration time over all volunteers were compared among the NMC, LREG and CNN approaches. The SNR indicated that the CNN acquired the best image quality (207.42±96.73), which was better than NMC (116.67±44.70) and LREG (187.93±96.68). The image visual score agreed with SNR, marking CNN (3.85±0.12) as the best, followed by LREG (3.43±0.13) and NMC (2.55±0.09). A vessel sharpness assessment yielded similar values

  14. PARTICLE SWARM OPTIMIZATION (PSO FOR TRAINING OPTIMIZATION ON CONVOLUTIONAL NEURAL NETWORK (CNN

    Directory of Open Access Journals (Sweden)

    Arie Rachmad Syulistyo

    2016-02-01

    Full Text Available Neural network attracts plenty of researchers lately. Substantial number of renowned universities have developed neural network for various both academically and industrially applications. Neural network shows considerable performance on various purposes. Nevertheless, for complex applications, neural network’s accuracy significantly deteriorates. To tackle the aforementioned drawback, lot of researches had been undertaken on the improvement of the standard neural network. One of the most promising modifications on standard neural network for complex applications is deep learning method. In this paper, we proposed the utilization of Particle Swarm Optimization (PSO in Convolutional Neural Networks (CNNs, which is one of the basic methods in deep learning. The use of PSO on the training process aims to optimize the results of the solution vectors on CNN in order to improve the recognition accuracy. The data used in this research is handwritten digit from MNIST. The experiments exhibited that the accuracy can be attained in 4 epoch is 95.08%. This result was better than the conventional CNN and DBN.  The execution time was also almost similar to the conventional CNN. Therefore, the proposed method was a promising method.

  15. S-CNN-BASED SHIP DETECTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2016-06-01

    Full Text Available Reliable ship detection plays an important role in both military and civil fields. However, it makes the task difficult with high-resolution remote sensing images with complex background and various types of ships with different poses, shapes and scales. Related works mostly used gray and shape features to detect ships, which obtain results with poor robustness and efficiency. To detect ships more automatically and robustly, we propose a novel ship detection method based on the convolutional neural networks (CNNs, called SCNN, fed with specifically designed proposals extracted from the ship model combined with an improved saliency detection method. Firstly we creatively propose two ship models, the “V” ship head model and the “||” ship body one, to localize the ship proposals from the line segments extracted from a test image. Next, for offshore ships with relatively small sizes, which cannot be efficiently picked out by the ship models due to the lack of reliable line segments, we propose an improved saliency detection method to find these proposals. Therefore, these two kinds of ship proposals are fed to the trained CNN for robust and efficient detection. Experimental results on a large amount of representative remote sensing images with different kinds of ships with varied poses, shapes and scales demonstrate the efficiency and robustness of our proposed S-CNN-Based ship detector.

  16. A 2D-View Depth Image- and CNN-Based 3D Model Identification Method

    Directory of Open Access Journals (Sweden)

    Yiyu Hong

    2017-09-01

    Full Text Available With the rapid development of three-dimensional (3D technology and an increase in the number of available models, issues with copyright protection of 3D models are inevitable. In this paper, we propose a 2D-view depth image- and convolutional neural network (CNN-based 3D model identification method. To identify a 3D model, we first need an adequate number of the modified versions that could be made by copyright infringers. Then, they can be represented by a number of 2D-view depth images that are captured from evenly distributed vertices on a regular convex polyhedron. Finally, a CNN is trained by these depth images to acquire the capability of identifying the 3D model. The experiment carried out with the dataset of Shape Retrieval Contest 2015 (SHREC’15: Non-Rigid 3D Shape Retrieval shows the practicability of our method, which yields 93.5% accuracy. The effectiveness of the proposed method is demonstrated via evaluation in the latest standard benchmark SHREC’17 Deformable Shape Retrieval with Missing Parts. It clearly shows superior or comparable performance to state-of-the-art methods, shown by the fact that it is in the top three of the 11 participating methods (without counting different runs.

  17. Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity

    Directory of Open Access Journals (Sweden)

    Paolo Napoletano

    2018-01-01

    Full Text Available Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.

  18. Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity.

    Science.gov (United States)

    Napoletano, Paolo; Piccoli, Flavio; Schettini, Raimondo

    2018-01-12

    Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.

  19. Pairwise domain adaptation module for CNN-based 2-D/3-D registration.

    Science.gov (United States)

    Zheng, Jiannan; Miao, Shun; Jane Wang, Z; Liao, Rui

    2018-04-01

    Accurate two-dimensional to three-dimensional (2-D/3-D) registration of preoperative 3-D data and intraoperative 2-D x-ray images is a key enabler for image-guided therapy. Recent advances in 2-D/3-D registration formulate the problem as a learning-based approach and exploit the modeling power of convolutional neural networks (CNN) to significantly improve the accuracy and efficiency of 2-D/3-D registration. However, for surgery-related applications, collecting a large clinical dataset with accurate annotations for training can be very challenging or impractical. Therefore, deep learning-based 2-D/3-D registration methods are often trained with synthetically generated data, and a performance gap is often observed when testing the trained model on clinical data. We propose a pairwise domain adaptation (PDA) module to adapt the model trained on source domain (i.e., synthetic data) to target domain (i.e., clinical data) by learning domain invariant features with only a few paired real and synthetic data. The PDA module is designed to be flexible for different deep learning-based 2-D/3-D registration frameworks, and it can be plugged into any pretrained CNN model such as a simple Batch-Norm layer. The proposed PDA module has been quantitatively evaluated on two clinical applications using different frameworks of deep networks, demonstrating its significant advantages of generalizability and flexibility for 2-D/3-D medical image registration when a small number of paired real-synthetic data can be obtained.

  20. Lane marking detection based on waveform analysis and CNN

    Science.gov (United States)

    Ye, Yang Yang; Chen, Hou Jin; Hao, Xiao Li

    2017-06-01

    Lane markings detection is a very important part of the ADAS to avoid traffic accidents. In order to obtain accurate lane markings, in this work, a novel and efficient algorithm is proposed, which analyses the waveform generated from the road image after inverse perspective mapping (IPM). The algorithm includes two main stages: the first stage uses an image preprocessing including a CNN to reduce the background and enhance the lane markings. The second stage obtains the waveform of the road image and analyzes the waveform to get lanes. The contribution of this work is that we introduce local and global features of the waveform to detect the lane markings. The results indicate the proposed method is robust in detecting and fitting the lane markings.

  1. Evaluation of CNN as anthropomorphic model observer

    Science.gov (United States)

    Massanes, Francesc; Brankov, Jovan G.

    2017-03-01

    Model observers (MO) are widely used in medical imaging to act as surrogates of human observers in task-based image quality evaluation, frequently towards optimization of reconstruction algorithms. In this paper, we explore the use of convolutional neural networks (CNN) to be used as MO. We will compare CNN MO to alternative MO currently being proposed and used such as the relevance vector machine based MO and channelized Hotelling observer (CHO). As the success of the CNN, and other deep learning approaches, is rooted in large data sets availability, which is rarely the case in medical imaging systems task-performance evaluation, we will evaluate CNN performance on both large and small training data sets.

  2. Mobile robots exploration through cnn-based reinforcement learning.

    Science.gov (United States)

    Tai, Lei; Liu, Ming

    2016-01-01

    Exploration in an unknown environment is an elemental application for mobile robots. In this paper, we outlined a reinforcement learning method aiming for solving the exploration problem in a corridor environment. The learning model took the depth image from an RGB-D sensor as the only input. The feature representation of the depth image was extracted through a pre-trained convolutional-neural-networks model. Based on the recent success of deep Q-network on artificial intelligence, the robot controller achieved the exploration and obstacle avoidance abilities in several different simulated environments. It is the first time that the reinforcement learning is used to build an exploration strategy for mobile robots through raw sensor information.

  3. CNN-Based Vision Model for Obstacle Avoidance of Mobile Robot

    Directory of Open Access Journals (Sweden)

    Liu Canglong

    2017-01-01

    Full Text Available Exploration in a known or unknown environment for a mobile robot is an essential application. In the paper, we study the mobile robot obstacle avoidance problem in an indoor environment. We present an end-to-end learning model based Convolutional Neural Network (CNN, which takes the raw image obtained from camera as only input. And the method converts directly the raw pixels to steering commands including turn left, turn right and go straight. Training data was collected by a human remotely controlled mobile robot which was manipulated to explore in a structure environment without colliding into obstacles. Our neural network was trained under caffe framework and specific instructions are executed by the Robot Operating System (ROS. We analysis the effect of the datasets from different environments with some marks on training process and several real-time detect experiments were designed. The final test result shows that the accuracy can be improved by increase the marks in a structured environment and our model can get high accuracy on obstacle avoidance for mobile robots.

  4. Low-Grade Glioma Segmentation Based on CNN with Fully Connected CRF

    Directory of Open Access Journals (Sweden)

    Zeju Li

    2017-01-01

    Full Text Available This work proposed a novel automatic three-dimensional (3D magnetic resonance imaging (MRI segmentation method which would be widely used in the clinical diagnosis of the most common and aggressive brain tumor, namely, glioma. The method combined a multipathway convolutional neural network (CNN and fully connected conditional random field (CRF. Firstly, 3D information was introduced into the CNN which makes more accurate recognition of glioma with low contrast. Then, fully connected CRF was added as a postprocessing step which purposed more delicate delineation of glioma boundary. The method was applied to T2flair MRI images of 160 low-grade glioma patients. With 59 cases of data training and manual segmentation as the ground truth, the Dice similarity coefficient (DSC of our method was 0.85 for the test set of 101 MRI images. The results of our method were better than those of another state-of-the-art CNN method, which gained the DSC of 0.76 for the same dataset. It proved that our method could produce better results for the segmentation of low-grade gliomas.

  5. Low-Resource Cross-Domain Product Review Sentiment Classification Based on a CNN with an Auxiliary Large-Scale Corpus

    Directory of Open Access Journals (Sweden)

    Xiaocong Wei

    2017-07-01

    Full Text Available The literature [-5]contains several reports evaluating the abilities of deep neural networks in text transfer learning. To our knowledge, however, there have been few efforts to fully realize the potential of deep neural networks in cross-domain product review sentiment classification. In this paper, we propose a two-layer convolutional neural network (CNN for cross-domain product review sentiment classification (LM-CNN-LB. Transfer learning research into product review sentiment classification based on deep neural networks has been limited by the lack of a large-scale corpus; we sought to remedy this problem using a large-scale auxiliary cross-domain dataset collected from Amazon product reviews. Our proposed framework exhibits the dramatic transferability of deep neural networks for cross-domain product review sentiment classification and achieves state-of-the-art performance. The framework also outperforms complex engineered features used with a non-deep neural network method. The experiments demonstrate that introducing large-scale data from similar domains is an effective way to resolve the lack of training data. The LM-CNN-LB trained on the multi-source related domain dataset outperformed the one trained on a single similar domain.

  6. Cnn Based Retinal Image Upscaling Using Zero Component Analysis

    Science.gov (United States)

    Nasonov, A.; Chesnakov, K.; Krylov, A.

    2017-05-01

    The aim of the paper is to obtain high quality of image upscaling for noisy images that are typical in medical image processing. A new training scenario for convolutional neural network based image upscaling method is proposed. Its main idea is a novel dataset preparation method for deep learning. The dataset contains pairs of noisy low-resolution images and corresponding noiseless highresolution images. To achieve better results at edges and textured areas, Zero Component Analysis is applied to these images. The upscaling results are compared with other state-of-the-art methods like DCCI, SI-3 and SRCNN on noisy medical ophthalmological images. Objective evaluation of the results confirms high quality of the proposed method. Visual analysis shows that fine details and structures like blood vessels are preserved, noise level is reduced and no artifacts or non-existing details are added. These properties are essential in retinal diagnosis establishment, so the proposed algorithm is recommended to be used in real medical applications.

  7. Fuzzy-C-Means Clustering Based Segmentation and CNN-Classification for Accurate Segmentation of Lung Nodules

    Science.gov (United States)

    K, Jalal Deen; R, Ganesan; A, Merline

    2017-07-27

    Objective: Accurate segmentation of abnormal and healthy lungs is very crucial for a steadfast computer-aided disease diagnostics. Methods: For this purpose a stack of chest CT scans are processed. In this paper, novel methods are proposed for segmentation of the multimodal grayscale lung CT scan. In the conventional methods using Markov–Gibbs Random Field (MGRF) model the required regions of interest (ROI) are identified. Result: The results of proposed FCM and CNN based process are compared with the results obtained from the conventional method using MGRF model. The results illustrate that the proposed method can able to segment the various kinds of complex multimodal medical images precisely. Conclusion: However, in this paper, to obtain an exact boundary of the regions, every empirical dispersion of the image is computed by Fuzzy C-Means Clustering segmentation. A classification process based on the Convolutional Neural Network (CNN) classifier is accomplished to distinguish the normal tissue and the abnormal tissue. The experimental evaluation is done using the Interstitial Lung Disease (ILD) database. Creative Commons Attribution License

  8. A CNN-Specific Integrated Processor

    Science.gov (United States)

    Malki, Suleyman; Spaanenburg, Lambert

    2009-12-01

    Integrated Processors (IP) are algorithm-specific cores that either by programming or by configuration can be re-used within many microelectronic systems. This paper looks at Cellular Neural Networks (CNN) to become realized as IP. First current digital implementations are reviewed, and the memoryprocessor bandwidth issues are analyzed. Then a generic view is taken on the structure of the network, and a new intra-communication protocol based on rotating wheels is proposed. It is shown that this provides for guaranteed high-performance with a minimal network interface. The resulting node is small and supports multi-level CNN designs, giving the system a 30-fold increase in capacity compared to classical designs. As it facilitates multiple operations on a single image, and single operations on multiple images, with minimal access to the external image memory, balancing the internal and external data transfer requirements optimizes the system operation. In conventional digital CNN designs, the treatment of boundary nodes requires additional logic to handle the CNN value propagation scheme. In the new architecture, only a slight modification of the existing cells is necessary to model the boundary effect. A typical prototype for visual pattern recognition will house 4096 CNN cells with a 2% overhead for making it an IP.

  9. A CNN-Specific Integrated Processor

    Directory of Open Access Journals (Sweden)

    Suleyman Malki

    2009-01-01

    Full Text Available Integrated Processors (IP are algorithm-specific cores that either by programming or by configuration can be re-used within many microelectronic systems. This paper looks at Cellular Neural Networks (CNN to become realized as IP. First current digital implementations are reviewed, and the memoryprocessor bandwidth issues are analyzed. Then a generic view is taken on the structure of the network, and a new intra-communication protocol based on rotating wheels is proposed. It is shown that this provides for guaranteed high-performance with a minimal network interface. The resulting node is small and supports multi-level CNN designs, giving the system a 30-fold increase in capacity compared to classical designs. As it facilitates multiple operations on a single image, and single operations on multiple images, with minimal access to the external image memory, balancing the internal and external data transfer requirements optimizes the system operation. In conventional digital CNN designs, the treatment of boundary nodes requires additional logic to handle the CNN value propagation scheme. In the new architecture, only a slight modification of the existing cells is necessary to model the boundary effect. A typical prototype for visual pattern recognition will house 4096 CNN cells with a 2% overhead for making it an IP.

  10. a Rough Set Decision Tree Based Mlp-Cnn for Very High Resolution Remotely Sensed Image Classification

    Science.gov (United States)

    Zhang, C.; Pan, X.; Zhang, S. Q.; Li, H. P.; Atkinson, P. M.

    2017-09-01

    Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR) images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP), which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  11. A ROUGH SET DECISION TREE BASED MLP-CNN FOR VERY HIGH RESOLUTION REMOTELY SENSED IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-09-01

    Full Text Available Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP, which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  12. A CNN-Based Method of Vehicle Detection from Aerial Images Using Hard Example Mining

    Directory of Open Access Journals (Sweden)

    Yohei Koga

    2018-01-01

    Full Text Available Recently, deep learning techniques have had a practical role in vehicle detection. While much effort has been spent on applying deep learning to vehicle detection, the effective use of training data has not been thoroughly studied, although it has great potential for improving training results, especially in cases where the training data are sparse. In this paper, we proposed using hard example mining (HEM in the training process of a convolutional neural network (CNN for vehicle detection in aerial images. We applied HEM to stochastic gradient descent (SGD to choose the most informative training data by calculating the loss values in each batch and employing the examples with the largest losses. We picked 100 out of both 500 and 1000 examples for training in one iteration, and we tested different ratios of positive to negative examples in the training data to evaluate how the balance of positive and negative examples would affect the performance. In any case, our method always outperformed the plain SGD. The experimental results for images from New York showed improved performance over a CNN trained in plain SGD where the F1 score of our method was 0.02 higher.

  13. CNN a paradigm for complexity

    CERN Document Server

    Chua, Leon O

    1998-01-01

    Revolutionary and original, this treatise presents a new paradigm of EMERGENCE and COMPLEXITY, with applications drawn from numerous disciplines, including artificial life, biology, chemistry, computation, physics, image processing, information science, etc.CNN is an acronym for Cellular Neural Networks when used in the context of brain science, or Cellular Nonlinear Networks, when used in the context of emergence and complexity. A CNN is modeled by cells and interactions: cells are defined as dynamical systems and interactions are defined via coupling laws. The CNN paradigm is a universal Tur

  14. A Smartphone Camera-Based Indoor Positioning Algorithm of Crowded Scenarios with the Assistance of Deep CNN.

    Science.gov (United States)

    Jiao, Jichao; Li, Fei; Deng, Zhongliang; Ma, Wenjing

    2017-03-28

    Considering the installation cost and coverage, the received signal strength indicator (RSSI)-based indoor positioning system is widely used across the world. However, the indoor positioning performance, due to the interference of wireless signals that are caused by the complex indoor environment that includes a crowded population, cannot achieve the demands of indoor location-based services. In this paper, we focus on increasing the signal strength estimation accuracy considering the population density, which is different to the other RSSI-based indoor positioning methods. Therefore, we propose a new wireless signal compensation model considering the population density, distance, and frequency. First of all, the number of individuals in an indoor crowded scenario can be calculated by our convolutional neural network (CNN)-based human detection approach. Then, the relationship between the population density and the signal attenuation is described in our model. Finally, we use the trilateral positioning principle to realize the pedestrian location. According to the simulation and tests in the crowded scenarios, the proposed model increases the accuracy of the signal strength estimation by 1.53 times compared to that without considering the human body. Therefore, the localization accuracy is less than 1.37 m, which indicates that our algorithm can improve the indoor positioning performance and is superior to other RSSI models.

  15. Nonlinear Circuits and Neural Networks: Chip Implementation and Applications of the TeraOPS CNN Dynamic Array Supercomputer

    National Research Council Canada - National Science Library

    Chua, L

    1998-01-01

    .... Advances in research have been made in the following areas: (1) The design and implementation of the first-ever ARAM in the CNN Chip Set Architecture was successfully competed, and the samples were successfully tested; (2...

  16. CirCNN: Accelerating and Compressing Deep Neural Networks Using Block-CirculantWeight Matrices

    OpenAIRE

    Ding, Caiwen; Liao, Siyu; Wang, Yanzhi; Li, Zhe; Liu, Ning; Zhuo, Youwei; Wang, Chao; Qian, Xuehai; Bai, Yu; Yuan, Geng; Ma, Xiaolong; Zhang, Yipeng; Tang, Jian; Qiu, Qinru; Lin, Xue

    2017-01-01

    Large-scale deep neural networks (DNNs) are both compute and memory intensive. As the size of DNNs continues to grow, it is critical to improve the energy efficiency and performance while maintaining accuracy. For DNNs, the model size is an important factor affecting performance, scalability and energy efficiency. Weight pruning achieves good compression ratios but suffers from three drawbacks: 1) the irregular network structure after pruning; 2) the increased training complexity; and 3) the ...

  17. Video-based convolutional neural networks for activity recognition from robot-centric videos

    Science.gov (United States)

    Ryoo, M. S.; Matthies, Larry

    2016-05-01

    In this evaluation paper, we discuss convolutional neural network (CNN)-based approaches for human activity recognition. In particular, we investigate CNN architectures designed to capture temporal information in videos and their applications to the human activity recognition problem. There have been multiple previous works to use CNN-features for videos. These include CNNs using 3-D XYT convolutional filters, CNNs using pooling operations on top of per-frame image-based CNN descriptors, and recurrent neural networks to learn temporal changes in per-frame CNN descriptors. We experimentally compare some of these different representatives CNNs while using first-person human activity videos. We especially focus on videos from a robots viewpoint, captured during its operations and human-robot interactions.

  18. Continuous Chinese sign language recognition with CNN-LSTM

    Science.gov (United States)

    Yang, Su; Zhu, Qing

    2017-07-01

    The goal of sign language recognition (SLR) is to translate the sign language into text, and provide a convenient tool for the communication between the deaf-mute and the ordinary. In this paper, we formulate an appropriate model based on convolutional neural network (CNN) combined with Long Short-Term Memory (LSTM) network, in order to accomplish the continuous recognition work. With the strong ability of CNN, the information of pictures captured from Chinese sign language (CSL) videos can be learned and transformed into vector. Since the video can be regarded as an ordered sequence of frames, LSTM model is employed to connect with the fully-connected layer of CNN. As a recurrent neural network (RNN), it is suitable for sequence learning tasks with the capability of recognizing patterns defined by temporal distance. Compared with traditional RNN, LSTM has performed better on storing and accessing information. We evaluate this method on our self-built dataset including 40 daily vocabularies. The experimental results show that the recognition method with CNN-LSTM can achieve a high recognition rate with small training sets, which will meet the needs of real-time SLR system.

  19. Learning Oriented Region-based Convolutional Neural Networks for Building Detection in Satellite Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    C. Chen

    2017-05-01

    Full Text Available The automated building detection in aerial images is a fundamental problem encountered in aerial and satellite images analysis. Recently, thanks to the advances in feature descriptions, Region-based CNN model (R-CNN for object detection is receiving an increasing attention. Despite the excellent performance in object detection, it is problematic to directly leverage the features of R-CNN model for building detection in single aerial image. As we know, the single aerial image is in vertical view and the buildings possess significant directional feature. However, in R-CNN model, direction of the building is ignored and the detection results are represented by horizontal rectangles. For this reason, the detection results with horizontal rectangle cannot describe the building precisely. To address this problem, in this paper, we proposed a novel model with a key feature related to orientation, namely, Oriented R-CNN (OR-CNN. Our contributions are mainly in the following two aspects: 1 Introducing a new oriented layer network for detecting the rotation angle of building on the basis of the successful VGG-net R-CNN model; 2 the oriented rectangle is proposed to leverage the powerful R-CNN for remote-sensing building detection. In experiments, we establish a complete and bran-new data set for training our oriented R-CNN model and comprehensively evaluate the proposed method on a publicly available building detection data set. We demonstrate State-of-the-art results compared with the previous baseline methods.

  20. Learning Oriented Region-based Convolutional Neural Networks for Building Detection in Satellite Remote Sensing Images

    Science.gov (United States)

    Chen, C.; Gong, W.; Hu, Y.; Chen, Y.; Ding, Y.

    2017-05-01

    The automated building detection in aerial images is a fundamental problem encountered in aerial and satellite images analysis. Recently, thanks to the advances in feature descriptions, Region-based CNN model (R-CNN) for object detection is receiving an increasing attention. Despite the excellent performance in object detection, it is problematic to directly leverage the features of R-CNN model for building detection in single aerial image. As we know, the single aerial image is in vertical view and the buildings possess significant directional feature. However, in R-CNN model, direction of the building is ignored and the detection results are represented by horizontal rectangles. For this reason, the detection results with horizontal rectangle cannot describe the building precisely. To address this problem, in this paper, we proposed a novel model with a key feature related to orientation, namely, Oriented R-CNN (OR-CNN). Our contributions are mainly in the following two aspects: 1) Introducing a new oriented layer network for detecting the rotation angle of building on the basis of the successful VGG-net R-CNN model; 2) the oriented rectangle is proposed to leverage the powerful R-CNN for remote-sensing building detection. In experiments, we establish a complete and bran-new data set for training our oriented R-CNN model and comprehensively evaluate the proposed method on a publicly available building detection data set. We demonstrate State-of-the-art results compared with the previous baseline methods.

  1. A fast method for particle picking in cryo-electron micrographs based on fast R-CNN

    Science.gov (United States)

    Xiao, Yifan; Yang, Guangwen

    2017-06-01

    We propose a fast method to automatically pick protein particles in cryo-EM micrographs, which is now completed manually in practice. Our method is based on Fast R-CNN, with sliding window as the regions proposal solution. To reduce the false positive detections, we set a single class for the major contaminant ice, and pick out all the ice particles in the whole datasets. Tests on the recently-published cryo-EM data of three proteins have demonstrated that our approach can automatically accomplish the human-level particle picking task, and we successfully reduce the test time from 1.5 minutes of previous deep learning method to 2 seconds without any recall or precision losses. Our program is available under the MIT License at https://github.com/xiao1fan/FastParticlePicker.

  2. Spatio-Temporal Pain Recognition in CNN-based Super-Resolved Facial Images

    DEFF Research Database (Denmark)

    Bellantonio, Marco; Haque, Mohammad Ahsanul; Rodriguez, Pau

    2017-01-01

    Automatic pain detection is a long expected solution to a prevalent medical problem of pain management. This is more relevant when the subject of pain is young children or patients with limited ability to communicate about their pain experience. Computer vision-based analysis of facial pain...... to pain in each of the facial video frames, temporal axis information regarding to pain expression pattern in a subject video sequence, and variation of face resolution. We employed a combination of convolutional neural network and recurrent neural network to setup a deep hybrid pain detection framework...... that is able to exploit both spatial and temporal pain information from facial video. In order to analyze the effect of different facial resolutions, we introduce a super-resolution algorithm to generate facial video frames with different resolution setups. We investigated the performance on the publicly...

  3. Multi-region two-stream R-CNN for action detection

    OpenAIRE

    Peng, Xiaojiang; Schmid, Cordelia

    2016-01-01

    International audience; We propose a multi-region two-stream R-CNN model for action detection in realistic videos. We start from frame-level action detection based on faster R-CNN [1], and make three contributions: (1) we show that a motion region proposal network generates high-quality proposals , which are complementary to those of an appearance region proposal network; (2) we show that stacking optical flow over several frames significantly improves frame-level action detection; and (3) we...

  4. Edge of chaos in reaction diffusion CNN model

    Directory of Open Access Journals (Sweden)

    Slavova Angela

    2017-02-01

    Full Text Available In this paper, we study the dynamics of a reaction-diffusion Cellular Nonlinear Network (RD-CNN nodel in which the reaction term is represented by Brusselator cell. We investigate the RD-CNN dynamics by means of describing function method. Comparison with classical results for Brusselator equation is provided. Then we introduce a new RD-CNN model with memristor coupling, for which the edge of chaos regime in the parameter space is determined. Numerical simulations are presented for obtaining dynamic patterns in the RD-CNN model with memristor coupling.

  5. Cellular Neural Network-Based Methods for Distributed Network Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2015-01-01

    Full Text Available According to the problems of current distributed architecture intrusion detection systems (DIDS, a new online distributed intrusion detection model based on cellular neural network (CNN was proposed, in which discrete-time CNN (DTCNN was used as weak classifier in each local node and state-controlled CNN (SCCNN was used as global detection method, respectively. We further proposed a new method for design template parameters of SCCNN via solving Linear Matrix Inequality. Experimental results based on KDD CUP 99 dataset show its feasibility and effectiveness. Emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation which allows the distributed intrusion detection to be performed better.

  6. Classification of CT brain images based on deep learning networks.

    Science.gov (United States)

    Gao, Xiaohong W; Hui, Rui; Tian, Zengmin

    2017-01-01

    While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information

  7. CNN Newsroom Classroom Guides, June 2002.

    Science.gov (United States)

    Cable News Network, Atlanta, GA.

    These classroom guides, designed to accompany the daily CNN (Cable News Network) Newsroom broadcasts for the month of June 2002, provide program rundowns, suggestions for class activities and discussion, student handouts, and a list of related news terms. Major topics covered include: the Kashmir conflict; the Pakistan and the Kazahkstan Summit;…

  8. Automated assessment of breast tissue density in non-contrast 3D CT images without image segmentation based on a deep CNN

    Science.gov (United States)

    Zhou, Xiangrong; Kano, Takuya; Koyasu, Hiromi; Li, Shuo; Zhou, Xinxin; Hara, Takeshi; Matsuo, Masayuki; Fujita, Hiroshi

    2017-03-01

    This paper describes a novel approach for the automatic assessment of breast density in non-contrast three-dimensional computed tomography (3D CT) images. The proposed approach trains and uses a deep convolutional neural network (CNN) from scratch to classify breast tissue density directly from CT images without segmenting the anatomical structures, which creates a bottleneck in conventional approaches. Our scheme determines breast density in a 3D breast region by decomposing the 3D region into several radial 2D-sections from the nipple, and measuring the distribution of breast tissue densities on each 2D section from different orientations. The whole scheme is designed as a compact network without the need for post-processing and provides high robustness and computational efficiency in clinical settings. We applied this scheme to a dataset of 463 non-contrast CT scans obtained from 30- to 45-year-old-women in Japan. The density of breast tissue in each CT scan was assigned to one of four categories (glandular tissue within the breast 75%) by a radiologist as ground truth. We used 405 CT scans for training a deep CNN and the remaining 58 CT scans for testing the performance. The experimental results demonstrated that the findings of the proposed approach and those of the radiologist were the same in 72% of the CT scans among the training samples and 76% among the testing samples. These results demonstrate the potential use of deep CNN for assessing breast tissue density in non-contrast 3D CT images.

  9. The CNN Effect: Stretegic Enabler or Operational Risk?

    National Research Council Canada - National Science Library

    Belknap, Margaret

    2001-01-01

    .... Satellite technology and the proliferation of 2417 news networks have created and increased the so-called 'CNN effect' on strategic level decision-making and how warfighters direct their commands...

  10. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    Science.gov (United States)

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  11. Adaptive Steganalysis Based on Selection Region and Combined Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Donghui Hu

    2017-01-01

    Full Text Available Digital image steganalysis is the art of detecting the presence of information hiding in carrier images. When detecting recently developed adaptive image steganography methods, state-of-art steganalysis methods cannot achieve satisfactory detection accuracy, because the adaptive steganography methods can adaptively embed information into regions with rich textures via the guidance of distortion function and thus make the effective steganalysis features hard to be extracted. Inspired by the promising success which convolutional neural network (CNN has achieved in the fields of digital image analysis, increasing researchers are devoted to designing CNN based steganalysis methods. But as for detecting adaptive steganography methods, the results achieved by CNN based methods are still far from expected. In this paper, we propose a hybrid approach by designing a region selection method and a new CNN framework. In order to make the CNN focus on the regions with complex textures, we design a region selection method by finding a region with the maximal sum of the embedding probabilities. To evolve more diverse and effective steganalysis features, we design a new CNN framework consisting of three separate subnets with independent structure and configuration parameters and then merge and split the three subnets repeatedly. Experimental results indicate that our approach can lead to performance improvement in detecting adaptive steganography.

  12. Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach.

    Science.gov (United States)

    Zeng, Nianyin; Wang, Zidong; Zineddin, Bachar; Li, Yurong; Du, Min; Xiao, Liang; Liu, Xiaohui; Young, Terry

    2014-05-01

    Gold immunochromatographic strip assay provides a rapid, simple, single-copy and on-site way to detect the presence or absence of the target analyte. This paper aims to develop a method for accurately segmenting the test line and control line of the gold immunochromatographic strip (GICS) image for quantitatively determining the trace concentrations in the specimen, which can lead to more functional information than the traditional qualitative or semi-quantitative strip assay. The canny operator as well as the mathematical morphology method is used to detect and extract the GICS reading-window. Then, the test line and control line of the GICS reading-window are segmented by the cellular neural network (CNN) algorithm, where the template parameters of the CNN are designed by the switching particle swarm optimization (SPSO) algorithm for improving the performance of the CNN. It is shown that the SPSO-based CNN offers a robust method for accurately segmenting the test and control lines, and therefore serves as a novel image methodology for the interpretation of GICS. Furthermore, quantitative comparison is carried out among four algorithms in terms of the peak signal-to-noise ratio. It is concluded that the proposed CNN algorithm gives higher accuracy and the CNN is capable of parallelism and analog very-large-scale integration implementation within a remarkably efficient time.

  13. Convolutional Neural Network-based SAR Image Classification with Noisy Labels

    Directory of Open Access Journals (Sweden)

    Zhao Juanping

    2017-10-01

    Full Text Available SAR image classification is an important task in SAR image interpretation. Supervised learning methods, such as the Convolutional Neural Network (CNN, demand samples that are accurately labeled. However, this presents a major challenge in SAR image labeling. Due to their unique imaging mechanism, SAR images are seriously affected by speckle, geometric distortion, and incomplete structural information. Thus, SAR images have a strong non-intuitive property, which causes difficulties in SAR image labeling, and which results in the weakened learning and generalization performance of many classifiers (including CNN. In this paper, we propose a Probability Transition CNN (PTCNN for patch-level SAR image classification with noisy labels. Based on the classical CNN, PTCNN builds a bridge between noise-free labels and their noisy versions via a noisy-label transition layer. As such, we derive a new CNN model trained with a noisily labeled training dataset that can potentially revise noisy labels and improve learning capacity with noisily labeled data. We use a 16-class land cover dataset and the MSTAR dataset to demonstrate the effectiveness of our model. Our experimental results show the PTCNN model to be robust with respect to label noise and demonstrate its promising classification performance compared with the classical CNN model. Therefore, the proposed PTCNN model could lower the standards required regarding the quality of image labels and have a variety of practical applications.

  14. Scene Text Detection and Segmentation based on Cascaded Convolution Neural Networks.

    Science.gov (United States)

    Tang, Youbao; Wu, Xiangqian

    2017-01-20

    Scene text detection and segmentation are two important and challenging research problems in the field of computer vision. This paper proposes a novel method for scene text detection and segmentation based on cascaded convolution neural networks (CNNs). In this method, a CNN based text-aware candidate text region (CTR) extraction model (named detection network, DNet) is designed and trained using both the edges and the whole regions of text, with which coarse CTRs are detected. A CNN based CTR refinement model (named segmentation network, SNet) is then constructed to precisely segment the coarse CTRs into text to get the refined CTRs. With DNet and SNet, much fewer CTRs are extracted than with traditional approaches while more true text regions are kept. The refined CTRs are finally classified using a CNN based CTR classification model (named classification network, CNet) to get the final text regions. All of these CNN based models are modified from VGGNet-16. Extensive experiments on three benchmark datasets demonstrate that the proposed method achieves state-of-the-art performance and greatly outperforms other scene text detection and segmentation approaches.

  15. A cellular neural network based method for classification of magnetic resonance images: towards an automated detection of hippocampal sclerosis.

    Science.gov (United States)

    Döhler, Florian; Mormann, Florian; Weber, Bernd; Elger, Christian E; Lehnertz, Klaus

    2008-05-30

    We present a cellular neuronal network (CNN) based approach to classify magnetic resonance images with and without hippocampal or Ammon's horn sclerosis (AHS) in the medial temporal lobe. A CNN combines the architecture of cellular automata and artificial neural networks and is an array of locally coupled nonlinear electrical circuits or cells, which is capable of processing a large amount of information in parallel and in real time. Using an exemplary database that consists of a large number of volumes of interest extracted from T1-weighted magnetic resonance images from 144 subjects we here demonstrate that the network allows to classify brain tissue with respect to the presence or absence of mesial temporal sclerosis. Results indicate the general feasibility of CNN-based computer-aided systems for diagnosis and classification of images generated by medical imaging systems.

  16. Traffic Command Gesture Recognition for Virtual Urban Scenes Based on a Spatiotemporal Convolution Neural Network

    Directory of Open Access Journals (Sweden)

    Chunyong Ma

    2018-01-01

    Full Text Available Intelligent recognition of traffic police command gestures increases authenticity and interactivity in virtual urban scenes. To actualize real-time traffic gesture recognition, a novel spatiotemporal convolution neural network (ST-CNN model is presented. We utilized Kinect 2.0 to construct a traffic police command gesture skeleton (TPCGS dataset collected from 10 volunteers. Subsequently, convolution operations on the locational change of each skeletal point were performed to extract temporal features, analyze the relative positions of skeletal points, and extract spatial features. After temporal and spatial features based on the three-dimensional positional information of traffic police skeleton points were extracted, the ST-CNN model classified positional information into eight types of Chinese traffic police gestures. The test accuracy of the ST-CNN model was 96.67%. In addition, a virtual urban traffic scene in which real-time command tests were carried out was set up, and a real-time test accuracy rate of 93.0% was achieved. The proposed ST-CNN model ensured a high level of accuracy and robustness. The ST-CNN model recognized traffic command gestures, and such recognition was found to control vehicles in virtual traffic environments, which enriches the interactive mode of the virtual city scene. Traffic command gesture recognition contributes to smart city construction.

  17. Pattern Recognition of Momentary Mental Workload Based on Multi-Channel Electrophysiological Data and Ensemble Convolutional Neural Networks.

    Science.gov (United States)

    Zhang, Jianhua; Li, Sunan; Wang, Rubin

    2017-01-01

    In this paper, we deal with the Mental Workload (MWL) classification problem based on the measured physiological data. First we discussed the optimal depth (i.e., the number of hidden layers) and parameter optimization algorithms for the Convolutional Neural Networks (CNN). The base CNNs designed were tested according to five classification performance indices, namely Accuracy, Precision, F-measure, G-mean, and required training time. Then we developed an Ensemble Convolutional Neural Network (ECNN) to enhance the accuracy and robustness of the individual CNN model. For the ECNN design, three model aggregation approaches (weighted averaging, majority voting and stacking) were examined and a resampling strategy was used to enhance the diversity of individual CNN models. The results of MWL classification performance comparison indicated that the proposed ECNN framework can effectively improve MWL classification performance and is featured by entirely automatic feature extraction and MWL classification, when compared with traditional machine learning methods.

  18. Pattern Recognition of Momentary Mental Workload Based on Multi-Channel Electrophysiological Data and Ensemble Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2017-05-01

    Full Text Available In this paper, we deal with the Mental Workload (MWL classification problem based on the measured physiological data. First we discussed the optimal depth (i.e., the number of hidden layers and parameter optimization algorithms for the Convolutional Neural Networks (CNN. The base CNNs designed were tested according to five classification performance indices, namely Accuracy, Precision, F-measure, G-mean, and required training time. Then we developed an Ensemble Convolutional Neural Network (ECNN to enhance the accuracy and robustness of the individual CNN model. For the ECNN design, three model aggregation approaches (weighted averaging, majority voting and stacking were examined and a resampling strategy was used to enhance the diversity of individual CNN models. The results of MWL classification performance comparison indicated that the proposed ECNN framework can effectively improve MWL classification performance and is featured by entirely automatic feature extraction and MWL classification, when compared with traditional machine learning methods.

  19. A Study of Deep CNN-Based Classification of Open and Closed Eyes Using a Visible Light Camera Sensor

    Directory of Open Access Journals (Sweden)

    Ki Wan Kim

    2017-06-01

    Full Text Available The necessity for the classification of open and closed eyes is increasing in various fields, including analysis of eye fatigue in 3D TVs, analysis of the psychological states of test subjects, and eye status tracking-based driver drowsiness detection. Previous studies have used various methods to distinguish between open and closed eyes, such as classifiers based on the features obtained from image binarization, edge operators, or texture analysis. However, when it comes to eye images with different lighting conditions and resolutions, it can be difficult to find an optimal threshold for image binarization or optimal filters for edge and texture extraction. In order to address this issue, we propose a method to classify open and closed eye images with different conditions, acquired by a visible light camera, using a deep residual convolutional neural network. After conducting performance analysis on both self-collected and open databases, we have determined that the classification accuracy of the proposed method is superior to that of existing methods.

  20. CNN Newsroom Classroom Guides. April 1-29, 1994.

    Science.gov (United States)

    Cable News Network, Atlanta, GA.

    These classroom guides for the daily CNN (Cable News Network) Newsroom broadcasts for the month of April provide program rundowns, suggestions for class activities and discussion, student handouts, and a list of related news terms. Topics covered by the guides include: (1) peace in the Middle East, Tom Bradley, and minority superheroes (April 1);…

  1. CNN Newsroom Classroom Guides. July 1-31, 1995.

    Science.gov (United States)

    Cable News Network, Atlanta, GA.

    These classroom guides for the daily CNN (Cable News Network) Newsroom broadcasts for the month of July provide program rundowns, suggestions for class activities and discussion, student handouts, and a list of related news terms. Topics covered by the guides include: (1) British Prime Minister John Major, trade and Tijuana, sports physics, and…

  2. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.

    Science.gov (United States)

    Ma, Jinlian; Wu, Fa; Jiang, Tian'an; Zhao, Qiyu; Kong, Dexing

    2017-11-01

    Delineation of thyroid nodule boundaries from ultrasound images plays an important role in calculation of clinical indices and diagnosis of thyroid diseases. However, it is challenging for accurate and automatic segmentation of thyroid nodules because of their heterogeneous appearance and components similar to the background. In this study, we employ a deep convolutional neural network (CNN) to automatically segment thyroid nodules from ultrasound images. Our CNN-based method formulates a thyroid nodule segmentation problem as a patch classification task, where the relationship among patches is ignored. Specifically, the CNN used image patches from images of normal thyroids and thyroid nodules as inputs and then generated the segmentation probability maps as outputs. A multi-view strategy is used to improve the performance of the CNN-based model. Additionally, we compared the performance of our approach with that of the commonly used segmentation methods on the same dataset. The experimental results suggest that our proposed method outperforms prior methods on thyroid nodule segmentation. Moreover, the results show that the CNN-based model is able to delineate multiple nodules in thyroid ultrasound images accurately and effectively. In detail, our CNN-based model can achieve an average of the overlap metric, dice ratio, true positive rate, false positive rate, and modified Hausdorff distance as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] on overall folds, respectively. Our proposed method is fully automatic without any user interaction. Quantitative results also indicate that our method is so efficient and accurate that it can be good enough to replace the time-consuming and tedious manual segmentation approach, demonstrating the potential clinical applications.

  3. Village Building Identification Based on Ensemble Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Zhiling Guo

    2017-10-01

    Full Text Available In this study, we present the Ensemble Convolutional Neural Network (ECNN, an elaborate CNN frame formulated based on ensembling state-of-the-art CNN models, to identify village buildings from open high-resolution remote sensing (HRRS images. First, to optimize and mine the capability of CNN for village mapping and to ensure compatibility with our classification targets, a few state-of-the-art models were carefully optimized and enhanced based on a series of rigorous analyses and evaluations. Second, rather than directly implementing building identification by using these models, we exploited most of their advantages by ensembling their feature extractor parts into a stronger model called ECNN based on the multiscale feature learning method. Finally, the generated ECNN was applied to a pixel-level classification frame to implement object identification. The proposed method can serve as a viable tool for village building identification with high accuracy and efficiency. The experimental results obtained from the test area in Savannakhet province, Laos, prove that the proposed ECNN model significantly outperforms existing methods, improving overall accuracy from 96.64% to 99.26%, and kappa from 0.57 to 0.86.

  4. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    Science.gov (United States)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio

  5. Cellular Neural Networks: A genetic algorithm for parameters optimization in artificial vision applications

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione; Zanela, A. [Rome Univ. `La Sapienza` (Italy). Dipt. di Fisica

    1997-03-01

    An optimization method for some of the CNN`s (Cellular Neural Network) parameters, based on evolutionary strategies, is proposed. The new class of feedback template found is more effective in extracting features from the images that an autonomous vehicle acquires, than in the previous CNN`s literature.

  6. Animal Recognition System Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Tibor Trnovszky

    2017-01-01

    Full Text Available In this paper, the performances of well-known image recognition methods such as Principal Component Analysis (PCA, Linear Discriminant Analysis (LDA, Local Binary Patterns Histograms (LBPH and Support Vector Machine (SVM are tested and compared with proposed convolutional neural network (CNN for the recognition rate of the input animal images. In our experiments, the overall recognition accuracy of PCA, LDA, LBPH and SVM is demonstrated. Next, the time execution for animal recognition process is evaluated. The all experimental results on created animal database were conducted. This created animal database consist of 500 different subjects (5 classes/ 100 images for each class. The experimental result shows that the PCA features provide better results as LDA and LBPH for large training set. On the other hand, LBPH is better than PCA and LDA for small training data set. For proposed CNN we have obtained a recognition accuracy of 98%. The proposed method based on CNN outperforms the state of the art methods.

  7. The CNN Paradigm for Complexity

    Science.gov (United States)

    Bucolo, M.; Caponetto, R.; Fortuna, L.; Frasca, M.

    The following sections are included: * Introduction * The 3D-CNN Model * E3: An Universal Emulator for Complex Systems * Emergence of Forms in 3D-CNNs * Initial conditions * 3D waves in homogeneous and unhomogeneous media * Chua's circuit * Lorenz system * Rössler system * FitzHugh-Nagumo neuron model * Hindmarsh-Rose neuron model * Inferior-Olive neuron model * Izhikevich neuron model * Neuron model exhibiting homoclinic chaos * Conclusions * References

  8. Drug-Drug Interaction Extraction via Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Shengyu Liu

    2016-01-01

    Full Text Available Drug-drug interaction (DDI extraction as a typical relation extraction task in natural language processing (NLP has always attracted great attention. Most state-of-the-art DDI extraction systems are based on support vector machines (SVM with a large number of manually defined features. Recently, convolutional neural networks (CNN, a robust machine learning method which almost does not need manually defined features, has exhibited great potential for many NLP tasks. It is worth employing CNN for DDI extraction, which has never been investigated. We proposed a CNN-based method for DDI extraction. Experiments conducted on the 2013 DDIExtraction challenge corpus demonstrate that CNN is a good choice for DDI extraction. The CNN-based DDI extraction method achieves an F-score of 69.75%, which outperforms the existing best performing method by 2.75%.

  9. A patch-based convolutional neural network for remote sensing image classification.

    Science.gov (United States)

    Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di

    2017-11-01

    Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A universal concept based on cellular neural networks for ultrafast and flexible solving of differential equations.

    Science.gov (United States)

    Chedjou, Jean Chamberlain; Kyamakya, Kyandoghere

    2015-04-01

    This paper develops and validates a comprehensive and universally applicable computational concept for solving nonlinear differential equations (NDEs) through a neurocomputing concept based on cellular neural networks (CNNs). High-precision, stability, convergence, and lowest-possible memory requirements are ensured by the CNN processor architecture. A significant challenge solved in this paper is that all these cited computing features are ensured in all system-states (regular or chaotic ones) and in all bifurcation conditions that may be experienced by NDEs.One particular quintessence of this paper is to develop and demonstrate a solver concept that shows and ensures that CNN processors (realized either in hardware or in software) are universal solvers of NDE models. The solving logic or algorithm of given NDEs (possible examples are: Duffing, Mathieu, Van der Pol, Jerk, Chua, Rössler, Lorenz, Burgers, and the transport equations) through a CNN processor system is provided by a set of templates that are computed by our comprehensive templates calculation technique that we call nonlinear adaptive optimization. This paper is therefore a significant contribution and represents a cutting-edge real-time computational engineering approach, especially while considering the various scientific and engineering applications of this ultrafast, energy-and-memory-efficient, and high-precise NDE solver concept. For illustration purposes, three NDE models are demonstratively solved, and related CNN templates are derived and used: the periodically excited Duffing equation, the Mathieu equation, and the transport equation.

  11. Chinese Sentence Classification Based on Convolutional Neural Network

    Science.gov (United States)

    Gu, Chengwei; Wu, Ming; Zhang, Chuang

    2017-10-01

    Sentence classification is one of the significant issues in Natural Language Processing (NLP). Feature extraction is often regarded as the key point for natural language processing. Traditional ways based on machine learning can not take high level features into consideration, such as Naive Bayesian Model. The neural network for sentence classification can make use of contextual information to achieve greater results in sentence classification tasks. In this paper, we focus on classifying Chinese sentences. And the most important is that we post a novel architecture of Convolutional Neural Network (CNN) to apply on Chinese sentence classification. In particular, most of the previous methods often use softmax classifier for prediction, we embed a linear support vector machine to substitute softmax in the deep neural network model, minimizing a margin-based loss to get a better result. And we use tanh as an activation function, instead of ReLU. The CNN model improve the result of Chinese sentence classification tasks. Experimental results on the Chinese news title database validate the effectiveness of our model.

  12. Cellular Neural Networks for NP-Hard Optimization

    Directory of Open Access Journals (Sweden)

    Mária Ercsey-Ravasz

    2009-02-01

    Full Text Available A cellular neural/nonlinear network (CNN is used for NP-hard optimization. We prove that a CNN in which the parameters of all cells can be separately controlled is the analog correspondent of a two-dimensional Ising-type (Edwards-Anderson spin-glass system. Using the properties of CNN, we show that one single operation (template always yields a local minimum of the spin-glass energy function. This way, a very fast optimization method, similar to simulated annealing, can be built. Estimating the simulation time needed on CNN-based computers, and comparing it with the time needed on normal digital computers using the simulated annealing algorithm, the results are astonishing. CNN computers could be faster than digital computers already at 10×10 lattice sizes. The local control of the template parameters was already partially realized on some of the hardwares, we think this study could further motivate their development in this direction.

  13. Cellular neural networks for the stereo matching problem

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione; Zanela, A. [Rome Univ. `La Sapienza` (Italy). Dipt. di Fisica

    1997-03-01

    The applicability of the Cellular Neural Network (CNN) paradigm to the problem of recovering information on the tridimensional structure of the environment is investigated. The approach proposed is the stereo matching of video images. The starting point of this work is the Zhou-Chellappa neural network implementation for the same problem. The CNN based system we present here yields the same results as the previous approach, but without the many existing drawbacks.

  14. Pancreas Segmentation in MRI using Graph-Based Decision Fusion on Convolutional Neural Networks.

    Science.gov (United States)

    Cai, Jinzheng; Lu, Le; Zhang, Zizhao; Xing, Fuyong; Yang, Lin; Yin, Qian

    2016-10-01

    Automated pancreas segmentation in medical images is a prerequisite for many clinical applications, such as diabetes inspection, pancreatic cancer diagnosis, and surgical planing. In this paper, we formulate pancreas segmentation in magnetic resonance imaging (MRI) scans as a graph based decision fusion process combined with deep convolutional neural networks (CNN). Our approach conducts pancreatic detection and boundary segmentation with two types of CNN models respectively: 1) the tissue detection step to differentiate pancreas and non-pancreas tissue with spatial intensity context; 2) the boundary detection step to allocate the semantic boundaries of pancreas. Both detection results of the two networks are fused together as the initialization of a conditional random field (CRF) framework to obtain the final segmentation output. Our approach achieves the mean dice similarity coefficient (DSC) 76.1% with the standard deviation of 8.7% in a dataset containing 78 abdominal MRI scans. The proposed algorithm achieves the best results compared with other state of the arts.

  15. Convolutional Neural Networks for Font Classification

    OpenAIRE

    Tensmeyer, Chris; Saunders, Daniel; Martinez, Tony

    2017-01-01

    Classifying pages or text lines into font categories aids transcription because single font Optical Character Recognition (OCR) is generally more accurate than omni-font OCR. We present a simple framework based on Convolutional Neural Networks (CNNs), where a CNN is trained to classify small patches of text into predefined font classes. To classify page or line images, we average the CNN predictions over densely extracted patches. We show that this method achieves state-of-the-art performance...

  16. Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Muthu Subash Kavitha

    Full Text Available Pluripotent stem cells can potentially be used in clinical applications as a model for studying disease progress. This tracking of disease-causing events in cells requires constant assessment of the quality of stem cells. Existing approaches are inadequate for robust and automated differentiation of stem cell colonies. In this study, we developed a new model of vector-based convolutional neural network (V-CNN with respect to extracted features of the induced pluripotent stem cell (iPSC colony for distinguishing colony characteristics. A transfer function from the feature vectors to the virtual image was generated at the front of the CNN in order for classification of feature vectors of healthy and unhealthy colonies. The robustness of the proposed V-CNN model in distinguishing colonies was compared with that of the competitive support vector machine (SVM classifier based on morphological, textural, and combined features. Additionally, five-fold cross-validation was used to investigate the performance of the V-CNN model. The precision, recall, and F-measure values of the V-CNN model were comparatively higher than those of the SVM classifier, with a range of 87-93%, indicating fewer false positives and false negative rates. Furthermore, for determining the quality of colonies, the V-CNN model showed higher accuracy values based on morphological (95.5%, textural (91.0%, and combined (93.2% features than those estimated with the SVM classifier (86.7, 83.3, and 83.4%, respectively. Similarly, the accuracy of the feature sets using five-fold cross-validation was above 90% for the V-CNN model, whereas that yielded by the SVM model was in the range of 75-77%. We thus concluded that the proposed V-CNN model outperforms the conventional SVM classifier, which strongly suggests that it as a reliable framework for robust colony classification of iPSCs. It can also serve as a cost-effective quality recognition tool during culture and other experimental

  17. Community structure of complex networks based on continuous neural network

    Science.gov (United States)

    Dai, Ting-ting; Shan, Chang-ji; Dong, Yan-shou

    2017-09-01

    As a new subject, the research of complex networks has attracted the attention of researchers from different disciplines. Community structure is one of the key structures of complex networks, so it is a very important task to analyze the community structure of complex networks accurately. In this paper, we study the problem of extracting the community structure of complex networks, and propose a continuous neural network (CNN) algorithm. It is proved that for any given initial value, the continuous neural network algorithm converges to the eigenvector of the maximum eigenvalue of the network modularity matrix. Therefore, according to the stability of the evolution of the network symbol will be able to get two community structure.

  18. Infrared variation reduction by simultaneous background suppression and target contrast enhancement for deep convolutional neural network-based automatic target recognition

    Science.gov (United States)

    Kim, Sungho

    2017-06-01

    Automatic target recognition (ATR) is a traditionally challenging problem in military applications because of the wide range of infrared (IR) image variations and the limited number of training images. IR variations are caused by various three-dimensional target poses, noncooperative weather conditions (fog and rain), and difficult target acquisition environments. Recently, deep convolutional neural network-based approaches for RGB images (RGB-CNN) showed breakthrough performance in computer vision problems, such as object detection and classification. The direct use of RGB-CNN to the IR ATR problem fails to work because of the IR database problems (limited database size and IR image variations). An IR variation-reduced deep CNN (IVR-CNN) to cope with the problems is presented. The problem of limited IR database size is solved by a commercial thermal simulator (OKTAL-SE). The second problem of IR variations is mitigated by the proposed shifted ramp function-based intensity transformation. This can suppress the background and enhance the target contrast simultaneously. The experimental results on the synthesized IR images generated by the thermal simulator (OKTAL-SE) validated the feasibility of IVR-CNN for military ATR applications.

  19. Numerical analysis of modeling based on improved Elman neural network.

    Science.gov (United States)

    Jie, Shao; Li, Wang; WeiSong, Zhao; YaQin, Zhong; Malekian, Reza

    2014-01-01

    A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA) with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL) model, Chebyshev neural network (CNN) model, and basic Elman neural network (BENN) model, the proposed model has better performance.

  20. Numerical Analysis of Modeling Based on Improved Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Shao Jie

    2014-01-01

    Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.

  1. Tongue Images Classification Based on Constrained High Dispersal Network

    Directory of Open Access Journals (Sweden)

    Dan Meng

    2017-01-01

    Full Text Available Computer aided tongue diagnosis has a great potential to play important roles in traditional Chinese medicine (TCM. However, the majority of the existing tongue image analyses and classification methods are based on the low-level features, which may not provide a holistic view of the tongue. Inspired by deep convolutional neural network (CNN, we propose a novel feature extraction framework called constrained high dispersal neural networks (CHDNet to extract unbiased features and reduce human labor for tongue diagnosis in TCM. Previous CNN models have mostly focused on learning convolutional filters and adapting weights between them, but these models have two major issues: redundancy and insufficient capability in handling unbalanced sample distribution. We introduce high dispersal and local response normalization operation to address the issue of redundancy. We also add multiscale feature analysis to avoid the problem of sensitivity to deformation. Our proposed CHDNet learns high-level features and provides more classification information during training time, which may result in higher accuracy when predicting testing samples. We tested the proposed method on a set of 267 gastritis patients and a control group of 48 healthy volunteers. Test results show that CHDNet is a promising method in tongue image classification for the TCM study.

  2. Toward Content Based Image Retrieval with Deep Convolutional Neural Networks.

    Science.gov (United States)

    Sklan, Judah E S; Plassard, Andrew J; Fabbri, Daniel; Landman, Bennett A

    2015-03-19

    Content-based image retrieval (CBIR) offers the potential to identify similar case histories, understand rare disorders, and eventually, improve patient care. Recent advances in database capacity, algorithm efficiency, and deep Convolutional Neural Networks (dCNN), a machine learning technique, have enabled great CBIR success for general photographic images. Here, we investigate applying the leading ImageNet CBIR technique to clinically acquired medical images captured by the Vanderbilt Medical Center. Briefly, we (1) constructed a dCNN with four hidden layers, reducing dimensionality of an input scaled to 128×128 to an output encoded layer of 4×384, (2) trained the network using back-propagation 1 million random magnetic resonance (MR) and computed tomography (CT) images, (3) labeled an independent set of 2100 images, and (4) evaluated classifiers on the projection of the labeled images into manifold space. Quantitative results were disappointing (averaging a true positive rate of only 20%); however, the data suggest that improvements would be possible with more evenly distributed sampling across labels and potential re-grouping of label structures. This prelimainry effort at automated classification of medical images with ImageNet is promising, but shows that more work is needed beyond direct adaptation of existing techniques.

  3. Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection.

    Science.gov (United States)

    Wahab, Noorul; Khan, Asifullah; Lee, Yeon Soo

    2017-06-01

    Different types of breast cancer are affecting lives of women across the world. Common types include Ductal carcinoma in situ (DCIS), Invasive ductal carcinoma (IDC), Tubular carcinoma, Medullary carcinoma, and Invasive lobular carcinoma (ILC). While detecting cancer, one important factor is mitotic count - showing how rapidly the cells are dividing. But the class imbalance problem, due to the small number of mitotic nuclei in comparison to the overwhelming number of non-mitotic nuclei, affects the performance of classification models. This work presents a two-phase model to mitigate the class biasness issue while classifying mitotic and non-mitotic nuclei in breast cancer histopathology images through a deep convolutional neural network (CNN). First, nuclei are segmented out using blue ratio and global binary thresholding. In Phase-1 a CNN is then trained on the segmented out 80×80 pixel patches based on a standard dataset. Hard non-mitotic examples are identified and augmented; mitotic examples are oversampled by rotation and flipping; whereas non-mitotic examples are undersampled by blue ratio histogram based k-means clustering. Based on this information from Phase-1, the dataset is modified for Phase-2 in order to reduce the effects of class imbalance. The proposed CNN architecture and data balancing technique yielded an F-measure of 0.79, and outperformed all the methods relying on specific handcrafted features, as well as those using a combination of handcrafted and CNN-generated features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Convolutional neural network architecture and input volume matrix design for ERP classifications in a tactile P300-based Brain-Computer Interface.

    Science.gov (United States)

    Kodama, Takumi; Makino, Shoji

    2017-07-01

    In the presented study we conduct the off-line ERP classification using the convolutional neural network (CNN) classifier for somatosensory ERP intervals acquired in the full- body tactile P300-based Brain-Computer Interface paradigm (fbBCI). The main objective of the study is to enhance fbBCI stimulus pattern classification accuracies by applying the CNN classifier. A 60 × 60 squared input volume transformed by one-dimensional somatosensory ERP intervals in each electrode channel is input to the convolutional architecture for a filter training. The flattened activation maps are evaluated by a multilayer perceptron with one-hidden-layer in order to calculate classification accuracy results. The proposed method reveals that the CNN classifier model can achieve a non-personal- training ERP classification with the fbBCI paradigm, scoring 100 % classification accuracy results for all the participated ten users.

  5. Theorems and application of local activity of CNN with five state variables and one port.

    Science.gov (United States)

    Xiong, Gang; Dong, Xisong; Xie, Li; Yang, Thomas

    2012-01-01

    Coupled nonlinear dynamical systems have been widely studied recently. However, the dynamical properties of these systems are difficult to deal with. The local activity of cellular neural network (CNN) has provided a powerful tool for studying the emergence of complex patterns in a homogeneous lattice, which is composed of coupled cells. In this paper, the analytical criteria for the local activity in reaction-diffusion CNN with five state variables and one port are presented, which consists of four theorems, including a serial of inequalities involving CNN parameters. These theorems can be used for calculating the bifurcation diagram to determine or analyze the emergence of complex dynamic patterns, such as chaos. As a case study, a reaction-diffusion CNN of hepatitis B Virus (HBV) mutation-selection model is analyzed and simulated, the bifurcation diagram is calculated. Using the diagram, numerical simulations of this CNN model provide reasonable explanations of complex mutant phenomena during therapy. Therefore, it is demonstrated that the local activity of CNN provides a practical tool for the complex dynamics study of some coupled nonlinear systems.

  6. Theorems and Application of Local Activity of CNN with Five State Variables and One Port

    Directory of Open Access Journals (Sweden)

    Gang Xiong

    2012-01-01

    Full Text Available Coupled nonlinear dynamical systems have been widely studied recently. However, the dynamical properties of these systems are difficult to deal with. The local activity of cellular neural network (CNN has provided a powerful tool for studying the emergence of complex patterns in a homogeneous lattice, which is composed of coupled cells. In this paper, the analytical criteria for the local activity in reaction-diffusion CNN with five state variables and one port are presented, which consists of four theorems, including a serial of inequalities involving CNN parameters. These theorems can be used for calculating the bifurcation diagram to determine or analyze the emergence of complex dynamic patterns, such as chaos. As a case study, a reaction-diffusion CNN of hepatitis B Virus (HBV mutation-selection model is analyzed and simulated, the bifurcation diagram is calculated. Using the diagram, numerical simulations of this CNN model provide reasonable explanations of complex mutant phenomena during therapy. Therefore, it is demonstrated that the local activity of CNN provides a practical tool for the complex dynamics study of some coupled nonlinear systems.

  7. A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning

    Science.gov (United States)

    Cruz-Roa, Angel; Arévalo, John; Judkins, Alexander; Madabhushi, Anant; González, Fabio

    2015-12-01

    Convolutional neural networks (CNN) have been very successful at addressing different computer vision tasks thanks to their ability to learn image representations directly from large amounts of labeled data. Features learned from a dataset can be used to represent images from a different dataset via an approach called transfer learning. In this paper we apply transfer learning to the challenging task of medulloblastoma tumor differentiation. We compare two different CNN models which were previously trained in two different domains (natural and histopathology images). The first CNN is a state-of-the-art approach in computer vision, a large and deep CNN with 16-layers, Visual Geometry Group (VGG) CNN. The second (IBCa-CNN) is a 2-layer CNN trained for invasive breast cancer tumor classification. Both CNNs are used as visual feature extractors of histopathology image regions of anaplastic and non-anaplastic medulloblastoma tumor from digitized whole-slide images. The features from the two models are used, separately, to train a softmax classifier to discriminate between anaplastic and non-anaplastic medulloblastoma image regions. Experimental results show that the transfer learning approach produce competitive results in comparison with the state of the art approaches for IBCa detection. Results also show that features extracted from the IBCa-CNN have better performance in comparison with features extracted from the VGG-CNN. The former obtains 89.8% while the latter obtains 76.6% in terms of average accuracy.

  8. Flare Occurrence Prediction based on Convolution Neural Network using SOHO MDI data

    Science.gov (United States)

    Yi, Kangwoo; Moon, Yong-Jae; Park, Eunsu; Shin, Seulki

    2017-08-01

    In this study we apply Convolution Neural Network(CNN) to solar flare occurrence prediction with various parameter options using the 00:00 UT MDI images from 1996 to 2010 (total 4962 images). We assume that only X, M and C class flares correspond to “flare occurrence” and the others to “non-flare”. We have attempted to look for the best options for the models with two CNN pre-trained models (AlexNet and GoogLeNet), by modifying training images and changing hyper parameters. Our major results from this study are as follows. First, the flare occurrence predictions are relatively good with about 80 % accuracies. Second, both flare prediction models based on AlexNet and GoogLeNet have similar results but AlexNet is faster than GoogLeNet. Third, modifying the training images to reduce the projection effect is not effective.

  9. Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network

    Science.gov (United States)

    Wang, Li-Hua; Zhao, Xiao-Ping; Wu, Jia-Xin; Xie, Yang-Yang; Zhang, Yong-Hong

    2017-11-01

    With the rapid development of mechanical equipment, the mechanical health monitoring field has entered the era of big data. However, the method of manual feature extraction has the disadvantages of low efficiency and poor accuracy, when handling big data. In this study, the research object was the asynchronous motor in the drivetrain diagnostics simulator system. The vibration signals of different fault motors were collected. The raw signal was pretreated using short time Fourier transform (STFT) to obtain the corresponding time-frequency map. Then, the feature of the time-frequency map was adaptively extracted by using a convolutional neural network (CNN). The effects of the pretreatment method, and the hyper parameters of network diagnostic accuracy, were investigated experimentally. The experimental results showed that the influence of the preprocessing method is small, and that the batch-size is the main factor affecting accuracy and training efficiency. By investigating feature visualization, it was shown that, in the case of big data, the extracted CNN features can represent complex mapping relationships between signal and health status, and can also overcome the prior knowledge and engineering experience requirement for feature extraction, which is used by traditional diagnosis methods. This paper proposes a new method, based on STFT and CNN, which can complete motor fault diagnosis tasks more intelligently and accurately.

  10. Convolutional neural network architectures for predicting DNA–protein binding

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  11. Convolutional neural network architectures for predicting DNA-protein binding.

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D; Liu, Ge; Gifford, David K

    2016-06-15

    Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA-protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. All the models analyzed are available at http://cnn.csail.mit.edu gifford@mit.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  12. Explaining Deep Convolutional Neural Networks on Music Classification

    OpenAIRE

    Choi, Keunwoo; Fazekas, George; Sandler, Mark

    2016-01-01

    Deep convolutional neural networks (CNNs) have been actively adopted in the field of music information retrieval, e.g. genre classification, mood detection, and chord recognition. However, the process of learning and prediction is little understood, particularly when it is applied to spectrograms. We introduce auralisation of a CNN to understand its underlying mechanism, which is based on a deconvolution procedure introduced in [2]. Auralisation of a CNN is converting the learned convolutiona...

  13. Balance the nodule shape and surroundings: a new multichannel image based convolutional neural network scheme on lung nodule diagnosis

    Science.gov (United States)

    Sun, Wenqing; Zheng, Bin; Huang, Xia; Qian, Wei

    2017-03-01

    Deep learning is a trending promising method in medical image analysis area, but how to efficiently prepare the input image for the deep learning algorithms remains a challenge. In this paper, we introduced a novel artificial multichannel region of interest (ROI) generation procedure for convolutional neural networks (CNN). From LIDC database, we collected 54880 benign nodule samples and 59848 malignant nodule samples based on the radiologists' annotations. The proposed CNN consists of three pairs of convolutional layers and two fully connected layers. For each original ROI, two new ROIs were generated: one contains the segmented nodule which highlighted the nodule shape, and the other one contains the gradient of the original ROI which highlighted the textures. By combining the three channel images into a pseudo color ROI, the CNN was trained and tested on the new multichannel ROIs (multichannel ROI II). For the comparison, we generated another type of multichannel image by replacing the gradient image channel with a ROI contains whitened background region (multichannel ROI I). With the 5-fold cross validation evaluation method, the CNN using multichannel ROI II achieved the ROI based area under the curve (AUC) of 0.8823+/-0.0177, compared to the AUC of 0.8484+/-0.0204 generated by the original ROI. By calculating the average of ROI scores from one nodule, the lesion based AUC using multichannel ROI was 0.8793+/-0.0210. By comparing the convolved features maps from CNN using different types of ROIs, it can be noted that multichannel ROI II contains more accurate nodule shapes and surrounding textures.

  14. Pedestrian Detection Based on Adaptive Selection of Visible Light or Far-Infrared Light Camera Image by Fuzzy Inference System and Convolutional Neural Network-Based Verification.

    Science.gov (United States)

    Kang, Jin Kyu; Hong, Hyung Gil; Park, Kang Ryoung

    2017-07-08

    A number of studies have been conducted to enhance the pedestrian detection accuracy of intelligent surveillance systems. However, detecting pedestrians under outdoor conditions is a challenging problem due to the varying lighting, shadows, and occlusions. In recent times, a growing number of studies have been performed on visible light camera-based pedestrian detection systems using a convolutional neural network (CNN) in order to make the pedestrian detection process more resilient to such conditions. However, visible light cameras still cannot detect pedestrians during nighttime, and are easily affected by shadows and lighting. There are many studies on CNN-based pedestrian detection through the use of far-infrared (FIR) light cameras (i.e., thermal cameras) to address such difficulties. However, when the solar radiation increases and the background temperature reaches the same level as the body temperature, it remains difficult for the FIR light camera to detect pedestrians due to the insignificant difference between the pedestrian and non-pedestrian features within the images. Researchers have been trying to solve this issue by inputting both the visible light and the FIR camera images into the CNN as the input. This, however, takes a longer time to process, and makes the system structure more complex as the CNN needs to process both camera images. This research adaptively selects a more appropriate candidate between two pedestrian images from visible light and FIR cameras based on a fuzzy inference system (FIS), and the selected candidate is verified with a CNN. Three types of databases were tested, taking into account various environmental factors using visible light and FIR cameras. The results showed that the proposed method performs better than the previously reported methods.

  15. A novel approach for tuberculosis screening based on deep convolutional neural networks

    Science.gov (United States)

    Hwang, Sangheum; Kim, Hyo-Eun; Jeong, Jihoon; Kim, Hee-Jin

    2016-03-01

    Tuberculosis (TB) is one of the major global health threats especially in developing countries. Although newly diagnosed TB patients can be recovered with high cure rate, many curable TB patients in the developing countries are obliged to die because of delayed diagnosis, partly by the lack of radiography and radiologists. Therefore, developing a computer-aided diagnosis (CAD) system for TB screening can contribute to early diagnosis of TB, which results in prevention of deaths from TB. Currently, most CAD algorithms adopt carefully designed morphological features distinguishing different lesion types to improve screening performances. However, such engineered features cannot be guaranteed to be the best descriptors for TB screening. Deep learning has become a majority in machine learning society. Especially in computer vision fields, it has been verified that deep convolutional neural networks (CNN) is a very promising algorithm for various visual tasks. Since deep CNN enables end-to-end training from feature extraction to classification, it does not require objective-specific manual feature engineering. In this work, we designed CAD system based on deep CNN for automatic TB screening. Based on large-scale chest X-rays (CXRs), we achieved viable TB screening performance of 0.96, 0.93 and 0.88 in terms of AUC for three real field datasets, respectively, by exploiting the effect of transfer learning.

  16. A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images.

    Science.gov (United States)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; Moore, Kathleen; Liu, Hong; Zheng, Bin

    2017-06-01

    Accurately assessment of adipose tissue volume inside a human body plays an important role in predicting disease or cancer risk, diagnosis and prognosis. In order to overcome limitation of using only one subjectively selected CT image slice to estimate size of fat areas, this study aims to develop and test a computer-aided detection (CAD) scheme based on deep learning technique to automatically segment subcutaneous fat areas (SFA) and visceral fat areas (VFA) depicting on volumetric CT images. A retrospectively collected CT image dataset was divided into two independent training and testing groups. The proposed CAD framework consisted of two steps with two convolution neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. The first CNN was trained using 2,240 CT slices to select abdominal CT slices depicting SFA and VFA. The second CNN was trained with 84,000pixel patches and applied to the selected CT slices to identify fat-related pixels and assign them into SFA and VFA classes. Comparing to the manual CT slice selection and fat pixel segmentation results, the accuracy of CT slice selection using the Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using the Segmentation-CNN was 96.8%. This study demonstrated the feasibility of applying a new deep learning based CAD scheme to automatically recognize abdominal section of human body from CT scans and segment SFA and VFA from volumetric CT data with high accuracy or agreement with the manual segmentation results. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Using convolutional neural networks to explore the microbiome.

    Science.gov (United States)

    Reiman, Derek; Metwally, Ahmed; Yang Dai

    2017-07-01

    The microbiome has been shown to have an impact on the development of various diseases in the host. Being able to make an accurate prediction of the phenotype of a genomic sample based on its microbial taxonomic abundance profile is an important problem for personalized medicine. In this paper, we examine the potential of using a deep learning framework, a convolutional neural network (CNN), for such a prediction. To facilitate the CNN learning, we explore the structure of abundance profiles by creating the phylogenetic tree and by designing a scheme to embed the tree to a matrix that retains the spatial relationship of nodes in the tree and their quantitative characteristics. The proposed CNN framework is highly accurate, achieving a 99.47% of accuracy based on the evaluation on a dataset 1967 samples of three phenotypes. Our result demonstrated the feasibility and promising aspect of CNN in the classification of sample phenotype.

  18. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.

    Science.gov (United States)

    Nakao, Takahiro; Hanaoka, Shouhei; Nomura, Yukihiro; Sato, Issei; Nemoto, Mitsutaka; Miki, Soichiro; Maeda, Eriko; Yoshikawa, Takeharu; Hayashi, Naoto; Abe, Osamu

    2017-08-24

    The usefulness of computer-assisted detection (CAD) for detecting cerebral aneurysms has been reported; therefore, the improved performance of CAD will help to detect cerebral aneurysms. To develop a CAD system for intracranial aneurysms on unenhanced magnetic resonance angiography (MRA) images based on a deep convolutional neural network (CNN) and a maximum intensity projection (MIP) algorithm, and to demonstrate the usefulness of the system by training and evaluating it using a large dataset. Retrospective study. There were 450 cases with intracranial aneurysms. The diagnoses of brain aneurysms were made on the basis of MRA, which was performed as part of a brain screening program. Noncontrast-enhanced 3D time-of-flight (TOF) MRA on 3T MR scanners. In our CAD, we used a CNN classifier that predicts whether each voxel is inside or outside aneurysms by inputting MIP images generated from a volume of interest (VOI) around the voxel. The CNN was trained in advance using manually inputted labels. We evaluated our method using 450 cases with intracranial aneurysms, 300 of which were used for training, 50 for parameter tuning, and 100 for the final evaluation. Free-response receiver operating characteristic (FROC) analysis. Our CAD system detected 94.2% (98/104) of aneurysms with 2.9 false positives per case (FPs/case). At a sensitivity of 70%, the number of FPs/case was 0.26. We showed that the combination of a CNN and an MIP algorithm is useful for the detection of intracranial aneurysms. 4 Technical Efficacy Stage 1 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  19. A comparison study between MLP and convolutional neural network models for character recognition

    Science.gov (United States)

    Ben Driss, S.; Soua, M.; Kachouri, R.; Akil, M.

    2017-05-01

    Optical Character Recognition (OCR) systems have been designed to operate on text contained in scanned documents and images. They include text detection and character recognition in which characters are described then classified. In the classification step, characters are identified according to their features or template descriptions. Then, a given classifier is employed to identify characters. In this context, we have proposed the unified character descriptor (UCD) to represent characters based on their features. Then, matching was employed to ensure the classification. This recognition scheme performs a good OCR Accuracy on homogeneous scanned documents, however it cannot discriminate characters with high font variation and distortion.3 To improve recognition, classifiers based on neural networks can be used. The multilayer perceptron (MLP) ensures high recognition accuracy when performing a robust training. Moreover, the convolutional neural network (CNN), is gaining nowadays a lot of popularity for its high performance. Furthermore, both CNN and MLP may suffer from the large amount of computation in the training phase. In this paper, we establish a comparison between MLP and CNN. We provide MLP with the UCD descriptor and the appropriate network configuration. For CNN, we employ the convolutional network designed for handwritten and machine-printed character recognition (Lenet-5) and we adapt it to support 62 classes, including both digits and characters. In addition, GPU parallelization is studied to speed up both of MLP and CNN classifiers. Based on our experimentations, we demonstrate that the used real-time CNN is 2x more relevant than MLP when classifying characters.

  20. Age estimation of facial image based on convolution neural network

    Science.gov (United States)

    Meng, Xiaodong; Wang, Yifeng; Zheng, Haihong

    2017-07-01

    Age is an inherent biological characteristic of human and is reflected in facial images to a certain extent. A method for estimating age from a facial image by combining CNN (Convolution Neural Network) with SVR (Support Vector Regression) is proposed. First, a deep CNN is trained to automatically extract age features from facial images and classify them into variant age groups. Then different SVRs are trained for each age group to estimate the age of a facial image. The experimental results show that a lower MAE (Mean Absolute Error) of age estimation on MORPH database is obtained.

  1. Predicting mental conditions based on "history of present illness" in psychiatric notes with deep neural networks.

    Science.gov (United States)

    Tran, Tung; Kavuluru, Ramakanth

    2017-11-01

    Applications of natural language processing to mental health notes are not common given the sensitive nature of the associated narratives. The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing (NLP) changed this scenario by providing the first set of neuropsychiatric notes to participants. This study summarizes our efforts and results in proposing a novel data use case for this dataset as part of the third track in this shared task. We explore the feasibility and effectiveness of predicting a set of common mental conditions a patient has based on the short textual description of patient's history of present illness typically occurring in the beginning of a psychiatric initial evaluation note. We clean and process the 1000 records made available through the N-GRID clinical NLP task into a key-value dictionary and build a dataset of 986 examples for which there is a narrative for history of present illness as well as Yes/No responses with regards to presence of specific mental conditions. We propose two independent deep neural network models: one based on convolutional neural networks (CNN) and another based on recurrent neural networks with hierarchical attention (ReHAN), the latter of which allows for interpretation of model decisions. We conduct experiments to compare these methods to each other and to baselines based on linear models and named entity recognition (NER). Our CNN model with optimized thresholding of output probability estimates achieves best overall mean micro-F score of 63.144% for 11 common mental conditions with statistically significant gains (ptext segment averaging 300 words, it is a good predictor for a few conditions such as anxiety, depression, panic disorder, and attention deficit hyperactivity disorder. Proposed CNN and RNN models outperform baseline approaches and complement each other when evaluating on a per-label basis. Copyright © 2017. Published by Elsevier Inc.

  2. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ... (extended from Leavitt, 1965). This text identifies aspects of network-based effectiveness that can benefit from a better understanding of leadership and management development of people, procedures, technology, and organizations...

  3. Evaluation of the traffic parameters in a metropolitan area by fusing visual perceptions and CNN processing of webcam images.

    Science.gov (United States)

    Faro, Alberto; Giordano, Daniela; Spampinato, Concetto

    2008-06-01

    This paper proposes a traffic monitoring architecture based on a high-speed communication network whose nodes are equipped with fuzzy processors and cellular neural network (CNN) embedded systems. It implements a real-time mobility information system where visual human perceptions sent by people working on the territory and video-sequences of traffic taken from webcams are jointly processed to evaluate the fundamental traffic parameters for every street of a metropolitan area. This paper presents the whole methodology for data collection and analysis and compares the accuracy and the processing time of the proposed soft computing techniques with other existing algorithms. Moreover, this paper discusses when and why it is recommended to fuse the visual perceptions of the traffic with the automated measurements taken from the webcams to compute the maximum traveling time that is likely needed to reach any destination in the traffic network.

  4. Deep convolutional neural network for prostate MR segmentation

    Science.gov (United States)

    Tian, Zhiqiang; Liu, Lizhi; Fei, Baowei

    2017-03-01

    Automatic segmentation of the prostate in magnetic resonance imaging (MRI) has many applications in prostate cancer diagnosis and therapy. We propose a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage based on prostate MR images and the corresponding ground truths, and learns to make inference for pixel-wise segmentation. Experiments were performed on our in-house data set, which contains prostate MR images of 20 patients. The proposed CNN model obtained a mean Dice similarity coefficient of 85.3%+/-3.2% as compared to the manual segmentation. Experimental results show that our deep CNN model could yield satisfactory segmentation of the prostate.

  5. Hourglass-ShapeNetwork Based Semantic Segmentation for High Resolution Aerial Imagery

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2017-05-01

    Full Text Available A new convolution neural network (CNN architecture for semantic segmentation of high resolution aerial imagery is proposed in this paper. The proposed architecture follows an hourglass-shaped network (HSN design being structured into encoding and decoding stages. By taking advantage of recent advances in CNN designs, we use the composed inception module to replace common convolutional layers, providing the network with multi-scale receptive areas with rich context. Additionally, in order to reduce spatial ambiguities in the up-sampling stage, skip connections with residual units are also employed to feed forward encoding-stage information directly to the decoder. Moreover, overlap inference is employed to alleviate boundary effects occurring when high resolution images are inferred from small-sized patches. Finally, we also propose a post-processing method based on weighted belief propagation to visually enhance the classification results. Extensive experiments based on the Vaihingen and Potsdam datasets demonstrate that the proposed architectures outperform three reference state-of-the-art network designs both numerically and visually.

  6. Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images.

    Science.gov (United States)

    van Grinsven, Mark J J P; van Ginneken, Bram; Hoyng, Carel B; Theelen, Thomas; Sanchez, Clara I

    2016-05-01

    Convolutional neural networks (CNNs) are deep learning network architectures that have pushed forward the state-of-the-art in a range of computer vision applications and are increasingly popular in medical image analysis. However, training of CNNs is time-consuming and challenging. In medical image analysis tasks, the majority of training examples are easy to classify and therefore contribute little to the CNN learning process. In this paper, we propose a method to improve and speed-up the CNN training for medical image analysis tasks by dynamically selecting misclassified negative samples during training. Training samples are heuristically sampled based on classification by the current status of the CNN. Weights are assigned to the training samples and informative samples are more likely to be included in the next CNN training iteration. We evaluated and compared our proposed method by training a CNN with (SeS) and without (NSeS) the selective sampling method. We focus on the detection of hemorrhages in color fundus images. A decreased training time from 170 epochs to 60 epochs with an increased performance-on par with two human experts-was achieved with areas under the receiver operating characteristics curve of 0.894 and 0.972 on two data sets. The SeS CNN statistically outperformed the NSeS CNN on an independent test set.

  7. A fast button surface defects detection method based on convolutional neural network

    Science.gov (United States)

    Liu, Lizhe; Cao, Danhua; Wu, Songlin; Wu, Yubin; Wei, Taoran

    2018-01-01

    Considering the complexity of the button surface texture and the variety of buttons and defects, we propose a fast visual method for button surface defect detection, based on convolutional neural network (CNN). CNN has the ability to extract the essential features by training, avoiding designing complex feature operators adapted to different kinds of buttons, textures and defects. Firstly, we obtain the normalized button region and then use HOG-SVM method to identify the front and back side of the button. Finally, a convolutional neural network is developed to recognize the defects. Aiming at detecting the subtle defects, we propose a network structure with multiple feature channels input. To deal with the defects of different scales, we take a strategy of multi-scale image block detection. The experimental results show that our method is valid for a variety of buttons and able to recognize all kinds of defects that have occurred, including dent, crack, stain, hole, wrong paint and uneven. The detection rate exceeds 96%, which is much better than traditional methods based on SVM and methods based on template match. Our method can reach the speed of 5 fps on DSP based smart camera with 600 MHz frequency.

  8. Car Detection from Low-Altitude UAV Imagery with the Faster R-CNN

    Directory of Open Access Journals (Sweden)

    Yongzheng Xu

    2017-01-01

    Full Text Available UAV based traffic monitoring holds distinct advantages over traditional traffic sensors, such as loop detectors, as UAVs have higher mobility, wider field of view, and less impact on the observed traffic. For traffic monitoring from UAV images, the essential but challenging task is vehicle detection. This paper extends the framework of Faster R-CNN for car detection from low-altitude UAV imagery captured over signalized intersections. Experimental results show that Faster R-CNN can achieve promising car detection results compared with other methods. Our tests further demonstrate that Faster R-CNN is robust to illumination changes and cars’ in-plane rotation. Besides, the detection speed of Faster R-CNN is insensitive to the detection load, that is, the number of detected cars in a frame; therefore, the detection speed is almost constant for each frame. In addition, our tests show that Faster R-CNN holds great potential for parking lot car detection. This paper tries to guide the readers to choose the best vehicle detection framework according to their applications. Future research will be focusing on expanding the current framework to detect other transportation modes such as buses, trucks, motorcycles, and bicycles.

  9. Classification of Urban Aerial Data Based on Pixel Labelling with Deep Convolutional Neural Networks and Logistic Regression

    Science.gov (United States)

    Yao, W.; Poleswki, P.; Krzystek, P.

    2016-06-01

    The recent success of deep convolutional neural networks (CNN) on a large number of applications can be attributed to large amounts of available training data and increasing computing power. In this paper, a semantic pixel labelling scheme for urban areas using multi-resolution CNN and hand-crafted spatial-spectral features of airborne remotely sensed data is presented. Both CNN and hand-crafted features are applied to image/DSM patches to produce per-pixel class probabilities with a L1-norm regularized logistical regression classifier. The evidence theory infers a degree of belief for pixel labelling from different sources to smooth regions by handling the conflicts present in the both classifiers while reducing the uncertainty. The aerial data used in this study were provided by ISPRS as benchmark datasets for 2D semantic labelling tasks in urban areas, which consists of two data sources from LiDAR and color infrared camera. The test sites are parts of a city in Germany which is assumed to consist of typical object classes including impervious surfaces, trees, buildings, low vegetation, vehicles and clutter. The evaluation is based on the computation of pixel-based confusion matrices by random sampling. The performance of the strategy with respect to scene characteristics and method combination strategies is analyzed and discussed. The competitive classification accuracy could be not only explained by the nature of input data sources: e.g. the above-ground height of nDSM highlight the vertical dimension of houses, trees even cars and the nearinfrared spectrum indicates vegetation, but also attributed to decision-level fusion of CNN's texture-based approach with multichannel spatial-spectral hand-crafted features based on the evidence combination theory.

  10. Squeezeposenet: Image Based Pose Regression with Small Convolutional Neural Networks for Real Time Uas Navigation

    Science.gov (United States)

    Müller, M. S.; Urban, S.; Jutzi, B.

    2017-08-01

    The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users. The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, local image-based solutions like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) can e.g. be used to support the GNSS solution by closing trajectory gaps but are computationally expensive. However, if the trajectory estimation is interrupted or not available a re-localization is mandatory. In this paper we will provide a novel method for a GNSS-free and fast image-based pose regression in a known area by utilizing a small convolutional neural network (CNN). With on-board processing in mind, we employ a lightweight CNN called SqueezeNet and use transfer learning to adapt the network to pose regression. Our experiments show promising results for GNSS-free and fast localization.

  11. Convolutional neural network-based encoding and decoding of visual object recognition in space and time.

    Science.gov (United States)

    Seeliger, K; Fritsche, M; Güçlü, U; Schoenmakers, S; Schoffelen, J-M; Bosch, S E; van Gerven, M A J

    2017-07-16

    Representations learned by deep convolutional neural networks (CNNs) for object recognition are a widely investigated model of the processing hierarchy in the human visual system. Using functional magnetic resonance imaging, CNN representations of visual stimuli have previously been shown to correspond to processing stages in the ventral and dorsal streams of the visual system. Whether this correspondence between models and brain signals also holds for activity acquired at high temporal resolution has been explored less exhaustively. Here, we addressed this question by combining CNN-based encoding models with magnetoencephalography (MEG). Human participants passively viewed 1,000 images of objects while MEG signals were acquired. We modelled their high temporal resolution source-reconstructed cortical activity with CNNs, and observed a feed-forward sweep across the visual hierarchy between 75 and 200 ms after stimulus onset. This spatiotemporal cascade was captured by the network layer representations, where the increasingly abstract stimulus representation in the hierarchical network model was reflected in different parts of the visual cortex, following the visual ventral stream. We further validated the accuracy of our encoding model by decoding stimulus identity in a left-out validation set of viewed objects, achieving state-of-the-art decoding accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising.

    Science.gov (United States)

    Zhang, Kai; Zuo, Wangmeng; Chen, Yunjin; Meng, Deyu; Zhang, Lei

    2017-07-01

    The discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating the construction of feed-forward denoising convolutional neural networks (DnCNNs) to embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising. Specifically, residual learning and batch normalization are utilized to speed up the training process as well as boost the denoising performance. Different from the existing discriminative denoising models which usually train a specific model for additive white Gaussian noise at a certain noise level, our DnCNN model is able to handle Gaussian denoising with unknown noise level (i.e., blind Gaussian denoising). With the residual learning strategy, DnCNN implicitly removes the latent clean image in the hidden layers. This property motivates us to train a single DnCNN model to tackle with several general image denoising tasks, such as Gaussian denoising, single image super-resolution, and JPEG image deblocking. Our extensive experiments demonstrate that our DnCNN model can not only exhibit high effectiveness in several general image denoising tasks, but also be efficiently implemented by benefiting from GPU computing.

  13. Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data.

    Science.gov (United States)

    Sun, Wenqing; Tseng, Tzu-Liang Bill; Zhang, Jianying; Qian, Wei

    2017-04-01

    In this study we developed a graph based semi-supervised learning (SSL) scheme using deep convolutional neural network (CNN) for breast cancer diagnosis. CNN usually needs a large amount of labeled data for training and fine tuning the parameters, and our proposed scheme only requires a small portion of labeled data in training set. Four modules were included in the diagnosis system: data weighing, feature selection, dividing co-training data labeling, and CNN. 3158 region of interests (ROIs) with each containing a mass extracted from 1874 pairs of mammogram images were used for this study. Among them 100 ROIs were treated as labeled data while the rest were treated as unlabeled. The area under the curve (AUC) observed in our study was 0.8818, and the accuracy of CNN is 0.8243 using the mixed labeled and unlabeled data. Copyright © 2016. Published by Elsevier Ltd.

  14. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment.

    Science.gov (United States)

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2017-01-01

    The robust analysis of neural signals is a challenging problem. Here, we contribute a convolutional neural network (CNN) for the robust classification of a steady-state visual evoked potentials (SSVEPs) paradigm. We measure electroencephalogram (EEG)-based SSVEPs for a brain-controlled exoskeleton under ambulatory conditions in which numerous artifacts may deteriorate decoding. The proposed CNN is shown to achieve reliable performance under these challenging conditions. To validate the proposed method, we have acquired an SSVEP dataset under two conditions: 1) a static environment, in a standing position while fixated into a lower-limb exoskeleton and 2) an ambulatory environment, walking along a test course wearing the exoskeleton (here, artifacts are most challenging). The proposed CNN is compared to a standard neural network and other state-of-the-art methods for SSVEP decoding (i.e., a canonical correlation analysis (CCA)-based classifier, a multivariate synchronization index (MSI), a CCA combined with k-nearest neighbors (CCA-KNN) classifier) in an offline analysis. We found highly encouraging SSVEP decoding results for the CNN architecture, surpassing those of other methods with classification rates of 99.28% and 94.03% in the static and ambulatory conditions, respectively. A subsequent analysis inspects the representation found by the CNN at each layer and can thus contribute to a better understanding of the CNN's robust, accurate decoding abilities.

  15. Classification of crystal structure using a convolutional neural network.

    Science.gov (United States)

    Park, Woon Bae; Chung, Jiyong; Jung, Jaeyoung; Sohn, Keemin; Singh, Satendra Pal; Pyo, Myoungho; Shin, Namsoo; Sohn, Kee-Sun

    2017-07-01

    A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds.

  16. A pre-trained convolutional neural network based method for thyroid nodule diagnosis.

    Science.gov (United States)

    Ma, Jinlian; Wu, Fa; Zhu, Jiang; Xu, Dong; Kong, Dexing

    2017-01-01

    In ultrasound images, most thyroid nodules are in heterogeneous appearances with various internal components and also have vague boundaries, so it is difficult for physicians to discriminate malignant thyroid nodules from benign ones. In this study, we propose a hybrid method for thyroid nodule diagnosis, which is a fusion of two pre-trained convolutional neural networks (CNNs) with different convolutional layers and fully-connected layers. Firstly, the two networks pre-trained with ImageNet database are separately trained. Secondly, we fuse feature maps learned by trained convolutional filters, pooling and normalization operations of the two CNNs. Finally, with the fused feature maps, a softmax classifier is used to diagnose thyroid nodules. The proposed method is validated on 15,000 ultrasound images collected from two local hospitals. Experiment results show that the proposed CNN based methods can accurately and effectively diagnose thyroid nodules. In addition, the fusion of the two CNN based models lead to significant performance improvement, with an accuracy of 83.02%±0.72%. These demonstrate the potential clinical applications of this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. IReport for CNN Transmedia Storytelling On The Brazilian Protests in 2013

    Directory of Open Access Journals (Sweden)

    Geane Alzamora

    2015-12-01

    Full Text Available This study discusses the limits and potentials of the concept of transmedia storytelling to describe citizen coverage of the 2013 protests in Brazil in the collaborative section iReport for CNN on CNN.com. The section is characteristically intermedia because it connects to online social networks and doubles as a monthly television program with the same name. But to what extent could it also be characterized as transmedia? Systematic observation of the citizen coverage between June and July 2013 revealed a restructuring of certain editorial spaces on the site aimed at user-proposed perspectives as well as communicational activity across online social networks; both important aspects for its transmedia characterization. Furthermore, the visible hierarchical differentiation of journalistic reporting puts the transmediatic potential of the collaborative experiment into perspective by reducing the importance of expanding the narrative horizontally despite the study showing regular social scheduling for journalistic coverage as evidence of the dynamics of transmedia.

  18. One-Dimensional Convolutional Neural Network Land-Cover Classification of Multi-Seasonal Hyperspectral Imagery in the San Francisco Bay Area, California

    Directory of Open Access Journals (Sweden)

    Daniel Guidici

    2017-06-01

    Full Text Available In this study, a 1-D Convolutional Neural Network (CNN architecture was developed, trained and utilized to classify single (summer and three seasons (spring, summer, fall of hyperspectral imagery over the San Francisco Bay Area, California for the year 2015. For comparison, the Random Forests (RF and Support Vector Machine (SVM classifiers were trained and tested with the same data. In order to support space-based hyperspectral applications, all analyses were performed with simulated Hyperspectral Infrared Imager (HyspIRI imagery. Three-season data improved classifier overall accuracy by 2.0% (SVM, 1.9% (CNN to 3.5% (RF over single-season data. The three-season CNN provided an overall classification accuracy of 89.9%, which was comparable to overall accuracy of 89.5% for SVM. Both three-season CNN and SVM outperformed RF by over 7% overall accuracy. Analysis and visualization of the inner products for the CNN provided insight to distinctive features within the spectral-temporal domain. A method for CNN kernel tuning was presented to assess the importance of learned features. We concluded that CNN is a promising candidate for hyperspectral remote sensing applications because of the high classification accuracy and interpretability of its inner products.

  19. Toward content-based image retrieval with deep convolutional neural networks

    Science.gov (United States)

    Sklan, Judah E. S.; Plassard, Andrew J.; Fabbri, Daniel; Landman, Bennett A.

    2015-03-01

    Content-based image retrieval (CBIR) offers the potential to identify similar case histories, understand rare disorders, and eventually, improve patient care. Recent advances in database capacity, algorithm efficiency, and deep Convolutional Neural Networks (dCNN), a machine learning technique, have enabled great CBIR success for general photographic images. Here, we investigate applying the leading ImageNet CBIR technique to clinically acquired medical images captured by the Vanderbilt Medical Center. Briefly, we (1) constructed a dCNN with four hidden layers, reducing dimensionality of an input scaled to 128x128 to an output encoded layer of 4x384, (2) trained the network using back-propagation 1 million random magnetic resonance (MR) and computed tomography (CT) images, (3) labeled an independent set of 2100 images, and (4) evaluated classifiers on the projection of the labeled images into manifold space. Quantitative results were disappointing (averaging a true positive rate of only 20%); however, the data suggest that improvements would be possible with more evenly distributed sampling across labels and potential re-grouping of label structures. This preliminary effort at automated classification of medical images with ImageNet is promising, but shows that more work is needed beyond direct adaptation of existing techniques.

  20. Yarn-dyed fabric defect classification based on convolutional neural network

    Science.gov (United States)

    Jing, Junfeng; Dong, Amei; Li, Pengfei; Zhang, Kaibing

    2017-09-01

    Considering that manual inspection of the yarn-dyed fabric can be time consuming and inefficient, we propose a yarn-dyed fabric defect classification method by using a convolutional neural network (CNN) based on a modified AlexNet. CNN shows powerful ability in performing feature extraction and fusion by simulating the learning mechanism of human brain. The local response normalization layers in AlexNet are replaced by the batch normalization layers, which can enhance both the computational efficiency and classification accuracy. In the training process of the network, the characteristics of the defect are extracted step by step and the essential features of the image can be obtained from the fusion of the edge details with several convolution operations. Then the max-pooling layers, the dropout layers, and the fully connected layers are employed in the classification model to reduce the computation cost and extract more precise features of the defective fabric. Finally, the results of the defect classification are predicted by the softmax function. The experimental results show promising performance with an acceptable average classification rate and strong robustness on yarn-dyed fabric defect classification.

  1. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images †

    Science.gov (United States)

    Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao

    2017-01-01

    Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications. PMID:28604624

  2. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

    Science.gov (United States)

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  3. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Xiaolong Zhai

    2017-07-01

    Full Text Available Hand movement classification based on surface electromyography (sEMG pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types and ~2.99% (amputee, 10 movement types increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  4. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images.

    Science.gov (United States)

    Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao

    2017-06-12

    Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.

  5. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images

    Directory of Open Access Journals (Sweden)

    Lingyan Ran

    2017-06-01

    Full Text Available Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN, trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.

  6. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    Science.gov (United States)

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-01-01

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510

  7. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2017-03-01

    Full Text Available Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT, speed-up robust feature (SURF, local binary patterns (LBP, histogram of oriented gradients (HOG, and weighted HOG. Recently, the convolutional neural network (CNN method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  8. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction.

    Science.gov (United States)

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-03-20

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  9. Learning Low Dimensional Convolutional Neural Networks for High-Resolution Remote Sensing Image Retrieval

    Directory of Open Access Journals (Sweden)

    Weixun Zhou

    2017-05-01

    Full Text Available Learning powerful feature representations for image retrieval has always been a challenging task in the field of remote sensing. Traditional methods focus on extracting low-level hand-crafted features which are not only time-consuming but also tend to achieve unsatisfactory performance due to the complexity of remote sensing images. In this paper, we investigate how to extract deep feature representations based on convolutional neural networks (CNNs for high-resolution remote sensing image retrieval (HRRSIR. To this end, several effective schemes are proposed to generate powerful feature representations for HRRSIR. In the first scheme, a CNN pre-trained on a different problem is treated as a feature extractor since there are no sufficiently-sized remote sensing datasets to train a CNN from scratch. In the second scheme, we investigate learning features that are specific to our problem by first fine-tuning the pre-trained CNN on a remote sensing dataset and then proposing a novel CNN architecture based on convolutional layers and a three-layer perceptron. The novel CNN has fewer parameters than the pre-trained and fine-tuned CNNs and can learn low dimensional features from limited labelled images. The schemes are evaluated on several challenging, publicly available datasets. The results indicate that the proposed schemes, particularly the novel CNN, achieve state-of-the-art performance.

  10. Scene text detection via extremal region based double threshold convolutional network classification.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available In this paper, we present a robust text detection approach in natural images which is based on region proposal mechanism. A powerful low-level detector named saliency enhanced-MSER extended from the widely-used MSER is proposed by incorporating saliency detection methods, which ensures a high recall rate. Given a natural image, character candidates are extracted from three channels in a perception-based illumination invariant color space by saliency-enhanced MSER algorithm. A discriminative convolutional neural network (CNN is jointly trained with multi-level information including pixel-level and character-level information as character candidate classifier. Each image patch is classified as strong text, weak text and non-text by double threshold filtering instead of conventional one-step classification, leveraging confident scores obtained via CNN. To further prune non-text regions, we develop a recursive neighborhood search algorithm to track credible texts from weak text set. Finally, characters are grouped into text lines using heuristic features such as spatial location, size, color, and stroke width. We compare our approach with several state-of-the-art methods, and experiments show that our method achieves competitive performance on public datasets ICDAR 2011 and ICDAR 2013.

  11. Scene text detection via extremal region based double threshold convolutional network classification.

    Science.gov (United States)

    Zhu, Wei; Lou, Jing; Chen, Longtao; Xia, Qingyuan; Ren, Mingwu

    2017-01-01

    In this paper, we present a robust text detection approach in natural images which is based on region proposal mechanism. A powerful low-level detector named saliency enhanced-MSER extended from the widely-used MSER is proposed by incorporating saliency detection methods, which ensures a high recall rate. Given a natural image, character candidates are extracted from three channels in a perception-based illumination invariant color space by saliency-enhanced MSER algorithm. A discriminative convolutional neural network (CNN) is jointly trained with multi-level information including pixel-level and character-level information as character candidate classifier. Each image patch is classified as strong text, weak text and non-text by double threshold filtering instead of conventional one-step classification, leveraging confident scores obtained via CNN. To further prune non-text regions, we develop a recursive neighborhood search algorithm to track credible texts from weak text set. Finally, characters are grouped into text lines using heuristic features such as spatial location, size, color, and stroke width. We compare our approach with several state-of-the-art methods, and experiments show that our method achieves competitive performance on public datasets ICDAR 2011 and ICDAR 2013.

  12. Fluid region segmentation in OCT images based on convolution neural network

    Science.gov (United States)

    Liu, Dong; Liu, Xiaoming; Fu, Tianyu; Yang, Zhou

    2017-07-01

    In the retinal image, characteristics of fluid have great significance for diagnosis in eye disease. In the clinical, the segmentation of fluid is usually conducted manually, but is time-consuming and the accuracy is highly depend on the expert's experience. In this paper, we proposed a segmentation method based on convolution neural network (CNN) for segmenting the fluid from fundus image. The B-scans of OCT are segmented into layers, and patches from specific region with annotation are used for training. After the data set being divided into training set and test set, network training is performed and a good segmentation result is obtained, which has a significant advantage over traditional methods such as threshold method.

  13. Glomerulus Classification and Detection Based on Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Jaime Gallego

    2018-01-01

    Full Text Available Glomerulus classification and detection in kidney tissue segments are key processes in nephropathology used for the correct diagnosis of the diseases. In this paper, we deal with the challenge of automating Glomerulus classification and detection from digitized kidney slide segments using a deep learning framework. The proposed method applies Convolutional Neural Networks (CNNs between two classes: Glomerulus and Non-Glomerulus, to detect the image segments belonging to Glomerulus regions. We configure the CNN with the public pre-trained AlexNet model and adapt it to our system by learning from Glomerulus and Non-Glomerulus regions extracted from training slides. Once the model is trained, labeling is performed by applying the CNN classification to the image blocks under analysis. The results of the method indicate that this technique is suitable for correct Glomerulus detection in Whole Slide Images (WSI, showing robustness while reducing false positive and false negative detections.

  14. Lumen-based detection of prostate cancer via convolutional neural networks

    Science.gov (United States)

    Kwak, Jin Tae; Hewitt, Stephen M.

    2017-03-01

    We present a deep learning approach for detecting prostate cancers. The approach consists of two steps. In the first step, we perform tissue segmentation that identifies lumens within digitized prostate tissue specimen images. Intensity- and texture-based image features are computed at five different scales, and a multiview boosting method is adopted to cooperatively combine the image features from differing scales and to identify lumens. In the second step, we utilize convolutional neural networks (CNN) to automatically extract high-level image features of lumens and to predict cancers. The segmented lumens are rescaled to reduce computational complexity and data augmentation by scaling, rotating, and flipping the rescaled image is applied to avoid overfitting. We evaluate the proposed method using two tissue microarrays (TMA) - TMA1 includes 162 tissue specimens (73 Benign and 89 Cancer) and TMA2 comprises 185 tissue specimens (70 Benign and 115 Cancer). In cross-validation on TMA1, the proposed method achieved an AUC of 0.95 (CI: 0.93-0.98). Trained on TMA1 and tested on TMA2, CNN obtained an AUC of 0.95 (CI: 0.92-0.98). This demonstrates that the proposed method can potentially improve prostate cancer pathology.

  15. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.

    Science.gov (United States)

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lau, Steven; Lu, Weiguo; Yan, Yulong; Jiang, Steve B; Zhen, Xin; Timmerman, Robert; Nedzi, Lucien; Gu, Xuejun

    2017-01-01

    Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.

  16. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS treatment planning. In this work, we developed a deep learning convolutional neural network (CNN algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.

  17. Multi-robot Coordination by using Cellular Neural Networks

    Directory of Open Access Journals (Sweden)

    A. Gacsadi

    2008-05-01

    Full Text Available Vision-based algorithms for multi-robot coordination,are presented in this paper. Cellular Neural Networks (CNNsprocessing techniques are used for real time motion planning ofthe robots. The CNN methods are considered an advantageoussolution for image processing in autonomous mobile robotsguidance.

  18. Convolutional neural networks with balanced batches for facial expressions recognition

    Science.gov (United States)

    Battini Sönmez, Elena; Cangelosi, Angelo

    2017-03-01

    This paper considers the issue of fully automatic emotion classification on 2D faces. In spite of the great effort done in recent years, traditional machine learning approaches based on hand-crafted feature extraction followed by the classification stage failed to develop a real-time automatic facial expression recognition system. The proposed architecture uses Convolutional Neural Networks (CNN), which are built as a collection of interconnected processing elements to simulate the brain of human beings. The basic idea of CNNs is to learn a hierarchical representation of the input data, which results in a better classification performance. In this work we present a block-based CNN algorithm, which uses noise, as data augmentation technique, and builds batches with a balanced number of samples per class. The proposed architecture is a very simple yet powerful CNN, which can yield state-of-the-art accuracy on the very competitive benchmark algorithm of the Extended Cohn Kanade database.

  19. Using CNN Features to Better Understand What Makes Visual Artworks Special

    Science.gov (United States)

    Brachmann, Anselm; Barth, Erhardt; Redies, Christoph

    2017-01-01

    One of the goal of computational aesthetics is to understand what is special about visual artworks. By analyzing image statistics, contemporary methods in computer vision enable researchers to identify properties that distinguish artworks from other (non-art) types of images. Such knowledge will eventually allow inferences with regard to the possible neural mechanisms that underlie aesthetic perception in the human visual system. In the present study, we define measures that capture variances of features of a well-established Convolutional Neural Network (CNN), which was trained on millions of images to recognize objects. Using an image dataset that represents traditional Western, Islamic and Chinese art, as well as various types of non-art images, we show that we need only two variance measures to distinguish between the artworks and non-art images with a high classification accuracy of 93.0%. Results for the first variance measure imply that, in the artworks, the subregions of an image tend to be filled with pictorial elements, to which many diverse CNN features respond (richness of feature responses). Results for the second measure imply that this diversity is tied to a relatively large variability of the responses of individual CNN feature across the subregions of an image. We hypothesize that this combination of richness and variability of CNN feature responses is one of properties that makes traditional visual artworks special. We discuss the possible neural underpinnings of this perceptual quality of artworks and propose to study the same quality also in other types of aesthetic stimuli, such as music and literature. PMID:28588537

  20. Using CNN Features to Better Understand What Makes Visual Artworks Special

    Directory of Open Access Journals (Sweden)

    Anselm Brachmann

    2017-05-01

    Full Text Available One of the goal of computational aesthetics is to understand what is special about visual artworks. By analyzing image statistics, contemporary methods in computer vision enable researchers to identify properties that distinguish artworks from other (non-art types of images. Such knowledge will eventually allow inferences with regard to the possible neural mechanisms that underlie aesthetic perception in the human visual system. In the present study, we define measures that capture variances of features of a well-established Convolutional Neural Network (CNN, which was trained on millions of images to recognize objects. Using an image dataset that represents traditional Western, Islamic and Chinese art, as well as various types of non-art images, we show that we need only two variance measures to distinguish between the artworks and non-art images with a high classification accuracy of 93.0%. Results for the first variance measure imply that, in the artworks, the subregions of an image tend to be filled with pictorial elements, to which many diverse CNN features respond (richness of feature responses. Results for the second measure imply that this diversity is tied to a relatively large variability of the responses of individual CNN feature across the subregions of an image. We hypothesize that this combination of richness and variability of CNN feature responses is one of properties that makes traditional visual artworks special. We discuss the possible neural underpinnings of this perceptual quality of artworks and propose to study the same quality also in other types of aesthetic stimuli, such as music and literature.

  1. Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules in CT Images with Convolutional Neural Network.

    Science.gov (United States)

    Tu, Xiaoguang; Xie, Mei; Gao, Jingjing; Ma, Zheng; Chen, Daiqiang; Wang, Qingfeng; Finlayson, Samuel G; Ou, Yangming; Cheng, Jie-Zhi

    2017-09-01

    We present a computer-aided diagnosis system (CADx) for the automatic categorization of solid, part-solid and non-solid nodules in pulmonary computerized tomography images using a Convolutional Neural Network (CNN). Provided with only a two-dimensional region of interest (ROI) surrounding each nodule, our CNN automatically reasons from image context to discover informative computational features. As a result, no image segmentation processing is needed for further analysis of nodule attenuation, allowing our system to avoid potential errors caused by inaccurate image processing. We implemented two computerized texture analysis schemes, classification and regression, to automatically categorize solid, part-solid and non-solid nodules in CT scans, with hierarchical features in each case learned directly by the CNN model. To show the effectiveness of our CNN-based CADx, an established method based on histogram analysis (HIST) was implemented for comparison. The experimental results show significant performance improvement by the CNN model over HIST in both classification and regression tasks, yielding nodule classification and rating performance concordant with those of practicing radiologists. Adoption of CNN-based CADx systems may reduce the inter-observer variation among screening radiologists and provide a quantitative reference for further nodule analysis.

  2. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience.

    Science.gov (United States)

    Komeda, Yoriaki; Handa, Hisashi; Watanabe, Tomohiro; Nomura, Takanobu; Kitahashi, Misaki; Sakurai, Toshiharu; Okamoto, Ayana; Minami, Tomohiro; Kono, Masashi; Arizumi, Tadaaki; Takenaka, Mamoru; Hagiwara, Satoru; Matsui, Shigenaga; Nishida, Naoshi; Kashida, Hiroshi; Kudo, Masatoshi

    2017-01-01

    Computer-aided diagnosis (CAD) is becoming a next-generation tool for the diagnosis of human disease. CAD for colon polyps has been suggested as a particularly useful tool for trainee colonoscopists, as the use of a CAD system avoids the complications associated with endoscopic resections. In addition to conventional CAD, a convolutional neural network (CNN) system utilizing artificial intelligence (AI) has been developing rapidly over the past 5 years. We attempted to generate a unique CNN-CAD system with an AI function that studied endoscopic images extracted from movies obtained with colonoscopes used in routine examinations. Here, we report our preliminary results of this novel CNN-CAD system for the diagnosis of colon polyps. A total of 1,200 images from cases of colonoscopy performed between January 2010 and December 2016 at Kindai University Hospital were used. These images were extracted from the video of actual endoscopic examinations. Additional video images from 10 cases of unlearned processes were retrospectively assessed in a pilot study. They were simply diagnosed as either an adenomatous or nonadenomatous polyp. The number of images used by AI to learn to distinguish adenomatous from nonadenomatous was 1,200:600. These images were extracted from the videos of actual endoscopic examinations. The size of each image was adjusted to 256 × 256 pixels. A 10-hold cross-validation was carried out. The accuracy of the 10-hold cross-validation is 0.751, where the accuracy is the ratio of the number of correct answers over the number of all the answers produced by the CNN. The decisions by the CNN were correct in 7 of 10 cases. A CNN-CAD system using routine colonoscopy might be useful for the rapid diagnosis of colorectal polyp classification. Further prospective studies in an in vivo setting are required to confirm the effectiveness of a CNN-CAD system in routine colonoscopy. © 2017 S. Karger AG, Basel.

  3. Global Detection of Live Virtual Machine Migration Based on Cellular Neural Networks

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2014-01-01

    Full Text Available In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM migration detection algorithm based on the cellular neural networks (CNNs, is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation allowing the VM migration detection to be performed better.

  4. First Steps Toward Incorporating Image Based Diagnostics Into Particle Accelerator Control Systems Using Convolutional Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, A. L.; Biedron, S. G.; Milton, S. V.; Edelen, J. P.

    2016-12-16

    At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science and Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.

  5. Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors.

    Science.gov (United States)

    Hong, Hyung Gil; Lee, Min Beom; Park, Kang Ryoung

    2017-06-06

    Conventional finger-vein recognition systems perform recognition based on the finger-vein lines extracted from the input images or image enhancement, and texture feature extraction from the finger-vein images. In these cases, however, the inaccurate detection of finger-vein lines lowers the recognition accuracy. In the case of texture feature extraction, the developer must experimentally decide on a form of the optimal filter for extraction considering the characteristics of the image database. To address this problem, this research proposes a finger-vein recognition method that is robust to various database types and environmental changes based on the convolutional neural network (CNN). In the experiments using the two finger-vein databases constructed in this research and the SDUMLA-HMT finger-vein database, which is an open database, the method proposed in this research showed a better performance compared to the conventional methods.

  6. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network.

    Directory of Open Access Journals (Sweden)

    Xiyang Liu

    Full Text Available Slit-lamp images play an essential role for diagnosis of pediatric cataracts. We present a computer vision-based framework for the automatic localization and diagnosis of slit-lamp images by identifying the lens region of interest (ROI and employing a deep learning convolutional neural network (CNN. First, three grading degrees for slit-lamp images are proposed in conjunction with three leading ophthalmologists. The lens ROI is located in an automated manner in the original image using two successive applications of Candy detection and the Hough transform, which are cropped, resized to a fixed size and used to form pediatric cataract datasets. These datasets are fed into the CNN to extract high-level features and implement automatic classification and grading. To demonstrate the performance and effectiveness of the deep features extracted in the CNN, we investigate the features combined with support vector machine (SVM and softmax classifier and compare these with the traditional representative methods. The qualitative and quantitative experimental results demonstrate that our proposed method offers exceptional mean accuracy, sensitivity and specificity: classification (97.07%, 97.28%, and 96.83% and a three-degree grading area (89.02%, 86.63%, and 90.75%, density (92.68%, 91.05%, and 93.94% and location (89.28%, 82.70%, and 93.08%. Finally, we developed and deployed a potential automatic diagnostic software for ophthalmologists and patients in clinical applications to implement the validated model.

  7. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network

    Science.gov (United States)

    Zhang, Kai; Long, Erping; Cui, Jiangtao; Zhu, Mingmin; An, Yingying; Zhang, Jia; Liu, Zhenzhen; Lin, Zhuoling; Li, Xiaoyan; Chen, Jingjing; Cao, Qianzhong; Li, Jing; Wu, Xiaohang; Wang, Dongni

    2017-01-01

    Slit-lamp images play an essential role for diagnosis of pediatric cataracts. We present a computer vision-based framework for the automatic localization and diagnosis of slit-lamp images by identifying the lens region of interest (ROI) and employing a deep learning convolutional neural network (CNN). First, three grading degrees for slit-lamp images are proposed in conjunction with three leading ophthalmologists. The lens ROI is located in an automated manner in the original image using two successive applications of Candy detection and the Hough transform, which are cropped, resized to a fixed size and used to form pediatric cataract datasets. These datasets are fed into the CNN to extract high-level features and implement automatic classification and grading. To demonstrate the performance and effectiveness of the deep features extracted in the CNN, we investigate the features combined with support vector machine (SVM) and softmax classifier and compare these with the traditional representative methods. The qualitative and quantitative experimental results demonstrate that our proposed method offers exceptional mean accuracy, sensitivity and specificity: classification (97.07%, 97.28%, and 96.83%) and a three-degree grading area (89.02%, 86.63%, and 90.75%), density (92.68%, 91.05%, and 93.94%) and location (89.28%, 82.70%, and 93.08%). Finally, we developed and deployed a potential automatic diagnostic software for ophthalmologists and patients in clinical applications to implement the validated model. PMID:28306716

  8. Brain tumor segmentation with Deep Neural Networks.

    Science.gov (United States)

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  10. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment

    Science.gov (United States)

    Kwak, No-Sang; Müller, Klaus-Robert

    2017-01-01

    The robust analysis of neural signals is a challenging problem. Here, we contribute a convolutional neural network (CNN) for the robust classification of a steady-state visual evoked potentials (SSVEPs) paradigm. We measure electroencephalogram (EEG)-based SSVEPs for a brain-controlled exoskeleton under ambulatory conditions in which numerous artifacts may deteriorate decoding. The proposed CNN is shown to achieve reliable performance under these challenging conditions. To validate the proposed method, we have acquired an SSVEP dataset under two conditions: 1) a static environment, in a standing position while fixated into a lower-limb exoskeleton and 2) an ambulatory environment, walking along a test course wearing the exoskeleton (here, artifacts are most challenging). The proposed CNN is compared to a standard neural network and other state-of-the-art methods for SSVEP decoding (i.e., a canonical correlation analysis (CCA)-based classifier, a multivariate synchronization index (MSI), a CCA combined with k-nearest neighbors (CCA-KNN) classifier) in an offline analysis. We found highly encouraging SSVEP decoding results for the CNN architecture, surpassing those of other methods with classification rates of 99.28% and 94.03% in the static and ambulatory conditions, respectively. A subsequent analysis inspects the representation found by the CNN at each layer and can thus contribute to a better understanding of the CNN’s robust, accurate decoding abilities. PMID:28225827

  11. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1999-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  12. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1998-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  13. Multi-National Banknote Classification Based on Visible-light Line Sensor and Convolutional Neural Network.

    Science.gov (United States)

    Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung

    2017-07-08

    Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods.

  14. Design of deep convolutional networks for prediction of image rapid serial visual presentation events.

    Science.gov (United States)

    Zijing Mao; Wan Xiang Yao; Yufe Huang

    2017-07-01

    We report in this paper an investigation of convolutional neural network (CNN) models for target prediction in time-locked image rapid serial visual presentation (RSVP) experiment. We investigated CNN models with 11 different designs of convolution filters in capturing spatial and temporal correlations in EEG data. We showed that for both within-subject and cross-subject predictions, the CNN models outperform the state-of-the-art algorithms: Bayesian linear discriminant analysis (BLDA) and xDAWN spatial filtering and achieved >6% improvement. Among the 11 different CNN models, the global spatial filter and our proposed region of interest (ROI) achieved best performance. We also implemented the deconvolution network to show how we can visualize from activated hidden units for target/nontarget events learned by the ROI-CNN. Our study suggests that deep learning is a powerful tool for RSVP target prediction and the proposed model is applicable for general EEG-based classifications in brain computer interaction research. The code of this project is available at https://github.com/ZijingMao/ROICNN.

  15. Remote Sensing Scene Classification Based on Convolutional Neural Networks Pre-Trained Using Attention-Guided Sparse Filters

    Directory of Open Access Journals (Sweden)

    Jingbo Chen

    2018-02-01

    Full Text Available Semantic-level land-use scene classification is a challenging problem, in which deep learning methods, e.g., convolutional neural networks (CNNs, have shown remarkable capacity. However, a lack of sufficient labeled images has proved a hindrance to increasing the land-use scene classification accuracy of CNNs. Aiming at this problem, this paper proposes a CNN pre-training method under the guidance of a human visual attention mechanism. Specifically, a computational visual attention model is used to automatically extract salient regions in unlabeled images. Then, sparse filters are adopted to learn features from these salient regions, with the learnt parameters used to initialize the convolutional layers of the CNN. Finally, the CNN is further fine-tuned on labeled images. Experiments are performed on the UCMerced and AID datasets, which show that when combined with a demonstrative CNN, our method can achieve 2.24% higher accuracy than a plain CNN and can obtain an overall accuracy of 92.43% when combined with AlexNet. The results indicate that the proposed method can effectively improve CNN performance using easy-to-access unlabeled images and thus will enhance the performance of land-use scene classification especially when a large-scale labeled dataset is unavailable.

  16. Deep Convolutional Neural Network for Inverse Problems in Imaging.

    Science.gov (United States)

    Jin, Kyong Hwan; McCann, Michael T; Froustey, Emmanuel; Unser, Michael

    2017-06-15

    In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyper parameter selection. The starting point of our work is the observation that unrolled iterative methods have the form of a CNN (filtering followed by point-wise nonlinearity) when the normal operator ( H*H where H* is the adjoint of the forward imaging operator, H ) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill-posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 x 512 image on the GPU.

  17. Deep Convolutional Neural Network for Inverse Problems in Imaging

    Science.gov (United States)

    Jin, Kyong Hwan; McCann, Michael T.; Froustey, Emmanuel; Unser, Michael

    2017-09-01

    In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyper parameter selection. The starting point of our work is the observation that unrolled iterative methods have the form of a CNN (filtering followed by point-wise non-linearity) when the normal operator (H*H, the adjoint of H times H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill-posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 x 512 image on GPU.

  18. Network-based functional enrichment

    Directory of Open Access Journals (Sweden)

    Poirel Christopher L

    2011-11-01

    Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are

  19. Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks.

    Science.gov (United States)

    Chen, Hao; Ni, Dong; Qin, Jing; Li, Shengli; Yang, Xin; Wang, Tianfu; Heng, Pheng Ann

    2015-09-01

    Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred deep convolutional neural network (CNN). Compared with previous works based on low-level features, our approach is able to represent the complicated appearance of the FASP and hence achieve better classification performance. More importantly, in order to reduce the overfitting problem caused by the small amount of training samples, we propose a transfer learning strategy, which transfers the knowledge in the low layers of a base CNN trained from a large database of natural images to our task-specific CNN. Extensive experiments demonstrate that our approach outperforms the state-of-the-art method for the FASP localization as well as the CNN only trained on the limited US training samples. The proposed approach can be easily extended to other similar medical image computing problems, which often suffer from the insufficient training samples when exploiting the deep CNN to represent high-level features.

  20. Cephalometric landmark detection in dental x-ray images using convolutional neural networks

    Science.gov (United States)

    Lee, Hansang; Park, Minseok; Kim, Junmo

    2017-03-01

    In dental X-ray images, an accurate detection of cephalometric landmarks plays an important role in clinical diagnosis, treatment and surgical decisions for dental problems. In this work, we propose an end-to-end deep learning system for cephalometric landmark detection in dental X-ray images, using convolutional neural networks (CNN). For detecting 19 cephalometric landmarks in dental X-ray images, we develop a detection system using CNN-based coordinate-wise regression systems. By viewing x- and y-coordinates of all landmarks as 38 independent variables, multiple CNN-based regression systems are constructed to predict the coordinate variables from input X-ray images. First, each coordinate variable is normalized by the length of either height or width of an image. For each normalized coordinate variable, a CNN-based regression system is trained on training images and corresponding coordinate variable, which is a variable to be regressed. We train 38 regression systems with the same CNN structure on coordinate variables, respectively. Finally, we compute 38 coordinate variables with these trained systems from unseen images and extract 19 landmarks by pairing the regressed coordinates. In experiments, the public database from the Grand Challenges in Dental X-ray Image Analysis in ISBI 2015 was used and the proposed system showed promising performance by successfully locating the cephalometric landmarks within considerable margins from the ground truths.

  1. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.

    Science.gov (United States)

    Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng

    2017-04-10

    This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.

  2. Learning Low Dimensional Convolutional Neural Networks for High-Resolution Remote Sensing Image Retrieval

    Science.gov (United States)

    Zhou, Weixun; Newsam, Shawn; Li, Congmin; Shao, Zhenfeng

    2017-05-01

    Learning powerful feature representations for image retrieval has always been a challenging task in the field of remote sensing. Traditional methods focus on extracting low-level hand-crafted features which are not only time-consuming but also tend to achieve unsatisfactory performance due to the content complexity of remote sensing images. In this paper, we investigate how to extract deep feature representations based on convolutional neural networks (CNN) for high-resolution remote sensing image retrieval (HRRSIR). To this end, two effective schemes are proposed to generate powerful feature representations for HRRSIR. In the first scheme, the deep features are extracted from the fully-connected and convolutional layers of the pre-trained CNN models, respectively; in the second scheme, we propose a novel CNN architecture based on conventional convolution layers and a three-layer perceptron. The novel CNN model is then trained on a large remote sensing dataset to learn low dimensional features. The two schemes are evaluated on several public and challenging datasets, and the results indicate that the proposed schemes and in particular the novel CNN are able to achieve state-of-the-art performance.

  3. A novel deep learning-based approach to high accuracy breast density estimation in digital mammography

    Science.gov (United States)

    Ahn, Chul Kyun; Heo, Changyong; Jin, Heongmin; Kim, Jong Hyo

    2017-03-01

    Mammographic breast density is a well-established marker for breast cancer risk. However, accurate measurement of dense tissue is a difficult task due to faint contrast and significant variations in background fatty tissue. This study presents a novel method for automated mammographic density estimation based on Convolutional Neural Network (CNN). A total of 397 full-field digital mammograms were selected from Seoul National University Hospital. Among them, 297 mammograms were randomly selected as a training set and the rest 100 mammograms were used for a test set. We designed a CNN architecture suitable to learn the imaging characteristic from a multitudes of sub-images and classify them into dense and fatty tissues. To train the CNN, not only local statistics but also global statistics extracted from an image set were used. The image set was composed of original mammogram and eigen-image which was able to capture the X-ray characteristics in despite of the fact that CNN is well known to effectively extract features on original image. The 100 test images which was not used in training the CNN was used to validate the performance. The correlation coefficient between the breast estimates by the CNN and those by the expert's manual measurement was 0.96. Our study demonstrated the feasibility of incorporating the deep learning technology into radiology practice, especially for breast density estimation. The proposed method has a potential to be used as an automated and quantitative assessment tool for mammographic breast density in routine practice.

  4. Applying a deep learning based CAD scheme to segment and quantify visceral and subcutaneous fat areas from CT images

    Science.gov (United States)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; Moore, Kathleen; Liu, Hong; Zheng, Bin

    2017-03-01

    Abdominal obesity is strongly associated with a number of diseases and accurately assessment of subtypes of adipose tissue volume plays a significant role in predicting disease risk, diagnosis and prognosis. The objective of this study is to develop and evaluate a new computer-aided detection (CAD) scheme based on deep learning models to automatically segment subcutaneous fat areas (SFA) and visceral (VFA) fat areas depicting on CT images. A dataset involving CT images from 40 patients were retrospectively collected and equally divided into two independent groups (i.e. training and testing group). The new CAD scheme consisted of two sequential convolutional neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. Selection-CNN was trained using 2,240 CT slices to automatically select CT slices belonging to abdomen areas and SegmentationCNN was trained using 84,000 fat-pixel patches to classify fat-pixels as belonging to SFA or VFA. Then, data from the testing group was used to evaluate the performance of the optimized CAD scheme. Comparing to manually labelled results, the classification accuracy of CT slices selection generated by Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using Segmentation-CNN yielded 96.8%. Therefore, this study demonstrated the feasibility of using deep learning based CAD scheme to recognize human abdominal section from CT scans and segment SFA and VFA from CT slices with high agreement compared with subjective segmentation results.

  5. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.

    Science.gov (United States)

    Zhao, Yongjia; Zhou, Suiping

    2017-02-28

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN's input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  6. Combining convolutional neural networks and Hough Transform for classification of images containing lines

    Science.gov (United States)

    Sheshkus, Alexander; Limonova, Elena; Nikolaev, Dmitry; Krivtsov, Valeriy

    2017-03-01

    In this paper, we propose an expansion of convolutional neural network (CNN) input features based on Hough Transform. We perform morphological contrasting of source image followed by Hough Transform, and then use it as input for some convolutional filters. Thus, CNNs computational complexity and the number of units are not affected. Morphological contrasting and Hough Transform are the only additional computational expenses of introduced CNN input features expansion. Proposed approach was demonstrated on the example of CNN with very simple structure. We considered two image recognition problems, that were object classification on CIFAR-10 and printed character recognition on private dataset with symbols taken from Russian passports. Our approach allowed to reach noticeable accuracy improvement without taking much computational effort, which can be extremely important in industrial recognition systems or difficult problems utilising CNNs, like pressure ridge analysis and classification.

  7. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks

    Science.gov (United States)

    Le, Minh Hung; Chen, Jingyu; Wang, Liang; Wang, Zhiwei; Liu, Wenyu; (Tim Cheng, Kwang-Ting; Yang, Xin

    2017-08-01

    Automated methods for prostate cancer (PCa) diagnosis in multi-parametric magnetic resonance imaging (MP-MRIs) are critical for alleviating requirements for interpretation of radiographs while helping to improve diagnostic accuracy (Artan et al 2010 IEEE Trans. Image Process. 19 2444-55, Litjens et al 2014 IEEE Trans. Med. Imaging 33 1083-92, Liu et al 2013 SPIE Medical Imaging (International Society for Optics and Photonics) p 86701G, Moradi et al 2012 J. Magn. Reson. Imaging 35 1403-13, Niaf et al 2014 IEEE Trans. Image Process. 23 979-91, Niaf et al 2012 Phys. Med. Biol. 57 3833, Peng et al 2013a SPIE Medical Imaging (International Society for Optics and Photonics) p 86701H, Peng et al 2013b Radiology 267 787-96, Wang et al 2014 BioMed. Res. Int. 2014). This paper presents an automated method based on multimodal convolutional neural networks (CNNs) for two PCa diagnostic tasks: (1) distinguishing between cancerous and noncancerous tissues and (2) distinguishing between clinically significant (CS) and indolent PCa. Specifically, our multimodal CNNs effectively fuse apparent diffusion coefficients (ADCs) and T2-weighted MP-MRI images (T2WIs). To effectively fuse ADCs and T2WIs we design a new similarity loss function to enforce consistent features being extracted from both ADCs and T2WIs. The similarity loss is combined with the conventional classification loss functions and integrated into the back-propagation procedure of CNN training. The similarity loss enables better fusion results than existing methods as the feature learning processes of both modalities are mutually guided, jointly facilitating CNN to ‘see’ the true visual patterns of PCa. The classification results of multimodal CNNs are further combined with the results based on handcrafted features using a support vector machine classifier. To achieve a satisfactory accuracy for clinical use, we comprehensively investigate three critical factors which could greatly affect the performance of our

  8. Localization of Origins of Premature Ventricular Contraction by Means of Convolutional Neural Network from 12-lead ECG.

    Science.gov (United States)

    Yang, Ting; Yu, Long; Jin, Qi; Wu, Liqun; He, Bin

    2017-09-25

    This paper proposes a novel method to localize origins of premature ventricular contractions (PVCs) from 12-lead electrocardiography (ECG) using convolutional neural network (CNN) and a realistic computer heart model. The proposed method consists of two CNNs (Segment CNN and Epi-Endo CNN) to classify among ventricular sources from 25 segments and from epicardium (Epi) or endocardium (Endo). The inputs are the full time courses and the first half of QRS complexes of 12-lead ECG, respectively. After registering the ventricle computer model with an individual patient's heart, the training datasets were generated by multiplying ventricular current dipoles derived from single pacing at various locations with patient-specific lead field. The origins of PVC are localized by calculating the weighted center of gravity of classification returned by the CNNs. A number of computer simulations were conducted to evaluate the proposed method under a variety of noise levels and heart registration errors. Furthermore, the proposed method was evaluated on 90 PVC beats from 9 human patients with PVCs and compared against ablation outcome in the same patients. The computer simulation evaluation returned relatively high accuracies for Segment CNN (∼78%) and Epi-Endo CNN (∼90%). Clinical testing in 9 PVC patients resulted an averaged localization error of 11 mm. Our simulation and clinical evaluation results demonstrate the capability and merits of the proposed CNN-based method for localization of PVC. This work suggests a new approach for cardiac source localization of origin of arrhythmias using only the 12-lead ECG by means of CNN, and may have important applications for future real-time monitoring and localizing origins of cardiac arrhythmias guiding ablation treatment.

  9. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network

    Science.gov (United States)

    Lim, Woohyung; Kim, Myoung Shin; Na, Jung Im; Park, Ilwoo

    2018-01-01

    Although there have been reports of the successful diagnosis of skin disorders using deep learning, unrealistically large clinical image datasets are required for artificial intelligence (AI) training. We created datasets of standardized nail images using a region-based convolutional neural network (R-CNN) trained to distinguish the nail from the background. We used R-CNN to generate training datasets of 49,567 images, which we then used to fine-tune the ResNet-152 and VGG-19 models. The validation datasets comprised 100 and 194 images from Inje University (B1 and B2 datasets, respectively), 125 images from Hallym University (C dataset), and 939 images from Seoul National University (D dataset). The AI (ensemble model; ResNet-152 + VGG-19 + feedforward neural networks) results showed test sensitivity/specificity/ area under the curve values of (96.0 / 94.7 / 0.98), (82.7 / 96.7 / 0.95), (92.3 / 79.3 / 0.93), (87.7 / 69.3 / 0.82) for the B1, B2, C, and D datasets. With a combination of the B1 and C datasets, the AI Youden index was significantly (p = 0.01) higher than that of 42 dermatologists doing the same assessment manually. For B1+C and B2+ D dataset combinations, almost none of the dermatologists performed as well as the AI. By training with a dataset comprising 49,567 images, we achieved a diagnostic accuracy for onychomycosis using deep learning that was superior to that of most of the dermatologists who participated in this study. PMID:29352285

  10. REAL-TIME VIDEO SCALING BASED ON CONVOLUTION NEURAL NETWORK ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    S Safinaz

    2017-08-01

    Full Text Available In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames to high resolution frames. We compare our outcomes with multiple exiting algorithms. Our extensive results of proposed technique RemCNN (Reconstruction error minimization Convolution Neural Network shows that our model outperforms the existing technologies such as bicubic, bilinear, MCResNet and provide better reconstructed motioning images and video frames. The experimental results shows that our average PSNR result is 47.80474 considering upscale-2, 41.70209 for upscale-3 and 36.24503 for upscale-4 for Myanmar dataset which is very high in contrast to other existing techniques. This results proves our proposed model real-time video scaling based on convolution neural network architecture’s high efficiency and better performance.

  11. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Na Li

    2016-01-01

    Full Text Available Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.

  12. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  13. SAR target recognition and posture estimation using spatial pyramid pooling within CNN

    Science.gov (United States)

    Peng, Lijiang; Liu, Xiaohua; Liu, Ming; Dong, Liquan; Hui, Mei; Zhao, Yuejin

    2018-01-01

    Many convolution neural networks(CNN) architectures have been proposed to strengthen the performance on synthetic aperture radar automatic target recognition (SAR-ATR) and obtained state-of-art results on targets classification on MSTAR database, but few methods concern about the estimation of depression angle and azimuth angle of targets. To get better effect on learning representation of hierarchies of features on both 10-class target classification task and target posture estimation tasks, we propose a new CNN architecture with spatial pyramid pooling(SPP) which can build high hierarchy of features map by dividing the convolved feature maps from finer to coarser levels to aggregate local features of SAR images. Experimental results on MSTAR database show that the proposed architecture can get high recognition accuracy as 99.57% on 10-class target classification task as the most current state-of-art methods, and also get excellent performance on target posture estimation tasks which pays attention to depression angle variety and azimuth angle variety. What's more, the results inspire us the application of deep learning on SAR target posture description.

  14. A Convolutional Neural Network Neutrino Event Classifier

    CERN Document Server

    Aurisano, A; Rocco, D; Himmel, A; Messier, M D; Niner, E; Pawloski, G; Psihas, F; Sousa, A; Vahle, P

    2016-01-01

    Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.

  15. Digital Neural Networks for New Media

    Science.gov (United States)

    Spaanenburg, Lambert; Malki, Suleyman

    Neural Networks perform computationally intensive tasks offering smart solutions for many new media applications. A number of analog and mixed digital/analog implementations have been proposed to smooth the algorithmic gap. But gradually, the digital implementation has become feasible, and the dedicated neural processor is on the horizon. A notable example is the Cellular Neural Network (CNN). The analog direction has matured for low-power, smart vision sensors; the digital direction is gradually being shaped into an IP-core for algorithm acceleration, especially for use in FPGA-based high-performance systems. The chapter discusses the next step towards a flexible and scalable multi-core engine using Application-Specific Integrated Processors (ASIP). This topographic engine can serve many new media tasks, as illustrated by novel applications in Homeland Security. We conclude with a view on the CNN kaleidoscope for the year 2020.

  16. CNEM: Cluster Based Network Evolution Model

    Directory of Open Access Journals (Sweden)

    Sarwat Nizamani

    2015-01-01

    Full Text Available This paper presents a network evolution model, which is based on the clustering approach. The proposed approach depicts the network evolution, which demonstrates the network formation from individual nodes to fully evolved network. An agglomerative hierarchical clustering method is applied for the evolution of network. In the paper, we present three case studies which show the evolution of the networks from the scratch. These case studies include: terrorist network of 9/11 incidents, terrorist network of WMD (Weapons Mass Destruction plot against France and a network of tweets discussing a topic. The network of 9/11 is also used for evaluation, using other social network analysis methods which show that the clusters created using the proposed model of network evolution are of good quality, thus the proposed method can be used by law enforcement agencies in order to further investigate the criminal networks

  17. Classification of Two Comic Books based on Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Miki UENO

    2017-03-01

    Full Text Available Unphotographic images are the powerful representations described various situations. Thus, understanding intellectual products such as comics and picture books is one of the important topics in the field of artificial intelligence. Hence, stepwise analysis of a comic story, i.e., features of a part of the image, information features, features relating to continuous scene etc., was pursued. Especially, the length and each scene of four-scene comics are limited so as to ensure a clear interpretation of the contents.In this study, as the first step in this direction, the problem to classify two four-scene comics by the same artists were focused as the example. Several classifiers were constructed by utilizing a Convolutional Neural Network(CNN, and the results of classification by a human annotator and by a computational method were compared.From these experiments, we have clearly shown that CNN is efficient way to classify unphotographic gray scaled images and found that characteristic features of images to classify incorrectly.

  18. Improved RGB-D-T based Face Recognition

    DEFF Research Database (Denmark)

    Oliu Simon, Marc; Corneanu, Ciprian; Nasrollahi, Kamal

    2016-01-01

    Reliable facial recognition systems are of crucial importance in various applications from entertainment to security. Thanks to the deep-learning concepts introduced in the field, a significant improvement in the performance of the unimodal facial recognition systems has been observed in the recent...... years. At the same time a multimodal facial recognition is a promising approach. This paper combines the latest successes in both directions by applying deep learning Convolutional Neural Networks (CNN) to the multimodal RGB-D-T based facial recognition problem outperforming previously published results....... Furthermore, a late fusion of the CNN-based recognition block with various hand-crafted features (LBP, HOG, HAAR, HOGOM) is introduced, demonstrating even better recognition performance on a benchmark RGB-D-T database. The obtained results in this paper show that the classical engineered features and CNN...

  19. Bearings Fault Diagnosis Based on Convolutional Neural Networks with 2-D Representation of Vibration Signals as Input

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available Periodic vibration signals captured by the accelerometers carry rich information for bearing fault diagnosis. Existing methods mostly rely on hand-crafted time-consuming preprocessing of data to acquire suitable features. In this paper, we use an easy and effective method to transform the 1-D temporal vibration signal into a 2-D image. With the signal image, convolutional Neural Network (CNN is used to train the raw vibration data. As powerful feature extractor and classifier for image recognition, CNN can learn to acquire features most suitable for the classification task by being trained. With the image format of vibration signals, the neuron in fully-connected layer of CNN can see farther and capture the periodic feature of signals. According to the results of the experiments, when fed in enough training samples, the proposed method outperforms other common methods. The proposed method can also be applied to solve intelligent diagnosis problems of other machine systems.

  20. Temporal Classification Error Compensation of Convolutional Neural Network for Traffic Sign Recognition

    Science.gov (United States)

    Yoon, Seungjong; Kim, Eungtae

    2017-02-01

    In this paper, we propose the method that classifies the traffic signs by using Convolutional Neural Network(CNN) and compensates the error rate of CNN using the temporal correlation between adjacent successive frames. Instead of applying a conventional CNN architecture with more layers, Temporal Classification Error Compensation(TCEC) is proposed to improve the error rate in the architecture which has less nodes and layers than a conventional CNN. Experimental results show that the complexity of the proposed method could be reduced by 50% compared with that of the conventional CNN with same layers, and the error rate could be improved by about 3%.

  1. Location-Based Services in Vehicular Networks

    Science.gov (United States)

    Wu, Di

    2013-01-01

    Location-based services have been identified as a promising communication paradigm in highly mobile and dynamic vehicular networks. However, existing mobile ad hoc networking cannot be directly applied to vehicular networking due to differences in traffic conditions, mobility models and network topologies. On the other hand, hybrid architectures…

  2. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images.

    Science.gov (United States)

    Hirasawa, Toshiaki; Aoyama, Kazuharu; Tanimoto, Tetsuya; Ishihara, Soichiro; Shichijo, Satoki; Ozawa, Tsuyoshi; Ohnishi, Tatsuya; Fujishiro, Mitsuhiro; Matsuo, Keigo; Fujisaki, Junko; Tada, Tomohiro

    2018-01-15

    Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images. A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN. The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface. The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.

  3. Image quality assessment using deep convolutional networks

    Science.gov (United States)

    Li, Yezhou; Ye, Xiang; Li, Yong

    2017-12-01

    This paper proposes a method of accurately assessing image quality without a reference image by using a deep convolutional neural network. Existing training based methods usually utilize a compact set of linear filters for learning features of images captured by different sensors to assess their quality. These methods may not be able to learn the semantic features that are intimately related with the features used in human subject assessment. Observing this drawback, this work proposes training a deep convolutional neural network (CNN) with labelled images for image quality assessment. The ReLU in the CNN allows non-linear transformations for extracting high-level image features, providing a more reliable assessment of image quality than linear filters. To enable the neural network to take images of any arbitrary size as input, the spatial pyramid pooling (SPP) is introduced connecting the top convolutional layer and the fully-connected layer. In addition, the SPP makes the CNN robust to object deformations to a certain extent. The proposed method taking an image as input carries out an end-to-end learning process, and outputs the quality of the image. It is tested on public datasets. Experimental results show that it outperforms existing methods by a large margin and can accurately assess the image quality on images taken by different sensors of varying sizes.

  4. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  5. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    The availability of location information in mobile devices, e.g., through built-in GPS receivers in smart phones, has motivated the investigation of the usefulness of location based network optimizations. Since the quality of input information is important for network optimizations, a main focus...... of this work is to evaluate how location based network optimizations are affected by varying quality of input information such as location information and user movements. The first contribution in this thesis concerns cooperative network-based localization systems. The investigations focus on assessing...... the achievable accuracy of future localization system in mobile settings, as well as quantifying the impact of having a realistic model of the required measurement exchanges. Secondly, this work has considered different large scale and small scale location based network optimizations, namely centralized relay...

  6. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    Directory of Open Access Journals (Sweden)

    Srdjan Sladojevic

    2016-01-01

    Full Text Available The latest generation of convolutional neural networks (CNNs has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%.

  7. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    Science.gov (United States)

    Sladojevic, Srdjan; Arsenovic, Marko; Culibrk, Dubravko; Stefanovic, Darko

    2016-01-01

    The latest generation of convolutional neural networks (CNNs) has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%. PMID:27418923

  8. Can a CNN recognize Catalan diet?

    Science.gov (United States)

    Herruzo, P.; Bolaños, M.; Radeva, P.

    2016-10-01

    Nowadays, we can find several diseases related to the unhealthy diet habits of the population, such as diabetes, obesity, anemia, bulimia and anorexia. In many cases, these diseases are related to the food consumption of people. Mediterranean diet is scientifically known as a healthy diet that helps to prevent many metabolic diseases. In particular, our work focuses on the recognition of Mediterranean food and dishes. The development of this methodology would allow to analise the daily habits of users with wearable cameras, within the topic of lifelogging. By using automatic mechanisms we could build an objective tool for the analysis of the patient's behavior, allowing specialists to discover unhealthy food patterns and understand the user's lifestyle. With the aim to automatically recognize a complete diet, we introduce a challenging multi-labeled dataset related to Mediter-ranean diet called FoodCAT. The first type of label provided consists of 115 food classes with an average of 400 images per dish, and the second one consists of 12 food categories with an average of 3800 pictures per class. This dataset will serve as a basis for the development of automatic diet recognition. In this context, deep learning and more specifically, Convolutional Neural Networks (CNNs), currently are state-of-the-art methods for automatic food recognition. In our work, we compare several architectures for image classification, with the purpose of diet recognition. Applying the best model for recognising food categories, we achieve a top-1 accuracy of 72.29%, and top-5 of 97.07%. In a complete diet recognition of dishes from Mediterranean diet, enlarged with the Food-101 dataset for international dishes recognition, we achieve a top-1 accuracy of 68.07%, and top-5 of 89.53%, for a total of 115+101 food classes.

  9. A Quantum Cryptography Communication Network Based on Software Defined Network

    Directory of Open Access Journals (Sweden)

    Zhang Hongliang

    2018-01-01

    Full Text Available With the development of the Internet, information security has attracted great attention in today’s society, and quantum cryptography communication network based on quantum key distribution (QKD is a very important part of this field, since the quantum key distribution combined with one-time-pad encryption scheme can guarantee the unconditional security of the information. The secret key generated by quantum key distribution protocols is a very valuable resource, so making full use of key resources is particularly important. Software definition network (SDN is a new type of network architecture, and it separates the control plane and the data plane of network devices through OpenFlow technology, thus it realizes the flexible control of the network resources. In this paper, a quantum cryptography communication network model based on SDN is proposed to realize the flexible control of quantum key resources in the whole cryptography communication network. Moreover, we propose a routing algorithm which takes into account both the hops and the end-to-end availible keys, so that the secret key generated by QKD can be used effectively. We also simulate this quantum cryptography communication network, and the result shows that based on SDN and the proposed routing algorithm the performance of this network is improved since the effective use of the quantum key resources.

  10. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xin Guan

    2012-04-01

    Full Text Available Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs. Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR.We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  11. A network coding based routing protocol for underwater sensor networks.

    Science.gov (United States)

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  12. Detection of Phase Transition via Convolutional Neural Networks

    Science.gov (United States)

    Tanaka, Akinori; Tomiya, Akio

    2017-06-01

    A convolutional neural network (CNN) is designed to study correlation between the temperature and the spin configuration of the two-dimensional Ising model. Our CNN is able to find the characteristic feature of the phase transition without prior knowledge. Also a novel order parameter on the basis of the CNN is introduced to identify the location of the critical temperature; the result is found to be consistent with the exact value.

  13. A Novel Chaotic Neural Network Using Memristive Synapse with Applications in Associative Memory

    Directory of Open Access Journals (Sweden)

    Xiaofang Hu

    2012-01-01

    Full Text Available Chaotic Neural Network, also denoted by the acronym CNN, has rich dynamical behaviors that can be harnessed in promising engineering applications. However, due to its complex synapse learning rules and network structure, it is difficult to update its synaptic weights quickly and implement its large scale physical circuit. This paper addresses an implementation scheme of a novel CNN with memristive neural synapses that may provide a feasible solution for further development of CNN. Memristor, widely known as the fourth fundamental circuit element, was theoretically predicted by Chua in 1971 and has been developed in 2008 by the researchers in Hewlett-Packard Laboratory. Memristor based hybrid nanoscale CMOS technology is expected to revolutionize the digital and neuromorphic computation. The proposed memristive CNN has four significant features: (1 nanoscale memristors can simplify the synaptic circuit greatly and enable the synaptic weights update easily; (2 it can separate stored patterns from superimposed input; (3 it can deal with one-to-many associative memory; (4 it can deal with many-to-many associative memory. Simulation results are provided to illustrate the effectiveness of the proposed scheme.

  14. Cancer Hallmark Text Classification Using Convolutional Neural Networks

    OpenAIRE

    Baker, Simon; Korhonen, Anna-Leena; Pyysalo, S

    2017-01-01

    Methods based on deep learning approaches have recently achieved state-of-the-art performance in a range of machine learning tasks and are increasingly applied to natural language processing (NLP). Despite strong results in various established NLP tasks involving general domain texts, here is only limited work applying these models to biomedical NLP. In this paper, we consider a Convolutional Neural Network (CNN) approach to biomedical text classification. Evaluation using a recently intr...

  15. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Chaudhari

    2011-06-01

    Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.

  16. Surgical-tools detection based on Convolutional Neural Network in laparoscopic robot-assisted surgery.

    Science.gov (United States)

    Bareum Choi; Kyungmin Jo; Songe Choi; Jaesoon Choi

    2017-07-01

    Laparoscopic surgery, a type of minimally invasive surgery, is used in a variety of clinical surgeries because it has a faster recovery rate and causes less pain. However, in general, the robotic system used in laparoscopic surgery can cause damage to the surgical instruments, organs, or tissues during surgery due to a narrow field of view and operating space, and insufficient tactile feedback. This study proposes real-time models for the detection of surgical instruments during laparoscopic surgery by using a CNN(Convolutional Neural Network). A dataset included information of the 7 surgical tools is used for learning CNN. To track surgical instruments in real time, unified architecture of YOLO apply to the models. So as to evaluate performance of the suggested models, degree of recall and precision is calculated and compared. Finally, we achieve 72.26% mean average precision over our dataset.

  17. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  18. Durer-pentagon-based complex network

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2016-04-01

    Full Text Available A novel Durer-pentagon-based complex network was constructed by adding a centre node. The properties of the complex network including the average degree, clustering coefficient, average path length, and fractal dimension were determined. The proposed complex network is small-world and fractal.

  19. LightNet: A Versatile, Standalone Matlab-based Environment for Deep Learning

    OpenAIRE

    Ye, Chengxi; Zhao, Chen; Yang, Yezhou; Fermuller, Cornelia; Aloimonos, Yiannis

    2016-01-01

    LightNet is a lightweight, versatile and purely Matlab-based deep learning framework. The idea underlying its design is to provide an easy-to-understand, easy-to-use and efficient computational platform for deep learning research. The implemented framework supports major deep learning architectures such as Multilayer Perceptron Networks (MLP), Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). The framework also supports both CPU and GPU computation, and the switch betwe...

  20. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  1. Lidar-based individual tree species classification using convolutional neural network

    Science.gov (United States)

    Mizoguchi, Tomohiro; Ishii, Akira; Nakamura, Hiroyuki; Inoue, Tsuyoshi; Takamatsu, Hisashi

    2017-06-01

    Terrestrial lidar is commonly used for detailed documentation in the field of forest inventory investigation. Recent improvements of point cloud processing techniques enabled efficient and precise computation of an individual tree shape parameters, such as breast-height diameter, height, and volume. However, tree species are manually specified by skilled workers to date. Previous works for automatic tree species classification mainly focused on aerial or satellite images, and few works have been reported for classification techniques using ground-based sensor data. Several candidate sensors can be considered for classification, such as RGB or multi/hyper spectral cameras. Above all candidates, we use terrestrial lidar because it can obtain high resolution point cloud in the dark forest. We selected bark texture for the classification criteria, since they clearly represent unique characteristics of each tree and do not change their appearance under seasonable variation and aged deterioration. In this paper, we propose a new method for automatic individual tree species classification based on terrestrial lidar using Convolutional Neural Network (CNN). The key component is the creation step of a depth image which well describe the characteristics of each species from a point cloud. We focus on Japanese cedar and cypress which cover the large part of domestic forest. Our experimental results demonstrate the effectiveness of our proposed method.

  2. Ear Detection under Uncontrolled Conditions with Multiple Scale Faster Region-Based Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-04-01

    Full Text Available Ear detection is an important step in ear recognition approaches. Most existing ear detection techniques are based on manually designing features or shallow learning algorithms. However, researchers found that the pose variation, occlusion, and imaging conditions provide a great challenge to the traditional ear detection methods under uncontrolled conditions. This paper proposes an efficient technique involving Multiple Scale Faster Region-based Convolutional Neural Networks (Faster R-CNN to detect ears from 2D profile images in natural images automatically. Firstly, three regions of different scales are detected to infer the information about the ear location context within the image. Then an ear region filtering approach is proposed to extract the correct ear region and eliminate the false positives automatically. In an experiment with a test set of 200 web images (with variable photographic conditions, 98% of ears were accurately detected. Experiments were likewise conducted on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2 and University of Beira Interior Ear dataset (UBEAR, which contain large occlusion, scale, and pose variations. Detection rates of 100% and 98.22%, respectively, demonstrate the effectiveness of the proposed approach.

  3. Network Medicine: A Network-based Approach to Human Diseases

    Science.gov (United States)

    Ghiassian, Susan Dina

    With the availability of large-scale data, it is now possible to systematically study the underlying interaction maps of many complex systems in multiple disciplines. Statistical physics has a long and successful history in modeling and characterizing systems with a large number of interacting individuals. Indeed, numerous approaches that were first developed in the context of statistical physics, such as the notion of random walks and diffusion processes, have been applied successfully to study and characterize complex systems in the context of network science. Based on these tools, network science has made important contributions to our understanding of many real-world, self-organizing systems, for example in computer science, sociology and economics. Biological systems are no exception. Indeed, recent studies reflect the necessity of applying statistical and network-based approaches in order to understand complex biological systems, such as cells. In these approaches, a cell is viewed as a complex network consisting of interactions among cellular components, such as genes and proteins. Given the cellular network as a platform, machinery, functionality and failure of a cell can be studied with network-based approaches, a field known as systems biology. Here, we apply network-based approaches to explore human diseases and their associated genes within the cellular network. This dissertation is divided in three parts: (i) A systematic analysis of the connectivity patterns among disease proteins within the cellular network. The quantification of these patterns inspires the design of an algorithm which predicts a disease-specific subnetwork containing yet unknown disease associated proteins. (ii) We apply the introduced algorithm to explore the common underlying mechanism of many complex diseases. We detect a subnetwork from which inflammatory processes initiate and result in many autoimmune diseases. (iii) The last chapter of this dissertation describes the

  4. Network repair based on community structure

    Science.gov (United States)

    Wang, Tianyu; Zhang, Jun; Sun, Xiaoqian; Wandelt, Sebastian

    2017-06-01

    Real-world complex systems are often fragile under disruptions. Accordingly, research on network repair has been studied intensively. Recently proposed efficient strategies for network disruption, based on collective influence, call for more research on efficient network repair strategies. Existing strategies are often designed to repair networks with local information only. However, the absence of global information impedes the creation of efficient repairs. Motivated by this limitation, we propose a concept of community-level repair, which leverages the community structure of the network during the repair process. Moreover, we devise a general framework of network repair, with in total six instances. Evaluations on real-world and random networks show the effectiveness and efficiency of the community-level repair approaches, compared to local and random repairs. Our study contributes to a better understanding of repair processes, and reveals that exploitation of the community structure improves the repair process on a disrupted network significantly.

  5. Community Based Networks and 5G

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2016-01-01

    is hinged on a research aimed at understanding how and why Community Based Networks deploy telecom and Broadband infrastructure. The study was a qualitative study carried out inductively using Grounded Theory. Six cases were investigated.Two Community Based Network Mobilization models were identified......The deployment of previous wireless standards has provided more benefits for urban dwellers than rural dwellers. 5G deployment may not be different. This paper identifies that Community Based Networks as carriers that deserve recognition as potential 5G providers may change this. The argument....... The findings indicate that 5G connectivity can be extended to rural areas by these networks, via heterogenous networks. Hence the delivery of 5G data rates delivery via Wireless WAN in rural areas can be achieved by utilizing the causal factors of the identified models for Community Based Networks....

  6. A deep convolutional neural network model to classify heartbeats.

    Science.gov (United States)

    Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adam, Muhammad; Gertych, Arkadiusz; Tan, Ru San

    2017-10-01

    The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart. Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a general term that refers to an abnormal heart rhythm. The basis of arrhythmia diagnosis is the identification of normal versus abnormal individual heart beats, and their correct classification into different diagnoses, based on ECG morphology. Heartbeats can be sub-divided into five categories namely non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is challenging and time-consuming to distinguish these heartbeats on ECG as these signals are typically corrupted by noise. We developed a 9-layer deep convolutional neural network (CNN) to automatically identify 5 different categories of heartbeats in ECG signals. Our experiment was conducted in original and noise attenuated sets of ECG signals derived from a publicly available database. This set was artificially augmented to even out the number of instances the 5 classes of heartbeats and filtered to remove high-frequency noise. The CNN was trained using the augmented data and achieved an accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in original and noise free ECGs, respectively. When the CNN was trained with highly imbalanced data (original dataset), the accuracy of the CNN reduced to 89.07%% and 89.3% in noisy and noise-free ECGs. When properly trained, the proposed CNN model can serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmic heartbeats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Multi-focus image fusion with the all convolutional neural network

    Science.gov (United States)

    Du, Chao-ben; Gao, She-sheng

    2018-01-01

    A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image fusion effect, getting a decision map is very necessary and usually difficult to finish. In this letter, we address this problem with convolutional neural network (CNN), aiming to get a state-of-the-art decision map. The main idea is that the max-pooling of CNN is replaced by a convolution layer, the residuals are propagated backwards by gradient descent, and the training parameters of the individual layers of the CNN are updated layer by layer. Based on this, we propose a new all CNN (ACNN)-based multi-focus image fusion method in spatial domain. We demonstrate that the decision map obtained from the ACNN is reliable and can lead to high-quality fusion results. Experimental results clearly validate that the proposed algorithm can obtain state-of-the-art fusion performance in terms of both qualitative and quantitative evaluations.

  8. High-speed railway real-time localization auxiliary method based on deep neural network

    Science.gov (United States)

    Chen, Dongjie; Zhang, Wensheng; Yang, Yang

    2017-11-01

    High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.

  9. Memristor-based neural networks

    Science.gov (United States)

    Thomas, Andy

    2013-03-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them.

  10. An effective convolutional neural network model for Chinese sentiment analysis

    Science.gov (United States)

    Zhang, Yu; Chen, Mengdong; Liu, Lianzhong; Wang, Yadong

    2017-06-01

    Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo's sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.

  11. Cilia-based transport networks

    Science.gov (United States)

    Bodenschatz, Eberhard

    Cerebrospinal fluid conveys many physiologically important signaling factors through the ventricular cavities of the brain. We investigated the transport of cerebrospinal fluid in the third ventricle of the mouse brain and discovered a highly organized pattern of cilia modules, which collectively give rise to a network of fluid flows that allows for precise transport within this ventricle. Our work suggests that ciliated epithelia can generate and maintain complex, spatiotemporally regulated flow networks. I shall also show results on how to assemble artificial cilia and cilia carpets. Supported by the BMBF MaxSynBio.

  12. Cognitive Radio-based Home Area Networks

    NARCIS (Netherlands)

    Sarijari, M.A.B.

    2016-01-01

    A future home area network (HAN) is envisaged to consist of a large number of devices that support various applications such as smart grid, security and safety systems, voice call, and video streaming. Most of these home devices are communicating based on various wireless networking technologies

  13. Systematic Assessment of the Impact of User Roles on Network Flow Patterns

    Science.gov (United States)

    2017-09-01

    Broadcasting Company BCC Bi-Connected Components CERT Computer Emergency Readiness Team CNN Cable News Network CTMC Continuous-Time Markov Chain DDoS ...detected. These and other Netflow-based anomaly detection systems can work very well for detecting scanning, DDoS or worm behaviors [57], and have...available bandwidth, DDoS attacks, and routing problems. To use Netflow as a means of monitoring user behavior however, it makes sense to isolate the

  14. Combining LiDAR Space Clustering and Convolutional Neural Networks for Pedestrian Detection

    OpenAIRE

    Matti, Damien; Ekenel, Hazim Kemal; Thiran, Jean-Philippe

    2017-01-01

    Pedestrian detection is an important component for safety of autonomous vehicles, as well as for traffic and street surveillance. There are extensive benchmarks on this topic and it has been shown to be a challenging problem when applied on real use-case scenarios. In purely image-based pedestrian detection approaches, the state-of-the-art results have been achieved with convolutional neural networks (CNN) and surprisingly few detection frameworks have been built upon multi-cue approaches. In...

  15. Model-based control of networked systems

    CERN Document Server

    Garcia, Eloy; Montestruque, Luis A

    2014-01-01

    This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled.   The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates . It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control.   Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and ...

  16. Modeling the interdependent network based on two-mode networks

    Science.gov (United States)

    An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian

    2017-10-01

    Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.

  17. Dynamics-based centrality for directed networks.

    Science.gov (United States)

    Masuda, Naoki; Kori, Hiroshi

    2010-11-01

    Determining the relative importance of nodes in directed networks is important in, for example, ranking websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied to strongly connected networks, to the case of general directed networks such that we can quantitatively compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality defined as the stationary density of the continuous-time random walk with random jumps is shown to be equivalent to the absorption probability of the random walk with sinks at each node but without random jumps. Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network supplied with sinks but not with random jumps.

  18. Automatic localization of vertebrae based on convolutional neural networks

    Science.gov (United States)

    Shen, Wei; Yang, Feng; Mu, Wei; Yang, Caiyun; Yang, Xin; Tian, Jie

    2015-03-01

    Localization of the vertebrae is of importance in many medical applications. For example, the vertebrae can serve as the landmarks in image registration. They can also provide a reference coordinate system to facilitate the localization of other organs in the chest. In this paper, we propose a new vertebrae localization method using convolutional neural networks (CNN). The main advantage of the proposed method is the removal of hand-crafted features. We construct two training sets to train two CNNs that share the same architecture. One is used to distinguish the vertebrae from other tissues in the chest, and the other is aimed at detecting the centers of the vertebrae. The architecture contains two convolutional layers, both of which are followed by a max-pooling layer. Then the output feature vector from the maxpooling layer is fed into a multilayer perceptron (MLP) classifier which has one hidden layer. Experiments were performed on ten chest CT images. We used leave-one-out strategy to train and test the proposed method. Quantitative comparison between the predict centers and ground truth shows that our convolutional neural networks can achieve promising localization accuracy without hand-crafted features.

  19. AUTOMATIC MUSCLE PERIMYSIUM ANNOTATION USING DEEP CONVOLUTIONAL NEURAL NETWORK.

    Science.gov (United States)

    Sapkota, Manish; Xing, Fuyong; Su, Hai; Yang, Lin

    2015-04-01

    Diseased skeletal muscle expresses mononuclear cell infiltration in the regions of perimysium. Accurate annotation or segmentation of perimysium can help biologists and clinicians to determine individualized patient treatment and allow for reasonable prognostication. However, manual perimysium annotation is time consuming and prone to inter-observer variations. Meanwhile, the presence of ambiguous patterns in muscle images significantly challenge many traditional automatic annotation algorithms. In this paper, we propose an automatic perimysium annotation algorithm based on deep convolutional neural network (CNN). We formulate the automatic annotation of perimysium in muscle images as a pixel-wise classification problem, and the CNN is trained to label each image pixel with raw RGB values of the patch centered at the pixel. The algorithm is applied to 82 diseased skeletal muscle images. We have achieved an average precision of 94% on the test dataset.

  20. The Drosophila Pericentrin-like-protein (PLP cooperates with Cnn to maintain the integrity of the outer PCM

    Directory of Open Access Journals (Sweden)

    Jennifer H. Richens

    2015-08-01

    Full Text Available Centrosomes comprise a pair of centrioles surrounded by a matrix of pericentriolar material (PCM. In vertebrate cells, Pericentrin plays an important part in mitotic PCM assembly, but the Drosophila Pericentrin-like protein (PLP appears to have a more minor role in mitotic fly cells. Here we investigate the function of PLP during the rapid mitotic cycles of the early Drosophila embryo. Unexpectedly, we find that PLP is specifically enriched in the outer-most regions of the PCM, where it largely co-localizes with the PCM scaffold protein Cnn. In the absence of PLP the outer PCM appears to be structurally weakened, and it rapidly disperses along the centrosomal microtubules (MTs. As a result, centrosomal MTs are subtly disorganized in embryos lacking PLP, although mitosis is largely unperturbed and these embryos develop and hatch at near-normal rates. Y2H analysis reveals that PLP can potentially form multiple interactions with itself and with the PCM recruiting proteins Asl, Spd-2 and Cnn. A deletion analysis suggests that PLP participates in a complex network of interactions that ultimately help to strengthen the PCM.

  1. Cloud-based Networked Visual Servo Control

    DEFF Research Database (Denmark)

    Wu, Haiyan; Lu, Lei; Chen, Chih-Chung

    2013-01-01

    feedback, ii) a stabilizing control law for the networked visual servo control system with time-varying feedback time delay, and iii) a sending rate scheduling strategy aiming at reducing the communication network load. The performance of the networked visual servo control system with sending rate......The performance of vision-based control systems, in particular of highly dynamic vision-based motion control systems, is often limited by the low sampling rate of the visual feedback caused by the long image processing time. In order to overcome this problem, the networked visual servo control......, which integrates networked computational resources for cloud image processing, is considered in this article. The main contributions of this article are i) a real-time transport protocol for transmitting large volume image data on a cloud computing platform, which enables high sampling rate visual...

  2. R-PHOC: Segmentation-Free Word Spotting using CNN

    OpenAIRE

    Ghosh, Suman; Valveny, Ernest

    2017-01-01

    This paper proposes a region based convolutional neural network for segmentation-free word spotting. Our net- work takes as input an image and a set of word candidate bound- ing boxes and embeds all bounding boxes into an embedding space, where word spotting can be casted as a simple nearest neighbour search between the query representation and each of the candidate bounding boxes. We make use of PHOC embedding as it has previously achieved significant success in segmentation- based word spot...

  3. Building a Network Based Laboratory Environment

    Directory of Open Access Journals (Sweden)

    Sea Shuan Luo

    2009-12-01

    Full Text Available This paper presents a comparative study about the development of a network based laboratory environment in the “Unix introduction” course for the undergraduate students. The study results and the response from the students from 2005 to 2006 will be used to better understand what kind of method is more suitable for students. We also use the data collected to adjust our teaching strategy and try to build up a network based laboratory environment.

  4. Deep convolutional neural network approach for forehead tissue thickness estimation

    Directory of Open Access Journals (Sweden)

    Manit Jirapong

    2017-09-01

    Full Text Available In this paper, we presented a deep convolutional neural network (CNN approach for forehead tissue thickness estimation. We use down sampled NIR laser backscattering images acquired from a novel marker-less near-infrared laser-based head tracking system, combined with the beam’s incident angle parameter. These two-channel augmented images were constructed for the CNN input, while a single node output layer represents the estimated value of the forehead tissue thickness. The models were – separately for each subject – trained and tested on datasets acquired from 30 subjects (high resolution MRI data is used as ground truth. To speed up training, we used a pre-trained network from the first subject to bootstrap training for each of the other subjects. We could show a clear improvement for the tissue thickness estimation (mean RMSE of 0.096 mm. This proposed CNN model outperformed previous support vector regression (mean RMSE of 0.155 mm or Gaussian processes learning approaches (mean RMSE of 0.114 mm and eliminated their restrictions for future research.

  5. Multi-Input Convolutional Neural Network for Flower Grading

    Directory of Open Access Journals (Sweden)

    Yu Sun

    2017-01-01

    Full Text Available Flower grading is a significant task because it is extremely convenient for managing the flowers in greenhouse and market. With the development of computer vision, flower grading has become an interdisciplinary focus in both botany and computer vision. A new dataset named BjfuGloxinia contains three quality grades; each grade consists of 107 samples and 321 images. A multi-input convolutional neural network is designed for large scale flower grading. Multi-input CNN achieves a satisfactory accuracy of 89.6% on the BjfuGloxinia after data augmentation. Compared with a single-input CNN, the accuracy of multi-input CNN is increased by 5% on average, demonstrating that multi-input convolutional neural network is a promising model for flower grading. Although data augmentation contributes to the model, the accuracy is still limited by lack of samples diversity. Majority of misclassification is derived from the medium class. The image processing based bud detection is useful for reducing the misclassification, increasing the accuracy of flower grading to approximately 93.9%.

  6. Network-based Database Course

    DEFF Research Database (Denmark)

    Nielsen, J.N.; Knudsen, Morten; Nielsen, Jens Frederik Dalsgaard

    A course in database design and implementation has been de- signed, utilizing existing network facilities. The course is an elementary course for students of computer engineering. Its purpose is to give the students a theoretical database knowledge as well as practical experience with design...... and implementation. A tutorial relational database and the students self-designed databases are implemented on the UNIX system of Aalborg University, thus giving the teacher the possibility of live demonstrations in the lecture room, and the students the possibility of interactive learning in their working rooms...

  7. PID Controller Based on Memristive CMAC Network

    Directory of Open Access Journals (Sweden)

    Lidan Wang

    2013-01-01

    Full Text Available Compound controller which consists of CMAC network and PID network is mainly used in control system, especially in robot control. It can realize nonlinear tracking control of the real-time dynamic trajectory and possesses good approximation effect. According to the structure and principle of the compound controller, memristor is introduced to CMAC network to be a compound controller in this paper. The new PID controller based on memristive CMAC network is built up by replacing the synapse in the original controller by memristors. The effect of curve approximation is obtained by MATLAB simulation experiments. This network improves the response and learning speed of the system and processes better robustness and antidisturbance performance.

  8. Network based sky Brightness Monitor

    Science.gov (United States)

    McKenna, Dan; Pulvermacher, R.; Davis, D. R.

    2009-01-01

    We have developed and are currently testing an autonomous 2 channel photometer designed to measure the night sky brightness in the visual wavelengths over a multi-year campaign. The photometer uses a robust silicon sensor filtered with Hoya CM500 glass. The Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The Sky Brightness monitor consists of two units, the remote photometer and a network interface. Currently these devices use 2.4 Ghz transceivers with a free space range of 100 meters. The remote unit is battery powered with day time recharging using a solar panel. Data received by the network interface transmits data via standard POP Email protocol. A second version is under development for radio sensitive areas using an optical fiber for data transmission. We will present the current comparison with the National Park Service sky monitoring camera. We will also discuss the calibration methods used for standardization and temperature compensation. This system is expected to be deployed in the next year and be operated by the International Dark Sky Association SKYMONITOR project.

  9. Symbol detection in online handwritten graphics using Faster R-CNN

    OpenAIRE

    Julca-Aguilar, Frank D.; Hirata, Nina S. T.

    2017-01-01

    Symbol detection techniques in online handwritten graphics (e.g. diagrams and mathematical expressions) consist of methods specifically designed for a single graphic type. In this work, we evaluate the Faster R-CNN object detection algorithm as a general method for detection of symbols in handwritten graphics. We evaluate different configurations of the Faster R-CNN method, and point out issues relative to the handwritten nature of the data. Considering the online recognition context, we eval...

  10. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?

    Science.gov (United States)

    Tajbakhsh, Nima; Shin, Jae Y; Gurudu, Suryakanth R; Hurst, R Todd; Kendall, Christopher B; Gotway, Michael B; Jianming Liang

    2016-05-01

    Training a deep convolutional neural network (CNN) from scratch is difficult because it requires a large amount of labeled training data and a great deal of expertise to ensure proper convergence. A promising alternative is to fine-tune a CNN that has been pre-trained using, for instance, a large set of labeled natural images. However, the substantial differences between natural and medical images may advise against such knowledge transfer. In this paper, we seek to answer the following central question in the context of medical image analysis: Can the use of pre-trained deep CNNs with sufficient fine-tuning eliminate the need for training a deep CNN from scratch? To address this question, we considered four distinct medical imaging applications in three specialties (radiology, cardiology, and gastroenterology) involving classification, detection, and segmentation from three different imaging modalities, and investigated how the performance of deep CNNs trained from scratch compared with the pre-trained CNNs fine-tuned in a layer-wise manner. Our experiments consistently demonstrated that 1) the use of a pre-trained CNN with adequate fine-tuning outperformed or, in the worst case, performed as well as a CNN trained from scratch; 2) fine-tuned CNNs were more robust to the size of training sets than CNNs trained from scratch; 3) neither shallow tuning nor deep tuning was the optimal choice for a particular application; and 4) our layer-wise fine-tuning scheme could offer a practical way to reach the best performance for the application at hand based on the amount of available data.

  11. SDL-based network performance simulation

    Science.gov (United States)

    Yang, Yang; Lu, Yang; Lin, Xiaokang

    2005-11-01

    Specification and description language (SDL) is an object-oriented formal language defined as a standard by ITU-T. Though SDL is mainly used in describing communication protocols, it is an efficient way to simulate the network performance with SDL tools according to our experience. This paper presents our methodology of SDL-based network performance simulation in such aspects as the simulation platform, the simulation modes and the integrated simulation environment. Note that Telelogic Tau 4.3 SDL suite is used here as the simulation environment though our methodology isn't limited to the software. Finally the SDL-based open shortest path first (OSPF) performance simulation in the wireless private network is illustrated as an example of our methodology, which indicates that SDL is indeed an efficient language in the area of the network performance simulation.

  12. Toward Measuring Network Aesthetics Based on Symmetry

    Directory of Open Access Journals (Sweden)

    Zengqiang Chen

    2017-05-01

    Full Text Available In this exploratory paper, we discuss quantitative graph-theoretical measures of network aesthetics. Related work in this area has typically focused on geometrical features (e.g., line crossings or edge bendiness of drawings or visual representations of graphs which purportedly affect an observer’s perception. Here we take a very different approach, abandoning reliance on geometrical properties, and apply information-theoretic measures to abstract graphs and networks directly (rather than to their visual representaions as a means of capturing classical appreciation of structural symmetry. Examples are used solely to motivate the approach to measurement, and to elucidate our symmetry-based mathematical theory of network aesthetics.

  13. Cascaded ensemble of convolutional neural networks and handcrafted features for mitosis detection

    Science.gov (United States)

    Wang, Haibo; Cruz-Roa, Angel; Basavanhally, Ajay; Gilmore, Hannah; Shih, Natalie; Feldman, Mike; Tomaszewski, John; Gonzalez, Fabio; Madabhushi, Anant

    2014-03-01

    Breast cancer (BCa) grading plays an important role in predicting disease aggressiveness and patient outcome. A key component of BCa grade is mitotic count, which involves quantifying the number of cells in the process of dividing (i.e. undergoing mitosis) at a specific point in time. Currently mitosis counting is done manually by a pathologist looking at multiple high power fields on a glass slide under a microscope, an extremely laborious and time consuming process. The development of computerized systems for automated detection of mitotic nuclei, while highly desirable, is confounded by the highly variable shape and appearance of mitoses. Existing methods use either handcrafted features that capture certain morphological, statistical or textural attributes of mitoses or features learned with convolutional neural networks (CNN). While handcrafted features are inspired by the domain and the particular application, the data-driven CNN models tend to be domain agnostic and attempt to learn additional feature bases that cannot be represented through any of the handcrafted features. On the other hand, CNN is computationally more complex and needs a large number of labeled training instances. Since handcrafted features attempt to model domain pertinent attributes and CNN approaches are largely unsupervised feature generation methods, there is an appeal to attempting to combine these two distinct classes of feature generation strategies to create an integrated set of attributes that can potentially outperform either class of feature extraction strategies individually. In this paper, we present a cascaded approach for mitosis detection that intelligently combines a CNN model and handcrafted features (morphology, color and texture features). By employing a light CNN model, the proposed approach is far less demanding computationally, and the cascaded strategy of combining handcrafted features and CNN-derived features enables the possibility of maximizing performance by

  14. Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Ying Li

    2017-01-01

    Full Text Available Recent research has shown that using spectral–spatial information can considerably improve the performance of hyperspectral image (HSI classification. HSI data is typically presented in the format of 3D cubes. Thus, 3D spatial filtering naturally offers a simple and effective method for simultaneously extracting the spectral–spatial features within such images. In this paper, a 3D convolutional neural network (3D-CNN framework is proposed for accurate HSI classification. The proposed method views the HSI cube data altogether without relying on any preprocessing or post-processing, extracting the deep spectral–spatial-combined features effectively. In addition, it requires fewer parameters than other deep learning-based methods. Thus, the model is lighter, less likely to over-fit, and easier to train. For comparison and validation, we test the proposed method along with three other deep learning-based HSI classification methods—namely, stacked autoencoder (SAE, deep brief network (DBN, and 2D-CNN-based methods—on three real-world HSI datasets captured by different sensors. Experimental results demonstrate that our 3D-CNN-based method outperforms these state-of-the-art methods and sets a new record.

  15. Deep Learning for Detection of Object-Based Forgery in Advanced Video

    Directory of Open Access Journals (Sweden)

    Ye Yao

    2017-12-01

    Full Text Available Passive video forensics has drawn much attention in recent years. However, research on detection of object-based forgery, especially for forged video encoded with advanced codec frameworks, is still a great challenge. In this paper, we propose a deep learning-based approach to detect object-based forgery in the advanced video. The presented deep learning approach utilizes a convolutional neural network (CNN to automatically extract high-dimension features from the input image patches. Different from the traditional CNN models used in computer vision domain, we let video frames go through three preprocessing layers before being fed into our CNN model. They include a frame absolute difference layer to cut down temporal redundancy between video frames, a max pooling layer to reduce computational complexity of image convolution, and a high-pass filter layer to enhance the residual signal left by video forgery. In addition, an asymmetric data augmentation strategy has been established to get a similar number of positive and negative image patches before the training. The experiments have demonstrated that the proposed CNN-based model with the preprocessing layers has achieved excellent results.

  16. Transforming Musical Signals through a Genre Classifying Convolutional Neural Network

    Science.gov (United States)

    Geng, S.; Ren, G.; Ogihara, M.

    2017-05-01

    Convolutional neural networks (CNNs) have been successfully applied on both discriminative and generative modeling for music-related tasks. For a particular task, the trained CNN contains information representing the decision making or the abstracting process. One can hope to manipulate existing music based on this 'informed' network and create music with new features corresponding to the knowledge obtained by the network. In this paper, we propose a method to utilize the stored information from a CNN trained on musical genre classification task. The network was composed of three convolutional layers, and was trained to classify five-second song clips into five different genres. After training, randomly selected clips were modified by maximizing the sum of outputs from the network layers. In addition to the potential of such CNNs to produce interesting audio transformation, more information about the network and the original music could be obtained from the analysis of the generated features since these features indicate how the network 'understands' the music.

  17. A network-based dynamical ranking system

    CERN Document Server

    Motegi, Shun

    2012-01-01

    Ranking players or teams in sports is of practical interests. From the viewpoint of networks, a ranking system is equivalent a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score (i.e., strength) of a player, for example, depends on time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. Our ranking system, also interpreted as a centrality measure for directed temporal networks, has two parameters. One parameter represents the exponential decay rate of the past score, and the other parameter controls the effect of indirect wins on the score. We derive a set of linear online update equ...

  18. Designing Network-based Business Model Ontology

    DEFF Research Database (Denmark)

    Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz

    2015-01-01

    Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....

  19. Statistical Hypothesis Testing using CNN Features for Synthesis of Adversarial Counterexamples to Human and Object Detection Vision Systems

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Sunny [Univ. of Central Florida, Orlando, FL (United States); Jha, Sumit Kumar [Univ. of Central Florida, Orlando, FL (United States); Pullum, Laura L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ramanathan, Arvind [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    Validating the correctness of human detection vision systems is crucial for safety applications such as pedestrian collision avoidance in autonomous vehicles. The enormous space of possible inputs to such an intelligent system makes it difficult to design test cases for such systems. In this report, we present our tool MAYA that uses an error model derived from a convolutional neural network (CNN) to explore the space of images similar to a given input image, and then tests the correctness of a given human or object detection system on such perturbed images. We demonstrate the capability of our tool on the pre-trained Histogram-of-Oriented-Gradients (HOG) human detection algorithm implemented in the popular OpenCV toolset and the Caffe object detection system pre-trained on the ImageNet benchmark. Our tool may serve as a testing resource for the designers of intelligent human and object detection systems.

  20. Optical fingerprint identification using cellular neural network and joint transform correlation

    Science.gov (United States)

    Bal, Abdullah; Alam, Mohammad S.; El-Saba, Aed

    2004-10-01

    An important step in the fingerprint identification system is the extraction of relevant details against distributed complex features. Identification performance is directly related to the enhancement of fingerprint images during or after the enrollment phase. Among the various enhancement algorithms, artificial intelligence based feature extraction techniques are attractive due to their adaptive learning properties. In this paper, we propose a cellular neural network (CNN) based filtering technique due to its ability of parallel processing and generating learnable filtering features. CNN offers high efficient feature extraction and enhancement possibility for fingerprint images. The enhanced fingerprint images are then introduced to joint transform correlator (JTC) architecture to identify unknown fingerprint from the database. Since the fringe-adjusted JTC algorithm has been found to yield significantly better correlation output compared to alternate JTCs, we used it for the identification process. Test results are presented to verify the effectiveness of the proposed algorithm.

  1. Pedestrian detection in video surveillance using fully convolutional YOLO neural network

    Science.gov (United States)

    Molchanov, V. V.; Vishnyakov, B. V.; Vizilter, Y. V.; Vishnyakova, O. V.; Knyaz, V. A.

    2017-06-01

    More than 80% of video surveillance systems are used for monitoring people. Old human detection algorithms, based on background and foreground modelling, could not even deal with a group of people, to say nothing of a crowd. Recent robust and highly effective pedestrian detection algorithms are a new milestone of video surveillance systems. Based on modern approaches in deep learning, these algorithms produce very discriminative features that can be used for getting robust inference in real visual scenes. They deal with such tasks as distinguishing different persons in a group, overcome problem with sufficient enclosures of human bodies by the foreground, detect various poses of people. In our work we use a new approach which enables to combine detection and classification tasks into one challenge using convolution neural networks. As a start point we choose YOLO CNN, whose authors propose a very efficient way of combining mentioned above tasks by learning a single neural network. This approach showed competitive results with state-of-the-art models such as FAST R-CNN, significantly overcoming them in speed, which allows us to apply it in real time video surveillance and other video monitoring systems. Despite all advantages it suffers from some known drawbacks, related to the fully-connected layers that obstruct applying the CNN to images with different resolution. Also it limits the ability to distinguish small close human figures in groups which is crucial for our tasks since we work with rather low quality images which often include dense small groups of people. In this work we gradually change network architecture to overcome mentioned above problems, train it on a complex pedestrian dataset and finally get the CNN detecting small pedestrians in real scenes.

  2. Classifications of multispectral colorectal cancer tissues using convolution neural network

    Directory of Open Access Journals (Sweden)

    Hawraa Haj-Hassan

    2017-01-01

    Full Text Available Background: Colorectal cancer (CRC is the third most common cancer among men and women. Its diagnosis in early stages, typically done through the analysis of colon biopsy images, can greatly improve the chances of a successful treatment. This paper proposes to use convolution neural networks (CNNs to predict three tissue types related to the progression of CRC: benign hyperplasia (BH, intraepithelial neoplasia (IN, and carcinoma (Ca. Methods: Multispectral biopsy images of thirty CRC patients were retrospectively analyzed. Images of tissue samples were divided into three groups, based on their type (10 BH, 10 IN, and 10 Ca. An active contour model was used to segment image regions containing pathological tissues. Tissue samples were classified using a CNN containing convolution, max-pooling, and fully-connected layers. Available tissue samples were split into a training set, for learning the CNN parameters, and test set, for evaluating its performance. Results: An accuracy of 99.17% was obtained from segmented image regions, outperforming existing approaches based on traditional feature extraction, and classification techniques. Conclusions: Experimental results demonstrate the effectiveness of CNN for the classification of CRC tissue types, in particular when using presegmented regions of interest.

  3. Convolutional neural networks for P300 detection with application to brain-computer interfaces.

    Science.gov (United States)

    Cecotti, Hubert; Gräser, Axel

    2011-03-01

    A Brain-Computer Interface (BCI) is a specific type of human-computer interface that enables the direct communication between human and computers by analyzing brain measurements. Oddball paradigms are used in BCI to generate event-related potentials (ERPs), like the P300 wave, on targets selected by the user. A P300 speller is based on this principle, where the detection of P300 waves allows the user to write characters. The P300 speller is composed of two classification problems. The first classification is to detect the presence of a P300 in the electroencephalogram (EEG). The second one corresponds to the combination of different P300 responses for determining the right character to spell. A new method for the detection of P300 waves is presented. This model is based on a convolutional neural network (CNN). The topology of the network is adapted to the detection of P300 waves in the time domain. Seven classifiers based on the CNN are proposed: four single classifiers with different features set and three multiclassifiers. These models are tested and compared on the Data set II of the third BCI competition. The best result is obtained with a multiclassifier solution with a recognition rate of 95.5 percent, without channel selection before the classification. The proposed approach provides also a new way for analyzing brain activities due to the receptive field of the CNN models.

  4. Synthesis and reactivity of tantalum alkylidene complexes containing the C,N,N'-chelating aryldiamine ligand [C6H4(CH2N(Me)CH2CH2NMe2)-2- (CNN). X-ray structurs of [TaCl2(=CH-t-Bu) (CNN)], [Ta{CH2)3-1,3}(CNN)(O-t-Bu)2], and [Ta(CNN)(O-t-Bu)2(H2C=CH2)

    NARCIS (Netherlands)

    Koten, G. van; Rietveld, M.H.P.; Teunissen, Wendy; Hagen, H.; Water, L. van de; Grove, D.M.; Veldman, N.; Spek, A.L.

    1997-01-01

    The potentially C,N,N'-chelating anionic aryldiamine ligand [C6H4(CH2N(Me)CH2CH2NMe2)-2]- (CNN) has been employed in the preparation of six-coordinate Ta(V) alkylidene complexes. The new dichloro alkylidene complex [TaCl2(=CH-t-Bu)(CNN)], 2, prepared from [TaCl3(=CH-t-Bu)(THF)2] and [Li(CNN)]2, 1,

  5. Overlapping Community Detection based on Network Decomposition

    Science.gov (United States)

    Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin

    2016-04-01

    Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.

  6. Location-based Forwarding in Vehicular Networks

    NARCIS (Netherlands)

    Klein Wolterink, W.

    2013-01-01

    In this thesis we focus on location-based message forwarding in vehicular networks to support intelligent transportation systems (ITSs). ITSs are transport systems that utilise information and communication technologies to increase their level of automation, in this way levering the performance of

  7. WIRELESS SENSOR NETWORK BASED CONVEYOR SURVEILLANCE SYSTEM

    OpenAIRE

    Attila Trohák; Máté Kolozsi-Tóth; Péter Rádi

    2011-01-01

    In the paper we will introduce an intelligent conveyor surveillance system. We started a research project to design and develop a conveyor surveillance system based on wireless sensor network and GPRS communication. Our system is able to measure temperature on fixed and moving, rotating surfaces and able to detect smoke. We would like to introduce the developed devices and give an application example.

  8. A deep convolutional neural network for recognizing foods

    Science.gov (United States)

    Jahani Heravi, Elnaz; Habibi Aghdam, Hamed; Puig, Domenec

    2015-12-01

    Controlling the food intake is an efficient way that each person can undertake to tackle the obesity problem in countries worldwide. This is achievable by developing a smartphone application that is able to recognize foods and compute their calories. State-of-art methods are chiefly based on hand-crafted feature extraction methods such as HOG and Gabor. Recent advances in large-scale object recognition datasets such as ImageNet have revealed that deep Convolutional Neural Networks (CNN) possess more representation power than the hand-crafted features. The main challenge with CNNs is to find the appropriate architecture for each problem. In this paper, we propose a deep CNN which consists of 769; 988 parameters. Our experiments show that the proposed CNN outperforms the state-of-art methods and improves the best result of traditional methods 17%. Moreover, using an ensemble of two CNNs that have been trained two different times, we are able to improve the classification performance 21:5%.

  9. HLA class I binding prediction via convolutional neural networks.

    Science.gov (United States)

    Vang, Yeeleng S; Xie, Xiaohui

    2017-09-01

    Many biological processes are governed by protein-ligand interactions. One such example is the recognition of self and non-self cells by the immune system. This immune response process is regulated by the major histocompatibility complex (MHC) protein which is encoded by the human leukocyte antigen (HLA) complex. Understanding the binding potential between MHC and peptides can lead to the design of more potent, peptide-based vaccines and immunotherapies for infectious autoimmune diseases. We apply machine learning techniques from the natural language processing (NLP) domain to address the task of MHC-peptide binding prediction. More specifically, we introduce a new distributed representation of amino acids, name HLA-Vec, that can be used for a variety of downstream proteomic machine learning tasks. We then propose a deep convolutional neural network architecture, name HLA-CNN, for the task of HLA class I-peptide binding prediction. Experimental results show combining the new distributed representation with our HLA-CNN architecture achieves state-of-the-art results in the majority of the latest two Immune Epitope Database (IEDB) weekly automated benchmark datasets. We further apply our model to predict binding on the human genome and identify 15 genes with potential for self binding. Codes to generate the HLA-Vec and HLA-CNN are publicly available at: https://github.com/uci-cbcl/HLA-bind . xhx@ics.uci.edu. Supplementary data are available at Bioinformatics online.

  10. SAR ATR Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Tian Zhuangzhuang

    2016-06-01

    Full Text Available This study presents a new method of Synthetic Aperture Radar (SAR image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recognition SAR datasets prove the validity of this method.

  11. Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks

    Science.gov (United States)

    Mehrtash, Alireza; Sedghi, Alireza; Ghafoorian, Mohsen; Taghipour, Mehdi; Tempany, Clare M.; Wells, William M.; Kapur, Tina; Mousavi, Parvin; Abolmaesumi, Purang; Fedorov, Andriy

    2017-03-01

    Prostate cancer (PCa) remains a leading cause of cancer mortality among American men. Multi-parametric magnetic resonance imaging (mpMRI) is widely used to assist with detection of PCa and characterization of its aggressiveness. Computer-aided diagnosis (CADx) of PCa in MRI can be used as clinical decision support system to aid radiologists in interpretation and reporting of mpMRI. We report on the development of a convolution neural network (CNN) model to support CADx in PCa based on the appearance of prostate tissue in mpMRI, conducted as part of the SPIE-AAPM-NCI PROSTATEx challenge. The performance of different combinations of mpMRI inputs to CNN was assessed and the best result was achieved using DWI and DCE-MRI modalities together with the zonal information of the finding. On the test set, the model achieved an area under the receiver operating characteristic curve of 0.80.

  12. Network Based High Speed Product Innovation

    DEFF Research Database (Denmark)

    Lindgren, Peter

    In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...

  13. Hydrogel networks based on ABA triblock copolymers.

    Science.gov (United States)

    Tartivel, Lucile; Behl, Marc; Schroeter, Michael; Lendlein, Andreas

    2012-01-01

    Triblock copolymers from hydrophilic oligo(ethylene glycol) segment A and oligo(propylene glycol) segment B, providing an ABA structure (OEG-OPG-OEG triblock), are known to be biocompatible and are used as self-solidifying gels in drug depots. A complete removal of these depots would be helpful in cases of undesired side effects of a drug, but this remains a challenge as they liquefy below their transition temperature. Therefore we describe the synthesis of covalently cross-linked hydrogel networks. Triblock copolymer-based hydrogels were created by irradiating aqueous solutions of the corresponding macro-dimethacrylates with UV light. The degree of swelling, swelling kinetics, mechanical properties and morphology of the networks were investigated. Depending on precursor concentration, equilibrium degree of swelling of the films ranged between 500% and 880% and was reached in 1 hour. In addition, values for storage and loss moduli of the hydrogel networks were in the 100 Pa to 10 kPa range. Although OEG-OPG-OEG triblocks are known for their micellization, which could hamper polymer network formation, reactive OEG-OPG-OEG triblock oligomers could be successfully polymerized into hydrogel networks. The degree of swelling of these hydrogels depends on their molecular weight and on the oligomer concentration used for hydrogel preparation. In combination with the temperature sensitivity of the ABA triblock copolymers, it is assumed that such hydrogels might be beneficial for future medical applications - e.g., removable drug release systems.

  14. Dynamic social networks based on movement

    Science.gov (United States)

    Scharf, Henry; Hooten, Mevin B.; Fosdick, Bailey K.; Johnson, Devin S.; London, Joshua M.; Durban, John W.

    2016-01-01

    Network modeling techniques provide a means for quantifying social structure in populations of individuals. Data used to define social connectivity are often expensive to collect and based on case-specific, ad hoc criteria. Moreover, in applications involving animal social networks, collection of these data is often opportunistic and can be invasive. Frequently, the social network of interest for a given population is closely related to the way individuals move. Thus, telemetry data, which are minimally invasive and relatively inexpensive to collect, present an alternative source of information. We develop a framework for using telemetry data to infer social relationships among animals. To achieve this, we propose a Bayesian hierarchical model with an underlying dynamic social network controlling movement of individuals via two mechanisms: an attractive effect and an aligning effect. We demonstrate the model and its ability to accurately identify complex social behavior in simulation, and apply our model to telemetry data arising from killer whales. Using auxiliary information about the study population, we investigate model validity and find the inferred dynamic social network is consistent with killer whale ecology and expert knowledge.

  15. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Yongjia Zhao

    2017-02-01

    Full Text Available The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI. AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1 the McGill University dataset, which is collected under realistic conditions; and (2 the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  16. Cost-Effective Class-Imbalance Aware CNN for Vehicle Localization and Categorization in High Resolution Aerial Images

    Directory of Open Access Journals (Sweden)

    Feimo Li

    2017-05-01

    Full Text Available Joint vehicle localization and categorization in high resolution aerial images can provide useful information for applications such as traffic flow structure analysis. To maintain sufficient features to recognize small-scaled vehicles, a regions with convolutional neural network features (R-CNN -like detection structure is employed. In this setting, cascaded localization error can be averted by equally treating the negatives and differently typed positives as a multi-class classification task, but the problem of class-imbalance remains. To address this issue, a cost-effective network extension scheme is proposed. In it, the correlated convolution and connection costs during extension are reduced by feature map selection and bi-partite main-side network construction, which are realized with the assistance of a novel feature map class-importance measurement and a new class-imbalance sensitive main-side loss function. By using an image classification dataset established from a set of traditional real-colored aerial images with 0.13 m ground sampling distance which are taken from the height of 1000 m by an imaging system composed of non-metric cameras, the effectiveness of the proposed network extension is verified by comparing with its similarly shaped strong counter-parts. Experiments show an equivalent or better performance, while requiring the least parameter and memory overheads are required.

  17. Low-complexity object detection with deep convolutional neural network for embedded systems

    Science.gov (United States)

    Tripathi, Subarna; Kang, Byeongkeun; Dane, Gokce; Nguyen, Truong

    2017-09-01

    We investigate low-complexity convolutional neural networks (CNNs) for object detection for embedded vision applications. It is well-known that consolidation of an embedded system for CNN-based object detection is more challenging due to computation and memory requirement comparing with problems like image classification. To achieve these requirements, we design and develop an end-to-end TensorFlow (TF)-based fully-convolutional deep neural network for generic object detection task inspired by one of the fastest framework, YOLO.1 The proposed network predicts the localization of every object by regressing the coordinates of the corresponding bounding box as in YOLO. Hence, the network is able to detect any objects without any limitations in the size of the objects. However, unlike YOLO, all the layers in the proposed network is fully-convolutional. Thus, it is able to take input images of any size. We pick face detection as an use case. We evaluate the proposed model for face detection on FDDB dataset and Widerface dataset. As another use case of generic object detection, we evaluate its performance on PASCAL VOC dataset. The experimental results demonstrate that the proposed network can predict object instances of different sizes and poses in a single frame. Moreover, the results show that the proposed method achieves comparative accuracy comparing with the state-of-the-art CNN-based object detection methods while reducing the model size by 3× and memory-BW by 3 - 4× comparing with one of the best real-time CNN-based object detectors, YOLO. Our 8-bit fixed-point TF-model provides additional 4× memory reduction while keeping the accuracy nearly as good as the floating-point model. Moreover, the fixed- point model is capable of achieving 20× faster inference speed comparing with the floating-point model. Thus, the proposed method is promising for embedded implementations.

  18. Quantitative learning strategies based on word networks

    Science.gov (United States)

    Zhao, Yue-Tian-Yi; Jia, Zi-Yang; Tang, Yong; Xiong, Jason Jie; Zhang, Yi-Cheng

    2018-02-01

    Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network.

  19. DeepFruits: A Fruit Detection System Using Deep Neural Networks.

    Science.gov (United States)

    Sa, Inkyu; Ge, Zongyuan; Dayoub, Feras; Upcroft, Ben; Perez, Tristan; McCool, Chris

    2016-08-03

    This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0 . 807 to 0 . 838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit.

  20. DeepFruits: A Fruit Detection System Using Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Inkyu Sa

    2016-08-01

    Full Text Available This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN. We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB and Near-Infrared (NIR. Early and late fusion methods are explored for combining the multi-modal (RGB and NIR information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0 . 807 to 0 . 838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform. The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit.

  1. Vehicle Color Recognition with Vehicle-Color Saliency Detection and Dual-Orientational Dimensionality Reduction of CNN Deep Features

    Science.gov (United States)

    Zhang, Qiang; Li, Jiafeng; Zhuo, Li; Zhang, Hui; Li, Xiaoguang

    2017-12-01

    Color is one of the most stable attributes of vehicles and often used as a valuable cue in some important applications. Various complex environmental factors, such as illumination, weather, noise and etc., result in the visual characteristics of the vehicle color being obvious diversity. Vehicle color recognition in complex environments has been a challenging task. The state-of-the-arts methods roughly take the whole image for color recognition, but many parts of the images such as car windows; wheels and background contain no color information, which will have negative impact on the recognition accuracy. In this paper, a novel vehicle color recognition method using local vehicle-color saliency detection and dual-orientational dimensionality reduction of convolutional neural network (CNN) deep features has been proposed. The novelty of the proposed method includes two parts: (1) a local vehicle-color saliency detection method has been proposed to determine the vehicle color region of the vehicle image and exclude the influence of non-color regions on the recognition accuracy; (2) dual-orientational dimensionality reduction strategy has been designed to greatly reduce the dimensionality of deep features that are learnt from CNN, which will greatly mitigate the storage and computational burden of the subsequent processing, while improving the recognition accuracy. Furthermore, linear support vector machine is adopted as the classifier to train the dimensionality reduced features to obtain the recognition model. The experimental results on public dataset demonstrate that the proposed method can achieve superior recognition performance over the state-of-the-arts methods.

  2. Convolutional Neural Networks with Batch Normalization for Classifying Hi-hat, Snare, and Bass Percussion Sound Samples

    DEFF Research Database (Denmark)

    Gajhede, Nicolai; Beck, Oliver; Purwins, Hendrik

    2016-01-01

    After having revolutionized image and speech processing, convolu- tional neural networks (CNN) are now starting to become more and more successful in music information retrieval as well. We compare four CNN types for classifying a dataset of more than 3000 acoustic and synthesized samples...

  3. Convolutional neural network based deep-learning architecture for prostate cancer detection on multiparametric magnetic resonance images

    Science.gov (United States)

    Tsehay, Yohannes K.; Lay, Nathan S.; Roth, Holger R.; Wang, Xiaosong; Kwak, Jin Tae; Turkbey, Baris I.; Pinto, Peter A.; Wood, Brad J.; Summers, Ronald M.

    2017-03-01

    Prostate cancer (PCa) is the second most common cause of cancer related deaths in men. Multiparametric MRI (mpMRI) is the most accurate imaging method for PCa detection; however, it requires the expertise of experienced radiologists leading to inconsistency across readers of varying experience. To increase inter-reader agreement and sensitivity, we developed a computer-aided detection (CAD) system that can automatically detect lesions on mpMRI that readers can use as a reference. We investigated a convolutional neural network based deep-learing (DCNN) architecture to find an improved solution for PCa detection on mpMRI. We adopted a network architecture from a state-of-the-art edge detector that takes an image as an input and produces an image probability map. Two-fold cross validation along with a receiver operating characteristic (ROC) analysis and free-response ROC (FROC) were used to determine our deep-learning based prostate-CAD's (CADDL) performance. The efficacy was compared to an existing prostate CAD system that is based on hand-crafted features, which was evaluated on the same test-set. CADDL had an 86% detection rate at 20% false-positive rate while the top-down learning CAD had 80% detection rate at the same false-positive rate, which translated to 94% and 85% detection rate at 10 false-positives per patient on the FROC. A CNN based CAD is able to detect cancerous lesions on mpMRI of the prostate with results comparable to an existing prostate-CAD showing potential for further development.

  4. Modeling acquaintance networks based on balance theory

    Directory of Open Access Journals (Sweden)

    Vukašinović Vida

    2014-09-01

    Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models

  5. Network-based recommendation algorithms: A review

    Science.gov (United States)

    Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš

    2016-06-01

    Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.

  6. Detection and recognition of bridge crack based on convolutional neural network

    Directory of Open Access Journals (Sweden)

    Honggong LIU

    2016-10-01

    Full Text Available Aiming at the backward artificial visual detection status of bridge crack in China, which has a great danger coefficient, a digital and intelligent detection method of improving the diagnostic efficiency and reducing the risk coefficient is studied. Combing with machine vision and convolutional neural network technology, Raspberry Pi is used to acquire and pre-process image, and the crack image is analyzed; the processing algorithm which has the best effect in detecting and recognizing is selected; the convolutional neural network(CNN for crack classification is optimized; finally, a new intelligent crack detection method is put forward. The experimental result shows that the system can find all cracks beyond the maximum limit, and effectively identify the type of fracture, and the recognition rate is above 90%. The study provides reference data for engineering detection.

  7. Research on Network Scanning Strategy Based on Information Granularity

    Science.gov (United States)

    Qin, Futong; Shi, Pengfei; Du, Jing; Cheng, Ruosi; Zhou, Yunyan

    2017-10-01

    As the basic mean to obtain the information of the targets network, network scanning is often used to discover the security risks and vulnerabilities existing on the network. However, with the development of network technology, the scale of network is more and more large, and the network scanning efficiency put forward higher requirements. In this paper, the concept of network scanning information granularity is proposed, and the design method of network scanning strategy based on information granularity is proposed. Based on single information granularity and hybrid information granularity, four network scanning strategies were designed and verified experimentally. Experiments show that the network scanning strategies based on hybrid information granularity can improve the efficiency of network scanning.

  8. Guided filter and convolutional network based tracking for infrared dim moving target

    Science.gov (United States)

    Qian, Kun; Zhou, Huixin; Qin, Hanlin; Rong, Shenghui; Zhao, Dong; Du, Juan

    2017-09-01

    The dim moving target usually submerges in strong noise, and its motion observability is debased by numerous false alarms for low signal-to-noise ratio. A tracking algorithm that integrates the Guided Image Filter (GIF) and the Convolutional neural network (CNN) into the particle filter framework is presented to cope with the uncertainty of dim targets. First, the initial target template is treated as a guidance to filter incoming templates depending on similarities between the guidance and candidate templates. The GIF algorithm utilizes the structure in the guidance and performs as an edge-preserving smoothing operator. Therefore, the guidance helps to preserve the detail of valuable templates and makes inaccurate ones blurry, alleviating the tracking deviation effectively. Besides, the two-layer CNN method is adopted to obtain a powerful appearance representation. Subsequently, a Bayesian classifier is trained with these discriminative yet strong features. Moreover, an adaptive learning factor is introduced to prevent the update of classifier's parameters when a target undergoes sever background. At last, classifier responses of particles are utilized to generate particle importance weights and a re-sample procedure preserves samples according to the weight. In the predication stage, a 2-order transition model considers the target velocity to estimate current position. Experimental results demonstrate that the presented algorithm outperforms several relative algorithms in the accuracy.

  9. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  10. Dynamics of hate based Internet user networks

    Science.gov (United States)

    Sobkowicz, P.; Sobkowicz, A.

    2010-02-01

    We present a study of the properties of network of political discussions on one of the most popular Polish Internet forums. This provides the opportunity to study the computer mediated human interactions in strongly bipolar environment. The comments of the participants are found to be mostly disagreements, with strong percentage of invective and provocative ones. Binary exchanges (quarrels) play significant role in the network growth and topology. Statistical analysis shows that the growth of the discussions depends on the degree of controversy of the subject and the intensity of personal conflict between the participants. This is in contrast to most previously studied social networks, for example networks of scientific citations, where the nature of the links is much more positive and based on similarity and collaboration rather than opposition and abuse. The work discusses also the implications of the findings for more general studies of consensus formation, where our observations of increased conflict contradict the usual assumptions that interactions between people lead to averaging of opinions and agreement.

  11. Community detection based on network communicability

    Science.gov (United States)

    Estrada, Ernesto

    2011-03-01

    We propose a new method for detecting communities based on the concept of communicability between nodes in a complex network. This method, designated as N-ComBa K-means, uses a normalized version of the adjacency matrix to build the communicability matrix and then applies K-means clustering to find the communities in a graph. We analyze how this method performs for some pathological cases found in the analysis of the detection limit of communities and propose some possible solutions on the basis of the analysis of the ratio of local to global densities in graphs. We use four different quality criteria for detecting the best clustering and compare the new approach with the Girvan-Newman algorithm for the analysis of two "classical" networks: karate club and bottlenose dolphins. Finally, we analyze the more challenging case of homogeneous networks with community structure, for which the Girvan-Newman completely fails in detecting any clustering. The N-ComBa K-means approach performs very well in these situations and we applied it to detect the community structure in an international trade network of miscellaneous manufactures of metal having these characteristics. Some final remarks about the general philosophy of community detection are also discussed.

  12. Community detection based on network communicability.

    Science.gov (United States)

    Estrada, Ernesto

    2011-03-01

    We propose a new method for detecting communities based on the concept of communicability between nodes in a complex network. This method, designated as N-ComBa K-means, uses a normalized version of the adjacency matrix to build the communicability matrix and then applies K-means clustering to find the communities in a graph. We analyze how this method performs for some pathological cases found in the analysis of the detection limit of communities and propose some possible solutions on the basis of the analysis of the ratio of local to global densities in graphs. We use four different quality criteria for detecting the best clustering and compare the new approach with the Girvan-Newman algorithm for the analysis of two "classical" networks: karate club and bottlenose dolphins. Finally, we analyze the more challenging case of homogeneous networks with community structure, for which the Girvan-Newman completely fails in detecting any clustering. The N-ComBa K-means approach performs very well in these situations and we applied it to detect the community structure in an international trade network of miscellaneous manufactures of metal having these characteristics. Some final remarks about the general philosophy of community detection are also discussed.

  13. Surgical tool detection in cataract surgery videos through multi-image fusion inside a convolutional neural network.

    Science.gov (United States)

    Al Hajj, Hassan; Lamard, Mathieu; Charriere, Katia; Cochener, Beatrice; Quellec, Gwenole

    2017-07-01

    The automatic detection of surgical tools in surgery videos is a promising solution for surgical workflow analysis. It paves the way to various applications, including surgical workflow optimization, surgical skill evaluation and real-time warning generation. A solution based on convolutional neural networks (CNNs) is proposed in this paper. Unlike existing solutions, the proposed CNN does not analyze images independently. it analyzes sequences of consecutive images. Features extracted from each image by the CNN are fused inside the network using the optical flow. For improved performance, this multi-image fusion strategy is also applied while training the CNN. The proposed framework was evaluated in a dataset of 30 cataract surgery videos (6 hours of videos). Ten tool categories were defined by surgeons. The proposed system was able to detect each of these categories with a high area under the ROC curve (0.953 ≤ Az ≤ 0.987). The proposed detector, based on multi-image fusion, was significantly more sensitive and specific than a similar system analyzing images independently (p = 2.98 × 10(-6) and p = 2.07 × 10(-3), respectively).

  14. Research of ad hoc network based on SINCGARS network

    Science.gov (United States)

    Nie, Hao; Cai, Xiaoxia; Chen, Hong; Chen, Jian; Weng, Pengfei

    2016-03-01

    In today's world, science and technology make a spurt of progress, so society has entered the era of information technology, network. Only the comprehensive use of electronic warfare and network warfare means can we maximize their access to information and maintain the information superiority. Combined with the specific combat mission and operational requirements, the research design and construction in accordance with the actual military which are Suitable for the future of information technology needs of the tactical Adhoc network, tactical internet, will greatly improve the operational efficiency of the command of the army. Through the study of the network of the U.S. military SINCGARS network, it can explore the routing protocol and mobile model, to provide a reference for the research of our army network.

  15. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  16. Optimal Seamline Detection for Orthoimage Mosaicking by Combining Deep Convolutional Neural Network and Graph Cuts

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-07-01

    Full Text Available When mosaicking orthoimages, especially in urban areas with various obvious ground objects like buildings, roads, cars or trees, the detection of optimal seamlines is one of the key technologies for creating seamless and pleasant image mosaics. In this paper, we propose a new approach to detect optimal seamlines for orthoimage mosaicking with the use of deep convolutional neural network (CNN and graph cuts. Deep CNNs have been widely used in many fields of computer vision and photogrammetry in recent years, and graph cuts is one of the most widely used energy optimization frameworks. We first propose a deep CNN for land cover semantic segmentation in overlap regions between two adjacent images. Then, the energy cost of each pixel in the overlap regions is defined based on the classification probabilities of belonging to each of the specified classes. To find the optimal seamlines globally, we fuse the CNN-classified energy costs of all pixels into the graph cuts energy minimization framework. The main advantage of our proposed method is that the pixel similarity energy costs between two images are defined using the classification results of the CNN based semantic segmentation instead of using the image informations of color, gradient or texture as traditional methods do. Another advantage of our proposed method is that the semantic informations are fully used to guide the process of optimal seamline detection, which is more reasonable than only using the hand designed features defined to represent the image differences. Finally, the experimental results on several groups of challenging orthoimages show that the proposed method is capable of finding high-quality seamlines among urban and non-urban orthoimages, and outperforms the state-of-the-art algorithms and the commercial software based on the visual comparison, statistical evaluation and quantitative evaluation based on the structural similarity (SSIM index.

  17. Receiver Based Traffic Control Mechanism to Protect Low Capacity Network in Infrastructure Based Wireless Mesh Network

    Science.gov (United States)

    Gilani, Syed Sherjeel Ahmad; Zubair, Muhammad; Khan, Zeeshan Shafi

    Infrastructure-based Wireless Mesh Networks are emerging as an affordable, robust, flexible and scalable technology. With the advent of Wireless Mesh Networks (WMNs) the dream of connecting multiple technology based networks seems to come true. A fully secure WMN is still a challenge for the researchers. In infrastructure-based WMNs almost all types of existing Wireless Networks like Wi-Fi, Cellular, WiMAX, and Sensor etc can be connected through Wireless Mesh Routers (WMRs). This situation can lead to a security problem. Some nodes can be part of the network with high processing power, large memory and least energy issues while others may belong to a network having low processing power, small memory and serious energy limitations. The later type of the nodes is very much vulnerable to targeted attacks. In our research we have suggested to set some rules on the WMR to mitigate these kinds of targeted flooding attacks. The WMR will then share those set of rules with other WMRs for Effective Utilization of Resources.

  18. Virtualized Network Function Orchestration System and Experimental Network Based QR Recognition for a 5G Mobile Access Network

    Directory of Open Access Journals (Sweden)

    Misun Ahn

    2017-12-01

    Full Text Available This paper proposes a virtualized network function orchestration system based on Network Function Virtualization (NFV, one of the main technologies in 5G mobile networks. This system should provide connectivity between network devices and be able to create flexible network function and distribution. This system focuses more on access networks. By experimenting with various scenarios of user service established and activated in a network, we examine whether rapid adoption of new service is possible and whether network resources can be managed efficiently. The proposed method is based on Bluetooth transfer technology and mesh networking to provide automatic connections between network machines and on a Docker flat form, which is a container virtualization technology for setting and managing key functions. Additionally, the system includes a clustering and recovery measure regarding network function based on the Docker platform. We will briefly introduce the QR code perceived service as a user service to examine the proposal and based on this given service, we evaluate the function of the proposal and present analysis. Through the proposed approach, container relocation has been implemented according to a network device’s CPU usage and we confirm successful service through function evaluation on a real test bed. We estimate QR code recognition speed as the amount of network equipment is gradually increased, improving user service and confirm that the speed of recognition is increased as the assigned number of network devices is increased by the user service.

  19. Optimising TCP for cloud-based mobile networks

    DEFF Research Database (Denmark)

    Artuso, Matteo; Christiansen, Henrik Lehrmann

    2016-01-01

    Cloud-based mobile networks are foreseen to be a technological enabler for the next generation of mobile networks. Their design requires substantial research as they pose unique challenges, especially from the point of view of additional delays in the fronthaul network. Commonly used network prot...

  20. Combining high-speed SVM learning with CNN feature encoding for real-time target recognition in high-definition video for ISR missions

    Science.gov (United States)

    Kroll, Christine; von der Werth, Monika; Leuck, Holger; Stahl, Christoph; Schertler, Klaus

    2017-05-01

    For Intelligence, Surveillance, Reconnaissance (ISR) missions of manned and unmanned air systems typical electrooptical payloads provide high-definition video data which has to be exploited with respect to relevant ground targets in real-time by automatic/assisted target recognition software. Airbus Defence and Space is developing required technologies for real-time sensor exploitation since years and has combined the latest advances of Deep Convolutional Neural Networks (CNN) with a proprietary high-speed Support Vector Machine (SVM) learning method into a powerful object recognition system with impressive results on relevant high-definition video scenes compared to conventional target recognition approaches. This paper describes the principal requirements for real-time target recognition in high-definition video for ISR missions and the Airbus approach of combining an invariant feature extraction using pre-trained CNNs and the high-speed training and classification ability of a novel frequency-domain SVM training method. The frequency-domain approach allows for a highly optimized implementation for General Purpose Computation on a Graphics Processing Unit (GPGPU) and also an efficient training of large training samples. The selected CNN which is pre-trained only once on domain-extrinsic data reveals a highly invariant feature extraction. This allows for a significantly reduced adaptation and training of the target recognition method for new target classes and mission scenarios. A comprehensive training and test dataset was defined and prepared using relevant high-definition airborne video sequences. The assessment concept is explained and performance results are given using the established precision-recall diagrams, average precision and runtime figures on representative test data. A comparison to legacy target recognition approaches shows the impressive performance increase by the proposed CNN+SVM machine-learning approach and the capability of real-time high

  1. Network-based analysis of proteomic profiles

    KAUST Repository

    Wong, Limsoon

    2016-01-26

    Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.

  2. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    OpenAIRE

    Dat Tien Nguyen; Ki Wan Kim; Hyung Gil Hong; Ja Hyung Koo; Min Cheol Kim; Kang Ryoung Park

    2017-01-01

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has ...

  3. Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition

    Science.gov (United States)

    Yin, Xi; Liu, Xiaoming

    2018-02-01

    This paper explores multi-task learning (MTL) for face recognition. We answer the questions of how and why MTL can improve the face recognition performance. First, we propose a multi-task Convolutional Neural Network (CNN) for face recognition where identity classification is the main task and pose, illumination, and expression estimations are the side tasks. Second, we develop a dynamic-weighting scheme to automatically assign the loss weight to each side task, which is a crucial problem in MTL. Third, we propose a pose-directed multi-task CNN by grouping different poses to learn pose-specific identity features, simultaneously across all poses. Last but not least, we propose an energy-based weight analysis method to explore how CNN-based MTL works. We observe that the side tasks serve as regularizations to disentangle the variations from the learnt identity features. Extensive experiments on the entire Multi-PIE dataset demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using all data in Multi-PIE for face recognition. Our approach is also applicable to in-the-wild datasets for pose-invariant face recognition and achieves comparable or better performance than state of the art on LFW, CFP, and IJB-A datasets.

  4. Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Shaohui Mei

    2017-11-01

    Full Text Available Hyperspectral images are well-known for their fine spectral resolution to discriminate different materials. However, their spatial resolution is relatively low due to the trade-off in imaging sensor technologies, resulting in limitations in their applications. Inspired by recent achievements in convolutional neural network (CNN based super-resolution (SR for natural images, a novel three-dimensional full CNN (3D-FCNN is constructed for spatial SR of hyperspectral images in this paper. Specifically, 3D convolution is used to exploit both the spatial context of neighboring pixels and spectral correlation of neighboring bands, such that spectral distortion when directly applying traditional CNN based SR algorithms to hyperspectral images in band-wise manners is alleviated. Furthermore, a sensor-specific mode is designed for the proposed 3D-FCNN such that none of the samples from the target scene are required for training. Fine-tuning by a small number of training samples from the target scene can further improve the performance of such a sensor-specific method. Extensive experimental results on four benchmark datasets from two well-known hyperspectral sensors, namely hyperspectral digital imagery collection experiment (HYDICE and reflective optics system imaging spectrometer (ROSIS sensors, demonstrate that our proposed 3D-FCNN outperforms several existing SR methods by ensuring higher quality both in reconstruction and spectral fidelity.

  5. Prediction of protein function using a deep convolutional neural network ensemble

    Directory of Open Access Journals (Sweden)

    Evangelia I. Zacharaki

    2017-07-01

    Full Text Available Background The availability of large databases containing high resolution three-dimensional (3D models of proteins in conjunction with functional annotation allows the exploitation of advanced supervised machine learning techniques for automatic protein function prediction. Methods In this work, novel shape features are extracted representing protein structure in the form of local (per amino acid distribution of angles and amino acid distances, respectively. Each of the multi-channel feature maps is introduced into a deep convolutional neural network (CNN for function prediction and the outputs are fused through support vector machines or a correlation-based k-nearest neighbor classifier. Two different architectures are investigated employing either one CNN per multi-channel feature set, or one CNN per image channel. Results Cross validation experiments on single-functional enzymes (n = 44,661 from the PDB database achieved 90.1% correct classification, demonstrating an improvement over previous results on the same dataset when sequence similarity was not considered. Discussion The automatic prediction of protein function can provide quick annotations on extensive datasets opening the path for relevant applications, such as pharmacological target identification. The proposed method shows promise for structure-based protein function prediction, but sufficient data may not yet be available to properly assess the method’s performance on non-homologous proteins and thus reduce the confounding factor of evolutionary relationships.

  6. Network Slicing Based 5G and Future Mobile Networks: Mobility, Resource Management, and Challenges

    OpenAIRE

    Zhang, H.; Liu, N.; Chu, X; Long, K.; Aghvami, A.; Leung, V. C. M.

    2017-01-01

    The fifth-generation (5G) networks are expected to be able to satisfy users' different quality-of-service (QoS) requirements. Network slicing is a promising technology for 5G networks to provide services tailored for users' specific QoS demands. Driven by the increased massive wireless data traffic from different application scenarios, efficient resource allocation schemes should be exploited to improve the flexibility of network resource allocation and capacity of 5G networks based on networ...

  7. Human Parsing with Contextualized Convolutional Neural Network.

    Science.gov (United States)

    Liang, Xiaodan; Xu, Chunyan; Shen, Xiaohui; Yang, Jianchao; Tang, Jinhui; Lin, Liang; Yan, Shuicheng

    2016-03-02

    In this work, we address the human parsing task with a novel Contextualized Convolutional Neural Network (Co-CNN) architecture, which well integrates the cross-layer context, global image-level context, semantic edge context, within-super-pixel context and cross-super-pixel neighborhood context into a unified network. Given an input human image, Co-CNN produces the pixel-wise categorization in an end-to-end way. First, the cross-layer context is captured by our basic local-to-global-to-local structure, which hierarchically combines the global semantic information and the local fine details across different convolutional layers. Second, the global image-level label prediction is used as an auxiliary objective in the intermediate layer of the Co-CNN, and its outputs are further used for guiding the feature learning in subsequent convolutional layers to leverage the global imagelevel context. Third, semantic edge context is further incorporated into Co-CNN, where the high-level semantic boundaries are leveraged to guide pixel-wise labeling. Finally, to further utilize the local super-pixel contexts, the within-super-pixel smoothing and cross-super-pixel neighbourhood voting are formulated as natural sub-components of the Co-CNN to achieve the local label consistency in both training and testing process. Comprehensive evaluations on two public datasets well demonstrate the significant superiority of our Co-CNN over other state-of-the-arts for human parsing. In particular, the F-1 score on the large dataset [1] reaches 81:72% by Co-CNN, significantly higher than 62:81% and 64:38% by the state-of-the-art algorithms, MCNN [2] and ATR [1], respectively. By utilizing our newly collected large dataset for training, our Co-CNN can achieve 85:36% in F-1 score.

  8. Community Detection for Multiplex Social Networks Based on Relational Bayesian Networks

    DEFF Research Database (Denmark)

    Jiang, Jiuchuan; Jaeger, Manfred

    2014-01-01

    . In this paper we propose to use relational Bayesian networks for the specification of probabilistic network models, and develop inference techniques that solve the community detection problem based on these models. The use of relational Bayesian networks as a flexible high-level modeling framework enables us......Many techniques have been proposed for community detection in social networks. Most of these techniques are only designed for networks defined by a single relation. However, many real networks are multiplex networks that contain multiple types of relations and different attributes on the nodes...

  9. Dynamic Object Identification with SOM-based neural networks

    Directory of Open Access Journals (Sweden)

    Aleksey Averkin

    2014-03-01

    Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.

  10. Network-based automation for SMEs

    DEFF Research Database (Denmark)

    Parizi, Mohammad Shahabeddini; Radziwon, Agnieszka

    2017-01-01

    could be obtained through network interaction. Based on two extreme cases of SMEs representing low-tech industry and an in-depth analysis of their manufacturing facilities this paper presents how collaboration between firms embedded in a regional ecosystem could result in implementation of new...... automation solutions. The empirical data collection involved application of a combination of comparative case study method with action research elements. This article provides an outlook over the challenges in implementing technological improvements and the way how it could be resolved in collaboration......, this paper develops and discusses a set of guidelines for systematic productivity improvement within an innovative collaboration in regards to automation processes in SMEs....

  11. WEB BASED LEARNING OF COMPUTER NETWORK COURSE

    Directory of Open Access Journals (Sweden)

    Hakan KAPTAN

    2004-04-01

    Full Text Available As a result of developing on Internet and computer fields, web based education becomes one of the area that many improving and research studies are done. In this study, web based education materials have been explained for multimedia animation and simulation aided Computer Networks course in Technical Education Faculties. Course content is formed by use of university course books, web based education materials and technology web pages of companies. Course content is formed by texts, pictures and figures to increase motivation of students and facilities of learning some topics are supported by animations. Furthermore to help working principles of routing algorithms and congestion control algorithms simulators are constructed in order to interactive learning

  12. CUFID-query: accurate network querying through random walk based network flow estimation.

    Science.gov (United States)

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive

  13. A novel memristive cellular neural network with time-variant templates

    Directory of Open Access Journals (Sweden)

    Xiaofang Hu

    2016-03-01

    Full Text Available A cellular neural network (CNN is a massively parallel analog array processor capable of solving various complex processing problems by using specific templates that characterize the synaptic connections. The hardware implementation and applications of CNN have attracted a great deal of attention. Recently, memristors with nanometer-scale and variable gradual conductance have been exploited to make compact and programmable electric synapses. This paper proposes and studies a novel memristive CNN (Mt-CNN with time-variant templates realized by memristor crossbar synaptic circuits. The template parameters are estimated analytically. The Mt-CNN provides a promising solution to hardware realization of real-time template updating processes, which can be used to effectively deal with various complicated problems of cascaded processing. Its effectiveness and advantages are demonstrated by practical examples of edge detection on noisy images.

  14. The implementation of a standards based heterogeneous network

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, J.M.; Tolendino, L.F.

    1991-08-05

    Computer networks, supporting an organization's activities, are prevalent and very important to the organization's mission. Implementing a heterogenous organizational network allows the staff to select the computing environment that best supports their job requirements. This paper outlines the lessons learned implementing a heterogenous computer network based on networking standards such as TCP/IP and Ethernet. Such a network is a viable alternative to a proprietary, vendor supported network and can provide all the functionality customers expect in a computer network. 2 figs.

  15. Networking activities in technology-based entrepreneurial teams

    DEFF Research Database (Denmark)

    Neergaard, Helle

    2005-01-01

    Based on social network theoy, this article investigates the distribution of networking roles and responsibilities in entrepreneurial founding teams. Its focus is on the team as a collection of individuals, thus allowing the research to address differences in networking patterns. It identifies six...... central networking activities and shows that not all founding team members are equally active 'networkers'. The analyses show that team members prioritize different networking activities and that one member in particular has extensive networking activities whereas other memebrs of the team are more...

  16. A multi-scale convolutional neural network for phenotyping high-content cellular images.

    Science.gov (United States)

    Godinez, William J; Hossain, Imtiaz; Lazic, Stanley E; Davies, John W; Zhang, Xian

    2017-07-01

    Identifying phenotypes based on high-content cellular images is challenging. Conventional image analysis pipelines for phenotype identification comprise multiple independent steps, with each step requiring method customization and adjustment of multiple parameters. Here, we present an approach based on a multi-scale convolutional neural network (M-CNN) that classifies, in a single cohesive step, cellular images into phenotypes by using directly and solely the images' pixel intensity values. The only parameters in the approach are the weights of the neural network, which are automatically optimized based on training images. The approach requires no a priori knowledge or manual customization, and is applicable to single- or multi-channel images displaying single or multiple cells. We evaluated the classification performance of the approach on eight diverse benchmark datasets. The approach yielded overall a higher classification accuracy compared with state-of-the-art results, including those of other deep CNN architectures. In addition to using the network to simply obtain a yes-or-no prediction for a given phenotype, we use the probability outputs calculated by the network to quantitatively describe the phenotypes. This study shows that these probability values correlate with chemical treatment concentrations. This finding validates further our approach and enables chemical treatment potency estimation via CNNs. The network specifications and solver definitions are provided in Supplementary Software 1. william_jose.godinez_navarro@novartis.com or xian-1.zhang@novartis.com. Supplementary data are available at Bioinformatics online.

  17. Effective Use of Word Order for Text Categorization with Convolutional Neural Networks

    OpenAIRE

    Johnson, Rie; Zhang, Tong

    2014-01-01

    Convolutional neural network (CNN) is a neural network that can make use of the internal structure of data such as the 2D structure of image data. This paper studies CNN on text categorization to exploit the 1D structure (namely, word order) of text data for accurate prediction. Instead of using low-dimensional word vectors as input as is often done, we directly apply CNN to high-dimensional text data, which leads to directly learning embedding of small text regions for use in classification....

  18. Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks

    Science.gov (United States)

    Petrillo, C. E.; Tortora, C.; Chatterjee, S.; Vernardos, G.; Koopmans, L. V. E.; Verdoes Kleijn, G.; Napolitano, N. R.; Covone, G.; Schneider, P.; Grado, A.; McFarland, J.

    2017-11-01

    The volume of data that will be produced by new-generation surveys requires automatic classification methods to select and analyse sources. Indeed, this is the case for the search for strong gravitational lenses, where the population of the detectable lensed sources is only a very small fraction of the full source population. We apply for the first time a morphological classification method based on a Convolutional Neural Network (CNN) for recognizing strong gravitational lenses in 255 deg2 of the Kilo Degree Survey (KiDS), one of the current-generation optical wide surveys. The CNN is currently optimized to recognize lenses with Einstein radii ≳1.4 arcsec, about twice the r-band seeing in KiDS. In a sample of 21 789 colour-magnitude selected luminous red galaxies (LRGs), of which three are known lenses, the CNN retrieves 761 strong-lens candidates and correctly classifies two out of three of the known lenses. The misclassified lens has an Einstein radius below the range on which the algorithm is trained. We down-select the most reliable 56 candidates by a joint visual inspection. This final sample is presented and discussed. A conservative estimate based on our results shows that with our proposed method it should be possible to find ∼100 massive LRG-galaxy lenses at z ≲ 0.4 in KiDS when completed. In the most optimistic scenario, this number can grow considerably (to maximally ∼2400 lenses), when widening the colour-magnitude selection and training the CNN to recognize smaller image-separation lens systems.

  19. UPM: unified policy-based network management

    Science.gov (United States)

    Law, Eddie; Saxena, Achint

    2001-07-01

    Besides providing network management to the Internet, it has become essential to offer different Quality of Service (QoS) to users. Policy-based management provides control on network routers to achieve this goal. The Internet Engineering Task Force (IETF) has proposed a two-tier architecture whose implementation is based on the Common Open Policy Service (COPS) protocol and Lightweight Directory Access Protocol (LDAP). However, there are several limitations to this design such as scalability and cross-vendor hardware compatibility. To address these issues, we present a functionally enhanced multi-tier policy management architecture design in this paper. Several extensions are introduced thereby adding flexibility and scalability. In particular, an intermediate entity between the policy server and policy rule database called the Policy Enforcement Agent (PEA) is introduced. By keeping internal data in a common format, using a standard protocol, and by interpreting and translating request and decision messages from multi-vendor hardware, this agent allows a dynamic Unified Information Model throughout the architecture. We have tailor-made this unique information system to save policy rules in the directory server and allow executions of policy rules with dynamic addition of new equipment during run-time.

  20. Paper-based Synthetic Gene Networks

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.

    2014-01-01

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167

  1. Resilient Disaster Network Based on Software Defined Cognitive Wireless Network Technology

    Directory of Open Access Journals (Sweden)

    Goshi Sato

    2015-01-01

    Full Text Available In order to temporally recover the information network infrastructure in disaster areas from the Great East Japan Earthquake in 2011, various wireless network technologies such as satellite IP network, 3G, and Wi-Fi were effectively used. However, since those wireless networks are individually introduced and installed but not totally integrated, some of networks were congested due to the sudden network traffic generation and unbalanced traffic distribution, and eventually the total network could not effectively function. In this paper, we propose a disaster resilient network which integrates various wireless networks into a cognitive wireless network that users can use as an access network to the Internet at the serious disaster occurrence. We designed and developed the disaster resilient network based on software defined network (SDN technology to automatically select the best network link and route among the possible access networks to the Internet by periodically monitoring their network states and evaluate those using extended AHP method. In order to verify the usefulness of our proposed system, a prototype system is constructed and its performance is evaluated.

  2. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.

    Science.gov (United States)

    Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque

    2017-01-01

    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).

  3. Classification of mitotic figures with convolutional neural networks and seeded blob features.

    Science.gov (United States)

    Malon, Christopher D; Cosatto, Eric

    2013-01-01

    The mitotic figure recognition contest at the 2012 International Conference on Pattern Recognition (ICPR) challenges a system to identify all mitotic figures in a region of interest of hematoxylin and eosin stained tissue, using each of three scanners (Aperio, Hamamatsu, and multispectral). Our approach combines manually designed nuclear features with the learned features extracted by convolutional neural networks (CNN). The nuclear features capture color, texture, and shape information of segmented regions around a nucleus. The use of a CNN handles the variety of appearances of mitotic figures and decreases sensitivity to the manually crafted features and thresholds. On the test set provided by the contest, the trained system achieves F1 scores up to 0.659 on color scanners and 0.589 on multispectral scanner. We demonstrate a powerful technique combining segmentation-based features with CNN, identifying the majority of mitotic figures with a fair precision. Further, we show that the approach accommodates information from the additional focal planes and spectral bands from a multi-spectral scanner without major redesign.

  4. Classification of mitotic figures with convolutional neural networks and seeded blob features

    Directory of Open Access Journals (Sweden)

    Christopher D Malon

    2013-01-01

    Full Text Available Background: The mitotic figure recognition contest at the 2012 International Conference on Pattern Recognition (ICPR challenges a system to identify all mitotic figures in a region of interest of hematoxylin and eosin stained tissue, using each of three scanners (Aperio, Hamamatsu, and multispectral. Methods: Our approach combines manually designed nuclear features with the learned features extracted by convolutional neural networks (CNN. The nuclear features capture color, texture, and shape information of segmented regions around a nucleus. The use of a CNN handles the variety of appearances of mitotic figures and decreases sensitivity to the manually crafted features and thresholds. Results : On the test set provided by the contest, the trained system achieves F1 scores up to 0.659 on color scanners and 0.589 on multispectral scanner. Conclusions : We demonstrate a powerful technique combining segmentation-based features with CNN, identifying the majority of mitotic figures with a fair precision. Further, we show that the approach accommodates information from the additional focal planes and spectral bands from a multi-spectral scanner without major redesign.

  5. Application of Convolutional Neural Network in Classification of High Resolution Agricultural Remote Sensing Images

    Science.gov (United States)

    Yao, C.; Zhang, Y.; Zhang, Y.; Liu, H.

    2017-09-01

    With the rapid development of Precision Agriculture (PA) promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN). For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  6. APPLICATION OF CONVOLUTIONAL NEURAL NETWORK IN CLASSIFICATION OF HIGH RESOLUTION AGRICULTURAL REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available With the rapid development of Precision Agriculture (PA promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN. For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  7. Classification of Microcalcifications for the Diagnosis of Breast Cancer Using Artificial Neural Networks

    National Research Council Canada - National Science Library

    Wu, Yuzheng

    1997-01-01

    .... A convolution neural network (CNN) was employed to classify benign and malignant microcalcifications in the radiographs of pathological specimen that were digitized at a high resolution of 21 microns x 21 microns...

  8. Feature Acquisition and Analysis for Facial Expression Recognition Using Convolutional Neural Networks

    National Research Council Canada - National Science Library

    Taiki Nishime; Satoshi Endo; Naruaki Toma; Koji Yamada; Yuhei Akamine

    2017-01-01

    .... Therefore, it is difficult to evaluate the reliability of the result from recognition accuracy alone, and the analysis for explaining the result and feature learned by Convolutional Neural Networks (CNN...

  9. Artificial organic networks artificial intelligence based on carbon networks

    CERN Document Server

    Ponce-Espinosa, Hiram; Molina, Arturo

    2014-01-01

    This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: ·        approximation; ·        inference; ·        clustering; ·        control; ·        class...

  10. EIGENVECTOR-BASED CENTRALITY MEASURES FOR TEMPORAL NETWORKS*

    OpenAIRE

    Taylor, Dane; MYERS, SEAN A.; Clauset, Aaron; Porter, Mason A.; Mucha, Peter J.

    2017-01-01

    Numerous centrality measures have been developed to quantify the importances of nodes in time-independent networks, and many of them can be expressed as the leading eigenvector of some matrix. With the increasing availability of network data that changes in time, it is important to extend such eigenvector-based centrality measures to time-dependent networks. In this paper, we introduce a principled generalization of network centrality measures that is valid for any eigenvector-based centralit...

  11. Communication Network Architectures Based on Ethernet Passive Optical Network for Offshore Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed

    2016-03-01

    Full Text Available Nowadays, with large-scale offshore wind power farms (WPFs becoming a reality, more efforts are needed to maintain a reliable communication network for WPF monitoring. Deployment topologies, redundancy, and network availability are the main items to enhance the communication reliability between wind turbines (WTs and control centers. Traditional communication networks for monitoring and control (i.e., supervisory control and data acquisition (SCADA systems using switched gigabit Ethernet will not be sufficient for the huge amount of data passing through the network. In this paper, the optical power budget, optical path loss, reliability, and network cost of the proposed Ethernet Passive Optical Network (EPON-based communication network for small-size offshore WPFs have been evaluated for five different network architectures. The proposed network model consists of an optical network unit device (ONU deployed on the WT side for collecting data from different internal networks. All ONUs from different WTs are connected to a central optical line terminal (OLT, placed in the control center. There are no active electronic elements used between the ONUs and the OLT, which reduces the costs and complexity of maintenance and deployment. As fiber access networks without any protection are characterized by poor reliability, three different protection schemes have been configured, explained, and discussed. Considering the cost of network components, the total implementation expense of different architectures with, or without, protection have been calculated and compared. The proposed network model can significantly contribute to the communication network architecture for next generation WPFs.

  12. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks

    Science.gov (United States)

    Alshehhi, Rasha; Marpu, Prashanth Reddy; Woon, Wei Lee; Mura, Mauro Dalla

    2017-08-01

    Extraction of man-made objects (e.g., roads and buildings) from remotely sensed imagery plays an important role in many urban applications (e.g., urban land use and land cover assessment, updating geographical databases, change detection, etc). This task is normally difficult due to complex data in the form of heterogeneous appearance with large intra-class and lower inter-class variations. In this work, we propose a single patch-based Convolutional Neural Network (CNN) architecture for extraction of roads and buildings from high-resolution remote sensing data. Low-level features of roads and buildings (e.g., asymmetry and compactness) of adjacent regions are integrated with Convolutional Neural Network (CNN) features during the post-processing stage to improve the performance. Experiments are conducted on two challenging datasets of high-resolution images to demonstrate the performance of the proposed network architecture and the results are compared with other patch-based network architectures. The results demonstrate the validity and superior performance of the proposed network architecture for extracting roads and buildings in urban areas.

  13. Network-Based and Binless Frequency Analyses.

    Directory of Open Access Journals (Sweden)

    Sybil Derrible

    Full Text Available We introduce and develop a new network-based and binless methodology to perform frequency analyses and produce histograms. In contrast with traditional frequency analysis techniques that use fixed intervals to bin values, we place a range ±ζ around each individual value in a data set and count the number of values within that range, which allows us to compare every single value of a data set with one another. In essence, the methodology is identical to the construction of a network, where two values are connected if they lie within a given a range (±ζ. The value with the highest degree (i.e., most connections is therefore assimilated to the mode of the distribution. To select an optimal range, we look at the stability of the proportion of nodes in the largest cluster. The methodology is validated by sampling 12 typical distributions, and it is applied to a number of real-world data sets with both spatial and temporal components. The methodology can be applied to any data set and provides a robust means to uncover meaningful patterns and trends. A free python script and a tutorial are also made available to facilitate the application of the method.

  14. Network video transmission system based on SOPC

    Science.gov (United States)

    Zhang, Zhengbing; Deng, Huiping; Xia, Zhenhua

    2008-03-01

    Video systems have been widely used in many fields such as conferences, public security, military affairs and medical treatment. With the rapid development of FPGA, SOPC has been paid great attentions in the area of image and video processing in recent years. A network video transmission system based on SOPC is proposed in this paper for the purpose of video acquisition, video encoding and network transmission. The hardware platform utilized to design the system is an SOPC board of model Altera's DE2, which includes an FPGA chip of model EP2C35F672C6, an Ethernet controller and a video I/O interface. An IP core, known as Nios II embedded processor, is used as the CPU of the system. In addition, a hardware module for format conversion of video data, and another module to realize Motion-JPEG have been designed with Verilog HDL. These two modules are attached to the Nios II processor as peripheral equipments through the Avalon bus. Simulation results show that these two modules work as expected. Uclinux including TCP/IP protocol as well as the driver of Ethernet controller is chosen as the embedded operating system and an application program scheme is proposed.

  15. Object Classification Using Substance Based Neural Network

    Directory of Open Access Journals (Sweden)

    P. Sengottuvelan

    2014-01-01

    Full Text Available Object recognition has shown tremendous increase in the field of image analysis. The required set of image objects is identified and retrieved on the basis of object recognition. In this paper, we propose a novel classification technique called substance based image classification (SIC using a wavelet neural network. The foremost task of SIC is to remove the surrounding regions from an image to reduce the misclassified portion and to effectively reflect the shape of an object. At first, the image to be extracted is performed with SIC system through the segmentation of the image. Next, in order to attain more accurate information, with the extracted set of regions, the wavelet transform is applied for extracting the configured set of features. Finally, using the neural network classifier model, misclassification over the given natural images and further background images are removed from the given natural image using the LSEG segmentation. Moreover, to increase the accuracy of object classification, SIC system involves the removal of the regions in the surrounding image. Performance evaluation reveals that the proposed SIC system reduces the occurrence of misclassification and reflects the exact shape of an object to approximately 10–15%.

  16. Flexible Tube-Based Network Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Innovation Laboratory, Inc. builds a control system which controls the topology of an air traffic flow network and the network flow properties which enables Air...

  17. SLIDE: automatic spine level identification system using a deep convolutional neural network.

    Science.gov (United States)

    Hetherington, Jorden; Lessoway, Victoria; Gunka, Vit; Abolmaesumi, Purang; Rohling, Robert

    2017-07-01

    Percutaneous spinal needle insertion procedures often require proper identification of the vertebral level to effectively and safely deliver analgesic agents. The current clinical method involves "blind" identification of the vertebral level through manual palpation of the spine, which has only 30% reported accuracy. Therefore, there is a need for better anatomical identification prior to needle insertion. A real-time system was developed to identify the vertebral level from a sequence of ultrasound images, following a clinical imaging protocol. The system uses a deep convolutional neural network (CNN) to classify transverse images of the lower spine. Several existing CNN architectures were implemented, utilizing transfer learning, and compared for adequacy in a real-time system. In the system, the CNN output is processed, using a novel state machine, to automatically identify vertebral levels as the transducer moves up the spine. Additionally, a graphical display was developed and integrated within 3D Slicer. Finally, an augmented reality display, projecting the level onto the patient's back, was also designed. A small feasibility study [Formula: see text] evaluated performance. The proposed CNN successfully discriminates ultrasound images of the sacrum, intervertebral gaps, and vertebral bones, achieving 88% 20-fold cross-validation accuracy. Seventeen of 20 test ultrasound scans had successful identification of all vertebral levels, processed at real-time speed (40 frames/s). A machine learning system is presented that successfully identifies lumbar vertebral levels. The small study on human subjects demonstrated real-time performance. A projection-based augmented reality display was used to show the vertebral level directly on the subject adjacent to the puncture site.

  18. Personalized Network-Based Treatments in Oncology

    DEFF Research Database (Denmark)

    Robin, Xavier; Creixell, Pau; Radetskaya, Oxana

    2013-01-01

    Network medicine aims at unraveling cell signaling networks to propose personalized treatments for patients suffering from complex diseases. In this short review, we show the relevance of network medicine to cancer treatment by outlining the potential convergence points of the most recent technol...

  19. Analysis of neural networks through base functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  20. Measurement-Based Network Link Dimensioning

    NARCIS (Netherlands)

    de Oliveira Schmidt, R.; van den Berg, Hans Leo; Pras, Aiko

    The ever increasing traffic demands and the current trend of network and services virtualization calls for effective approaches for optimal use of network resources. In the future Internet multiple virtual networks will coexist on top of the same physical infrastructure, and these will compete for

  1. Measurement-based network link dimensioning

    NARCIS (Netherlands)

    Schmidt, R. de O.; Den Berg, J.L. van den; Pras, A.

    2015-01-01

    The ever increasing traffic demands and the current trend of network and services virtualization calls for effective approaches for optimal use of network resources. In the future Internet multiple virtual networks will coexist on top of the same physical infrastructure, and these will compete for

  2. Analyzing Brain Functions by Subject Classification of Functional Near-Infrared Spectroscopy Data Using Convolutional Neural Networks Analysis

    Directory of Open Access Journals (Sweden)

    Satoru Hiwa

    2016-01-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is suitable for noninvasive mapping of relative changes in regional cortical activity but is limited for quantitative comparisons among cortical sites, subjects, and populations. We have developed a convolutional neural network (CNN analysis method that learns feature vectors for accurate identification of group differences in fNIRS responses. In this study, subject gender was classified using CNN analysis of fNIRS data. fNIRS data were acquired from male and female subjects during a visual number memory task performed in a white noise environment because previous studies had revealed that the pattern of cortical blood flow during the task differed between males and females. A learned classifier accurately distinguished males from females based on distinct fNIRS signals from regions of interest (ROI including the inferior frontal gyrus and premotor areas that were identified by the learning algorithm. These cortical regions are associated with memory storage, attention, and task motor response. The accuracy of the classifier suggests stable gender-based differences in cerebral blood flow during this task. The proposed CNN analysis method can objectively identify ROIs using fNIRS time series data for machine learning to distinguish features between groups.

  3. Cooperative UAV-Based Communications Backbone for Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs are used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.

  4. Network Traffic Prediction Based on Deep Belief Network and Spatiotemporal Compressive Sensing in Wireless Mesh Backbone Networks

    Directory of Open Access Journals (Sweden)

    Laisen Nie

    2018-01-01

    Full Text Available Wireless mesh network is prevalent for providing a decentralized access for users and other intelligent devices. Meanwhile, it can be employed as the infrastructure of the last few miles connectivity for various network applications, for example, Internet of Things (IoT and mobile networks. For a wireless mesh backbone network, it has obtained extensive attention because of its large capacity and low cost. Network traffic prediction is important for network planning and routing configurations that are implemented to improve the quality of service for users. This paper proposes a network traffic prediction method based on a deep learning architecture and the Spatiotemporal Compressive Sensing method. The proposed method first adopts discrete wavelet transform to extract the low-pass component of network traffic that describes the long-range dependence of itself. Then, a prediction model is built by learning a deep architecture based on the deep belief network from the extracted low-pass component. Otherwise, for the remaining high-pass component that expresses the gusty and irregular fluctuations of network traffic, the Spatiotemporal Compressive Sensing method is adopted to predict it. Based on the predictors of two components, we can obtain a predictor of network traffic. From the simulation, the proposed prediction method outperforms three existing methods.

  5. Histopathological Breast-Image Classification Using Local and Frequency Domains by Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Abdullah-Al Nahid

    2018-01-01

    Full Text Available Identification of the malignancy of tissues from Histopathological images has always been an issue of concern to doctors and radiologists. This task is time-consuming, tedious and moreover very challenging. Success in finding malignancy from Histopathological images primarily depends on long-term experience, though sometimes experts disagree on their decisions. However, Computer Aided Diagnosis (CAD techniques help the radiologist to give a second opinion that can increase the reliability of the radiologist’s decision. Among the different image analysis techniques, classification of the images has always been a challenging task. Due to the intense complexity of biomedical images, it is always very challenging to provide a reliable decision about an image. The state-of-the-art Convolutional Neural Network (CNN technique has had great success in natural image classification. Utilizing advanced engineering techniques along with the CNN, in this paper, we have classified a set of Histopathological Breast-Cancer (BC images utilizing a state-of-the-art CNN model containing a residual block. Conventional CNN operation takes raw images as input and extracts the global features; however, the object oriented local features also contain significant information—for example, the Local Binary Pattern (LBP represents the effective textural information, Histogram represent the pixel strength distribution, Contourlet Transform (CT gives much detailed information about the smoothness about the edges, and Discrete Fourier Transform (DFT derives frequency-domain information from the image. Utilizing these advantages, along with our proposed novel CNN model, we have examined the performance of the novel CNN model as Histopathological image classifier. To do so, we have introduced five cases: (a Convolutional Neural Network Raw Image (CNN-I; (b Convolutional Neural Network CT Histogram (CNN-CH; (c Convolutional Neural Network CT LBP (CNN-CL; (d Convolutional

  6. Classification of complex networks based on similarity of topological network features

    Science.gov (United States)

    Attar, Niousha; Aliakbary, Sadegh

    2017-09-01

    Over the past few decades, networks have been widely used to model real-world phenomena. Real-world networks exhibit nontrivial topological characteristics and therefore, many network models are proposed in the literature for generating graphs that are similar to real networks. Network models reproduce nontrivial properties such as long-tail degree distributions or high clustering coefficients. In this context, we encounter the problem of selecting the network model that best fits a given real-world network. The need for a model selection method reveals the network classification problem, in which a target-network is classified into one of the candidate network models. In this paper, we propose a novel network classification method which is independent of the network size and employs an alignment-free metric of network comparison. The proposed method is based on supervised machine learning algorithms and utilizes the topological similarities of networks for the classification task. The experiments show that the proposed method outperforms state-of-the-art methods with respect to classification accuracy, time efficiency, and robustness to noise.

  7. Analysis of Computer Network Information Based on "Big Data"

    Science.gov (United States)

    Li, Tianli

    2017-11-01

    With the development of the current era, computer network and large data gradually become part of the people's life, people use the computer to provide convenience for their own life, but at the same time there are many network information problems has to pay attention. This paper analyzes the information security of computer network based on "big data" analysis, and puts forward some solutions.

  8. On Emulation-Based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Abbasi, Ali; Wetzel, Jos; Bokslag, Wouter; Zambon, Emmanuele; Etalle, Sandro

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an in- strumented environment and checking the execution traces for signs of shellcode activity.

  9. Survey-Based Measurement of Public Management and Policy Networks

    Science.gov (United States)

    Henry, Adam Douglas; Lubell, Mark; McCoy, Michael

    2012-01-01

    Networks have become a central concept in the policy and public management literature; however, theoretical development is hindered by a lack of attention to the empirical properties of network measurement methods. This paper compares three survey-based methods for measuring organizational networks: the roster, the free-recall name generator, and…

  10. Novel Ethernet Based Optical Local Area Networks for Computer Interconnection

    NARCIS (Netherlands)

    Radovanovic, Igor; van Etten, Wim; Taniman, R.O.; Kleinkiskamp, Ronny

    2003-01-01

    In this paper we present new optical local area networks for fiber-to-the-desk application. Presented networks are expected to bring a solution for having optical fibers all the way to computers. To bring the overall implementation costs down we have based our networks on short-wavelength optical

  11. Network Medicine: A Network-based Approach to Human Disease

    Science.gov (United States)

    Barabási, Albert-László; Gulbahce, Natali; Loscalzo, Joseph

    2011-01-01

    Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction are essential to identify new diseases genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases. PMID:21164525

  12. A Cascade-Based Emergency Model for Water Distribution Network

    Directory of Open Access Journals (Sweden)

    Qing Shuang

    2015-01-01

    Full Text Available Water distribution network is important in the critical physical infrastructure systems. The paper studies the emergency resource strategies on water distribution network with the approach of complex network and cascading failures. The model of cascade-based emergency for water distribution network is built. The cascade-based model considers the network topology analysis and hydraulic analysis to provide a more realistic result. A load redistribution function with emergency recovery mechanisms is established. From the aspects of uniform distribution, node betweenness, and node pressure, six recovery strategies are given to reflect the network topology and the failure information, respectively. The recovery strategies are evaluated with the complex network indicators to describe the failure scale and failure velocity. The proposed method is applied by an illustrative example. The results showed that the recovery strategy considering the node pressure can enhance the network robustness effectively. Besides, this strategy can reduce the failure nodes and generate the least failure nodes per time.

  13. A Novel Image Tag Completion Method Based on Convolutional Neural Transformation

    KAUST Repository

    Geng, Yanyan

    2017-10-24

    In the problems of image retrieval and annotation, complete textual tag lists of images play critical roles. However, in real-world applications, the image tags are usually incomplete, thus it is important to learn the complete tags for images. In this paper, we study the problem of image tag complete and proposed a novel method for this problem based on a popular image representation method, convolutional neural network (CNN). The method estimates the complete tags from the convolutional filtering outputs of images based on a linear predictor. The CNN parameters, linear predictor, and the complete tags are learned jointly by our method. We build a minimization problem to encourage the consistency between the complete tags and the available incomplete tags, reduce the estimation error, and reduce the model complexity. An iterative algorithm is developed to solve the minimization problem. Experiments over benchmark image data sets show its effectiveness.

  14. Few-shot learning in deep networks through global prototyping.

    Science.gov (United States)

    Blaes, Sebastian; Burwick, Thomas

    2017-10-01

    Training a deep convolution neural network (CNN) to succeed in visual object classification usually requires a great number of examples. Here, starting from such a pre-learned CNN, we study the task of extending the network to classify additional categories on the basis of only few examples ("few-shot learning"). We find that a simple and fast prototype-based learning procedure in the global feature layers ("Global Prototype Learning", GPL) leads to some remarkably good classification results for a large portion of the new classes. It requires only up to ten examples for the new classes to reach a plateau in performance. To understand this few-shot learning performance resulting from GPL as well as the performance of the original network, we use the t-SNE method (Maaten and Hinton, 2008) to visualize clusters of object category examples. This reveals the strong connection between classification performance and data distribution and explains why some new categories only need few examples for learning while others resist good classification results even when trained with many more examples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Arresting Strategy Based on Dynamic Criminal Networks Changing over Time

    Directory of Open Access Journals (Sweden)

    Junqing Yuan

    2013-01-01

    Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.

  16. Analysis of friendship network from MMORPG based data

    OpenAIRE

    Črnigoj, Dean

    2016-01-01

    This work analyzes friendship network from a Massively Multiplayer Online Role-Playing Game (MMORPG). The network is based on data from a private server that was active from 2007 until 2011. The work conducts a standard analysis of the network and then divides players according to different groups based on their activity. Work checks how friendship network can be correlated to the clan (a self-organized group of players who often form a league and play on the same side in a match) network. Ma...

  17. Improving deep convolutional neural networks with mixed maxout units.

    Directory of Open Access Journals (Sweden)

    Hui-Zhen Zhao

    Full Text Available Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN that "non-maximal features are unable to deliver" and "feature mapping subspace pooling is insufficient," we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance.

  18. Multiscale Convolutional Neural Networks for Hand Detection

    Directory of Open Access Journals (Sweden)

    Shiyang Yan

    2017-01-01

    Full Text Available Unconstrained hand detection in still images plays an important role in many hand-related vision problems, for example, hand tracking, gesture analysis, human action recognition and human-machine interaction, and sign language recognition. Although hand detection has been extensively studied for decades, it is still a challenging task with many problems to be tackled. The contributing factors for this complexity include heavy occlusion, low resolution, varying illumination conditions, different hand gestures, and the complex interactions between hands and objects or other hands. In this paper, we propose a multiscale deep learning model for unconstrained hand detection in still images. Deep learning models, and deep convolutional neural networks (CNNs in particular, have achieved state-of-the-art performances in many vision benchmarks. Developed from the region-based CNN (R-CNN model, we propose a hand detection scheme based on candidate regions generated by a generic region proposal algorithm, followed by multiscale information fusion from the popular VGG16 model. Two benchmark datasets were applied to validate the proposed method, namely, the Oxford Hand Detection Dataset and the VIVA Hand Detection Challenge. We achieved state-of-the-art results on the Oxford Hand Detection Dataset and had satisfactory performance in the VIVA Hand Detection Challenge.

  19. A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Nenad Kojić

    2012-06-01

    Full Text Available The networking infrastructure of wireless mesh networks (WMNs is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs. This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission. The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.

  20. A neural networks-based hybrid routing protocol for wireless mesh networks.

    Science.gov (United States)

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic-i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.

  1. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    Science.gov (United States)

    Castet, Jean-Francois; Saleh, Joseph H

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the

  2. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    Directory of Open Access Journals (Sweden)

    Jean-Francois Castet

    Full Text Available This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also

  3. Neural network based system for equipment surveillance

    Science.gov (United States)

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  4. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.

    Science.gov (United States)

    Fechter, Tobias; Adebahr, Sonja; Baltas, Dimos; Ben Ayed, Ismail; Desrosiers, Christian; Dolz, Jose

    2017-12-01

    Precise delineation of organs at risk is a crucial task in radiotherapy treatment planning for delivering high doses to the tumor while sparing healthy tissues. In recent years, automated segmentation methods have shown an increasingly high performance for the delineation of various anatomical structures. However, this task remains challenging for organs like the esophagus, which have a versatile shape and poor contrast to neighboring tissues. For human experts, segmenting the esophagus from CT images is a time-consuming and error-prone process. To tackle these issues, we propose a random walker approach driven by a 3D fully convolutional neural network (CNN) to automatically segment the esophagus from CT images. First, a soft probability map is generated by the CNN. Then, an active contour model (ACM) is fitted to the CNN soft probability map to get a first estimation of the esophagus location. The outputs of the CNN and ACM are then used in conjunction with a probability model based on CT Hounsfield (HU) values to drive the random walker. Training and evaluation were done on 50 CTs from two different datasets, with clinically used peer-reviewed esophagus contours. Results were assessed regarding spatial overlap and shape similarity. The esophagus contours generated by the proposed algorithm showed a mean Dice coefficient of 0.76 ± 0.11, an average symmetric square distance of 1.36 ± 0.90 mm, and an average Hausdorff distance of 11.68 ± 6.80, compared to the reference contours. These results translate to a very good agreement with reference contours and an increase in accuracy compared to existing methods. Furthermore, when considering the results reported in the literature for the publicly available Synapse dataset, our method outperformed all existing approaches, which suggests that the proposed method represents the current state-of-the-art for automatic esophagus segmentation. We show that a CNN can yield accurate estimations of esophagus location, and that

  5. Arabic Handwritten Digit Recognition Based on Restricted Boltzmann Machine and Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Ali A. Alani

    2017-11-01

    Full Text Available Handwritten digit recognition is an open problem in computer vision and pattern recognition, and solving this problem has elicited increasing interest. The main challenge of this problem is the design of an efficient method that can recognize the handwritten digits that are submitted by the user via digital devices. Numerous studies have been proposed in the past and in recent years to improve handwritten digit recognition in various languages. Research on handwritten digit recognition in Arabic is limited. At present, deep learning algorithms are extremely popular in computer vision and are used to solve and address important problems, such as image classification, natural language processing, and speech recognition, to provide computers with sensory capabilities that reach the ability of humans. In this study, we propose a new approach for Arabic handwritten digit recognition by use of restricted Boltzmann machine (RBM and convolutional neural network (CNN deep learning algorithms. In particular, we propose an Arabic handwritten digit recognition approach that works in two phases. First, we use the RBM, which is a deep learning technique that can extract highly useful features from raw data, and which has been utilized in several classification problems as a feature extraction technique in the feature extraction phase. Then, the extracted features are fed to an efficient CNN architecture with a deep supervised learning architecture for the training and testing process. In the experiment, we used the CMATERDB 3.3.1 Arabic handwritten digit dataset for training and testing the proposed method. Experimental results show that the proposed method significantly improves the accuracy rate, with accuracy reaching 98.59%. Finally, comparison of our results with those of other studies on the CMATERDB 3.3.1 Arabic handwritten digit dataset shows that our approach achieves the highest accuracy rate.

  6. Dynamics of subway networks based on vehicles operation timetable

    Science.gov (United States)

    Xiao, Xue-mei; Jia, Li-min; Wang, Yan-hui

    2017-05-01

    In this paper, a subway network is represented as a dynamic, directed and weighted graph, in which vertices represent subway stations and weights of edges represent the number of vehicles passing through the edges by considering vehicles operation timetable. Meanwhile the definitions of static and dynamic metrics which can represent vertices' and edges' local and global attributes are proposed. Based on the model and metrics, standard deviation is further introduced to study the dynamic properties (heterogeneity and vulnerability) of subway networks. Through a detailed analysis of the Beijing subway network, we conclude that with the existing network structure, the heterogeneity and vulnerability of the Beijing subway network varies over time when the vehicle operation timetable is taken into consideration, and the distribution of edge weights affects the performance of the network. In other words, although the vehicles operation timetable is restrained by the physical structure of the network, it determines the performances and properties of the Beijing subway network.

  7. The guitar chord-generating algorithm based on complex network

    Science.gov (United States)

    Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais

    2016-02-01

    This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.

  8. Evidence That Calls-Based and Mobility Networks Are Isomorphic.

    Directory of Open Access Journals (Sweden)

    Michele Coscia

    Full Text Available Social relations involve both face-to-face interaction as well as telecommunications. We can observe the geography of phone calls and of the mobility of cell phones in space. These two phenomena can be described as networks of connections between different points in space. We use a dataset that includes billions of phone calls made in Colombia during a six-month period. We draw the two networks and find that the call-based network resembles a higher order aggregation of the mobility network and that both are isomorphic except for a higher spatial decay coefficient of the mobility network relative to the call-based network: when we discount distance effects on the call connections with the same decay observed for mobility connections, the two networks are virtually indistinguishable.

  9. Networks as Power Bases for School Improvement

    Science.gov (United States)

    Moore, Tessa A.; Kelly, Michael P.

    2009-01-01

    Although there is limited research into the success of primary school networking initiatives in the UK, there is a drive at national government level for promoting school collaborative working arrangements as a catalyst for whole-school improvement. This paper discusses the findings from research into two such initiatives: "Networked Learning…

  10. Certificate Based Security Services in Adhoc Sensor Network

    OpenAIRE

    Shahin Fatima; Shish Ahmad; P. M. Khan

    2014-01-01

    The paper entitled “CERTIFICATE BASED SECURITY SERVICES IN ADHOC SENSOR NETWORK” proposed an approach in which the aim is to find the method for authentication which is more energy efficient and reduces the transmission time of the network. MANETs are of dynamic topology and have no predefined infrastructure. Due to its dynamic topology this network is prone to various kinds of vulnerable attacks. Sensor networks are battery operated and is a major concern. Methods on ID based Authentication ...

  11. Greening radio access networks using distributed base station architectures

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Soler, José; Dittmann, Lars

    2010-01-01

    . However besides this, increasing energy efficiency represents a key factor for reducing operating expenses and deploying cost effective mobile networks. This paper presents how distributed base station architectures can contribute in greening radio access networks. More specifically, the advantages...... energy saving. Different subsystems have to be coordinated real-time and intelligent network nodes supporting complicated functionalities are necessary. Distributed base station architectures are ideal for this purpose mainly because of their high degree of configurability and self...

  12. Energy Constraint Node Cache Based Routing Protocol For Adhoc Network

    OpenAIRE

    Dhiraj Nitnaware; Ajay Verma

    2010-01-01

    Mobile Adhoc Networks (MANETs) is a wireless infrastructureless network, where nodes are free to move independently in any direction. The nodes have limited battery power; hence we require energy efficient routing protocols to optimize network performance. This paper aims to develop a new routing algorithm based on the energy status of the node cache. We have named this algorithm as ECNC_AODV (Energy Constraint Node Cache) based routing protocol which is derived from the AODV protocol. The al...

  13. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  14. A Network Formation Model Based on Subgraphs

    CERN Document Server

    Chandrasekhar, Arun

    2016-01-01

    We develop a new class of random-graph models for the statistical estimation of network formation that allow for substantial correlation in links. Various subgraphs (e.g., links, triangles, cliques, stars) are generated and their union results in a network. We provide estimation techniques for recovering the rates at which the underlying subgraphs were formed. We illustrate the models via a series of applications including testing for incentives to form cross-caste relationships in rural India, testing to see whether network structure is used to enforce risk-sharing, testing as to whether networks change in response to a community's exposure to microcredit, and show that these models significantly outperform stochastic block models in matching observed network characteristics. We also establish asymptotic properties of the models and various estimators, which requires proving a new Central Limit Theorem for correlated random variables.

  15. Network capacity with probit-based stochastic user equilibrium problem.

    Science.gov (United States)

    Lu, Lili; Wang, Jian; Zheng, Pengjun; Wang, Wei

    2017-01-01

    Among different stochastic user equilibrium (SUE) traffic assignment models, the Logit-based stochastic user equilibrium (SUE) is extensively investigated by researchers. It is constantly formulated as the low-level problem to describe the drivers' route choice behavior in bi-level problems such as network design, toll optimization et al. The Probit-based SUE model receives far less attention compared with Logit-based model albeit the assignment result is more consistent with drivers' behavior. It is well-known that due to the identical and irrelevant alternative (IIA) assumption, the Logit-based SUE model is incapable to deal with route overlapping problem and cannot account for perception variance with respect to trips. This paper aims to explore the network capacity with Probit-based traffic assignment model and investigate the differences of it is with Logit-based SUE traffic assignment models. The network capacity is formulated as a bi-level programming where the up-level program is to maximize the network capacity through optimizing input parameters (O-D multiplies and signal splits) while the low-level program is the Logit-based or Probit-based SUE problem formulated to model the drivers' route choice. A heuristic algorithm based on sensitivity analysis of SUE problem is detailed presented to solve the proposed bi-level program. Three numerical example networks are used to discuss the differences of network capacity between Logit-based SUE constraint and Probit-based SUE constraint. This study finds that while the network capacity show different results between Probit-based SUE and Logit-based SUE constraints, the variation pattern of network capacity with respect to increased level of travelers' information for general network under the two type of SUE problems is the same, and with certain level of travelers' information, both of them can achieve the same maximum network capacity.

  16. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study

    Science.gov (United States)

    Zhen, Xin; Chen, Jiawei; Zhong, Zichun; Hrycushko, Brian; Zhou, Linghong; Jiang, Steve; Albuquerque, Kevin; Gu, Xuejun

    2017-11-01

    Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT  +  BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.

  17. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study.

    Science.gov (United States)

    Zhen, Xin; Chen, Jiawei; Zhong, Zichun; Hrycushko, Brian; Zhou, Linghong; Jiang, Steve; Albuquerque, Kevin; Gu, Xuejun

    2017-10-12

    Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT  +  BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.

  18. A Spectrum Handoff Scheme for Optimal Network Selection in NEMO Based Cognitive Radio Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2017-01-01

    Full Text Available When a mobile network changes its point of attachments in Cognitive Radio (CR vehicular networks, the Mobile Router (MR requires spectrum handoff. Network Mobility (NEMO in CR vehicular networks is concerned with the management of this movement. In future NEMO based CR vehicular networks deployment, multiple radio access networks may coexist in the overlapping areas having different characteristics in terms of multiple attributes. The CR vehicular node may have the capability to make call for two or more types of nonsafety services such as voice, video, and best effort simultaneously. Hence, it becomes difficult for MR to select optimal network for the spectrum handoff. This can be done by performing spectrum handoff using Multiple Attributes Decision Making (MADM methods which is the objective of the paper. The MADM methods such as grey relational analysis and cost based methods are used. The application of MADM methods provides wider and optimum choice among the available networks with quality of service. Numerical results reveal that the proposed scheme is effective for spectrum handoff decision for optimal network selection with reduced complexity in NEMO based CR vehicular networks.

  19. A-Lamp: Adaptive Layout-Aware Multi-Patch Deep Convolutional Neural Network for Photo Aesthetic Assessment

    OpenAIRE

    Ma, Shuang; Liu, Jing; Chen, Chang Wen

    2017-01-01

    Deep convolutional neural networks (CNN) have recently been shown to generate promising results for aesthetics assessment. However, the performance of these deep CNN methods is often compromised by the constraint that the neural network only takes the fixed-size input. To accommodate this requirement, input images need to be transformed via cropping, warping, or padding, which often alter image composition, reduce image resolution, or cause image distortion. Thus the aesthetics of the origina...

  20. Improving Student Engagement Using Course-Based Social Networks

    Science.gov (United States)

    Imlawi, Jehad Mohammad

    2013-01-01

    This study proposes an engagement model that supports use of course-based online social networks for engaging student, and hence, improving their educational outcomes. This research demonstrates that instructors who create course-based online social networks to communicate with students can increase the student engagement in these online social…

  1. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...

  2. J2EE-based integrated telecom network management

    Science.gov (United States)

    Xia, Zhongwu; Wei, Guo

    2004-04-01

    The paper will present a J2EE-based architecture of integrated telecom network management system, and also will introduce the MVC(Model, View and Control) design pattern in the architecture. Using J2EE and MVC design pattern, we can easily build multiple user interfaces (included Web-based), flexible, manageable, and extensible network management system.

  3. Neural Network Based Intelligent Sootblowing System

    Energy Technology Data Exchange (ETDEWEB)

    Mark Rhode

    2005-04-01

    . Due to the composition of coal, particulate matter is also a by-product of coal combustion. Modern day utility boilers are usually fitted with electrostatic precipitators to aid in the collection of particulate matter. Although extremely efficient, these devices are sensitive to rapid changes in inlet mass concentration as well as total mass loading. Traditionally, utility boilers are equipped with devices known as sootblowers, which use, steam, water or air to dislodge and clean the surfaces within the boiler and are operated based upon established rule or operator's judgment. Poor sootblowing regimes can influence particulate mass loading to the electrostatic precipitators. The project applied a neural network intelligent sootblowing system in conjunction with state-of-the-art controls and instruments to optimize the operation of a utility boiler and systematically control boiler slagging/fouling. This optimization process targeted reduction of NOx of 30%, improved efficiency of 2% and a reduction in opacity of 5%. The neural network system proved to be a non-invasive system which can readily be adapted to virtually any utility boiler. Specific conclusions from this neural network application are listed below. These conclusions should be used in conjunction with the specific details provided in the technical discussions of this report to develop a thorough understanding of the process.

  4. Named data networking-based smart home

    OpenAIRE

    Syed Hassan Ahmed; Dongkyun Kim

    2016-01-01

    Named data networking (NDN) treats content/data as a “first class citizen” of the network by giving it a “name”. This content “name” is used to retrieve any information, unlike in device-centric networks (i.e., the current Internet), which depend on physical IP addresses. Meanwhile, the smart home concept has been gaining attention in academia and industries; various low-cost embedded devices are considered that can sense, process, store, and communicate data autonomously. In this paper, we s...

  5. Visualization of Complex Networks Based on Dyadic Curvelet Transform

    Directory of Open Access Journals (Sweden)

    Kaoru Hirota

    2006-07-01

    Full Text Available A visualization method is proposed for understanding the structure of complex networks based on an extended Curvelet transform named Dyadic Curvelet Transform (DClet. The proposed visualization method comes to answer specific questions about structures of complex networks by mapping data into orthogonal localized events with a directional component via the Cartesian sampling sets of detail coefficients. It behaves in the same matter as human visual system, seeing in terms of segments and distinguishing them by scale and orientation. Compressing the network is another fact. The performance of the proposed method is evaluated by two different networks with structural properties of small world networks with N = 16 vertices, and a globally coupled network with size N = 1024 and 523 776 edges. As the most large scale real networks are not fully connected, it is tested on the telecommunication network of Iran as a real extremely complex network with 92 intercity switching vertices, 706 350 E1 traffic channels and 315 525 transmission channels. It is shown that the proposed method performs as a simulation tool for successfully design of network and establishing the necessary group sizes. It can clue the network designer in on all structural properties that network has.

  6. Cross-Spectral Local Descriptors via Quadruplet Network.

    Science.gov (United States)

    Aguilera, Cristhian A; Sappa, Angel D; Aguilera, Cristhian; Toledo, Ricardo

    2017-04-15

    This paper presents a novel CNN-based architecture, referred to as Q-Net, to learn local feature descriptors that are useful for matching image patches from two different spectral bands. Given correctly matched and non-matching cross-spectral image pairs, a quadruplet network is trained to map input image patches to a common Euclidean space, regardless of the input spectral band. Our approach is inspired by the recent success of triplet networks in the visible spectrum, but adapted for cross-spectral scenarios, where, for each matching pair, there are always two possible non-matching patches: one for each spectrum. Experimental evaluations on a public cross-spectral VIS-NIR dataset shows that the proposed approach improves the state-of-the-art. Moreover, the proposed technique can also be used in mono-spectral settings, obtaining a similar performance to triplet network descriptors, but requiring less training data.

  7. Cross-Spectral Local Descriptors via Quadruplet Network

    Science.gov (United States)

    Aguilera, Cristhian A.; Sappa, Angel D.; Aguilera, Cristhian; Toledo, Ricardo

    2017-01-01

    This paper presents a novel CNN-based architecture, referred to as Q-Net, to learn local feature descriptors that are useful for matching image patches from two different spectral bands. Given correctly matched and non-matching cross-spectral image pairs, a quadruplet network is trained to map input image patches to a common Euclidean space, regardless of the input spectral band. Our approach is inspired by the recent success of triplet networks in the visible spectrum, but adapted for cross-spectral scenarios, where, for each matching pair, there are always two possible non-matching patches: one for each spectrum. Experimental evaluations on a public cross-spectral VIS-NIR dataset shows that the proposed approach improves the state-of-the-art. Moreover, the proposed technique can also be used in mono-spectral settings, obtaining a similar performance to triplet network descriptors, but requiring less training data. PMID:28420142

  8. A Hybrid Reliable Heuristic Mapping Method Based on Survivable Virtual Networks for Network Virtualization

    Directory of Open Access Journals (Sweden)

    Qiang Zhu

    2015-01-01

    Full Text Available The reliable mapping of virtual networks is one of the hot issues in network virtualization researches. Unlike the traditional protection mechanisms based on redundancy and recovery mechanisms, we take the solution of the survivable virtual topology routing problem for reference to ensure that the rest of the mapped virtual networks keeps connected under a single node failure condition in the substrate network, which guarantees the completeness of the virtual network and continuity of services. In order to reduce the cost of the substrate network, a hybrid reliable heuristic mapping method based on survivable virtual networks (Hybrid-RHM-SVN is proposed. In Hybrid-RHM-SVN, we formulate the reliable mapping problem as an integer linear program. Firstly, we calculate the primary-cut set of the virtual network subgraph where the failed node has been removed. Then, we use the ant colony optimization algorithm to achieve the approximate optimal mapping. The links in primary-cut set should select a substrate path that does not pass through the substrate node corresponding to the virtual node that has been removed first. The simulation results show that the acceptance rate of virtual networks, the average revenue of mapping, and the recovery rate of virtual networks are increased compared with the existing reliable mapping algorithms, respectively.

  9. Reliability based rehabilitation of water distribution networks by means of Bayesian networks

    Directory of Open Access Journals (Sweden)

    Lakehal Abdelaziz

    2017-09-01

    Full Text Available Water plays an essential role in the everyday lives of the people. To supply subscribers with good quality of water and to ensure continuity of service, the operators use water distribution networks (WDN. The main elements of water distribution network (WDN are: pipes and valves. The work developed in this paper focuses on a water distribution network rehabilitation in the short and long term. Priorities for rehabilitation actions were defined and the information system consolidated, as well as decision-making. The reliability data were conjugated in decision making tools on water distribution network rehabilitation in a forecasting context. As the pipes are static elements and the valves are dynamic elements, a Bayesian network (static-dynamic has been developed, which can help to predict the failure scenario regarding water distribution. A relationship between reliability and prioritization of rehabilitation actions has been investigated. Modelling based on a Static Bayesian Network (SBN is implemented to analyse qualitatively and quantitatively the availability of water in the different segments of the network. Dynamic Bayesian networks (DBN are then used to assess the valves reliability as function of time, which allows management of water distribution based on water availability assessment in different segments. Before finishing the paper by giving some conclusions, a case study of a network supplying a city was presented. The results show the importance and effectiveness of the proposed Bayesian approach in the anticipatory management and for prioritizing rehabilitation of water distribution networks.

  10. Deep architecture neural network-based real-time image processing for image-guided radiotherapy.

    Science.gov (United States)

    Mori, Shinichiro

    2017-08-01

    To develop real-time image processing for image-guided radiotherapy, we evaluated several neural network models for use with different imaging modalities, including X-ray fluoroscopic image denoising. Setup images of prostate cancer patients were acquired with two oblique X-ray fluoroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a convolutional neural network (rCNN). We changed the convolutional kernel size and number of convolutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE) method of image processing. Network models were trained to keep the quality of the output image close to that of the ground-truth image from the input image without image processing. For image denoising evaluation, noisy input images were used for the training. More than 6 convolutional layers with convolutional kernels >5×5 improved image quality. However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers to both networks, rCAEs with >3 convolutions each and rCNNs with >12 convolutions with a pair of pooling and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable image quality. Use of our suggested network achieved real-time image processing for contrast enhancement and image denoising by the use of a conventional modern personal computer. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Mining human mobility in location-based social networks

    CERN Document Server

    Gao, Huiji

    2015-01-01

    In recent years, there has been a rapid growth of location-based social networking services, such as Foursquare and Facebook Places, which have attracted an increasing number of users and greatly enriched their urban experience. Typical location-based social networking sites allow a user to ""check in"" at a real-world POI (point of interest, e.g., a hotel, restaurant, theater, etc.), leave tips toward the POI, and share the check-in with their online friends. The check-in action bridges the gap between real world and online social networks, resulting in a new type of social networks, namely l

  12. Cointegration-based financial networks study in Chinese stock market

    Science.gov (United States)

    Tu, Chengyi

    2014-05-01

    We propose a method based on cointegration instead of correlation to construct financial complex network in Chinese stock market. The network is obtained starting from the matrix of p-value calculated by Engle-Granger cointegration test between all pairs of stocks. Then some tools for filtering information in complex network are implemented to prune the complete graph described by the above matrix, such as setting a level of statistical significance as a threshold and Planar Maximally Filtered Graph. We also calculate Partial Correlation Planar Graph of these stocks to compare the above networks. Last, we analyze these directed, weighted and non-symmetric networks by using standard methods of network analysis, including degree centrality, PageRank, HITS, local clustering coefficient, K-shell and strongly and weakly connected components. The results shed a new light on the underlying mechanisms and driving forces in a financial market and deepen our understanding of financial complex network.

  13. Multiagent Based Information Dissemination in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    S.S. Manvi

    2009-01-01

    Full Text Available Vehicular Ad hoc Networks (VANETs are a compelling application of ad hoc networks, because of the potential to access specific context information (e.g. traffic conditions, service updates, route planning and deliver multimedia services (Voice over IP, in-car entertainment, instant messaging, etc.. This paper proposes an agent based information dissemination model for VANETs. A two-tier agent architecture is employed comprising of the following: 1 'lightweight', network-facing, mobile agents; 2 'heavyweight', application-facing, norm-aware agents. The limitations of VANETs lead us to consider a hybrid wireless network architecture that includes Wireless LAN/Cellular and ad hoc networking for analyzing the proposed model. The proposed model provides flexibility, adaptability and maintainability for traffic information dissemination in VANETs as well as supports robust and agile network management. The proposed model has been simulated in various network scenarios to evaluate the effectiveness of the approach.

  14. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    Science.gov (United States)

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli, and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  15. Dynamical complexity in the perception-based network formation model

    Science.gov (United States)

    Jo, Hang-Hyun; Moon, Eunyoung

    2016-12-01

    Many link formation mechanisms for the evolution of social networks have been successful to reproduce various empirical findings in social networks. However, they have largely ignored the fact that individuals make decisions on whether to create links to other individuals based on cost and benefit of linking, and the fact that individuals may use perception of the network in their decision making. In this paper, we study the evolution of social networks in terms of perception-based strategic link formation. Here each individual has her own perception of the actual network, and uses it to decide whether to create a link to another individual. An individual with the least perception accuracy can benefit from updating her perception using that of the most accurate individual via a new link. This benefit is compared to the cost of linking in decision making. Once a new link is created, it affects the accuracies of other individuals' perceptions, leading to a further evolution of the actual network. As for initial actual networks, we consider both homogeneous and heterogeneous cases. The homogeneous initial actual network is modeled by Erdős-Rényi (ER) random networks, while we take a star network for the heterogeneous case. In any cases, individual perceptions of the actual network are modeled by ER random networks with controllable linking probability. Then the stable link density of the actual network is found to show discontinuous transitions or jumps according to the cost of linking. As the number of jumps is the consequence of the dynamical complexity, we discuss the effect of initial conditions on the number of jumps to find that the dynamical complexity strongly depends on how much individuals initially overestimate or underestimate the link density of the actual network. For the heterogeneous case, the role of the highly connected individual as an information spreader is also discussed.

  16. Resource Discovery in Activity-Based Sensor Networks

    DEFF Research Database (Denmark)

    Bucur, Doina; Bardram, Jakob

    This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networks...... (ABSNs) knowledge about their usage even at the network layer. ABSN redesigns classical network-level service discovery protocols to include and use this logical structuring of the network for a more practically applicable service discovery scheme. Noting that in practical settings activity-based sensor...... patches are localized, ABSN designs a completely distributed, hybrid discovery protocol which is proactive in a neighbourhood zone and reactive outside, tailored so that any query among the sensors of one activity is routed through the network with minimum overhead, guided by the bounds of that activity...

  17. Topic-based Social Influence Measurement for Social Networks

    Directory of Open Access Journals (Sweden)

    Asso Hamzehei

    2017-11-01

    Full Text Available Social science studies have acknowledged that the social influence of individuals is not identical. Social networks structure and shared text can reveal immense information about users, their interests, and topic-based influence. Although some studies have considered measuring user influence, less has been on measuring and estimating topic-based user influence. In this paper, we propose an approach that incorporates network structure, user-generated content for topic-based influence measurement, and user’s interactions in the network. We perform experimental analysis on Twitter data and show that our proposed approach can effectively measure topic-based user influence.

  18. A Neural Network-Based Interval Pattern Matcher

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-07-01

    Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.

  19. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    conventional WSN . VSN enabled closed loop system consumes more energy than the VSN only system, because of the commands that are send to the nodes. Energy ...predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless Sensor Network ( WSN ) to...Network ( WSN ) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based monitoring

  20. Artificial neural network for bubbles pattern recognition on the images

    Science.gov (United States)

    Poletaev, I. E.; Pervunin, K. S.; Tokarev, M. P.

    2016-10-01

    Two-phase bubble flows have been used in many technological and energy processes as processing oil, chemical and nuclear reactors. This explains large interest to experimental and numerical studies of such flows last several decades. Exploiting of optical diagnostics for analysis of the bubble flows allows researchers obtaining of instantaneous velocity fields and gaseous phase distribution with the high spatial resolution non-intrusively. Behavior of light rays exhibits an intricate manner when they cross interphase boundaries of gaseous bubbles hence the identification of the bubbles images is a complicated problem. This work presents a method of bubbles images identification based on a modern technology of deep learning called convolutional neural networks (CNN). Neural networks are able to determine overlapping, blurred, and non-spherical bubble images. They can increase accuracy of the bubble image recognition, reduce the number of outliers, lower data processing time, and significantly decrease the number of settings for the identification in comparison with standard recognition methods developed before. In addition, usage of GPUs speeds up the learning process of CNN owning to the modern adaptive subgradient optimization techniques.

  1. Automated embolic signal detection using Deep Convolutional Neural Network.

    Science.gov (United States)

    Sombune, Praotasna; Phienphanich, Phongphan; Phuechpanpaisal, Sutanya; Muengtaweepongsa, Sombat; Ruamthanthong, Anuchit; Tantibundhit, Charturong

    2017-07-01

    This work investigated the potential of Deep Neural Network in detection of cerebral embolic signal (ES) from transcranial Doppler ultrasound (TCD). The resulting system is aimed to couple with TCD devices in diagnosing a risk of stroke in real-time with high accuracy. The Adaptive Gain Control (AGC) approach developed in our previous study is employed to capture suspected ESs in real-time. By using spectrograms of the same TCD signal dataset as that of our previous work as inputs and the same experimental setup, Deep Convolutional Neural Network (CNN), which can learn features while training, was investigated for its ability to bypass the traditional handcrafted feature extraction and selection process. Extracted feature vectors from the suspected ESs are later determined whether they are of an ES, artifact (AF) or normal (NR) interval. The effectiveness of the developed system was evaluated over 19 subjects going under procedures generating emboli. The CNN-based system could achieve in average of 83.0% sensitivity, 80.1% specificity, and 81.4% accuracy, with considerably much less time consumption in development. The certainly growing set of training samples and computational resources will contribute to high performance. Besides having potential use in various clinical ES monitoring settings, continuation of this promising study will benefit developments of wearable applications by leveraging learnable features to serve demographic differentials.

  2. A simple network agreement-based approach for combining evidences in a heterogeneous sensor network

    Directory of Open Access Journals (Sweden)

    Raúl Eusebio-Grande

    2015-12-01

    Full Text Available In this research we investigate how the evidences provided by both static and mobile nodes that are part of a heterogenous sensor network can be combined to have trustworthy results. A solution relying on a network agreement-based approach was implemented and tested.

  3. Representations in neural network based empirical potentials

    Science.gov (United States)

    Cubuk, Ekin D.; Malone, Brad D.; Onat, Berk; Waterland, Amos; Kaxiras, Efthimios

    2017-07-01

    Many structural and mechanical properties of crystals, glasses, and biological macromolecules can be modeled from the local interactions between atoms. These interactions ultimately derive from the quantum nature of electrons, which can be prohibitively expensive to simulate. Machine learning has the potential to revolutionize materials modeling due to its ability to efficiently approximate complex functions. For example, neural networks can be trained to reproduce results of density functional theory calculations at a much lower cost. However, how neural networks reach their predictions is not well understood, which has led to them being used as a "black box" tool. This lack of understanding is not desirable especially for applications of neural networks in scientific inquiry. We argue that machine learning models trained on physical systems can be used as more than just approximations since they had to "learn" physical concepts in order to reproduce the labels they were trained on. We use dimensionality reduction techniques to study in detail the representation of silicon atoms at different stages in a neural network, which provides insight into how a neural network learns to model atomic interactions.

  4. ANOMALY NETWORK INTRUSION DETECTION SYSTEM BASED ON DISTRIBUTED TIME-DELAY NEURAL NETWORK (DTDNN

    Directory of Open Access Journals (Sweden)

    LAHEEB MOHAMMAD IBRAHIM

    2010-12-01

    Full Text Available In this research, a hierarchical off-line anomaly network intrusion detection system based on Distributed Time-Delay Artificial Neural Network is introduced. This research aims to solve a hierarchical multi class problem in which the type of attack (DoS, U2R, R2L and Probe attack detected by dynamic neural network. The results indicate that dynamic neural nets (Distributed Time-Delay Artificial Neural Network can achieve a high detection rate, where the overall accuracy classification rate average is equal to 97.24%.

  5. Deep learning based multi-category object detection in aerial images

    Science.gov (United States)

    Sommer, Lars W.; Schuchert, Tobias; Beyerer, Jürgen

    2017-05-01

    Multi-category object detection in aerial images is an important task for many applications such as surveillance, tracking or search and rescue tasks. In recent years, deep learning approaches using features extracted by convolutional neural networks (CNN) significantly improved the detection accuracy on detection benchmark datasets compared to traditional approaches based on hand-crafted features as used for object detection in aerial images. However, these approaches are not transferable one to one on aerial images as the used network architectures have an insufficient resolution of feature maps for handling small instances. This consequently results in poor localization accuracy or missed detections as the network architectures are explored and optimized for datasets that considerably differ from aerial images in particular in object size and image fraction occupied by an object. In this work, we propose a deep neural network derived from the Faster R-CNN approach for multi- category object detection in aerial images. We show how the detection accuracy can be improved by replacing the network architecture by an architecture especially designed for handling small object sizes. Furthermore, we investigate the impact of different parameters of the detection framework on the detection accuracy for small objects. Finally, we demonstrate the suitability of our network for object detection in aerial images by comparing our network to traditional baseline approaches and deep learning based approaches on the publicly available DLR 3K Munich Vehicle Aerial Image Dataset that comprises multiple object classes such as car, van, truck, bus and camper.

  6. Structure and properties of triolein-based polyurethane networks.

    Science.gov (United States)

    Zlatanić, Alisa; Petrović, Zoran S; Dusek, Karel

    2002-01-01

    Polyurethane networks based on vegetable oils have very heterogeneous composition, and it is difficult to find a close correlation between their structure and properties. To establish benchmark structure-properties relationships, we have prepared model polyurethane networks based on triolein and 4,4'-diphenylmethane diisocyanate (MDI). Cross-linking in the middle of fatty acid chains leaves significant parts of the triglyceride as dangling chains. To examine their effect on properties, we have synthesized another polyurethane network using triolein without dangling chains (removed by metathesis). The structure of polyols was studied in detail since it affects the structure of polyurethane networks. The network structure was analyzed from swelling and mechanical measurements and by applying network and rubber elasticity theories. The cross-linking density in both networks was found to be close to theoretical. The triolein-based model network displayed modulus (around 6 MPa), tensile strength (8.7 MPa), and elongation at break (136%), characteristic of hard rubbers. Glass transition temperatures of the networks from triolein and its metathesis analogue were 25 and 31.5 degrees C, respectively.

  7. Anomaly-based Network Intrusion Detection Methods

    Directory of Open Access Journals (Sweden)

    Pavel Nevlud

    2013-01-01

    Full Text Available The article deals with detection of network anomalies. Network anomalies include everything that is quite different from the normal operation. For detection of anomalies were used machine learning systems. Machine learning can be considered as a support or a limited type of artificial intelligence. A machine learning system usually starts with some knowledge and a corresponding knowledge organization so that it can interpret, analyse, and test the knowledge acquired. There are several machine learning techniques available. We tested Decision tree learning and Bayesian networks. The open source data-mining framework WEKA was the tool we used for testing the classify, cluster, association algorithms and for visualization of our results. The WEKA is a collection of machine learning algorithms for data mining tasks.

  8. Named data networking-based smart home

    Directory of Open Access Journals (Sweden)

    Syed Hassan Ahmed

    2016-09-01

    Full Text Available Named data networking (NDN treats content/data as a “first class citizen” of the network by giving it a “name”. This content “name” is used to retrieve any information, unlike in device-centric networks (i.e., the current Internet, which depend on physical IP addresses. Meanwhile, the smart home concept has been gaining attention in academia and industries; various low-cost embedded devices are considered that can sense, process, store, and communicate data autonomously. In this paper, we study NDN in the context of smart-home communications, discuss the preliminary evaluations, and describe the future challenges of applying NDN in smart-home applications.

  9. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  10. Image Restoration Technology Based on Discrete Neural network

    Directory of Open Access Journals (Sweden)

    Zhou Duoying

    2015-01-01

    Full Text Available With the development of computer science and technology, the development of artificial intelligence advances rapidly in the field of image restoration. Based on the MATLAB platform, this paper constructs a kind of image restoration technology of artificial intelligence based on the discrete neural network and feedforward network, and carries out simulation and contrast of the restoration process by the use of the bionic algorithm. Through the application of simulation restoration technology, this paper verifies that the discrete neural network has a good convergence and identification capability in the image restoration technology with a better effect than that of the feedforward network. The restoration technology based on the discrete neural network can provide a reliable mathematical model for this field.

  11. DNA sequence analysis using hierarchical ART-based classification networks

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, C.; Hruska, S.I. [Florida State Univ., Tallahassee, FL (United States); Katholi, C.R.; Unnasch, T.R. [Univ. of Alabama, Birmingham, AL (United States)

    1994-12-31

    Adaptive resonance theory (ART) describes a class of artificial neural network architectures that act as classification tools which self-organize, work in real-time, and require no retraining to classify novel sequences. We have adapted ART networks to provide support to scientists attempting to categorize tandem repeat DNA fragments from Onchocerca volvulus. In this approach, sequences of DNA fragments are presented to multiple ART-based networks which are linked together into two (or more) tiers; the first provides coarse sequence classification while the sub- sequent tiers refine the classifications as needed. The overall rating of the resulting classification of fragments is measured using statistical techniques based on those introduced to validate results from traditional phylogenetic analysis. Tests of the Hierarchical ART-based Classification Network, or HABclass network, indicate its value as a fast, easy-to-use classification tool which adapts to new data without retraining on previously classified data.

  12. Friend suggestion in social network based on user log

    Science.gov (United States)

    Kaviya, R.; Vanitha, M.; Sumaiya Thaseen, I.; Mangaiyarkarasi, R.

    2017-11-01

    Simple friend recommendation algorithms such as similarity, popularity and social aspects is the basic requirement to be explored to methodically form high-performance social friend recommendation. Suggestion of friends is followed. No tags of character were followed. In the proposed system, we use an algorithm for network correlation-based social friend recommendation (NC-based SFR).It includes user activities like where one lives and works. A new friend recommendation method, based on network correlation, by considering the effect of different social roles. To model the correlation between different networks, we develop a method that aligns these networks through important feature selection. We consider by preserving the network structure for a more better recommendations so that it significantly improves the accuracy for better friend-recommendation.

  13. Effective information spreading based on local information in correlated networks

    CERN Document Server

    Gao, Lei; Pan, Liming; Tang, Ming; Zhang, Hai-Feng

    2016-01-01

    Using network-based information to facilitate information spreading is an essential task for spreading dynamics in complex networks, which will benefit the promotion of technical innovations, healthy behaviors, new products, etc. Focusing on degree correlated networks, we propose a preferential contact strategy based on the local network structure and local informed density to promote the information spreading. During the spreading process, an informed node will preferentially select a contact target among its neighbors, basing on their degrees or local informed densities. By extensively implementing numerical simulations in synthetic and empirical networks, we find that when only consider the local structure information, the convergence time of information spreading will be remarkably reduced if low-degree neighbors are favored as contact targets. Meanwhile, the minimum convergence time depends non-monotonically on degree-degree correlation, and moderate correlation coefficients result in most efficient info...

  14. Neural Network-Based Segmentation of Textures Using Gabor Features

    OpenAIRE

    Ramakrishnan, AG; Raja, Kumar S; Ram, Ragu HV

    2002-01-01

    The effectiveness of Gabor filters for texture segmentation is well known. In this paper, we propose a texture identification scheme, based on a neural network (NN) using Gabor features. The features are derived from both the Gabor cosine and sine filters. Through experiments, we demonstrate the effectiveness of a NN based classifier using Gabor features for identifying textures in a controlled environment. The neural network used for texture identification is based on the multilayer perceptr...

  15. ROOF TYPE SELECTION BASED ON PATCH-BASED CLASSIFICATION USING DEEP LEARNING FOR HIGH RESOLUTION SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    T. Partovi

    2017-05-01

    Full Text Available 3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2 for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes extracted from a Digital Surface Model (DSM, the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.

  16. Roof Type Selection Based on Patch-Based Classification Using Deep Learning for High Resolution Satellite Imagery

    Science.gov (United States)

    Partovi, T.; Fraundorfer, F.; Azimi, S.; Marmanis, D.; Reinartz, P.

    2017-05-01

    3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2) for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes) extracted from a Digital Surface Model (DSM), the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN) framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.

  17. How Deep Neural Networks Can Improve Emotion Recognition on Video Data

    Science.gov (United States)

    2016-09-25

    available, we evaluate all of our ex- periments on the development set. We evaluate our tech- niques by computing three metrics: (i) Root Mean Square...feature extractor by fixing all of the parameters and removing the top regression layer. We then pass each frame within the window to the CNN and extract a...recurrent neural network (RNN) to propagate infor- mation from one time point to next. We first model the CNN as a feature extractor by fixing all of

  18. Identifying key nodes in multilayer networks based on tensor decomposition

    Science.gov (United States)

    Wang, Dingjie; Wang, Haitao; Zou, Xiufen

    2017-06-01

    The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.

  19. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    Science.gov (United States)

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  20. The harmonics detection method based on neural network applied ...

    African Journals Online (AJOL)

    user

    Consequently, many structures based on artificial neural network (ANN) have been developed in the literature, The most significant ... Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total Harmonic Distortion. 1. ..... and pure shunt active fitters, IEEE 38th Conf on Industry Applications, Vol. 2, pp.

  1. Distributed network generation based on preferential attachment in ABS

    NARCIS (Netherlands)

    K. Azadbakht (Keyvan); N. Bezirgiannis (Nikolaos); F.S. de Boer (Frank)

    2017-01-01

    textabstractGeneration of social networks using Preferential Attachment (PA) mechanism is proposed in the Barabasi-Albert model. In this mechanism, new nodes are introduced to the network sequentially and they attach to the existing nodes preferentially where the preference can be based on the

  2. Optical-Correlator Neural Network Based On Neocognitron

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  3. Two port network analysis for three impedance based oscillators

    KAUST Repository

    Said, Lobna A.

    2011-12-01

    Two-port network representations are applied to analyze complex networks which can be dissolved into sub-networks connected in series, parallel or cascade. In this paper, the concept of two-port network has been studied for oscillators. Three impedance oscillator based on two port concept has been analyzed using different impedance structures. The effect of each structure on the oscillation condition and the frequency of oscillation have been introduced. Two different implementations using MOS and BJT have been introduced. © 2011 IEEE.

  4. Material procedure quality forecast based on genetic BP neural network

    Science.gov (United States)

    Zheng, Bao-Hua

    2017-07-01

    Material procedure quality forecast plays an important role in quality control. This paper proposes a prediction model based on genetic algorithm (GA) and back propagation (BP) neural network. It can obtain the initial weights and thresholds of optimized BP neural network with the GA global search ability. A material process quality prediction model with the optimized BP neural network is adopted to predict the error of future process to measure the accuracy of process quality. The results show that the proposed method has the advantages of high accuracy and fast convergence rate compared with BP neural network.

  5. Epidemic spreading on networks based on stress response

    Science.gov (United States)

    Nian, Fuzhong; Yao, Shuanglong

    2017-06-01

    Based on the stress responses of individuals, the susceptible-infected-susceptible epidemic model was improved on the small-world networks and BA scale-free networks and the simulations were implemented and analyzed. Results indicate that the behaviors of individual’s stress responses could induce the epidemic spreading resistance and adaptation at the network level. This phenomenon showed that networks were learning how to adapt to the disease and the evolution process could improve their immunization to future infectious diseases and would effectively prevent the spreading of infectious diseases.

  6. An image segmentation method based on network clustering model

    Science.gov (United States)

    Jiao, Yang; Wu, Jianshe; Jiao, Licheng

    2018-01-01

    Network clustering phenomena are ubiquitous in nature and human society. In this paper, a method involving a network clustering model is proposed for mass segmentation in mammograms. First, the watershed transform is used to divide an image into regions, and features of the image are computed. Then a graph is constructed from the obtained regions and features. The network clustering model is applied to realize clustering of nodes in the graph. Compared with two classic methods, the algorithm based on the network clustering model performs more effectively in experiments.

  7. TRICALCAR : Weaving Community Based Wireless Networks in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This grant will support a capacity-building and applied research project on community wireless networking in Latin America and the Caribbean (LAC). Researchers will review, update and adapt 18 existing online thematic modules, and design seven new ones. A group of wireless experts with expertise in the social impacts ...

  8. Based on BP Neural Network Stock Prediction

    Science.gov (United States)

    Liu, Xiangwei; Ma, Xin

    2012-01-01

    The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…

  9. Social networking for web-based communities

    NARCIS (Netherlands)

    Issa, T.; Kommers, Petrus A.M.

    2013-01-01

    In the 21st century, a new technology was introduced to facilitate communication, collaboration, and interaction between individuals and businesses. This technology is called social networking; this technology is now part of Internet commodities like email, browsing and blogging. From the 20th

  10. Hybrid network defense model based on fuzzy evaluation.

    Science.gov (United States)

    Cho, Ying-Chiang; Pan, Jen-Yi

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  11. Physical parameters collection based on wireless senor network

    Science.gov (United States)

    Chen, Xin; Wu, Hong; Ji, Lei

    2013-12-01

    With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.

  12. Access Network Selection Based on Fuzzy Logic and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Mohammed Alkhawlani

    2008-01-01

    Full Text Available In the next generation of heterogeneous wireless networks (HWNs, a large number of different radio access technologies (RATs will be integrated into a common network. In this type of networks, selecting the most optimal and promising access network (AN is an important consideration for overall networks stability, resource utilization, user satisfaction, and quality of service (QoS provisioning. This paper proposes a general scheme to solve the access network selection (ANS problem in the HWN. The proposed scheme has been used to present and design a general multicriteria software assistant (SA that can consider the user, operator, and/or the QoS view points. Combined fuzzy logic (FL and genetic algorithms (GAs have been used to give the proposed scheme the required scalability, flexibility, and simplicity. The simulation results show that the proposed scheme and SA have better and more robust performance over the random-based selection.

  13. Rumor Diffusion in an Interests-Based Dynamic Social Network

    Directory of Open Access Journals (Sweden)

    Mingsheng Tang

    2013-01-01

    Full Text Available To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1 positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2 with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3 a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4 a network with a smaller clustering coefficient has a larger efficiency.

  14. Evaluating conducting network based transparent electrodes from geometrical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ankush [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560064 Bangalore (India); Kulkarni, G. U., E-mail: guk@cens.res.in [Centre for Nano and Soft Matter Sciences, 560013 Bangalore (India)

    2016-01-07

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  15. Bioinspired evolutionary algorithm based for improving network coverage in wireless sensor networks.

    Science.gov (United States)

    Abbasi, Mohammadjavad; Bin Abd Latiff, Muhammad Shafie; Chizari, Hassan

    2014-01-01

    Wireless sensor networks (WSNs) include sensor nodes in which each node is able to monitor the physical area and send collected information to the base station for further analysis. The important key of WSNs is detection and coverage of target area which is provided by random deployment. This paper reviews and addresses various area detection and coverage problems in sensor network. This paper organizes many scenarios for applying sensor node movement for improving network coverage based on bioinspired evolutionary algorithm and explains the concern and objective of controlling sensor node coverage. We discuss area coverage and target detection model by evolutionary algorithm.

  16. No longer simply a Practice-based Research Network (PBRN) health improvement networks.

    Science.gov (United States)

    Williams, Robert L; Rhyne, Robert L

    2011-01-01

    While primary care Practice-based Research Networks are best known for their original, research purpose, evidence accumulating over the last several years is demonstrating broader values of these collaborations. Studies have demonstrated their role in quality improvement and practice change, in continuing professional education, in clinician retention in medically underserved areas, and in facilitating transition of primary care organization. A role in informing and facilitating health policy development is also suggested. Taking into account this more robust potential, we propose a new title, the Health Improvement Network, and a new vision for Practice-based Research Networks.

  17. Consensus-Based Cooperative Control Based on Pollution Sensing and Traffic Information for Urban Traffic Networks

    National Research Council Canada - National Science Library

    Antonio Artuñedo; Raúl M del Toro; Rodolfo E Haber

    2017-01-01

    .... The interconnected traffic lights controller (TLC) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks...

  18. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.

    Science.gov (United States)

    Yang, Xin; Liu, Chaoyue; Wang, Zhiwei; Yang, Jun; Min, Hung Le; Wang, Liang; Cheng, Kwang-Ting Tim

    2017-12-01

    Multi-parameter magnetic resonance imaging (mp-MRI) is increasingly popular for prostate cancer (PCa) detection and diagnosis. However, interpreting mp-MRI data which typically contains multiple unregistered 3D sequences, e.g. apparent diffusion coefficient (ADC) and T2-weighted (T2w) images, is time-consuming and demands special expertise, limiting its usage for large-scale PCa screening. Therefore, solutions to computer-aided detection of PCa in mp-MRI images are highly desirable. Most recent advances in automated methods for PCa detection employ a handcrafted feature based two-stage classification flow, i.e. voxel-level classification followed by a region-level classification. This work presents an automated PCa detection system which can concurrently identify the presence of PCa in an image and localize lesions based on deep convolutional neural network (CNN) features and a single-stage SVM classifier. Specifically, the developed co-trained CNNs consist of two parallel convolutional networks for ADC and T2w images respectively. Each network is trained using images of a single modality in a weakly-supervised manner by providing a set of prostate images with image-level labels indicating only the presence of PCa without priors of lesions' locations. Discriminative visual patterns of lesions can be learned effectively from clutters of prostate and surrounding tissues. A cancer response map with each pixel indicating the likelihood to be cancerous is explicitly generated at the last convolutional layer of the network for each modality. A new back-propagated error E is defined to enforce both optimized classification results and consistent cancer response maps for different modalities, which help capture highly representative PCa-relevant features during the CNN feature learning process. The CNN features of each modality are concatenated and fed into a SVM classifier. For images which are classified to contain cancers, non-maximum suppression and adaptive

  19. Software-defined Radio Based Measurement Platform for Wireless Networks.

    Science.gov (United States)

    Chao, I-Chun; Lee, Kang B; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan

    2015-10-01

    End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc.) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks.

  20. A network-based dynamical ranking system for competitive sports

    Science.gov (United States)

    Motegi, Shun; Masuda, Naoki

    2012-12-01

    From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking system predicts the outcome of the future games with a higher accuracy than the static counterparts.

  1. A network-based dynamical ranking system for competitive sports.

    Science.gov (United States)

    Motegi, Shun; Masuda, Naoki

    2012-01-01

    From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking system predicts the outcome of the future games with a higher accuracy than the static counterparts.

  2. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading.

    Science.gov (United States)

    Li, Siqi; Jiang, Huiyan; Pang, Wenbo

    2017-05-01

    Accurate cell grading of cancerous tissue pathological image is of great importance in medical diagnosis and treatment. This paper proposes a joint multiple fully connected convolutional neural network with extreme learning machine (MFC-CNN-ELM) architecture for hepatocellular carcinoma (HCC) nuclei grading. First, in preprocessing stage, each grayscale image patch with the fixed size is obtained using center-proliferation segmentation (CPS) method and the corresponding labels are marked under the guidance of three pathologists. Next, a multiple fully connected convolutional neural network (MFC-CNN) is designed to extract the multi-form feature vectors of each input image automatically, which considers multi-scale contextual information of deep layer maps sufficiently. After that, a convolutional neural network extreme learning machine (CNN-ELM) model is proposed to grade HCC nuclei. Finally, a back propagation (BP) algorithm, which contains a new up-sample method, is utilized to train MFC-CNN-ELM architecture. The experiment comparison results demonstrate that our proposed MFC-CNN-ELM has superior performance compared with related works for HCC nuclei grading. Meanwhile, external validation using ICPR 2014 HEp-2 cell dataset shows the good generalization of our MFC-CNN-ELM architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Design, Implementation and Optimization of Innovative Internet Access Networks, based on Fog Computing and Software Defined Networking

    OpenAIRE

    Iotti, Nicola

    2017-01-01

    1. DESIGN In this dissertation we introduce a new approach to Internet access networks in public spaces, such as Wi-Fi network commonly known as Hotspot, based on Fog Computing (or Edge Computing), Software Defined Networking (SDN) and the deployment of Virtual Machines (VM) and Linux containers, on the edge of the network. In this vision we deploy specialized network elements, called Fog Nodes, on the edge of the network, able to virtualize the physical infrastructure and expose APIs to e...

  4. An FPGA-based torus communication network

    Energy Technology Data Exchange (ETDEWEB)

    Pivanti, Marcello; Schifano, Sebastiano Fabio [INFN, Ferrara (Italy); Ferrara Univ. (Italy); Simma, Hubert [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC

    2011-02-15

    We describe the design and FPGA implementation of a 3D torus network (TNW) to provide nearest-neighbor communications between commodity multi-core processors. The aim of this project is to build up tightly interconnected and scalable parallel systems for scientific computing. The design includes the VHDL code to implement on latest FPGA devices a network processor, which can be accessed by the CPU through a PCIe interface and which controls the external PHYs of the physical links. Moreover, a Linux driver and a library implementing custom communication APIs are provided. The TNW has been successfully integrated in two recent parallel machine projects, QPACE and AuroraScience. We describe some details of the porting of the TNW for the AuroraScience system and report performance results. (orig.)

  5. Network-based in silico drug efficacy screening

    National Research Council Canada - National Science Library

    Guney, Emre; Menche, Jörg; Vidal, Marc; Barábasi, Albert-László

    2016-01-01

    .... Here, we take advantage of our increasing understanding of the network-based origins of diseases to introduce a drug-disease proximity measure that quantifies the interplay between drugs targets and diseases...

  6. Interpenetrating polymer network hydrogels based on polysaccharides for biomedical applications

    NARCIS (Netherlands)

    Pescosolido, L.

    2011-01-01

    The main theme of this thesis is the development and the characterization of interpenetrating polymer network hydrogels (IPNs) based on biodegradable and biocompatible polysaccharides, in particular alginate, hyaluronic acid and dextran. The suitability of these novel systems as pharmaceutical and

  7. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  8. Training Deep Spiking Neural Networks Using Backpropagation.

    Science.gov (United States)

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael

    2016-01-01

    Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.

  9. NETWORK-CENTRIC WARFARE AND SOME PARTICULAR ASPECTS OF LOGISTICS BASED ON NETWORKING

    Directory of Open Access Journals (Sweden)

    Petrişor JALBĂ

    2015-04-01

    Full Text Available Within the framework of the current revolution in military affairs, at the End of the Cold War a new concept was born: the concept of War Based on Computer Networking or NCW Network Centric-Warfare which was established as a central element of modern military operations. Determined by theprogress recorded in the field of communication systems of all types, technology of information (HI-Tech, IT, war based on computer networking brings a change in the war paradigm and its inherent components In this respect, logistics based on computer networking represents one of the ways in which the reality of the battlefield is preserved which enhances the joint perspective upon the military forces.

  10. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network.

    Science.gov (United States)

    Lin, Kai; Wang, Di; Hu, Long

    2016-07-01

    With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.

  11. Design and Simulation Analysis for Integrated Vehicle Chassis-Network Control System Based on CAN Network

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2016-01-01

    Full Text Available Due to the different functions of the system used in the vehicle chassis control, the hierarchical control strategy also leads to many kinds of the network topology structure. According to the hierarchical control principle, this research puts forward the integrated control strategy of the chassis based on supervision mechanism. The purpose is to consider how the integrated control architecture affects the control performance of the system after the intervention of CAN network. Based on the principle of hierarchical control and fuzzy control, a fuzzy controller is designed, which is used to monitor and coordinate the ESP, AFS, and ARS. And the IVC system is constructed with the upper supervisory controller and three subcontrol systems on the Simulink platform. The network topology structure of IVC is proposed, and the IVC communication matrix based on CAN network communication is designed. With the common sensors and the subcontrollers as the CAN network independent nodes, the network induced delay and packet loss rate on the system control performance are studied by simulation. The results show that the simulation method can be used for designing the communication network of the vehicle.

  12. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2016-07-01

    Full Text Available With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC. The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.

  13. Theory of fractional order elements based impedance matching networks

    KAUST Repository

    Radwan, Ahmed G.

    2011-03-01

    Fractional order circuit elements (inductors and capacitors) based impedance matching networks are introduced for the first time. In comparison to the conventional integer based L-type matching networks, fractional matching networks are much simpler and versatile. Any complex load can be matched utilizing a single series fractional element, which generally requires two elements for matching in the conventional approach. It is shown that all the Smith chart circles (resistance and reactance) are actually pairs of completely identical circles. They appear to be single for the conventional integer order case, where the identical circles completely overlap each other. The concept is supported by design equations and impedance matching examples. © 2010 IEEE.

  14. A Mobile Network Planning Tool Based on Data Analytics

    Directory of Open Access Journals (Sweden)

    Jessica Moysen

    2017-01-01

    Full Text Available Planning future mobile networks entails multiple challenges due to the high complexity of the network to be managed. Beyond 4G and 5G networks are expected to be characterized by a high densification of nodes and heterogeneity of layers, applications, and Radio Access Technologies (RAT. In this context, a network planning tool capable of dealing with this complexity is highly convenient. The objective is to exploit the information produced by and already available in the network to properly deploy, configure, and optimise network nodes. This work presents such a smart network planning tool that exploits Machine Learning (ML techniques. The proposed approach is able to predict the Quality of Service (QoS experienced by the users based on the measurement history of the network. We select Physical Resource Block (PRB per Megabit (Mb as our main QoS indicator to optimise, since minimizing this metric allows offering the same service to users by consuming less resources, so, being more cost-effective. Two cases of study are considered in order to evaluate the performance of the proposed scheme, one to smartly plan the small cell deployment in a dense indoor scenario and a second one to timely face a detected fault in a macrocell network.

  15. A shallow convolutional neural network for blind image sharpness assessment.

    Science.gov (United States)

    Yu, Shaode; Wu, Shibin; Wang, Lei; Jiang, Fan; Xie, Yaoqin; Li, Leida

    2017-01-01

    Blind image quality assessment can be modeled as feature extraction followed by score prediction. It necessitates considerable expertise and efforts to handcraft features for optimal representation of perceptual image quality. This paper addresses blind image sharpness assessment by using a shallow convolutional neural network (CNN). The network takes single feature layer to unearth intrinsic features for image sharpness representation and utilizes multilayer perceptron (MLP) to rate image quality. Different from traditional methods, CNN integrates feature extraction and score prediction into an optimization procedure and retrieves features automatically from raw images. Moreover, its prediction performance can be enhanced by replacing MLP with general regression neural network (GRNN) and support vector regression (SVR). Experiments on Gaussian blur images from LIVE-II, CSIQ, TID2008 and TID2013 demonstrate that CNN features with SVR achieves the best overall performance, indicating high correlation with human subjective judgment.

  16. Creative elements: network-based predictions of active centres in proteins, cellular and social networks

    CERN Document Server

    Csermely, Peter

    2008-01-01

    Active centres and hot spots of proteins have a paramount importance in enzyme action, protein complex formation and drug design. Recently a number of publications successfully applied the analysis of residue networks to predict active centres in proteins. Most real-world networks show a number of properties, such as small-worldness or scale-free degree distribution, which are rather general features of networks from molecules to the society. Based on extensive analogies I propose that the existing findings and methodology enable us to detect active centres in cells, social networks and ecosystems. Members of these active centres are creative elements of the respective networks, which may help them to survive unprecedented, novel challenges, and play a key role in the development, survival and evolvability of complex systems.

  17. Event-driven approach of layered multicast to network adaptation in RED-based IP networks

    Science.gov (United States)

    Nahm, Kitae; Li, Qing; Kuo, C.-C. J.

    2003-11-01

    In this work, we investigate the congestion control problem for layered video multicast in IP networks of active queue management (AQM) using a simple random early detection (RED) queue model. AQM support from networks improves the visual quality of video streaming but makes network adaptation more di+/-cult for existing layered video multicast proticols that use the event-driven timer-based approach. We perform a simplified analysis on the response of the RED algorithm to burst traffic. The analysis shows that the primary problem lies in the weak correlation between the network feedback and the actual network congestion status when the RED queue is driven by burst traffic. Finally, a design guideline of the layered multicast protocol is proposed to overcome this problem.

  18. Application of a neural network for reflectance spectrum classification

    Science.gov (United States)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  19. Mutual information-based LPI optimisation for radar network

    Science.gov (United States)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  20. Topological Embedding Feature Based Resource Allocation in Network Virtualization

    Directory of Open Access Journals (Sweden)

    Hongyan Cui

    2014-01-01

    Full Text Available Virtualization provides a powerful way to run multiple virtual networks on a shared substrate network, which needs accurate and efficient mathematical models. Virtual network embedding is a challenge in network virtualization. In this paper, considering the degree of convergence when mapping a virtual network onto substrate network, we propose a new embedding algorithm based on topology mapping convergence-degree. Convergence-degree means the adjacent degree of virtual network’s nodes when they are mapped onto a substrate network. The contributions of our method are as below. Firstly, we map virtual nodes onto the substrate nodes with the maximum convergence-degree. The simulation results show that our proposed algorithm largely enhances the network utilization efficiency and decreases the complexity of the embedding problem. Secondly, we define the load balance rate to reflect the load balance of substrate links. The simulation results show our proposed algorithm achieves better load balance. Finally, based on the feature of star topology, we further improve our embedding algorithm and make it suitable for application in the star topology. The test result shows it gets better performance than previous works.

  1. The competitive dynamics of network-based businesses.

    Science.gov (United States)

    Coyne, K P; Dye, R

    1998-01-01

    Telecommunications carriers, transportation companies, and banks are among the many network-based businesses--companies that move people, goods, or information from various points to various other points. Managers have long assumed that customers valued all links in these networks equally. It was thought that banking customers, for example, sought access to all of the branches throughout the network or that shipping customers wanted to be able to send packages everywhere. Intuitively, managers thought that many of their customers' needs were, in reality, narrower, but they had no way of knowing which links were most important. New computing power and robust mapping software now make it possible to understand network customers better. In applying this technology, the authors, both consultants from McKinsey & Company, have uncovered three distinct usage patterns: one in which all links are, indeed, valued equally; another in which customers concentrate their use in particular zones; and a third in which customers value only individual links. Each of these patterns requires a different strategy to direct executives in making the decisions fundamental to managing any network-based business: whether to open or close outlets, whether to connect their network to others, and how to organize business units so that they reflect the network's structure. Those who don't spot the patterns or understand their strategic implications will find themselves on the losing end of the network battle.

  2. Combining Host-based and network-based intrusion detection system

    African Journals Online (AJOL)

    These attacks were simulated using hping. The proposed system is implemented in Java. The results show that the proposed system is able to detect attacks both from within (host-based) and outside sources (network-based). Key Words: Intrusion Detection System (IDS), Host-based, Network-based, Signature, Security log.

  3. Cooperative and Adaptive Network Coding for Gradient Based Routing in Wireless Sensor Networks with Multiple Sinks

    Directory of Open Access Journals (Sweden)

    M. E. Migabo

    2017-01-01

    Full Text Available Despite its low computational cost, the Gradient Based Routing (GBR broadcast of interest messages in Wireless Sensor Networks (WSNs causes significant packets duplications and unnecessary packets transmissions. This results in energy wastage, traffic load imbalance, high network traffic, and low throughput. Thanks to the emergence of fast and powerful processors, the development of efficient network coding strategies is expected to enable efficient packets aggregations and reduce packets retransmissions. For multiple sinks WSNs, the challenge consists of efficiently selecting a suitable network coding scheme. This article proposes a Cooperative and Adaptive Network Coding for GBR (CoAdNC-GBR technique which considers the network density as dynamically defined by the average number of neighbouring nodes, to efficiently aggregate interest messages. The aggregation is performed by means of linear combinations of random coefficients of a finite Galois Field of variable size GF(2S at each node and the decoding is performed by means of Gaussian elimination. The obtained results reveal that, by exploiting the cooperation of the multiple sinks, the CoAdNC-GBR not only improves the transmission reliability of links and lowers the number of transmissions and the propagation latency, but also enhances the energy efficiency of the network when compared to the GBR-network coding (GBR-NC techniques.

  4. Passivity-based control and estimation in networked robotics

    CERN Document Server

    Hatanaka, Takeshi; Fujita, Masayuki; Spong, Mark W

    2015-01-01

    Highlighting the control of networked robotic systems, this book synthesizes a unified passivity-based approach to an emerging cross-disciplinary subject. Thanks to this unified approach, readers can access various state-of-the-art research fields by studying only the background foundations associated with passivity. In addition to the theoretical results and techniques,  the authors provide experimental case studies on testbeds of robotic systems  including networked haptic devices, visual robotic systems,  robotic network systems and visual sensor network systems. The text begins with an introduction to passivity and passivity-based control together with the other foundations needed in this book. The main body of the book consists of three parts. The first examines how passivity can be utilized for bilateral teleoperation and demonstrates the inherent robustness of the passivity-based controller against communication delays. The second part emphasizes passivity’s usefulness for visual feedback control ...

  5. Efficient Vector-Based Forwarding for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2010-01-01

    Full Text Available Underwater Sensor Networks (UWSNs are significantly different from terrestrial sensor networks in the following aspects: low bandwidth, high latency, node mobility, high error probability, and 3-dimensional space. These new features bring many challenges to the network protocol design of UWSNs. In this paper, we tackle one fundamental problem in UWSNs: robust, scalable, and energy efficient routing. We propose vector-based forwarding (VBF, a geographic routing protocol. In VBF, the forwarding path is guided by a vector from the source to the target, no state information is required on the sensor nodes, and only a small fraction of the nodes is involved in routing. To improve the robustness, packets are forwarded in redundant and interleaved paths. Further, a localized and distributed self-adaptation algorithm allows the nodes to reduce energy consumption by discarding redundant packets. VBF performs well in dense networks. For sparse networks, we propose a hop-by-hop vector-based forwarding (HH-VBF protocol, which adapts the vector-based approach at every hop. We evaluate the performance of VBF and HH-VBF through extensive simulations. The simulation results show that VBF achieves high packet delivery ratio and energy efficiency in dense networks and HH-VBF has high packet delivery ratio even in sparse networks.

  6. FUZZY LOGIC BASED ENERGY EFFICIENT PROTOCOL IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Zhan Wei Siew

    2012-12-01

    Full Text Available Wireless sensor networks (WSNs have been vastly developed due to the advances in microelectromechanical systems (MEMS using WSN to study and monitor the environments towards climates changes. In environmental monitoring, sensors are randomly deployed over the interest area to periodically sense the physical environments for a few months or even a year. Therefore, to prolong the network lifetime with limited battery capacity becomes a challenging issue. Low energy adaptive cluster hierarchical (LEACH is the common clustering protocol that aim to reduce the energy consumption by rotating the heavy workload cluster heads (CHs. The CHs election in LEACH is based on probability model which will lead to inefficient in energy consumption due to least desired CHs location in the network. In WSNs, the CHs location can directly influence the network energy consumption and further affect the network lifetime. In this paper, factors which will affect the network lifetime will be presented and the demonstration of fuzzy logic based CH selection conducted in base station (BS will also be carried out. To select suitable CHs that will prolong the network first node dies (FND round and consistent throughput to the BS, energy level and distance to the BS are selected as fuzzy inputs.

  7. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  8. Incentive-Based Voltage Regulation in Distribution Networks

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baker, Kyri A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhou, Xinyang [University of Colorado; Chen, Lijun [University of Colorado

    2017-07-03

    This paper considers distribution networks fea- turing distributed energy resources, and designs incentive-based mechanisms that allow the network operator and end-customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Two different network-customer coordination mechanisms that require different amounts of information shared between the network operator and end-customers are developed to identify a solution of a well-defined social-welfare maximization prob- lem. Notably, the signals broadcast by the network operator assume the connotation of prices/incentives that induce the end- customers to adjust the generated/consumed powers in order to avoid the violation of the voltage constraints. Stability of the proposed schemes is analytically established and numerically corroborated.

  9. A complex network-based importance measure for mechatronics systems

    Science.gov (United States)

    Wang, Yanhui; Bi, Lifeng; Lin, Shuai; Li, Man; Shi, Hao

    2017-01-01

    In view of the negative impact of functional dependency, this paper attempts to provide an alternative importance measure called Improved-PageRank (IPR) for measuring the importance of components in mechatronics systems. IPR is a meaningful extension of the centrality measures in complex network, which considers usage reliability of components and functional dependency between components to increase importance measures usefulness. Our work makes two important contributions. First, this paper integrates the literature of mechatronic architecture and complex networks theory to define component network. Second, based on the notion of component network, a meaningful IPR is brought into the identifying of important components. In addition, the IPR component importance measures, and an algorithm to perform stochastic ordering of components due to the time-varying nature of usage reliability of components and functional dependency between components, are illustrated with a component network of bogie system that consists of 27 components.

  10. Incentive-Based Voltage Regulation in Distribution Networks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinyang; Chen, Lijun; Dall' Anese, Emiliano; Baker, Kyri

    2017-03-03

    This paper considers distribution networks fea- turing distributed energy resources, and designs incentive-based mechanisms that allow the network operator and end-customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Two different network-customer coordination mechanisms that require different amounts of information shared between the network operator and end-customers are developed to identify a solution of a well-defined social-welfare maximization prob- lem. Notably, the signals broadcast by the network operator assume the connotation of prices/incentives that induce the end- customers to adjust the generated/consumed powers in order to avoid the violation of the voltage constraints. Stability of the proposed schemes is analytically established and numerically corroborated.

  11. Network Security Risk Assessment Based on Item Response Theory

    Directory of Open Access Journals (Sweden)

    Fangwei Li

    2015-08-01

    Full Text Available Owing to the traditional risk assessment method has one-sidedness and is difficult to reflect the real network situation, a risk assessment method based on Item Response Theory (IRT is put forward in network security. First of all, the novel algorithms of calculating the threat of attack and the successful probability of attack are proposed by the combination of IRT model and Service Security Level. Secondly, the service weight of importance is calculated by the three-demarcation analytic hierarchy process. Finally, the risk situation graph of service, host and network logic layer could be generated by the improved method. The simulation results show that this method can be more comprehensive consideration of factors which are affecting network security, and a more realistic network risk situation graph in real-time will be obtained.

  12. Energy savings in mobile broadband network based on load predictions

    DEFF Research Database (Denmark)

    Samulevicius, Saulius; Pedersen, Torben Bach; Sørensen, Troels Bundgaard

    2012-01-01

    in wireless networks. To save energy in MBNs, one of the options is to turn off parts of the network equipment in areas where traffic falls below a specific predefined threshold. This paper looks at a methodology for identifying periods of the day when cells or sites carrying low traffic are candidates...... for being totally or partly switched off, given that the decrease in service quality can be controlled gracefully when the sites are switched off. Based on traffic data from an operational network, potential average energy savings of approximately 30% with some few low traffic cells/sites reaching up to 99......Abstract—The deployment of new network equipment is resulting in increasing energy consumption in mobile broadband networks (MBNs). This contributes to higher CO2 emissions. Over the last 10 years MBNs have grown considerably, and are still growing to meet the evolution in traffic volume carried...

  13. Realization of Broadband Matched Filter Structures Based on Dual Networks

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2005-01-01

    Full Text Available This paper deals with the basic electrical properties of dual networks and with their application in broadband matched filter structures. Starting with the main characteristics and different realization methods of dual networks, a filter structure is presented, which is based on a combination of dual networks and which provides a broadband matched input and two decoupled output ports. This filter synthesis focuses on the design of high pass filters, which are suitable to be used as differentiating stages in electrical pulse generators as a part of the so-called pulse shaping network. In order to achieve a proper pulse shape and for the prevention of multiple reflections between the switching circuit and the differentiating network, a broadband matched filter is a basic requirement.

  14. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  15. Epileptiform spike detection via convolutional neural networks

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz

    2016-01-01

    The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated...

  16. Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images.

    Science.gov (United States)

    Khosravi, Pegah; Kazemi, Ehsan; Imielinski, Marcin; Elemento, Olivier; Hajirasouliha, Iman

    2018-01-01

    Pathological evaluation of tumor tissue is pivotal for diagnosis in cancer patients and automated image analysis approaches have great potential to increase precision of diagnosis and help reduce human error. In this study, we utilize several computational methods based on convolutional neural networks (CNN) and build a stand-alone pipeline to effectively classify different histopathology images across different types of cancer. In particular, we demonstrate the utility of our pipeline to discriminate between two subtypes of lung cancer, four biomarkers of bladder cancer, and five biomarkers of breast cancer. In addition, we apply our pipeline to discriminate among four immunohistochemistry (IHC) staining scores of bladder and breast cancers. Our classification pipeline includes a basic CNN architecture, Google's Inceptions with three training strategies, and an ensemble of two state-of-the-art algorithms, Inception and ResNet. Training strategies include training the last layer of Google's Inceptions, training the network from scratch, and fine-tunning the parameters for our data using two pre-trained version of Google's Inception architectures, Inception-V1 and Inception-V3. We demonstrate the power of deep learning approaches for identifying cancer subtypes, and the robustness of Google's Inceptions even in presence of extensive tumor heterogeneity. On average, our pipeline achieved accuracies of 100%, 92%, 95%, and 69% for discrimination of various cancer tissues, subtypes, biomarkers, and scores, respectively. Our pipeline and related documentation is freely available at https://github.com/ih-_lab/CNN_Smoothie. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. VoIP attacks detection engine based on neural network

    Science.gov (United States)

    Safarik, Jakub; Slachta, Jiri

    2015-05-01

    The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.

  18. An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection.

    Science.gov (United States)

    Xing, Linlin; Guo, Maozu; Liu, Xiaoyan; Wang, Chunyu; Wang, Lei; Zhang, Yin

    2017-11-17

    The reconstruction of gene regulatory network (GRN) from gene expression data can discover regulatory relationships among genes and gain deep insights into the complicated regulation mechanism of life. However, it is still a great challenge in systems biology and bioinformatics. During the past years, numerous computational approaches have been developed for this goal, and Bayesian network (BN) methods draw most of attention among these methods because of its inherent probability characteristics. However, Bayesian network methods are time consuming and cannot handle large-scale networks due to their high computational complexity, while the mutual information-based methods are highly effective but directionless and have a high false-positive rate. To solve these problems, we propose a Candidate Auto Selection algorithm (CAS) based on mutual information and breakpoint detection to restrict the search space in order to accelerate the learning process of Bayesian network. First, the proposed CAS algorithm automatically selects the neighbor candidates of each node before searching the best structure of GRN. Then based on CAS algorithm, we propose a globally optimal greedy search method (CAS + G), which focuses on finding the highest rated network structure, and a local learning method (CAS + L), which focuses on faster learning the structure with little loss of quality. Results show that the proposed CAS algorithm can effectively reduce the search space of Bayesian networks through identifying the neighbor candidates of each node. In our experiments, the CAS + G method outperforms the state-of-the-art method on simulation data for inferring GRNs, and the CAS + L method is significantly faster than the state-of-the-art method with little loss of accuracy. Hence, the CAS based methods effectively decrease the computational complexity of Bayesian network and are more suitable for GRN inference.

  19. Density-Based and Transport-Based Core-Periphery Structures in Networks

    CERN Document Server

    Lee, Sang Hoon; Porter, Mason A

    2013-01-01

    Networks often possess mesoscale structures, and studying them can yield insights into both structure and function. It is most common to study community structure, but numerous other types of mesoscale structures also exist. In this paper, we examine core-periphery structures based on both density and transportation. In such structures, core network components are well-connected both among themselves and to peripheral components, which are not well-connected to anything. We examine core-periphery structures in a wide range of examples of transportation, social, and financial networks---including road networks in large urban areas, a rabbit warren, a dolphin social network, a European interbank network, and a migration network between counties in the United States. We illustrate that a recently developed transport-based notion of node coreness is very useful for characterizing transportation networks. We also generalize this notion to examine core versus peripheral edges, and we show that this new diagnostic i...

  20. A Concept of Location-Based Social Network Marketing

    DEFF Research Database (Denmark)

    Tussyadiah, Iis

    2012-01-01

    A stimulus-response model of location-based social network marketing is conceptualized based on an exploratory investigation. Location-based social network applications are capable of generating marketing stimuli from merchant, competition-based, and connection-based rewards resulted from relevance...... and connectivity. Depending on consumption situations, consumer characteristics, and social network structure, these rewards lead to actual behavior that manifests in variety behavior (i.e., patronage to new places) and loyalty behavior (i.e., increased frequency of patronage to familiar places). This behavior...... implies changes in patterns of mobility, making this marketing approach particularly relevant for tourism and hospitality businesses. Managerial implications and recommendations for further studies are provided....

  1. AMERICA’S BASE NETWORK: CREDIBLE DETERRENCE

    Science.gov (United States)

    2017-04-06

    East. As globalism has produced hot spots in the Middle East Turkey’s geographic location is advantageous to the US. Turkey’s infrastructure of ports...basing concept. Overseas basing as a subset of the global force posture has totally transformed U.S. thinking about international security and its...basing concept. Overseas basing as a subset of the global force posture has totally transformed U.S. thinking about international security and its

  2. Cluster Analysis Based on Bipartite Network

    Directory of Open Access Journals (Sweden)

    Dawei Zhang

    2014-01-01

    Full Text Available Clustering data has a wide range of applications and has attracted considerable attention in data mining and artificial intelligence. However it is difficult to find a set of clusters that best fits natural partitions without any class information. In this paper, a method for detecting the optimal cluster number is proposed. The optimal cluster number can be obtained by the proposal, while partitioning the data into clusters by FCM (Fuzzy c-means algorithm. It overcomes the drawback of FCM algorithm which needs to define the cluster number c in advance. The method works by converting the fuzzy cluster result into a weighted bipartite network and then the optimal cluster number can be detected by the improved bipartite modularity. The experimental results on artificial and real data sets show the validity of the proposed method.

  3. Quantum-dot based photonic quantum networks

    Science.gov (United States)

    Lodahl, Peter

    2018-01-01

    Quantum dots (QDs) embedded in photonic nanostructures have in recent years proven to be a very powerful solid-state platform for quantum optics experiments. The combination of near-unity radiative coupling of a single QD to a photonic mode and the ability to eliminate decoherence processes imply that an unprecedent light–matter interface can be obtained. As a result, high-cooperativity photon-emitter quantum interfaces can be constructed opening a path-way to deterministic photonic quantum gates for quantum-information processing applications. In the present manuscript, I review current state-of-the-art on QD devices and their applications for quantum technology. The overarching long-term goal of the research field is to construct photonic quantum networks where remote entanglement can be distributed over long distances by photons.

  4. Numerical study on the perception-based network formation model

    CERN Document Server

    Jo, Hang-Hyun

    2015-01-01

    In order to understand the evolution of social networks in terms of perception-based strategic link formation, we numerically study a perception-based network formation model. Here each individual is assumed to have his/her own perception of the actual network, and use it to decide whether to create a link to other individual. An individual with the least perception accuracy can benefit from updating his/her perception using that of the most accurate individual via a new link. This benefit is compared to the cost of linking in decision making. Once a new link is created, it affects the accuracies of other individuals' perceptions, leading to a further evolution of the actual network. The initial actual network and initial perceptions are modeled by Erd\\H{o}s-R\\'enyi random networks but with different linking probabilities. Then the stable link density of the actual network is found to show discontinuous transitions or jumps according to the cost of linking. The effect of initial conditions on the complexity o...

  5. Node-Dependence-Based Dynamic Incentive Algorithm in Opportunistic Networks

    Directory of Open Access Journals (Sweden)

    Ruiyun Yu

    2014-01-01

    Full Text Available Opportunistic networks lack end-to-end paths between source nodes and destination nodes, so the communications are mainly carried out by the “store-carry-forward” strategy. Selfish behaviors of rejecting packet relay requests will severely worsen the network performance. Incentive is an efficient way to reduce selfish behaviors and hence improves the reliability and robustness of the networks. In this paper, we propose the node-dependence-based dynamic gaming incentive (NDI algorithm, which exploits the dynamic repeated gaming to motivate nodes relaying packets for other nodes. The NDI algorithm presents a mechanism of tolerating selfish behaviors of nodes. Reward and punishment methods are also designed based on the node dependence degree. Simulation results show that the NDI algorithm is effective in increasing the delivery ratio and decreasing average latency when there are a lot of selfish nodes in the opportunistic networks.

  6. In silico network topology-based prediction of gene essentiality

    CERN Document Server

    da Silva, Joao Paulo Muller; Mombach, Jose Carlos Merino; Vieira, Renata; da Silva, Jose Guliherme Camargo; Lemke, Ney; Sinigaglia, Marialva

    2007-01-01

    The identification of genes essential for survival is important for the understanding of the minimal requirements for cellular life and for drug design. As experimental studies with the purpose of building a catalog of essential genes for a given organism are time-consuming and laborious, a computational approach which could predict gene essentiality with high accuracy would be of great value. We present here a novel computational approach, called NTPGE (Network Topology-based Prediction of Gene Essentiality), that relies on network topology features of a gene to estimate its essentiality. The first step of NTPGE is to construct the integrated molecular network for a given organism comprising protein physical, metabolic and transcriptional regulation interactions. The second step consists in training a decision tree-based machine learning algorithm on known essential and non-essential genes of the organism of interest, considering as learning attributes the network topology information for each of these genes...

  7. A family of quantization based piecewise linear filter networks

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    1992-01-01

    A family of quantization-based piecewise linear filter networks is proposed. For stationary signals, a filter network from this family is a generalization of the classical Wiener filter with an input signal and a desired response. The construction of the filter network is based on quantization...... of the input signal x(n) into quantization classes. With each quantization class is associated a linear filter. The filtering at time n is carried out by the filter belonging to the actual quantization class of x(n ) and the filters belonging to the neighbor quantization classes of x(n) (regularization......). This construction leads to a three-layer filter network. The first layer consists of the quantization class filters for the input signal. The second layer carries out the regularization between neighbor quantization classes, and the third layer constitutes a decision of quantization class from where the resulting...

  8. Agent Based Modeling on Organizational Dynamics of Terrorist Network

    Directory of Open Access Journals (Sweden)

    Bo Li

    2015-01-01

    Full Text Available Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model are developed for modeling the hybrid relational structure and complex operational processes, respectively. To intuitively elucidate this method, the agent based modeling is used to simulate the terrorist network and test the performance in diverse scenarios. Based on the experimental results, we show how the changes of operational environments affect the development of terrorist organization in terms of its recovery and capacity to perform future tasks. The potential strategies are also discussed, which can be used to restrain the activities of terrorists.

  9. Bulk Restoration for SDN-Based Transport Network

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2016-01-01

    Full Text Available We propose a bulk restoration scheme for software defined networking- (SDN- based transport network. To enhance the network survivability and improve the throughput, we allow disrupted flows to be recovered synchronously in dynamic order. In addition backup paths are scheduled globally by applying the principles of load balance. We model the bulk restoration problem using a mixed integer linear programming (MILP formulation. Then, a heuristic algorithm is devised. The proposed algorithm is verified by simulation and the results are analyzed comparing with sequential restoration schemes.

  10. Facial expression recognition based on improved deep belief networks

    Science.gov (United States)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to improve the robustness of facial expression recognition, a method of face expression recognition based on Local Binary Pattern (LBP) combined with improved deep belief networks (DBNs) is proposed. This method uses LBP to extract the feature, and then uses the improved deep belief networks as the detector and classifier to extract the LBP feature. The combination of LBP and improved deep belief networks is realized in facial expression recognition. In the JAFFE (Japanese Female Facial Expression) database on the recognition rate has improved significantly.

  11. Rewiring Chemical Networks Based on Dynamic Dithioacetal and Disulfide Bonds.

    Science.gov (United States)

    Orrillo, A Gastón; La-Venia, Agustina; Escalante, Andrea M; Furlan, Ricardo L E

    2018-01-18

    The control of the connectivity between nodes of synthetic networks is still largely unexplored. To address this point we take advantage of a simple dynamic chemical system with two exchange levels that are mutually connected and can be activated simultaneously or sequentially. Dithioacetals and disulfides can be exchanged simultaneously under UV light in the presence of a sensitizer. Crossover reactions between both exchange processes produce a fully connected chemical network. On the other hand, the use of acid, base or UV light connects different nodes allowing network rewiring. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fast, moment-based estimation methods for delay network tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Earl Christophre [Los Alamos National Laboratory; Michailidis, George [U OF MICHIGAN; Nair, Vijayan N [U OF MICHIGAN

    2008-01-01

    Consider the delay network tomography problem where the goal is to estimate distributions of delays at the link-level using data on end-to-end delays. These measurements are obtained using probes that are injected at nodes located on the periphery of the network and sent to other nodes also located on the periphery. Much of the previous literature deals with discrete delay distributions by discretizing the data into small bins. This paper considers more general models with a focus on computationally efficient estimation. The moment-based schemes presented here are designed to function well for larger networks and for applications like monitoring that require speedy solutions.

  13. Carrier ethernet network control plane based on the Next Generation Network

    DEFF Research Database (Denmark)

    Fu, Rong; Wang, Yanmeng; Berger, Michael Stubert

    2008-01-01

    architecture. The approaches to QoS mapping, label distribution and connection and admission control (CAC) are specified here. At last, a simple T-MPLS based Carrier Ethernet network model with three kinds of users (VoIP, VoD and HTTP) and a RACE based control module is simulated in OPNET. The model is aiming...

  14. BGP-Based Routing Configuration Management for Multidomain Mobile Networks

    Science.gov (United States)

    2010-09-01

    extend the network management system to exterior routing configuration in dynamically changed topology. 1.0 INTRODUCTION Routing in the Internet ...in is mostly based on BGP protocol [1]. The Internet is in fact the composition of autonomous systems (AS), each of them is independently...Bruin, O. Bonaventure, Open Issues in Interdomain Routing: A Survey, IEEE Network Magazine,Volume 19, 11.2005 [7] D. Street, Global Information Grid

  15. Interoperability in wireless sensor networks based on IEEE 1451 standard

    OpenAIRE

    Higuera Portilla, Jorge Eduardo; Polo Cantero, José

    2012-01-01

    The syntactic and semantic interoperability is a challenge of the Wireless Sensor Networks (WSN) with smart sensors in pervasive computing environments to increase their harmonization in a wide variety of applications. This chapter contains a detailed description of interoperability in heterogeneous WSN using the IEEE 1451 standard. This work focuses on personal area networks (PAN) with smart sensors and actuators. Also, a technical, syntactic and semantic levels of interoperability based on ...

  16. Cooperative Technique Based on Sensor Selection in Wireless Sensor Network

    OpenAIRE

    ISLAM, M. R.; KIM, J.

    2009-01-01

    An energy efficient cooperative technique is proposed for the IEEE 1451 based Wireless Sensor Networks. Selected numbers of Wireless Transducer Interface Modules (WTIMs) are used to form a Multiple Input Single Output (MISO) structure wirelessly connected with a Network Capable Application Processor (NCAP). Energy efficiency and delay of the proposed architecture are derived for different combination of cluster size and selected number of WTIMs. Optimized constellation parameters are used for...

  17. A NOVEL ARCHITECTURE FOR SDN-BASED CELLULAR NETWORK

    OpenAIRE

    Md. Humayun Kabir

    2014-01-01

    In this paper, we propose a novel SDN-based cellular network architecture that will be able to utilize the opportunities of centralized administration of today’s emerging mobile network. Our proposed architecture would not depend on a single controller, rather it divides the whole cellular area into clusters, and each cluster is controlled by a separate controller. A number of controller services are provided on top of each controller to manage all the major functionalities of the...

  18. Scalable Cluster-based Routing in Large Wireless Sensor Networks

    OpenAIRE

    Jiandong Li; Xuelian Cai; Jin Yang; Lina Zhu

    2012-01-01

    Large control overhead is the leading factor limiting the scalability of wireless sensor networks (WSNs). Clustering network nodes is an efficient solution, and Passive Clustering (PC) is one of the most efficient clustering methods. In this letter, we propose an improved PC-based route building scheme, named Route Reply (RREP) Broadcast with Passive Clustering (in short RBPC). Through broadcasting RREP packets on an expanding ring to build route, sensor nodes cache their route to the sink no...

  19. A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor Networks.

    Science.gov (United States)

    Wang, Hao; Wang, Shilian; Bu, Renfei; Zhang, Eryang

    2017-08-08

    Underwater wireless sensor networks (UWSNs) have attracted increasing attention in recent years because of their numerous applications in ocean monitoring, resource discovery and tactical surveillance. However, the design of reliable and efficient transmission and routing protocols is a challenge due to the low acoustic propagation speed and complex channel environment in UWSNs. In this paper, we propose a novel cross-layer routing protocol based on network coding (NCRP) for UWSNs, which utilizes network coding and cross-layer design to greedily forward data packets to sink nodes efficiently. The proposed NCRP takes full advantages of multicast transmission and decode packets jointly with encoded packets received from multiple potential nodes in the entire network. The transmission power is optimized in our design to extend the life cycle of the network. Moreover, we design a real-time routing maintenance protocol to update the route when detecting inefficient relay nodes. Substantial simulations in underwater environment by Network Simulator 3 (NS-3) show that NCRP significantly improves the network performance in terms of energy consumption, end-to-end delay and packet delivery ratio compared with other routing protocols for UWSNs.

  20. Data Dissemination Based on Fuzzy Logic and Network Coding in Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Xiaolan Tang

    2017-01-01

    Full Text Available Vehicular networks, as a significant technology in intelligent transportation systems, improve the convenience, efficiency, and safety of driving in smart cities. However, because of the high velocity, the frequent topology change, and the limited bandwidth, it is difficult to efficiently propagate data in vehicular networks. This paper proposes a data dissemination scheme based on fuzzy logic and network coding for vehicular networks, named SFN. It uses fuzzy logic to compute a transmission ability for each vehicle by comprehensively considering the effects of three factors: the velocity change rate, the velocity optimization degree, and the channel quality. Then, two nodes with high abilities are selected as primary backbone and slave backbone in every road segment, which propagate data to other vehicles in this segment and forward them to the backbones in the next segment. The backbone network helps to increase the delivery ratio and avoid invalid transmissions. Additionally, network coding is utilized to reduce transmission overhead and accelerate data retransmission in interbackbone forwarding and intrasegment broadcasting. Experiments show that, compared with existing schemes, SFN has a high delivery ratio and a short dissemination delay, while the backbone network keeps high reliability.

  1. A network security situation prediction model based on wavelet neural network with optimized parameters

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2016-08-01

    Full Text Available The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN with optimized parameters by the Improved Niche Genetic Algorithm (INGA. The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN, Genetic Algorithm-Back Propagation Neural Network (GA-BPNN and WNN.

  2. Real time network traffic monitoring for wireless local area networks based on compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza

    2017-05-01

    A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.

  3. Cloud-Centric and Logically Isolated Virtual Network Environment Based on Software-Defined Wide Area Network

    Directory of Open Access Journals (Sweden)

    Dongkyun Kim

    2017-12-01

    Full Text Available Recent development of distributed cloud environments requires advanced network infrastructure in order to facilitate network automation, virtualization, high performance data transfer, and secured access of end-to-end resources across regional boundaries. In order to meet these innovative cloud networking requirements, software-defined wide area network (SD-WAN is primarily demanded to converge distributed cloud resources (e.g., virtual machines (VMs in a programmable and intelligent manner over distant networks. Therefore, this paper proposes a logically isolated networking scheme designed to integrate distributed cloud resources to dynamic and on-demand virtual networking over SD-WAN. The performance evaluation and experimental results of the proposed scheme indicate that virtual network convergence time is minimized in two different network models such as: (1 an operating OpenFlow-oriented SD-WAN infrastructure (KREONET-S which is deployed on the advanced national research network in Korea, and (2 Mininet-based experimental and emulated networks.

  4. Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization.

    Science.gov (United States)

    Kainz, Philipp; Pfeiffer, Michael; Urschler, Martin

    2017-01-01

    Segmentation of histopathology sections is a necessary preprocessing step for digital pathology. Due to the large variability of biological tissue, machine learning techniques have shown superior performance over conventional image processing methods. Here we present our deep neural network-based approach for segmentation and classification of glands in tissue of benign and malignant colorectal cancer, which was developed to participate in the GlaS@MICCAI2015 colon gland segmentation challenge. We use two distinct deep convolutional neural networks (CNN) for pixel-wise classification of Hematoxylin-Eosin stained images. While the first classifier separates glands from background, the second classifier identifies gland-separating structures. In a subsequent step, a figure-ground segmentation based on weighted total variation produces the final segmentation result by regularizing the CNN predictions. We present both quantitative and qualitative segmentation results on the recently released and publicly available Warwick-QU colon adenocarcinoma dataset associated with the GlaS@MICCAI2015 challenge and compare our approach to the simultaneously developed other approaches that participated in the same challenge. On two test sets, we demonstrate our segmentation performance and show that we achieve a tissue classification accuracy of 98% and 95%, making use of the inherent capability of our system to distinguish between benign and malignant tissue. Our results show that deep learning approaches can yield highly accurate and reproducible results for biomedical image analysis, with the potential to significantly improve the quality and speed of medical diagnoses.

  5. Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization

    Directory of Open Access Journals (Sweden)

    Philipp Kainz

    2017-10-01

    Full Text Available Segmentation of histopathology sections is a necessary preprocessing step for digital pathology. Due to the large variability of biological tissue, machine learning techniques have shown superior performance over conventional image processing methods. Here we present our deep neural network-based approach for segmentation and classification of glands in tissue of benign and malignant colorectal cancer, which was developed to participate in the GlaS@MICCAI2015 colon gland segmentation challenge. We use two distinct deep convolutional neural networks (CNN for pixel-wise classification of Hematoxylin-Eosin stained images. While the first classifier separates glands from background, the second classifier identifies gland-separating structures. In a subsequent step, a figure-ground segmentation based on weighted total variation produces the final segmentation result by regularizing the CNN predictions. We present both quantitative and qualitative segmentation results on the recently released and publicly available Warwick-QU colon adenocarcinoma dataset associated with the GlaS@MICCAI2015 challenge and compare our approach to the simultaneously developed other approaches that participated in the same challenge. On two test sets, we demonstrate our segmentation performance and show that we achieve a tissue classification accuracy of 98% and 95%, making use of the inherent capability of our system to distinguish between benign and malignant tissue. Our results show that deep learning approaches can yield highly accurate and reproducible results for biomedical image analysis, with the potential to significantly improve the quality and speed of medical diagnoses.

  6. Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks

    Science.gov (United States)

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-01-01

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate. PMID:25658394

  7. Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2015-02-01

    Full Text Available Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs. Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS and Congestion adjusted PEGASIS (C-PEGASIS. Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.

  8. Chain-based communication in cylindrical underwater wireless sensor networks.

    Science.gov (United States)

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-02-04

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.

  9. On effectiveness of network sensor-based defense framework

    Science.gov (United States)

    Zhang, Difan; Zhang, Hanlin; Ge, Linqiang; Yu, Wei; Lu, Chao; Chen, Genshe; Pham, Khanh

    2012-06-01

    Cyber attacks are increasing in frequency, impact, and complexity, which demonstrate extensive network vulnerabilities with the potential for serious damage. Defending against cyber attacks calls for the distributed collaborative monitoring, detection, and mitigation. To this end, we develop a network sensor-based defense framework, with the aim of handling network security awareness, mitigation, and prediction. We implement the prototypical system and show its effectiveness on detecting known attacks, such as port-scanning and distributed denial-of-service (DDoS). Based on this framework, we also implement the statistical-based detection and sequential testing-based detection techniques and compare their respective detection performance. The future implementation of defensive algorithms can be provisioned in our proposed framework for combating cyber attacks.

  10. Social-based autonomic routing in opportunistic networks

    Science.gov (United States)

    Boldrini, Chiara; Conti, Marco; Passarella, Andrea

    In opportunistic networks end-to-end communication between users does not require a continuous end-to-end path between source and destination. Network protocols are designed to be extremely resilient to events such as long partitions, node disconnections, etc, which are very features of this type of self-organizing ad hoc networks. This is achieved by temporarily storing messages at intermediate nodes, waiting for future opportunities to forward them towards the destination. The mobility of users plays a key role in opportunistic networks. Thus, providing accurate models of mobility patterns is one of the key research areas. In this chapter we firstly focus on this issue, with special emphasis on a class of social-aware models. These models are based on the observation that people move because they are attracted towards other people they have social relationships with, or towards physical places that have special meaning with respect to their social behavior. Another key research area in opportunistic networks is clearly designing routing and forwarding schemes. In this chapter we provide a survey of the main approaches to routing in purely infrastructure-less opportunistic networks, by classifying protocols based on the amount of context information they exploit.We then provide an extensive quantitative comparison between representatives of protocols that do not use any context information, and protocols that manage and exploit a rich set of context information. We mainly focus on the suitability of protocols to adapt to the dynamically changing network features, as resulting from the user movement patterns that are driven by their social behavior. Our results show that context-aware routing is extremely adaptive to dynamic networking scenarios, and, with respect to protocols that do not use any context information, is able to provide similar performance in terms of delay and loss rate, by using just a small fraction of the network resources.

  11. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non......-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  12. Agent-Based Simulation Analysis for Network Formation

    OpenAIRE

    神原, 李佳; 林田, 智弘; 西﨑, 一郎; 片桐, 英樹

    2009-01-01

    In the mathematical models for network formation by Bala and Goyal(2000), it is shown that a star network is the strict Nash equilibrium. However, the result of the experiments in a laboratory using human subjects by Berninghaus et al.(2007) basing on the model of Bala and Goyal indicates that players reach a strict Nash equilibrium and deviate it. In this paper, an agent-based simulation model in which artificial adaptive agents have mechanisms of decision making and learning based on nueral...

  13. Restoration in multi-domain GMPLS-based networks

    DEFF Research Database (Denmark)

    Manolova, Anna; Ruepp, Sarah Renée; Dittmann, Lars

    2011-01-01

    In this paper, we evaluate the efficiency of using restoration mechanisms in a dynamic multi-domain GMPLS network. Major challenges and solutions are introduced and two well-known restoration schemes (End-to-End and Local-to-End) are evaluated. Additionally, new restoration mechanisms...... are introduced: one based on the position of a failed link, called Location-Based, and another based on minimizing the additional resources consumed during restoration, called Shortest-New. A complete set of simulations in different network scenarios show where each mechanism is more efficient in terms, such as...

  14. A NEURAL NETWORK BASED TRAFFIC-AWARE FORWARDING STRATEGY IN NAMED DATA NETWORKING

    Directory of Open Access Journals (Sweden)

    Parisa Bazmi

    2016-11-01

    Full Text Available Named Data Networking (NDN is a new Internet architecture which has been proposed to eliminate TCP/IP Internet architecture restrictions. This architecture is abstracting away the notion of host and working based on naming datagrams. However, one of the major challenges of NDN is supporting QoS-aware forwarding strategy so as to forward Interest packets intelligently over multiple paths based on the current network condition. In this paper, Neural Network (NN Based Traffic-aware Forwarding strategy (NNTF is introduced in order to determine an optimal path for Interest forwarding. NN is embedded in NDN routers to select next hop dynamically based on the path overload probability achieved from the NN. This solution is characterized by load balancing and QoS-awareness via monitoring the available path and forwarding data on the traffic-aware shortest path. The performance of NNTF is evaluated using ndnSIM which shows the efficiency of this scheme in terms of network QoS improvementof17.5% and 72% reduction in network delay and packet drop respectively.

  15. Network interventions on physical activity in an afterschool program: an agent-based social network study.

    Science.gov (United States)

    Zhang, Jun; Shoham, David A; Tesdahl, Eric; Gesell, Sabina B

    2015-04-01

    We studied simulated interventions that leveraged social networks to increase physical activity in children. We studied a real-world social network of 81 children (average age = 7.96 years) who lived in low socioeconomic status neighborhoods, and attended public schools and 1 of 2 structured afterschool programs. The sample was ethnically diverse, and 44% were overweight or obese. We used social network analysis and agent-based modeling simulations to test whether implementing a network intervention would increase children's physical activity. We tested 3 intervention strategies. The intervention that targeted opinion leaders was effective in increasing the average level of physical activity across the entire network. However, the intervention that targeted the most sedentary children was the best at increasing their physical activity levels. Which network intervention to implement depends on whether the goal is to shift the entire distribution of physical activity or to influence those most adversely affected by low physical activity. Agent-based modeling could be an important complement to traditional project planning tools, analogous to sample size and power analyses, to help researchers design more effective interventions for increasing children's physical activity.

  16. Reconstruction of social group networks from friendship networks using a tag-based model

    Science.gov (United States)

    Guan, Yuan-Pan; You, Zhi-Qiang; Han, Xiao-Pu

    2016-12-01

    Social group is a type of mesoscopic structure that connects human individuals in microscopic level and the global structure of society. In this paper, we propose a tag-based model considering that social groups expand along the edge that connects two neighbors with a similar tag of interest. The model runs on a real-world friendship network, and its simulation results show that various properties of simulated group network can well fit the empirical analysis on real-world social groups, indicating that the model catches the major mechanism driving the evolution of social groups and successfully reconstructs the social group network from a friendship network and throws light on digging of relationships between social functional organizations.

  17. Noncoding Variants Functional Prioritization Methods Based on Predicted Regulatory Factor Binding Sites.

    Science.gov (United States)

    Fu, Haoyue; Zhang, Xiangde

    2017-08-01

    With the advent of the post genomic era, the research for the genetic mechanism of the diseases has found to be increasingly depended on the studies of the genes, the gene-networks and gene-protein interaction networks. To explore gene expression and regulation, the researchers have carried out many studies on transcription factors and their binding sites (TFBSs). Based on the large amount of transcription factor binding sites predicting values in the deep learning models, further computation and analysis have been done to reveal the relationship between the gene mutation and the occurrence of the disease. It has been demonstrated that based on the deep learning methods, the performances of the prediction for the functions of the noncoding variants are outperforming than those of the conventional methods. The research on the prediction for functions of Single Nucleotide Polymorphisms (SNPs) is expected to uncover the mechanism of the gene mutation affection on traits and diseases of human beings. We reviewed the conventional TFBSs identification methods from different perspectives. As for the deep learning methods to predict the TFBSs, we discussed the related problems, such as the raw data preprocessing, the structure design of the deep convolution neural network (CNN) and the model performance measure et al. And then we summarized the techniques that usually used in finding out the functional noncoding variants from de novo sequence. Along with the rapid development of the high-throughout assays, more and more sample data and chromatin features would be conducive to improve the prediction accuracy of the deep convolution neural network for TFBSs identification. Meanwhile, getting more insights into the deep CNN framework itself has been proved useful for both the promotion on model performance and the development for more suitable design to sample data. Based on the feature values predicted by the deep CNN model, the prioritization model for functional noncoding

  18. Forged Signature Distinction Using Convolutional Neural Network for Feature Extraction

    Directory of Open Access Journals (Sweden)

    Seungsoo Nam

    2018-01-01

    Full Text Available This paper proposes a dynamic verification scheme for finger-drawn signatures in smartphones. As a dynamic feature, the movement of a smartphone is recorded with accelerometer sensors in the smartphone, in addition to the moving coordinates of the signature. To extract high-level longitudinal and topological features, the proposed scheme uses a convolution neural network (CNN for feature extraction, and not as a conventional classifier. We assume that a CNN trained with forged signatures can extract effective features (called S-vector, which are common in forging activities such as hesitation and delay before drawing the complicated part. The proposed scheme also exploits an autoencoder (AE as a classifier, and the S-vector is used as the input vector to the AE. An AE has high accuracy for the one-class distinction problem such as signature verification, and is also greatly dependent on the accuracy of input data. S-vector is valuable as the input of AE, and, consequently, could lead to improved verification accuracy especially for distinguishing forged signatures. Compared to the previous work, i.e., the MLP-based finger-drawn signature verification scheme, the proposed scheme decreases the equal error rate by 13.7%, specifically, from 18.1% to 4.4%, for discriminating forged signatures.

  19. IPTV inter-destination synchronization: A network-based approach

    NARCIS (Netherlands)

    Stokking, H.M.; Deventer, M.O. van; Niamut, O.A.; Walraven, F.A.; Mekuria, R.N.

    2010-01-01

    This paper introduces a novel network-based approach to inter-destination media synchronization. The approach meets the need for synchronization in advanced TV concepts like social TV and offers high scalability, unlike conventional end-point based approaches. The solution for interdestination media

  20. Approaches in Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at