WorldWideScience

Sample records for network change detection

  1. Detection of statistically significant network changes in complex biological networks.

    Science.gov (United States)

    Mall, Raghvendra; Cerulo, Luigi; Bensmail, Halima; Iavarone, Antonio; Ceccarelli, Michele

    2017-03-04

    Biological networks contribute effectively to unveil the complex structure of molecular interactions and to discover driver genes especially in cancer context. It can happen that due to gene mutations, as for example when cancer progresses, the gene expression network undergoes some amount of localized re-wiring. The ability to detect statistical relevant changes in the interaction patterns induced by the progression of the disease can lead to the discovery of novel relevant signatures. Several procedures have been recently proposed to detect sub-network differences in pairwise labeled weighted networks. In this paper, we propose an improvement over the state-of-the-art based on the Generalized Hamming Distance adopted for evaluating the topological difference between two networks and estimating its statistical significance. The proposed procedure exploits a more effective model selection criteria to generate p-values for statistical significance and is more efficient in terms of computational time and prediction accuracy than literature methods. Moreover, the structure of the proposed algorithm allows for a faster parallelized implementation. In the case of dense random geometric networks the proposed approach is 10-15x faster and achieves 5-10% higher AUC, Precision/Recall, and Kappa value than the state-of-the-art. We also report the application of the method to dissect the difference between the regulatory networks of IDH-mutant versus IDH-wild-type glioma cancer. In such a case our method is able to identify some recently reported master regulators as well as novel important candidates. We show that our network differencing procedure can effectively and efficiently detect statistical significant network re-wirings in different conditions. When applied to detect the main differences between the networks of IDH-mutant and IDH-wild-type glioma tumors, it correctly selects sub-networks centered on important key regulators of these two different subtypes. In

  2. Detecting connectivity changes in neuronal networks.

    Science.gov (United States)

    Berry, Tyrus; Hamilton, Franz; Peixoto, Nathalia; Sauer, Timothy

    2012-08-15

    We develop a method from semiparametric statistics (Cox, 1972) for the purpose of tracking links and connection strengths over time in a neuronal network from spike train data. We consider application of the method as implemented in Masud and Borisyuk (2011), and evaluate its use on data generated independently of the Cox model hypothesis, in particular from a spiking model of Izhikevich in four different dynamical regimes. Then, we show how the Cox method can be used to determine statistically significant changes in network connectivity over time. Our methodology is demonstrated using spike trains from multi-electrode array measurements of networks of cultured mammalian spinal cord cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Detecting Change in Longitudinal Social Networks

    Science.gov (United States)

    2011-01-01

    reasons as the Hamming distance. The quadratic assignment procedure ( QAP ) and its multiple regression counterpart MRQAP (Krackhardt, 1987, 1992) has...Human Organization 35:269-286. Krackhardt, D. (1987). “ QAP Partialling as a Test of Spuriousness.” Social Networks 9: 171-186. Krackhardt, D. (1992

  4. Change Detection Algorithms for Information Assurance of Computer Networks

    National Research Council Canada - National Science Library

    Cardenas, Alvaro A

    2002-01-01

    .... In this thesis, the author will focus on the detection of three attack scenarios: the spreading of active worms throughout the Internet, distributed denial of service attacks, and routing attacks to wireless ad hoc networks...

  5. Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection

    Directory of Open Access Journals (Sweden)

    Haobo Lyu

    2016-06-01

    Full Text Available When exploited in remote sensing analysis, a reliable change rule with transfer ability can detect changes accurately and be applied widely. However, in practice, the complexity of land cover changes makes it difficult to use only one change rule or change feature learned from a given multi-temporal dataset to detect any other new target images without applying other learning processes. In this study, we consider the design of an efficient change rule having transferability to detect both binary and multi-class changes. The proposed method relies on an improved Long Short-Term Memory (LSTM model to acquire and record the change information of long-term sequence remote sensing data. In particular, a core memory cell is utilized to learn the change rule from the information concerning binary changes or multi-class changes. Three gates are utilized to control the input, output and update of the LSTM model for optimization. In addition, the learned rule can be applied to detect changes and transfer the change rule from one learned image to another new target multi-temporal image. In this study, binary experiments, transfer experiments and multi-class change experiments are exploited to demonstrate the superiority of our method. Three contributions of this work can be summarized as follows: (1 the proposed method can learn an effective change rule to provide reliable change information for multi-temporal images; (2 the learned change rule has good transferability for detecting changes in new target images without any extra learning process, and the new target images should have a multi-spectral distribution similar to that of the training images; and (3 to the authors’ best knowledge, this is the first time that deep learning in recurrent neural networks is exploited for change detection. In addition, under the framework of the proposed method, changes can be detected under both binary detection and multi-class change detection.

  6. Detection and localization of change points in temporal networks with the aid of stochastic block models

    Science.gov (United States)

    De Ridder, Simon; Vandermarliere, Benjamin; Ryckebusch, Jan

    2016-11-01

    A framework based on generalized hierarchical random graphs (GHRGs) for the detection of change points in the structure of temporal networks has recently been developed by Peel and Clauset (2015 Proc. 29th AAAI Conf. on Artificial Intelligence). We build on this methodology and extend it to also include the versatile stochastic block models (SBMs) as a parametric family for reconstructing the empirical networks. We use five different techniques for change point detection on prototypical temporal networks, including empirical and synthetic ones. We find that none of the considered methods can consistently outperform the others when it comes to detecting and locating the expected change points in empirical temporal networks. With respect to the precision and the recall of the results of the change points, we find that the method based on a degree-corrected SBM has better recall properties than other dedicated methods, especially for sparse networks and smaller sliding time window widths.

  7. The neural correlates of change detection in the face perception network.

    Science.gov (United States)

    Large, Mary-Ellen; Cavina-Pratesi, Cristiana; Vilis, Tutis; Culham, Jody C

    2008-01-01

    A common view is that visual processing within the ventral visual stream is modulated by attention and awareness. We used fMRI adaptation to investigate whether activation in a network of brain regions involved with face recognition--namely the fusiform face area (FFA), occipital face area (OFA) and right superior temporal sulcus (rSTS)--was modulated by physical changes to face stimuli or by observers' awareness of the changes. We sequentially presented two matrices of four faces. In two thirds of the trials one of the faces changed. We compared activations generated in three conditions (i) change detected trials, (ii) change blind trials, and (iii) no change trials. If face areas were sensitive to physical changes then we expected similar levels of activation for face changes regardless of change detection. If face areas were sensitive to levels of awareness of change then we expected greater levels of activation for detected changes compared to no change detection. We found that all three-face regions recovered from adaptation when subjects were aware of changes, but only OFA recovered from adaptation when subjects were not aware of the changes. These results suggest that within the face network OFA is involved in representing information that has not yet entered awareness and that consciousness is not an all-or-none phenomenon throughout the ventral stream.

  8. Network Power Fault Detection

    OpenAIRE

    Siviero, Claudio

    2013-01-01

    Network power fault detection. At least one first network device is instructed to temporarily disconnect from a power supply path of a network, and at least one characteristic of the power supply path of the network is measured at a second network device connected to the network while the at least one first network device is temporarily disconnected from the network

  9. Change Detection in SAR Images Based on Deep Semi-NMF and SVD Networks

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2017-05-01

    Full Text Available With the development of Earth observation programs, more and more multi-temporal synthetic aperture radar (SAR data are available from remote sensing platforms. Therefore, it is demanding to develop unsupervised methods for SAR image change detection. Recently, deep learning-based methods have displayed promising performance for remote sensing image analysis. However, these methods can only provide excellent performance when the number of training samples is sufficiently large. In this paper, a novel simple method for SAR image change detection is proposed. The proposed method uses two singular value decomposition (SVD analyses to learn the non-linear relations between multi-temporal images. By this means, the proposed method can generate more representative feature expressions with fewer samples. Therefore, it provides a simple yet effective way to be designed and trained easily. Firstly, deep semi-nonnegative matrix factorization (Deep Semi-NMF is utilized to select pixels that have a high probability of being changed or unchanged as samples. Next, image patches centered at these sample pixels are generated from the input multi-temporal SAR images. Then, we build SVD networks, which are comprised of two SVD convolutional layers and one histogram feature generation layer. Finally, pixels in both multi-temporal SAR images are classified by the SVD networks, and then the final change map can be obtained. The experimental results of three SAR datasets have demonstrated the effectiveness and robustness of the proposed method.

  10. Detection of land cover change using an Artificial Neural Network on a time-series of MODIS satellite data

    CSIR Research Space (South Africa)

    Olivier, JC

    2007-11-01

    Full Text Available An Artificial Neural Network (ANN) is proposed to detect human-induced land cover change using a sliding window through a time-series of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite surface reflectance pixel values. Training...

  11. Detection of retinal changes from illumination normalized fundus images using convolutional neural networks

    Science.gov (United States)

    Adal, Kedir M.; van Etten, Peter G.; Martinez, Jose P.; Rouwen, Kenneth; Vermeer, Koenraad A.; van Vliet, Lucas J.

    2017-03-01

    Automated detection and quantification of spatio-temporal retinal changes is an important step to objectively assess disease progression and treatment effects for dynamic retinal diseases such as diabetic retinopathy (DR). However, detecting retinal changes caused by early DR lesions such as microaneurysms and dot hemorrhages from longitudinal pairs of fundus images is challenging due to intra and inter-image illumination variation between fundus images. This paper explores a method for automated detection of retinal changes from illumination normalized fundus images using a deep convolutional neural network (CNN), and compares its performance with two other CNNs trained separately on color and green channel fundus images. Illumination variation was addressed by correcting for the variability in the luminosity and contrast estimated from a large scale retinal regions. The CNN models were trained and evaluated on image patches extracted from a registered fundus image set collected from 51 diabetic eyes that were screened at two different time-points. The results show that using normalized images yield better performance than color and green channel images, suggesting that illumination normalization greatly facilitates CNNs to quickly and correctly learn distinctive local image features of DR related retinal changes.

  12. Changing change detection

    DEFF Research Database (Denmark)

    Kyllingsbæk, Søren; Bundesen, Claus

    2009-01-01

    The change detection paradigm is a popular way of measuring visual short-term memory capacity. Using the paradigm, researchers have found evidence for a capacity of about four independent visual objects, confirming classic estimates that were based on the number of items that could be reported...

  13. Invasive species change detection using artificial neural networks and CASI hyperspectral imagery

    Science.gov (United States)

    For monitoring and controlling the extent and intensity of an invasive species, a direct multi-date image classification method was applied in invasive species (saltcedar) change detection in the study area of Lovelock, Nevada. With multi-date Compact Airborne Spectrographic Imager (CASI) hyperspec...

  14. Time dependent neural network models for detecting changes of state in complex processes: applications in earth sciences and astronomy.

    Science.gov (United States)

    Valdés, Julio J; Bonham-Carter, Graeme

    2006-03-01

    A computational intelligence approach is used to explore the problem of detecting internal state changes in time dependent processes; described by heterogeneous, multivariate time series with imprecise data and missing values. Such processes are approximated by collections of time dependent non-linear autoregressive models represented by a special kind of neuro-fuzzy neural network. Grid and high throughput computing model mining procedures based on neuro-fuzzy networks and genetic algorithms, generate: (i) collections of models composed of sets of time lag terms from the time series, and (ii) prediction functions represented by neuro-fuzzy networks. The composition of the models and their prediction capabilities, allows the identification of changes in the internal structure of the process. These changes are associated with the alternation of steady and transient states, zones with abnormal behavior, instability, and other situations. This approach is general, and its sensitivity for detecting subtle changes of state is revealed by simulation experiments. Its potential in the study of complex processes in earth sciences and astrophysics is illustrated with applications using paleoclimate and solar data.

  15. Backpropagation artificial neural network classifier to detect changes in heart sound due to mitral valve regurgitation.

    Science.gov (United States)

    Sinha, Rakesh Kumar; Aggarwal, Yogender; Das, Barda Nand

    2007-06-01

    The phonocardiograph (PCG) can provide a noninvasive diagnostic ability to the clinicians and technicians to compare the heart acoustic signal obtained from normal and that of pathological heart (cardiac patient). This instrument was connected to the computer through the analog to digital (A/D) converter. The digital data stored for the normal and diseased (mitral valve regurgitation) heart in the computer were decomposed through the Coifman 4th order wavelet kernel. The decomposed phonocardiographic (PCG) data were tested by backpropagation artificial neural network (ANN). The network was containing 64 nodes in the input layer, weighted from the decomposed components of the PCG in the input layer, 16 nodes in the hidden layer and an output node. The ANN was found effective in differentiating the wavelet components of the PCG from mitral valve regurgitation confirmed person (93%) to normal subjects (98%) with an overall performance of 95.5%. This system can also be used to detect the defects in cardiac valves especially, and other several cardiac disorders in general.

  16. Dynamical detection of network communities

    Science.gov (United States)

    Quiles, Marcos G.; Macau, Elbert E. N.; Rubido, Nicolás

    2016-05-01

    A prominent feature of complex networks is the appearance of communities, also known as modular structures. Specifically, communities are groups of nodes that are densely connected among each other but connect sparsely with others. However, detecting communities in networks is so far a major challenge, in particular, when networks evolve in time. Here, we propose a change in the community detection approach. It underlies in defining an intrinsic dynamic for the nodes of the network as interacting particles (based on diffusive equations of motion and on the topological properties of the network) that results in a fast convergence of the particle system into clustered patterns. The resulting patterns correspond to the communities of the network. Since our detection of communities is constructed from a dynamical process, it is able to analyse time-varying networks straightforwardly. Moreover, for static networks, our numerical experiments show that our approach achieves similar results as the methodologies currently recognized as the most efficient ones. Also, since our approach defines an N-body problem, it allows for efficient numerical implementations using parallel computations that increase its speed performance.

  17. Anomaly Detection in Dynamic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, Melissa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. A second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the

  18. Network based statistical analysis detects changes induced by continuous theta-burst stimulation on brain activity at rest.

    Science.gov (United States)

    Mastropasqua, Chiara; Bozzali, Marco; Ponzo, Viviana; Giulietti, Giovanni; Caltagirone, Carlo; Cercignani, Mara; Koch, Giacomo

    2014-01-01

    We combined continuous theta-burst stimulation (cTBS) and resting state (RS)-fMRI approaches to investigate changes in functional connectivity (FC) induced by right dorsolateral prefrontal cortex (DLPFC)-cTBS at rest in a group of healthy subjects. Seed-based fMRI analysis revealed a specific pattern of correlation between the right prefrontal cortex and several brain regions: based on these results, we defined a 29-node network to assess changes in each network connection before and after, respectively, DLPFC-cTBS and sham sessions. A decrease of correlation between the right prefrontal cortex and right parietal cortex (Brodmann areas 46 and 40, respectively) was detected after cTBS, while no significant result was found when analyzing sham-session data. To our knowledge, this is the first study that demonstrates within-subject changes in FC induced by cTBS applied on prefrontal area. The possibility to induce selective changes in a specific region without interfering with functionally correlated area could have several implications for the study of functional properties of the brain, and for the emerging therapeutic strategies based on transcranial stimulation.

  19. Change Detection and Estimation in Large Scale Sensor Networks: Linear Complexity Algorithms

    National Research Council Canada - National Science Library

    He, Ting; Ben-David, Shai; Tong, Lang

    2004-01-01

    .... In this paper, we are aiming at developing a test that, given two collections of samples, can decide whether the distribution generating the samples has changed or not, and give an estimated changed...

  20. OPAL: Network for the Detection of Stratospheric Change ozone profiler assessment at Lauder, New Zealand 2. Intercomparison of revised results

    Science.gov (United States)

    McDermid, I. S.; Bergwerff, J. B.; Bodeker, G.; Boyd, I. S.; Brinksma, E. J.; Connor, B. J.; Farmer, R.; Gross, M. R.; Kimvilakani, P.; Matthews, W. A.; McGee, T. J.; Ormel, F. T.; Parrish, A.; Singh, U.; Swart, D. P. J.; Tsou, J. J.

    1998-11-01

    Following a blind intercomparison of ozone profiling instruments in the Network for the Detection of Stratospheric Change at Lauder, New Zealand, revisions to the analyses were made resulting in a new data set. This paper compares the revised results from two differential absorption lidars (RIVM and GSFC), a microwave radiometer (Millitech/LaRC), and electrochemical concentration cell (ECC) balloon sondes (NIWA). In general, the results are substantially improved compared to the earlier blind intercomparison. The level of agreement was similar both for single profiles and for the campaign average profile and was approximately 5% for the lidars and the sondes over the altitude range from 15 to 42 km (32 km for sondes). The revised microwave data show a bias of 5-10% high in the region from 22 to 42 km. Starting at 42 km, the lidar errors increase significantly, and comparisons of the microwave results were not possible above this altitude.

  1. Object-Oriented Analysis of Satellite Images Using Artificial Neural Networks for Post-Earthquake Buildings Change Detection

    Science.gov (United States)

    Khodaverdi zahraee, N.; Rastiveis, H.

    2017-09-01

    Earthquake is one of the most divesting natural events that threaten human life during history. After the earthquake, having information about the damaged area, the amount and type of damage can be a great help in the relief and reconstruction for disaster managers. It is very important that these measures should be taken immediately after the earthquake because any negligence could be more criminal losses. The purpose of this paper is to propose and implement an automatic approach for mapping destructed buildings after an earthquake using pre- and post-event high resolution satellite images. In the proposed method after preprocessing, segmentation of both images is performed using multi-resolution segmentation technique. Then, the segmentation results are intersected with ArcGIS to obtain equal image objects on both images. After that, appropriate textural features, which make a better difference between changed or unchanged areas, are calculated for all the image objects. Finally, subtracting the extracted textural features from pre- and post-event images, obtained values are applied as an input feature vector in an artificial neural network for classifying the area into two classes of changed and unchanged areas. The proposed method was evaluated using WorldView2 satellite images, acquired before and after the 2010 Haiti earthquake. The reported overall accuracy of 93% proved the ability of the proposed method for post-earthquake buildings change detection.

  2. OBJECT-ORIENTED ANALYSIS OF SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS FOR POST-EARTHQUAKE BUILDINGS CHANGE DETECTION

    Directory of Open Access Journals (Sweden)

    N. Khodaverdi zahraee

    2017-09-01

    Full Text Available Earthquake is one of the most divesting natural events that threaten human life during history. After the earthquake, having information about the damaged area, the amount and type of damage can be a great help in the relief and reconstruction for disaster managers. It is very important that these measures should be taken immediately after the earthquake because any negligence could be more criminal losses. The purpose of this paper is to propose and implement an automatic approach for mapping destructed buildings after an earthquake using pre- and post-event high resolution satellite images. In the proposed method after preprocessing, segmentation of both images is performed using multi-resolution segmentation technique. Then, the segmentation results are intersected with ArcGIS to obtain equal image objects on both images. After that, appropriate textural features, which make a better difference between changed or unchanged areas, are calculated for all the image objects. Finally, subtracting the extracted textural features from pre- and post-event images, obtained values are applied as an input feature vector in an artificial neural network for classifying the area into two classes of changed and unchanged areas. The proposed method was evaluated using WorldView2 satellite images, acquired before and after the 2010 Haiti earthquake. The reported overall accuracy of 93% proved the ability of the proposed method for post-earthquake buildings change detection.

  3. Path scanning for the detection of anomalous subgraphs and use of DNS requests and host agents for anomaly/change detection and network situational awareness

    Energy Technology Data Exchange (ETDEWEB)

    Neil, Joshua Charles; Fisk, Michael Edward; Brugh, Alexander William; Hash, Curtis Lee; Storlie, Curtis Byron; Uphoff, Benjamin; Kent, Alexander

    2017-11-21

    A system, apparatus, computer-readable medium, and computer-implemented method are provided for detecting anomalous behavior in a network. Historical parameters of the network are determined in order to determine normal activity levels. A plurality of paths in the network are enumerated as part of a graph representing the network, where each computing system in the network may be a node in the graph and the sequence of connections between two computing systems may be a directed edge in the graph. A statistical model is applied to the plurality of paths in the graph on a sliding window basis to detect anomalous behavior. Data collected by a Unified Host Collection Agent ("UHCA") may also be used to detect anomalous behavior.

  4. Network Detection Theory and Performance

    OpenAIRE

    Smith, Steven T.; Senne, Kenneth D.; Philips, Scott; Kao, Edward K.; Bernstein, Garrett

    2013-01-01

    Network detection is an important capability in many areas of applied research in which data can be represented as a graph of entities and relationships. Oftentimes the object of interest is a relatively small subgraph in an enormous, potentially uninteresting background. This aspect characterizes network detection as a "big data" problem. Graph partitioning and network discovery have been major research areas over the last ten years, driven by interest in internet search, cyber security, soc...

  5. Long-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC)

    NARCIS (Netherlands)

    Steinbrecht, W; Claude, H; Schönenborn, F; McDermid, I S; Leblanc, T; Godin, S; Song, T; Swart, D P J; Meijer, Y J; Bodeker, G E; Connor, B J; Kämpfer, N; Hocke, K; Calisesi, Y; Schneider, N; Noë, J de la; Parrish, A D; Boyd, I S; Brühl, C; Steil, B; Giorgetta, M A; Manzini, E; Thomason, L W; Zawodny, J M; McCormick, M P; Russell, J M; Bhartia, P K; Stolarski, R S; Hollandsworth-Frith, S M

    2006-01-01

    The long-term evolution of upper stratospheric ozone has been recorded by lidars and microwave radiometers within the ground-based Network for the Detection of Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet instruments (SBUV), Stratospheric Aerosol and Gas

  6. First intercalibration of column-averaged methane from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change

    Science.gov (United States)

    Forster, F.; Sussmann, R.; Rettinger, M.; Deutscher, N. M.; Griffith, D. W. T.; Jones, N.; Patra, P. K.

    2012-02-01

    We present the intercalibration of dry-air column-averaged mole fractions of methane (XCH4) retrieved from solar FTIR measurements of the Network for the Detection of Atmospheric Composition Change (NDACC) in the mid-infrared (MIR) versus near-infrared (NIR) soundings from the Total Carbon Column Observing Network (TCCON). The study uses multi-annual quasi-coincident MIR and NIR measurements from the stations Garmisch, Germany (47.48° N, 11.06° E, 743 m a.s.l.) and Wollongong, Australia (34.41° S, 150.88° E, 30 m a.s.l.). Direct comparison of the retrieved MIR and NIR time series shows a phase shift in XCH4 seasonality, i.e. a significant time-dependent bias leading to a standard deviation (stdv) of the difference time series (NIR-MIR) of 8.4 ppb. After eliminating differences in a prioris by using ACTM-simulated profiles as a common prior, the seasonalities of the (corrected) MIR and NIR time series agree within the noise (stdv = 5.2 ppb for the difference time series). The difference time series (NIR-MIR) do not show a significant trend. Therefore it is possible to use a simple scaling factor for the intercalibration without a time-dependent linear or seasonal component. Using the Garmisch and Wollongong data together, we obtain an overall calibration factor MIR/NIR = 0.9926(18). The individual calibration factors per station are 0.9940(14) for Garmisch and 0.9893(40) for Wollongong. They agree within their error bars with the overall calibration factor which can therefore be used for both stations. Our results suggest that after applying the proposed intercalibration concept to all stations performing both NIR and MIR measurements, it should be possible to obtain one refined overall intercalibration factor for the two networks. This would allow to set up a harmonized NDACC and TCCON XCH4 data set which can be exploited for joint trend studies, satellite validation, or the inverse modeling of sources and sinks.

  7. First intercalibration of column-averaged methane from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change

    Directory of Open Access Journals (Sweden)

    R. Sussmann

    2013-02-01

    Full Text Available We present the first intercalibration of dry-air column-averaged mole fractions of methane (XCH4 retrieved from solar Fourier transform infrared (FTIR measurements of the Network for the Detection of Atmospheric Composition Change (NDACC in the mid-infrared (MIR versus near-infrared (NIR soundings from the Total Carbon Column Observing Network (TCCON. The study uses multi-annual quasi-coincident MIR and NIR measurements from the stations Garmisch, Germany (47.48° N, 11.06° E, 743 m a.s.l., and Wollongong, Australia (34.41° S, 150.88° E, 30 m a.s.l..

    Direct comparison of the retrieved MIR and NIR XCH4 time series for Garmisch shows a quasi-periodic seasonal bias leading to a standard deviation (stdv of the difference time series (NIR–MIR of 7.2 ppb. After reducing time-dependent a priori impact by using realistic site- and time-dependent ACTM-simulated profiles as a common prior, the seasonal bias is reduced (stdv = 5.2 ppb. A linear fit to the MIR/NIR scatter plot of monthly means based on same-day coincidences does not show a y-intercept that is statistically different from zero, and the MIR/NIR intercalibration factor is found to be close to ideal within 2-σ uncertainty, i.e. 0.9996(8. The difference time series (NIR–MIR do not show a significant trend. The same basic findings hold for Wollongong. In particular an overall MIR/NIR intercalibration factor close to the ideal 1 is found within 2-σ uncertainty. At Wollongong the seasonal cycle of methane is less pronounced and corresponding smoothing errors are not as significant, enabling standard MIR and NIR retrievals to be used directly, without correction to a common a priori.

    Our results suggest that it is possible to set up a harmonized NDACC and TCCON XCH4 data set which can be exploited for joint trend studies, satellite validation, or the inverse modeling of sources and sinks.

  8. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure......Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  9. Change Detection Tools

    NARCIS (Netherlands)

    Dekker, R.J.; Kuenzer, C.; Lehner, M.; Reinartz, P.; Niemeyer, I.; Nussbaum, S.; Lacroix, V.; Sequeira, V.; Stringa, E.; Schöpfer, E.

    2009-01-01

    In this chapter a wide range of change detection tools is addressed. They are grouped into methods suitable for optical and multispectral data, synthetic aperture radar (SAR) images, and 3D data. Optical and multispectral methods include unsupervised approaches, supervised and knowledge-based

  10. Network anomaly detection a machine learning perspective

    CERN Document Server

    Bhattacharyya, Dhruba Kumar

    2013-01-01

    With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents mach

  11. Attribute and topology based change detection in a constellation of previously detected objects

    Science.gov (United States)

    Paglieroni, David W.; Beer, Reginald N.

    2016-01-19

    A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.

  12. Anomaly Detection Approaches for Communication Networks

    Science.gov (United States)

    Thottan, Marina; Liu, Guanglei; Ji, Chuanyi

    In recent years, network anomaly detection has become an important area for both commercial interests as well as academic research. Applications of anomaly detection typically stem from the perspectives of network monitoring and network security. In network monitoring, a service provider is often interested in capturing such network characteristics as heavy flows, flow size distributions, and the number of distinct flows. In network security, the interest lies in characterizing known or unknown anomalous patterns of an attack or a virus.

  13. A software tool for network intrusion detection

    CSIR Research Space (South Africa)

    Van der Walt, C

    2012-10-01

    Full Text Available This presentation illustrates how a recently developed software tool enables operators to easily monitor a network and detect intrusions without requiring expert knowledge of network intrusion detections....

  14. Adaptively detecting changes in Autonomic Grid Computing

    KAUST Repository

    Zhang, Xiangliang

    2010-10-01

    Detecting the changes is the common issue in many application fields due to the non-stationary distribution of the applicative data, e.g., sensor network signals, web logs and gridrunning logs. Toward Autonomic Grid Computing, adaptively detecting the changes in a grid system can help to alarm the anomalies, clean the noises, and report the new patterns. In this paper, we proposed an approach of self-adaptive change detection based on the Page-Hinkley statistic test. It handles the non-stationary distribution without the assumption of data distribution and the empirical setting of parameters. We validate the approach on the EGEE streaming jobs, and report its better performance on achieving higher accuracy comparing to the other change detection methods. Meanwhile this change detection process could help to discover the device fault which was not claimed in the system logs. © 2010 IEEE.

  15. Mapping change in large networks.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    2010-01-01

    Full Text Available Change is a fundamental ingredient of interaction patterns in biology, technology, the economy, and science itself: Interactions within and between organisms change; transportation patterns by air, land, and sea all change; the global financial flow changes; and the frontiers of scientific research change. Networks and clustering methods have become important tools to comprehend instances of these large-scale structures, but without methods to distinguish between real trends and noisy data, these approaches are not useful for studying how networks change. Only if we can assign significance to the partitioning of single networks can we distinguish meaningful structural changes from random fluctuations. Here we show that bootstrap resampling accompanied by significance clustering provides a solution to this problem. To connect changing structures with the changing function of networks, we highlight and summarize the significant structural changes with alluvial diagrams and realize de Solla Price's vision of mapping change in science: studying the citation pattern between about 7000 scientific journals over the past decade, we find that neuroscience has transformed from an interdisciplinary specialty to a mature and stand-alone discipline.

  16. Detecting P2P Botnet in Software Defined Networks

    Directory of Open Access Journals (Sweden)

    Shang-Chiuan Su

    2018-01-01

    Full Text Available Software Defined Network separates the control plane from network equipment and has great advantage in network management as compared with traditional approaches. With this paradigm, the security issues persist to exist and could become even worse because of the flexibility on handling the packets. In this paper we propose an effective framework by integrating SDN and machine learning to detect and categorize P2P network traffics. This work provides experimental evidence showing that our approach can automatically analyze network traffic and flexibly change flow entries in OpenFlow switches through the SDN controller. This can effectively help the network administrators manage related security problems.

  17. Biological network motif detection and evaluation.

    Science.gov (United States)

    Kim, Wooyoung; Li, Min; Wang, Jianxin; Pan, Yi

    2011-01-01

    Molecular level of biological data can be constructed into system level of data as biological networks. Network motifs are defined as over-represented small connected subgraphs in networks and they have been used for many biological applications. Since network motif discovery involves computationally challenging processes, previous algorithms have focused on computational efficiency. However, we believe that the biological quality of network motifs is also very important. We define biological network motifs as biologically significant subgraphs and traditional network motifs are differentiated as structural network motifs in this paper. We develop five algorithms, namely, EDGEGO-BNM, EDGEBETWEENNESS-BNM, NMF-BNM, NMFGO-BNM and VOLTAGE-BNM, for efficient detection of biological network motifs, and introduce several evaluation measures including motifs included in complex, motifs included in functional module and GO term clustering score in this paper. Experimental results show that EDGEGO-BNM and EDGEBETWEENNESS-BNM perform better than existing algorithms and all of our algorithms are applicable to find structural network motifs as well. We provide new approaches to finding network motifs in biological networks. Our algorithms efficiently detect biological network motifs and further improve existing algorithms to find high quality structural network motifs, which would be impossible using existing algorithms. The performances of the algorithms are compared based on our new evaluation measures in biological contexts. We believe that our work gives some guidelines of network motifs research for the biological networks.

  18. Biological network motif detection and evaluation

    Directory of Open Access Journals (Sweden)

    Kim Wooyoung

    2011-12-01

    Full Text Available Abstract Background Molecular level of biological data can be constructed into system level of data as biological networks. Network motifs are defined as over-represented small connected subgraphs in networks and they have been used for many biological applications. Since network motif discovery involves computationally challenging processes, previous algorithms have focused on computational efficiency. However, we believe that the biological quality of network motifs is also very important. Results We define biological network motifs as biologically significant subgraphs and traditional network motifs are differentiated as structural network motifs in this paper. We develop five algorithms, namely, EDGEGO-BNM, EDGEBETWEENNESS-BNM, NMF-BNM, NMFGO-BNM and VOLTAGE-BNM, for efficient detection of biological network motifs, and introduce several evaluation measures including motifs included in complex, motifs included in functional module and GO term clustering score in this paper. Experimental results show that EDGEGO-BNM and EDGEBETWEENNESS-BNM perform better than existing algorithms and all of our algorithms are applicable to find structural network motifs as well. Conclusion We provide new approaches to finding network motifs in biological networks. Our algorithms efficiently detect biological network motifs and further improve existing algorithms to find high quality structural network motifs, which would be impossible using existing algorithms. The performances of the algorithms are compared based on our new evaluation measures in biological contexts. We believe that our work gives some guidelines of network motifs research for the biological networks.

  19. Computer Network Equipment for Intrusion Detection Research

    National Research Council Canada - National Science Library

    Ye, Nong

    2000-01-01

    .... To test the process model, the system-level intrusion detection techniques and the working prototype of the intrusion detection system, a set of computer and network equipment has been purchased...

  20. Network Intrusion Detection System using Apache Storm

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Manzoor

    2017-06-01

    Full Text Available Network security implements various strategies for the identification and prevention of security breaches. Network intrusion detection is a critical component of network management for security, quality of service and other purposes. These systems allow early detection of network intrusion and malicious activities; so that the Network Security infrastructure can react to mitigate these threats. Various systems are proposed to enhance the network security. We are proposing to use anomaly based network intrusion detection system in this work. Anomaly based intrusion detection system can identify the new network threats. We also propose to use Real-time Big Data Stream Processing Framework, Apache Storm, for the implementation of network intrusion detection system. Apache Storm can help to manage the network traffic which is generated at enormous speed and size and the network traffic speed and size is constantly increasing. We have used Support Vector Machine in this work. We use Knowledge Discovery and Data Mining 1999 (KDD’99 dataset to test and evaluate our proposed solution.

  1. Social network analysis community detection and evolution

    CERN Document Server

    Missaoui, Rokia

    2015-01-01

    This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit

  2. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  3. Adaptive filtering and change detection

    CERN Document Server

    Gustafsson, Fredrik

    2003-01-01

    Adaptive filtering is a classical branch of digital signal processing (DSP). Industrial interest in adaptive filtering grows continuously with the increase in computer performance that allows ever more conplex algorithms to be run in real-time. Change detection is a type of adaptive filtering for non-stationary signals and is also the basic tool in fault detection and diagnosis. Often considered as separate subjects Adaptive Filtering and Change Detection bridges a gap in the literature with a unified treatment of these areas, emphasizing that change detection is a natural extensi

  4. Point pattern match-based change detection in a constellation of previously detected objects

    Energy Technology Data Exchange (ETDEWEB)

    Paglieroni, David W.

    2016-06-07

    A method and system is provided that applies attribute- and topology-based change detection to objects that were detected on previous scans of a medium. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, detection strength, size, elongation, orientation, etc. The locations define a three-dimensional network topology forming a constellation of previously detected objects. The change detection system stores attributes of the previously detected objects in a constellation database. The change detection system detects changes by comparing the attributes and topological consistency of newly detected objects encountered during a new scan of the medium to previously detected objects in the constellation database. The change detection system may receive the attributes of the newly detected objects as the objects are detected by an object detection system in real time.

  5. Outlier Detection Method Use for the Network Flow Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Rimas Ciplinskas

    2016-06-01

    Full Text Available New and existing methods of cyber-attack detection are constantly being developed and improved because there is a great number of attacks and the demand to protect from them. In prac-tice, current methods of attack detection operates like antivirus programs, i. e. known attacks signatures are created and attacks are detected by using them. These methods have a drawback – they cannot detect new attacks. As a solution, anomaly detection methods are used. They allow to detect deviations from normal network behaviour that may show a new type of attack. This article introduces a new method that allows to detect network flow anomalies by using local outlier factor algorithm. Accom-plished research allowed to identify groups of features which showed the best results of anomaly flow detection according the highest values of precision, recall and F-measure.

  6. Detection of Pigment Networks in Dermoscopy Images

    Science.gov (United States)

    Eltayef, Khalid; Li, Yongmin; Liu, Xiaohui

    2017-02-01

    One of the most important structures in dermoscopy images is the pigment network, which is also one of the most challenging and fundamental task for dermatologists in early detection of melanoma. This paper presents an automatic system to detect pigment network from dermoscopy images. The design of the proposed algorithm consists of four stages. First, a pre-processing algorithm is carried out in order to remove the noise and improve the quality of the image. Second, a bank of directional filters and morphological connected component analysis are applied to detect the pigment networks. Third, features are extracted from the detected image, which can be used in the subsequent stage. Fourth, the classification process is performed by applying feed-forward neural network, in order to classify the region as either normal or abnormal skin. The method was tested on a dataset of 200 dermoscopy images from Hospital Pedro Hispano (Matosinhos), and better results were produced compared to previous studies.

  7. Detecting Clusters/Communities in Social Networks.

    Science.gov (United States)

    Hoffman, Michaela; Steinley, Douglas; Gates, Kathleen M; Prinstein, Mitchell J; Brusco, Michael J

    2018-01-01

    Cohen's κ, a similarity measure for categorical data, has since been applied to problems in the data mining field such as cluster analysis and network link prediction. In this paper, a new application is examined: community detection in networks. A new algorithm is proposed that uses Cohen's κ as a similarity measure for each pair of nodes; subsequently, the κ values are then clustered to detect the communities. This paper defines and tests this method on a variety of simulated and real networks. The results are compared with those from eight other community detection algorithms. Results show this new algorithm is consistently among the top performers in classifying data points both on simulated and real networks. Additionally, this is one of the broadest comparative simulations for comparing community detection algorithms to date.

  8. Detecting controlling nodes of boolean regulatory networks.

    Science.gov (United States)

    Schober, Steffen; Kracht, David; Heckel, Reinhard; Bossert, Martin

    2011-10-11

    Boolean models of regulatory networks are assumed to be tolerant to perturbations. That qualitatively implies that each function can only depend on a few nodes. Biologically motivated constraints further show that functions found in Boolean regulatory networks belong to certain classes of functions, for example, the unate functions. It turns out that these classes have specific properties in the Fourier domain. That motivates us to study the problem of detecting controlling nodes in classes of Boolean networks using spectral techniques. We consider networks with unbalanced functions and functions of an average sensitivity less than 23k, where k is the number of controlling variables for a function. Further, we consider the class of 1-low networks which include unate networks, linear threshold networks, and networks with nested canalyzing functions. We show that the application of spectral learning algorithms leads to both better time and sample complexity for the detection of controlling nodes compared with algorithms based on exhaustive search. For a particular algorithm, we state analytical upper bounds on the number of samples needed to find the controlling nodes of the Boolean functions. Further, improved algorithms for detecting controlling nodes in large-scale unate networks are given and numerically studied.

  9. Data Fault Detection in Medical Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-03-01

    Full Text Available Medical body sensors can be implanted or attached to the human body to monitor the physiological parameters of patients all the time. Inaccurate data due to sensor faults or incorrect placement on the body will seriously influence clinicians’ diagnosis, therefore detecting sensor data faults has been widely researched in recent years. Most of the typical approaches to sensor fault detection in the medical area ignore the fact that the physiological indexes of patients aren’t changing synchronously at the same time, and fault values mixed with abnormal physiological data due to illness make it difficult to determine true faults. Based on these facts, we propose a Data Fault Detection mechanism in Medical sensor networks (DFD-M. Its mechanism includes: (1 use of a dynamic-local outlier factor (D-LOF algorithm to identify outlying sensed data vectors; (2 use of a linear regression model based on trapezoidal fuzzy numbers to predict which readings in the outlying data vector are suspected to be faulty; (3 the proposal of a novel judgment criterion of fault state according to the prediction values. The simulation results demonstrate the efficiency and superiority of DFD-M.

  10. Multilayer Statistical Intrusion Detection in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Noureddine Boudriga

    2008-12-01

    Full Text Available The rapid proliferation of mobile applications and services has introduced new vulnerabilities that do not exist in fixed wired networks. Traditional security mechanisms, such as access control and encryption, turn out to be inefficient in modern wireless networks. Given the shortcomings of the protection mechanisms, an important research focuses in intrusion detection systems (IDSs. This paper proposes a multilayer statistical intrusion detection framework for wireless networks. The architecture is adequate to wireless networks because the underlying detection models rely on radio parameters and traffic models. Accurate correlation between radio and traffic anomalies allows enhancing the efficiency of the IDS. A radio signal fingerprinting technique based on the maximal overlap discrete wavelet transform (MODWT is developed. Moreover, a geometric clustering algorithm is presented. Depending on the characteristics of the fingerprinting technique, the clustering algorithm permits to control the false positive and false negative rates. Finally, simulation experiments have been carried out to validate the proposed IDS.

  11. Epileptiform spike detection via convolutional neural networks

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz

    2016-01-01

    The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated...

  12. Detecting global bridges in networks

    OpenAIRE

    Jensen, Pablo; Morini, Matteo; Karsai, Márton; Venturini, Tommaso; Vespignani, Alessandro; Jacomy, Mathieu; Cointet, Jean-Philippe; Mercklé, Pierre; Fleury, Eric

    2015-01-01

    International audience; The identification of nodes occupying important positions in a network structure is crucial for the understanding of the associated real-world system. Usually, betweenness centrality is used to evaluate a node capacity to connect different graph regions. However, we argue here that this measure is not adapted for that task, as it gives equal weight to “local” centers (i.e. nodes of high degree central to a single region) and to “global” bridges, which connect different...

  13. Detecting communities through network data

    NARCIS (Netherlands)

    Bruggeman, J.; Traag, V.A.; Uitermark, J.

    2012-01-01

    Social life coalesces into communities through cooperation and conflict. As a case in point, Shwed and Bearman (2010) studied consensus and contention in scientific communities. They used a sophisticated modularity method to detect communities on the basis of scientific citations, which they then

  14. Social Network Aided Plagiarism Detection

    Science.gov (United States)

    Zrnec, Aljaž; Lavbic, Dejan

    2017-01-01

    The prevalence of different kinds of electronic devices and the volume of content on the Web have increased the amount of plagiarism, which is considered an unethical act. If we want to be efficient in the detection and prevention of these acts, we have to improve today's methods of discovering plagiarism. The paper presents a research study where…

  15. Community detection based on network communicability

    Science.gov (United States)

    Estrada, Ernesto

    2011-03-01

    We propose a new method for detecting communities based on the concept of communicability between nodes in a complex network. This method, designated as N-ComBa K-means, uses a normalized version of the adjacency matrix to build the communicability matrix and then applies K-means clustering to find the communities in a graph. We analyze how this method performs for some pathological cases found in the analysis of the detection limit of communities and propose some possible solutions on the basis of the analysis of the ratio of local to global densities in graphs. We use four different quality criteria for detecting the best clustering and compare the new approach with the Girvan-Newman algorithm for the analysis of two "classical" networks: karate club and bottlenose dolphins. Finally, we analyze the more challenging case of homogeneous networks with community structure, for which the Girvan-Newman completely fails in detecting any clustering. The N-ComBa K-means approach performs very well in these situations and we applied it to detect the community structure in an international trade network of miscellaneous manufactures of metal having these characteristics. Some final remarks about the general philosophy of community detection are also discussed.

  16. Community detection based on network communicability.

    Science.gov (United States)

    Estrada, Ernesto

    2011-03-01

    We propose a new method for detecting communities based on the concept of communicability between nodes in a complex network. This method, designated as N-ComBa K-means, uses a normalized version of the adjacency matrix to build the communicability matrix and then applies K-means clustering to find the communities in a graph. We analyze how this method performs for some pathological cases found in the analysis of the detection limit of communities and propose some possible solutions on the basis of the analysis of the ratio of local to global densities in graphs. We use four different quality criteria for detecting the best clustering and compare the new approach with the Girvan-Newman algorithm for the analysis of two "classical" networks: karate club and bottlenose dolphins. Finally, we analyze the more challenging case of homogeneous networks with community structure, for which the Girvan-Newman completely fails in detecting any clustering. The N-ComBa K-means approach performs very well in these situations and we applied it to detect the community structure in an international trade network of miscellaneous manufactures of metal having these characteristics. Some final remarks about the general philosophy of community detection are also discussed.

  17. Community detection by signaling on complex networks

    Science.gov (United States)

    Hu, Yanqing; Li, Menghui; Zhang, Peng; Fan, Ying; di, Zengru

    2008-07-01

    Based on a signaling process of complex networks, a method for identification of community structure is proposed. For a network with n nodes, every node is assumed to be a system which can send, receive, and record signals. Each node is taken as the initial signal source to excite the whole network one time. Then the source node is associated with an n -dimensional vector which records the effects of the signaling process. By this process, the topological relationship of nodes on the network could be transferred into a geometrical structure of vectors in n -dimensional Euclidean space. Then the best partition of groups is determined by F statistics and the final community structure is given by the K -means clustering method. This method can detect community structure both in unweighted and weighted networks. It has been applied to ad hoc networks and some real networks such as the Zachary karate club network and football team network. The results indicate that the algorithm based on the signaling process works well.

  18. Community detection by signaling on complex networks.

    Science.gov (United States)

    Hu, Yanqing; Li, Menghui; Zhang, Peng; Fan, Ying; Di, Zengru

    2008-07-01

    Based on a signaling process of complex networks, a method for identification of community structure is proposed. For a network with n nodes, every node is assumed to be a system which can send, receive, and record signals. Each node is taken as the initial signal source to excite the whole network one time. Then the source node is associated with an n -dimensional vector which records the effects of the signaling process. By this process, the topological relationship of nodes on the network could be transferred into a geometrical structure of vectors in n -dimensional Euclidean space. Then the best partition of groups is determined by F statistics and the final community structure is given by the K -means clustering method. This method can detect community structure both in unweighted and weighted networks. It has been applied to ad hoc networks and some real networks such as the Zachary karate club network and football team network. The results indicate that the algorithm based on the signaling process works well.

  19. Overlapping Community Detection based on Network Decomposition

    Science.gov (United States)

    Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin

    2016-04-01

    Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.

  20. Multilingual Text Detection with Nonlinear Neural Network

    Directory of Open Access Journals (Sweden)

    Lin Li

    2015-01-01

    Full Text Available Multilingual text detection in natural scenes is still a challenging task in computer vision. In this paper, we apply an unsupervised learning algorithm to learn language-independent stroke feature and combine unsupervised stroke feature learning and automatically multilayer feature extraction to improve the representational power of text feature. We also develop a novel nonlinear network based on traditional Convolutional Neural Network that is able to detect multilingual text regions in the images. The proposed method is evaluated on standard benchmarks and multilingual dataset and demonstrates improvement over the previous work.

  1. Realistic computer network simulation for network intrusion detection dataset generation

    Science.gov (United States)

    Payer, Garrett

    2015-05-01

    The KDD-99 Cup dataset is dead. While it can continue to be used as a toy example, the age of this dataset makes it all but useless for intrusion detection research and data mining. Many of the attacks used within the dataset are obsolete and do not reflect the features important for intrusion detection in today's networks. Creating a new dataset encompassing a large cross section of the attacks found on the Internet today could be useful, but would eventually fall to the same problem as the KDD-99 Cup; its usefulness would diminish after a period of time. To continue research into intrusion detection, the generation of new datasets needs to be as dynamic and as quick as the attacker. Simply examining existing network traffic and using domain experts such as intrusion analysts to label traffic is inefficient, expensive, and not scalable. The only viable methodology is simulation using technologies including virtualization, attack-toolsets such as Metasploit and Armitage, and sophisticated emulation of threat and user behavior. Simulating actual user behavior and network intrusion events dynamically not only allows researchers to vary scenarios quickly, but enables online testing of intrusion detection mechanisms by interacting with data as it is generated. As new threat behaviors are identified, they can be added to the simulation to make quicker determinations as to the effectiveness of existing and ongoing network intrusion technology, methodology and models.

  2. "Hidden" Social Networks in Behavior Change Interventions

    OpenAIRE

    Hunter, Ruth F; McAneney, Helen; Davis, Michael; Mark A. Tully; Valente, Thomas W.; Kee, Frank

    2015-01-01

    We investigated whether “hidden” (or unobserved) social networks were evident in a 2011 physical activity behavior change intervention in Belfast, Northern Ireland. Results showed evidence of unobserved social networks in the intervention and illustrated how the network evolved over short periods and affected behavior. Behavior change interventions should account for the interaction among participants (i.e., social networks) and how such interactions affect intervention outcome.

  3. "Hidden" social networks in behavior change interventions.

    Science.gov (United States)

    Hunter, Ruth F; McAneney, Helen; Davis, Michael; Tully, Mark A; Valente, Thomas W; Kee, Frank

    2015-03-01

    We investigated whether "hidden" (or unobserved) social networks were evident in a 2011 physical activity behavior change intervention in Belfast, Northern Ireland. Results showed evidence of unobserved social networks in the intervention and illustrated how the network evolved over short periods and affected behavior. Behavior change interventions should account for the interaction among participants (i.e., social networks) and how such interactions affect intervention outcome.

  4. Anomaly-based Network Intrusion Detection Methods

    Directory of Open Access Journals (Sweden)

    Pavel Nevlud

    2013-01-01

    Full Text Available The article deals with detection of network anomalies. Network anomalies include everything that is quite different from the normal operation. For detection of anomalies were used machine learning systems. Machine learning can be considered as a support or a limited type of artificial intelligence. A machine learning system usually starts with some knowledge and a corresponding knowledge organization so that it can interpret, analyse, and test the knowledge acquired. There are several machine learning techniques available. We tested Decision tree learning and Bayesian networks. The open source data-mining framework WEKA was the tool we used for testing the classify, cluster, association algorithms and for visualization of our results. The WEKA is a collection of machine learning algorithms for data mining tasks.

  5. Anomaly Detection Techniques for Ad Hoc Networks

    Science.gov (United States)

    Cai, Chaoli

    2009-01-01

    Anomaly detection is an important and indispensable aspect of any computer security mechanism. Ad hoc and mobile networks consist of a number of peer mobile nodes that are capable of communicating with each other absent a fixed infrastructure. Arbitrary node movements and lack of centralized control make them vulnerable to a wide variety of…

  6. Face detection by aggregated Bayesian network classifiers

    NARCIS (Netherlands)

    Pham, T.V.; Worring, M.; Smeulders, A.W.M.

    2002-01-01

    A face detection system is presented. A new classification method using forest-structured Bayesian networks is used. The method is used in an aggregated classifier to discriminate face from non-face patterns. The process of generating non-face patterns is integrated with the construction of the

  7. Detecting Spam at the Network Level

    NARCIS (Netherlands)

    Sperotto, Anna; Vliek, G.; Sadre, R.; Pras, Aiko

    2009-01-01

    Spam is increasingly a core problem affecting network security and performance. Indeed, it has been estimated that 80% of all email messages are spam. Content-based filters are a commonly deployed countermeasure, but the current research focus is now moving towards the early detection of spamming

  8. Land-cover change detection

    Science.gov (United States)

    Chen, Xuexia; Giri, Chandra; Vogelmann, James

    2012-01-01

    Land cover is the biophysical material on the surface of the earth. Land-cover types include grass, shrubs, trees, barren, water, and man-made features. Land cover changes continuously.  The rate of change can be either dramatic and abrupt, such as the changes caused by logging, hurricanes and fire, or subtle and gradual, such as regeneration of forests and damage caused by insects (Verbesselt et al., 2001).  Previous studies have shown that land cover has changed dramatically during the past sevearal centuries and that these changes have severely affected our ecosystems (Foody, 2010; Lambin et al., 2001). Lambin and Strahlers (1994b) summarized five types of cause for land-cover changes: (1) long-term natural changes in climate conditions, (2) geomorphological and ecological processes, (3) human-induced alterations of vegetation cover and landscapes, (4) interannual climate variability, and (5) human-induced greenhouse effect.  Tools and techniques are needed to detect, describe, and predict these changes to facilitate sustainable management of natural resources.

  9. Generative adversarial networks for brain lesion detection

    Science.gov (United States)

    Alex, Varghese; Safwan, K. P. Mohammed; Chennamsetty, Sai Saketh; Krishnamurthi, Ganapathy

    2017-02-01

    Manual segmentation of brain lesions from Magnetic Resonance Images (MRI) is cumbersome and introduces errors due to inter-rater variability. This paper introduces a semi-supervised technique for detection of brain lesion from MRI using Generative Adversarial Networks (GANs). GANs comprises of a Generator network and a Discriminator network which are trained simultaneously with the objective of one bettering the other. The networks were trained using non lesion patches (n=13,000) from 4 different MR sequences. The network was trained on BraTS dataset and patches were extracted from regions excluding tumor region. The Generator network generates data by modeling the underlying probability distribution of the training data, (PData). The Discriminator learns the posterior probability P (Label Data) by classifying training data and generated data as "Real" or "Fake" respectively. The Generator upon learning the joint distribution, produces images/patches such that the performance of the Discriminator on them are random, i.e. P (Label Data = GeneratedData) = 0.5. During testing, the Discriminator assigns posterior probability values close to 0.5 for patches from non lesion regions, while patches centered on lesion arise from a different distribution (PLesion) and hence are assigned lower posterior probability value by the Discriminator. On the test set (n=14), the proposed technique achieves whole tumor dice score of 0.69, sensitivity of 91% and specificity of 59%. Additionally the generator network was capable of generating non lesion patches from various MR sequences.

  10. Modern Community Detection Methods in Social Networks

    Directory of Open Access Journals (Sweden)

    V. O. Chesnokov

    2017-01-01

    Full Text Available Social network structure is not homogeneous. Groups of vertices which have a lot of links between them are called communities. A survey of algorithms discovering such groups is presented in the article.A popular approach to community detection is to use an graph clustering algorithm.  Methods based on inner metric optimization are common. 5 groups of algorithms are listed: based on optimization, joining vertices into clusters by some closeness measure, special subgraphs discovery, partitioning graph by deleting edges,  and based on a dynamic process or generative model.Overlapping community detection algorithms are usually just modified graph clustering algorithms. Other approaches do exist, e.g. ones based on edges clustering or constructing communities around randomly chosen vertices. Methods based on nonnegative matrix factorization are also used, but they have high computational complexity. Algorithms based on label propagation lack this disadvantage. Methods based on affiliation model are perspective. This model claims that communities define the structure of a graph.Algorithms which use node attributes are considered: ones based on latent Dirichlet allocation, initially used for text clustering, and CODICIL, where edges of node content relevance are added to the original edge set. 6 classes are listed for algorithms for graphs with node attributes: changing egdes’ weights, changing vertex distance function, building augmented graph with nodes and attributes, based on stochastic  models, partitioning attribute space and others.Overlapping community detection algorithms which effectively use node attributes are just started to appear. Methods based on partitioning attribute space,  latent Dirichlet allocation,  stochastic  models and  nonnegative matrix factorization are considered. The most effective algorithm on real datasets is CESNA. It is based on affiliation model. However, it gives results which are far from ground truth

  11. Subsurface Event Detection and Classification Using Wireless Signal Networks

    Directory of Open Access Journals (Sweden)

    Muhannad T. Suleiman

    2012-11-01

    Full Text Available Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs. The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  12. A dynamic evidential network for fall detection.

    Science.gov (United States)

    Aguilar, Paulo Armando Cavalcante; Boudy, Jerome; Istrate, Dan; Dorizzi, Bernadette; Mota, Joao Cesar Moura

    2014-07-01

    This study is part of the development of a remote home healthcare monitoring application designed to detect distress situations through several types of sensors. The multisensor fusion can provide more accurate and reliable information compared to information provided by each sensor separately. Furthermore, data from multiple heterogeneous sensors present in the remote home healthcare monitoring systems have different degrees of imperfection and trust. Among the multisensor fusion methods, Dempster-Shafer theory (DST) is currently considered the most appropriate for representing and processing the imperfect information. Based on a graphical representation of the DST called evidential networks, a structure of heterogeneous data fusion from multiple sensors for fall detection has been proposed. The evidential networks, implemented on our remote medical monitoring platform, are also proposed in this paper to maximize the performance of automatic fall detection and thus make the system more reliable. However, the presence of noise, the variability of recorded signals by the sensors, and the failing or unreliable sensors may thwart the evidential networks performance. In addition, the sensors signals nonstationary nature may degrade the experimental conditions. To compensate the nonstationary effect, the time evolution is considered by introducing the dynamic evidential network which was evaluated by the simulated fall scenarios corresponding to various use cases.

  13. Querying moving objects detected by sensor networks

    CERN Document Server

    Bestehorn, Markus

    2012-01-01

    Declarative query interfaces to Sensor Networks (SN) have become a commodity. These interfaces allow access to SN deployed for collecting data using relational queries. However, SN are not confined to data collection, but may track object movement, e.g., wildlife observation or traffic monitoring. While rational approaches are well suited for data collection, research on ""Moving Object Databases"" (MOD) has shown that relational operators are unsuitable to express information needs on object movement, i.e., spatio-temporal queries. ""Querying Moving Objects Detected by Sensor Networks"" studi

  14. The effect of faulty local detectors on a detection network.

    CERN Document Server

    Mirjalily, G

    2002-01-01

    Distributed detection theory has received increasing attention recently. Development of multiple sensors for signal detection results in improved performance and increased reliability. in a detection network, each local sensor decides locally whether a signal is detected or not. The local decisions are sent to the fusion center, where the final decision is made. In this paper, a theoretic approach is considered to data fusion when one of the sensors is faulty. If the fusion center does not have any knowledge of this fault, the performance of the system is different than its normal performance. The changes in the error probabilities depend on the type of the fault and on the threshold value of the fission center test. We derived some expressions of the changes in the values of error probabilities. For some type of faults, the system false alarm probability increases significantly, whereas for some other faults, the system detection probability decreases significantly. To illustrate the results, a numerical exa...

  15. Multiscale Convolutional Neural Networks for Hand Detection

    Directory of Open Access Journals (Sweden)

    Shiyang Yan

    2017-01-01

    Full Text Available Unconstrained hand detection in still images plays an important role in many hand-related vision problems, for example, hand tracking, gesture analysis, human action recognition and human-machine interaction, and sign language recognition. Although hand detection has been extensively studied for decades, it is still a challenging task with many problems to be tackled. The contributing factors for this complexity include heavy occlusion, low resolution, varying illumination conditions, different hand gestures, and the complex interactions between hands and objects or other hands. In this paper, we propose a multiscale deep learning model for unconstrained hand detection in still images. Deep learning models, and deep convolutional neural networks (CNNs in particular, have achieved state-of-the-art performances in many vision benchmarks. Developed from the region-based CNN (R-CNN model, we propose a hand detection scheme based on candidate regions generated by a generic region proposal algorithm, followed by multiscale information fusion from the popular VGG16 model. Two benchmark datasets were applied to validate the proposed method, namely, the Oxford Hand Detection Dataset and the VIVA Hand Detection Challenge. We achieved state-of-the-art results on the Oxford Hand Detection Dataset and had satisfactory performance in the VIVA Hand Detection Challenge.

  16. On Radar Resolution in Coherent Change Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    It is commonly observed that resolution plays a role in coherent change detection. Although this is the case, the relationship of the resolution in coherent change detection is not yet defined . In this document, we present an analytical method of evaluating this relationship using detection theory. Specifically we examine the effect of resolution on receiver operating characteristic curves for coherent change detection.

  17. Network Community Detection on Metric Space

    Directory of Open Access Journals (Sweden)

    Suman Saha

    2015-08-01

    Full Text Available Community detection in a complex network is an important problem of much interest in recent years. In general, a community detection algorithm chooses an objective function and captures the communities of the network by optimizing the objective function, and then, one uses various heuristics to solve the optimization problem to extract the interesting communities for the user. In this article, we demonstrate the procedure to transform a graph into points of a metric space and develop the methods of community detection with the help of a metric defined for a pair of points. We have also studied and analyzed the community structure of the network therein. The results obtained with our approach are very competitive with most of the well-known algorithms in the literature, and this is justified over the large collection of datasets. On the other hand, it can be observed that time taken by our algorithm is quite less compared to other methods and justifies the theoretical findings.

  18. Automatic detection of emerging threats to computer networks

    CSIR Research Space (South Africa)

    McDonald, A

    2015-10-01

    Full Text Available intrusion detection technology is to detect threats to networked information systems and networking infrastructure in an automated fashion, thereby providing an opportunity to deploy countermeasures. This presentation showcases the research and development...

  19. Geographic wormhole detection in wireless sensor networks.

    Science.gov (United States)

    Sookhak, Mehdi; Akhundzada, Adnan; Sookhak, Alireza; Eslaminejad, Mohammadreza; Gani, Abdullah; Khurram Khan, Muhammad; Li, Xiong; Wang, Xiaomin

    2015-01-01

    Wireless sensor networks (WSNs) are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS) attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS) attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP). The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS), Authentication of Nodes Scheme (ANS), Wormhole Detection uses Hound Packet (WHOP), and Wormhole Detection with Neighborhood Information (WDI) using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR) in the geographic routing protocols.

  20. Geographic wormhole detection in wireless sensor networks.

    Directory of Open Access Journals (Sweden)

    Mehdi Sookhak

    Full Text Available Wireless sensor networks (WSNs are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP. The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS, Authentication of Nodes Scheme (ANS, Wormhole Detection uses Hound Packet (WHOP, and Wormhole Detection with Neighborhood Information (WDI using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR in the geographic routing protocols.

  1. Fault Detection for Quantized Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Wei-Wei Che

    2013-01-01

    Full Text Available The fault detection problem in the finite frequency domain for networked control systems with signal quantization is considered. With the logarithmic quantizer consideration, a quantized fault detection observer is designed by employing a performance index which is used to increase the fault sensitivity in finite frequency domain. The quantized measurement signals are dealt with by utilizing the sector bound method, in which the quantization error is treated as sector-bounded uncertainty. By using the Kalman-Yakubovich-Popov (GKYP Lemma, an iterative LMI-based optimization algorithm is developed for designing the quantized fault detection observer. And a numerical example is given to illustrate the effectiveness of the proposed method.

  2. Changing Conditions for Networked Learning?

    DEFF Research Database (Denmark)

    Ryberg, Thomas

    2011-01-01

    of social technologies. I argue that we are seeing the emergence of new architectures and scales of participation, collaboration and networking e.g. through interesting formations of learning networks at different levels of scale, for different purposes and often bridging boundaries such as formal......In this talk I should like to initially take a critical look at popular ideas and discourses related to web 2.0, social technologies and learning. I argue that many of the pedagogical ideals particularly associated with web 2.0 have a longer history and background, which is often forgotten...

  3. Intrusion detection in wireless ad-hoc networks

    CERN Document Server

    Chaki, Nabendu

    2014-01-01

    Presenting cutting-edge research, Intrusion Detection in Wireless Ad-Hoc Networks explores the security aspects of the basic categories of wireless ad-hoc networks and related application areas. Focusing on intrusion detection systems (IDSs), it explains how to establish security solutions for the range of wireless networks, including mobile ad-hoc networks, hybrid wireless networks, and sensor networks.This edited volume reviews and analyzes state-of-the-art IDSs for various wireless ad-hoc networks. It includes case studies on honesty-based intrusion detection systems, cluster oriented-based

  4. Network Intrusion Detection System – A Novel Approach

    Directory of Open Access Journals (Sweden)

    Krish Pillai

    2013-08-01

    Full Text Available Network intrusion starts off with a series of unsuccessful breakin attempts and results eventually with the permanent or transient failure of an authentication or authorization system. Due to the current complexity of authentication systems, clandestine attempts at intrusion generally take considerable time before the system gets compromised or damaging change is affected to the system giving administrators a window of opportunity to proactively detect and prevent intrusion. Therefore maintaining a high level of sensitivity to abnormal access patterns is a very effective way of preventing possible break-ins. Under normal circumstances, gross errors on the part of the user can cause authentication and authorization failures on all systems. A normal distribution of failed attempts should be tolerated while abnormal attempts should be recognized as such and flagged. But one cannot manage what one cannot measure. This paper proposes a method that can efficiently quantify the behaviour of users on a network so that transient changes in usage can be detected, categorized based on severity, and closely investigated for possible intrusion. The author proposes the identification of patterns in protocol usage within a network to categorize it for surveillance. Statistical anomaly detection, under which category this approach falls, generally uses simple statistical tests such as mean and standard deviation to detect behavioural changes. The author proposes a novel approach using spectral density as opposed to using time domain data, allowing a clear separation or access patterns based on periodicity. Once a spectral profile has been identified for network, deviations from this profile can be used as an indication of a destabilized or compromised network. Spectral analysis of access patterns is done using the Fast Fourier Transform (FFT, which can be computed in Θ(N log N operations. The paper justifies the use of this approach and presents preliminary

  5. SAR change detection techniques and applications

    NARCIS (Netherlands)

    Dekker, R.J.

    2005-01-01

    ABSTRACT: Change detection, the comparison of remote sensing images from different moments in time, is an important technique in environmental earth observation and security. SAR change detection is useful when weather and light conditions are unfavourable. Five methods of SAR change detection are

  6. Methods and applications for detecting structure in complex networks

    Science.gov (United States)

    Leicht, Elizabeth A.

    The use of networks to represent systems of interacting components is now common in many fields including the biological, physical, and social sciences. Network models are widely applicable due to their relatively simple framework of vertices and edges. Network structure, patterns of connection between vertices, impacts both the functioning of networks and processes occurring on networks. However, many aspects of network structure are still poorly understood. This dissertation presents a set of network analysis methods and applications to real-world as well as simulated networks. The methods are divided into two main types: linear algebra formulations and probabilistic mixture model techniques. Network models lend themselves to compact mathematical representation as matrices, making linear algebra techniques useful probes of network structure. We present methods for the detection of two distinct, but related, network structural forms. First, we derive a measure of vertex similarity based upon network structure. The method builds on existing ideas concerning calculation of vertex similarity, but generalizes and extends the scope to large networks. Second, we address the detection of communities or modules in a specific class of networks, directed networks. We propose a method for detecting community structure in directed networks, which is an extension of a community detection method previously only known for undirected networks. Moving away from linear algebra formulations, we propose two methods for network structure detection based on probabilistic techniques. In the first method, we use the machinery of the expectation-maximization (EM) algorithm to probe patterns of connection among vertices in static networks. The technique allows for the detection of a broad range of types of structure in networks. The second method focuses on time evolving networks. We propose an application of the EM algorithm to evolving networks that can reveal significant structural

  7. Recognizing changing seasonal patterns using neural networks

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); G. Draisma (Gerrit)

    1997-01-01

    textabstractIn this paper we propose a graphical method based on an artificial neural network model to investigate how and when seasonal patterns in macroeconomic time series change over time. Neural networks are useful since the hidden layer units may become activated only in certain seasons or

  8. Defect detection on videos using neural network

    Directory of Open Access Journals (Sweden)

    Sizyakin Roman

    2017-01-01

    Full Text Available In this paper, we consider a method for defects detection in a video sequence, which consists of three main steps; frame compensation, preprocessing by a detector, which is base on the ranking of pixel values, and the classification of all pixels having anomalous values using convolutional neural networks. The effectiveness of the proposed method shown in comparison with the known techniques on several frames of the video sequence with damaged in natural conditions. The analysis of the obtained results indicates the high efficiency of the proposed method. The additional use of machine learning as postprocessing significantly reduce the likelihood of false alarm.

  9. Differential dependency network analysis to identify condition-specific topological changes in biological networks.

    Science.gov (United States)

    Zhang, Bai; Li, Huai; Riggins, Rebecca B; Zhan, Ming; Xuan, Jianhua; Zhang, Zhen; Hoffman, Eric P; Clarke, Robert; Wang, Yue

    2009-02-15

    Significant efforts have been made to acquire data under different conditions and to construct static networks that can explain various gene regulation mechanisms. However, gene regulatory networks are dynamic and condition-specific; under different conditions, networks exhibit different regulation patterns accompanied by different transcriptional network topologies. Thus, an investigation on the topological changes in transcriptional networks can facilitate the understanding of cell development or provide novel insights into the pathophysiology of certain diseases, and help identify the key genetic players that could serve as biomarkers or drug targets. Here, we report a differential dependency network (DDN) analysis to detect statistically significant topological changes in the transcriptional networks between two biological conditions. We propose a local dependency model to represent the local structures of a network by a set of conditional probabilities. We develop an efficient learning algorithm to learn the local dependency model using the Lasso technique. A permutation test is subsequently performed to estimate the statistical significance of each learned local structure. In testing on a simulation dataset, the proposed algorithm accurately detected all the genes with network topological changes. The method was then applied to the estrogen-dependent T-47D estrogen receptor-positive (ER+) breast cancer cell line datasets and human and mouse embryonic stem cell datasets. In both experiments using real microarray datasets, the proposed method produced biologically meaningful results. We expect DDN to emerge as an important bioinformatics tool in transcriptional network analyses. While we focus specifically on transcriptional networks, the DDN method we introduce here is generally applicable to other biological networks with similar characteristics. The DDN MATLAB toolbox and experiment data are available at http://www.cbil.ece.vt.edu/software.htm.

  10. Social networks: communication and change

    OpenAIRE

    Cardoso, Gustavo; Lamy, Cláudia

    2011-01-01

    Virtual social networks have brought about the possibility for open and plural debate, where all those with the necessary literacy skills and means are able to participate in the creation and dissemination of information. By pressing political agents and determining the “agenda” of a lot of the media, users demonstrate that we stand at an ideal platform for creating both real social movements and more or less fleeting events, as manifestos or virtual campaigns. Nonetheless, in order to under...

  11. Social networks: communication and change

    Directory of Open Access Journals (Sweden)

    Gustavo Cardoso

    2011-01-01

    Full Text Available Virtual social networks have brought about the possibility for open and plural debate, where all those with the necessary literacy skills and means are able to participate in the creation and dissemination of information. By pressing political agents and determining the “agenda” of a lot of the media, users demonstrate that we stand at an ideal platform for creating both real social movements and more or less fleeting events, as manifestos or virtual campaigns. Nonetheless, in order to understand the role of virtual social networks in today’s world, we need to answer some prior questions. Are we facing a new communication model, whereby the product of “disinterested” interactivity creates an aura of confidence in disseminated information, often quite higher that that seen in the “old media”? Will that interactivity be a chance to fight-off citizens’ growing detachment with regard to the “res publica”? Will we find in citizen-made journalism, transmitted through virtual social networks, the consecration of a true fourth power? On the other hand, can we call the distinct collective movements we have seen emerging true “social movements”?The present article aims to examine this and other issues that come to the fore in the intricate social world of cyberspace.

  12. The architecture of a network level intrusion detection system

    Energy Technology Data Exchange (ETDEWEB)

    Heady, R.; Luger, G.; Maccabe, A.; Servilla, M. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Computer Science

    1990-08-15

    This paper presents the preliminary architecture of a network level intrusion detection system. The proposed system will monitor base level information in network packets (source, destination, packet size, and time), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.

  13. On Functional Module Detection in Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Ina Koch

    2013-08-01

    Full Text Available Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models.

  14. Network anomaly detection system with optimized DS evidence theory.

    Science.gov (United States)

    Liu, Yuan; Wang, Xiaofeng; Liu, Kaiyu

    2014-01-01

    Network anomaly detection has been focused on by more people with the fast development of computer network. Some researchers utilized fusion method and DS evidence theory to do network anomaly detection but with low performance, and they did not consider features of network-complicated and varied. To achieve high detection rate, we present a novel network anomaly detection system with optimized Dempster-Shafer evidence theory (ODS) and regression basic probability assignment (RBPA) function. In this model, we add weights for each sensor to optimize DS evidence theory according to its previous predict accuracy. And RBPA employs sensor's regression ability to address complex network. By four kinds of experiments, we find that our novel network anomaly detection model has a better detection rate, and RBPA as well as ODS optimization methods can improve system performance significantly.

  15. On Emulation-Based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Abbasi, Ali; Wetzel, Jos; Bokslag, Wouter; Zambon, Emmanuele; Etalle, Sandro

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an in- strumented environment and checking the execution traces for signs of shellcode activity.

  16. Progressive changes in a recognition memory network in Parkinson's disease.

    Science.gov (United States)

    Segura, Bàrbara; Ibarretxe-Bilbao, Naroa; Sala-Llonch, Roser; Baggio, Hugo Cesar; Martí, María Jose; Valldeoriola, Francesc; Vendrell, Pere; Bargalló, Nuria; Tolosa, Eduard; Junqué, Carme

    2013-04-01

    In a previous functional MRI (fMRI) study, we found that patients with Parkinson's disease (PD) presented with dysfunctions in the recruitment of recognition memory networks. We aimed to investigate the changes in these networks over time. We studied 17 PD patients and 13 age and sex matched healthy subjects. In both groups fMRI (recognition memory paradigm) and neuropsychological assessments were obtained at baseline and at follow-up. To analyse changes over time in functional networks, model free (independent component analysis) analyses of the fMRI data were carried out. Then, a cross correlation approach was used to assess the changes in the strength of functional connectivity. At follow-up, patients showed reduced recruitment of one network, including decreased activation in the orbitofrontal cortices, middle frontal gyri, frontal poles, anterior paracingulate cortex, superior parietal lobes and left middle temporal gyrus, as well as decreased deactivation in the anterior paracingulate gyrus and precuneus. Cross correlation analyses over time showed a decrease in the strength of functional connectivity between the middle frontal gyrus and the superior parietal lobe in PD patients. Model free fMRI and cross correlation connectivity analyses were able to detect progressive changes in functional networks involved in recognition memory in PD patients at early disease stages and without overt clinical deterioration. Functional connectivity analyses could be useful to monitor changes in brain networks underlying neuropsychological deficits in PD.

  17. Detecting functional hubs of ictogenic networks.

    Science.gov (United States)

    Zubler, Frederic; Gast, Heidemarie; Abela, Eugenio; Rummel, Christian; Hauf, Martinus; Wiest, Roland; Pollo, Claudio; Schindler, Kaspar

    2015-03-01

    Quantitative EEG (qEEG) has modified our understanding of epileptic seizures, shifting our view from the traditionally accepted hyper-synchrony paradigm toward more complex models based on re-organization of functional networks. However, qEEG measurements are so far rarely considered during the clinical decision-making process. To better understand the dynamics of intracranial EEG signals, we examine a functional network derived from the quantification of information flow between intracranial EEG signals. Using transfer entropy, we analyzed 198 seizures from 27 patients undergoing pre-surgical evaluation for pharmaco-resistant epilepsy. During each seizure we considered for each network the in-, out- and total "hubs", defined respectively as the time and the EEG channels with the maximal incoming, outgoing or total (bidirectional) information flow. In the majority of cases we found that the hubs occur around the middle of seizures, and interestingly not at the beginning or end, where the most dramatic EEG signal changes are found by visual inspection. For the patients who then underwent surgery, good postoperative clinical outcome was on average associated with a higher percentage of out- or total-hubs located in the resected area (for out-hubs p = 0.01, for total-hubs p = 0.04). The location of in-hubs showed no clear predictive value. We conclude that the study of functional networks based on qEEG measurements may help to identify brain areas that are critical for seizure generation and are thus potential targets for focused therapeutic interventions.

  18. Detection of Intelligent Intruders in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2016-01-01

    Full Text Available Most of the existing research works on the intrusion detection problem in a wireless sensor network (WSN assume linear or random mobility patterns in abstracting intruders’ models in traversing the WSN field. However, in real-life WSN applications, an intruder is usually an intelligent mobile robot with environment learning and detection avoidance capability (i.e., the capability to avoid surrounding sensors. Due to this, the literature results based on the linear or random mobility models may not be applied to the real-life WSN design and deployment for efficient and effective intrusion detection in practice. This motivates us to investigate the impact of intruder’s intelligence on the intrusion detection problem in a WSN for various applications. To be specific, we propose two intrusion algorithms, the pinball and flood-fill algorithms, to mimic the intelligent motion and behaviors of a mobile intruder in detecting and circumventing nearby sensors for detection avoidance while heading for its destination. The two proposed algorithms are integrated into a WSN framework for intrusion detection analysis in various circumstances. Monte Carlo simulations are conducted, and the results indicate that: (1 the performance of a WSN drastically changes as a result of the intruder’s intelligence in avoiding sensor detections and intrusion algorithms; (2 network parameters, including node density, sensing range and communication range, play a crucial part in the effectiveness of the intruder’s intrusion algorithms; and (3 it is imperative to integrate intruder’s intelligence in the WSN research for intruder detection problems under various application circumstances.

  19. The network secrets of great change agents.

    Science.gov (United States)

    Battilana, Julie; Casciaro, Tiziana

    2013-01-01

    Change is hard, especially in a large organization. Yet some leaders succeed--often spectacularly--at transforming their workplaces. what makes them able to exert this sort of influence when the vast majority can't? The authors tracked 68 change initiatives in the UK's National Health Service, an organization whose size, complexity, and tradition can make reform difficult. They discovered several predictors of change agents' success--all of which emphasize the importance of networks of personal relationships: Change agents who were central in the organization's informal network had a clear advantage, regardless of their position in the formal hierarchy. People who bridged disconnected groups or individuals were more effective at implementing dramatic reforms. The resisters in their networks did not necessarily know one another and so were unlikely to form a coalition. Change agents with cohesive networks, in which all individuals were connected, were better at instituting minor changes. Their contacts rallied around the initiative and helped convince others of its importance. Being close to people who were ambivalent about a change was always beneficial. In the end, fence-sitters were reluctant to disappoint a friend. But close relationships with resisters were a double-edged sword: Such ties helped push through minor initiatives but were a hindrance when attempting major change.

  20. fraud detection in mobile communications networks using user

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    Keywords: Call data, fraud detection, neural networks, probabilistic models, user profiling ... Intrusion detection approach can be divided into two classes of .... Raw call data. Call data simulator. SOM Neural. Network. Probabilistic. System. Monitoring. Database. Database. Fig. 3: Mobile communication detection tools.

  1. Wireless Sensor Network for Forest Fire Detection

    Directory of Open Access Journals (Sweden)

    Emansa Hasri Putra

    2013-09-01

    Full Text Available Forest fires are one of problems that threaten sustainability of the forest. Early prevention system for indications of forest fires is absolutely necessary. The extent of the forest to be one of the problems encountered in the forest condition monitoring. To overcome the problems of forest extent, designed a system of forest fire detection system by adopting the Wireless Sensor Network (WSN using multiple sensor nodes. Each sensor node has a microcontroller, transmitter/receiver and three sensors. Measurement method is performed by measuring the temperature, flame, the levels of methane, hydrocarbons, and CO2 in some forest area and the combustion of peat in a simulator. From results of measurements of temperature, levels of methane, a hydrocarbon gas and CO2 in an open area indicates there are no signs of fires due to the value of the temperature, methane, hydrocarbon gas, and CO2 is below the measurement in the space simulator.

  2. Electrochemical Detection in Stacked Paper Networks.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  3. DETECTING NETWORK ATTACKS IN COMPUTER NETWORKS BY USING DATA MINING METHODS

    OpenAIRE

    Platonov, V. V.; Semenov, P. O.

    2016-01-01

    The article describes an approach to the development of an intrusion detection system for computer networks. It is shown that the usage of several data mining methods and tools can improve the efficiency of protection computer networks against network at-tacks due to the combination of the benefits of signature detection and anomalies detection and the opportunity of adaptation the sys-tem for hardware and software structure of the computer network.

  4. Airborne hyperspectral detection of small changes.

    Science.gov (United States)

    Eismann, Michael T; Meola, Joseph; Stocker, Alan D; Beaven, Scott G; Schaum, Alan P

    2008-10-01

    Hyperspectral change detection offers a promising approach to detect objects and features of remotely sensed areas that are too difficult to find in single images, such as slight changes in land cover and the insertion, deletion, or movement of small objects, by exploiting subtle differences in the imagery over time. Methods for performing such change detection, however, must effectively maintain invariance to typically larger image-to-image changes in illumination and environmental conditions, as well as misregistration and viewing differences between image observations, while remaining sensitive to small differences in scene content. Previous research has established predictive algorithms to overcome such natural changes between images, and these approaches have recently been extended to deal with space-varying changes. The challenges to effective change detection, however, are often exacerbated in an airborne imaging geometry because of the limitations in control over flight conditions and geometry, and some of the recent change detection algorithms have not been demonstrated in an airborne setting. We describe the airborne implementation and relative performance of such methods. We specifically attempt to characterize the effects of spatial misregistration on change detection performance, the efficacy of class-conditional predictors in an airborne setting, and extensions to the change detection approach, including physically motivated shadow transition classifiers and matched change filtering based on in-scene atmospheric normalization.

  5. Distributed Sensing for Quickest Change Detection of Point Radiation Sources

    Science.gov (United States)

    2017-02-01

    paper, we consider an architecture in which each sensor node makes a local binary decision based on current observations only, binary decisions are...quickest change-point detection using a sensor network. They consider non- parametric CUSUM tests at each sensor node without an explicit statistical model of...post-change distribution is unknown and modeled as member of parametric family, one can follow a generalized likelihood ratio based approach [8] or a

  6. Cropping Pattern Detection and Change Analysis in Central Luzon, Philippines Using Multi-Temporal MODIS Imagery and Artificial Neural Network Classifier

    Science.gov (United States)

    dela Torre, D. M.; Perez, G. J. P.

    2016-12-01

    Cropping practices in the Philippines has been intensifying with greater demand for food and agricultural supplies in view of an increasing population and advanced technologies for farming. This has not been monitored regularly using traditional methods but alternative methods using remote sensing has been promising yet underutilized. This study employed multi-temporal data from MODIS and neural network classifier to map annual land use in agricultural areas from 2001-2014 in Central Luzon, the primary rice growing area of the Philippines. Land use statistics derived from these maps were compared with historical El Nino events to examine how land area is affected by drought events. Fourteen maps of agricultural land use was produced, with the primary classes being single-cropping, double-cropping and perennial crops with secondary classes of forests, urban, bare, water and other classes. Primary classes were produced from the neural network classifier while secondary classes were derived from NDVI threshold masks. The overall accuracy for the 2014 map was 62.05% and a kappa statistic of 0.45. 155.56% increase in single-cropping systems from 2001 to 2014 was observed while double cropping systems decreased by 14.83%. Perennials increased by 76.21% while built-up areas decreased by 12.22% within the 14-year interval. There are several sources of error including mixed-pixels, scale-conversion problems and limited ground reference data. An analysis including El Niño events in 2004 and 2010 demonstrated that marginally irrigated areas that usually planted twice in a year resorted to single cropping, indicating that scarcity of water limited the intensification allowable in the area. Findings from this study can be used to predict future use of agricultural land in the country and also examine how farmlands have responded to climatic factors and stressors.

  7. Community Detection for Multiplex Social Networks Based on Relational Bayesian Networks

    DEFF Research Database (Denmark)

    Jiang, Jiuchuan; Jaeger, Manfred

    2014-01-01

    . In this paper we propose to use relational Bayesian networks for the specification of probabilistic network models, and develop inference techniques that solve the community detection problem based on these models. The use of relational Bayesian networks as a flexible high-level modeling framework enables us......Many techniques have been proposed for community detection in social networks. Most of these techniques are only designed for networks defined by a single relation. However, many real networks are multiplex networks that contain multiple types of relations and different attributes on the nodes...

  8. VoIP attacks detection engine based on neural network

    Science.gov (United States)

    Safarik, Jakub; Slachta, Jiri

    2015-05-01

    The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.

  9. Network Intrusion Detection through Stacking Dilated Convolutional Autoencoders

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available Network intrusion detection is one of the most important parts for cyber security to protect computer systems against malicious attacks. With the emergence of numerous sophisticated and new attacks, however, network intrusion detection techniques are facing several significant challenges. The overall objective of this study is to learn useful feature representations automatically and efficiently from large amounts of unlabeled raw network traffic data by using deep learning approaches. We propose a novel network intrusion model by stacking dilated convolutional autoencoders and evaluate our method on two new intrusion detection datasets. Several experiments were carried out to check the effectiveness of our approach. The comparative experimental results demonstrate that the proposed model can achieve considerably high performance which meets the demand of high accuracy and adaptability of network intrusion detection systems (NIDSs. It is quite potential and promising to apply our model in the large-scale and real-world network environments.

  10. Automated Change Detection for Synthetic Aperture Sonar

    Science.gov (United States)

    2014-01-01

    5] L. Lemieux, U. Wieshmann, N. Moran, D. Fish, and S. Shorvon, “The detection and significance of subtle changes in mixed-signal brain lesions by...D. Gounot, and L. Rumbach, “ Automatic change detection in multimodal serial MRI: Application to multiple sclerosis lesion evolution,” NeuroImage 20...development by the SAR community since at least the 1990s,3 and procedures to fuse scene changes derived from segmented features with pixel or parcel based

  11. Social Circles Detection from Ego Network and Profile Information

    Science.gov (United States)

    2014-12-19

    0704-0188 3. DATES COVERED (From - To) - UU UU UU UU Approved for public release; distribution is unlimited. Social Circles Detection from Ego Network...Research Triangle Park, NC 27709-2211 ego network, social copying community REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...ABSTRACT Social Circles Detection from Ego Network and Profile Information Report Title This report presents a study making our first approach to the

  12. Summary how Google's social network changes everything

    CERN Document Server

    2014-01-01

    This work offers a summary of the book: « Google+ for business: How Google's Social Network Changes Everything » by Chris Brogan.Summary of the ideas in Chris Brogan's book « Google+ for business » highlights that the social network created by Google now has lore than 175 million users and is tied to the largest search engines in the world. Therefore, Google+ could end up being the best online business building tool ever developed. So if you can master using Google+ today, you will be well positioned for what happens in the future as Google, YouTube and others continue to bring new developmen

  13. Indigenous people's detection of rapid ecological change.

    Science.gov (United States)

    Aswani, Shankar; Lauer, Matthew

    2014-06-01

    When sudden catastrophic events occur, it becomes critical for coastal communities to detect and respond to environmental transformations because failure to do so may undermine overall ecosystem resilience and threaten people's livelihoods. We therefore asked how capable of detecting rapid ecological change following massive environmental disruptions local, indigenous people are. We assessed the direction and periodicity of experimental learning of people in the Western Solomon Islands after a tsunami in 2007. We compared the results of marine science surveys with local ecological knowledge of the benthos across 3 affected villages and 3 periods before and after the tsunami. We sought to determine how people recognize biophysical changes in the environment before and after catastrophic events such as earthquakes and tsunamis and whether people have the ability to detect ecological changes over short time scales or need longer time scales to recognize changes. Indigenous people were able to detect changes in the benthos over time. Detection levels differed between marine science surveys and local ecological knowledge sources over time, but overall patterns of statistically significant detection of change were evident for various habitats. Our findings have implications for marine conservation, coastal management policies, and disaster-relief efforts because when people are able to detect ecological changes, this, in turn, affects how they exploit and manage their marine resources. © 2014 Society for Conservation Biology.

  14. An Entropy-Based Network Anomaly Detection Method

    Directory of Open Access Journals (Sweden)

    Przemysław Bereziński

    2015-04-01

    Full Text Available Data mining is an interdisciplinary subfield of computer science involving methods at the intersection of artificial intelligence, machine learning and statistics. One of the data mining tasks is anomaly detection which is the analysis of large quantities of data to identify items, events or observations which do not conform to an expected pattern. Anomaly detection is applicable in a variety of domains, e.g., fraud detection, fault detection, system health monitoring but this article focuses on application of anomaly detection in the field of network intrusion detection.The main goal of the article is to prove that an entropy-based approach is suitable to detect modern botnet-like malware based on anomalous patterns in network. This aim is achieved by realization of the following points: (i preparation of a concept of original entropy-based network anomaly detection method, (ii implementation of the method, (iii preparation of original dataset, (iv evaluation of the method.

  15. Colonoscopic polyp detection using convolutional neural networks

    Science.gov (United States)

    Park, Sun Young; Sargent, Dusty

    2016-03-01

    Computer aided diagnosis (CAD) systems for medical image analysis rely on accurate and efficient feature extraction methods. Regardless of which type of classifier is used, the results will be limited if the input features are not diagnostically relevant and do not properly discriminate between the different classes of images. Thus, a large amount of research has been dedicated to creating feature sets that capture the salient features that physicians are able to observe in the images. Successful feature extraction reduces the semantic gap between the physician's interpretation and the computer representation of images, and helps to reduce the variability in diagnosis between physicians. Due to the complexity of many medical image classification tasks, feature extraction for each problem often requires domainspecific knowledge and a carefully constructed feature set for the specific type of images being classified. In this paper, we describe a method for automatic diagnostic feature extraction from colonoscopy images that may have general application and require a lower level of domain-specific knowledge. The work in this paper expands on our previous CAD algorithm for detecting polyps in colonoscopy video. In that work, we applied an eigenimage model to extract features representing polyps, normal tissue, diverticula, etc. from colonoscopy videos taken from various viewing angles and imaging conditions. Classification was performed using a conditional random field (CRF) model that accounted for the spatial and temporal adjacency relationships present in colonoscopy video. In this paper, we replace the eigenimage feature descriptor with features extracted from a convolutional neural network (CNN) trained to recognize the same image types in colonoscopy video. The CNN-derived features show greater invariance to viewing angles and image quality factors when compared to the eigenimage model. The CNN features are used as input to the CRF classifier as before. We report

  16. Vessel detection in ultrasound images using deep convolutional neural networks

    OpenAIRE

    Smistad, Erik; Løvstakken, Lasse

    2016-01-01

    Deep convolutional neural networks have achieved great results on image classification problems. In this paper, a new method using a deep convolutional neural network for detecting blood vessels in B-mode ultrasound images is presented. Automatic blood vessel detection may be useful in medical applications such as deep venous thrombosis detection, anesthesia guidance and catheter placement. The proposed method is able to determine the position and size of the vessels in images in real-time. 1...

  17. On the usability of frequency distributions and source attribution of Cs-137 detections encountered in the IMS radio-nuclide network for radionuclide event screening and climate change monitoring

    Science.gov (United States)

    Becker, A.; Wotawa, G.; Zähringer, M.

    2009-04-01

    Under the provisions of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), airborne radioactivity is measured by means of high purity Germanium gamma ray detectors deployed in a global monitoring network. Almost 60 of the scheduled 80 stations have been put in provisional operations by the end of 2008. Each station daily sends the 24 hour samples' spectroscopic data to the Vienna based Provisional Technical Secretariat (PTS) of the CTBT Organization (CTBTO) for review for treaty-relevant nuclides. Cs-137 is one of these relevant isotopes. Its typical minimum detectable concentration is in the order of a few Bq/m3. However, this isotope is also known to occur in atmospheric trace concentrations, due to known non CTBT relevant processes and sources related to, for example, the re-suspension of cesium from historic nuclear tests and/or the Chernobyl reactor disaster, temporarily enhanced by bio-mass burning (Wotawa et al. 2006). Properly attributed cesium detections can be used as a proxy to detect Aeolian dust events (Igarashi et al, 2001) that potentially carry cesium from all aforementioned sources but are also known to play an important role for the radiative forcing in the atmosphere (shadow effect), at the surface (albedo) and the carbon dioxide cycle when interacting with oceanic phytoplankton (Mikami and Shi, 2005). In this context this paper provides a systematic attribution of recent Cs-137 detections in the PTS monitoring network in order to Characterize those stations which are regularly affected by Cs-137 Provide input for procedures that distinguish CTBT relevant detection from other sources (event screening) Explore on the capability of certain stations to use their Cs-137 detections as a proxy to detect aeolian dust events and to flag the belonging filters to be relevant for further investigations in this field (-> EGU-2009 Session CL16/AS4.6/GM10.1: Aeolian dust: initiator, player, and recorder of environmental change). References Igarashi, Y., M

  18. Detection of cardiac activity changes from human speech

    Science.gov (United States)

    Tovarek, Jaromir; Partila, Pavol; Voznak, Miroslav; Mikulec, Martin; Mehic, Miralem

    2015-05-01

    Impact of changes in blood pressure and pulse from human speech is disclosed in this article. The symptoms of increased physical activity are pulse, systolic and diastolic pressure. There are many methods of measuring and indicating these parameters. The measurements must be carried out using devices which are not used in everyday life. In most cases, the measurement of blood pressure and pulse following health problems or other adverse feelings. Nowadays, research teams are trying to design and implement modern methods in ordinary human activities. The main objective of the proposal is to reduce the delay between detecting the adverse pressure and to the mentioned warning signs and feelings. Common and frequent activity of man is speaking, while it is known that the function of the vocal tract can be affected by the change in heart activity. Therefore, it can be a useful parameter for detecting physiological changes. A method for detecting human physiological changes by speech processing and artificial neural network classification is described in this article. The pulse and blood pressure changes was induced by physical exercises in this experiment. The set of measured subjects was formed by ten healthy volunteers of both sexes. None of the subjects was a professional athlete. The process of the experiment was divided into phases before, during and after physical training. Pulse, systolic, diastolic pressure was measured and voice activity was recorded after each of them. The results of this experiment describe a method for detecting increased cardiac activity from human speech using artificial neural network.

  19. Autonomic intrusion detection: Adaptively detecting anomalies over unlabeled audit data streams in computer networks

    KAUST Repository

    Wang, Wei

    2014-06-22

    In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical clustering of the streaming data. It automatically labels the data and adapts to normal behavior changes while identifies anomalies. Two large real HTTP traffic streams collected in our institute as well as a set of benchmark KDD’99 data are used to validate the framework and the method. The test results show that the autonomic model achieves better results in terms of effectiveness and efficiency compared to adaptive Sequential Karhunen–Loeve method and static AP as well as three other static anomaly detection methods, namely, k-NN, PCA and SVM.

  20. Networking Technologies and the Rate of Technological Change

    Directory of Open Access Journals (Sweden)

    Charles Mitchell

    2005-12-01

    Full Text Available Network technology is changing rapidly and those adept at ICT analysis need resolve rate of change issues. Developments in networking now are in the direction of heuristic intelligence. Since about 1980, networking techniques have encouraged combining bits of information with imagination cognitively to improve ideas about reality. ICT enterprise projects utilize networking to sustain requisite imagination. Assumptions and misassuptions of project builders are rationally comprehended as networking sustains creative processes. The monopolization of valuable network techniques influences in the direction of esoteric networking. Data presents that substantial knowledge and networking is now occurring globally. As a netaphor, networking

  1. Changes on the CERN telephone network

    CERN Document Server

    2003-01-01

    The continuation of ours tasks to update the network is scheduled as follows: Date Change type Affected area June 11 Update of switch N4 Meyrin Ouest Update of switch N2 Meyrin Disturbances or even interruptions of telephony services may occur from 18:30 to 00:00 hrs on the above mentioned dates. In case of problem, please send us your remarks by email to Standard.Telephone@cern.ch.

  2. Radial basis function neural network in fault detection of automotive ...

    African Journals Online (AJOL)

    Radial basis function neural network in fault detection of automotive engines. Adnan Hamad, Dingli Yu, JB Gomm, Mahavir S Sangha. Abstract. Fault detection and isolation have become one of the most important aspects of automobile design. A fault detection (FD) scheme is developed for automotive engines in this paper.

  3. Detecting modules in biological networks by edge weight clustering and entropy significance

    Directory of Open Access Journals (Sweden)

    Paola eLecca

    2015-08-01

    Full Text Available Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes. Conversely, numerical properties of network edges are underused, even though the information content which can be associated with network edges has augmented due to steady advances in molecular biology technology over the last decade. Properly accounting for network edges in the development of clustering approaches can become crucial to improve quantitative interpretation of omics data. We present a novel technique for network module detection, named WG-Cluster (Weighted Graph CLUSTERing. WG-Cluster's notable features are the: (1 simultaneous exploitation of network node and edge weights to improve the biological interpretability of connected components detected, (2 assessment of their statistical significance, and (3 identification of emerging topological properties in the connected components. Applying WG-Cluster to a protein-protein network weighted by measurements of differential gene expression permitted to explore the changes in network topology under two distinct (normal vs tumour conditions.

  4. Detecting change-points in extremes

    KAUST Repository

    Dupuis, D. J.

    2015-01-01

    Even though most work on change-point estimation focuses on changes in the mean, changes in the variance or in the tail distribution can lead to more extreme events. In this paper, we develop a new method of detecting and estimating the change-points in the tail of multiple time series data. In addition, we adapt existing tail change-point detection methods to our specific problem and conduct a thorough comparison of different methods in terms of performance on the estimation of change-points and computational time. We also examine three locations on the U.S. northeast coast and demonstrate that the methods are useful for identifying changes in seasonally extreme warm temperatures.

  5. Intrusion detection and monitoring for wireless networks.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda (Indiana University); Tabriz, Parisa (University of Illinois at Urbana-Champaign); Pelon, Kristen (Cedarville University); McCoy, Damon (University of Colorado, Boulder); Lodato, Mark (Lafayette College); Hemingway, Franklin (University of New Mexico); Custer, Ryan P.; Averin, Dimitry (Polytechnic University); Franklin, Jason (Carnegie Mellon University); Kilman, Dominique Marie

    2005-11-01

    Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more

  6. Neuromorphic computing applications for network intrusion detection systems

    Science.gov (United States)

    Garcia, Raymond C.; Pino, Robinson E.

    2014-05-01

    What is presented here is a sequence of evolving concepts for network intrusion detection. These concepts start with neuromorphic structures for XOR-based signature matching and conclude with computationally based network intrusion detection system with an autonomous structuring algorithm. There is evidence that neuromorphic computation for network intrusion detection is fractal in nature under certain conditions. Specifically, the neural structure can take fractal form when simple neural structuring is autonomous. A neural structure is fractal by definition when its fractal dimension exceeds the synaptic matrix dimension. The authors introduce the use of fractal dimension of the neuromorphic structure as a factor in the autonomous restructuring feedback loop.

  7. File Detection On Network Traffic Using Approximate Matching

    Directory of Open Access Journals (Sweden)

    Frank Breitinger

    2014-09-01

    Full Text Available In recent years, Internet technologies changed enormously and allow faster Internet connections, higher data rates and mobile usage. Hence, it is possible to send huge amounts of data / files easily which is often used by insiders or attackers to steal intellectual property. As a consequence, data leakage prevention systems (DLPS have been developed which analyze network traffic and alert in case of a data leak. Although the overall concepts of the detection techniques are known, the systems are mostly closed and commercial.Within this paper we present a new technique for network trac analysis based on approximate matching (a.k.a fuzzy hashing which is very common in digital forensics to correlate similar files. This paper demonstrates how to optimize and apply them on single network packets. Our contribution is a straightforward concept which does not need a comprehensive conguration: hash the file and store the digest in the database. Within our experiments we obtained false positive rates between 10-4 and 10-5 and an algorithm throughput of over 650 Mbit/s.

  8. Detecting eavesdropping activity in fiber optic networks

    Science.gov (United States)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  9. Network cluster detecting in associated bi-graph picture

    CERN Document Server

    He, Zhe; Xu, Rui-Jie; Wang, Bing-Hong; Ou-Yang, Zhong-Can

    2014-01-01

    We find that there is a close relationship between the associated bigraph and the clustering. the imbedding of the bigraph into some space can identify the clusters. Thus, we propose a new method for network cluster detecting through associated bigraph,of which the physical meaning is clear and the time complexity is acceptable. These characteristics help people to understand the structure and character of networks. We uncover the clusters on serval real networks in this paper as examples. The Zachary Network, which presents the structure of a karate club,can be partation into two clusters correctly by this method. And the Dolphin network is partitioned reasonably.

  10. DETECTION OF TOPOLOGICAL PATTERNS IN PROTEIN NETWORKS.

    Energy Technology Data Exchange (ETDEWEB)

    MASLOV,S.SNEPPEN,K.

    2003-11-17

    Complex networks appear in biology on many different levels: (1) All biochemical reactions taking place in a single cell constitute its metabolic network, where nodes are individual metabolites, and edges are metabolic reactions converting them to each other. (2) Virtually every one of these reactions is catalyzed by an enzyme and the specificity of this catalytic function is ensured by the key and lock principle of its physical interaction with the substrate. Often the functional enzyme is formed by several mutually interacting proteins. Thus the structure of the metabolic network is shaped by the network of physical interactions of cell's proteins with their substrates and each other. (3) The abundance and the level of activity of each of the proteins in the physical interaction network in turn is controlled by the regulatory network of the cell. Such regulatory network includes all of the multiple mechanisms in which proteins in the cell control each other including transcriptional and translational regulation, regulation of mRNA editing and its transport out of the nucleus, specific targeting of individual proteins for degradation, modification of their activity e.g. by phosphorylation/dephosphorylation or allosteric regulation, etc. To get some idea about the complexity and interconnectedness of protein-protein regulations in baker's yeast Saccharomyces Cerevisiae in Fig. 1 we show a part of the regulatory network corresponding to positive or negative regulations that regulatory proteins exert on each other. (4) On yet higher level individual cells of a multicellular organism exchange signals with each other. This gives rise to several new networks such as e.g. nervous, hormonal, and immune systems of animals. The intercellular signaling network stages the development of a multicellular organism from the fertilized egg. (5) Finally, on the grandest scale, the interactions between individual species in ecosystems determine their food webs. An

  11. Evaluation of Techniques to Detect Significant Network Performance Problems using End-to-End Active Network Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, R.Les; Logg, Connie; Chhaparia, Mahesh; /SLAC; Grigoriev, Maxim; /Fermilab; Haro, Felipe; /Chile U., Catolica; Nazir, Fawad; /NUST, Rawalpindi; Sandford, Mark

    2006-01-25

    End-to-End fault and performance problems detection in wide area production networks is becoming increasingly hard as the complexity of the paths, the diversity of the performance, and dependency on the network increase. Several monitoring infrastructures are built to monitor different network metrics and collect monitoring information from thousands of hosts around the globe. Typically there are hundreds to thousands of time-series plots of network metrics which need to be looked at to identify network performance problems or anomalous variations in the traffic. Furthermore, most commercial products rely on a comparison with user configured static thresholds and often require access to SNMP-MIB information, to which a typical end-user does not usually have access. In our paper we propose new techniques to detect network performance problems proactively in close to realtime and we do not rely on static thresholds and SNMP-MIB information. We describe and compare the use of several different algorithms that we have implemented to detect persistent network problems using anomalous variations analysis in real end-to-end Internet performance measurements. We also provide methods and/or guidance for how to set the user settable parameters. The measurements are based on active probes running on 40 production network paths with bottlenecks varying from 0.5Mbits/s to 1000Mbit/s. For well behaved data (no missed measurements and no very large outliers) with small seasonal changes most algorithms identify similar events. We compare the algorithms' robustness with respect to false positives and missed events especially when there are large seasonal effects in the data. Our proposed techniques cover a wide variety of network paths and traffic patterns. We also discuss the applicability of the algorithms in terms of their intuitiveness, their speed of execution as implemented, and areas of applicability. Our encouraging results compare and evaluate the accuracy of our

  12. lidar change detection using building models

    Science.gov (United States)

    Kim, Angela M.; Runyon, Scott C.; Jalobeanu, Andre; Esterline, Chelsea H.; Kruse, Fred A.

    2014-06-01

    Terrestrial LiDAR scans of building models collected with a FARO Focus3D and a RIEGL VZ-400 were used to investigate point-to-point and model-to-model LiDAR change detection. LiDAR data were scaled, decimated, and georegistered to mimic real world airborne collects. Two physical building models were used to explore various aspects of the change detection process. The first model was a 1:250-scale representation of the Naval Postgraduate School campus in Monterey, CA, constructed from Lego blocks and scanned in a laboratory setting using both the FARO and RIEGL. The second model at 1:8-scale consisted of large cardboard boxes placed outdoors and scanned from rooftops of adjacent buildings using the RIEGL. A point-to-point change detection scheme was applied directly to the point-cloud datasets. In the model-to-model change detection scheme, changes were detected by comparing Digital Surface Models (DSMs). The use of physical models allowed analysis of effects of changes in scanner and scanning geometry, and performance of the change detection methods on different types of changes, including building collapse or subsistence, construction, and shifts in location. Results indicate that at low false-alarm rates, the point-to-point method slightly outperforms the model-to-model method. The point-to-point method is less sensitive to misregistration errors in the data. Best results are obtained when the baseline and change datasets are collected using the same LiDAR system and collection geometry.

  13. ANOMALY NETWORK INTRUSION DETECTION SYSTEM BASED ON DISTRIBUTED TIME-DELAY NEURAL NETWORK (DTDNN

    Directory of Open Access Journals (Sweden)

    LAHEEB MOHAMMAD IBRAHIM

    2010-12-01

    Full Text Available In this research, a hierarchical off-line anomaly network intrusion detection system based on Distributed Time-Delay Artificial Neural Network is introduced. This research aims to solve a hierarchical multi class problem in which the type of attack (DoS, U2R, R2L and Probe attack detected by dynamic neural network. The results indicate that dynamic neural nets (Distributed Time-Delay Artificial Neural Network can achieve a high detection rate, where the overall accuracy classification rate average is equal to 97.24%.

  14. Network Traffic Features for Anomaly Detection in Specific Industrial Control System Network

    Directory of Open Access Journals (Sweden)

    Matti Mantere

    2013-09-01

    Full Text Available The deterministic and restricted nature of industrial control system networks sets them apart from more open networks, such as local area networks in office environments. This improves the usability of network security, monitoring approaches that would be less feasible in more open environments. One of such approaches is machine learning based anomaly detection. Without proper customization for the special requirements of the industrial control system network environment, many existing anomaly or misuse detection systems will perform sub-optimally. A machine learning based approach could reduce the amount of manual customization required for different industrial control system networks. In this paper we analyze a possible set of features to be used in a machine learning based anomaly detection system in the real world industrial control system network environment under investigation. The network under investigation is represented by architectural drawing and results derived from network trace analysis. The network trace is captured from a live running industrial process control network and includes both control data and the data flowing between the control network and the office network. We limit the investigation to the IP traffic in the traces.

  15. Evaluation of experimental UAV video change detection

    Science.gov (United States)

    Bartelsen, J.; Saur, G.; Teutsch, C.

    2016-10-01

    During the last ten years, the availability of images acquired from unmanned aerial vehicles (UAVs) has been continuously increasing due to the improvements and economic success of flight and sensor systems. From our point of view, reliable and automatic image-based change detection may contribute to overcoming several challenging problems in military reconnaissance, civil security, and disaster management. Changes within a scene can be caused by functional activities, i.e., footprints or skid marks, excavations, or humidity penetration; these might be recognizable in aerial images, but are almost overlooked when change detection is executed manually. With respect to the circumstances, these kinds of changes may be an indication of sabotage, terroristic activity, or threatening natural disasters. Although image-based change detection is possible from both ground and aerial perspectives, in this paper we primarily address the latter. We have applied an extended approach to change detection as described by Saur and Kr uger,1 and Saur et al.2 and have built upon the ideas of Saur and Bartelsen.3 The commercial simulation environment Virtual Battle Space 3 (VBS3) is used to simulate aerial "before" and "after" image acquisition concerning flight path, weather conditions and objects within the scene and to obtain synthetic videos. Video frames, which depict the same part of the scene, including "before" and "after" changes and not necessarily from the same perspective, are registered pixel-wise against each other by a photogrammetric concept, which is based on a homography. The pixel-wise registration is used to apply an automatic difference analysis, which, to a limited extent, is able to suppress typical errors caused by imprecise frame registration, sensor noise, vegetation and especially parallax effects. The primary concern of this paper is to seriously evaluate the possibilities and limitations of our current approach for image-based change detection with respect

  16. Node Attribute-enhanced Community Detection in Complex Networks.

    Science.gov (United States)

    Jia, Caiyan; Li, Yafang; Carson, Matthew B; Wang, Xiaoyang; Yu, Jian

    2017-05-25

    Community detection involves grouping the nodes of a network such that nodes in the same community are more densely connected to each other than to the rest of the network. Previous studies have focused mainly on identifying communities in networks using node connectivity. However, each node in a network may be associated with many attributes. Identifying communities in networks combining node attributes has become increasingly popular in recent years. Most existing methods operate on networks with attributes of binary, categorical, or numerical type only. In this study, we introduce kNN-enhance, a simple and flexible community detection approach that uses node attribute enhancement. This approach adds the k Nearest Neighbor (kNN) graph of node attributes to alleviate the sparsity and the noise effect of an original network, thereby strengthening the community structure in the network. We use two testing algorithms, kNN-nearest and kNN-Kmeans, to partition the newly generated, attribute-enhanced graph. Our analyses of synthetic and real world networks have shown that the proposed algorithms achieve better performance compared to existing state-of-the-art algorithms. Further, the algorithms are able to deal with networks containing different combinations of binary, categorical, or numerical attributes and could be easily extended to the analysis of massive networks.

  17. Malicious node detection in ad-hoc wireless networks

    Science.gov (United States)

    Griswold, Richard L.; Medidi, Sirisha R.

    2003-07-01

    Advances in wireless communications and the proliferation of mobile computing devices has led to the rise of a new type of computer network: the ad-hoc wireless network. Ad-hoc networks are characterized by a lack of fixed infrastructure, which give ad-hoc networks a great deal of flexibility, but also increases the risk of security problems. In wired networks, key pieces of network infrastructure are secured to prevent unauthorized physical access and tampering. Network administrators ensure that everything is properly configured and are on-hand to fix problems and deal with intrusions. In contrast, the nodes in an ad-hoc network are responsible for routing and forwarding data in the network, and there are no network administrators to handle potential problems. This makes an ad-hoc network more vulnerable to a misconfigured, faulty, or compromised node. We propose a means for a node in an ad-hoc network to detect and handle these malicious nodes by comparing data available to the routing protocol, such as cached routes in Dynamic Source Routing, ICMP messages, and transport layer information, such as TCP timeouts. This data can then be used along with network probes to isolate the malicious node.

  18. Joint Dictionary Learning for Multispectral Change Detection.

    Science.gov (United States)

    Lu, Xiaoqiang; Yuan, Yuan; Zheng, Xiangtao

    2017-04-01

    Change detection is one of the most important applications of remote sensing technology. It is a challenging task due to the obvious variations in the radiometric value of spectral signature and the limited capability of utilizing spectral information. In this paper, an improved sparse coding method for change detection is proposed. The intuition of the proposed method is that unchanged pixels in different images can be well reconstructed by the joint dictionary, which corresponds to knowledge of unchanged pixels, while changed pixels cannot. First, a query image pair is projected onto the joint dictionary to constitute the knowledge of unchanged pixels. Then reconstruction error is obtained to discriminate between the changed and unchanged pixels in the different images. To select the proper thresholds for determining changed regions, an automatic threshold selection strategy is presented by minimizing the reconstruction errors of the changed pixels. Adequate experiments on multispectral data have been tested, and the experimental results compared with the state-of-the-art methods prove the superiority of the proposed method. Contributions of the proposed method can be summarized as follows: 1) joint dictionary learning is proposed to explore the intrinsic information of different images for change detection. In this case, change detection can be transformed as a sparse representation problem. To the authors' knowledge, few publications utilize joint learning dictionary in change detection; 2) an automatic threshold selection strategy is presented, which minimizes the reconstruction errors of the changed pixels without the prior assumption of the spectral signature. As a result, the threshold value provided by the proposed method can adapt to different data due to the characteristic of joint dictionary learning; and 3) the proposed method makes no prior assumption of the modeling and the handling of the spectral signature, which can be adapted to different data.

  19. Picture this: Managed change and resistance in business network settings

    DEFF Research Database (Denmark)

    Kragh, Hanne; Andersen, Poul Houman

    2009-01-01

    This paper discusses change management in networks. The literature on business networks tends to downplay the role of managerial initiative in network change. The change management literature addresses such initiative, but with its single-firm perspective it overlooks the interdependence of network...... actors. In exploring the void between these two streams of literature, we deploy the concept of network pictures to discuss managed change in network settings. We analyze a change project from the furniture industry and address the consequences of attempting to manage change activities in a network...... context characterized by limited managerial authority over these activities. Our analysis suggests that change efforts unfold as a negotiated process during which the change project is re-negotiated to fit the multiple actor constituencies. The degree of overlap in the co-existing network pictures...

  20. AN IMMUNE AGENTS SYSTEM FOR NETWORK INTRUSIONS DETECTION

    OpenAIRE

    Noria Benyettou; Abdelkader Benyettou; Vincent Rodin

    2014-01-01

    With the development growing of network technology, computer networks became increasingly wide and opened. This evolution gave birth to new techniques allowing accessibility of networks and information systems with an aim of facilitating the transactions. Consequently, these techniques gave also birth to new forms of threats. In this article, we present the utility to use a system of intrusion detection through a presentation of these characteristics. Using as inspiration the i...

  1. Artificial intelligence based event detection in wireless sensor networks

    OpenAIRE

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more recent applications is on fast and reliable identification of out-of-ordinary situations and events. This new functionality of wireless sensor networks is known as event detection. Due to the fact t...

  2. Outlier Detection Techniques For Wireless Sensor Networks: A Survey

    NARCIS (Netherlands)

    Zhang, Y.; Meratnia, Nirvana; Havinga, Paul J.M.

    2008-01-01

    In the field of wireless sensor networks, measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are

  3. Outlier detection techniques for wireless sensor networks: A survey

    NARCIS (Netherlands)

    Zhang, Y.; Meratnia, Nirvana; Havinga, Paul J.M.

    2010-01-01

    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection

  4. Fraud Detection In Mobile Communications Networks Using User ...

    African Journals Online (AJOL)

    Fraud detection is an important application, since network operators lose a relevant portion of their revenue to fraud. The intentions of mobile phone users cannot be well observed except through the call data. The call data is used in describing behavioural patterns of users. Neural networks and probabilistic models are ...

  5. Game theory and extremal optimization for community detection in complex dynamic networks.

    Directory of Open Access Journals (Sweden)

    Rodica Ioana Lung

    Full Text Available The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.

  6. Game theory and extremal optimization for community detection in complex dynamic networks.

    Science.gov (United States)

    Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca

    2014-01-01

    The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.

  7. Spectral methods for network community detection and graph partitioning

    OpenAIRE

    Newman, M.E.J.

    2013-01-01

    We consider three distinct and well studied problems concerning network structure: community detection by modularity maximization, community detection by statistical inference, and normalized-cut graph partitioning. Each of these problems can be tackled using spectral algorithms that make use of the eigenvectors of matrix representations of the network. We show that with certain choices of the free parameters appearing in these spectral algorithms the algorithms for all three problems are, in...

  8. Integrating Wireless Networking for Radiation Detection

    Science.gov (United States)

    Board, Jeremy; Barzilov, Alexander; Womble, Phillip; Paschal, Jon

    2006-10-01

    As wireless networking becomes more available, new applications are being developed for this technology. Our group has been studying the advantages of wireless networks of radiation detectors. With the prevalence of the IEEE 802.11 standard (``WiFi''), we have developed a wireless detector unit which is comprised of a 5 cm x 5 cm NaI(Tl) detector, amplifier and data acquisition electronics, and a WiFi transceiver. A server may communicate with the detector unit using a TCP/IP network connected to a WiFi access point. Special software on the server will perform radioactive isotope determination and estimate dose-rates. We are developing an enhanced version of the software which utilizes the receiver signal strength index (RSSI) to estimate source strengths and to create maps of radiation intensity.

  9. Video change detection for fixed wing UAVs

    Science.gov (United States)

    Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa

    2017-10-01

    In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the

  10. Detecting emotional contagion in massive social networks.

    Directory of Open Access Journals (Sweden)

    Lorenzo Coviello

    Full Text Available Happiness and other emotions spread between people in direct contact, but it is unclear whether massive online social networks also contribute to this spread. Here, we elaborate a novel method for measuring the contagion of emotional expression. With data from millions of Facebook users, we show that rainfall directly influences the emotional content of their status messages, and it also affects the status messages of friends in other cities who are not experiencing rainfall. For every one person affected directly, rainfall alters the emotional expression of about one to two other people, suggesting that online social networks may magnify the intensity of global emotional synchrony.

  11. Detecting emotional contagion in massive social networks.

    Science.gov (United States)

    Coviello, Lorenzo; Sohn, Yunkyu; Kramer, Adam D I; Marlow, Cameron; Franceschetti, Massimo; Christakis, Nicholas A; Fowler, James H

    2014-01-01

    Happiness and other emotions spread between people in direct contact, but it is unclear whether massive online social networks also contribute to this spread. Here, we elaborate a novel method for measuring the contagion of emotional expression. With data from millions of Facebook users, we show that rainfall directly influences the emotional content of their status messages, and it also affects the status messages of friends in other cities who are not experiencing rainfall. For every one person affected directly, rainfall alters the emotional expression of about one to two other people, suggesting that online social networks may magnify the intensity of global emotional synchrony.

  12. The ground truth about metadata and community detection in networks.

    Science.gov (United States)

    Peel, Leto; Larremore, Daniel B; Clauset, Aaron

    2017-05-01

    Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system's components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks' links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures.

  13. A novel community detection method in bipartite networks

    Science.gov (United States)

    Zhou, Cangqi; Feng, Liang; Zhao, Qianchuan

    2018-02-01

    Community structure is a common and important feature in many complex networks, including bipartite networks, which are used as a standard model for many empirical networks comprised of two types of nodes. In this paper, we propose a two-stage method for detecting community structure in bipartite networks. Firstly, we extend the widely-used Louvain algorithm to bipartite networks. The effectiveness and efficiency of the Louvain algorithm have been proved by many applications. However, there lacks a Louvain-like algorithm specially modified for bipartite networks. Based on bipartite modularity, a measure that extends unipartite modularity and that quantifies the strength of partitions in bipartite networks, we fill the gap by developing the Bi-Louvain algorithm that iteratively groups the nodes in each part by turns. This algorithm in bipartite networks often produces a balanced network structure with equal numbers of two types of nodes. Secondly, for the balanced network yielded by the first algorithm, we use an agglomerative clustering method to further cluster the network. We demonstrate that the calculation of the gain of modularity of each aggregation, and the operation of joining two communities can be compactly calculated by matrix operations for all pairs of communities simultaneously. At last, a complete hierarchical community structure is unfolded. We apply our method to two benchmark data sets and a large-scale data set from an e-commerce company, showing that it effectively identifies community structure in bipartite networks.

  14. Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection.

    Science.gov (United States)

    Kaliappan, Jayakumar; Thiagarajan, Revathi; Sundararajan, Karpagam

    2015-01-01

    An intrusion detection system (IDS) helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU), there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate.

  15. Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection

    Directory of Open Access Journals (Sweden)

    Jayakumar Kaliappan

    2015-01-01

    Full Text Available An intrusion detection system (IDS helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU, there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate.

  16. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security

    Science.gov (United States)

    Kang, Min-Joo

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus. PMID:27271802

  17. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Science.gov (United States)

    Kang, Min-Joo; Kang, Je-Won

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.

  18. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Directory of Open Access Journals (Sweden)

    Min-Joo Kang

    Full Text Available A novel intrusion detection system (IDS using a deep neural network (DNN is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN, therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN bus.

  19. SA-SOM algorithm for detecting communities in complex networks

    Science.gov (United States)

    Chen, Luogeng; Wang, Yanran; Huang, Xiaoming; Hu, Mengyu; Hu, Fang

    2017-10-01

    Currently, community detection is a hot topic. This paper, based on the self-organizing map (SOM) algorithm, introduced the idea of self-adaptation (SA) that the number of communities can be identified automatically, a novel algorithm SA-SOM of detecting communities in complex networks is proposed. Several representative real-world networks and a set of computer-generated networks by LFR-benchmark are utilized to verify the accuracy and the efficiency of this algorithm. The experimental findings demonstrate that this algorithm can identify the communities automatically, accurately and efficiently. Furthermore, this algorithm can also acquire higher values of modularity, NMI and density than the SOM algorithm does.

  20. Dynamic baseline detection method for power data network service

    Science.gov (United States)

    Chen, Wei

    2017-08-01

    This paper proposes a dynamic baseline Traffic detection Method which is based on the historical traffic data for the Power data network. The method uses Cisco's NetFlow acquisition tool to collect the original historical traffic data from network element at fixed intervals. This method uses three dimensions information including the communication port, time, traffic (number of bytes or number of packets) t. By filtering, removing the deviation value, calculating the dynamic baseline value, comparing the actual value with the baseline value, the method can detect whether the current network traffic is abnormal.

  1. Detecting Distributed Network Traffic Anomaly with Network-Wide Correlation Analysis

    Science.gov (United States)

    Zonglin, Li; Guangmin, Hu; Xingmiao, Yao; Dan, Yang

    2008-12-01

    Distributed network traffic anomaly refers to a traffic abnormal behavior involving many links of a network and caused by the same source (e.g., DDoS attack, worm propagation). The anomaly transiting in a single link might be unnoticeable and hard to detect, while the anomalous aggregation from many links can be prevailing, and does more harm to the networks. Aiming at the similar features of distributed traffic anomaly on many links, this paper proposes a network-wide detection method by performing anomalous correlation analysis of traffic signals' instantaneous parameters. In our method, traffic signals' instantaneous parameters are firstly computed, and their network-wide anomalous space is then extracted via traffic prediction. Finally, an anomaly is detected by a global correlation coefficient of anomalous space. Our evaluation using Abilene traffic traces demonstrates the excellent performance of this approach for distributed traffic anomaly detection.

  2. Detecting Distributed Network Traffic Anomaly with Network-Wide Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yang Dan

    2008-12-01

    Full Text Available Distributed network traffic anomaly refers to a traffic abnormal behavior involving many links of a network and caused by the same source (e.g., DDoS attack, worm propagation. The anomaly transiting in a single link might be unnoticeable and hard to detect, while the anomalous aggregation from many links can be prevailing, and does more harm to the networks. Aiming at the similar features of distributed traffic anomaly on many links, this paper proposes a network-wide detection method by performing anomalous correlation analysis of traffic signals' instantaneous parameters. In our method, traffic signals' instantaneous parameters are firstly computed, and their network-wide anomalous space is then extracted via traffic prediction. Finally, an anomaly is detected by a global correlation coefficient of anomalous space. Our evaluation using Abilene traffic traces demonstrates the excellent performance of this approach for distributed traffic anomaly detection.

  3. Methods of Profile Cloning Detection in Online Social Networks

    Directory of Open Access Journals (Sweden)

    Zabielski Michał

    2016-01-01

    Full Text Available With the arrival of online social networks, the importance of privacy on the Internet has increased dramatically. Thus, it is important to develop mechanisms that will prevent our hidden personal data from unauthorized access and use. In this paper an attempt was made to present a concept of profile cloning detection in Online Social Networks (OSN using Graph and Networks Theory. By analysing structural similarity of network and value of attributes of user personal profile, we will be able to search for attackers which steal our identity.

  4. Parametric probability distributions for anomalous change detection

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory; Foy, Bernard R [Los Alamos National Laboratory; Wohlberg, Brendt E [Los Alamos National Laboratory; Scovel, James C [Los Alamos National Laboratory

    2010-01-01

    The problem of anomalous change detection arises when two (or possibly more) images are taken of the same scene, but at different times. The aim is to discount the 'pervasive differences' that occur thoughout the imagery, due to the inevitably different conditions under which the images were taken (caused, for instance, by differences in illumination, atmospheric conditions, sensor calibration, or misregistration), and to focus instead on the 'anomalous changes' that actually take place in the scene. In general, anomalous change detection algorithms attempt to model these normal or pervasive differences, based on data taken directly from the imagery, and then identify as anomalous those pixels for which the model does not hold. For many algorithms, these models are expressed in terms of probability distributions, and there is a class of such algorithms that assume the distributions are Gaussian. By considering a broader class of distributions, however, a new class of anomalous change detection algorithms can be developed. We consider several parametric families of such distributions, derive the associated change detection algorithms, and compare the performance with standard algorithms that are based on Gaussian distributions. We find that it is often possible to significantly outperform these standard algorithms, even using relatively simple non-Gaussian models.

  5. Z-Score-Based Modularity for Community Detection in Networks.

    Science.gov (United States)

    Miyauchi, Atsushi; Kawase, Yasushi

    2016-01-01

    Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given partition with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function.

  6. Utilizing Weak Indicators to Detect Anomalous Behaviors in Networks

    Energy Technology Data Exchange (ETDEWEB)

    Egid, Adin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-01

    We consider the use of a novel weak in- dicator alongside more commonly used weak indicators to help detect anomalous behavior in a large computer network. The data of the network which we are studying in this research paper concerns remote log-in information (Virtual Private Network, or VPN sessions) from the internal network of Los Alamos National Laboratory (LANL). The novel indicator we are utilizing is some- thing which, while novel in its application to data science/cyber security research, is a concept borrowed from the business world. The Her ndahl-Hirschman Index (HHI) is a computationally trivial index which provides a useful heuristic for regulatory agencies to ascertain the relative competitiveness of a particular industry. Using this index as a lagging indicator in the monthly format we have studied could help to detect anomalous behavior by a particular or small set of users on the network.

  7. Structured learning via convolutional neural networks for vehicle detection

    Science.gov (United States)

    Maqueda, Ana I.; del Blanco, Carlos R.; Jaureguizar, Fernando; García, Narciso

    2017-05-01

    One of the main tasks in a vision-based traffic monitoring system is the detection of vehicles. Recently, deep neural networks have been successfully applied to this end, outperforming previous approaches. However, most of these works generally rely on complex and high-computational region proposal networks. Others employ deep neural networks as a segmentation strategy to achieve a semantic representation of the object of interest, which has to be up-sampled later. In this paper, a new design for a convolutional neural network is applied to vehicle detection in highways for traffic monitoring. This network generates a spatially structured output that encodes the vehicle locations. Promising results have been obtained in the GRAM-RTM dataset.

  8. Detecting regional patterns of changing CO2 flux in Alaska.

    Science.gov (United States)

    Parazoo, Nicholas C; Commane, Roisin; Wofsy, Steven C; Koven, Charles D; Sweeney, Colm; Lawrence, David M; Lindaas, Jakob; Chang, Rachel Y-W; Miller, Charles E

    2016-07-12

    With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.

  9. Detecting Target Data in Network Traffic

    Science.gov (United States)

    2017-03-01

    packets, such as unauthorized connections to services like FTP and SSH connections, as well as RDP and MSSQL. Stateful firewalls are designed to...Hashdb can also be used to analyze network traffic and embedded content in other documents. There are hashdb libraries for the Python and C...amount of data that it logs. Bro will look at to DNS traffic, HTTP requests, and if any other connections attempted to be made over FTP, SSH and other

  10. Modularity detection in protein-protein interaction networks.

    Science.gov (United States)

    Narayanan, Tejaswini; Gersten, Merril; Subramaniam, Shankar; Grama, Ananth

    2011-12-29

    Many recent studies have investigated modularity in biological networks, and its role in functional and structural characterization of constituent biomolecules. A technique that has shown considerable promise in the domain of modularity detection is the Newman and Girvan (NG) algorithm, which relies on the number of shortest-paths across pairs of vertices in the network traversing a given edge, referred to as the betweenness of that edge. The edge with the highest betweenness is iteratively eliminated from the network, with the betweenness of the remaining edges recalculated in every iteration. This generates a complete dendrogram, from which modules are extracted by applying a quality metric called modularity denoted by Q. This exhaustive computation can be prohibitively expensive for large networks such as Protein-Protein Interaction Networks. In this paper, we present a novel optimization to the modularity detection algorithm, in terms of an efficient termination criterion based on a target edge betweenness value, using which the process of iterative edge removal may be terminated. We validate the robustness of our approach by applying our algorithm on real-world protein-protein interaction networks of Yeast, C.Elegans and Drosophila, and demonstrate that our algorithm consistently has significant computational gains in terms of reduced runtime, when compared to the NG algorithm. Furthermore, our algorithm produces modules comparable to those from the NG algorithm, qualitatively and quantitatively. We illustrate this using comparison metrics such as module distribution, module membership cardinality, modularity Q, and Jaccard Similarity Coefficient. We have presented an optimized approach for efficient modularity detection in networks. The intuition driving our approach is the extraction of holistic measures of centrality from graphs, which are representative of inherent modular structure of the underlying network, and the application of those measures to

  11. Revisiting Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.

    2009-01-01

    Intrusion detection systems (IDSs) are well-known and widely-deployed security tools to detect cyber-attacks and malicious activities in computer systems and networks. A signature-based IDS works similar to anti-virus software. It employs a signature database of known attacks, and a successful match

  12. Automated Network Anomaly Detection with Learning, Control and Mitigation

    Science.gov (United States)

    Ippoliti, Dennis

    2014-01-01

    Anomaly detection is a challenging problem that has been researched within a variety of application domains. In network intrusion detection, anomaly based techniques are particularly attractive because of their ability to identify previously unknown attacks without the need to be programmed with the specific signatures of every possible attack.…

  13. Approaches in Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  14. Specification Mining for Intrusion Detection in Networked Control Systems

    NARCIS (Netherlands)

    Caselli, M.; Zambon, Emmanuele; Amann, Johanna; Sommer, Robin; Kargl, Frank

    2016-01-01

    This paper discusses a novel approach to specification-based intrusion detection in the field of networked control systems. Our approach reduces the substantial human effort required to deploy a specification-based intrusion detection system by automating the development of its specification rules.

  15. Bayesian network models for error detection in radiotherapy plans.

    Science.gov (United States)

    Kalet, Alan M; Gennari, John H; Ford, Eric C; Phillips, Mark H

    2015-04-07

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network's conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.

  16. Achieving fast and stable failure detection in WDM Networks

    Science.gov (United States)

    Gao, Donghui; Zhou, Zhiyu; Zhang, Hanyi

    2005-02-01

    In dynamic networks, the failure detection time takes a major part of the convergence time, which is an important network performance index. To detect a node or link failure in the network, traditional protocols, like Hello protocol in OSPF or RSVP, exchanges keep-alive messages between neighboring nodes to keep track of the link/node state. But by default settings, it can get a minimum detection time in the measure of dozens of seconds, which can not meet the demands of fast network convergence and failure recovery. When configuring the related parameters to reduce the detection time, there will be notable instability problems. In this paper, we analyzed the problem and designed a new failure detection algorithm to reduce the network overhead of detection signaling. Through our experiment we found it is effective to enhance the stability by implicitly acknowledge other signaling messages as keep-alive messages. We conducted our proposal and the previous approaches on the ASON test-bed. The experimental results show that our algorithm gives better performances than previous schemes in about an order magnitude reduction of both false failure alarms and queuing delay to other messages, especially under light traffic load.

  17. Kernel principal component analysis for change detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Morton, J.C.

    2008-01-01

    Principal component analysis (PCA) is often used to detect change over time in remotely sensed images. A commonly used technique consists of finding the projections along the two eigenvectors for data consisting of two variables which represent the same spectral band covering the same geographical...

  18. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2016-10-01

    Full Text Available The development of intrusion detection systems (IDS that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC and deep neural network (DNN algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN, support vector machine (SVM, random forest (RF and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  19. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    Science.gov (United States)

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  20. Network-Wide Traffic Anomaly Detection and Localization Based on Robust Multivariate Probabilistic Calibration Model

    Directory of Open Access Journals (Sweden)

    Yuchong Li

    2015-01-01

    Full Text Available Network anomaly detection and localization are of great significance to network security. Compared with the traditional methods of host computer, single link and single path, the network-wide anomaly detection approaches have distinctive advantages with respect to detection precision and range. However, when facing the actual problems of noise interference or data loss, the network-wide anomaly detection approaches also suffer significant performance reduction or may even become unavailable. Besides, researches on anomaly localization are rare. In order to solve the mentioned problems, this paper presents a robust multivariate probabilistic calibration model for network-wide anomaly detection and localization. It applies the latent variable probability theory with multivariate t-distribution to establish the normal traffic model. Not only does the algorithm implement network anomaly detection by judging whether the sample’s Mahalanobis distance exceeds the threshold, but also it locates anomalies by contribution analysis. Both theoretical analysis and experimental results demonstrate its robustness and wider use. The algorithm is applicable when dealing with both data integrity and loss. It also has a stronger resistance over noise interference and lower sensitivity to the change of parameters, all of which indicate its performance stability.

  1. Intrusion Detection Systems in Wireless Sensor Networks: A Review

    OpenAIRE

    Nabil Ali Alrajeh; Khan, S.; Bilal Shams

    2013-01-01

    Wireless Sensor Networks (WSNs) consist of sensor nodes deployed in a manner to collect information about surrounding environment. Their distributed nature, multihop data forwarding, and open wireless medium are the factors that make WSNs highly vulnerable to security attacks at various levels. Intrusion Detection Systems (IDSs) can play an important role in detecting and preventing security attacks. This paper presents current Intrusion Detection Systems and some open research problems relat...

  2. Patch layout generation by detecting feature networks

    KAUST Repository

    Cao, Yuanhao

    2015-02-01

    The patch layout of 3D surfaces reveals the high-level geometric and topological structures. In this paper, we study the patch layout computation by detecting and enclosing feature loops on surfaces. We present a hybrid framework which combines several key ingredients, including feature detection, feature filtering, feature curve extension, patch subdivision and boundary smoothing. Our framework is able to compute patch layouts through concave features as previous approaches, but also able to generate nice layouts through smoothing regions. We demonstrate the effectiveness of our framework by comparing with the state-of-the-art methods.

  3. Automatic change detection using mobile laser scanning

    Science.gov (United States)

    Hebel, M.; Hammer, M.; Gordon, M.; Arens, M.

    2014-10-01

    Automatic change detection in 3D environments requires the comparison of multi-temporal data. By comparing current data with past data of the same area, changes can be automatically detected and identified. Volumetric changes in the scene hint at suspicious activities like the movement of military vehicles, the application of camouflage nets, or the placement of IEDs, etc. In contrast to broad research activities in remote sensing with optical cameras, this paper addresses the topic using 3D data acquired by mobile laser scanning (MLS). We present a framework for immediate comparison of current MLS data to given 3D reference data. Our method extends the concept of occupancy grids known from robot mapping, which incorporates the sensor positions in the processing of the 3D point clouds. This allows extracting the information that is included in the data acquisition geometry. For each single range measurement, it becomes apparent that an object reflects laser pulses in the measured range distance, i.e., space is occupied at that 3D position. In addition, it is obvious that space is empty along the line of sight between sensor and the reflecting object. Everywhere else, the occupancy of space remains unknown. This approach handles occlusions and changes implicitly, such that the latter are identifiable by conflicts of empty space and occupied space. The presented concept of change detection has been successfully validated in experiments with recorded MLS data streams. Results are shown for test sites at which MLS data were acquired at different time intervals.

  4. On Event Detection and Localization in Acyclic Flow Networks

    KAUST Repository

    Suresh, Mahima Agumbe

    2013-05-01

    Acyclic flow networks, present in many infrastructures of national importance (e.g., oil and gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against these infrastructures have been proven costly and imprecise, particularly when dealing with large-scale distribution systems. In this article, to the best of our knowledge, for the first time, we investigate how mobile sensor networks can be used for optimal event detection and localization in acyclic flow networks. We propose the idea of using sensors that move along the edges of the network and detect events (i.e., attacks). To localize the events, sensors detect proximity to beacons, which are devices with known placement in the network. We formulate the problem of minimizing the cost of monitoring infrastructure (i.e., minimizing the number of sensors and beacons deployed) in a predetermined zone of interest, while ensuring a degree of coverage by sensors and a required accuracy in locating events using beacons. We propose algorithms for solving the aforementioned problem and demonstrate their effectiveness with results obtained from a realistic flow network simulator.

  5. Bayesian network models for error detection in radiotherapy plans

    Science.gov (United States)

    Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.

    2015-04-01

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.

  6. Detecting the influence of spreading in social networks with excitable sensor networks.

    Science.gov (United States)

    Pei, Sen; Tang, Shaoting; Zheng, Zhiming

    2015-01-01

    Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of humans' physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (Facebook, coauthor, and email social networks), we find that the excitable sensor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods.

  7. Detecting the influence of spreading in social networks with excitable sensor networks.

    Directory of Open Access Journals (Sweden)

    Sen Pei

    Full Text Available Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of humans' physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (Facebook, coauthor, and email social networks, we find that the excitable sensor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods.

  8. Change Detection via Selective Guided Contrasting Filters

    Science.gov (United States)

    Vizilter, Y. V.; Rubis, A. Y.; Zheltov, S. Y.

    2017-05-01

    Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample) as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (difference map) could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some smoothing operator (SO) is applied for elimination of test image details; at the second step all matched details are restored with local contrast proportional to the value of some local similarity coefficient (LSC). The guided contrasting filter was proposed based on local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, morphological correlation coefficient (MCC), mutual information, mean square MCC and geometrical correlation coefficients are applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided contrasting filters. All implemented

  9. CHANGE DETECTION VIA SELECTIVE GUIDED CONTRASTING FILTERS

    Directory of Open Access Journals (Sweden)

    Y. V. Vizilter

    2017-05-01

    Full Text Available Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (difference map could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some smoothing operator (SO is applied for elimination of test image details; at the second step all matched details are restored with local contrast proportional to the value of some local similarity coefficient (LSC. The guided contrasting filter was proposed based on local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, morphological correlation coefficient (MCC, mutual information, mean square MCC and geometrical correlation coefficients are applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided contrasting filters. All

  10. A Comparative Analysis of Community Detection Algorithms on Artificial Networks.

    Science.gov (United States)

    Yang, Zhao; Algesheimer, René; Tessone, Claudio J

    2016-08-01

    Many community detection algorithms have been developed to uncover the mesoscopic properties of complex networks. However how good an algorithm is, in terms of accuracy and computing time, remains still open. Testing algorithms on real-world network has certain restrictions which made their insights potentially biased: the networks are usually small, and the underlying communities are not defined objectively. In this study, we employ the Lancichinetti-Fortunato-Radicchi benchmark graph to test eight state-of-the-art algorithms. We quantify the accuracy using complementary measures and algorithms' computing time. Based on simple network properties and the aforementioned results, we provide guidelines that help to choose the most adequate community detection algorithm for a given network. Moreover, these rules allow uncovering limitations in the use of specific algorithms given macroscopic network properties. Our contribution is threefold: firstly, we provide actual techniques to determine which is the most suited algorithm in most circumstances based on observable properties of the network under consideration. Secondly, we use the mixing parameter as an easily measurable indicator of finding the ranges of reliability of the different algorithms. Finally, we study the dependency with network size focusing on both the algorithm's predicting power and the effective computing time.

  11. Using new edges for anomaly detection in computer networks

    Science.gov (United States)

    Neil, Joshua Charles

    2015-05-19

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  12. Using new edges for anomaly detection in computer networks

    Energy Technology Data Exchange (ETDEWEB)

    Neil, Joshua Charles

    2017-07-04

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  13. Cooperative Detection for Primary User in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Zhu Jia

    2009-01-01

    Full Text Available We propose two novel cooperative detection schemes based on the AF (Amplify and Forward and DF (Decode and Forward protocols to achieve spatial diversity gains for cognitive radio networks, which are referred to as the AF-CDS, (AF-based Cooperative Detection Scheme and DF-CDS (DF-based Cooperative Detection Scheme, respectively. Closed-form expressions of detection probabilities for the noncooperation scheme, AND-CDS (AND-based Cooperative Detection Scheme, AF-CDS and DF-CDS, are derived over Rayleigh fading channels. Also, we analyze the overall agility for the proposed cooperative detection schemes and show that our schemes can further reduce the detection time. In addition, we compare the DF-CDS with the AF-CDS in terms of detection probability and agility gain, depicting the advantage of DF-CDS at low SNR region and high false alarm probability region.

  14. Radiation detection and wireless networked early warning

    Science.gov (United States)

    Burns, David A.; Litz, Marc S.; Carroll, James J.; Katsis, Dimosthenis

    2012-06-01

    We have designed a compact, wireless, GPS-enabled array of inexpensive radiation sensors based on scintillation counting. Each sensor has a scintillator, photomultiplier tube, and pulse-counting circuit that includes a comparator, digital potentiometer and microcontroller. This design provides a high level of sensitivity and reliability. A 0.2 m2 PV panel powers each sensor providing a maintenance-free 24/7 energy source. The sensor can be mounted within a roadway light-post and monitor radiological activity along transport routes. Each sensor wirelessly transmits real-time data (as counts per second) up to 2 miles with a XBee radio module, and the data is received by a XBee receive-module on a computer. Data collection software logs the information from all sensors and provides real-time identification of radiation events. Measurements performed to-date demonstrate the ability of a sensor to detect a 20 μCi source at 3.5 meters when packaged with a PVT (plastic) scintillator, and 7 meters for a sensor with a CsI crystal (more expensive but ~5 times more sensitive). It is calculated that the sensor-architecture can detect sources moving as fast as 130 km/h based on the current data rate and statistical bounds of 3-sigma threshold detection. The sensor array is suitable for identifying and tracking a radiation threat from a dirty bomb along roadways.

  15. Total least squares for anomalous change detection

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory; Matsekh, Anna M [Los Alamos National Laboratory

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  16. DyCoNet: a Gephi plugin for community detection in dynamic complex networks.

    Science.gov (United States)

    Kauffman, Julie; Kittas, Aristotelis; Bennett, Laura; Tsoka, Sophia

    2014-01-01

    Community structure detection has proven to be important in revealing the underlying organisation of complex networks. While most current analyses focus on static networks, the detection of communities in dynamic data is both challenging and timely. An analysis and visualisation procedure for dynamic networks is presented here, which identifies communities and sub-communities that persist across multiple network snapshots. An existing method for community detection in dynamic networks is adapted, extended, and implemented. We demonstrate the applicability of this method to detect communities in networks where individuals tend not to change their community affiliation very frequently. When stability of communities cannot be assumed, we show that the sub-community model may be a better alternative. This is illustrated through test cases of social and biological networks. A plugin for Gephi, an open-source software program used for graph visualisation and manipulation, named "DyCoNet", was created to execute the algorithm and is freely available from https://github.com/juliemkauffman/DyCoNet.

  17. DyCoNet: a Gephi plugin for community detection in dynamic complex networks.

    Directory of Open Access Journals (Sweden)

    Julie Kauffman

    Full Text Available Community structure detection has proven to be important in revealing the underlying organisation of complex networks. While most current analyses focus on static networks, the detection of communities in dynamic data is both challenging and timely. An analysis and visualisation procedure for dynamic networks is presented here, which identifies communities and sub-communities that persist across multiple network snapshots. An existing method for community detection in dynamic networks is adapted, extended, and implemented. We demonstrate the applicability of this method to detect communities in networks where individuals tend not to change their community affiliation very frequently. When stability of communities cannot be assumed, we show that the sub-community model may be a better alternative. This is illustrated through test cases of social and biological networks. A plugin for Gephi, an open-source software program used for graph visualisation and manipulation, named "DyCoNet", was created to execute the algorithm and is freely available from https://github.com/juliemkauffman/DyCoNet.

  18. Exploring the limits of community detection strategies in complex networks

    OpenAIRE

    Aldecoa, Rodrigo; Marín, Ignacio

    2013-01-01

    The characterization of network community structure has profound implications in several scientific areas. Therefore, testing the algorithms developed to establish the optimal division of a network into communities is a fundamental problem in the field. We performed here a highly detailed evaluation of community detection algorithms, which has two main novelties: 1) using complex closed benchmarks, which provide precise ways to assess whether the solutions generated by the algorithms are opti...

  19. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  20. RMOD: a tool for regulatory motif detection in signaling network.

    Science.gov (United States)

    Kim, Jinki; Yi, Gwan-Su

    2013-01-01

    Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  1. Probability of detection of clinical seizures using heart rate changes.

    Science.gov (United States)

    Osorio, Ivan; Manly, B F J

    2015-08-01

    Heart rate-based seizure detection is a viable complement or alternative to ECoG/EEG. This study investigates the role of various biological factors on the probability of clinical seizure detection using heart rate. Regression models were applied to 266 clinical seizures recorded from 72 subjects to investigate if factors such as age, gender, years with epilepsy, etiology, seizure site origin, seizure class, and data collection centers, among others, shape the probability of EKG-based seizure detection. Clinical seizure detection probability based on heart rate changes, is significantly (pprobability of detecting clinical seizures (>0.8 in the majority of subjects) using heart rate is highest for complex partial seizures, increases with a patient's years with epilepsy, is lower for females than for males and is unrelated to the side of hemisphere origin. Clinical seizure detection probability using heart rate is multi-factorially dependent and sufficiently high (>0.8) in most cases to be clinically useful. Knowledge of the role that these factors play in shaping said probability will enhance its applicability and usefulness. Heart rate is a reliable and practical signal for extra-cerebral detection of clinical seizures originating from or spreading to central autonomic network structures. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  2. Detecting and evaluating communities in complex human and biological networks

    Science.gov (United States)

    Morrison, Greg; Mahadevan, L.

    2012-02-01

    We develop a simple method for detecting the community structure in a network can by utilizing a measure of closeness between nodes. This approach readily leads to a method of coarse graining the network, which allows the detection of the natural hierarchy (or hierarchies) of community structure without appealing to an unknown resolution parameter. The closeness measure can also be used to evaluate the robustness of an individual node's assignment to its community (rather than evaluating only the quality of the global structure). Each of these methods in community detection and evaluation are illustrated using a variety of real world networks of either biological or sociological importance and illustrate the power and flexibility of the approach.

  3. Exploring the limits of community detection strategies in complex networks.

    Science.gov (United States)

    Aldecoa, Rodrigo; Marín, Ignacio

    2013-01-01

    The characterization of network community structure has profound implications in several scientific areas. Therefore, testing the algorithms developed to establish the optimal division of a network into communities is a fundamental problem in the field. We performed here a highly detailed evaluation of community detection algorithms, which has two main novelties: 1) using complex closed benchmarks, which provide precise ways to assess whether the solutions generated by the algorithms are optimal; and, 2) A novel type of analysis, based on hierarchically clustering the solutions suggested by multiple community detection algorithms, which allows to easily visualize how different are those solutions. Surprise, a global parameter that evaluates the quality of a partition, confirms the power of these analyses. We show that none of the community detection algorithms tested provide consistently optimal results in all networks and that Surprise maximization, obtained by combining multiple algorithms, obtains quasi-optimal performances in these difficult benchmarks.

  4. Fuzzy Based Advanced Hybrid Intrusion Detection System to Detect Malicious Nodes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rupinder Singh

    2017-01-01

    Full Text Available In this paper, an Advanced Hybrid Intrusion Detection System (AHIDS that automatically detects the WSNs attacks is proposed. AHIDS makes use of cluster-based architecture with enhanced LEACH protocol that intends to reduce the level of energy consumption by the sensor nodes. AHIDS uses anomaly detection and misuse detection based on fuzzy rule sets along with the Multilayer Perceptron Neural Network. The Feed Forward Neural Network along with the Backpropagation Neural Network are utilized to integrate the detection results and indicate the different types of attackers (i.e., Sybil attack, wormhole attack, and hello flood attack. For detection of Sybil attack, Advanced Sybil Attack Detection Algorithm is developed while the detection of wormhole attack is done by Wormhole Resistant Hybrid Technique. The detection of hello flood attack is done by using signal strength and distance. An experimental analysis is carried out in a set of nodes; 13.33% of the nodes are determined as misbehaving nodes, which classified attackers along with a detection rate of the true positive rate and false positive rate. Sybil attack is detected at a rate of 99,40%; hello flood attack has a detection rate of 98, 20%; and wormhole attack has a detection rate of 99, 20%.

  5. Auditory Display as a Tool for Teaching Network Intrusion Detection

    Directory of Open Access Journals (Sweden)

    M.A. Garcia-Ruiz

    2008-06-01

    Full Text Available Teaching network intrusion detection, or NID(the identification of violations of a security policy in acomputer network is a challenging task, because studentsneed to analyze many data from network logs and in realtime to identify patterns of network attacks, making theseactivities visually tiring. This paper describes an ongoingresearch concerned with designing and applying sounds thatrepresent meaningful information in interfaces(sonification to support teaching of NID. An usability testwas conducted with engineering students. Natural soundeffects (auditory icons and musical sounds (earcons wereused to represent network attacks. A post-activityquestionnaire showed that most students preferred auditoryicons for analyzing NID, and all of them were veryinterested in the design and application of sonifications.

  6. Adaptive clustering algorithm for community detection in complex networks

    Science.gov (United States)

    Ye, Zhenqing; Hu, Songnian; Yu, Jun

    2008-10-01

    Community structure is common in various real-world networks; methods or algorithms for detecting such communities in complex networks have attracted great attention in recent years. We introduced a different adaptive clustering algorithm capable of extracting modules from complex networks with considerable accuracy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular structure can emerge from a collection of these active nodes during a self-organization process where vertices constantly regroup. In addition, we show that our algorithm appears advantageous over other competing methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate organization in reality.

  7. Detecting Statistically Significant Communities of Triangle Motifs in Undirected Networks

    Science.gov (United States)

    2016-04-26

    Granovetter, M. (1983), “The strength of weak ties: A network theory revisited,” Sociological Theory 1 pp. 201-233. [4] Lancichinetti, A., Fortunato, S...AFRL-AFOSR-UK-TR-2015-0025 Detecting Statistically Signicant Communities of Triangle Motifs in Undirected Networks Marcus Perry IMPERIAL COLLEGE OF...triangle motifs in undirected networks 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-15-1-0019 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Marcus Perry

  8. Applied network security monitoring collection, detection, and analysis

    CERN Document Server

    Sanders, Chris

    2013-01-01

    Applied Network Security Monitoring is the essential guide to becoming an NSM analyst from the ground up. This book takes a fundamental approach to NSM, complete with dozens of real-world examples that teach you the key concepts of NSM. Network security monitoring is based on the principle that prevention eventually fails. In the current threat landscape, no matter how much you try, motivated attackers will eventually find their way into your network. At that point, it is your ability to detect and respond to that intrusion that can be the difference between a small incident and a major di

  9. Community detection in complex networks via adapted Kuramoto dynamics

    Science.gov (United States)

    Maia, Daniel M. N.; de Oliveira, João E. M.; Quiles, Marcos G.; Macau, Elbert E. N.

    2017-12-01

    Based on the Kuramoto model, a new network model, namely, the generalized Kuramoto model with Fourier term, is introduced for studying community detection in complex networks. In particular, the Fourier term provides a natural phase locking of the trajectories into a pre-defined number of clusters. A mathematical approach is used to study the behavior of the solutions and its properties. Conditions for properly choosing the coupling parameters so that phase locking takes place are presented and a quality function called clustering density is introduced to measure the effectiveness of the communities identification. Illustrations with real and synthetic networks with community structure are presented.

  10. Module detection in complex networks using integer optimisation

    Directory of Open Access Journals (Sweden)

    Tsoka Sophia

    2010-11-01

    Full Text Available Abstract Background The detection of modules or community structure is widely used to reveal the underlying properties of complex networks in biology, as well as physical and social sciences. Since the adoption of modularity as a measure of network topological properties, several methodologies for the discovery of community structure based on modularity maximisation have been developed. However, satisfactory partitions of large graphs with modest computational resources are particularly challenging due to the NP-hard nature of the related optimisation problem. Furthermore, it has been suggested that optimising the modularity metric can reach a resolution limit whereby the algorithm fails to detect smaller communities than a specific size in large networks. Results We present a novel solution approach to identify community structure in large complex networks and address resolution limitations in module detection. The proposed algorithm employs modularity to express network community structure and it is based on mixed integer optimisation models. The solution procedure is extended through an iterative procedure to diminish effects that tend to agglomerate smaller modules (resolution limitations. Conclusions A comprehensive comparative analysis of methodologies for module detection based on modularity maximisation shows that our approach outperforms previously reported methods. Furthermore, in contrast to previous reports, we propose a strategy to handle resolution limitations in modularity maximisation. Overall, we illustrate ways to improve existing methodologies for community structure identification so as to increase its efficiency and applicability.

  11. Weak electric fields detectability in a noisy neural network.

    Science.gov (United States)

    Zhao, Jia; Deng, Bin; Qin, Yingmei; Men, Cong; Wang, Jiang; Wei, Xile; Sun, Jianbing

    2017-02-01

    We investigate the detectability of weak electric field in a noisy neural network based on Izhikevich neuron model systematically. The neural network is composed of excitatory and inhibitory neurons with similar ratio as that in the mammalian neocortex, and the axonal conduction delays between neurons are also considered. It is found that the noise intensity can modulate the detectability of weak electric field. Stochastic resonance (SR) phenomenon induced by white noise is observed when the weak electric field is added to the network. It is interesting that SR almost disappeared when the connections between neurons are cancelled, suggesting the amplification effects of the neural coupling on the synchronization of neuronal spiking. Furthermore, the network parameters, such as the connection probability, the synaptic coupling strength, the scale of neuron population and the neuron heterogeneity, can also affect the detectability of the weak electric field. Finally, the model sensitivity is studied in detail, and results show that the neural network model has an optimal region for the detectability of weak electric field signal.

  12. Module detection in complex networks using integer optimisation

    Science.gov (United States)

    2010-01-01

    Background The detection of modules or community structure is widely used to reveal the underlying properties of complex networks in biology, as well as physical and social sciences. Since the adoption of modularity as a measure of network topological properties, several methodologies for the discovery of community structure based on modularity maximisation have been developed. However, satisfactory partitions of large graphs with modest computational resources are particularly challenging due to the NP-hard nature of the related optimisation problem. Furthermore, it has been suggested that optimising the modularity metric can reach a resolution limit whereby the algorithm fails to detect smaller communities than a specific size in large networks. Results We present a novel solution approach to identify community structure in large complex networks and address resolution limitations in module detection. The proposed algorithm employs modularity to express network community structure and it is based on mixed integer optimisation models. The solution procedure is extended through an iterative procedure to diminish effects that tend to agglomerate smaller modules (resolution limitations). Conclusions A comprehensive comparative analysis of methodologies for module detection based on modularity maximisation shows that our approach outperforms previously reported methods. Furthermore, in contrast to previous reports, we propose a strategy to handle resolution limitations in modularity maximisation. Overall, we illustrate ways to improve existing methodologies for community structure identification so as to increase its efficiency and applicability. PMID:21073720

  13. Detecting changes during pregnancy with Raman spectroscopy

    Science.gov (United States)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  14. STRAY DOG DETECTION IN WIRED CAMERA NETWORK

    Directory of Open Access Journals (Sweden)

    C. Prashanth

    2013-08-01

    Full Text Available Existing surveillance systems impose high level of security on humans but lacks attention on animals. Stray dogs could be used as an alternative to humans to carry explosive material. It is therefore imperative to ensure the detection of stray dogs for necessary corrective action. In this paper, a novel composite approach to detect the presence of stray dogs is proposed. The captured frame from the surveillance camera is initially pre-processed using Gaussian filter to remove noise. The foreground object of interest is extracted utilizing ViBe algorithm. Histogram of Oriented Gradients (HOG algorithm is used as the shape descriptor which derives the shape and size information of the extracted foreground object. Finally, stray dogs are classified from humans using a polynomial Support Vector Machine (SVM of order 3. The proposed composite approach is simulated in MATLAB and OpenCV. Further it is validated with real time video feeds taken from an existing surveillance system. From the results obtained, it is found that a classification accuracy of about 96% is achieved. This encourages the utilization of the proposed composite algorithm in real time surveillance systems.

  15. Scene change detection based on multimodal integration

    Science.gov (United States)

    Zhu, Yingying; Zhou, Dongru

    2003-09-01

    Scene change detection is an essential step to automatic and content-based video indexing, retrieval and browsing. In this paper, a robust scene change detection and classification approach is presented, which analyzes audio, visual and textual sources and accounts for their inter-relations and coincidence to semantically identify and classify video scenes. Audio analysis focuses on the segmentation of audio stream into four types of semantic data such as silence, speech, music and environmental sound. Further processing on speech segments aims at locating speaker changes. Video analysis partitions visual stream into shots. Text analysis can provide a supplemental source of clues for scene classification and indexing information. We integrate the video and audio analysis results to identify video scenes and use the text information detected by the video OCR technology or derived from transcripts available to refine scene classification. Results from single source segmentation are in some cases suboptimal. By combining visual, aural features adn the accessorial text information, the scence extraction accuracy is enhanced, and more semantic segmentations are developed. Experimental results are proven to rather promising.

  16. Enterprise network intrusion detection and prevention system (ENIDPS)

    Science.gov (United States)

    Akujuobi, C. M.; Ampah, N. K.

    2007-04-01

    Securing enterprise networks comes under two broad topics: Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS). The right combination of selected algorithms/techniques under both topics produces better security for a given network. This approach leads to using layers of physical, administrative, electronic, and encrypted systems to protect valuable resources. So far, there is no algorithm, which guarantees absolute protection for a given network from intruders. Intrusion Prevention Systems like IPSec, Firewall, Sender ID, Domain Keys Identified Mail (DKIM) etc. do not guarantee absolute security just like existing Intrusion Detection Systems. Our approach focuses on developing an IDS, which will detect all intruders that bypass the IPS and at the same time will be used in updating the IPS, since the IPS fail to prevent some intruders from entering a given network. The new IDS will employ both signature-based detection and anomaly detection as its analysis strategy. It should therefore be able to detect known and unknown intruders or attacks and further isolate those sources of attack within the network. Both real-time and off-line IDS predictions will be applied under the analysis and response stages. The basic IDS architecture will involve both centralized and distributed/heterogeneous architecture to ensure effective detection. Pro-active responses and corrective responses will be employed. The new security system, which will be made up of both IDS and IPS, should be less expensive to implement compared to existing ones. Finally, limitations of existing security systems have to be eliminated with the introduction of the new security system.

  17. Change Detection Method with Spatial and Spectral Information from Deep Learning

    Science.gov (United States)

    Lyu, Haobo; Lu, Hui

    2017-04-01

    Change detection is a key application of remote sensing technology. For multi-spectral images, the available spatial information and useful spectral information is both helpful for data analysis, especially change detection tasks. However, it is difficult that how to learn the changed features from spatial and spectral information meantime in one model. In this paper, we proposed a new method which combines 2-dimensional Convolutional Neural Network and 1-dimensional Recurrent Neural Network for learn changed feature. Compared with only using spectral information, the spatial information will be helpful to overcome temporal spectral variance issues. Our method extracts the spatial difference and spectral difference meantime, and these change information will be balanced in final memory cell of our model, and the leaned change information will be exploited to character change features for change detection. Finally, experiments are performed on two multi-temporal datasets, and the results show superior performance on detecting changes with spatial information and spectral information. Index Terms— Change detection, multi-temporal images, recurrent neural network, convolutional neural network , deep learning, spatial information, spectral information

  18. ANOMALY DETECTION IN NETWORKING USING HYBRID ARTIFICIAL IMMUNE ALGORITHM

    Directory of Open Access Journals (Sweden)

    D. Amutha Guka

    2012-01-01

    Full Text Available Especially in today’s network scenario, when computers are interconnected through internet, security of an information system is very important issue. Because no system can be absolutely secure, the timely and accurate detection of anomalies is necessary. The main aim of this research paper is to improve the anomaly detection by using Hybrid Artificial Immune Algorithm (HAIA which is based on Artificial Immune Systems (AIS and Genetic Algorithm (GA. In this research work, HAIA approach is used to develop Network Anomaly Detection System (NADS. The detector set is generated by using GA and the anomalies are identified using Negative Selection Algorithm (NSA which is based on AIS. The HAIA algorithm is tested with KDD Cup 99 benchmark dataset. The detection rate is used to measure the effectiveness of the NADS. The results and consistency of the HAIA are compared with earlier approaches and the results are presented. The proposed algorithm gives best results when compared to the earlier approaches.

  19. Graph spectra and the detectability of community structure in networks.

    Science.gov (United States)

    Nadakuditi, Raj Rao; Newman, M E J

    2012-05-04

    We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for community detection, such as the popular modularity maximization method. The transition separates a regime in which such methods successfully detect the community structure from one in which the structure is present but is not detected. By comparing these results with recent analyses of maximum-likelihood methods, we are able to show that spectral modularity maximization is an optimal detection method in the sense that no other method will succeed in the regime where the modularity method fails.

  20. Assessment of social network change in a national longitudinal survey.

    Science.gov (United States)

    Cornwell, Benjamin; Schumm, L Philip; Laumann, Edward O; Kim, Juyeon; Kim, Young-Jin

    2014-11-01

    This article describes new longitudinal data on older adults' egocentric social networks collected by the National Social Life, Health, and Aging Project (NSHAP). We describe a novel survey technique that was used to record specific personnel changes that occurred within respondents' networks during the 5-year study period, and we make recommendations regarding usage of the resulting data. Descriptive statistics are presented for measures of network size, composition, and structure at both waves, respondent-level summary measures of change in these characteristics between waves, as well as measures that distinguish between changes associated with losses of Wave 1 network members, additions of new ones, and changes in relationships with network members who were present at both waves. The NSHAP network change module was successful in providing reliable information about specific changes that occurred within respondents' confidant networks. Most respondents lost at least one confidant from W1 and added at least one new confidant between waves as well. Network growth was more common than network shrinkage. Both lost and new ties were weaker than ties that persisted throughout the study period. These data provide new insight into the dynamic nature of networks in later life, revealing norms of network turnover, expansion, and weakening. Data limitations are discussed. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Topology detection for adaptive protection of distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M.S.; Sidhu, T.S.; Talukdar, B.K. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Power System Research Group

    1995-12-31

    A general purpose network topology detection technique suitable for use in adaptive relaying applications is presented in this paper. Three test systems were used to check the performance of the proposed technique. Results obtained from the tests are included. The proposed technique was implemented in the laboratory as a part of the implementation of the adaptive protection scheme. The execution times of the topology detection software were monitored and were found to be acceptable.

  2. Detecting atrial fibrillation by deep convolutional neural networks.

    Science.gov (United States)

    Xia, Yong; Wulan, Naren; Wang, Kuanquan; Zhang, Henggui

    2018-02-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia. The incidence of AF increases with age, causing high risks of stroke and increased morbidity and mortality. Efficient and accurate diagnosis of AF based on the ECG is valuable in clinical settings and remains challenging. In this paper, we proposed a novel method with high reliability and accuracy for AF detection via deep learning. The short-term Fourier transform (STFT) and stationary wavelet transform (SWT) were used to analyze ECG segments to obtain two-dimensional (2-D) matrix input suitable for deep convolutional neural networks. Then, two different deep convolutional neural network models corresponding to STFT output and SWT output were developed. Our new method did not require detection of P or R peaks, nor feature designs for classification, in contrast to existing algorithms. Finally, the performances of the two models were evaluated and compared with those of existing algorithms. Our proposed method demonstrated favorable performances on ECG segments as short as 5 s. The deep convolutional neural network using input generated by STFT, presented a sensitivity of 98.34%, specificity of 98.24% and accuracy of 98.29%. For the deep convolutional neural network using input generated by SWT, a sensitivity of 98.79%, specificity of 97.87% and accuracy of 98.63% was achieved. The proposed method using deep convolutional neural networks shows high sensitivity, specificity and accuracy, and, therefore, is a valuable tool for AF detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Towards Optimal Event Detection and Localization in Acyclic Flow Networks

    KAUST Repository

    Agumbe Suresh, Mahima

    2012-01-03

    Acyclic flow networks, present in many infrastructures of national importance (e.g., oil & gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against these infrastructures, have been proven costly and imprecise, especially when dealing with large scale distribution systems. In this paper, to the best of our knowledge for the first time, we investigate how mobile sensor networks can be used for optimal event detection and localization in acyclic flow networks. Sensor nodes move along the edges of the network and detect events (i.e., attacks) and proximity to beacon nodes with known placement in the network. We formulate the problem of minimizing the cost of monitoring infrastructure (i.e., minimizing the number of sensor and beacon nodes deployed), while ensuring a degree of sensing coverage in a zone of interest and a required accuracy in locating events. We propose algorithms for solving these problems and demonstrate their effectiveness with results obtained from a high fidelity simulator.

  4. European network for research in global change (ENRICH)

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, A. [European Commission, Bruxelles (Belgium). DG XII/JRC

    1995-12-31

    While approaching the beginning of the twenty first century, the scientific community is faced with the formidable tasks of monitoring and detecting, understanding and predicting changes in the Earth System and its interactions with human beings. A crucial challenge is to make scientific research results accessible and usable for those involved in the decision making process related to the concept of Sustainable Development. Major international scientific programmes under the umbrella of ICSU, such as the IGBP and WCRP, are dealing with these issues. Although there exist many well developed global change research programmes in several European countries and effective collaboration networks between research institutes, there is an urgent need for overall communication with a view to promoting wider international links ensuring complementarity, synergy and coherence. Recognizing the importance of promoting coherence in research and utilising research results for various European Union (EU) policies, the European Commissioner responsible for Science, Research and Development wrote in March 1992 to all the EU Research Ministers to propose an initiative in this domain. In a rapid response, a group of Senior Experts from the EU Member States was set up in April 1992. This Group established a Task Force to develop the concept of the European Network for Research In Global CHange (ENRICH) which was approved in July 1993

  5. Comparison of CFBP, FFBP, and RBF Networks in the Field of Crack Detection

    Directory of Open Access Journals (Sweden)

    Dhirendranath Thatoi

    2014-01-01

    Full Text Available The issue of crack detection and its diagnosis has gained a wide spread of industrial interest. The crack/damage affects the industrial economic growth. So early crack detection is an important aspect in the point of view of any industrial growth. In this paper a design tool ANSYS is used to monitor various changes in vibrational characteristics of thin transverse cracks on a cantilever beam for detecting the crack position and depth and was compared using artificial intelligence techniques. The usage of neural networks is the key point of development in this paper. The three neural networks used are cascade forward back propagation (CFBP network, feed forward back propagation (FFBP network, and radial basis function (RBF network. In the first phase of this paper theoretical analysis has been made and then the finite element analysis has been carried out using commercial software, ANSYS. In the second phase of this paper the neural networks are trained using the values obtained from a simulated model of the actual cantilever beam using ANSYS. At the last phase a comparative study has been made between the data obtained from neural network technique and finite element analysis.

  6. Optimizing a neural network for detection of moving vehicles in video

    Science.gov (United States)

    Fischer, Noëlle M.; Kruithof, Maarten C.; Bouma, Henri

    2017-10-01

    In the field of security and defense, it is extremely important to reliably detect moving objects, such as cars, ships, drones and missiles. Detection and analysis of moving objects in cameras near borders could be helpful to reduce illicit trading, drug trafficking, irregular border crossing, trafficking in human beings and smuggling. Many recent benchmarks have shown that convolutional neural networks are performing well in the detection of objects in images. Most deep-learning research effort focuses on classification or detection on single images. However, the detection of dynamic changes (e.g., moving objects, actions and events) in streaming video is extremely relevant for surveillance and forensic applications. In this paper, we combine an end-to-end feedforward neural network for static detection with a recurrent Long Short-Term Memory (LSTM) network for multi-frame analysis. We present a practical guide with special attention to the selection of the optimizer and batch size. The end-to-end network is able to localize and recognize the vehicles in video from traffic cameras. We show an efficient way to collect relevant in-domain data for training with minimal manual labor. Our results show that the combination with LSTM improves performance for the detection of moving vehicles.

  7. Imaging, object detection, and change detection with a polarized multistatic GPR array

    Energy Technology Data Exchange (ETDEWEB)

    Beer, N. Reginald; Paglieroni, David W.

    2015-07-21

    A polarized detection system performs imaging, object detection, and change detection factoring in the orientation of an object relative to the orientation of transceivers. The polarized detection system may operate on one of several modes of operation based on whether the imaging, object detection, or change detection is performed separately for each transceiver orientation. In combined change mode, the polarized detection system performs imaging, object detection, and change detection separately for each transceiver orientation, and then combines changes across polarizations. In combined object mode, the polarized detection system performs imaging and object detection separately for each transceiver orientation, and then combines objects across polarizations and performs change detection on the result. In combined image mode, the polarized detection system performs imaging separately for each transceiver orientation, and then combines images across polarizations and performs object detection followed by change detection on the result.

  8. Analysis of Community Detection Algorithms for Large Scale Cyber Networks

    Energy Technology Data Exchange (ETDEWEB)

    Mane, Prachita; Shanbhag, Sunanda; Kamath, Tanmayee; Mackey, Patrick S.; Springer, John

    2016-09-30

    The aim of this project is to use existing community detection algorithms on an IP network dataset to create supernodes within the network. This study compares the performance of different algorithms on the network in terms of running time. The paper begins with an introduction to the concept of clustering and community detection followed by the research question that the team aimed to address. Further the paper describes the graph metrics that were considered in order to shortlist algorithms followed by a brief explanation of each algorithm with respect to the graph metric on which it is based. The next section in the paper describes the methodology used by the team in order to run the algorithms and determine which algorithm is most efficient with respect to running time. Finally, the last section of the paper includes the results obtained by the team and a conclusion based on those results as well as future work.

  9. A framework for detecting communities of unbalanced sizes in networks

    Science.gov (United States)

    Žalik, Krista Rizman; Žalik, Borut

    2018-01-01

    Community detection in large networks has been a focus of recent research in many of fields, including biology, physics, social sciences, and computer science. Most community detection methods partition the entire network into communities, groups of nodes that have many connections within communities and few connections between them and do not identify different roles that nodes can have in communities. We propose a community detection model that integrates more different measures that can fast identify communities of different sizes and densities. We use node degree centrality, strong similarity with one node from community, maximal similarity of node to community, compactness of communities and separation between communities. Each measure has its own strength and weakness. Thus, combining different measures can benefit from the strengths of each one and eliminate encountered problems of using an individual measure. We present a fast local expansion algorithm for uncovering communities of different sizes and densities and reveals rich information on input networks. Experimental results show that the proposed algorithm is better or as effective as the other community detection algorithms for both real-world and synthetic networks while it requires less time.

  10. Automatic Data Collection Design for Neural Networks Detection of ...

    African Journals Online (AJOL)

    However, in Nigeria, collecting fraudulent data is relatively difficult and the human labour involved is expensive and risky. This paper examines some formal procedures for data collection and proposes designing an automatic data collection system for detection of occupational frauds using artificial neural networks.

  11. Application of Cellular Automata to Detection of Malicious Network Packets

    Science.gov (United States)

    Brown, Robert L.

    2014-01-01

    A problem in computer security is identification of attack signatures in network packets. An attack signature is a pattern of bits that characterizes a particular attack. Because there are many kinds of attacks, there are potentially many attack signatures. Furthermore, attackers may seek to avoid detection by altering the attack mechanism so that…

  12. Practical Algorithms for Subgroup Detection in Covert Networks

    DEFF Research Database (Denmark)

    Memon, Nasrullah; Wiil, Uffe Kock; Qureshi, Pir Abdul Rasool

    2010-01-01

    In this paper, we present algorithms for subgroup detection and demonstrated them with a real-time case study of USS Cole bombing terrorist network. The algorithms are demonstrated in an application by a prototype system. The system finds associations between terrorist and terrorist organisations...

  13. automatic data collection design for neural networks detection

    African Journals Online (AJOL)

    Dr Obe

    data collection system for detection of occupational frauds using artificial neural networks. .... an issue). Limitations. (i) Little flexibility for people to raise their own issues (ii) Little opportunity for people to respond in their own words (iii) Little opportunity to go into depth on any issue (iv) ..... Lecture notes in Artificial Intelligence.

  14. Expert knowledge for automatic detection of bullies in social networks

    NARCIS (Netherlands)

    Dadvar, M.; Trieschnigg, Rudolf Berend; de Jong, Franciska M.G.

    2013-01-01

    Cyberbullying is a serious social problem in online environments and social networks. Current approaches to tackle this problem are still inadequate for detecting bullying incidents or to flag bullies. In this study we used a multi-criteria evaluation system to obtain a better understanding of

  15. A framework for unsupervised spam detection in social networking sites

    NARCIS (Netherlands)

    Bosma, M.; Meij, E.; Weerkamp, W.

    2012-01-01

    Social networking sites offer users the option to submit user spam reports for a given message, indicating this message is inappropriate. In this paper we present a framework that uses these user spam reports for spam detection. The framework is based on the HITS web link analysis framework and is

  16. Distributed Event Detection in Wireless Sensor Networks for Disaster Management

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Poel, Mannes; Taghikhaki, Zahra; Havinga, Paul J.M.

    2010-01-01

    Recently, wireless sensor networks (WSNs) have become mature enough to go beyond being simple fine-grained continuous monitoring platforms and become one of the enabling technologies for disaster early-warning systems. Event detection functionality of WSNs can be of great help and importance for

  17. Deep convolutional neural networks for detection of rail surface defects

    NARCIS (Netherlands)

    Faghih Roohi, S.; Hajizadeh, S.; Nunez Vicencio, Alfredo; Babuska, R.; De Schutter, B.H.K.; Estevez, Pablo A.; Angelov, Plamen P.; Del Moral Hernandez, Emilio

    2016-01-01

    In this paper, we propose a deep convolutional neural network solution to the analysis of image data for the detection of rail surface defects. The images are obtained from many hours of automated video recordings. This huge amount of data makes it impossible to manually inspect the images and

  18. Early detection network design and search strategy issues

    Science.gov (United States)

    We conducted a series of field and related modeling studies (2005-2012) to evaluate search strategies for Great Lakes coastal ecosystems that are at risk of invasion by non-native aquatic species. In developing a network, we should design to achieve an acceptable limit of detect...

  19. A Vehicle Detection Algorithm Based on Deep Belief Network

    Directory of Open Access Journals (Sweden)

    Hai Wang

    2014-01-01

    Full Text Available Vision based vehicle detection is a critical technology that plays an important role in not only vehicle active safety but also road video surveillance application. Traditional shallow model based vehicle detection algorithm still cannot meet the requirement of accurate vehicle detection in these applications. In this work, a novel deep learning based vehicle detection algorithm with 2D deep belief network (2D-DBN is proposed. In the algorithm, the proposed 2D-DBN architecture uses second-order planes instead of first-order vector as input and uses bilinear projection for retaining discriminative information so as to determine the size of the deep architecture which enhances the success rate of vehicle detection. On-road experimental results demonstrate that the algorithm performs better than state-of-the-art vehicle detection algorithm in testing data sets.

  20. An artifical neural network for detection of simulated dental caries

    Energy Technology Data Exchange (ETDEWEB)

    Kositbowornchai, S. [Khon Kaen Univ. (Thailand). Dept. of Oral Diagnosis; Siriteptawee, S.; Plermkamon, S.; Bureerat, S. [Khon Kaen Univ. (Thailand). Dept. of Mechanical Engineering; Chetchotsak, D. [Khon Kaen Univ. (Thailand). Dept. of Industrial Engineering

    2006-08-15

    Objects: A neural network was developed to diagnose artificial dental caries using images from a charged-coupled device (CCD)camera and intra-oral digital radiography. The diagnostic performance of this neural network was evaluated against a gold standard. Materials and methods: The neural network design was the Learning Vector Quantization (LVQ) used to classify a tooth surface as sound or as having dental caries. The depth of the dental caries was indicated on a graphic user interface (GUI) screen developed by Matlab programming. Forty-nine images of both sound and simulated dental caries, derived from a CCD camera and by digital radiography, were used to 'train' an artificial neural network. After the 'training' process, a separate test-set comprising 322 unseen images was evaluated. Tooth sections and microscopic examinations were used to confirm the actual dental caries status.The performance of neural network was evaluated using diagnostic test. Results: The sensitivity (95%CI)/specificity (95%CI) of dental caries detection by the CCD camera and digital radiography were 0.77(0.68-0.85)/0.85(0.75-0.92) and 0.81(0.72-0.88)/0.93(0.84-0.97), respectively. The accuracy of caries depth-detection by the CCD camera and digital radiography was 58 and 40%, respectively. Conclusions: The model neural network used in this study could be a prototype for caries detection but should be improved for classifying caries depth. Our study suggests an artificial neural network can be trained to make the correct interpretations of dental caries. (orig.)

  1. Detection of Significant Pneumococcal Meningitis Biomarkers by Ego Network.

    Science.gov (United States)

    Wang, Qian; Lou, Zhifeng; Zhai, Liansuo; Zhao, Haibin

    2017-06-01

    To identify significant biomarkers for detection of pneumococcal meningitis based on ego network. Based on the gene expression data of pneumococcal meningitis and global protein-protein interactions (PPIs) data recruited from open access databases, the authors constructed a differential co-expression network (DCN) to identify pneumococcal meningitis biomarkers in a network view. Here EgoNet algorithm was employed to screen the significant ego networks that could accurately distinguish pneumococcal meningitis from healthy controls, by sequentially seeking ego genes, searching candidate ego networks, refinement of candidate ego networks and significance analysis to identify ego networks. Finally, the functional inference of the ego networks was performed to identify significant pathways for pneumococcal meningitis. By differential co-expression analysis, the authors constructed the DCN that covered 1809 genes and 3689 interactions. From the DCN, a total of 90 ego genes were identified. Starting from these ego genes, three significant ego networks (Module 19, Module 70 and Module 71) that could predict clinical outcomes for pneumococcal meningitis were identified by EgoNet algorithm, and the corresponding ego genes were GMNN, MAD2L1 and TPX2, respectively. Pathway analysis showed that these three ego networks were related to CDT1 association with the CDC6:ORC:origin complex, inactivation of APC/C via direct inhibition of the APC/C complex pathway, and DNA strand elongation, respectively. The authors successfully screened three significant ego modules which could accurately predict the clinical outcomes for pneumococcal meningitis and might play important roles in host response to pathogen infection in pneumococcal meningitis.

  2. 3D change detection - Approaches and applications

    Science.gov (United States)

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter

    2016-12-01

    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  3. Fuzzy analysis of community detection in complex networks

    Science.gov (United States)

    Zhang, Dawei; Xie, Fuding; Zhang, Yong; Dong, Fangyan; Hirota, Kaoru

    2010-11-01

    A snowball algorithm is proposed to find community structures in complex networks by introducing the definition of community core and some quantitative conditions. A community core is first constructed, and then its neighbors, satisfying the quantitative conditions, will be tied to this core until no node can be added. Subsequently, one by one, all communities in the network are obtained by repeating this process. The use of the local information in the proposed algorithm directly leads to the reduction of complexity. The algorithm runs in O(n+m) time for a general network and O(n) for a sparse network, where n is the number of vertices and m is the number of edges in a network. The algorithm fast produces the desired results when applied to search for communities in a benchmark and five classical real-world networks, which are widely used to test algorithms of community detection in the complex network. Furthermore, unlike existing methods, neither global modularity nor local modularity is utilized in the proposal. By converting the considered problem into a graph, the proposed algorithm can also be applied to solve other cluster problems in data mining.

  4. The Rise of China in the International Trade Network: A Community Core Detection Approach

    CERN Document Server

    Zhu, Zhen; Chessa, Alessandro; Caldarelli, Guido; Riccaboni, Massimo

    2014-01-01

    Theory of complex networks proved successful in the description of a variety of static networks ranging from biology to computer and social sciences and to economics and finance. Here we use network models to describe the evolution of a particular economic system, namely the International Trade Network (ITN). Previous studies often assume that globalization and regionalization in international trade are contradictory to each other. We re-examine the relationship between globalization and regionalization by viewing the international trade system as an interdependent complex network. We use the modularity optimization method to detect communities and community cores in the ITN during the years 1995-2011. We find rich dynamics over time both inter- and intra-communities. Most importantly, we have a multilevel description of the evolution where the global dynamics (i.e., communities disappear or reemerge) tend to be correlated with the regional dynamics (i.e., community core changes between community members). In...

  5. [Early detection of cervical cancer in Chile: time for change].

    Science.gov (United States)

    Léniz Martelli, Javiera; Van De Wyngard, Vanessa; Lagos, Marcela; Barriga, María Isabel; Puschel Illanes, Klaus; Ferreccio Readi, Catterina

    2014-08-01

    Mortality rates for cervical cancer (CC) in Chile are higher than those of developed countries and it has an unequal socioeconomic distribution. The recognition of human papilloma virus (HPV) as the causal agent of cervical cancer in the early 80's changed the prevention paradigms. Current goals are to prevent HPV infection by vaccination before the onset of sexual activity and to detect HPV infection in women older than 30 years. This article reviews CC prevention and early detection methods, discusses relevant evidence to support a change in Chile and presents an innovation proposal. A strategy of primary screening based on HPV detection followed by triage of HPV-positive women by colposcopy in primary care or by cytological or molecular reflex testing is proposed. Due to the existence in Chile of a well-organized nationwide CC prevention program, the replacement of a low-sensitivity screening test such as the Papanicolau test with a highly sensitive one such as HPV detection, could quickly improve the effectiveness of the program. The program also has a network of personnel qualified to conduct naked-eye inspections of the cervix, who could easily be trained to perform triage colposcopy. The incorporation of new prevention strategies could reduce the deaths of Chilean women and correct inequities.

  6. Profile-based adaptive anomaly detection for network security.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengchu C. (Sandia National Laboratories, Albuquerque, NM); Durgin, Nancy Ann

    2005-11-01

    As information systems become increasingly complex and pervasive, they become inextricably intertwined with the critical infrastructure of national, public, and private organizations. The problem of recognizing and evaluating threats against these complex, heterogeneous networks of cyber and physical components is a difficult one, yet a solution is vital to ensuring security. In this paper we investigate profile-based anomaly detection techniques that can be used to address this problem. We focus primarily on the area of network anomaly detection, but the approach could be extended to other problem domains. We investigate using several data analysis techniques to create profiles of network hosts and perform anomaly detection using those profiles. The ''profiles'' reduce multi-dimensional vectors representing ''normal behavior'' into fewer dimensions, thus allowing pattern and cluster discovery. New events are compared against the profiles, producing a quantitative measure of how ''anomalous'' the event is. Most network intrusion detection systems (IDSs) detect malicious behavior by searching for known patterns in the network traffic. This approach suffers from several weaknesses, including a lack of generalizability, an inability to detect stealthy or novel attacks, and lack of flexibility regarding alarm thresholds. Our research focuses on enhancing current IDS capabilities by addressing some of these shortcomings. We identify and evaluate promising techniques for data mining and machine-learning. The algorithms are ''trained'' by providing them with a series of data-points from ''normal'' network traffic. A successful algorithm can be trained automatically and efficiently, will have a low error rate (low false alarm and miss rates), and will be able to identify anomalies in ''pseudo real-time'' (i.e., while the intrusion is still in progress

  7. BOUNDARY DETECTION ALGORITHMS IN WIRELESS SENSOR NETWORKS: A SURVEY

    Directory of Open Access Journals (Sweden)

    Lanny Sitanayah

    2009-01-01

    Full Text Available Wireless sensor networks (WSNs comprise a large number of sensor nodes, which are spread out within a region and communicate using wireless links. In some WSN applications, recognizing boundary nodes is important for topology discovery, geographic routing and tracking. In this paper, we study the problem of recognizing the boundary nodes of a WSN. We firstly identify the factors that influence the design of algorithms for boundary detection. Then, we classify the existing work in boundary detection, which is vital for target tracking to detect when the targets enter or leave the sensor field.

  8. Networked Community Change: Understanding Community Systems Change through the Lens of Social Network Analysis.

    Science.gov (United States)

    Lawlor, Jennifer A; Neal, Zachary P

    2016-06-01

    Addressing complex problems in communities has become a key area of focus in recent years (Kania & Kramer, 2013, Stanford Social Innovation Review). Building on existing approaches to understanding and addressing problems, such as action research, several new approaches have emerged that shift the way communities solve problems (e.g., Burns, 2007, Systemic Action Research; Foth, 2006, Action Research, 4, 205; Kania & Kramer, 2011, Stanford Social Innovation Review, 1, 36). Seeking to bring clarity to the emerging literature on community change strategies, this article identifies the common features of the most widespread community change strategies and explores the conditions under which such strategies have the potential to be effective. We identify and describe five common features among the approaches to change. Then, using an agent-based model, we simulate network-building behavior among stakeholders participating in community change efforts using these approaches. We find that the emergent stakeholder networks are efficient when the processes are implemented under ideal conditions. © Society for Community Research and Action 2016.

  9. Maximum-entropy networks pattern detection, network reconstruction and graph combinatorics

    CERN Document Server

    Squartini, Tiziano

    2017-01-01

    This book is an introduction to maximum-entropy models of random graphs with given topological properties and their applications. Its original contribution is the reformulation of many seemingly different problems in the study of both real networks and graph theory within the unified framework of maximum entropy. Particular emphasis is put on the detection of structural patterns in real networks, on the reconstruction of the properties of networks from partial information, and on the enumeration and sampling of graphs with given properties.  After a first introductory chapter explaining the motivation, focus, aim and message of the book, chapter 2 introduces the formal construction of maximum-entropy ensembles of graphs with local topological constraints. Chapter 3 focuses on the problem of pattern detection in real networks and provides a powerful way to disentangle nontrivial higher-order structural features from those that can be traced back to simpler local constraints. Chapter 4 focuses on the problem o...

  10. CHANGE DETECTION BASED ON PERSISTENT SCATTERER INTERFEROMETRY – A NEW METHOD OF MONITORING BUILDING CHANGES

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2016-06-01

    Full Text Available Persistent Scatterer Interferometry (PSI is a technique to detect a network of extracted persistent scatterer (PS points which feature temporal phase stability and strong radar signal throughout time-series of SAR images. The small surface deformations on such PS points are estimated. PSI particularly works well in monitoring human settlements because regular substructures of man-made objects give rise to large number of PS points. If such structures and/or substructures substantially alter or even vanish due to big change like construction, their PS points are discarded without additional explorations during standard PSI procedure. Such rejected points are called big change (BC points. On the other hand, incoherent change detection (ICD relies on local comparison of multi-temporal images (e.g. image difference, image ratio to highlight scene modifications of larger size rather than detail level. However, image noise inevitably degrades ICD accuracy. We propose a change detection approach based on PSI to synergize benefits of PSI and ICD. PS points are extracted by PSI procedure. A local change index is introduced to quantify probability of a big change for each point. We propose an automatic thresholding method adopting change index to extract BC points along with a clue of the period they emerge. In the end, PS ad BC points are integrated into a change detection image. Our method is tested at a site located around north of Berlin main station where steady, demolished, and erected building substructures are successfully detected. The results are consistent with ground truth derived from time-series of aerial images provided by Google Earth. In addition, we apply our technique for traffic infrastructure, business district, and sports playground monitoring.

  11. Change Detection Based on Persistent Scatterer Interferometry - a New Method of Monitoring Building Changes

    Science.gov (United States)

    Yang, C. H.; Kenduiywo, B. K.; Soergel, U.

    2016-06-01

    Persistent Scatterer Interferometry (PSI) is a technique to detect a network of extracted persistent scatterer (PS) points which feature temporal phase stability and strong radar signal throughout time-series of SAR images. The small surface deformations on such PS points are estimated. PSI particularly works well in monitoring human settlements because regular substructures of man-made objects give rise to large number of PS points. If such structures and/or substructures substantially alter or even vanish due to big change like construction, their PS points are discarded without additional explorations during standard PSI procedure. Such rejected points are called big change (BC) points. On the other hand, incoherent change detection (ICD) relies on local comparison of multi-temporal images (e.g. image difference, image ratio) to highlight scene modifications of larger size rather than detail level. However, image noise inevitably degrades ICD accuracy. We propose a change detection approach based on PSI to synergize benefits of PSI and ICD. PS points are extracted by PSI procedure. A local change index is introduced to quantify probability of a big change for each point. We propose an automatic thresholding method adopting change index to extract BC points along with a clue of the period they emerge. In the end, PS ad BC points are integrated into a change detection image. Our method is tested at a site located around north of Berlin main station where steady, demolished, and erected building substructures are successfully detected. The results are consistent with ground truth derived from time-series of aerial images provided by Google Earth. In addition, we apply our technique for traffic infrastructure, business district, and sports playground monitoring.

  12. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  13. Robust Meter Network for Water Distribution Pipe Burst Detection

    Directory of Open Access Journals (Sweden)

    Donghwi Jung

    2017-10-01

    Full Text Available A meter network is a set of meters installed throughout a water distribution system to measure system variables, such as the pipe flow rate and pressure. In the current hyper-connected world, meter networks are being exposed to meter failure conditions, such as malfunction of the meter’s physical system and communication system failure. Therefore, a meter network’s robustness should be secured for reliable provision of informative meter data. This paper introduces a multi-objective optimal meter placement model that maximizes the detection probability, minimizes false alarms, and maximizes the robustness of a meter network given a predefined number of meters. A meter network’s robustness is defined as its ability to consistently provide quality data in the event of meter failure. Based on a single-meter failure simulation, a robustness indicator for the meter network is introduced and maximized as the third objective of the proposed model. The proposed model was applied to the Austin network to determine the independent placement of pipe flow and pressure meters with three or five available meters. The results showed that the proposed model is a useful tool for determining meter locations to secure high detectability and robustness.

  14. Glomerulus Classification and Detection Based on Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Jaime Gallego

    2018-01-01

    Full Text Available Glomerulus classification and detection in kidney tissue segments are key processes in nephropathology used for the correct diagnosis of the diseases. In this paper, we deal with the challenge of automating Glomerulus classification and detection from digitized kidney slide segments using a deep learning framework. The proposed method applies Convolutional Neural Networks (CNNs between two classes: Glomerulus and Non-Glomerulus, to detect the image segments belonging to Glomerulus regions. We configure the CNN with the public pre-trained AlexNet model and adapt it to our system by learning from Glomerulus and Non-Glomerulus regions extracted from training slides. Once the model is trained, labeling is performed by applying the CNN classification to the image blocks under analysis. The results of the method indicate that this technique is suitable for correct Glomerulus detection in Whole Slide Images (WSI, showing robustness while reducing false positive and false negative detections.

  15. Adaptive multi-resolution Modularity for detecting communities in networks

    Science.gov (United States)

    Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He

    2018-02-01

    Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.

  16. Using Networks For Changing Innovation Strategy: The Case of IBM

    NARCIS (Netherlands)

    K. Dittrich (Koen); G.M. Duysters (Geert); A-P. de Man (Ard-Pieter)

    2004-01-01

    textabstractLarge-scale strategic change projects in companies may be supported by using alliance networks. This paper shows that IBM’s change from an exploitation strategy towards an exploration strategy required a radically different network strategy as well. By entering into more non-equity

  17. A graph clustering method for community detection in complex networks

    Science.gov (United States)

    Zhou, HongFang; Li, Jin; Li, JunHuai; Zhang, FaCun; Cui, YingAn

    2017-03-01

    Information mining from complex networks by identifying communities is an important problem in a number of research fields, including the social sciences, biology, physics and medicine. First, two concepts are introduced, Attracting Degree and Recommending Degree. Second, a graph clustering method, referred to as AR-Cluster, is presented for detecting community structures in complex networks. Third, a novel collaborative similarity measure is adopted to calculate node similarities. In the AR-Cluster method, vertices are grouped together based on calculated similarity under a K-Medoids framework. Extensive experimental results on two real datasets show the effectiveness of AR-Cluster.

  18. High impedance fault detection in low voltage networks

    Energy Technology Data Exchange (ETDEWEB)

    Christie, R.D. (Univ. of Washington, Seattle, WA (United States). Dept. of Electrical Engineering); Zadehgol, H.; Habib, M.M. (Seattle City Light, WA (United States))

    1993-10-01

    High impedance faults are those with fault current magnitude similar to load currents. Experimental results were obtained that conform operating experience that such faults can occur in the low voltage (600V and below) underground distribution networks typically found in urban power systems. These faults produce current waveforms qualitatively similar to those found on overhead feeders, but quantitatively smaller. Loose connectors can produce similar, but cleaner current characteristics. Noisy loads remain a major impediment to reliable detection. Design and installation of an inexpensive prototype fault detector on the Seattle City Light street network is described.

  19. NATIONWIDE HYBRID CHANGE DETECTION OF BUILDINGS

    Directory of Open Access Journals (Sweden)

    V. Hron

    2016-06-01

    Full Text Available The Fundamental Base of Geographic Data of the Czech Republic (hereinafter FBGD is a national 2D geodatabase at a 1:10,000 scale with more than 100 geographic objects. This paper describes the design of the permanent updating mechanism of buildings in FBGD. The proposed procedure belongs to the category of hybrid change detection (HCD techniques which combine pixel-based and object-based evaluation. The main sources of information for HCD are cadastral information and bi-temporal vertical digital aerial photographs. These photographs have great information potential because they contain multispectral, position and also elevation information. Elevation information represents a digital surface model (DSM which can be obtained using the image matching technique. Pixel-based evaluation of bi-temporal DSMs enables fast localization of places with potential building changes. These coarse results are subsequently classified through the object-based image analysis (OBIA using spectral, textural and contextual features and GIS tools. The advantage of the two-stage evaluation is the pre-selection of locations where image segmentation (a computationally demanding part of OBIA is performed. It is not necessary to apply image segmentation to the entire scene, but only to the surroundings of detected changes, which contributes to significantly faster processing and lower hardware requirements. The created technology is based on open-source software solutions that allow easy portability on multiple computers and parallelization of processing. This leads to significant savings of financial resources which can be expended on the further development of FBGD.

  20. Damage detection and localization algorithm using a dense sensor network of thin film sensors

    Science.gov (United States)

    Downey, Austin; Ubertini, Filippo; Laflamme, Simon

    2017-04-01

    The authors have recently proposed a hybrid dense sensor network consisting of a novel, capacitive-based thin-film electronic sensor for monitoring strain on mesosurfaces and fiber Bragg grating sensors for enforcing boundary conditions on the perimeter of the monitored area. The thin-film sensor monitors local strain over a global area through transducing a change in strain into a change in capacitance. In the case of bidirectional in-plane strain, the sensor output contains the additive measurement of both principal strain components. When combined with the mature technology of fiber Bragg grating sensors, the hybrid dense sensor network shows potential for the monitoring of mesoscale systems. In this paper, we present an algorithm for the detection, quantification, and localization of strain within a hybrid dense sensor network. The algorithm leverages the advantages of a hybrid dense sensor network for the monitoring of large scale systems. The thin film sensor is used to monitor strain over a large area while the fiber Bragg grating sensors are used to enforce the uni-directional strain along the perimeter of the hybrid dense sensor network. Orthogonal strain maps are reconstructed by assuming different bidirectional shape functions and are solved using the least squares estimator to reconstruct the planar strain maps within the hybrid dense sensor network. Error between the estimated strain maps and measured strains is extracted to derive damage detecting features, dependent on the selected shape functions. Results from numerical simulations show good performance of the proposed algorithm.

  1. Changes in cognitive state alter human functional brain networks

    Directory of Open Access Journals (Sweden)

    Malaak Nasser Moussa

    2011-08-01

    Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.

  2. Online Adaboost-Based Parameterized Methods for Dynamic Distributed Network Intrusion Detection.

    Science.gov (United States)

    Hu, Weiming; Gao, Jun; Wang, Yanguo; Wu, Ou; Maybank, Stephen

    2014-01-01

    Current network intrusion detection systems lack adaptability to the frequently changing network environments. Furthermore, intrusion detection in the new distributed architectures is now a major requirement. In this paper, we propose two online Adaboost-based intrusion detection algorithms. In the first algorithm, a traditional online Adaboost process is used where decision stumps are used as weak classifiers. In the second algorithm, an improved online Adaboost process is proposed, and online Gaussian mixture models (GMMs) are used as weak classifiers. We further propose a distributed intrusion detection framework, in which a local parameterized detection model is constructed in each node using the online Adaboost algorithm. A global detection model is constructed in each node by combining the local parametric models using a small number of samples in the node. This combination is achieved using an algorithm based on particle swarm optimization (PSO) and support vector machines. The global model in each node is used to detect intrusions. Experimental results show that the improved online Adaboost process with GMMs obtains a higher detection rate and a lower false alarm rate than the traditional online Adaboost process that uses decision stumps. Both the algorithms outperform existing intrusion detection algorithms. It is also shown that our PSO, and SVM-based algorithm effectively combines the local detection models into the global model in each node; the global model in a node can handle the intrusion types that are found in other nodes, without sharing the samples of these intrusion types.

  3. Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks.

    Science.gov (United States)

    Martens, Marijn B; Houweling, Arthur R; E Tiesinga, Paul H

    2017-02-01

    Neuronal circuits in the rodent barrel cortex are characterized by stable low firing rates. However, recent experiments show that short spike trains elicited by electrical stimulation in single neurons can induce behavioral responses. Hence, the underlying neural networks provide stability against internal fluctuations in the firing rate, while simultaneously making the circuits sensitive to small external perturbations. Here we studied whether stability and sensitivity are affected by the connectivity structure in recurrently connected spiking networks. We found that anti-correlation between the number of afferent (in-degree) and efferent (out-degree) synaptic connections of neurons increases stability against pathological bursting, relative to networks where the degrees were either positively correlated or uncorrelated. In the stable network state, stimulation of a few cells could lead to a detectable change in the firing rate. To quantify the ability of networks to detect the stimulation, we used a receiver operating characteristic (ROC) analysis. For a given level of background noise, networks with anti-correlated degrees displayed the lowest false positive rates, and consequently had the highest stimulus detection performance. We propose that anti-correlation in the degree distribution may be a computational strategy employed by sensory cortices to increase the detectability of external stimuli. We show that networks with anti-correlated degrees can in principle be formed by applying learning rules comprised of a combination of spike-timing dependent plasticity, homeostatic plasticity and pruning to networks with uncorrelated degrees. To test our prediction we suggest a novel experimental method to estimate correlations in the degree distribution.

  4. Query-Based Outlier Detection in Heterogeneous Information Networks

    Science.gov (United States)

    Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei

    2015-01-01

    Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user’s search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks. PMID:27064397

  5. Bayesian neural networks for detecting epistasis in genetic association studies.

    Science.gov (United States)

    Beam, Andrew L; Motsinger-Reif, Alison; Doyle, Jon

    2014-11-21

    Discovering causal genetic variants from large genetic association studies poses many difficult challenges. Assessing which genetic markers are involved in determining trait status is a computationally demanding task, especially in the presence of gene-gene interactions. A non-parametric Bayesian approach in the form of a Bayesian neural network is proposed for use in analyzing genetic association studies. Demonstrations on synthetic and real data reveal they are able to efficiently and accurately determine which variants are involved in determining case-control status. By using graphics processing units (GPUs) the time needed to build these models is decreased by several orders of magnitude. In comparison with commonly used approaches for detecting interactions, Bayesian neural networks perform very well across a broad spectrum of possible genetic relationships. The proposed framework is shown to be a powerful method for detecting causal SNPs while being computationally efficient enough to handle large datasets.

  6. An artificial bioindicator system for network intrusion detection.

    Science.gov (United States)

    Blum, Christian; Lozano, José A; Davidson, Pedro Pinacho

    2015-01-01

    An artificial bioindicator system is developed in order to solve a network intrusion detection problem. The system, inspired by an ecological approach to biological immune systems, evolves a population of agents that learn to survive in their environment. An adaptation process allows the transformation of the agent population into a bioindicator that is capable of reacting to system anomalies. Two characteristics stand out in our proposal. On the one hand, it is able to discover new, previously unseen attacks, and on the other hand, contrary to most of the existing systems for network intrusion detection, it does not need any previous training. We experimentally compare our proposal with three state-of-the-art algorithms and show that it outperforms the competing approaches on widely used benchmark data.

  7. Fabric Defect Detection Using Local Homogeneity Analysis and Neural Network

    Directory of Open Access Journals (Sweden)

    Ali Rebhi

    2015-01-01

    Full Text Available In the textile manufacturing industry, fabric defect detection becomes a necessary and essential step in quality control. The investment in this field is more than economical when reduction in labor cost and associated benefits are considered. Moreover, the development of a wholly automated inspection system requires efficient and robust algorithms. To overcome this problem, in this paper, we present a new fabric defect detection scheme which uses the local homogeneity and neural network. Its first step consists in computing a new homogeneity image denoted as H-image. The second step is devoted to the application of the discrete cosine transform (DCT to the H-image and the extraction of different representative energy features of each DCT block. These energy features are used by the back-propagation neural network to judge the existence of fabric defect. Simulations on different fabric images and different defect aspects show that the proposed method achieves an average accuracy of 97.35%.

  8. Glaucoma detection based on deep convolutional neural network.

    Science.gov (United States)

    Xiangyu Chen; Yanwu Xu; Damon Wing Kee Wong; Tien Yin Wong; Jiang Liu

    2015-08-01

    Glaucoma is a chronic and irreversible eye disease, which leads to deterioration in vision and quality of life. In this paper, we develop a deep learning (DL) architecture with convolutional neural network for automated glaucoma diagnosis. Deep learning systems, such as convolutional neural networks (CNNs), can infer a hierarchical representation of images to discriminate between glaucoma and non-glaucoma patterns for diagnostic decisions. The proposed DL architecture contains six learned layers: four convolutional layers and two fully-connected layers. Dropout and data augmentation strategies are adopted to further boost the performance of glaucoma diagnosis. Extensive experiments are performed on the ORIGA and SCES datasets. The results show area under curve (AUC) of the receiver operating characteristic curve in glaucoma detection at 0.831 and 0.887 in the two databases, much better than state-of-the-art algorithms. The method could be used for glaucoma detection.

  9. Decentralized Detection in Wireless Sensor Networks with Channel Fading Statistics

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2006-12-01

    Full Text Available Existing channel aware signal processing design for decentralized detection in wireless sensor networks typically assumes the clairvoyant case, that is, global channel state information (CSI is known at the design stage. In this paper, we consider the distributed detection problem where only the channel fading statistics, instead of the instantaneous CSI, are available to the designer. We investigate the design of local decision rules for the following two cases: (1 fusion center has access to the instantaneous CSI; (2 fusion center does not have access to the instantaneous CSI. As expected, in both cases, the optimal local decision rules that minimize the error probability at the fusion center amount to a likelihood ratio test (LRT. Numerical analysis reveals that the detection performance appears to be more sensitive to the knowledge of CSI at the fusion center. The proposed design framework that utilizes only partial channel knowledge will enable distributed design of a decentralized detection wireless sensor system.

  10. Decentralized Detection in Wireless Sensor Networks with Channel Fading Statistics

    Directory of Open Access Journals (Sweden)

    Liu Bin

    2007-01-01

    Full Text Available Existing channel aware signal processing design for decentralized detection in wireless sensor networks typically assumes the clairvoyant case, that is, global channel state information (CSI is known at the design stage. In this paper, we consider the distributed detection problem where only the channel fading statistics, instead of the instantaneous CSI, are available to the designer. We investigate the design of local decision rules for the following two cases: (1 fusion center has access to the instantaneous CSI; (2 fusion center does not have access to the instantaneous CSI. As expected, in both cases, the optimal local decision rules that minimize the error probability at the fusion center amount to a likelihood ratio test (LRT. Numerical analysis reveals that the detection performance appears to be more sensitive to the knowledge of CSI at the fusion center. The proposed design framework that utilizes only partial channel knowledge will enable distributed design of a decentralized detection wireless sensor system.

  11. Network structure detection and analysis of Shanghai stock market

    Directory of Open Access Journals (Sweden)

    Sen Wu

    2015-04-01

    Full Text Available Purpose: In order to investigate community structure of the component stocks of SSE (Shanghai Stock Exchange 180-index, a stock correlation network is built to find the intra-community and inter-community relationship. Design/methodology/approach: The stock correlation network is built taking the vertices as stocks and edges as correlation coefficients of logarithm returns of stock price. It is built as undirected weighted at first. GN algorithm is selected to detect community structure after transferring the network into un-weighted with different thresholds. Findings: The result of the network community structure analysis shows that the stock market has obvious industrial characteristics. Most of the stocks in the same industry or in the same supply chain are assigned to the same community. The correlation of the internal stock prices’ fluctuation is closer than in different communities. The result of community structure detection also reflects correlations among different industries. Originality/value: Based on the analysis of the community structure in Shanghai stock market, the result reflects some industrial characteristics, which has reference value to relationship among industries or sub-sectors of listed companies.

  12. A Universal High-Performance Correlation Analysis Detection Model and Algorithm for Network Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Hongliang Zhu

    2017-01-01

    Full Text Available In big data era, the single detection techniques have already not met the demand of complex network attacks and advanced persistent threats, but there is no uniform standard to make different correlation analysis detection be performed efficiently and accurately. In this paper, we put forward a universal correlation analysis detection model and algorithm by introducing state transition diagram. Based on analyzing and comparing the current correlation detection modes, we formalize the correlation patterns and propose a framework according to data packet timing and behavior qualities and then design a new universal algorithm to implement the method. Finally, experiment, which sets up a lightweight intrusion detection system using KDD1999 dataset, shows that the correlation detection model and algorithm can improve the performance and guarantee high detection rates.

  13. Detection of Interphase Fault Zone in Overhead Power Distribution Networks

    Directory of Open Access Journals (Sweden)

    E. Kalentionok

    2013-01-01

    Full Text Available Parametric methods have been recommended on the basis of current and voltage value recording in normal and emergency modes at a sub-transmission substation in order to detect two- and three-phase short circuits in overhead power distribution networks. The paper proposes to detect an inspection zone in order to locate an interphase fault with the help of analytical calculation of distance up to the fault point using 3–4 expressions on the basis of data obtained as a result of multiple metering pertaining to emergency mode parameters  with their subsequent statistical processing.

  14. Differential Characteristics Based Iterative Multiuser Detection for Wireless Sensor Networks.

    Science.gov (United States)

    Chen, Xiaoguang; Jiang, Xu; Wu, Zhilu; Zhuang, Shufeng

    2017-02-16

    High throughput, low latency and reliable communication has always been a hot topic for wireless sensor networks (WSNs) in various applications. Multiuser detection is widely used to suppress the bad effect of multiple access interference in WSNs. In this paper, a novel multiuser detection method based on differential characteristics is proposed to suppress multiple access interference. The proposed iterative receive method consists of three stages. Firstly, a differential characteristics function is presented based on the optimal multiuser detection decision function; then on the basis of differential characteristics, a preliminary threshold detection is utilized to find the potential wrongly received bits; after that an error bit corrector is employed to correct the wrong bits. In order to further lower the bit error ratio (BER), the differential characteristics calculation, threshold detection and error bit correction process described above are iteratively executed. Simulation results show that after only a few iterations the proposed multiuser detection method can achieve satisfactory BER performance. Besides, BER and near far resistance performance are much better than traditional suboptimal multiuser detection methods. Furthermore, the proposed iterative multiuser detection method also has a large system capacity.

  15. Detection capability of the Italian network for teleseismic events

    Directory of Open Access Journals (Sweden)

    A. Marchetti

    1994-06-01

    Full Text Available The future GSE experiment is based on a global seismic monitoring system, that should be designed for monitoring compliance with a nuclear test ban treaty. Every country participating in the test will transmit data to the International Data Center. Because of the high quality of data required, we decided to conduct this study in order to determine the set of stations to be used in the experiment. The Italian telemetered seismological network can detect all events of at least magnitude 2.5 whose epicenters are inside the network itself. For external events the situation is different: the capabilíty of detection is conditioned not only by the noise condition of the station, but also by the relative position of epicenter and station. The ING bulletin (January 1991-June 1992 was the data set for the present work. Comparing these data with the National Earthquake Information Center (NEIC bulletin, we established which stations are most reliable in detecting teleseismic events and, moreover, how distance and back-azimuth can influence event detection. Furthermore, we investigated the reliability of the automatic acquisition system in relation to teleseismic event detection.

  16. Multi-Branch Fully Convolutional Network for Face Detection

    KAUST Repository

    Bai, Yancheng

    2017-07-20

    Face detection is a fundamental problem in computer vision. It is still a challenging task in unconstrained conditions due to significant variations in scale, pose, expressions, and occlusion. In this paper, we propose a multi-branch fully convolutional network (MB-FCN) for face detection, which considers both efficiency and effectiveness in the design process. Our MB-FCN detector can deal with faces at all scale ranges with only a single pass through the backbone network. As such, our MB-FCN model saves computation and thus is more efficient, compared to previous methods that make multiple passes. For each branch, the specific skip connections of the convolutional feature maps at different layers are exploited to represent faces in specific scale ranges. Specifically, small faces can be represented with both shallow fine-grained and deep powerful coarse features. With this representation, superior improvement in performance is registered for the task of detecting small faces. We test our MB-FCN detector on two public face detection benchmarks, including FDDB and WIDER FACE. Extensive experiments show that our detector outperforms state-of-the-art methods on all these datasets in general and by a substantial margin on the most challenging among them (e.g. WIDER FACE Hard subset). Also, MB-FCN runs at 15 FPS on a GPU for images of size 640 x 480 with no assumption on the minimum detectable face size.

  17. Expert knowledge for automatic detection of bullies in social networks

    OpenAIRE

    Dadvar, M.; Trieschnigg, Rudolf Berend; de Jong, Franciska M. G.

    2013-01-01

    Cyberbullying is a serious social problem in online environments and social networks. Current approaches to tackle this problem are still inadequate for detecting bullying incidents or to flag bullies. In this study we used a multi-criteria evaluation system to obtain a better understanding of YouTube users‟ behaviour and their characteristics through expert knowledge. Based on experts‟ knowledge, the system assigns a score to the users, which represents their level of “bulliness‿ based on th...

  18. Detection of Cyberbullying Incidents on the Instagram Social Network

    OpenAIRE

    Hosseinmardi, Homa; Mattson, Sabrina Arredondo; Rafiq, Rahat Ibn; Han, Richard; Lv, Qin; Mishra, Shivakant

    2015-01-01

    Cyberbullying is a growing problem affecting more than half of all American teens. The main goal of this paper is to investigate fundamentally new approaches to understand and automatically detect incidents of cyberbullying over images in Instagram, a media-based mobile social network. To this end, we have collected a sample Instagram data set consisting of images and their associated comments, and designed a labeling study for cyberbullying as well as image content using human labelers at th...

  19. Machine learning for network-based malware detection

    DEFF Research Database (Denmark)

    Stevanovic, Matija

    and based on different, mutually complementary, principles of traffic analysis. The proposed approaches rely on machine learning algorithms (MLAs) for automated and resource-efficient identification of the patterns of malicious network traffic. We evaluated the proposed methods through extensive evaluations...... traffic that provides reliable and time-efficient labeling. Finally, the thesis outlines the opportunities for future work on realizing robust and effective detection solutions....

  20. The effect of destination linked feature selection in real-time network intrusion detection

    CSIR Research Space (South Africa)

    Mzila, P

    2013-07-01

    Full Text Available techniques in the network intrusion detection system (NIDS) is the feature selection technique. The ability of NIDS to accurately identify intrusion from the network traffic relies heavily on feature selection, which describes the pattern of the network...

  1. A source location algorithm of lightning detection networks in China

    Directory of Open Access Journals (Sweden)

    Z. X. Hu

    2010-10-01

    Full Text Available Fast and accurate retrieval of lightning sources is crucial to the early warning and quick repairs of lightning disaster. An algorithm for computing the location and onset time of cloud-to-ground lightning using the time-of-arrival (TOA and azimuth-of-arrival (AOA data is introduced in this paper. The algorithm can iteratively calculate the least-squares solution of a lightning source on an oblate spheroidal Earth. It contains a set of unique formulas to compute the geodesic distance and azimuth and an explicit method to compute the initial position using TOA data of only three sensors. Since the method accounts for the effects of the oblateness of the Earth, it would provide a more accurate solution than algorithms based on planar or spherical surface models. Numerical simulations are presented to test this algorithm and evaluate the performance of a lightning detection network in the Hubei province of China. Since 1990s, the proposed algorithm has been used in many regional lightning detection networks installed by the electric power system in China. It is expected that the proposed algorithm be used in more lightning detection networks and other location systems.

  2. Development of a neural network for early detection of renal osteodystrophy

    Science.gov (United States)

    Cheng, Shirley N.; Chan, Heang-Ping; Adler, Ronald; Niklason, Loren T.; Chang, Chair-Li

    1991-07-01

    Bone erosion presenting as subperiosteal resorption on the phalanges of the hand is an early manifestation of hyperparathyroidism associated with chronic renal failure. At present, the diagnosis is made by trained radiologists through visual inspection of hand radiographs. In this study, a neural network is being developed to assess the feasibility of computer-aided detection of these changes. A two-pass approach is adopted. The digitized image is first compressed by a Laplacian pyramid compact code. The first neural network locates the region of interest using vertical projections along the phalanges and then the horizontal projections across the phalanges. A second neural network is used to classify texture variations of trabecular patterns in the region using a concurrence matrix as the input to a two-dimensional sensor layer to detect the degree of associated osteopenia. Preliminary results demonstrate the feasibility of this approach.

  3. MACD-Based Motion Detection Approach in Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Chen Yung-Mu

    2008-01-01

    Full Text Available Abstract Optimizing the balance between handoff quality and power consumption is a great challenge for seamless mobile communications in wireless networks. Traditional proactive schemes continuously monitor available access networks and exercise handoff. Although such schemes achieve good handoff quality, they consume much power because all interfaces must remain on all the time. To save power, the reactive schemes use fixed RSS thresholds to determine when to search for a new available access network. However, since they do not consider user motion, these approaches require that all interfaces be turned on even when a user is stationary, and they tend initiate excessive unnecessary handoffs. To address this problem, this research presents a novel motion-aware scheme called network discovery with motion detection (NDMD to improve handoff quality and minimize power consumption. The NDMD first applies a moving average convergence divergence (MACD scheme to analyze received signal strength (RSS samples of the current active interface. These results are then used to estimate user's motion. The proposed NDMD scheme adds very little computing overhead to a mobile terminal (MT and can be easily incorporated into existing schemes. The simulation results in this study showed that NDMD can quickly track user motion state without a positioning system and perform network discovery rapidly enough to achieve a much lower handoff-dropping rate with less power consumption.

  4. MACD-Based Motion Detection Approach in Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Chih-Hung Hsu

    2008-09-01

    Full Text Available Optimizing the balance between handoff quality and power consumption is a great challenge for seamless mobile communications in wireless networks. Traditional proactive schemes continuously monitor available access networks and exercise handoff. Although such schemes achieve good handoff quality, they consume much power because all interfaces must remain on all the time. To save power, the reactive schemes use fixed RSS thresholds to determine when to search for a new available access network. However, since they do not consider user motion, these approaches require that all interfaces be turned on even when a user is stationary, and they tend initiate excessive unnecessary handoffs. To address this problem, this research presents a novel motion-aware scheme called network discovery with motion detection (NDMD to improve handoff quality and minimize power consumption. The NDMD first applies a moving average convergence divergence (MACD scheme to analyze received signal strength (RSS samples of the current active interface. These results are then used to estimate user's motion. The proposed NDMD scheme adds very little computing overhead to a mobile terminal (MT and can be easily incorporated into existing schemes. The simulation results in this study showed that NDMD can quickly track user motion state without a positioning system and perform network discovery rapidly enough to achieve a much lower handoff-dropping rate with less power consumption.

  5. Detecting and analyzing research communities in longitudinal scientific networks.

    Science.gov (United States)

    Leone Sciabolazza, Valerio; Vacca, Raffaele; Kennelly Okraku, Therese; McCarty, Christopher

    2017-01-01

    A growing body of evidence shows that collaborative teams and communities tend to produce the highest-impact scientific work. This paper proposes a new method to (1) Identify collaborative communities in longitudinal scientific networks, and (2) Evaluate the impact of specific research institutes, services or policies on the interdisciplinary collaboration between these communities. First, we apply community-detection algorithms to cross-sectional scientific collaboration networks and analyze different types of co-membership in the resulting subgroups over time. This analysis summarizes large amounts of longitudinal network data to extract sets of research communities whose members have consistently collaborated or shared collaborators over time. Second, we construct networks of cross-community interactions and estimate Exponential Random Graph Models to predict the formation of interdisciplinary collaborations between different communities. The method is applied to longitudinal data on publication and grant collaborations at the University of Florida. Results show that similar institutional affiliation, spatial proximity, transitivity effects, and use of the same research services predict higher degree of interdisciplinary collaboration between research communities. Our application also illustrates how the identification of research communities in longitudinal data and the analysis of cross-community network formation can be used to measure the growth of interdisciplinary team science at a research university, and to evaluate its association with research policies, services or institutes.

  6. Detecting and analyzing research communities in longitudinal scientific networks.

    Directory of Open Access Journals (Sweden)

    Valerio Leone Sciabolazza

    Full Text Available A growing body of evidence shows that collaborative teams and communities tend to produce the highest-impact scientific work. This paper proposes a new method to (1 Identify collaborative communities in longitudinal scientific networks, and (2 Evaluate the impact of specific research institutes, services or policies on the interdisciplinary collaboration between these communities. First, we apply community-detection algorithms to cross-sectional scientific collaboration networks and analyze different types of co-membership in the resulting subgroups over time. This analysis summarizes large amounts of longitudinal network data to extract sets of research communities whose members have consistently collaborated or shared collaborators over time. Second, we construct networks of cross-community interactions and estimate Exponential Random Graph Models to predict the formation of interdisciplinary collaborations between different communities. The method is applied to longitudinal data on publication and grant collaborations at the University of Florida. Results show that similar institutional affiliation, spatial proximity, transitivity effects, and use of the same research services predict higher degree of interdisciplinary collaboration between research communities. Our application also illustrates how the identification of research communities in longitudinal data and the analysis of cross-community network formation can be used to measure the growth of interdisciplinary team science at a research university, and to evaluate its association with research policies, services or institutes.

  7. Detecting change in depressive symptoms from daily wellbeing questions, personality, and activity

    OpenAIRE

    DeMasi, O; Aguilera, A; Recht, B.

    2016-01-01

    © 2016 IEEE. Depression is the most common mental disorder and is negatively impactful to individuals and their social networks. Passive sensing of behavior via smartphones may help detect changes in depressive symptoms, which could be useful for tracking and understanding disorders. Here we look at a passive way to detect changes in depressive symptoms from data collected by users' smartphones. In particular, we take two modeling approaches to understand what features of physical activity, s...

  8. Erasure Coded Storage on a Changing Network

    DEFF Research Database (Denmark)

    Sipos, Marton A.; Venkat, Narayan; Oran, David

    2016-01-01

    a fixed repair mechanism or are constrained in the choice of repair strategies, therefore in theory benefit less from being network aware. We propose a general mechanism that explores the space of possible repairs and examine how much different types of erasure codes benefit by being network aware. We...... show significant gains for three erasure codes using both theoretical modeling and simulation results. We also consider the practical applicability of our proposed mechanism by limiting the search space to repairs that have the potential to be minimal cost and present a case study for RLNC, a class...

  9. Anomaly detection using clustering for ad hoc networks -behavioral approach-

    Directory of Open Access Journals (Sweden)

    Belacel Madani

    2012-06-01

    Full Text Available Mobile   ad   hoc   networks   (MANETs   are   multi-hop   wireless   networks   ofautonomous  mobile  nodes  without  any  fixed  infrastructure.  In  MANETs,  it  isdifficult to detect malicious nodes because the network topology constantly changesdue  to  node  mobility.  Intrusion  detection  is  the  means  to  identify  the  intrusivebehaviors and provide useful information to intruded systems to respond fast and toavoid  or  reduce  damages.  The  anomaly  detection  algorithms  have  the  advantagebecause  they  can  detect  new  types  of  attacks  (zero-day  attacks.In  this  paper,  wepresent  a  Intrusion  Detection  System  clustering-based  (ID-Cluster  that  fits  therequirement of MANET. This dissertation addresses both routing layer misbehaviorsissues,  with  main  focuses  on  thwarting  routing  disruption  attack  Dynamic  SourceRouting  (DSR.  To  validate  the  research,  a  case  study  is  presented  using  thesimulation with GloMoSum at different mobility levels. Simulation results show thatour  proposed  system  can  achieve  desirable  performance  and  meet  the  securityrequirement of MANET.

  10. Earthquake detection capability of the Swiss Seismic Network

    Science.gov (United States)

    Nanjo, K. Z.; Schorlemmer, D.; Woessner, J.; Wiemer, S.; Giardini, D.

    2010-06-01

    A reliable estimate of completeness magnitudes is vital for many seismicity- and hazard-related studies. Here we adopted and further developed the Probability-based Magnitude of Completeness (PMC) method. This method determines network detection completeness (MP) using only empirical data: earthquake catalogue, phase picks and station information. To evaluate the applicability to low- or moderate-seismicity regions, we performed a case study in Switzerland. The Swiss Seismic Network (SSN) at present is recording seismicity with one of the densest networks of broad-band sensors in Europe. Based on data from 1983 January 1 to 2008 March 31, we found strong spatio-temporal variability of network completeness: the highest value of MP in Switzerland at present is 2.5 in the far southwest, close to the national boundary, whereas MP is lower than 1.6 in high-seismicity areas. Thus, events of magnitude 2.5 can be detected in all of Switzerland. We evaluated the temporal evolution of MP for the last 20 yr, showing the successful improvement of the SSN. We next introduced the calculation of uncertainties to the probabilistic method using a bootstrap approach. The results show that the uncertainties in completeness magnitudes are generally less than 0.1 magnitude units, implying that the method generates stable estimates of completeness magnitudes. We explored the possible use of PMC: (1) as a tool to estimate the number of missing earthquakes in moderate-seismicity regions and (2) as a network planning tool with simulation computations of installations of one or more virtual stations to assess the completeness and identify appropriate locations for new station installations. We compared our results with an existing study of the completeness based on detecting the point of deviation from a power law in the earthquake-size distribution. In general, the new approach provides higher estimates of the completeness magnitude than the traditional one. We associate this observation

  11. An Optimized Hidden Node Detection Paradigm for Improving the Coverage and Network Efficiency in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Adwan Alanazi

    2016-09-01

    Full Text Available Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node– continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2. The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches.

  12. An Optimized Hidden Node Detection Paradigm for Improving the Coverage and Network Efficiency in Wireless Multimedia Sensor Networks

    Science.gov (United States)

    Alanazi, Adwan; Elleithy, Khaled

    2016-01-01

    Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node– continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches. PMID:27618048

  13. Arresting Strategy Based on Dynamic Criminal Networks Changing over Time

    Directory of Open Access Journals (Sweden)

    Junqing Yuan

    2013-01-01

    Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.

  14. Structural Changes in Online Discussion Networks

    DEFF Research Database (Denmark)

    Yang, Yang; Medaglia, Rony

    2014-01-01

    Social networking platforms in China provide a hugely interesting and relevant source for understanding dynamics of online discussions in a unique socio-cultural and institutional environment. This paper investigates the evolution of patterns of similar-minded and different-minded interactions over...

  15. Determination of a Limited Scope Network's Lightning Detection Efficiency

    Science.gov (United States)

    Rompala, John T.; Blakeslee, R.

    2008-01-01

    This paper outlines a modeling technique to map lightning detection efficiency variations over a region surveyed by a sparse array of ground based detectors. A reliable flash peak current distribution (PCD) for the region serves as the technique's base. This distribution is recast as an event probability distribution function. The technique then uses the PCD together with information regarding: site signal detection thresholds, type of solution algorithm used, and range attenuation; to formulate the probability that a flash at a specified location will yield a solution. Applying this technique to the full region produces detection efficiency contour maps specific to the parameters employed. These contours facilitate a comparative analysis of each parameter's effect on the network's detection efficiency. In an alternate application, this modeling technique gives an estimate of the number, strength, and distribution of events going undetected. This approach leads to a variety of event density contour maps. This application is also illustrated. The technique's base PCD can be empirical or analytical. A process for formulating an empirical PCD specific to the region and network being studied is presented. A new method for producing an analytical representation of the empirical PCD is also introduced.

  16. Radiation detection and situation management by distributed sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Frigo [Los Alamos National Laboratory; Mielke, Angela [Los Alamos National Laboratory; Cai, D Michael [Los Alamos National Laboratory

    2009-01-01

    Detection of radioactive materials in an urban environment usually requires large, portal-monitor-style radiation detectors. However, this may not be a practical solution in many transport scenarios. Alternatively, a distributed sensor network (DSN) could complement portal-style detection of radiological materials through the implementation of arrays of low cost, small heterogeneous sensors with the ability to detect the presence of radioactive materials in a moving vehicle over a specific region. In this paper, we report on the use of a heterogeneous, wireless, distributed sensor network for traffic monitoring in a field demonstration. Through wireless communications, the energy spectra from different radiation detectors are combined to improve the detection confidence. In addition, the DSN exploits other sensor technologies and algorithms to provide additional information about the vehicle, such as its speed, location, class (e.g. car, truck), and license plate number. The sensors are in-situ and data is processed in real-time at each node. Relevant information from each node is sent to a base station computer which is used to assess the movement of radioactive materials.

  17. Sleep Deprivation Attack Detection in Wireless Sensor Network

    Science.gov (United States)

    Bhattasali, Tapalina; Chaki, Rituparna; Sanyal, Sugata

    2012-02-01

    Deployment of sensor network in hostile environment makes it mainly vulnerable to battery drainage attacks because it is impossible to recharge or replace the battery power of sensor nodes. Among different types of security threats, low power sensor nodes are immensely affected by the attacks which cause random drainage of the energy level of sensors, leading to death of the nodes. The most dangerous type of attack in this category is sleep deprivation, where target of the intruder is to maximize the power consumption of sensor nodes, so that their lifetime is minimized. Most of the existing works on sleep deprivation attack detection involve a lot of overhead, leading to poor throughput. The need of the day is to design a model for detecting intrusions accurately in an energy efficient manner. This paper proposes a hierarchical framework based on distributed collaborative mechanism for detecting sleep deprivation torture in wireless sensor network efficiently. Proposed model uses anomaly detection technique in two steps to reduce the probability of false intrusion.

  18. AdaBoost-based algorithm for network intrusion detection.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  19. GLRT Based Anomaly Detection for Sensor Network Monitoring

    KAUST Repository

    Harrou, Fouzi

    2015-12-07

    Proper operation of antenna arrays requires continuously monitoring their performances. When a fault occurs in an antenna array, the radiation pattern changes and can significantly deviate from the desired design performance specifications. In this paper, the problem of fault detection in linear antenna arrays is addressed within a statistical framework. Specifically, a statistical fault detection method based on the generalized likelihood ratio (GLR) principle is utilized for detecting potential faults in linear antenna arrays. The proposed method relies on detecting deviations in the radiation pattern of the monitored array with respect to a reference (fault-free) one. To assess the abilities of the GLR based fault detection method, three case studies involving different types of faults have been performed. The simulation results clearly illustrate the effectiveness of the GLR-based fault detection method in monitoring the performance of linear antenna arrays.

  20. Wormholes no more? Localized Wormhole Detection and Prevention in Wireless Networks

    DEFF Research Database (Denmark)

    Tassos, Dimitriou; Giannetsos, Athanasios

    2010-01-01

    A number of protocols have been proposed to date to defend against wormhole attacks in wireless networks by adopting synchronized clocks, positioning devices, or directional antennas. In this work, we introduce a novel approach for detecting wormhole attacks. The proposed algorithm is completely...... for real-world scenarios. Most importantly, however, the algorithm can always prevent wormholes, irrespective of the density of the network, while its efficiency is not affected even by frequent connectivity changes. We also provide an analytical evaluation of the algorithm’s correctness along...

  1. Automatic Detection of Welding Defects using Deep Neural Network

    Science.gov (United States)

    Hou, Wenhui; Wei, Ye; Guo, Jie; Jin, Yi; Zhu, Chang’an

    2018-01-01

    In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the image is implemented to locate the weld region; Then a classification model which is trained and tested by the patches cropped from x-ray images is constructed based on deep neural network. And this model can learn the intrinsic feature of images without extra calculation; Finally, the sliding-window approach is utilized to detect the whole images based on the trained model. In order to evaluate the performance of the model, we carry out several experiments. The results demonstrate that the classification model we proposed is effective in the detection of welded joints quality.

  2. A Partially Distributed Intrusion Detection System for Wireless Sensor Networks

    Science.gov (United States)

    Cho, Eung Jun; Hong, Choong Seon; Lee, Sungwon; Jeon, Seokhee

    2013-01-01

    The increasing use of wireless sensor networks, which normally comprise several very small sensor nodes, makes their security an increasingly important issue. They can be practically and efficiently secured using intrusion detection systems. Conventional security mechanisms are not usually applicable due to the sensor nodes having limitations of computational power, memory capacity, and battery power. Therefore, specific security systems should be designed to function under constraints of energy or memory. A partially distributed intrusion detection system with low memory and power demands is proposed here. It employs a Bloom filter, which allows reduced signature code size. Multiple Bloom filters can be combined to reduce the signature code for each Bloom filter array. The mechanism could then cope with potential denial of service attacks, unlike many previous detection systems with Bloom filters. The mechanism was evaluated and validated through analysis and simulation.

  3. A Partially Distributed Intrusion Detection System for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Eung Jun Cho

    2013-11-01

    Full Text Available The increasing use of wireless sensor networks, which normally comprise several very small sensor nodes, makes their security an increasingly important issue. They can be practically and efficiently secured using intrusion detection systems. Conventional security mechanisms are not usually applicable due to the sensor nodes having limitations of computational power, memory capacity, and battery power. Therefore, specific security systems should be designed to function under constraints of energy or memory. A partially distributed intrusion detection system with low memory and power demands is proposed here. It employs a Bloom filter, which allows reduced signature code size. Multiple Bloom filters can be combined to reduce the signature code for each Bloom filter array. The mechanism could then cope with potential denial of service attacks, unlike many previous detection systems with Bloom filters. The mechanism was evaluated and validated through analysis and simulation.

  4. Identifying changes in the support networks of end-of-life carers using social network analysis.

    Science.gov (United States)

    Leonard, Rosemary; Horsfall, Debbie; Noonan, Kerrie

    2015-06-01

    End-of-life caring is often associated with reduced social networks for both the dying person and for the carer. However, those adopting a community participation and development approach, see the potential for the expansion and strengthening of networks. This paper uses Knox, Savage and Harvey's definitions of three generations social network analysis to analyse the caring networks of people with a terminal illness who are being cared for at home and identifies changes in these caring networks that occurred over the period of caring. Participatory network mapping of initial and current networks was used in nine focus groups. The analysis used key concepts from social network analysis (size, density, transitivity, betweenness and local clustering) together with qualitative analyses of the group's reflections on the maps. The results showed an increase in the size of the networks and that ties between the original members of the network strengthened. The qualitative data revealed the importance between core and peripheral network members and the diverse contributions of the network members. The research supports the value of third generation social network analysis and the potential for end-of-life caring to build social capital. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Detecting spatial ontogenetic niche shifts in complex dendritic ecological networks

    Science.gov (United States)

    Fields, William R.; Grant, Evan H. Campbell; Lowe, Winsor H.

    2017-01-01

    Ontogenetic niche shifts (ONS) are important drivers of population and community dynamics, but they can be difficult to identify for species with prolonged larval or juvenile stages, or for species that inhabit continuous habitats. Most studies of ONS focus on single transitions among discrete habitat patches at local scales. However, for species with long larval or juvenile periods, affinity for particular locations within connected habitat networks may differ among cohorts. The resulting spatial patterns of distribution can result from a combination of landscape-scale habitat structure, position of a habitat patch within a network, and local habitat characteristics—all of which may interact and change as individuals grow. We estimated such spatial ONS for spring salamanders (Gyrinophilus porphyriticus), which have a larval period that can last 4 years or more. Using mixture models to identify larval cohorts from size frequency data, we fit occupancy models for each age class using two measures of the branching structure of stream networks and three measures of stream network position. Larval salamander cohorts showed different preferences for the position of a site within the stream network, and the strength of these responses depended on the basin-wide spatial structure of the stream network. The isolation of a site had a stronger effect on occupancy in watersheds with more isolated headwater streams, while the catchment area, which is associated with gradients in stream habitat, had a stronger effect on occupancy in watersheds with more paired headwater streams. Our results show that considering the spatial structure of habitat networks can provide new insights on ONS in long-lived species.

  6. Social Network Sensors for Early Detection of Contagious Outbreaks

    CERN Document Server

    Christakis, Nicholas A

    2010-01-01

    Current methods for the detection of contagious outbreaks give contemporaneous information about the course of an epidemic at best. Individuals at the center of a social network are likely to be infected sooner, on average, than those at the periphery. However, mapping a whole network to identify central individuals whom to monitor is typically very difficult. We propose an alternative strategy that does not require ascertainment of global network structure, namely, monitoring the friends of randomly selected individuals. Such individuals are known to be more central. To evaluate whether such a friend group could indeed provide early detection, we studied a flu outbreak at Harvard College in late 2009. We followed 744 students divided between a random group and a friend group. Based on clinical diagnoses, the progression of the epidemic in the friend group occurred 14.7 days (95% C.I. 11.7-17.6) in advance of the randomly chosen group (i.e., the population as a whole). The friend group also showed a significa...

  7. Automatic detection and classification of leukocytes using convolutional neural networks.

    Science.gov (United States)

    Zhao, Jianwei; Zhang, Minshu; Zhou, Zhenghua; Chu, Jianjun; Cao, Feilong

    2017-08-01

    The detection and classification of white blood cells (WBCs, also known as Leukocytes) is a hot issue because of its important applications in disease diagnosis. Nowadays the morphological analysis of blood cells is operated manually by skilled operators, which results in some drawbacks such as slowness of the analysis, a non-standard accuracy, and the dependence on the operator's skills. Although there have been many papers studying the detection of WBCs or classification of WBCs independently, few papers consider them together. This paper proposes an automatic detection and classification system for WBCs from peripheral blood images. It firstly proposes an algorithm to detect WBCs from the microscope images based on the simple relation of colors R, B and morphological operation. Then a granularity feature (pairwise rotation invariant co-occurrence local binary pattern, PRICoLBP feature) and SVM are applied to classify eosinophil and basophil from other WBCs firstly. Lastly, convolution neural networks are used to extract features in high level from WBCs automatically, and a random forest is applied to these features to recognize the other three kinds of WBCs: neutrophil, monocyte and lymphocyte. Some detection experiments on Cellavison database and ALL-IDB database show that our proposed detection method has better effect almost than iterative threshold method with less cost time, and some classification experiments show that our proposed classification method has better accuracy almost than some other methods.

  8. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion.

    Science.gov (United States)

    Prentašić, Pavle; Lončarić, Sven

    2016-12-01

    Diabetic retinopathy is one of the leading disabling chronic diseases and one of the leading causes of preventable blindness in developed world. Early diagnosis of diabetic retinopathy enables timely treatment and in order to achieve it a major effort will have to be invested into automated population screening programs. Detection of exudates in color fundus photographs is very important for early diagnosis of diabetic retinopathy. We use deep convolutional neural networks for exudate detection. In order to incorporate high level anatomical knowledge about potential exudate locations, output of the convolutional neural network is combined with the output of the optic disc detection and vessel detection procedures. In the validation step using a manually segmented image database we obtain a maximum F1 measure of 0.78. As manually segmenting and counting exudate areas is a tedious task, having a reliable automated output, such as automated segmentation using convolutional neural networks in combination with other landmark detectors, is an important step in creating automated screening programs for early detection of diabetic retinopathy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Online scene change detection of multicast (MBone) video

    Science.gov (United States)

    Zhou, Wensheng; Shen, Ye; Vellaikal, Asha; Kuo, C.-C. Jay

    1998-10-01

    Many multimedia applications, such as multimedia data management systems and communication systems, require efficient representation of multimedia content. Thus semantic interpretation of video content has been a popular research area. Currently, most content-based video representation involves the segmentation of video based on key frames which are generated using scene change detection techniques as well as camera/object motion. Then, video features can be extracted from key frames. However most of such research performs off-line video processing in which the whole video scope is known as a priori which allows multiple scans of the stored video files during video processing. In comparison, relatively not much research has been done in the area of on-line video processing, which is crucial in video communication applications such as on-line collaboration, news broadcasts and so on. Our research investigates on-line real-time scene change detection of multicast video over the Internet. Our on-line processing system are designed to meet the requirements of real-time video multicasting over the Internet and to utilize the successful video parsing techniques available today. The proposed algorithms extract key frames from video bitstreams sent through the MBone network, and the extracted key frames are multicasted as annotations or metadata over a separate channel to assist in content filtering such as those anticipated to be in use by on-line filtering proxies in the Internet. The performance of the proposed algorithms are demonstrated and discussed in this paper.

  10. Automated Detection of Classical Novae with Neural Networks

    CERN Document Server

    Feeney, S; Evans, N W; An, J; Hewett, P C; Bode, M; Darnley, M; Kerins, E; Baillon, Paul; Carr, B J; Paulin-Henriksson, S; Gould, A

    2005-01-01

    The POINT-AGAPE collaboration surveyed M31 with the primary goal of optical detection of microlensing events, yet its data catalogue is also a prime source of lightcurves of variable and transient objects, including classical novae (CNe). A reliable means of identification, combined with a thorough survey of the variable objects in M31, provides an excellent opportunity to locate and study an entire galactic population of CNe. This paper presents a set of 440 neural networks, working in 44 committees, designed specifically to identify fast CNe. The networks are developed using training sets consisting of simulated novae and POINT-AGAPE lightcurves, in a novel variation on K-fold cross-validation. They use the binned, normalised power spectra of the lightcurves as input units. The networks successfully identify 9 of the 13 previously identified M31 CNe within their optimal working range (and 11 out of 13 if the network error bars are taken into account). They provide a catalogue of 19 new candidate fast CNe, o...

  11. Eye Movements and Display Change Detection during Reading

    Science.gov (United States)

    Slattery, Timothy J.; Angele, Bernhard; Rayner, Keith

    2011-01-01

    In the boundary change paradigm (Rayner, 1975), when a reader's eyes cross an invisible boundary location, a preview word is replaced by a target word. Readers are generally unaware of such changes due to saccadic suppression. However, some readers detect changes on a few trials and a small percentage of them detect many changes. Two experiments…

  12. Product flow and price change in an agricultural distribution network

    Science.gov (United States)

    Lee, Daekyung; Yang, Seong-Gyu; Kim, Kibum; Kim, Beom Jun

    2018-01-01

    We use the structure of a real distribution network of agricultural product in Korea and investigate how the change in the supply may affect the price changes in agents across the distribution network. In particular, we focus on the real network structure of cabbage distribution composed of various types of agents, from farms to consumers, and apply a dynamic model to describe how each participant reacts upon the change of input and output flow of products through the adjustment of price. Our main result implies that the effect of fluctuation of production quantity in the supplying participant can be nontrivial and the consumer price responds to such changes. We believe that our results can be useful to predict what will happen if the agricultural production changes much in the future due to the climate changes.

  13. Mind-Body Practice Changes Fractional Amplitude of Low Frequency Fluctuations in Intrinsic Control Networks.

    Science.gov (United States)

    Wei, Gao-Xia; Gong, Zhu-Qing; Yang, Zhi; Zuo, Xi-Nian

    2017-01-01

    Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC) practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF) in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the "immune system" of mental health recently developed in relation to flexible hub theory.

  14. The effect of network template from normal subjects in the detection of network impairment.

    Science.gov (United States)

    Chun-Chao, Huang; Shang-Hua, Lin; Ching-Po, Lin; Disease Neuroimaging Initiative, The Alzheimer's

    2016-01-01

    This study aimed to provide a simple way to approach group differences by independent component analysis when researching functional connectivity changes of resting-state network in brain disorders. We used baseline resting state functional magnetic resonance imaging from the Alzheimer's disease neuroimaging initiative dataset and performed independent component analysis based on different kinds of subject selection, by including two downloaded templates and single-subject independent component analysis method. All conditions were used to calculate the functional connectivity of the default mode network, and to test group differences and evaluate correlation with cognitive measurements and hippocampal volume. The default mode network functional connectivity results most fitting clinical evaluations were from templates based on young healthy subjects and the worst results were from heterogeneous or more severe disease groups or single-subject independent component analysis method. Using independent component analysis network maps derived from normal young subjects to extract all individual functional connectivities provides significant correlations with clinical evaluations.

  15. Feature detection in satellite images using neural network technology

    Science.gov (United States)

    Augusteijn, Marijke F.; Dimalanta, Arturo S.

    1992-01-01

    A feasibility study of automated classification of satellite images is described. Satellite images were characterized by the textures they contain. In particular, the detection of cloud textures was investigated. The method of second-order gray level statistics, using co-occurrence matrices, was applied to extract feature vectors from image segments. Neural network technology was employed to classify these feature vectors. The cascade-correlation architecture was successfully used as a classifier. The use of a Kohonen network was also investigated but this architecture could not reliably classify the feature vectors due to the complicated structure of the classification problem. The best results were obtained when data from different spectral bands were fused.

  16. Network community-detection enhancement by proper weighting.

    Science.gov (United States)

    Khadivi, Alireza; Ajdari Rad, Ali; Hasler, Martin

    2011-04-01

    In this paper, we show how proper assignment of weights to the edges of a complex network can enhance the detection of communities and how it can circumvent the resolution limit and the extreme degeneracy problems associated with modularity. Our general weighting scheme takes advantage of graph theoretic measures and it introduces two heuristics for tuning its parameters. We use this weighting as a preprocessing step for the greedy modularity optimization algorithm of Newman to improve its performance. The result of the experiments of our approach on computer-generated and real-world data networks confirm that the proposed approach not only mitigates the problems of modularity but also improves the modularity optimization.

  17. Dimensionality reduction using Principal Component Analysis for network intrusion detection

    Directory of Open Access Journals (Sweden)

    K. Keerthi Vasan

    2016-09-01

    Full Text Available Intrusion detection is the identification of malicious activities in a given network by analyzing its traffic. Data mining techniques used for this analysis study the traffic traces and identify hostile flows in the traffic. Dimensionality reduction in data mining focuses on representing data with minimum number of dimensions such that its properties are not lost and hence reducing the underlying complexity in processing the data. Principal Component Analysis (PCA is one of the prominent dimensionality reduction techniques widely used in network traffic analysis. In this paper, we focus on the efficiency of PCA for intrusion detection and determine its Reduction Ratio (RR, ideal number of Principal Components needed for intrusion detection and the impact of noisy data on PCA. We carried out experiments with PCA using various classifier algorithms on two benchmark datasets namely, KDD CUP and UNB ISCX. Experiments show that the first 10 Principal Components are effective for classification. The classification accuracy for 10 Principal Components is about 99.7% and 98.8%, nearly same as the accuracy obtained using original 41 features for KDD and 28 features for ISCX, respectively.

  18. Combining Unsupervised Anomaly Detection and Neural Networks for Driver Identification

    Directory of Open Access Journals (Sweden)

    Thitaree Tanprasert

    2017-01-01

    Full Text Available This paper proposes an algorithm for real-time driver identification using the combination of unsupervised anomaly detection and neural networks. The proposed algorithm uses nonphysiological signals as input, namely, driving behavior signals from inertial sensors (e.g., accelerometers and geolocation signals from GPS sensors. First anomaly detection is performed to assess if the current driver is whom he/she claims to be. If an anomaly is detected, the algorithm proceeds to find relevant features in the input signals and use neural networks to identify drivers. To assess the proposed algorithm, real-world data are collected from ten drivers who drive different vehicles on several routes in real-world traffic conditions. Driver identification is performed on each of the seven-second-long driving behavior signals and geolocation signals in a streaming manner. It is shown that the proposed algorithm can achieve relatively high accuracy and identify drivers within 13 seconds. The proposed algorithm also outperforms the previously proposed driver identification algorithms. Furthermore, to demonstrate how the proposed algorithm can be deployed in real-world applications, results from real-world data associated with each operation of the proposed algorithm are shown step-by-step.

  19. Clustering and community detection in directed networks: A survey

    Science.gov (United States)

    Malliaros, Fragkiskos D.; Vazirgiannis, Michalis

    2013-12-01

    Networks (or graphs) appear as dominant structures in diverse domains, including sociology, biology, neuroscience and computer science. In most of the aforementioned cases graphs are directed - in the sense that there is directionality on the edges, making the semantics of the edges nonsymmetric as the source node transmits some property to the target one but not vice versa. An interesting feature that real networks present is the clustering or community structure property, under which the graph topology is organized into modules commonly called communities or clusters. The essence here is that nodes of the same community are highly similar while on the contrary, nodes across communities present low similarity. Revealing the underlying community structure of directed complex networks has become a crucial and interdisciplinary topic with a plethora of relevant application domains. Therefore, naturally there is a recent wealth of research production in the area of mining directed graphs - with clustering being the primary method sought and the primary tool for community detection and evaluation. The goal of this paper is to offer an in-depth comparative review of the methods presented so far for clustering directed networks along with the relevant necessary methodological background and also related applications. The survey commences by offering a concise review of the fundamental concepts and methodological base on which graph clustering algorithms capitalize on. Then we present the relevant work along two orthogonal classifications. The first one is mostly concerned with the methodological principles of the clustering algorithms, while the second one approaches the methods from the viewpoint regarding the properties of a good cluster in a directed network. Further, we present methods and metrics for evaluating graph clustering results, demonstrate interesting application domains and provide promising future research directions.

  20. Real-time method for establishing a detection map for a network of sensors

    Science.gov (United States)

    Nguyen, Hung D; Koch, Mark W; Giron, Casey; Rondeau, Daniel M; Russell, John L

    2012-09-11

    A method for establishing a detection map of a dynamically configurable sensor network. This method determines an appropriate set of locations for a plurality of sensor units of a sensor network and establishes a detection map for the network of sensors while the network is being set up; the detection map includes the effects of the local terrain and individual sensor performance. Sensor performance is characterized during the placement of the sensor units, which enables dynamic adjustment or reconfiguration of the placement of individual elements of the sensor network during network set-up to accommodate variations in local terrain and individual sensor performance. The reconfiguration of the network during initial set-up to accommodate deviations from idealized individual sensor detection zones improves the effectiveness of the sensor network in detecting activities at a detection perimeter and can provide the desired sensor coverage of an area while minimizing unintentional gaps in coverage.

  1. EFFICIENT LANE DETECTION BASED ON ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    F. Arce

    2017-09-01

    Full Text Available Lane detection is a problem that has attracted in the last years the attention of the computer vision community. Most of approaches used until now to face this problem combine conventional image processing, image analysis and pattern classification techniques. In this paper, we propose a methodology based on so-called Ellipsoidal Neural Networks with Dendritic Processing (ENNDPs as a new approach to provide a solution to this important problem. The functioning and performance of the proposed methodology is validated with a real video taken by a camera mounted on a car circulating on urban highway of Mexico City.

  2. Video Salient Object Detection via Fully Convolutional Networks.

    Science.gov (United States)

    Wang, Wenguan; Shen, Jianbing; Shao, Ling

    This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further

  3. Efficient Lane Detection Based on Artificial Neural Networks

    Science.gov (United States)

    Arce, F.; Zamora, E.; Hernández, G.; Sossa, H.

    2017-09-01

    Lane detection is a problem that has attracted in the last years the attention of the computer vision community. Most of approaches used until now to face this problem combine conventional image processing, image analysis and pattern classification techniques. In this paper, we propose a methodology based on so-called Ellipsoidal Neural Networks with Dendritic Processing (ENNDPs) as a new approach to provide a solution to this important problem. The functioning and performance of the proposed methodology is validated with a real video taken by a camera mounted on a car circulating on urban highway of Mexico City.

  4. Detection of phase transition via convolutional neural network

    CERN Document Server

    Tanaka, Akinori

    2016-01-01

    We design a Convolutional Neural Network (CNN) which studies correlation between discretized inverse temperature and spin configuration of 2D Ising model and show that it can find a feature of the phase transition without teaching any a priori information for it. We also define a new order parameter via the CNN and show that it provides well approximated critical inverse temperature. In addition, we compare the activation functions for convolution layer and find that the Rectified Linear Unit (ReLU) is important to detect the phase transition of 2D Ising model.

  5. Feature learning and change feature classification based on deep learning for ternary change detection in SAR images

    Science.gov (United States)

    Gong, Maoguo; Yang, Hailun; Zhang, Puzhao

    2017-07-01

    Ternary change detection aims to detect changes and group the changes into positive change and negative change. It is of great significance in the joint interpretation of spatial-temporal synthetic aperture radar images. In this study, sparse autoencoder, convolutional neural networks (CNN) and unsupervised clustering are combined to solve ternary change detection problem without any supervison. Firstly, sparse autoencoder is used to transform log-ratio difference image into a suitable feature space for extracting key changes and suppressing outliers and noise. And then the learned features are clustered into three classes, which are taken as the pseudo labels for training a CNN model as change feature classifier. The reliable training samples for CNN are selected from the feature maps learned by sparse autoencoder with certain selection rules. Having training samples and the corresponding pseudo labels, the CNN model can be trained by using back propagation with stochastic gradient descent. During its training procedure, CNN is driven to learn the concept of change, and more powerful model is established to distinguish different types of changes. Unlike the traditional methods, the proposed framework integrates the merits of sparse autoencoder and CNN to learn more robust difference representations and the concept of change for ternary change detection. Experimental results on real datasets validate the effectiveness and superiority of the proposed framework.

  6. Cellular Neural Network-Based Methods for Distributed Network Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2015-01-01

    Full Text Available According to the problems of current distributed architecture intrusion detection systems (DIDS, a new online distributed intrusion detection model based on cellular neural network (CNN was proposed, in which discrete-time CNN (DTCNN was used as weak classifier in each local node and state-controlled CNN (SCCNN was used as global detection method, respectively. We further proposed a new method for design template parameters of SCCNN via solving Linear Matrix Inequality. Experimental results based on KDD CUP 99 dataset show its feasibility and effectiveness. Emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation which allows the distributed intrusion detection to be performed better.

  7. Potential fire detection based on Kalman-driven change detection

    CSIR Research Space (South Africa)

    Van Den Bergh, F

    2009-07-01

    Full Text Available neighbours of a pixel to detect anomalous temperatures, the new algorithm only considers previous observations at the current pixel. The algorithm harnesses the Kalman filter to obtain a prediction of the expected brightness temperature at a given location...

  8. Optimal Regulatory Circuit Topologies for Fold-Change Detection.

    Science.gov (United States)

    Adler, Miri; Szekely, Pablo; Mayo, Avi; Alon, Uri

    2017-02-22

    Evolution repeatedly converges on only a few regulatory circuit designs that achieve a given function. This simplicity helps us understand biological networks. However, why so few circuits are rediscovered by evolution is unclear. We address this question for the case of fold-change detection (FCD): a response to relative changes of input rather than absolute changes. Two types of FCD circuits recur in biological systems-the incoherent feedforward and non-linear integral-feedback loops. We performed an analytical screen of all three-node circuits in a class comprising ∼500,000 topologies. We find that FCD is rare, but still there are hundreds of FCD topologies. The two experimentally observed circuits are among the very few minimal circuits that optimally trade off speed, noise resistance, and response amplitude. This suggests a way to understand why evolution converges on only few topologies for a given function and provides FCD designs for synthetic construction and future discovery. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Network Dynamic Connectivity for Identifying Hotspots of Fluvial Geomorphic Change

    Science.gov (United States)

    Czuba, J. A.; Foufoula-Georgiou, E.

    2014-12-01

    The hierarchical branching structure of a river network serves as a template upon which environmental fluxes of water, sediment, nutrients, etc. are conveyed and organized both spatially and temporally within a basin. Dynamical processes occurring on a river network tend to heterogeneously distribute fluxes on the network, often concentrating them into "clusters," i.e., places of excess flux accumulation. Here, we put forward the hypothesis that places in the network predisposed (due to process dynamics and network topology) to accumulate excess bed-material sediment over a considerable river reach and over a considerable period of time reflect locations where a local imbalance in sediment flux may occur thereby highlighting a susceptibility to potential fluvial geomorphic change. We have developed a framework where we are able to track fluxes on a "static" river network using a simplified Lagrangian transport model and use the spatial-temporal distribution of that flux to form a new "dynamic" network of the flux that evolves over time. From this dynamic network we can quantify the dynamic connectivity of the flux and integrate emergent "clusters" over time through a cluster persistence index (CPI) to assess the persistence of mass throughout the network. The framework was applied to sand transport on the Greater Blue Earth River Network in Minnesota where three hotspots of fluvial geomorphic change have been defined based on high rates of channel migration observed from aerial photographic analysis. Locations within the network with high CPI coincided with two of these hotspots, possibly suggesting that channel migration here is driven by sediment deposition "pushing" the stream into and thus eroding the opposite bank. The third hotspot was not identified by high CPI, but instead is believed to be a hotspot of streamflow-driven change based on additional information and the fact that high bed shear stress coincided with this hotspot. The proposed network

  10. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks

    Science.gov (United States)

    Zhang, Kaipeng; Zhang, Zhanpeng; Li, Zhifeng; Qiao, Yu

    2016-10-01

    Face detection and alignment in unconstrained environment are challenging due to various poses, illuminations and occlusions. Recent studies show that deep learning approaches can achieve impressive performance on these two tasks. In this paper, we propose a deep cascaded multi-task framework which exploits the inherent correlation between them to boost up their performance. In particular, our framework adopts a cascaded structure with three stages of carefully designed deep convolutional networks that predict face and landmark location in a coarse-to-fine manner. In addition, in the learning process, we propose a new online hard sample mining strategy that can improve the performance automatically without manual sample selection. Our method achieves superior accuracy over the state-of-the-art techniques on the challenging FDDB and WIDER FACE benchmark for face detection, and AFLW benchmark for face alignment, while keeps real time performance.

  11. Orthogonal transformations for change detection, Matlab code

    DEFF Research Database (Denmark)

    2005-01-01

    Matlab code to do multivariate alteration detection (MAD) analysis, maximum autocorrelation factor (MAF) analysis, canonical correlation analysis (CCA) and principal component analysis (PCA) on image data.......Matlab code to do multivariate alteration detection (MAD) analysis, maximum autocorrelation factor (MAF) analysis, canonical correlation analysis (CCA) and principal component analysis (PCA) on image data....

  12. Broadband networks, smart grids and climate change

    CERN Document Server

    Noam, Eli M; Kranz, Johann J

    2015-01-01

    Noted scholars and professionals from the energy and telecommunications businesses explain in this volume how the convergence of broadband services and responsive 'smart' energy grids could help to mitigate climate change and boost corporation profits.

  13. Functional roles of slow enzyme conformational changes in network dynamics.

    Science.gov (United States)

    Wu, Zhanghan; Xing, Jianhua

    2012-09-05

    Extensive studies from different fields reveal that many macromolecules, especially enzymes, show slow transitions among different conformations. This phenomenon is named such things as dynamic disorder, heterogeneity, hysteretic or mnemonic enzymes across these different fields, and has been directly demonstrated by single molecule enzymology and NMR studies recently. We analyzed enzyme slow conformational changes in the context of regulatory networks. A single enzymatic reaction with slow conformational changes can filter upstream network noises, and can either resonantly respond to the system stimulus at certain frequencies or respond adaptively for sustained input signals of the network fluctuations. It thus can serve as a basic functional motif with properties that are normally for larger intermolecular networks in the field of systems biology. We further analyzed examples including enzymes functioning against pH fluctuations, metabolic state change of Artemia embryos, and kinetic insulation of fluctuations in metabolic networks. The study also suggests that hysteretic enzymes may be building blocks of synthetic networks with various properties such as narrow-banded filtering. The work fills the missing gap between studies on enzyme biophysics and network level dynamics, and reveals that the coupling between the two is functionally important; it also suggests that the conformational dynamics of some enzymes may be evolutionally selected. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Detecting anomalous traders using multi-slice network analysis

    Science.gov (United States)

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Zhang, Yuqing

    2017-05-01

    Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock market. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying anomalous traders using the transaction data of 8 manipulated stocks and 42 non-manipulated stocks during a one-year period. For each stock, we construct a multi-slice trading network to characterize the daily trading behavior and the cross-day participation of each trader. Comparing the multi-slice trading network of manipulated stocks and non-manipulated stocks with their randomized version, we find that manipulated stocks exhibit high number of trader pairs that trade with each other in multiple days and high deviation from randomized network at correlation between trading frequency and trading activity. These findings are effective at distinguishing manipulated stocks from non-manipulated ones and at identifying anomalous traders.

  15. Community detection, link prediction, and layer interdependence in multilayer networks

    Science.gov (United States)

    De Bacco, Caterina; Power, Eleanor A.; Larremore, Daniel B.; Moore, Cristopher

    2017-04-01

    Complex systems are often characterized by distinct types of interactions between the same entities. These can be described as a multilayer network where each layer represents one type of interaction. These layers may be interdependent in complicated ways, revealing different kinds of structure in the network. In this work we present a generative model, and an efficient expectation-maximization algorithm, which allows us to perform inference tasks such as community detection and link prediction in this setting. Our model assumes overlapping communities that are common between the layers, while allowing these communities to affect each layer in a different way, including arbitrary mixtures of assortative, disassortative, or directed structure. It also gives us a mathematically principled way to define the interdependence between layers, by measuring how much information about one layer helps us predict links in another layer. In particular, this allows us to bundle layers together to compress redundant information and identify small groups of layers which suffice to predict the remaining layers accurately. We illustrate these findings by analyzing synthetic data and two real multilayer networks, one representing social support relationships among villagers in South India and the other representing shared genetic substring material between genes of the malaria parasite.

  16. Transcriptome and network changes in climbers at extreme altitudes.

    Directory of Open Access Journals (Sweden)

    Fang Chen

    Full Text Available Extreme altitude can induce a range of cellular and systemic responses. Although it is known that hypoxia underlies the major changes and that the physiological responses include hemodynamic changes and erythropoiesis, the molecular mechanisms and signaling pathways mediating such changes are largely unknown. To obtain a more complete picture of the transcriptional regulatory landscape and networks involved in extreme altitude response, we followed four climbers on an expedition up Mount Xixiabangma (8,012 m, and collected blood samples at four stages during the climb for mRNA and miRNA expression assays. By analyzing dynamic changes of gene networks in response to extreme altitudes, we uncovered a highly modular network with 7 modules of various functions that changed in response to extreme altitudes. The erythrocyte differentiation module is the most prominently up-regulated, reflecting increased erythrocyte differentiation from hematopoietic stem cells, probably at the expense of differentiation into other cell lineages. These changes are accompanied by coordinated down-regulation of general translation. Network topology and flow analyses also uncovered regulators known to modulate hypoxia responses and erythrocyte development, as well as unknown regulators, such as the OCT4 gene, an important regulator in stem cells and assumed to only function in stem cells. We predicted computationally and validated experimentally that increased OCT4 expression at extreme altitude can directly elevate the expression of hemoglobin genes. Our approach established a new framework for analyzing the transcriptional regulatory network from a very limited number of samples.

  17. A Novel Congestion Detection Scheme in TCP Over OBS Networks

    KAUST Repository

    Shihada, Basem

    2009-02-01

    This paper introduces a novel congestion detection scheme for high-bandwidth TCP flows over optical burst switching (OBS) networks, called statistical additive increase multiplicative decrease (SAIMD). SAIMD maintains and analyzes a number of previous round-trip time (RTTs) at the TCP senders in order to identify the confidence with which a packet loss event is due to network congestion. The confidence is derived by positioning short-term RTT in the spectrum of long-term historical RTTs. The derived confidence corresponding to the packet loss is then taken in the developed policy for TCP congestion window adjustment. We will show through extensive simulation that the proposed scheme can effectively solve the false congestion detection problem and significantly outperform the conventional TCP counterparts without losing fairness. The advantages gained in our scheme are at the expense of introducing more overhead in the SAIMD TCP senders. Based on the proposed congestion control algorithm, a throughput model is formulated, and is further verified by simulation results.

  18. Vision-Based Fall Detection with Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Adrián Núñez-Marcos

    2017-01-01

    Full Text Available One of the biggest challenges in modern societies is the improvement of healthy aging and the support to older persons in their daily activities. In particular, given its social and economic impact, the automatic detection of falls has attracted considerable attention in the computer vision and pattern recognition communities. Although the approaches based on wearable sensors have provided high detection rates, some of the potential users are reluctant to wear them and thus their use is not yet normalized. As a consequence, alternative approaches such as vision-based methods have emerged. We firmly believe that the irruption of the Smart Environments and the Internet of Things paradigms, together with the increasing number of cameras in our daily environment, forms an optimal context for vision-based systems. Consequently, here we propose a vision-based solution using Convolutional Neural Networks to decide if a sequence of frames contains a person falling. To model the video motion and make the system scenario independent, we use optical flow images as input to the networks followed by a novel three-step training phase. Furthermore, our method is evaluated in three public datasets achieving the state-of-the-art results in all three of them.

  19. Emergency response networks for disaster monitoring and detection from space

    Science.gov (United States)

    Vladimirova, Tanya; Sweeting, Martin N.; Vitanov, Ivan; Vitanov, Valentin I.

    2009-05-01

    Numerous man-made and natural disasters have stricken mankind since the beginning of the new millennium. The scale and impact of such disasters often prevent the collection of sufficient data for an objective assessment and coordination of timely rescue and relief missions on the ground. As a potential solution to this problem, in recent years constellations of Earth observation small satellites and in particular micro-satellites (<100 kg) in low Earth orbit have emerged as an efficient platform for reliable disaster monitoring. The main task of the Earth observation satellites is to capture images of the Earth surface using various techniques. For a large number of applications the resulting delay between image capture and delivery is not acceptable, in particular for rapid response remote sensing aiming at disaster monitoring and detection. In such cases almost instantaneous data availability is a strict requirement to enable an assessment of the situation and instigate an adequate response. Examples include earthquakes, volcanic eruptions, flooding, forest fires and oil spills. The proposed solution to this issue are low-cost networked distributed satellite systems in low Earth orbit capable of connecting to terrestrial networks and geostationary Earth orbit spacecraft in real time. This paper discusses enabling technologies for rapid response disaster monitoring and detection from space such as very small satellite design, intersatellite communication, intelligent on-board processing, distributed computing and bio-inspired routing techniques.

  20. Video Salient Object Detection via Fully Convolutional Networks

    Science.gov (United States)

    Wang, Wenguan; Shen, Jianbing; Shao, Ling

    2018-01-01

    This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: (1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data, and (2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image datasets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the DAVIS dataset (MAE of .06) and the FBMS dataset (MAE of .07), and do so with much improved speed (2fps with all steps).

  1. Congestion Detection and Alleviation in Multihop Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Omer Chughtai

    2017-01-01

    Full Text Available Multiple traffic flows in a dense environment of a mono-sink wireless sensor network (WSN experience congestion that leads to excessive energy consumption and severe packet loss. To address this problem, a Congestion Detection and Alleviation (CDA mechanism has been proposed. CDA exploits the features and the characteristics of the sensor nodes and the wireless links between them to detect and alleviate node- and link-level congestion. Node-level congestion is detected by examining the buffer utilisation and the interval between the consecutive data packets. However, link-level congestion is detected through a novel procedure by determining link utilisation using back-off stage of Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA. CDA alleviates congestion reactively by either rerouting the data traffic to a new less congested, more energy-efficient route or bypassing the affected node/link through ripple-based search. The simulation analysis performed in ns-2.35 evaluates CDA with Congestion Avoidance through Fairness (CAF and with No Congestion Control (NOCC protocols. The analysis shows that CDA improves packet delivery ratio by 33% as compared to CAF and 54% as compared to NOCC. CDA also shows an improvement in throughput by 16% as compared to CAF and 36% as compared to NOCC. Additionally, it reduces End-To-End delay by 17% as compared to CAF and 38% as compared to NOCC.

  2. Detecting holocene changes in thermohaline circulation.

    Science.gov (United States)

    Keigwin, L D; Boyle, E A

    2000-02-15

    Throughout the last glacial cycle, reorganizations of deep ocean water masses were coincident with rapid millennial-scale changes in climate. Climate changes have been less severe during the present interglacial, but evidence for concurrent deep ocean circulation change is ambiguous.

  3. Higher Education Change and Social Networks: A Review of Research

    Science.gov (United States)

    Kezar, Adrianna

    2014-01-01

    This article reviews literature on the potential for understanding higher education change processes through social network analysis (SNA). In this article, the main tenets of SNA are reviewed and, in conjunction with organizational theory, are applied to higher education change to develop a set of hypotheses that can be tested in future research.

  4. Flash Detection Efficiencies of Long Range Lightning Detection Networks During GRIP

    Science.gov (United States)

    Mach, Douglas M.; Bateman, Monte G.; Blakeslee, Richard J.

    2012-01-01

    We flew our Lightning Instrument Package (LIP) on the NASA Global Hawk as a part of the Genesis and Rapid Intensification Processes (GRIP) field program. The GRIP program was a NASA Earth science field experiment during the months of August and September, 2010. During the program, the LIP detected lighting from 48 of the 213 of the storms overflown by the Global Hawk. The time and location of tagged LIP flashes can be used as a "ground truth" dataset for checking the detection efficiency of the various long or extended range ground-based lightning detection systems available during the GRIP program. The systems analyzed included Vaisala Long Range (LR), Vaisala GLD360, the World Wide Lightning Location Network (WWLLN), and the Earth Networks Total Lightning Network (ENTLN). The long term goal of our research is to help understand the advantages and limitations of these systems so that we can utilize them for both proxy data applications and cross sensor validation of the GOES-R Geostationary Lightning Mapper (GLM) sensor when it is launched in the 2015 timeframe.

  5. Detecting impossible changes in infancy: a three-system account

    Science.gov (United States)

    Wang, Su-hua; Baillargeon, Renée

    2012-01-01

    Can infants detect that an object has magically disappeared, broken apart or changed color while briefly hidden? Recent research suggests that infants detect some but not other ‘impossible’ changes; and that various contextual manipulations can induce infants to detect changes they would not otherwise detect. We present an account that includes three systems: a physical-reasoning, an object-tracking, and an object-representation system. What impossible changes infants detect depends on what object information is included in the physical-reasoning system; this information becomes subject to a principle of persistence, which states that objects can undergo no spontaneous or uncaused change. What contextual manipulations induce infants to detect impossible changes depends on complex interplays between the physical-reasoning system and the object-tracking and object-representation systems. PMID:18078778

  6. Probabilistic monitoring in intrusion detection module for energy efficiency in mobile ad hoc networks

    Science.gov (United States)

    De Rango, Floriano; Lupia, Andrea

    2016-05-01

    MANETs allow mobile nodes communicating to each other using the wireless medium. A key aspect of these kind of networks is the security, because their setup is done without an infrastructure, so external nodes could interfere in the communication. Mobile nodes could be compromised, misbehaving during the multi-hop transmission of data, or they could have a selfish behavior to save energy, which is another important constraint in MANETs. The detection of these behaviors need a framework that takes into account the latest interactions among nodes, so malicious or selfish nodes could be detected also if their behavior is changed over time. The monitoring activity increases the energy consumption, so our proposal takes into account this issue reducing the energy required by the monitoring system, keeping the effectiveness of the intrusion detection system. The results show an improvement in the saved energy, improving the detection performance too.

  7. Changes of hierarchical network in local and world stock market

    Science.gov (United States)

    Patwary, Enayet Ullah; Lee, Jong Youl; Nobi, Ashadun; Kim, Doo Hwan; Lee, Jae Woo

    2017-10-01

    We consider the cross-correlation coefficients of the daily returns in the local and global stock markets. We generate the minimal spanning tree (MST) using the correlation matrix. We observe that the MSTs change their structure from chain-like networks to star-like networks during periods of market uncertainty. We quantify the measure of the hierarchical network utilizing the value of the hierarchy measured by the hierarchical path. The hierarchy and betweenness centrality characterize the state of the market regarding the impact of crises. During crises, the non-financial company is established as the central node of the MST. However, before the crisis and during stable periods, the financial company is occupying the central node of the MST in the Korean and the U.S. stock markets. The changes in the network structure and the central node are good indicators of an upcoming crisis.

  8. Using Hybrid Algorithm to Improve Intrusion Detection in Multi Layer Feed Forward Neural Networks

    Science.gov (United States)

    Ray, Loye Lynn

    2014-01-01

    The need for detecting malicious behavior on a computer networks continued to be important to maintaining a safe and secure environment. The purpose of this study was to determine the relationship of multilayer feed forward neural network architecture to the ability of detecting abnormal behavior in networks. This involved building, training, and…

  9. Application of a Hidden Bayes Naive Multiclass Classifier in Network Intrusion Detection

    Science.gov (United States)

    Koc, Levent

    2013-01-01

    With increasing Internet connectivity and traffic volume, recent intrusion incidents have reemphasized the importance of network intrusion detection systems for combating increasingly sophisticated network attacks. Techniques such as pattern recognition and the data mining of network events are often used by intrusion detection systems to classify…

  10. Sensitive change detection for remote sensing monitoring of nuclear treaties

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg; Schlittenhardt, Jörg

    2005-01-01

    change is a commonplace application in remote sensing, the detection of anthropogenic changes associated with nuclear activities, whether declared or clandestine, presents a difficult challenge. It is necessary to discriminate subtle, often weak signals of interest on a background of irrelevant...... in multispectral, bitemporal image data: New approaches to change detection studies, Remote Sens. Environ. 64(1), 1998, pp. 1--19. Nielsen, A. A., Iteratively re-weighted multivariate alteration detection in multi- and hyperspectral data, to be published....

  11. Hyperspectral Data, Change Detection and the MAD Transformation

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Müller, Andreas; Dorigo, Wouter

    2004-01-01

    This paper deals with the application of the MAD transformation to change detection in bi-tempotal hyperspectral data. Several processing schemes are proposed in order to facilitate both the actual change detection, the many variables involved and the spatial nature of the data.......This paper deals with the application of the MAD transformation to change detection in bi-tempotal hyperspectral data. Several processing schemes are proposed in order to facilitate both the actual change detection, the many variables involved and the spatial nature of the data....

  12. A Typology to Explain Changing Social Networks Post Stroke.

    Science.gov (United States)

    Northcott, Sarah; Hirani, Shashivadan P; Hilari, Katerina

    2017-03-14

    Social network typologies have been used to classify the general population but have not previously been applied to the stroke population. This study investigated whether social network types remain stable following a stroke, and if not, why some people shift network type. We used a mixed methods design. Participants were recruited from two acute stroke units. They completed the Stroke Social Network Scale (SSNS) two weeks and six months post stroke and in-depth interviews 8-15 months following the stroke. Qualitative data was analysed using Framework Analysis; k-means cluster analysis was applied to the six-month data set. Eighty-seven participants were recruited, 71 were followed up at six months, and 29 completed in-depth interviews. It was possible to classify all 29 participants into one of the following network types both prestroke and post stroke: diverse; friends-based; family-based; restricted-supported; restricted-unsupported. The main shift that took place post stroke was participants moving out of a diverse network into a family-based one. The friends-based network type was relatively stable. Two network types became more populated post stroke: restricted-unsupported and family-based. Triangulatory evidence was provided by k-means cluster analysis, which produced a cluster solution (for n = 71) with comparable characteristics to the network types derived from qualitative analysis. Following a stroke, a person's social network is vulnerable to change. Explanatory factors for shifting network type included the physical and also psychological impact of having a stroke, as well as the tendency to lose contact with friends rather than family.

  13. The Rondonia Lightning Detection Network: Network Description, Science Objectives, Data Processing Archival/Methodology, and Results

    Science.gov (United States)

    Blakeslee, R. J.; Bailey, J. C.; Pinto, O.; Athayde, A.; Renno, N.; Weidman, C. D.

    2003-01-01

    A four station Advanced Lightning Direction Finder (ALDF) network was established in the state of Rondonia in western Brazil in 1999 through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of- arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/Marshall Space Flight Center in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the Internet. The network, which is still operational, was deployed to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite that was launched in November 1997. The measurements are also being used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-time series observations produced by this network will help establish a regional lightning climatological database, supplementing other databases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at the NASA/Marshall Space Flight Center have been applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The data will also be corrected for the network detection efficiency. The processing methodology and the results from the analysis of four years of network operations will be presented.

  14. Change Agents, Networks, and Institutions: A Contingency Theory of Organizational Change

    OpenAIRE

    Battilana, Julie; Casciaro, Tiziana

    2012-01-01

    We develop a contingency theory for how structural closure in a network, defined as the extent to which an actor’s network contacts are connected to one another, affects the initiation and adoption of change in organizations. Using longitudinal survey data supplemented with eight in-depth case studies, we analyze 68 organizational change initiatives undertaken in the United Kingdom’s National Health Service. We show that low levels of structural closure (i.e., structural holes) in a change ag...

  15. Multilayer Network Modeling of Change Propagation for Engineering Change Management

    Science.gov (United States)

    2010-06-01

    ation 411 PNC C ac 2 C PC Not Predicted & Propagated wI Comunication ENot Predicted & Not Propagated w ConPnCcation 04 PPC 5CPredicted & Propagated w...documentation, and product requirements. Formal change impact analysis allows an engineering firm to keep tabs on their products’ satisfaction of

  16. Explicit behavioral detection of visual changes develops without their implicit neurophysiological detectability

    Directory of Open Access Journals (Sweden)

    Pessi eLyyra

    2012-03-01

    Full Text Available Change blindness is a failure of explicitly detecting changes between consecutively presented images when separated, e.g., by a brief blank screen. There is a growing body of evidence of implicit detection of even explicitly undetectable changes, pointing to the possibility of the implicit change detection as a prerequisite for its explicit counterpart. We recorded event-related potentials (ERPs of the electroencephalography in adults during an oddball-variant of change blindness flicker paradigm. In this variant, rare pictures with a change were interspersed with frequent pictures with no change. In separate stimulus blocks, the blank screen between the change and no-change picture was either of 100 ms or 500 ms in duration. In both stimulus conditions the participants eventually explicitly detect the changed pictures, the blank screen of the longer duration only requiring in average 10 % longer exposure to the picture series until the ability emerged. However, during the change blindness, ERPs were displaced towards negative polarity at 200–260 ms after the stimulus onset (visual mismatch negativity only with the blank screens of the shorter ISI. Our finding of ‘implicit change blindness’ for pictorial material that, nevertheless, successfully prepares the visual system for explicit change detection suggests that implicit change detection may not be a necessary condition for explicit change detection and that they may recruit at least partially distinct memory mechanisms.

  17. Deep Recurrent Neural Networks for seizure detection and early seizure detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Talathi, S. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-05

    Epilepsy is common neurological diseases, affecting about 0.6-0.8 % of world population. Epileptic patients suffer from chronic unprovoked seizures, which can result in broad spectrum of debilitating medical and social consequences. Since seizures, in general, occur infrequently and are unpredictable, automated seizure detection systems are recommended to screen for seizures during long-term electroencephalogram (EEG) recordings. In addition, systems for early seizure detection can lead to the development of new types of intervention systems that are designed to control or shorten the duration of seizure events. In this article, we investigate the utility of recurrent neural networks (RNNs) in designing seizure detection and early seizure detection systems. We propose a deep learning framework via the use of Gated Recurrent Unit (GRU) RNNs for seizure detection. We use publicly available data in order to evaluate our method and demonstrate very promising evaluation results with overall accuracy close to 100 %. We also systematically investigate the application of our method for early seizure warning systems. Our method can detect about 98% of seizure events within the first 5 seconds of the overall epileptic seizure duration.

  18. The Vigil Network: A means of observing landscape change in drainage basins

    Science.gov (United States)

    Osterkamp, W.R.; Emmett, W.W.; Leopold, Luna Bergere

    1991-01-01

    Long-term monitoring of geomorphic, hydrological, and biological characteristics of landscapes provides an effective means of relating observed change to possible causes of the change. Identification of changes in basin characteristics, especially in arid areas where the response to altered climate or land use is generally rapid and readily apparent, might provide the initial direct indications that factors such as global warming and cultural impacts have affected the environment. The Vigil Network provides an opportunity for earth and life scientists to participate in a systematic monitoring effort to detect landscape changes over time, and to relate such changes to possible causes. The Vigil Network is an ever-increasing group of sites and basins used to monitor landscape features with as much as 50 years of documented geomorphic and related observations.

  19. Vessel network detection using contour evolution and color components

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Medeiros, Fatima; Cuadros, Jorge; Martins, Charles

    2011-06-22

    Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration, among other applications. There is an extensive literature related to this problem, often excluding the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper relies on an algorithm using front propagation to segment the vessel network. The algorithm includes a penalty in the wait queue on the fast marching heap to minimize leakage of the evolving interface. The method requires no manual labeling, a minimum number of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.

  20. Detecting malicious chaotic signals in wireless sensor network

    Science.gov (United States)

    Upadhyay, Ranjit Kumar; Kumari, Sangeeta

    2018-02-01

    In this paper, an e-epidemic Susceptible-Infected-Vaccinated (SIV) model has been proposed to analyze the effect of node immunization and worms attacking dynamics in wireless sensor network. A modified nonlinear incidence rate with cyrtoid type functional response has been considered using sleep and active mode approach. Detailed stability analysis and the sufficient criteria for the persistence of the model system have been established. We also established different types of bifurcation analysis for different equilibria at different critical points of the control parameters. We performed a detailed Hopf bifurcation analysis and determine the direction and stability of the bifurcating periodic solutions using center manifold theorem. Numerical simulations are carried out to confirm the theoretical results. The impact of the control parameters on the dynamics of the model system has been investigated and malicious chaotic signals are detected. Finally, we have analyzed the effect of time delay on the dynamics of the model system.

  1. Detection and assessment of flood susceptible irrigation networks in Licab, Nueva Ecija, Philippines using LiDAR DTM

    Science.gov (United States)

    Alberto, R. T.; Hernando, P. J. C.; Tagaca, R. C.; Celestino, A. B.; Palado, G. C.; Camaso, E. E.; Damian, G. B.

    2017-09-01

    Climate change has wide-ranging effects on the environment and socio-economic and related sectors which includes water resources, agriculture and food security, human health, terrestrial ecosystems, coastal zones and biodiversity. Farmers are under pressure to the changing weather and increasing unpredictable water supply. Because of rainfall deficiencies, artificial application of water has been made through irrigation. Irrigation is a basic determinant of agriculture because its inadequacies are the most powerful constraints on the increase of agricultural production. Irrigation networks are permanent and temporary conduits that supply water to agricultural areas from an irrigation source. Detection of irrigation networks using LiDAR DTM, and flood susceptible assessment of irrigation networks could give baseline information on the development and management of sustainable agriculture. Map Gully Depth (MGD) in Whitebox GAT was used to generate the potential irrigation networks. The extracted MGD was overlaid in ArcGIS as guide in the digitization of potential irrigation networks. A flood hazard map was also used to identify the flood susceptible irrigation networks in the study area. The study was assessed through field validation of points which were generated using random sampling method. Results of the study showed that most of the detected irrigation networks have low to moderate susceptibility to flooding while the rest have high susceptibility to flooding which is due to shifting weather. These irrigation networks may cause flood when it overflows that could also bring huge damage to rice and other agricultural areas.

  2. Leveraging uncertainty information from deep neural networks for disease detection.

    Science.gov (United States)

    Leibig, Christian; Allken, Vaneeda; Ayhan, Murat Seçkin; Berens, Philipp; Wahl, Siegfried

    2017-12-19

    Deep learning (DL) has revolutionized the field of computer vision and image processing. In medical imaging, algorithmic solutions based on DL have been shown to achieve high performance on tasks that previously required medical experts. However, DL-based solutions for disease detection have been proposed without methods to quantify and control their uncertainty in a decision. In contrast, a physician knows whether she is uncertain about a case and will consult more experienced colleagues if needed. Here we evaluate drop-out based Bayesian uncertainty measures for DL in diagnosing diabetic retinopathy (DR) from fundus images and show that it captures uncertainty better than straightforward alternatives. Furthermore, we show that uncertainty informed decision referral can improve diagnostic performance. Experiments across different networks, tasks and datasets show robust generalization. Depending on network capacity and task/dataset difficulty, we surpass 85% sensitivity and 80% specificity as recommended by the NHS when referring 0-20% of the most uncertain decisions for further inspection. We analyse causes of uncertainty by relating intuitions from 2D visualizations to the high-dimensional image space. While uncertainty is sensitive to clinically relevant cases, sensitivity to unfamiliar data samples is task dependent, but can be rendered more robust.

  3. Robust Deep Network with Maximum Correntropy Criterion for Seizure Detection

    Directory of Open Access Journals (Sweden)

    Yu Qi

    2014-01-01

    Full Text Available Effective seizure detection from long-term EEG is highly important for seizure diagnosis. Existing methods usually design the feature and classifier individually, while little work has been done for the simultaneous optimization of the two parts. This work proposes a deep network to jointly learn a feature and a classifier so that they could help each other to make the whole system optimal. To deal with the challenge of the impulsive noises and outliers caused by EMG artifacts in EEG signals, we formulate a robust stacked autoencoder (R-SAE as a part of the network to learn an effective feature. In R-SAE, the maximum correntropy criterion (MCC is proposed to reduce the effect of noise/outliers. Unlike the mean square error (MSE, the output of the new kernel MCC increases more slowly than that of MSE when the input goes away from the center. Thus, the effect of those noises/outliers positioned far away from the center can be suppressed. The proposed method is evaluated on six patients of 33.6 hours of scalp EEG data. Our method achieves a sensitivity of 100% and a specificity of 99%, which is promising for clinical applications.

  4. Multisensor Network System for Wildfire Detection Using Infrared Image Processing

    Directory of Open Access Journals (Sweden)

    I. Bosch

    2013-01-01

    Full Text Available This paper presents the next step in the evolution of multi-sensor wireless network systems in the early automatic detection of forest fires. This network allows remote monitoring of each of the locations as well as communication between each of the sensors and with the control stations. The result is an increased coverage area, with quicker and safer responses. To determine the presence of a forest wildfire, the system employs decision fusion in thermal imaging, which can exploit various expected characteristics of a real fire, including short-term persistence and long-term increases over time. Results from testing in the laboratory and in a real environment are presented to authenticate and verify the accuracy of the operation of the proposed system. The system performance is gauged by the number of alarms and the time to the first alarm (corresponding to a real fire, for different probability of false alarm (PFA. The necessity of including decision fusion is thereby demonstrated.

  5. Automated embolic signal detection using Deep Convolutional Neural Network.

    Science.gov (United States)

    Sombune, Praotasna; Phienphanich, Phongphan; Phuechpanpaisal, Sutanya; Muengtaweepongsa, Sombat; Ruamthanthong, Anuchit; Tantibundhit, Charturong

    2017-07-01

    This work investigated the potential of Deep Neural Network in detection of cerebral embolic signal (ES) from transcranial Doppler ultrasound (TCD). The resulting system is aimed to couple with TCD devices in diagnosing a risk of stroke in real-time with high accuracy. The Adaptive Gain Control (AGC) approach developed in our previous study is employed to capture suspected ESs in real-time. By using spectrograms of the same TCD signal dataset as that of our previous work as inputs and the same experimental setup, Deep Convolutional Neural Network (CNN), which can learn features while training, was investigated for its ability to bypass the traditional handcrafted feature extraction and selection process. Extracted feature vectors from the suspected ESs are later determined whether they are of an ES, artifact (AF) or normal (NR) interval. The effectiveness of the developed system was evaluated over 19 subjects going under procedures generating emboli. The CNN-based system could achieve in average of 83.0% sensitivity, 80.1% specificity, and 81.4% accuracy, with considerably much less time consumption in development. The certainly growing set of training samples and computational resources will contribute to high performance. Besides having potential use in various clinical ES monitoring settings, continuation of this promising study will benefit developments of wearable applications by leveraging learnable features to serve demographic differentials.

  6. Stochastic Change Detection based on an Active Fault Diagnosis Approach

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2007-01-01

    The focus in this paper is on stochastic change detection applied in connection with active fault diagnosis (AFD). An auxiliary input signal is applied in AFD. This signal injection in the system will in general allow to obtain a fast change detection/isolation by considering the output or an error...

  7. Change detection for objects on surfaces slanted in depth.

    Science.gov (United States)

    Ozkan, Kerem; Braunstein, Myron L

    2010-09-15

    Change detection for objects associated with a surface extended in depth might be more difficult than for a frontal surface if it is easier to shift attention within a frontal surface. On the other hand, previous research has shown that ground surfaces have a special role in organizing the 3-D layout of objects shown against scene backgrounds. In the current study, we examined whether a frontal background or a ground surface background would result in superior change detection performance using a change detection flicker paradigm. In the first experiment, we considered whether background slant affects change detection performance. In Experiment 2, we examined the effect of height in the image on change detection performance. In Experiment 3, we examined change detection performance on slanted ceiling surfaces. The results of these experiments indicate that change detection is more efficient on near-ground planes than on surfaces at intermediate slants or ceiling surfaces. This suggests that any superiority of frontal plane backgrounds in a change detection task may be equivalent to the superiority of a near-ground plane in organizing a scene, with the lowest level of performance occurring for surfaces that are not frontal but further from a ground surface orientation.

  8. Regularisation in multi- and hyperspectral remote sensing change detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2005-01-01

    Change detection methods for multi- and hypervariate data look for differences in data acquired over the same area at different points in time. These differences may be due to noise or differences in (atmospheric etc.) conditions at the two acquisition time points. To prevent a change detection m...

  9. Speckle filtering in satellite SAR change detection imagery

    NARCIS (Netherlands)

    Dekker, R.J.

    1998-01-01

    Repeat-pass Synthetic Aperture Radar (SAR) imagery is useful for change detection. A disadvantage of SAR is the system-inherent speckle noise. This can be reduced by filtering. Various filter types and methods are described in the literature, but not one fits the speckle noise in change detection

  10. Unsupervised Speaker Change Detection for Broadcast News Segmentation

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Winther; Mølgaard, Lasse Lohilahti; Hansen, Lars Kai

    2006-01-01

    This paper presents a speaker change detection system for news broadcast segmentation based on a vector quantization (VQ) approach. The system does not make any assumption about the number of speakers or speaker identity. The system uses mel frequency cepstral coefficients and change detection...

  11. Robust p-median problem in changing networks

    Directory of Open Access Journals (Sweden)

    Štefan PEŠKO

    2015-09-01

    Full Text Available The robust p-median problem in changing networks is a version of known discrete p-median problem in network with uncertain edge lengths where uncertainty is characterised by given interval. The uncertainty in edge lengths may appear in travel time along the edges in any network location problem. Several possible future scenarios with respect to the lengths of edges are presented. The planner will want a strategy of positioning p medians that will be working “as well as possible" over the future scenarios. We present MILP formulation of the problem and the solution method based on exchange MILP heuristic. The cluster of each median is presented by rooted tree with the median as root. The performance of the proposed heuristic is compared to the optimal solution found via Gurobi solver for MILP models through some illustrative instances of Slovak road network in Žilina.

  12. Novel Method for Detection of Air Pollution using Cellular Communication Networks

    Science.gov (United States)

    David, N.; Gao, O. H.

    2016-12-01

    Air pollution can lead to a wide spectrum of severe and chronic health impacts. Conventional tools for monitoring the phenomenon do not provide a sufficient monitoring solution in a global scale since they are, for example, not representative of the larger space or due to limited deployment as a result of practical limitations, such as: acquisition, installation, and ongoing maintenance costs. Near ground temperature inversions are directly identified with air pollution events since they suppress vertical atmospheric movement and trap pollutants near the ground. Wireless telecommunication links that comprise the data transfer infrastructure in cellular communication networks operate at frequencies of tens of GHz and are affected by different atmospheric phenomena. These systems are deployed near ground level across the globe, including in developing countries such as India, countries in Africa, etc. Many cellular providers routinely store data regarding the received signal levels in the network for quality assurance needs. Temperature inversions cause atmospheric layering, and change the refractive index of the air when compared to standard conditions. As a result, the ducts that are formed can operate, in essence, as atmospheric wave guides, and cause interference (signal amplification / attenuation) in the microwaves measured by the wireless network. Thus, this network is in effect, an existing system of environmental sensors for monitoring temperature inversions and the episodes of air pollution identified with them. This work presents the novel idea, and demonstrates it, in operation, over several events of air pollution which were detected by a standard cellular communication network during routine operation. Reference: David, N. and Gao, H.O. Using cellular communication networks to detect air pollution, Environmental Science & Technology, 2016 (accepted).

  13. Cerebral microvascular network geometry changes in response to functional stimulation.

    Science.gov (United States)

    Lindvere, Liis; Janik, Rafal; Dorr, Adrienne; Chartash, David; Sahota, Bhupinder; Sled, John G; Stefanovic, Bojana

    2013-05-01

    The cortical microvessels are organized in an intricate, hierarchical, three-dimensional network. Superimposed on this anatomical complexity is the highly complicated signaling that drives the focal blood flow adjustments following a rise in the activity of surrounding neurons. The microvascular response to neuronal activation remains incompletely understood. We developed a custom two photon fluorescence microscopy acquisition and analysis to obtain 3D maps of neuronal activation-induced changes in the geometry of the microvascular network of the primary somatosensory cortex of anesthetized rats. An automated, model-based tracking algorithm was employed to reconstruct the 3D microvascular topology and represent it as a graph. The changes in the geometry of this network were then tracked, over time, in the course of electrical stimulation of the contralateral forepaw. Both dilatory and constrictory responses were observed across the network. Early dilatory and late constrictory responses propagated from deeper to more superficial cortical layers while the response of the vertices that showed initial constriction followed by later dilation spread from cortical surface toward increasing cortical depths. Overall, larger caliber adjustments were observed deeper inside the cortex. This work yields the first characterization of the spatiotemporal pattern of geometric changes on the level of the cortical microvascular network as a whole and provides the basis for bottom-up modeling of the hemodynamically-weighted neuroimaging signals. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The rise of China in the International Trade Network: a community core detection approach.

    Science.gov (United States)

    Zhu, Zhen; Cerina, Federica; Chessa, Alessandro; Caldarelli, Guido; Riccaboni, Massimo

    2014-01-01

    Theory of complex networks proved successful in the description of a variety of complex systems ranging from biology to computer science and to economics and finance. Here we use network models to describe the evolution of a particular economic system, namely the International Trade Network (ITN). Previous studies often assume that globalization and regionalization in international trade are contradictory to each other. We re-examine the relationship between globalization and regionalization by viewing the international trade system as an interdependent complex network. We use the modularity optimization method to detect communities and community cores in the ITN during the years 1995-2011. We find rich dynamics over time both inter- and intra-communities. In particular, the Asia-Oceania community disappeared and reemerged over time along with a switch in leadership from Japan to China. We provide a multilevel description of the evolution of the network where the global dynamics (i.e., communities disappear or reemerge) and the regional dynamics (i.e., community core changes between community members) are related. Moreover, simulation results show that the global dynamics can be generated by a simple dynamic-edge-weight mechanism.

  15. A combinatorial approach to detect coevolved amino acid networks in protein families of variable divergence.

    Directory of Open Access Journals (Sweden)

    Julie Baussand

    2009-09-01

    Full Text Available Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence.

  16. A combinatorial approach to detect coevolved amino acid networks in protein families of variable divergence.

    Science.gov (United States)

    Baussand, Julie; Carbone, Alessandra

    2009-09-01

    Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence.

  17. Improving Intrusion Detection System Based on Snort Rules for Network Probe Attacks Detection with Association Rules Technique of Data Mining

    Directory of Open Access Journals (Sweden)

    Nattawat Khamphakdee

    2015-07-01

    Full Text Available The intrusion detection system (IDS is an important network security tool for securing computer and network systems. It is able to detect and monitor network traffic data. Snort IDS is an open-source network security tool. It can search and match rules with network traffic data in order to detect attacks, and generate an alert. However, the Snort IDS  can detect only known attacks. Therefore, we have proposed a procedure for improving Snort IDS rules, based on the association rules data mining technique for detection of network probe attacks.  We employed the MIT-DARPA 1999 data set for the experimental evaluation. Since behavior pattern traffic data are both normal and abnormal, the abnormal behavior data is detected by way of the Snort IDS. The experimental results showed that the proposed Snort IDS rules, based on data mining detection of network probe attacks, proved more efficient than the original Snort IDS rules, as well as icmp.rules and icmp-info.rules of Snort IDS.  The suitable parameters for the proposed Snort IDS rules are defined as follows: Min_sup set to 10%, and Min_conf set to 100%, and through the application of eight variable attributes. As more suitable parameters are applied, higher accuracy is achieved.

  18. Unsupervised Condition Change Detection In Large Diesel Engines

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2003-01-01

    This paper presents a new method for unsupervised change detection which combines independent component modeling and probabilistic outlier etection. The method further provides a compact data representation, which is amenable to interpretation, i.e., the detected condition changes can be investig...... be investigated further. The method is successfully applied to unsupervised condition change detection in large diesel engines from acoustical emission sensor signal and compared to more classical techniques based on principal component analysis and Gaussian mixture models.......This paper presents a new method for unsupervised change detection which combines independent component modeling and probabilistic outlier etection. The method further provides a compact data representation, which is amenable to interpretation, i.e., the detected condition changes can...

  19. Combining MLP and Using Decision Tree in Order to Detect the Intrusion into Computer Networks

    OpenAIRE

    Saba Sedigh Rad; Alireza Zebarjad

    2013-01-01

    The security of computer networks has an important role in computer systems. The increasing use of computer networks results in penetration and destruction of systems by system operations. So, in order to keep the systems away from these hazards, it is essential to use the intrusion detection system (IDS). This intrusion detection is done in order to detect the illicit use and misuse and to avoid damages to the systems and computer networks by both the external and internal intruders. Intrusi...

  20. Comparing Several Algorithms for Change Detection of Wetland

    Science.gov (United States)

    Yan, F.; Zhang, S.; Chang, L.

    2015-12-01

    As "the kidneys of the landscape" and "ecological supermarkets", wetland plays an important role in ecological equilibrium and environmental protection.Therefore, it is of great significance to understand the dynamic changes of the wetland. Nowadays, many index and many methods have been used in dynamic Monitoring of Wetland. However, there are no single method and no single index are adapted to detect dynamic change of wetland all over the world. In this paper, three digital change detection algorithms are applied to 2005 and 2010 Landsat Thematic Mapper (TM) images of a portion of the Northeast China to detect wetland dynamic between the two dates. The change vector analysis method (CVA) uses 6 bands of TM images to detect wetland dynamic. The tassled cap transformation is used to create three change images (change in brightness, greenness, and wetness). A new method--- Comprehensive Change Detection Method (CCDM) is introduced to detect forest dynamic change. The CCDM integrates spectral-based change detection algorithms including a Multi-Index Integrated Change Analysis (MIICA) model and a novel change model called Zone, which extracts change information from two Landsat image pairs. The MIICA model is the core module of the change detection strategy and uses four spectral indices (differenced Normalized Burn Ratio (dNBR), differenced Normalized Difference Vegetation Index (dNDVI), the Change Vector (CV) and a new index called the Relative Change Vector Maximum (RCVMAX)) to obtain the changes that occurred between two image dates. The CCDM also includes a knowledge-based system, which uses critical information on historical and current land cover conditions and trends and the likelihood of land cover change, to combine the changes from MIICA and Zone. Related test proved that CCDM method is simple, easy to operate, widely applicable, and capable of capturing a variety of natural and anthropogenic disturbances potentially associated with land cover changes on

  1. A novel approach for the fast detection of black holes in mobile ad hoc networks

    OpenAIRE

    SERRAT OLMOS, MANUEL DAVID; Hernández Orallo, Enrique; Cano Escribá, Juan Carlos; Tavares De Araujo Cesariny Calafate, Carlos Miguel; Manzoni, Pietro

    2013-01-01

    Mobile ad hoc networks are infrastructure-less wireless networks that rely on node cooperation to properly work. In this kind of networks, attack detection and reaction is a key issue to the whole network. The most common threat in mobile ad hoc network scenarios consists in the presence of a certain percentage of selfish nodes, which try to reduce the consumption of their own resources to prolong their battery lifetime. Those nodes do not collaborate on forwarding activities, therefore affec...

  2. SmartPipes: Smart Wireless Sensor Networks for Leak Detection in Water Pipelines

    Directory of Open Access Journals (Sweden)

    Ali M. Sadeghioon

    2014-02-01

    Full Text Available Asset monitoring, specifically infrastructure monitoring such as water distribution pipelines, is becoming increasingly critical for utility owners who face new challenges due to an aging network. In the UK alone, during the period of 2009–2010, approximately 3281 mega litres (106 of water were wasted due to failure or leaks in water pipelines. Various techniques can be used for the monitoring of water distribution networks. This paper presents the design, development and testing of a smart wireless sensor network for leak detection in water pipelines, based on the measurement of relative indirect pressure changes in plastic pipes. Power consumption of the sensor nodes is minimised to 2.2 mW based on one measurement every 6 h in order to prolong the lifetime of the network and increase the sensor nodes’ compatibility with current levels of power available by energy harvesting methods and long life batteries. A novel pressure sensing method is investigated for its performance and capabilities by both laboratory and field trials. The sensors were capable of measuring pressure changes due to leaks. These pressure profiles can also be used to locate the leaks.

  3. Sensor anomaly detection in wireless sensor networks for healthcare.

    Science.gov (United States)

    Haque, Shah Ahsanul; Rahman, Mustafizur; Aziz, Syed Mahfuzul

    2015-04-15

    Wireless Sensor Networks (WSN) are vulnerable to various sensor faults and faulty measurements. This vulnerability hinders efficient and timely response in various WSN applications, such as healthcare. For example, faulty measurements can create false alarms which may require unnecessary intervention from healthcare personnel. Therefore, an approach to differentiate between real medical conditions and false alarms will improve remote patient monitoring systems and quality of healthcare service afforded by WSN. In this paper, a novel approach is proposed to detect sensor anomaly by analyzing collected physiological data from medical sensors. The objective of this method is to effectively distinguish false alarms from true alarms. It predicts a sensor value from historic values and compares it with the actual sensed value for a particular instance. The difference is compared against a threshold value, which is dynamically adjusted, to ascertain whether the sensor value is anomalous. The proposed approach has been applied to real healthcare datasets and compared with existing approaches. Experimental results demonstrate the effectiveness of the proposed system, providing high Detection Rate (DR) and low False Positive Rate (FPR).

  4. Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network.

    Science.gov (United States)

    Li, Yuexiang; Shen, Linlin

    2018-02-11

    Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved.

  5. Network-based analysis of software change propagation.

    Science.gov (United States)

    Wang, Rongcun; Huang, Rubing; Qu, Binbin

    2014-01-01

    The object-oriented software systems frequently evolve to meet new change requirements. Understanding the characteristics of changes aids testers and system designers to improve the quality of softwares. Identifying important modules becomes a key issue in the process of evolution. In this context, a novel network-based approach is proposed to comprehensively investigate change distributions and the correlation between centrality measures and the scope of change propagation. First, software dependency networks are constructed at class level. And then, the number of times of cochanges among classes is minded from software repositories. According to the dependency relationships and the number of times of cochanges among classes, the scope of change propagation is calculated. Using Spearman rank correlation analyzes the correlation between centrality measures and the scope of change propagation. Three case studies on java open source software projects Findbugs, Hibernate, and Spring are conducted to research the characteristics of change propagation. Experimental results show that (i) change distribution is very uneven; (ii) PageRank, Degree, and CIRank are significantly correlated to the scope of change propagation. Particularly, CIRank shows higher correlation coefficient, which suggests it can be a more useful indicator for measuring the scope of change propagation of classes in object-oriented software system.

  6. Changes in Social Networks of Women and Men Following Divorce.

    Science.gov (United States)

    Milardo, Robert M.

    1987-01-01

    Analyzes the character and consequences of changes in the social networks of spouses following separation and divorce. For men, traditions encourage the development of personal friendships while simultaneously encouraging independence. Women, who accept responsibility for "kinkeeping" during and after marriage, simultaneously discouraging bonds…

  7. Detection of Hydrological changes of Wujiang River

    Science.gov (United States)

    Dong, L.; Chen, Y.

    2016-12-01

    In the century our earth experienced a rapid environment changes due to strong human activities, which impactedthe earth'shydrology and water resources systems negatively, and causedsevere problems to the society, such as increased flood and drought risk, water pollution and ecosystem degradation. Understanding the variations of hydrological characteristics has important meaning to solve the problem of hydrology and water resources and maintain sustainable development of river basin water resources.This paper takesWujiangriveras an example,which is a typical medium watershedaffected by human activities seriously in southern China.Using the methods of Mann-Kendall test and serial cluster analysis, this paper studies the characteristics and laws of historical hydrological process inWujiang river, detectsthe impact of changing environment to watershed hydrological processes, based on the observed hydrological data of 36 years from 1980 to 2015 in three representative hydrological stationsnamedFenshi,Chixi and Pingshi. The results show that the annual runoffandannual precipitation has some kind of changes.

  8. PERFORMANCE COMPARISON FOR INTRUSION DETECTION SYSTEM USING NEURAL NETWORK WITH KDD DATASET

    Directory of Open Access Journals (Sweden)

    S. Devaraju

    2014-04-01

    Full Text Available Intrusion Detection Systems are challenging task for finding the user as normal user or attack user in any organizational information systems or IT Industry. The Intrusion Detection System is an effective method to deal with the kinds of problem in networks. Different classifiers are used to detect the different kinds of attacks in networks. In this paper, the performance of intrusion detection is compared with various neural network classifiers. In the proposed research the four types of classifiers used are Feed Forward Neural Network (FFNN, Generalized Regression Neural Network (GRNN, Probabilistic Neural Network (PNN and Radial Basis Neural Network (RBNN. The performance of the full featured KDD Cup 1999 dataset is compared with that of the reduced featured KDD Cup 1999 dataset. The MATLAB software is used to train and test the dataset and the efficiency and False Alarm Rate is measured. It is proved that the reduced dataset is performing better than the full featured dataset.

  9. Simulation framework for spatio-spectral anomalous change detection

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory; Harvey, Neal R [Los Alamos National Laboratory; Porter, Reid B [Los Alamos National Laboratory; Wohlberg, Brendt E [Los Alamos National Laboratory

    2009-01-01

    The authors describe the development of a simulation framework for anomalous change detection that considers both the spatial and spectral aspects of the imagery. A purely spectral framework has previously been introduced, but the extension to spatio-spectral requires attention to a variety of new issues, and requires more careful modeling of the anomalous changes. Using this extended framework, they evaluate the utility of spatial image processing operators to enhance change detection sensitivity in (simulated) remote sensing imagery.

  10. Wireless and embedded carbon nanotube networks for damage detection in concrete structures.

    Science.gov (United States)

    Saafi, Mohamed

    2009-09-30

    Concrete structures undergo an uncontrollable damage process manifesting in the form of cracks due to the coupling of fatigue loading and environmental effects. In order to achieve long-term durability and performance, continuous health monitoring systems are needed to make critical decisions regarding operation, maintenance and repairs. Recent advances in nanostructured materials such as carbon nanotubes have opened the door for new smart and advanced sensing materials that could effectively be used in health monitoring of structures where wireless and real time sensing could provide information on damage development. In this paper, carbon nanotube networks were embedded into a cement matrix to develop an in situ wireless and embedded sensor for damage detection in concrete structures. By wirelessly measuring the change in the electrical resistance of the carbon nanotube networks, the progress of damage can be detected and monitored. As a proof of concept, wireless cement-carbon nanotube sensors were embedded into concrete beams and subjected to monotonic and cyclic loading to evaluate the effect of damage on their response. Experimental results showed that the wireless response of the embedded nanotube sensors changes due to the formation of cracks during loading. In addition, the nanotube sensors were able to detect the initiation of damage at an early stage of loading.

  11. Pedestrian detection in video surveillance using fully convolutional YOLO neural network

    Science.gov (United States)

    Molchanov, V. V.; Vishnyakov, B. V.; Vizilter, Y. V.; Vishnyakova, O. V.; Knyaz, V. A.

    2017-06-01

    More than 80% of video surveillance systems are used for monitoring people. Old human detection algorithms, based on background and foreground modelling, could not even deal with a group of people, to say nothing of a crowd. Recent robust and highly effective pedestrian detection algorithms are a new milestone of video surveillance systems. Based on modern approaches in deep learning, these algorithms produce very discriminative features that can be used for getting robust inference in real visual scenes. They deal with such tasks as distinguishing different persons in a group, overcome problem with sufficient enclosures of human bodies by the foreground, detect various poses of people. In our work we use a new approach which enables to combine detection and classification tasks into one challenge using convolution neural networks. As a start point we choose YOLO CNN, whose authors propose a very efficient way of combining mentioned above tasks by learning a single neural network. This approach showed competitive results with state-of-the-art models such as FAST R-CNN, significantly overcoming them in speed, which allows us to apply it in real time video surveillance and other video monitoring systems. Despite all advantages it suffers from some known drawbacks, related to the fully-connected layers that obstruct applying the CNN to images with different resolution. Also it limits the ability to distinguish small close human figures in groups which is crucial for our tasks since we work with rather low quality images which often include dense small groups of people. In this work we gradually change network architecture to overcome mentioned above problems, train it on a complex pedestrian dataset and finally get the CNN detecting small pedestrians in real scenes.

  12. AERIAL IMAGES AND LIDAR DATA FUSION FOR DISASTER CHANGE DETECTION

    Directory of Open Access Journals (Sweden)

    J. C. Trinder

    2012-07-01

    Full Text Available Potential applications of airborne LiDAR for disaster monitoring include flood prediction and assessment, monitoring of the growth of volcanoes and assistance in the prediction of eruptions, assessment of crustal elevation changes due to earthquakes, and monitoring of structural damage after earthquakes. Change detection in buildings is an important task in the context of disaster monitoring, especially after earthquakes. Traditionally, change detection is usually done by using multi-temporal images through spectral analyses. This provides two-dimensional spectral information without including heights. This paper will describe the capability of aerial images and LiDAR data fusion for rapid change detection in elevations, and methods of assessment of damage in made-made structures. In order to detect and evaluate changes in buildings, LiDAR-derived DEMs and aerial images from two epochs were used, showing changes in urban buildings due to construction and demolition. The proposed modelling scheme comprises three steps, namely, data pre-processing, change detection, and validation. In the first step for data pre-processing, data registration was carried out based on the multi-source data. In the second step, changes were detected by combining change detection techniques such as image differencing (ID, principal components analysis (PCA, minimum noise fraction (MNF and post-classification comparison (P-C based on support vector machines (SVM, each of which performs differently, based on simple majority vote. In the third step and to meet the objectives, the detected changes were compared against reference data that was generated manually. The comparison is based on two criteria: overall accuracy; and commission and omission errors. The results showed that the average detection accuracies were: 78.9%, 81.4%, 82.7% and 82.8% for post-classification, image differencing, PCA and MNF respectively. On the other hand, the commission and omission errors of

  13. Energy-Efficient Fault-Tolerant Dynamic Event Region Detection in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Enemark, Hans-Jacob; Zhang, Yue; Dragoni, Nicola

    2015-01-01

    Fault-tolerant event detection is fundamental to wireless sensor network applications. Existing approaches usually adopt neighborhood collaboration for better detection accuracy, while need more energy consumption due to communication. Focusing on energy efficiency, this paper makes an improvement...

  14. Characterizing dynamic changes in the human blood transcriptional network.

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    2010-02-01

    Full Text Available Gene expression data generated systematically in a given system over multiple time points provides a source of perturbation that can be leveraged to infer causal relationships among genes explaining network changes. Previously, we showed that food intake has a large impact on blood gene expression patterns and that these responses, either in terms of gene expression level or gene-gene connectivity, are strongly associated with metabolic diseases. In this study, we explored which genes drive the changes of gene expression patterns in response to time and food intake. We applied the Granger causality test and the dynamic Bayesian network to gene expression data generated from blood samples collected at multiple time points during the course of a day. The simulation result shows that combining many short time series together is as powerful to infer Granger causality as using a single long time series. Using the Granger causality test, we identified genes that were supported as the most likely causal candidates for the coordinated temporal changes in the network. These results show that PER1 is a key regulator of the blood transcriptional network, in which multiple biological processes are under circadian rhythm regulation. The fasted and fed dynamic Bayesian networks showed that over 72% of dynamic connections are self links. Finally, we show that different processes such as inflammation and lipid metabolism, which are disconnected in the static network, become dynamically linked in response to food intake, which would suggest that increasing nutritional load leads to coordinate regulation of these biological processes. In conclusion, our results suggest that food intake has a profound impact on the dynamic co-regulation of multiple biological processes, such as metabolism, immune response, apoptosis and circadian rhythm. The results could have broader implications for the design of studies of disease association and drug response in clinical

  15. Change Point Detection with Robust Control Chart

    Directory of Open Access Journals (Sweden)

    Ng Kooi Huat

    2011-01-01

    Full Text Available Monitoring a process over time using a control chart allows quick detection of unusual states. In phase I, some historical process data, assumed to come from an in-control process, are used to construct the control limits. In Phase II, the process is monitored for an ongoing basis using control limits from Phase I. In Phase II, observations falling outside the control limits or unusual patterns of observations signal that the process has shifted from in-control process settings. Such signals trigger a search for assignable cause and, if the cause is found, corrective action will be implemented to prevent its recurrence. The purpose of this paper is to introduce a new methodology appropriate for constructing a robust control chart when a nonnormal or a contaminated data that may arise in phase I state. Through extensive Monte Carlo simulations, we examine the behaviors and performances of the proposed MM robust control chart when there is a process shift in mean.

  16. An analysis of network traffic classification for botnet detection

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2015-01-01

    Botnets represent one of the most serious threats to the Internet security today. This paper explores how can network traffic classification be used for accurate and efficient identification of botnet network activity at local and enterprise networks. The paper examines the effectiveness of detec......Botnets represent one of the most serious threats to the Internet security today. This paper explores how can network traffic classification be used for accurate and efficient identification of botnet network activity at local and enterprise networks. The paper examines the effectiveness...

  17. Trend analysis and change point detection of annual and seasonal ...

    Indian Academy of Sciences (India)

    Trend analysis and change point detection in temperature and precipitation series have been investigated by many researchers throughout the world (Serra et al. 2001; Turkes and Sumer 2004;. Zer Lin et al. 2005; Partal and Kahya 2006;. Keywords. Climate change; temperature; precipitation; trend analysis; change point ...

  18. Organisational adaptation in an activist network: social networks, leadership, and change in al-Muhajiroun.

    Science.gov (United States)

    Kenney, Michael; Horgan, John; Horne, Cale; Vining, Peter; Carley, Kathleen M; Bigrigg, Michael W; Bloom, Mia; Braddock, Kurt

    2013-09-01

    Social networks are said to facilitate learning and adaptation by providing the connections through which network nodes (or agents) share information and experience. Yet, our understanding of how this process unfolds in real-world networks remains underdeveloped. This paper explores this gap through a case study of al-Muhajiroun, an activist network that continues to call for the establishment of an Islamic state in Britain despite being formally outlawed by British authorities. Drawing on organisation theory and social network analysis, we formulate three hypotheses regarding the learning capacity and social network properties of al-Muhajiroun (AM) and its successor groups. We then test these hypotheses using mixed methods. Our methods combine quantitative analysis of three agent-based networks in AM measured for structural properties that facilitate learning, including connectedness, betweenness centrality and eigenvector centrality, with qualitative analysis of interviews with AM activists focusing organisational adaptation and learning. The results of these analyses confirm that al-Muhajiroun activists respond to government pressure by changing their operations, including creating new platforms under different names and adjusting leadership roles among movement veterans to accommodate their spiritual leader's unwelcome exodus to Lebanon. Simple as they are effective, these adaptations have allowed al-Muhajiroun and its successor groups to continue their activism in an increasingly hostile environment. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. Detecting data and schema changes in scientific documents

    Energy Technology Data Exchange (ETDEWEB)

    Adiwijaya, I; Critchlow, T; Musick, R

    1999-06-08

    Data stored in a data warehouse must be kept consistent and up-to-date with the underlying information sources. By providing the capability to identify, categorize and detect changes in these sources, only the modified data needs to be transferred and entered into the warehouse. Another alternative, periodically reloading from scratch, is obviously inefficient. When the schema of an information source changes, all components that interact with, or make use of, data originating from that source must be updated to conform to the new schema. In this paper, the authors present an approach to detecting data and schema changes in scientific documents. Scientific data is of particular interest because it is normally stored as semi-structured documents, and it incurs frequent schema updates. They address the change detection problem by detecting data and schema changes between two versions of the same semi-structured document. This paper presents a graph representation of semi-structured documents and their schema before describing their approach to detecting changes while parsing the document. It also discusses how analysis of a collection of schema changes obtained from comparing several individual can be used to detect complex schema changes.

  20. Kernel based orthogonalization for change detection in hyperspectral images

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    Kernel versions of principal component analysis (PCA) and minimum noise fraction (MNF) analysis are applied to change detection in hyperspectral image (HyMap) data. The kernel versions are based on so-called Q-mode analysis in which the data enter into the analysis via inner products in the Gram...... the kernel function and then performing a linear analysis in that space. An example shows the successful application of (kernel PCA and) kernel MNF analysis to change detection in HyMap data covering a small agricultural area near Lake Waging-Taching, Bavaria, in Southern Germany. In the change detection...

  1. Evaluating network-level predictors of behavior change among injection networks enrolled in the HPTN 037 randomized controlled trial.

    Science.gov (United States)

    Smith, Laramie R; Strathdee, Steffanie A; Metzger, David; Latkin, Carl

    2017-06-01

    Little is known about ways network-level factors that may influence the adoption of combination prevention behaviors among injection networks, or how network-oriented interventions might moderate this behavior change process. A total of 232 unique injection risk networks in Philadelphia, PA, were randomized to a peer educator network-oriented intervention or standard of care control arm. Network-level aggregates reflecting the injection networks' baseline substance use dynamics, social interactions, and the networks exposure to gender- and structural-related vulnerabilities were calculated and used to predict changes in the proportion of network members adopting safer injection practices at 6-month follow-up. At follow-up, safer injection practices were observed among 46.31% of a network's members on average. In contrast, 25.7% of networks observed no change. Controlling for the effects of the intervention, significant network-level factors influencing network-level behavior change reflected larger sized injection networks (b=2.20, p=0.013) with a greater proportion of members who shared needles (b=0.29, pnetwork's safer injection practices were also observed for networks with fewer new network members (b=-0.31, p=0.008), and for networks whose members were proportionally less likely to have experienced incarceration (b=-0.20, p=0.012) or more likely to have been exposed to drug treatment (b=0.17, p=0.034) in the 6-months prior to baseline. A significant interaction suggested the intervention uniquely facilitated change in safer injection practices among female-only networks (b=-0.32, p=0.046). Network-level factors offer insights into ways injection networks might be leveraged to promote combination prevention efforts. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Detection of light transformations and concomitant changes in surface albedo.

    Science.gov (United States)

    Gerhard, Holly E; Maloney, Laurence T

    2010-07-16

    We report two experiments demonstrating that (1) observers are sensitive to information about changes in the light field not captured by local scene statistics and that (2) they can use this information to enhance detection of changes in surface albedo. Observers viewed scenes consisting of matte surfaces at many orientations illuminated by a collimated light source. All surfaces were achromatic, all lights neutral. In the first experiment, observers attempted to discriminate small changes in direction of the collimated light source (light transformations) from matched changes in the albedos of all surfaces (non-light transformations). Light changes and non-light changes shared the same local scene statistics and edge ratios, but the latter were not consistent with any change in direction to the collimated source. We found that observers could discriminate light changes as small as 5 degrees with sensitivity d' > 1 and accurately judge the direction of change. In a second experiment, we measured observers' ability to detect a change in the surface albedo of an isolated surface patch during either a light change or a surface change. Observers were more accurate in detecting isolated albedo changes during light changes. Measures of sensitivity d' were more than twice as great.

  3. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more

  4. Anomaly detection in SCADA systems: a network based approach

    NARCIS (Netherlands)

    Barbosa, R.R.R.

    2014-01-01

    Supervisory Control and Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities, such as water treatment facilities. Historically, these networks were composed by special-purpose embedded devices communicating through proprietary protocols.

  5. Anomaly Detection in SCADA Systems - A Network Based Approach

    NARCIS (Netherlands)

    Barbosa, R.R.R.

    2014-01-01

    Supervisory Control and Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities, such as water treatment facilities. Historically, these networks were composed by special-purpose embedded devices communicating through proprietary protocols.

  6. Proposed Network Intrusion Detection System ‎In Cloud Environment Based on Back ‎Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Shawq Malik Mehibs

    2017-12-01

    Full Text Available Cloud computing is distributed architecture, providing computing facilities and storage resource as a service over the internet. This low-cost service fulfills the basic requirements of users. Because of the open nature and services introduced by cloud computing intruders impersonate legitimate users and misuse cloud resource and services. To detect intruders and suspicious activities in and around the cloud computing environment, intrusion detection system used to discover the illegitimate users and suspicious action by monitors different user activities on the network .this work proposed based back propagation artificial neural network to construct t network intrusion detection in the cloud environment. The proposed module evaluated with kdd99 dataset the experimental results shows promising approach to detect attack with high detection rate and low false alarm rate

  7. Detection and Attribution of Regional Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and ocean circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.

  8. International earth science information network for global change decision making

    Energy Technology Data Exchange (ETDEWEB)

    Autrey-Hunley, C.; Kuhn, W.R.; Kasischke, E.; Trichel, M.T.; Coppola, R.

    1991-01-01

    Effective environmental decision making depends upon the ability to predict physical changes in the environment, societal responses to these changes, and how both the physical changes and societal responses will be affected by changes in government regulations, public perceptions and the environment. Technological advances in remote sensing have provided a wealth of earth science data necessary to study global change problems; the Earth Observatory System will provide an unprecedented data source in the late 1990's. The Consortium for an International Earth Science Information Network (CIESIN) will combine earth science data (both satellite and ground-based) with data on the social sciences (e.g., economics, demographics, public health) to support informed policy decisions and to transfer knowledge on global change and its causes to the public.

  9. An Approach for Detecting Attacks in Mobile Adhoc Networks

    OpenAIRE

    V. M. Viswanatham; A. A. Chari

    2008-01-01

    The security of data becomes more important with the increased use of commercial applications over wireless network environments. We presented an approach to handle various attacks for wireless networks. There were several problems of security in wireless networks due to intruders and different type of attacks such as Node Isolation, Route Disruption and Resource Consumption. There were better methods and intruder handling procedures available for fixed networks but it was difficult to analyz...

  10. EdgeCentric: Anomaly Detection in Edge-Attributed Networks

    OpenAIRE

    Shah, Neil; Beutel, Alex; Hooi, Bryan; Akoglu, Leman; Gunnemann, Stephan; Makhija, Disha; Kumar, Mohit; Faloutsos, Christos

    2015-01-01

    Given a network with attributed edges, how can we identify anomalous behavior? Networks with edge attributes are commonplace in the real world. For example, edges in e-commerce networks often indicate how users rated products and services in terms of number of stars, and edges in online social and phonecall networks contain temporal information about when friendships were formed and when users communicated with each other -- in such cases, edge attributes capture information about how the adj...

  11. Text-Attentional Convolutional Neural Network for Scene Text Detection.

    Science.gov (United States)

    He, Tong; Huang, Weilin; Qiao, Yu; Yao, Jian

    2016-06-01

    Recent deep learning models have demonstrated strong capabilities for classifying text and non-text components in natural images. They extract a high-level feature globally computed from a whole image component (patch), where the cluttered background information may dominate true text features in the deep representation. This leads to less discriminative power and poorer robustness. In this paper, we present a new system for scene text detection by proposing a novel text-attentional convolutional neural network (Text-CNN) that particularly focuses on extracting text-related regions and features from the image components. We develop a new learning mechanism to train the Text-CNN with multi-level and rich supervised information, including text region mask, character label, and binary text/non-text information. The rich supervision information enables the Text-CNN with a strong capability for discriminating ambiguous texts, and also increases its robustness against complicated background components. The training process is formulated as a multi-task learning problem, where low-level supervised information greatly facilitates the main task of text/non-text classification. In addition, a powerful low-level detector called contrast-enhancement maximally stable extremal regions (MSERs) is developed, which extends the widely used MSERs by enhancing intensity contrast between text patterns and background. This allows it to detect highly challenging text patterns, resulting in a higher recall. Our approach achieved promising results on the ICDAR 2013 data set, with an F-measure of 0.82, substantially improving the state-of-the-art results.

  12. Text-Attentional Convolutional Neural Networks for Scene Text Detection.

    Science.gov (United States)

    He, Tong; Huang, Weilin; Qiao, Yu; Yao, Jian

    2016-03-28

    Recent deep learning models have demonstrated strong capabilities for classifying text and non-text components in natural images. They extract a high-level feature computed globally from a whole image component (patch), where the cluttered background information may dominate true text features in the deep representation. This leads to less discriminative power and poorer robustness. In this work, we present a new system for scene text detection by proposing a novel Text-Attentional Convolutional Neural Network (Text-CNN) that particularly focuses on extracting text-related regions and features from the image components. We develop a new learning mechanism to train the Text-CNN with multi-level and rich supervised information, including text region mask, character label, and binary text/nontext information. The rich supervision information enables the Text-CNN with a strong capability for discriminating ambiguous texts, and also increases its robustness against complicated background components. The training process is formulated as a multi-task learning problem, where low-level supervised information greatly facilitates main task of text/non-text classification. In addition, a powerful low-level detector called Contrast- Enhancement Maximally Stable Extremal Regions (CE-MSERs) is developed, which extends the widely-used MSERs by enhancing intensity contrast between text patterns and background. This allows it to detect highly challenging text patterns, resulting in a higher recall. Our approach achieved promising results on the ICDAR 2013 dataset, with a F-measure of 0.82, improving the state-of-the-art results substantially.

  13. Reliable epileptic seizure detection using an improved wavelet neural network

    Directory of Open Access Journals (Sweden)

    Zarita Zainuddin

    2013-05-01

    Full Text Available BackgroundElectroencephalogram (EEG signal analysis is indispensable in epilepsy diagnosis as it offers valuable insights for locating the abnormal distortions in the brain wave. However, visual interpretation of the massive amounts of EEG signals is time-consuming, and there is often inconsistent judgment between experts. AimsThis study proposes a novel and reliable seizure detection system, where the statistical features extracted from the discrete wavelet transform are used in conjunction with an improved wavelet neural network (WNN to identify the occurrence of seizures. Method Experimental simulations were carried out on a well-known publicly available dataset, which was kindly provided by the Epilepsy Center, University of Bonn, Germany. The normal and epileptic EEG signals were first pre-processed using the discrete wavelet transform. Subsequently, a set of statistical features was extracted to train a WNNs-based classifier. ResultsThe study has two key findings. First, simulation results showed that the proposed improved WNNs-based classifier gave excellent predictive ability, where an overall classification accuracy of 98.87% was obtained. Second, by using the 10th and 90th percentiles of the absolute values of the wavelet coefficients, a better set of EEG features can be identified from the data, as the outliers are removed before any further downstream analysis.ConclusionThe obtained high prediction accuracy demonstrated the feasibility of the proposed seizure detection scheme. It suggested the prospective implementation of the proposed method in developing a real time automated epileptic diagnostic system with fast and accurate response that could assist neurologists in the decision making process.

  14. An investigation of scalable anomaly detection techniques for a large network of Wi-Fi hotspots

    CSIR Research Space (South Africa)

    Machaka, P

    2015-01-01

    Full Text Available . The Neural Networks, Bayesian Networks and Artificial Immune Systems were used for this experiment. Using a set of data extracted from a live network of Wi-Fi hotspots managed by an ISP; we integrated algorithms into a data collection system to detect...

  15. Spatial anomaly detection in sensor networks using neighborhood information

    NARCIS (Netherlands)

    Bosman, H.H.W.J.; Iacca, G.; Tejada, A.; Wörtche, H.J.; Liotta, A.

    2016-01-01

    The field of wireless sensor networks (WSNs), embedded systems with sensing and networking capabil- ity, has now matured after a decade-long research effort and technological advances in electronics and networked systems. An important remaining challenge now is to extract meaningful information from

  16. Efficient Incorporation of Markov Random Fields in Change Detection

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Nielsen, Allan Aasbjerg; Carstensen, Jens Michael

    2009-01-01

    Many change detection algorithms work by calculating the probability of change on a pixel-wise basis. This is a disadvantage since one is usually looking for regions of change, and such information is not used in pixel-wise classification - per definition. This issue becomes apparent in the face...... of noise, implying that the pixel-wise classifier is also noisy. There is thus a need for incorporating local homogeneity constraints into such a change detection framework. For this modelling task Markov Random Fields are suitable. Markov Random Fields have, however, previously been plagued by lack...... of efficient optimization methods or numerical solvers. We here address the issue of efficient incorporation of local homogeneity constraints into change detection algorithms. We do this by exploiting recent advances in graph based algorithms for Markov Random Fields. This is combined with an IR-MAD change...

  17. Detecting and Blocking Network Attacks at Ultra High Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Paxson, Vern

    2010-11-29

    Stateful, in-depth, in-line traffic analysis for intrusion detection and prevention has grown increasingly more difficult as the data rates of modern networks rise. One point in the design space for high-performance network analysis - pursued by a number of commercial products - is the use of sophisticated custom hardware. For very high-speed processing, such systems often cast the entire analysis process in ASICs. This project pursued a different architectural approach, which we term Shunting. Shunting marries a conceptually quite simple hardware device with an Intrusion Prevention System (IPS) running on commodity PC hardware. The overall design goal is was to keep the hardware both cheap and readily scalable to future higher speeds, yet also retain the unparalleled flexibility that running the main IPS analysis in a full general-computing environment provides. The Shunting architecture we developed uses a simple in-line hardware element that maintains several large state tables indexed by packet header fields, including IP/TCP flags, source and destination IP addresses, and connection tuples. The tables yield decision values the element makes on a packet-by-packet basis: forward the packet, drop it, or divert ('shunt') it through the IPS (the default). By manipulating table entries, the IPS can, on a fine-grained basis: (i) specify the traffic it wishes to examine, (ii) directly block malicious traffic, and (iii) 'cut through' traffic streams once it has had an opportunity to 'vet' them, or (iv) skip over large items within a stream before proceeding to further analyze it. For the Shunting architecture to yield benefits, it needs to operate in an environment for which the monitored network traffic has the property that - after proper vetting - much of it can be safely skipped. This property does not universally hold. For example, if a bank needs to examine all Web traffic involving its servers for regulatory compliance, then a

  18. Wormhole Detection Based on Ordinal MDS Using RTT in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Saswati Mukherjee

    2016-01-01

    Full Text Available In wireless communication, wormhole attack is a crucial threat that deteriorates the normal functionality of the network. Invasion of wormholes destroys the network topology completely. However, most of the existing solutions require special hardware or synchronized clock or long processing time to defend against long path wormhole attacks. In this work, we propose a wormhole detection method using range-based topology comparison that exploits the local neighbourhood subgraph. The Round Trip Time (RTT for each node pair is gathered to generate neighbour information. Then, the network is reconstructed by ordinal Multidimensional Scaling (MDS followed by a suspicion phase that enlists the suspected wormholes based on the spatial reconstruction. Iterative computation of MDS helps to visualize the topology changes and can localize the potential wormholes. Finally, a verification phase is used to remove falsely accused nodes and identify real adversaries. The novelty of our algorithm is that it can detect both short path and long path wormhole links. Extensive simulations are executed to demonstrate the efficacy of our approach compared to existing ones.

  19. Multi-scale Fully Convolutional Network for Face Detection in the Wild

    KAUST Repository

    Bai, Yancheng

    2017-08-24

    Face detection is a classical problem in computer vision. It is still a difficult task due to many nuisances that naturally occur in the wild. In this paper, we propose a multi-scale fully convolutional network for face detection. To reduce computation, the intermediate convolutional feature maps (conv) are shared by every scale model. We up-sample and down-sample the final conv map to approximate K levels of a feature pyramid, leading to a wide range of face scales that can be detected. At each feature pyramid level, a FCN is trained end-to-end to deal with faces in a small range of scale change. Because of the up-sampling, our method can detect very small faces (10×10 pixels). We test our MS-FCN detector on four public face detection datasets, including FDDB, WIDER FACE, AFW and PASCAL FACE. Extensive experiments show that it outperforms state-of-the-art methods. Also, MS-FCN runs at 23 FPS on a GPU for images of size 640×480 with no assumption on the minimum detectable face size.

  20. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    Science.gov (United States)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  1. The early detection research network: 10-year outlook.

    Science.gov (United States)

    Srivastava, Sudhir

    2013-01-01

    The National Cancer Institute's Early Detection Research Network (EDRN) has made significant progress in developing an organized effort for discovering and validating biomarkers, building resources to support this effort, demonstrating the capabilities of several genomic and proteomic platforms, identifying candidate biomarkers, and undertaking multicenter validation studies. In its first 10 years, the EDRN went from a groundbreaking concept to an operational success. The EDRN has established clear milestones for reaching a decision of "go" or "no go" during the biomarker development process. Milestones are established on the basis of statistical criteria, performance characteristics of biomarkers, and anticipated clinical use. More than 300 biomarkers have been stopped from further development. To date, the EDRN has prioritized more than 300 biomarkers and has completed more than 10 validation studies. The US Food and Drug Administration has now cleared 5 biomarkers for various clinical endpoints. The EDRN today combines numerous collaborative and multidisciplinary investigator-initiated projects with a strong national administrative and data infrastructure. The EDRN has created a rigorous peer-review system that ensures that preliminary data--analytical, clinical, and quantitative--are of excellent quality. The process begins with an internal review with clinical, biostatistical, and analytical expertise. The project then receives external peer review and, finally, National Cancer Institute program staff review, resulting in an exceptionally robust and high-quality validation trial. © 2012 American Association for Clinical Chemistry

  2. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Science.gov (United States)

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  3. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Directory of Open Access Journals (Sweden)

    Shameng Wen

    Full Text Available Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  4. Detecting and Attributing Health Burdens to Climate Change.

    Science.gov (United States)

    Ebi, Kristie L; Ogden, Nicholas H; Semenza, Jan C; Woodward, Alistair

    2017-08-07

    Detection and attribution of health impacts caused by climate change uses formal methods to determine a ) whether the occurrence of adverse health outcomes has changed, and b ) the extent to which that change could be attributed to climate change. There have been limited efforts to undertake detection and attribution analyses in health. Our goal was to show a range of approaches for conducting detection and attribution analyses. Case studies for heatwaves, Lyme disease in Canada, and Vibrio emergence in northern Europe highlight evidence that climate change is adversely affecting human health. Changes in rates and geographic distribution of adverse health outcomes were detected, and, in each instance, a proportion of the observed changes could, in our judgment, be attributed to changes in weather patterns associated with climate change. The results of detection and attribution studies can inform evidence-based risk management to reduce current, and plan for future, changes in health risks associated with climate change. Gaining a better understanding of the size, timing, and distribution of the climate change burden of disease and injury requires reliable long-term data sets, more knowledge about the factors that confound and modify the effects of climate on health, and refinement of analytic techniques for detection and attribution. At the same time, significant advances are possible in the absence of complete data and statistical certainty: there is a place for well-informed judgments, based on understanding of underlying processes and matching of patterns of health, climate, and other determinants of human well-being. https://doi.org/10.1289/EHP1509.

  5. Cross-Sensor Calibration of the GAI Long Range Detection Network

    Science.gov (United States)

    Boccippio, Dennis J.; Boeck, William; Goodman, Steven J.; Cummins, K.; Cramer, J.

    1999-01-01

    The long range component of the North American Lightning Detection Network has been providing experimental data products since July 1996, offering cloud-to-ground lightning coverage throughout the Atlantic and Western Pacific oceans, as well as south to the Intertropical Convergence Zone. The network experiences a strong decrease in detection efficiency with range, which is also significantly modulated by differential propagation under day, night and terminator-crossing conditions. A climatological comparison of total lightning data observed by the Optical Transient Detector (OTD) and CG lightning observed by the long range network is conducted, with strict quality control and allowance for differential network performance before and after the activation of the Canadian Lightning Detection Network. This yields a first-order geographic estimate of long range network detection efficiency and its spatial variability. Intercomparisons are also performed over the continental US, allowing large scale estimates of the midlatitude climatological IC:CG ratio and its possible dependence on latitude.

  6. PMFA: Toward Passive Message Fingerprint Attacks on Challenge-Based Collaborative Intrusion Detection Networks

    DEFF Research Database (Denmark)

    Li, Wenjuan; Meng, Weizhi; Kwok, Lam-For

    2016-01-01

    To enhance the performance of single intrusion detection systems (IDSs), collaborative intrusion detection networks (CIDNs) have been developed, which enable a set of IDS nodes to communicate with each other. In such a distributed network, insider attacks like collusion attacks are the main threat...

  7. Combining Host-based and network-based intrusion detection system

    African Journals Online (AJOL)

    These attacks were simulated using hping. The proposed system is implemented in Java. The results show that the proposed system is able to detect attacks both from within (host-based) and outside sources (network-based). Key Words: Intrusion Detection System (IDS), Host-based, Network-based, Signature, Security log.

  8. Detection of Greenhouse-Gas-Induced Climatic Change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  9. Change-point detection for infinite horizon dynamic treatment regimes.

    Science.gov (United States)

    Goldberg, Yair; Pollak, Moshe; Mitelpunkt, Alexis; Orlovsky, Mila; Weiss-Meilik, Ahuva; Gorfine, Malka

    2017-08-01

    A dynamic treatment regime is a set of decision rules for how to treat a patient at multiple time points. At each time point, a treatment decision is made depending on the patient's medical history up to that point. We consider the infinite-horizon setting in which the number of decision points is very large. Specifically, we consider long trajectories of patients' measurements recorded over time. At each time point, the decision whether to intervene or not is conditional on whether or not there was a change in the patient's trajectory. We present change-point detection tools and show how to use them in defining dynamic treatment regimes. The performance of these regimes is assessed using an extensive simulation study. We demonstrate the utility of the proposed change-point detection approach using two case studies: detection of sepsis in preterm infants in the intensive care unit and detection of a change in glucose levels of a diabetic patient.

  10. Landscape Indicators for Detection of Temporal Change in Fragmentation

    Science.gov (United States)

    Patch-based landscape metrics dominate the conceptualization and practice of landscape ecology, but they have not been evaluated for detection of temporal change. Our evaluation, complemented by existing literature, indicates that patch-based landscape metrics have four shortcomi...

  11. Fast Change Point Detection for Electricity Market Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berkeley, UC; Gu, William; Choi, Jaesik; Gu, Ming; Simon, Horst; Wu, Kesheng

    2013-08-25

    Electricity is a vital part of our daily life; therefore it is important to avoid irregularities such as the California Electricity Crisis of 2000 and 2001. In this work, we seek to predict anomalies using advanced machine learning algorithms. These algorithms are effective, but computationally expensive, especially if we plan to apply them on hourly electricity market data covering a number of years. To address this challenge, we significantly accelerate the computation of the Gaussian Process (GP) for time series data. In the context of a Change Point Detection (CPD) algorithm, we reduce its computational complexity from O($n^{5}$) to O($n^{2}$). Our efficient algorithm makes it possible to compute the Change Points using the hourly price data from the California Electricity Crisis. By comparing the detected Change Points with known events, we show that the Change Point Detection algorithm is indeed effective in detecting signals preceding major events.

  12. Spatial context learning in visual search and change detection.

    Science.gov (United States)

    Jiang, Yuhong; Song, Joo-Hyun

    2005-10-01

    Humans conduct visual search more efficiently when the same display is presented for a second time, showing learning of repeated spatial contexts. In this study, we investigate spatial context learning in two tasks: visual search and change detection. In both tasks, we ask whether subjects learn to associate the target with the entire spatial layout of a repeated display (configural learning) or with individual distractor locations (nonconfigural learning). We show that nonconfigural learning results from visual search tasks, but not from change detection tasks. Furthermore, a spatial layout acquired in visual search tasks does not enhance change detection on the same display, whereas a spatial layout acquired in change detection tasks moderately enhances visual search. We suggest that although spatial context learning occurs in multiple tasks, the content of learning is, in part, task specific.

  13. Change detection in polarimetric SAR data over several time points

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Skriver, Henning

    2014-01-01

    A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution is introduced. The test statistic is applied successfully to detect change in C-band EMISAR polarimetric SAR data over four time points....

  14. Building change detection via a combination of CNNs using only RGB aerial imageries

    Science.gov (United States)

    Nemoto, Keisuke; Hamaguchi, Ryuhei; Sato, Masakazu; Fujita, Aito; Imaizumi, Tomoyuki; Hikosaka, Shuhei

    2017-10-01

    Building change information extracted from remote sensing imageries is important for various applications such as urban management and marketing planning. The goal of this work is to develop a methodology for automatically capturing building changes from remote sensing imageries. Recent studies have addressed this goal by exploiting 3-D information as a proxy for building height. In contrast, because in practice it is expensive or impossible to prepare 3-D information, we do not rely on 3-D data but focus on using only RGB aerial imageries. Instead, we employ deep convolutional neural networks (CNNs) to extract effective features, and improve change detection accuracy in RGB remote sensing imageries. We consider two aspects of building change detection, building detection and subsequent change detection. Our proposed methodology was tested on several areas, which has some differences such as dominant building characteristics and varying brightness values. On all over the tested areas, the proposed method provides good results for changed objects, with recall values over 75 % with a strict overlap requirement of over 50% in intersection-over-union (IoU). When the IoU threshold was relaxed to over 10%, resulting recall values were over 81%. We conclude that use of CNNs enables accurate detection of building changes without employing 3-D information.

  15. Diffusion Geometry Based Nonlinear Methods for Hyperspectral Change Detection

    Science.gov (United States)

    2010-05-12

    Schaum and A. Stocker, “Hyperspectral change detection and supervised matched filtering based on covariance equalization,” Proceedings of the SPIE, vol...5425, pp. 77- 90 (2004). 10. A. Schaum and A. Stocker, “Linear chromodynamics models for hyperspectral target detection,” Proceedings of the IEEE...Aerospace Conference (February 2003). 11. A. Schaum and A. Stocker, “Linear chromodynamics models for hyperspectral target detection

  16. Functional connectivity changes in the language network during stroke recovery.

    Science.gov (United States)

    Nair, Veena A; Young, Brittany M; La, Christian; Reiter, Peter; Nadkarni, Tanvi N; Song, Jie; Vergun, Svyatoslav; Addepally, Naga Saranya; Mylavarapu, Krishna; Swartz, Jennifer L; Jensen, Matthew B; Chacon, Marcus R; Sattin, Justin A; Prabhakaran, Vivek

    2015-02-01

    Several neuroimaging studies have examined language reorganization in stroke patients with aphasia. However, few studies have examined language reorganization in stroke patients without aphasia. Here, we investigated functional connectivity (FC) changes after stroke in the language network using resting-state fMRI and performance on a verbal fluency (VF) task in patients without clinically documented language deficits. Early-stage ischemic stroke patients (N = 26) (average 5 days from onset), 14 of whom were tested at a later stage (average 4.5 months from onset), 26 age-matched healthy control subjects (HCs), and 12 patients with cerebrovascular risk factors (patients at risk, PR) participated in this study. We examined FC of the language network with 23 seed regions based on a previous study. We evaluated patients' behavioral performance on a VF task and correlation between brain resting-state FC (rsFC) and behavior. Compared to HCs, early stroke patients showed significantly decreased rsFC in the language network but no difference with respect to PR. Early stroke patients showed significant differences in performance on the VF task compared to HCs but not PR. Late-stage patients compared to HCs and PR showed no differences in brain rsFC in the language network and significantly stronger connections compared to early-stage patients. Behavioral differences persisted in the late stage compared to HCs. Change in specific connection strengths correlated with changes in behavior from early to late stage. These results show decreased rsFC in the language network and verbal fluency deficits in early stroke patients without clinically documented language deficits.

  17. Innovation Network Development Model in Telemedicine: A Change in Participation.

    Science.gov (United States)

    Goodarzi, Maryam; Torabi, Mashallah; Safdari, Reza; Dargahi, Hossein; Naeimi, Sara

    2015-10-01

    This paper introduces a telemedicine innovation network and reports its implementation in Tehran University of Medical Sciences. The required conditions for the development of future projects in the field of telemedicine are also discussed; such projects should be based on the common needs and opportunities in the areas of healthcare, education, and technology. The development of the telemedicine innovation network in Tehran University of Medical Sciences was carried out in two phases: identifying the beneficiaries of telemedicine, and codification of the innovation network memorandum; and brainstorming of three workgroup members, and completion and clustering ideas. The present study employed a qualitative survey by using brain storming method. Thus, the ideas of the innovation network members were gathered, and by using Freeplane software, all of them were clustered and innovation projects were defined. In the services workgroup, 87 and 25 ideas were confirmed in phase 1 and phase 2, respectively. In the education workgroup, 8 new programs in the areas of telemedicine, tele-education and teleconsultation were codified. In the technology workgroup, 101 and 11 ideas were registered in phase 1 and phase 2, respectively. Today, innovation is considered a major infrastructural element of any change or progress. Thus, the successful implementation of a telemedicine project not only needs funding, human resources, and full equipment. It also requires the use of innovation models to cover several different aspects of change and progress. The results of the study can provide a basis for the implementation of future telemedicine projects using new participatory, creative, and innovative models.

  18. Conceptual design of a measurement network of the global change

    Directory of Open Access Journals (Sweden)

    P. Hari

    2016-01-01

    Full Text Available The global environment is changing rapidly due to anthropogenic emissions and actions. Such activities modify aerosol and greenhouse gas concentrations in the atmosphere, leading to regional and global climate change and affecting, e.g., food and fresh-water security, sustainable use of natural resources and even demography. Here we present a conceptual design of a global, hierarchical observation network that can provide tools and increased understanding to tackle the inter-connected environmental and societal challenges that we will face in the coming decades. The philosophy behind the conceptual design relies on physical conservation laws of mass, energy and momentum, as well as on concentration gradients that act as driving forces for the atmosphere-biosphere exchange. The network is composed of standard, flux and/or advanced and flagship stations, each of which having specific and identified tasks. Each ecosystem type on the globe has its own characteristic features that have to be taken into consideration. The hierarchical network as a whole is able to tackle problems related to large spatial scales, heterogeneity of ecosystems and their complexity. The most comprehensive observations are envisioned to occur in flagship stations, with which the process-level understanding can be expanded to continental and global scales together with advanced data analysis, Earth system modelling and satellite remote sensing. The denser network of the flux and standard stations allows application and up-scaling of the results obtained from flagship stations to the global level.

  19. European network infrastructures of observatories for terrestrial Global Change research

    Science.gov (United States)

    Vereecken, H.; Bogena, H.; Lehning, M.

    2009-04-01

    The earth's climate is significantly changing (e.g. IPCC, 2007) and thus directly affecting the terrestrial systems. The number and intensity hydrological extremes, such as floods and droughts, are continually increasing, resulting in major economical and social impacts. Furthermore, the land cover in Europe has been modified fundamentally by conversions for agriculture, forest and for other purposes such as industrialisation and urbanisation. Additionally, water resources are more than ever used for human development, especially as a key resource for agricultural and industrial activities. As a special case, the mountains of the world are of significant importance in terms of water resources supply, biodiversity, economy, agriculture, traffic and recreation but particularly vulnerable to environmental change. The Alps are unique because of the pronounced small scale variability they contain, the high population density they support and their central position in Europe. The Alps build a single coherent physical and natural environment, artificially cut by national borders. The scientific community and governmental bodies have responded to these environmental changes by performing dedicated experiments and by establishing environmental research networks to monitor, analyse and predict the impact of Global Change on different terrestrial systems of the Earths' environment. Several European network infrastructures for terrestrial Global Change research are presently immerging or upgrading, such as ICOS, ANAEE, LifeWatch or LTER-Europe. However, the strongest existing networks are still operating on a regional or national level and the historical growth of such networks resulted in a very heterogeneous landscape of observation networks. We propose therefore the establishment of two complementary networks: The NetwOrk of Hydrological observAtories, NOHA. NOHA aims to promote the sustainable management of water resources in Europe, to support the prediction of

  20. A new method for abrupt change detection in dynamic structures

    Directory of Open Access Journals (Sweden)

    W. P. He

    2008-07-01

    Full Text Available Based on Detrended Fluctuation Analysis (DFA, we propose a new method – Moving Detrended Fluctuation Analysis (MDFA – to detect abrupt change in dynamic structures. Application of this technique shows that this method may be of use in detecting time-instants of abrupt change in dynamic structures and we even find that the MDFA results almost do not depend on length of subseries, and are less affected by noise.

  1. Deteksi Perubahan Citra Pada Video Menggunakan Illumination Invariant Change Detection

    Directory of Open Access Journals (Sweden)

    Adri Priadana

    2017-01-01

    Full Text Available There is still a lot of juvenile delinquency in the middle of the community, especially people in urban areas, in the modern era. Juvenile delinquency may be fights, wild racing, gambling, and graffiti on the walls without permission. Vandalized wall is usually done on walls of office buildings and on public or private property. Results from vandalized walls can be seen from the image of the change between the initial image with the image after a motion. This study develops a image change detection system in video to detect the action of graffiti on the wall via a Closed-Circuit Television camera (CCTV which is done by simulation using the webcam camera. Motion detection process with Accumulative Differences Images (ADI method and image change detection process with Illumination Invariant Change Detection method coupled with image cropping method which carried out a comparison between the a reference image or image before any movement with the image after there is movement. Detection system testing one by different times variations, ie in the morning, noon, afternoon, and evening. The proposed method for image change detection in video give results with an accuracy rate of 92.86%.

  2. Multiagent Intrusion Detection Based on Neural Network Detectors and Artificial Immune System

    OpenAIRE

    Vaitsekhovich, L.; Golovko, V; Rubanau, V.

    2009-01-01

    In this article the artificial immune system and neural network techniques for intrusion detection have been addressed. The AIS allows detecting unknown samples of computer attacks. The integration of AIS and neural networks as detectors permits to increase performance of the system security. The detector structure is based on the integration of the different neural networks namely RNN and MLP. The KDD-99 dataset was used for experiments performing. The experimental results show that such int...

  3. Intrusion Detection Systems Based on Artificial Intelligence Techniques in Wireless Sensor Networks

    OpenAIRE

    Nabil Ali Alrajeh; Lloret, J.

    2013-01-01

    Intrusion detection system (IDS) is regarded as the second line of defense against network anomalies and threats. IDS plays an important role in network security. There are many techniques which are used to design IDSs for specific scenario and applications. Artificial intelligence techniques are widely used for threats detection. This paper presents a critical study on genetic algorithm, artificial immune, and artificial neural network (ANN) based IDSs techniques used in wireless sensor netw...

  4. Using Covariance Matrix for Change Detection of Polarimetric SAR Data

    Science.gov (United States)

    Esmaeilzade, M.; Jahani, F.; Amini, J.

    2017-09-01

    Nowadays change detection is an important role in civil and military fields. The Synthetic Aperture Radar (SAR) images due to its independent of atmospheric conditions and cloud cover, have attracted much attention in the change detection applications. When the SAR data are used, one of the appropriate ways to display the backscattered signal is using covariance matrix that follows the Wishart distribution. Based on this distribution a statistical test for equality of two complex variance-covariance matrices can be used. In this study, two full polarization data in band L from UAVSAR are used for change detection in agricultural fields and urban areas in the region of United States which the first image belong to 2014 and the second one is from 2017. To investigate the effect of polarization on the rate of change, full polarization data and dual polarization data were used and the results were compared. According to the results, full polarization shows more changes than dual polarization.

  5. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    Science.gov (United States)

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.

  6. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network

    Science.gov (United States)

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish–Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696

  7. A new algorithm to detect earthquakes outside the seismic network: preliminary results

    Science.gov (United States)

    Giudicepietro, Flora; Esposito, Antonietta Maria; Ricciolino, Patrizia

    2017-04-01

    In this text we are going to present a new technique for detecting earthquakes outside the seismic network, which are often the cause of fault of automatic analysis system. Our goal is to develop a robust method that provides the discrimination result as quickly as possible. We discriminate local earthquakes from regional earthquakes, both recorded at SGG station, equipped with short period sensors, operated by Osservatorio Vesuviano (INGV) in the Southern Apennines (Italy). The technique uses a Multi Layer Perceptron (MLP) neural network with an architecture composed by an input layer, a hidden layer and a single node output layer. We pre-processed the data using the Linear Predictive Coding (LPC) technique to extract the spectral features of the signals in a compact form. We performed several experiments by shortening the signal window length. In particular, we used windows of 4, 2 and 1 seconds containing the onset of the local and the regional earthquakes. We used a dataset of 103 local earthquakes and 79 regional earthquakes, most of which occurred in Greece, Albania and Crete. We split the dataset into a training set, for the network training, and a testing set to evaluate the network's capacity of discrimination. In order to assess the network stability, we repeated this procedure six times, randomly changing the data composition of the training and testing set and the initial weights of the net. We estimated the performance of this method by calculating the average of correct detection percentages obtained for each of the six permutations. The average performances are 99.02%, 98.04% and 98.53%, which concern respectively the experiments carried out on 4, 2 and 1 seconds signal windows. The results show that our method is able to recognize the earthquakes outside the seismic network using only the first second of the seismic records, with a suitable percentage of correct detection. Therefore, this algorithm can be profitably used to make earthquake automatic

  8. Automatic change detection to facial expressions in adolescents

    DEFF Research Database (Denmark)

    Liu, Tongran; Xiao, Tong; Jiannong, Shi

    2016-01-01

    recruited to complete an emotional oddball task featuring on happy and one fearful condition. The measurement of event-related potential was carried out via electroencephalography and electrooculography recording, to detect visual mismatch negativity (vMMN) with regard to the automatic detection of changes...... automatic processing on fearful faces than happy faces. The present study indicated that adolescent’s posses stronger automatic detection of changes in emotional expression relative to adults, and sheds light on the neurodevelopment of automatic processes concerning social-emotional information....

  9. A Survey on Distributed Filtering and Fault Detection for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hongli Dong

    2014-01-01

    Full Text Available In recent years, theoretical and practical research on large-scale networked systems has gained an increasing attention from multiple disciplines including engineering, computer science, and mathematics. Lying in the core part of the area are the distributed estimation and fault detection problems that have recently been attracting growing research interests. In particular, an urgent need has arisen to understand the effects of distributed information structures on filtering and fault detection in sensor networks. In this paper, a bibliographical review is provided on distributed filtering and fault detection problems over sensor networks. The algorithms employed to study the distributed filtering and detection problems are categorised and then discussed. In addition, some recent advances on distributed detection problems for faulty sensors and fault events are also summarized in great detail. Finally, we conclude the paper by outlining future research challenges for distributed filtering and fault detection for sensor networks.

  10. Active-Varying Sampling-Based Fault Detection Filter Design for Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Yu-Long Wang

    2014-01-01

    Full Text Available This paper is concerned with fault detection filter design for continuous-time networked control systems considering packet dropouts and network-induced delays. The active-varying sampling period method is introduced to establish a new discretized model for the considered networked control systems. The mutually exclusive distribution characteristic of packet dropouts and network-induced delays is made full use of to derive less conservative fault detection filter design criteria. Compared with the fault detection filter design adopting a constant sampling period, the proposed active-varying sampling-based fault detection filter design can improve the sensitivity of the residual signal to faults and shorten the needed time for fault detection. The simulation results illustrate the merits and effectiveness of the proposed fault detection filter design.

  11. Change of mobile network coverage in France from 29 August

    CERN Multimedia

    IT Department

    2016-01-01

    The change of mobile network coverage on the French part of the CERN site will take effect on 29 August and not on 11 July as previously announced.    From 29 August, the Swisscom transmitters in France will be deactivated and Orange France will thenceforth provide coverage on the French part of the CERN site.  This switch will result in changes to billing. You should also ensure that you can still be contacted by your colleagues when you are on the French part of the CERN site. Please consult the information and instructions in this official communication.

  12. Intrusions Detection System Based on Ubiquitous Network Nodes

    OpenAIRE

    Sellami, Lynda; IDOUGHI, Djilali; Baadache, Abderahmane

    2014-01-01

    Ubiquitous computing allows to make data and services within the reach of users anytime and anywhere. This makes ubiquitous networks vulnerable to attacks coming from either inside or outside the network. To ensure and enhance networks security, several solutions have been implemented. These solutions are inefficient and or incomplete. Solving these challenges in security with new requirement of Ubicomp, could provide a potential future for such systems towards better mobility and higher conf...

  13. Volcanic ash and meteorological clouds detection by neural networks

    Science.gov (United States)

    Picchiani, Matteo; Del Frate, Fabio; Stefano, Corradini; Piscini, Alessandro; Merucci, Luca; Chini, Marco

    2014-05-01

    The recent eruptions of the Icelandic Eyjafjallajokull and Grímsvötn volcanoes occurred in 2010 and 2011 respectively have been highlighted the necessity to increase the accuracy of the ash detection and retrieval. Follow the evolution of the ash plume is crucial for aviation security. Indeed from the accuracy of the algorithms applied to identify the ash presence may depend the safety of the passengers. The difference between the brightness temperatures (BTD) of thermal infrared channels, centered around 11 µm and 12 µm, is suitable to distinguish the ash plume from the meteorological clouds [Prata, 1989] on satellite images. Anyway in some condition an accurate interpretation is essential to avoid false alarms. In particular Corradini et al. (2008) have developed a correction procedure aimed to avoid the atmospheric water vapour effect that tends to mask, or cancel-out, the ash plume effects on the BTD. Another relevant issue is due to the height of the meteorological clouds since their brightness temperatures is affected by this parameter. Moreover the overlapping of ash plume and meteorological clouds may affects the retrieval result since this latter is dependent by the physical temperature of the surface below the ash cloud. For this reason the correct identification of such condition, that can require a proper interpretation by the analyst, is crucial to address properly the inversion of ash parameters. In this work a fast and automatic procedure based on multispectral data from MODIS and a neural network algorithm is applied to the recent eruptions of Eyjafjallajokull and Grímsvötn volcanoes. A similar approach has been already tested with encouraging results in a previous work [Picchiani et al., 2011]. The algorithm is now improved in order to distinguish the meteorological clouds from the ash plume, dividing the latter between ash above sea and ash overlapped to meteorological clouds. The results have been compared to the BTD ones, properly

  14. Detection of rainfall-induced landslides on regional seismic networks

    Science.gov (United States)

    Manconi, Andrea; Coviello, Velio; Gariano, Stefano Luigi; Picozzi, Matteo

    2017-04-01

    Seismic techniques are increasingly adopted to detect signals induced by mass movements and to quantitatively evaluate geo-hydrological hazards at different spatial and temporal scales. By analyzing landslide-induced seismicity, it is possible obtaining significant information on the source of the mass wasting, as well as on its dynamics. However, currently only few studies have performed a systematic back analysis on comprehensive catalogues of events to evaluate the performance of proposed algorithms. In this work, we analyze a catalogue of 1058 landslides induced by rainfall in Italy. Among these phenomena, there are 234 rock falls, 55 debris flows, 54 mud flows, and 715 unspecified shallow landslides. This is a subset of a larger catalogue collected by the Italian research institute for geo-hydrological protection (CNR IRPI) during the period 2000-2014 (Brunetti et al., 2015). For each record, the following information are available: the type of landslide; the geographical location of the landslide (coordinates, site, municipality, province, and 3 classes of geographic accuracy); the temporal information on the landslide occurrence (day, month, year, time, date, and 3 classes of temporal accuracy); the rainfall conditions (rainfall duration and cumulated event rainfall) that have resulted in the landslide. We consider here only rainfall-induced landslides for which exact date and time were known from chronicle information. The analysis of coeval seismic data acquired by regional seismic networks show clear signals in at least 3 stations for 64 events (6% of the total dataset). Among them, 20 are associated to local earthquakes and 2 to teleseisms; 10 are anomalous signals characterized by irregular and impulsive waveforms in both time and frequency domains; 33 signals are likely associated to the landslide occurrence, as they have a cigar-shaped waveform characterized by emerging onsets, duration of several tens of seconds, and low frequencies (1-10 Hz). For

  15. The neural changes in connectivity of the voice network during voice pitch perturbation.

    Science.gov (United States)

    Flagmeier, Sabina G; Ray, Kimberly L; Parkinson, Amy L; Li, Karl; Vargas, Robert; Price, Larry R; Laird, Angela R; Larson, Charles R; Robin, Donald A

    2014-05-01

    Voice control is critical to communication. To date, studies have used behavioral, electrophysiological and functional data to investigate the neural correlates of voice control using perturbation tasks, but have yet to examine the interactions of these neural regions. The goal of this study was to use structural equation modeling of functional neuroimaging data to examine network properties of voice with and without perturbation. Results showed that the presence of a pitch shift, which was processed as an error in vocalization, altered connections between right STG and left STG. Other regions that revealed differences in connectivity during error detection and correction included bilateral inferior frontal gyrus, and the primary and pre motor cortices. Results indicated that STG plays a critical role in voice control, specifically, during error detection and correction. Additionally, pitch perturbation elicits changes in the voice network that suggest the right hemisphere is critical to pitch modulation. Published by Elsevier Inc.

  16. Application of remote sensing technique in biomass change detection

    African Journals Online (AJOL)

    Application of remote sensing technique in biomass change detection: a case study of Bromley and Chihota, Zimbabwe. ... Ethiopian Journal of Environmental Studies and Management ... It is in the interest of environmental monitoring and sustainable development that biomass change be constantly determined. There are ...

  17. Using Active Networking to Detect and Troubleshoot Issues in Tactical Data Networks

    Science.gov (United States)

    2014-06-01

    team SDN software defined networking SIPRnet Secret Internet Protocol Router Network SSH secure shell xiv SVG Scalable Vector Graphics SNMP Simple...networking ( SDN ) paradigm, which has gained popularity in recent years, has its roots in the idea of programmable networks [6]. By extending the...addressed by SDN [6]. While there are simi- larities between SDN and active networking, SDN is primarily concerned with the idea of separating the control

  18. A novel video dataset for change detection benchmarking.

    Science.gov (United States)

    Goyette, Nil; Jodoin, Pierre-Marc; Porikli, Fatih; Konrad, Janusz; Ishwar, Prakash

    2014-11-01

    Change detection is one of the most commonly encountered low-level tasks in computer vision and video processing. A plethora of algorithms have been developed to date, yet no widely accepted, realistic, large-scale video data set exists for benchmarking different methods. Presented here is a unique change detection video data set consisting of nearly 90 000 frames in 31 video sequences representing six categories selected to cover a wide range of challenges in two modalities (color and thermal infrared). A distinguishing characteristic of this benchmark video data set is that each frame is meticulously annotated by hand for ground-truth foreground, background, and shadow area boundaries-an effort that goes much beyond a simple binary label denoting the presence of change. This enables objective and precise quantitative comparison and ranking of video-based change detection algorithms. This paper discusses various aspects of the new data set, quantitative performance metrics used, and comparative results for over two dozen change detection algorithms. It draws important conclusions on solved and remaining issues in change detection, and describes future challenges for the scientific community. The data set, evaluation tools, and algorithm rankings are available to the public on a website and will be updated with feedback from academia and industry in the future.

  19. How Networked Communication Has Changed the Ways We Tell Stories

    Directory of Open Access Journals (Sweden)

    Anna Notaro

    2014-12-01

    Full Text Available In the midst of the digital revolution, we are confronted with the task of defining how media will change our lives and how we communicate with each other in the years to come. Narrative, as one of the most ancient communication tools, has undergone substantial structural changes. This paper addresses how these changes impact the way we read and write. Does the same story conveyed through different media channels signify in the same manner? In other words, what are the differences between a printed story and a digitally presented one? Have electronic reader devices altered the way stories are told and created? And how is networked communication changing the ways we tell stories?

  20. Detection of protein complex from protein-protein interaction network using Markov clustering

    Science.gov (United States)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  1. Detecting abrupt dynamic change based on changes in the fractal properties of spatial images

    Science.gov (United States)

    Liu, Qunqun; He, Wenping; Gu, Bin; Jiang, Yundi

    2017-10-01

    Many abrupt climate change events often cannot be detected timely by conventional abrupt detection methods until a few years after these events have occurred. The reason for this lag in detection is that abundant and long-term observational data are required for accurate abrupt change detection by these methods, especially for the detection of a regime shift. So, these methods cannot help us understand and forecast the evolution of the climate system in a timely manner. Obviously, spatial images, generated by a coupled spatiotemporal dynamical model, contain more information about a dynamic system than a single time series, and we find that spatial images show the fractal properties. The fractal properties of spatial images can be quantitatively characterized by the Hurst exponent, which can be estimated by two-dimensional detrended fluctuation analysis (TD-DFA). Based on this, TD-DFA is used to detect an abrupt dynamic change of a coupled spatiotemporal model. The results show that the TD-DFA method can effectively detect abrupt parameter changes in the coupled model by monitoring the changing in the fractal properties of spatial images. The present method provides a new way for abrupt dynamic change detection, which can achieve timely and efficient abrupt change detection results.

  2. MULTI-LEVEL NETWORK RESILIENCE: TRAFFIC ANALYSIS, ANOMALY DETECTION AND SIMULATION

    Directory of Open Access Journals (Sweden)

    Angelos Marnerides

    2011-06-01

    Full Text Available Traffic analysis and anomaly detection have been extensively used to characterize network utilization as well as to identify abnormal network traffic such as malicious attacks. However, so far, techniques for traffic analysis and anomaly detection have been carried out independently, relying on mechanisms and algorithms either in edge or in core networks alone. In this paper we propose the notion of multi-level network resilience, in order to provide a more robust traffic analysis and anomaly detection architecture, combining mechanisms and algorithms operating in a coordinated fashion both in the edge and in the core networks. This work is motivated by the potential complementarities between the research being developed at IIT Madras and Lancaster University. In this paper we describe the current work being developed at IIT Madras and Lancaster on traffic analysis and anomaly detection, and outline the principles of a multi-level resilience architecture.

  3. An algorithm J-SC of detecting communities in complex networks

    Science.gov (United States)

    Hu, Fang; Wang, Mingzhu; Wang, Yanran; Hong, Zhehao; Zhu, Yanhui

    2017-11-01

    Currently, community detection in complex networks has become a hot-button topic. In this paper, based on the Spectral Clustering (SC) algorithm, we introduce the idea of Jacobi iteration, and then propose a novel algorithm J-SC for community detection in complex networks. Furthermore, the accuracy and efficiency of this algorithm are tested by some representative real-world networks and several computer-generated networks. The experimental results indicate that the J-SC algorithm can accurately and effectively detect the community structure in these networks. Meanwhile, compared with the state-of-the-art community detecting algorithms SC, SOM, K-means, Walktrap and Fastgreedy, the J-SC algorithm has better performance, reflecting that this new algorithm can acquire higher values of modularity and NMI. Moreover, this new algorithm has faster running time than SOM and Walktrap algorithms.

  4. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

    Science.gov (United States)

    Ren, Shaoqing; He, Kaiming; Girshick, Ross; Sun, Jian

    2017-06-01

    State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3] , our detection system has a frame rate of 5 fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.

  5. Multivariate change point analysis in time series for volcano unrest detection

    Science.gov (United States)

    Aliotta, M. A.; Cassisi, C.; Fiumara, S.; Montalto, P.

    2016-12-01

    The detection of unrest in volcanic areas represents a key task for civil protection purposes. Nowadays, large networks for different kinds of measurements deployed in most of active volcanoes supply huge amount of data, mainly in the form of time series. Automatic techniques are needed to perform the analysis of such amount of data. In this sense, time series analysis techniques can contribute to exploit the information coming from the measurements to identify possible changes into volcanic behaviour. In particular, the change point analysis can be used to this aim. The change point analysis is the process of detecting distributional changes within time-ordered observations. Among the different techniques proposed for this kind of analysis, we chose to use the SeqDrift (Sakthithasan et al., 2013) technique for its ability to deal with real time data. The algorithm iteratively compares two consecutive sliding windows coming from the data stream to choose whether the boundary point (in the between of the two windows) is a change point. The check is carried out by a non-parametric statistical test. We applied the proposed approach to a test case on Mt. Etna using large multivariate dataset from 2011-2015. The results indicate that the technique is effective to detect volcanic state changes. Sakthithasan, S., Pears, R., Koh, Y. S. (2013). One Pass Concept Change Detection for Data Streams. PAKDD (2): 461-472.

  6. The harmonics detection method based on neural network applied ...

    African Journals Online (AJOL)

    user

    Consequently, many structures based on artificial neural network (ANN) have been developed in the literature, The most significant ... Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total Harmonic Distortion. 1. ..... and pure shunt active fitters, IEEE 38th Conf on Industry Applications, Vol. 2, pp.

  7. On the reliability of Quake-Catcher Network earthquake detections

    Science.gov (United States)

    Yildirim, Battalgazi; Cochran, Elizabeth S.; Chung, Angela I.; Christensen, Carl M.; Lawrence, Jesse F.

    2015-01-01

    Over the past two decades, there have been several initiatives to create volunteer‐based seismic networks. The Personal Seismic Network, proposed around 1990, used a short‐period seismograph to record earthquake waveforms using existing phone lines (Cranswick and Banfill, 1990; Cranswicket al., 1993). NetQuakes (Luetgert et al., 2010) deploys triaxial Micro‐Electromechanical Systems (MEMS) sensors in private homes, businesses, and public buildings where there is an Internet connection. Other seismic networks using a dense array of low‐cost MEMS sensors are the Community Seismic Network (Clayton et al., 2012; Kohler et al., 2013) and the Home Seismometer Network (Horiuchi et al., 2009). One main advantage of combining low‐cost MEMS sensors and existing Internet connection in public and private buildings over the traditional networks is the reduction in installation and maintenance costs (Koide et al., 2006). In doing so, it is possible to create a dense seismic network for a fraction of the cost of traditional seismic networks (D’Alessandro and D’Anna, 2013; D’Alessandro, 2014; D’Alessandro et al., 2014).

  8. Detecting Hidden Hierarchy of Non Hierarchical Terrorist Networks

    DEFF Research Database (Denmark)

    Memon, Nasrullah

    players, characterize the structure, locate points of vulnerability, and find the efficiency of the network. To meet this challenge, we designed and developed a knowledge-base for storing and manipulating data collected from various authenticated websites. This paper applies several network centrality...

  9. Automatic Fire Detection: A Survey from Wireless Sensor Network Perspective

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2008-01-01

    Automatic fire detection is important for early detection and promptly extinguishing fire. There are ample studies investigating the best sensor combinations and appropriate techniques for early fire detection. In the previous studies fire detection has either been considered as an application of a

  10. A two-stage flow-based intrusion detection model for next-generation networks.

    Science.gov (United States)

    Umer, Muhammad Fahad; Sher, Muhammad; Bi, Yaxin

    2018-01-01

    The next-generation network provides state-of-the-art access-independent services over converged mobile and fixed networks. Security in the converged network environment is a major challenge. Traditional packet and protocol-based intrusion detection techniques cannot be used in next-generation networks due to slow throughput, low accuracy and their inability to inspect encrypted payload. An alternative solution for protection of next-generation networks is to use network flow records for detection of malicious activity in the network traffic. The network flow records are independent of access networks and user applications. In this paper, we propose a two-stage flow-based intrusion detection system for next-generation networks. The first stage uses an enhanced unsupervised one-class support vector machine which separates malicious flows from normal network traffic. The second stage uses a self-organizing map which automatically groups malicious flows into different alert clusters. We validated the proposed approach on two flow-based datasets and obtained promising results.

  11. An Efficient Hierarchy Algorithm for Community Detection in Complex Networks

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2014-01-01

    Full Text Available Community structure is one of the most fundamental and important topology characteristics of complex networks. The research on community structure has wide applications and is very important for analyzing the topology structure, understanding the functions, finding the hidden properties, and forecasting the time-varying of the networks. This paper analyzes some related algorithms and proposes a new algorithm—CN agglomerative algorithm based on graph theory and the local connectedness of network to find communities in network. We show this algorithm is distributed and polynomial; meanwhile the simulations show it is accurate and fine-grained. Furthermore, we modify this algorithm to get one modified CN algorithm and apply it to dynamic complex networks, and the simulations also verify that the modified CN algorithm has high accuracy too.

  12. Replica Node Detection Using Enhanced Single Hop Detection with Clonal Selection Algorithm in Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    L. S. Sindhuja

    2016-01-01

    Full Text Available Security of Mobile Wireless Sensor Networks is a vital challenge as the sensor nodes are deployed in unattended environment and they are prone to various attacks. One among them is the node replication attack. In this, the physically insecure nodes are acquired by the adversary to clone them by having the same identity of the captured node, and the adversary deploys an unpredictable number of replicas throughout the network. Hence replica node detection is an important challenge in Mobile Wireless Sensor Networks. Various replica node detection techniques have been proposed to detect these replica nodes. These methods incur control overheads and the detection accuracy is low when the replica is selected as a witness node. This paper proposes to solve these issues by enhancing the Single Hop Detection (SHD method using the Clonal Selection algorithm to detect the clones by selecting the appropriate witness nodes. The advantages of the proposed method include (i increase in the detection ratio, (ii decrease in the control overhead, and (iii increase in throughput. The performance of the proposed work is measured using detection ratio, false detection ratio, packet delivery ratio, average delay, control overheads, and throughput. The implementation is done using ns-2 to exhibit the actuality of the proposed work.

  13. Climate and change: simulating flooding impacts on urban transport network

    Science.gov (United States)

    Pregnolato, Maria; Ford, Alistair; Dawson, Richard

    2015-04-01

    National-scale climate projections indicate that in the future there will be hotter and drier summers, warmer and wetter winters, together with rising sea levels. The frequency of extreme weather events is expected to increase, causing severe damage to the built environment and disruption of infrastructures (Dawson, 2007), whilst population growth and changed demographics are placing new demands on urban infrastructure. It is therefore essential to ensure infrastructure networks are robust to these changes. This research addresses these challenges by focussing on the development of probabilistic tools for managing risk by modelling urban transport networks within the context of extreme weather events. This paper presents a methodology to investigate the impacts of extreme weather events on urban environment, in particular infrastructure networks, through a combination of climate simulations and spatial representations. By overlaying spatial data on hazard thresholds from a flood model and a flood safety function, mitigated by potential adaptation strategies, different levels of disruption to commuting journeys on road networks are evaluated. The method follows the Catastrophe Modelling approach and it consists of a spatial model, combining deterministic loss models and probabilistic risk assessment techniques. It can be applied to present conditions as well as future uncertain scenarios, allowing the examination of the impacts alongside socio-economic and climate changes. The hazard is determined by simulating free surface water flooding, with the software CityCAT (Glenis et al., 2013). The outputs are overlapped to the spatial locations of a simple network model in GIS, which uses journey-to-work (JTW) observations, supplemented with speed and capacity information. To calculate the disruptive effect of flooding on transport networks, a function relating water depth to safe driving car speed has been developed by combining data from experimental reports (Morris et

  14. A distribution analysis of the central Maya lowlands ecoinformation network: its rises, falls, and changes

    Directory of Open Access Journals (Sweden)

    Joel D. Gunn

    2017-03-01

    Full Text Available We report a study of central Maya lowland dynastic information networks, i.e., six cities' external elite ceramic influences, and how they reflect the decision-making practices of Maya elites over 3000 years. Forest cover, i.e., Moraceae family pollen, was added to the network analysis to provide ecological boundary conditions, thus ecologically moderated information networks. Principal components analysis revealed three dominant patterns. First, the networking of interior cities into powerful polities in the Late Preclassic and Classic periods (400 BCE-800 CE. In a second pattern, coastal cities emerged as key entrepôts based on marine navigation (Terminal and Postclassic periods, 800-1500 CE. Climate dynamics and sustainability considerations facilitated the transition. Forest cover, a measure of ecosystem health, shows interior forests diminished as interior cities networked but rebounded as their networks declined. By contrast, coastal forests flourished with networks implying that the marine-based economy was sustainable. Third, in the Classic, the network-dominant coast, west or east, changed with interior polities' political struggles, the critical transition occurring after 695 CE as Tikal gained dominance over the Calakmul-Caracol alliance. Beginning with the Late Preclassic about 2000 years ago, it is possible to assign names to the decision makers by referencing the growing literature on written Maya records. Although the detectable decision sequence evident in this analysis is very basic, we believe it does open possible avenues to much deeper understanding as the study proceeds into the future. The Integrated History and Future of People on Earth-Maya working group that sponsored the analysis anticipates that it will provide actionable social science intelligence for future decision making at the global scale.

  15. A Computationally Intelligent Approach to the Detection of Wormhole Attacks in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Nurul Afsar Shaon

    2017-05-01

    Full Text Available A wormhole attack is one of the most critical and challenging security threats for wireless sensor networks because of its nature and ability to perform concealed malicious activities. This paper proposes an innovative wormhole detection scheme to detect wormhole attacks using computational intelligence and an artificial neural network (ANN. Most wormhole detection schemes reported in the literature assume the sensors are uniformly distributed in a network, and, furthermore, they use statistical and topological information and special hardware for their detection. However, these schemes may perform poorly in non-uniformly distributed networks, and, moreover, they may fail to defend against “out of band” and “in band” wormhole attacks. The aim of the proposed research is to develop a detection scheme that is able to detect all kinds of wormhole attacks in both uniformly and non-uniformly distributed sensor networks. Furthermore, the proposed research does not require any special hardware and causes no significant network overhead throughout the network. Most importantly, the probable location of the malicious nodes can be identified by the proposed ANN based detection scheme. We evaluate the efficacy of the proposed detection scheme in terms of detection accuracy, false positive rate, and false negative rate. The performance of the proposed algorithm is also compared with other machine learning techniques (i.e. SVM and regularized nonlinear logistic regression (LR based detection models. The simulation results show that proposed ANN based algorithm outperforms the SVM or LR based detection schemes in terms of detection accuracy, false positive rate, and false negative rates.

  16. Accessing long-term memory representations during visual change detection.

    Science.gov (United States)

    Beck, Melissa R; van Lamsweerde, Amanda E

    2011-04-01

    In visual change detection tasks, providing a cue to the change location concurrent with the test image (post-cue) can improve performance, suggesting that, without a cue, not all encoded representations are automatically accessed. Our studies examined the possibility that post-cues can encourage the retrieval of representations stored in long-term memory (LTM). Participants detected changes in images composed of familiar objects. Performance was better when the cue directed attention to the post-change object. Supporting the role of LTM in the cue effect, the effect was similar regardless of whether the cue was presented during the inter-stimulus interval, concurrent with the onset of the test image, or after the onset of the test image. Furthermore, the post-cue effect and LTM performance were similarly influenced by encoding time. These findings demonstrate that monitoring the visual world for changes does not automatically engage LTM retrieval.

  17. Use of AI Techniques for Residential Fire Detection in Wireless Sensor Networks

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2009-01-01

    Early residential fire detection is important for prompt extinguishing and reducing damages and life losses. To detect fire, one or a combination of sensors and a detection algorithm are needed. The sensors might be part of a wireless sensor network (WSN) or work independently. The previous research

  18. Towards a Framework for Change Detection in Data Sets

    Science.gov (United States)

    Böttcher, Mirko; Nauck, Detlef; Ruta, Dymitr; Spott, Martin

    Since the world with its markets, innovations and customers is changing faster than ever before, the key to survival for businesses is the ability to detect, assess and respond to changing conditions rapidly and intelligently. Discovering changes and reacting to or acting upon them before others do has therefore become a strategical issue for many companies. However, existing data analysis techniques are insufflent for this task since they typically assume that the domain under consideration is stable over time. This paper presents a framework that detects changes within a data set at virtually any level of granularity. The underlying idea is to derive a rule-based description of the data set at different points in time and to subsequently analyse how these rules change. Nevertheless, further techniques are required to assist the data analyst in interpreting and assessing their changes. Therefore the framework also contains methods to discard rules that are non-drivers for change and to assess the interestingness of detected changes.

  19. REGION BASED FOREST CHANGE DETECTION FROM CARTOSAT-1 STEREO IMAGERY

    Directory of Open Access Journals (Sweden)

    J. Tian

    2012-09-01

    Full Text Available Tree height is a fundamental parameter for describing the forest situation and changes. The latest development of automatic Digital Surface Model (DSM generation techniques allows new approaches of forest change detection from satellite stereo imagery. This paper shows how DSMs can support the change detection in forest area. A novel region based forest change detection method is proposed using single-channel CARTOSAT-1 stereo imagery. In the first step, DSMs from two dates are generated based on automatic matching technology. After co-registration and normalising by using LiDAR data, the mean-shift segmentation is applied to the original pan images, and the images of both dates are classified to forest and non-forest areas by analysing their histograms and height differences. In the second step, a rough forest change detection map is generated based on the comparison of the two forest map. Then the GLCM texture from the nDSM and the Cartosat-1 images of the resulting regions are analyzed and compared, the real changes are extracted by SVM based classification.

  20. Community detection based on "clumpiness" matrix in complex networks

    CERN Document Server

    Faqeeh, Ali

    2011-01-01

    The "clumpiness" matrix of a network is used to develop a method to identify its community structure. A "projection space" is constructed from the eigenvectors of the clumpiness matrix and a border line is defined using some kind of angular distance in this space. The community structure of the network is identified using this borderline and/or the hierarchical clustering method. The performance of our algorithm is tested on some computer-generated and real-world networks. The accuracy of the results is checked using normalized mutual information. The effect of community size heterogeneity on the accuracy of the method is also discussed.

  1. Understanding change in global health policy: ideas, discourse and networks.

    Science.gov (United States)

    Harmer, Andrew

    2011-01-01

    How is radical change in global health policy possible? Material factors such as economics or human resources are important, but ideational factors such as ideas and discourse play an important role as well. In this paper, I apply a theoretical framework to show how discourse made it possible for public and private actors to fundamentally change their way of working together--to shift from international public and private interactions to global health partnerships (GHPs)--and in the process create a new institutional mechanism for governing global health. Drawing on insights from constructivist analysis, I demonstrate how discourse justified, legitimised, communicated and coordinated ideas about the practice of GHPs through a concentrated network of partnership pioneers. As attention from health policy analysts turns increasingly to ideational explanations for answers to global health problems, this paper contributes to the debate by showing how, precisely, discourse makes change possible.

  2. Performance of a Rain Barrel Sharing Network under Climate Change

    Directory of Open Access Journals (Sweden)

    Seong Jin Noh

    2015-07-01

    Full Text Available Rain barrels can be technically shared through social practices or mutual agreement between individual households. This study proposes the evaluation system for a rain barrel sharing network (RBSN considering three performance criteria of reliability, resiliency, and vulnerability, under plausible climate change scenarios. First, this study shows how the system can be improved in terms of the performance criteria using historical daily rainfall data based on the storage-reliability-yield relationship. This study then examined how the benefits from RBSN are affected by climate change after 100 years. Three climate change scenarios (A1B, A2 and B2 and three global circulation models were used for this purpose. The results showed that the reliability and vulnerability are improved due to sharing and their improvements become larger under climate change conditions. In contrast, the resiliency reduces slightly due to sharing and its reduction is attenuated under climate change conditions. In particular, vulnerability will be reduced significantly under climate change. These results suggest that the sharing of various water resources systems can be an effective climate change adaptation strategy that reduces vulnerability and increases the reliability of the system.

  3. DETECTION AND LOCALIZATION OF MULTIPLE SPOOFING ATTACKERS FOR MOBILE WIRELESS NETWORKS

    Directory of Open Access Journals (Sweden)

    R. Maivizhi

    2015-06-01

    Full Text Available The openness nature of wireless networks allows adversaries to easily launch variety of spoofing attacks and causes havoc in network performance. Recent approaches used Received Signal Strength (RSS traces, which only detect spoofing attacks in mobile wireless networks. However, it is not always desirable to use these methods as RSS values fluctuate significantly over time due to distance, noise and interference. In this paper, we discusses a novel approach, Mobile spOofing attack DEtection and Localization in WIireless Networks (MODELWIN system, which exploits location information about nodes to detect identity-based spoofing attacks in mobile wireless networks. Also, this approach determines the number of attackers who used the same node identity to masquerade as legitimate device. Moreover, multiple adversaries can be localized accurately. By eliminating attackers the proposed system enhances network performance. We have evaluated our technique through simulation using an 802.11 (WiFi network and an 802.15.4 (Zigbee networks. The results prove that MODELWIN can detect spoofing attacks with a very high detection rate and localize adversaries accurately.

  4. A prototype implementation of a network-level intrusion detection system. Technical report number CS91-11

    Energy Technology Data Exchange (ETDEWEB)

    Heady, R.; Luger, G.F.; Maccabe, A.B.; Servilla, M.; Sturtevant, J. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Computer Science

    1991-05-15

    This paper presents the implementation of a prototype network level intrusion detection system. The prototype system monitors base level information in network packets (source, destination, packet size, time, and network protocol), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.

  5. Neural networks for error detection and data aggregation in wireless sensor network

    OpenAIRE

    Saeid Bahanfar; Helia Kousha; Ladan Darougaran

    2011-01-01

    Correct information and data aggregation are very important in wireless sensor networks because sending incorrect information by fault sensors make to wrong decision about environment and increasing defective sensor during the time incorrect data decries reliability of wireless sensor networks. Previous methods have Problems such as there are fault sensors in wireless sensor network therefore wrong data are sent to CH by these sensors. In this paper apply the neural network within the sensors...

  6. Using adversary text to detect adversary phase changes.

    Energy Technology Data Exchange (ETDEWEB)

    Speed, Ann Elizabeth; Doser, Adele Beatrice; Warrender, Christina E.

    2009-05-01

    The purpose of this work was to help develop a research roadmap and small proof ofconcept for addressing key problems and gaps from the perspective of using text analysis methods as a primary tool for detecting when a group is undergoing a phase change. Self- rganizing map (SOM) techniques were used to analyze text data obtained from the tworld-wide web. Statistical studies indicate that it may be possible to predict phase changes, as well as detect whether or not an example of writing can be attributed to a group of interest.

  7. Detection of Functional Change Using Cluster Trend Analysis in Glaucoma

    Science.gov (United States)

    Gardiner, Stuart K.; Mansberger, Steven L.; Demirel, Shaban

    2017-01-01

    Purpose Global analyses using mean deviation (MD) assess visual field progression, but can miss localized changes. Pointwise analyses are more sensitive to localized progression, but more variable so require confirmation. This study assessed whether cluster trend analysis, averaging information across subsets of locations, could improve progression detection. Methods A total of 133 test–retest eyes were tested 7 to 10 times. Rates of change and P values were calculated for possible re-orderings of these series to generate global analysis (“MD worsening faster than x dB/y with P trend analysis detects subsequently confirmed deterioration sooner than either global or pointwise analyses. PMID:28715580

  8. Anterior prefrontal involvement in implicit contextual change detection

    Directory of Open Access Journals (Sweden)

    Stefan Pollmann

    2009-10-01

    Full Text Available Anterior prefrontal cortex is usually associated with high level executive functions. Here, we show that the frontal pole, specifically left lateral frontopolar cortex, is involved in signaling change in implicitly learned spatial contexts, in the absence of conscious change detection. In a variant of the contextual cueing paradigm, participants first learned implicitly contingencies between distractor contexts and target locations. After learning, repeated distractor contexts were paired with new target locations. Left lateral frontopolar (BA10 and superior frontal (BA9 cortices showed selective signal increase for this target location change in repeated displays in an event-related fMRI experiment, which was most pronounced in participants with high contextual facilitation before the change. The data support the view that left lateral frontopolar cortex is involved in signaling contextual change to posterior brain areas as a precondition for adaptive changes of attentional resource allocation. This signaling occurs in the absence of awareness of learned contingencies or contextual change.

  9. A change detection approach to moving object detection in low frame-rate video

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Harvey, Neal R [Los Alamos National Laboratory; Theiler, James P [Los Alamos National Laboratory

    2009-01-01

    Moving object detection is of significant interest in temporal image analysis since it is a first step in many object identification and tracking applications. A key component in almost all moving object detection algorithms is a pixel-level classifier, where each pixel is predicted to be either part of a moving object or part of the background. In this paper we investigate a change detection approach to the pixel-level classification problem and evaluate its impact on moving object detection. The change detection approach that we investigate was previously applied to multi-and hyper-spectral datasets, where images were typically taken several days, or months apart. In this paper, we apply the approach to low-frame rate (1-2 frames per second) video datasets.

  10. Super-Resolution Community Detection for Layer-Aggregated Multilayer Networks

    Directory of Open Access Journals (Sweden)

    Dane Taylor

    2017-09-01

    Full Text Available Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the trade-offs of this preprocessing are not well understood. Focusing on the problem of detecting small communities in multilayer networks, we study the effects of layer aggregation by developing random-matrix theory for modularity matrices associated with layer-aggregated networks with N nodes and L layers, which are drawn from an ensemble of Erdős–Rényi networks with communities planted in subsets of layers. We study phase transitions in which eigenvectors localize onto communities (allowing their detection and which occur for a given community provided its size surpasses a detectability limit K^{*}. When layers are aggregated via a summation, we obtain K^{*}∝O(sqrt[NL]/T, where T is the number of layers across which the community persists. Interestingly, if T is allowed to vary with L, then summation-based layer aggregation enhances small-community detection even if the community persists across a vanishing fraction of layers, provided that T/L decays more slowly than O(L^{-1/2}. Moreover, we find that thresholding the summation can, in some cases, cause K^{*} to decay exponentially, decreasing by orders of magnitude in a phenomenon we call super-resolution community detection. In other words, layer aggregation with thresholding is a nonlinear data filter enabling detection of communities that are otherwise too small to detect. Importantly, different thresholds generally enhance the detectability of communities having different properties, illustrating that community detection can be obscured if one analyzes network data using a single threshold.

  11. A hybrid network intrusion detection framework based on random forests and weighted k-means

    Directory of Open Access Journals (Sweden)

    Reda M. Elbasiony

    2013-12-01

    Full Text Available Many current NIDSs are rule-based systems, which are very difficult in encoding rules, and cannot detect novel intrusions. Therefore, a hybrid detection framework that depends on data mining classification and clustering techniques is proposed. In misuse detection, random forests classification algorithm is used to build intrusion patterns automatically from a training dataset, and then matches network connections to these intrusion patterns to detect network intrusions. In anomaly detection, the k-means clustering algorithm is used to detect novel intrusions by clustering the network connections’ data to collect the most of intrusions together in one or more clusters. In the proposed hybrid framework, the anomaly part is improved by replacing the k-means algorithm with another one called weighted k-means algorithm, moreover, it uses a proposed method in choosing the anomalous clusters by injecting known attacks into uncertain connections data. Our approaches are evaluated over the Knowledge Discovery and Data Mining (KDD’99 datasets.

  12. Design of Hybrid Network Anomalies Detection System (H-NADS Using IP Gray Space Analysis

    Directory of Open Access Journals (Sweden)

    Yogendra Kumar JAIN

    2009-01-01

    Full Text Available In Network Security, there is a major issue to secure the public or private network from abnormal users. It is because each network is made up of users, services and computers with a specific behavior that is also called as heterogeneous system. To detect abnormal users, anomaly detection system (ADS is used. In this paper, we present a novel and hybrid Anomaly Detection System with the uses of IP gray space analysis and dominant scanning port identification heuristics used to detect various anomalous users with their potential behaviors. This methodology is the combination of both statistical and rule based anomaly detection which detects five types of anomalies with their three types of potential behaviors and generates respective alarm messages to GUI.

  13. Fault detection and classification in electrical power transmission system using artificial neural network.

    Science.gov (United States)

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  14. Hole Detection for Quantifying Connectivity in Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Pearl Antil

    2014-01-01

    Full Text Available Owing to random deployment, environmental factors, dynamic topology, and external attacks, emergence of holes in wireless sensor networks is inescapable. Hole is an area in sensor network around which sensors cease to sense or communicate due to drainage of battery or any fault, either temporary or permanent. Holes impair sensing and communication functions of network; thus their identification is a major concern. This paper discusses different types of holes and significance of hole detection in wireless sensor networks. Coverage hole detection schemes have been classified into three categories based on the type of information used by algorithms, computation model, and network dynamics for better understanding. Then, relative strengths and shortcomings of some of the existing coverage hole detection algorithms are discussed. The paper is concluded by highlighting various future research directions.

  15. How modular structure can simplify tasks on networks: parameterizing graph optimization by fast local community detection.

    Science.gov (United States)

    Bui-Xuan, Binh-Minh; Jones, Nick S

    2014-10-08

    By considering the task of finding the shortest walk through a Network, we find an algorithm for which the run time is not as O(2 n ), with n being the number of nodes, but instead scales with the number of nodes in a coarsened network. This coarsened network has a number of nodes related to the number of dense regions in the original graph. Since we exploit a form of local community detection as a preprocessing, this work gives support to the project of developing heuristic algorithms for detecting dense regions in networks: preprocessing of this kind can accelerate optimization tasks on networks. Our work also suggests a class of empirical conjectures for how structural features of efficient networked systems might scale with system size.

  16. A Gaussian Process Based Online Change Detection Algorithm for Monitoring Periodic Time Series

    Energy Technology Data Exchange (ETDEWEB)

    Chandola, Varun [ORNL; Vatsavai, Raju [ORNL

    2011-01-01

    Online time series change detection is a critical component of many monitoring systems, such as space and air-borne remote sensing instruments, cardiac monitors, and network traffic profilers, which continuously analyze observations recorded by sensors. Data collected by such sensors typically has a periodic (seasonal) component. Most existing time series change detection methods are not directly applicable to handle such data, either because they are not designed to handle periodic time series or because they cannot operate in an online mode. We propose an online change detection algorithm which can handle periodic time series. The algorithm uses a Gaussian process based non-parametric time series prediction model and monitors the difference between the predictions and actual observations within a statistically principled control chart framework to identify changes. A key challenge in using Gaussian process in an online mode is the need to solve a large system of equations involving the associated covariance matrix which grows with every time step. The proposed algorithm exploits the special structure of the covariance matrix and can analyze a time series of length T in O(T^2) time while maintaining a O(T) memory footprint, compared to O(T^4) time and O(T^2) memory requirement of standard matrix manipulation methods. We experimentally demonstrate the superiority of the proposed algorithm over several existing time series change detection algorithms on a set of synthetic and real time series. Finally, we illustrate the effectiveness of the proposed algorithm for identifying land use land cover changes using Normalized Difference Vegetation Index (NDVI) data collected for an agricultural region in Iowa state, USA. Our algorithm is able to detect different types of changes in a NDVI validation data set (with ~80% accuracy) which occur due to crop type changes as well as disruptive changes (e.g., natural disasters).

  17. A Network Intrusions Detection System based on a Quantum Bio Inspired Algorithm

    OpenAIRE

    Soliman, Omar S.; Rassem, Aliaa

    2014-01-01

    Network intrusion detection systems (NIDSs) have a role of identifying malicious activities by monitoring the behavior of networks. Due to the currently high volume of networks trafic in addition to the increased number of attacks and their dynamic properties, NIDSs have the challenge of improving their classification performance. Bio-Inspired Optimization Algorithms (BIOs) are used to automatically extract the the discrimination rules of normal or abnormal behavior to improve the classificat...

  18. Intrusion Prevention/Intrusion Detection System (IPS/IDS) for Wifi Networks

    OpenAIRE

    Michal Korcak; Jaroslav Lamer; Frantisek Jakab

    2014-01-01

    The nature of wireless networks itself created new vulnerabilities that in the classical wired network s do not exist. This results in an evolutional requireme nt to implement new sophisticated security mechanis m in form of Intrusion Detection and Prevention Systems. This paper deals with security issues of small off ice and home office wireless networks. The goal of our work is to design and evaluate wireless IDPS with u se of packet injection method. Dec...

  19. Using Cognitive Control in Software Defined Networking for Port Scan Detection

    Science.gov (United States)

    2017-07-01

    ARL-TR-8059 ● July 2017 US Army Research Laboratory Using Cognitive Control in Software -Defined Networking for Port Scan...Cognitive Control in Software -Defined Networking for Port Scan Detection by Vinod K Mishra Computational and Information Sciences Directorate, ARL...Technical Report 3. DATES COVERED (From - To) 15 June–31 July 2016 4. TITLE AND SUBTITLE Using Cognitive Control in Software -Defined Networking for

  20. An Improved Topology-Potential-Based Community Detection Algorithm for Complex Network

    Directory of Open Access Journals (Sweden)

    Zhixiao Wang

    2014-01-01

    Full Text Available Topology potential theory is a new community detection theory on complex network, which divides a network into communities by spreading outward from each local maximum potential node. At present, almost all topology-potential-based community detection methods ignore node difference and assume that all nodes have the same mass. This hypothesis leads to inaccuracy of topology potential calculation and then decreases the precision of community detection. Inspired by the idea of PageRank algorithm, this paper puts forward a novel mass calculation method for complex network nodes. A node’s mass obtained by our method can effectively reflect its importance and influence in complex network. The more important the node is, the bigger its mass is. Simulation experiment results showed that, after taking node mass into consideration, the topology potential of node is more accurate, the distribution of topology potential is more reasonable, and the results of community detection are more precise.