WorldWideScience

Sample records for network change detection

  1. Change Detection in Social Networks

    National Research Council Canada - National Science Library

    McCulloh, Ian; Webb, Matthew; Graham, John; Carley, Kathleen; Horn, Daniel B

    2008-01-01

    .... This project proposes a new method for detecting change in social networks over time, by applying a cumulative sum statistical process control statistic to normally distributed network measures...

  2. Social Network Change Detection

    National Research Council Canada - National Science Library

    McCulloh, Ian A; Carley, Kathleen M

    2008-01-01

    ... between group members. The ability to systematically, statistically, effectively and efficiently detect these changes has the potential to enable the anticipation of change, provide early warning of change, and enable...

  3. Convolutional neural network features based change detection in satellite images

    Science.gov (United States)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  4. Change Detection Algorithms for Information Assurance of Computer Networks

    National Research Council Canada - National Science Library

    Cardenas, Alvaro A

    2002-01-01

    .... In this thesis, the author will focus on the detection of three attack scenarios: the spreading of active worms throughout the Internet, distributed denial of service attacks, and routing attacks to wireless ad hoc networks...

  5. Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection

    Directory of Open Access Journals (Sweden)

    Haobo Lyu

    2016-06-01

    Full Text Available When exploited in remote sensing analysis, a reliable change rule with transfer ability can detect changes accurately and be applied widely. However, in practice, the complexity of land cover changes makes it difficult to use only one change rule or change feature learned from a given multi-temporal dataset to detect any other new target images without applying other learning processes. In this study, we consider the design of an efficient change rule having transferability to detect both binary and multi-class changes. The proposed method relies on an improved Long Short-Term Memory (LSTM model to acquire and record the change information of long-term sequence remote sensing data. In particular, a core memory cell is utilized to learn the change rule from the information concerning binary changes or multi-class changes. Three gates are utilized to control the input, output and update of the LSTM model for optimization. In addition, the learned rule can be applied to detect changes and transfer the change rule from one learned image to another new target multi-temporal image. In this study, binary experiments, transfer experiments and multi-class change experiments are exploited to demonstrate the superiority of our method. Three contributions of this work can be summarized as follows: (1 the proposed method can learn an effective change rule to provide reliable change information for multi-temporal images; (2 the learned change rule has good transferability for detecting changes in new target images without any extra learning process, and the new target images should have a multi-spectral distribution similar to that of the training images; and (3 to the authors’ best knowledge, this is the first time that deep learning in recurrent neural networks is exploited for change detection. In addition, under the framework of the proposed method, changes can be detected under both binary detection and multi-class change detection.

  6. Detection and localization of change points in temporal networks with the aid of stochastic block models

    Science.gov (United States)

    De Ridder, Simon; Vandermarliere, Benjamin; Ryckebusch, Jan

    2016-11-01

    A framework based on generalized hierarchical random graphs (GHRGs) for the detection of change points in the structure of temporal networks has recently been developed by Peel and Clauset (2015 Proc. 29th AAAI Conf. on Artificial Intelligence). We build on this methodology and extend it to also include the versatile stochastic block models (SBMs) as a parametric family for reconstructing the empirical networks. We use five different techniques for change point detection on prototypical temporal networks, including empirical and synthetic ones. We find that none of the considered methods can consistently outperform the others when it comes to detecting and locating the expected change points in empirical temporal networks. With respect to the precision and the recall of the results of the change points, we find that the method based on a degree-corrected SBM has better recall properties than other dedicated methods, especially for sparse networks and smaller sliding time window widths.

  7. Change detection in multitemporal synthetic aperture radar images using dual-channel convolutional neural network

    Science.gov (United States)

    Liu, Tao; Li, Ying; Cao, Ying; Shen, Qiang

    2017-10-01

    This paper proposes a model of dual-channel convolutional neural network (CNN) that is designed for change detection in SAR images, in an effort to acquire higher detection accuracy and lower misclassification rate. This network model contains two parallel CNN channels, which can extract deep features from two multitemporal SAR images. For comparison and validation, the proposed method is tested along with other change detection algorithms on both simulated SAR images and real-world SAR images captured by different sensors. The experimental results demonstrate that the presented method outperforms the state-of-the-art techniques by a considerable margin.

  8. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images.

    Science.gov (United States)

    Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao

    2018-03-01

    We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.

  9. The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives

    Science.gov (United States)

    De Mazière, Martine; Thompson, Anne M.; Kurylo, Michael J.; Wild, Jeannette D.; Bernhard, Germar; Blumenstock, Thomas; Braathen, Geir O.; Hannigan, James W.; Lambert, Jean-Christopher; Leblanc, Thierry; McGee, Thomas J.; Nedoluha, Gerald; Petropavlovskikh, Irina; Seckmeyer, Gunther; Simon, Paul C.; Steinbrecht, Wolfgang; Strahan, Susan E.

    2018-04-01

    The Network for the Detection of Atmospheric Composition Change (NDACC) is an international global network of more than 90 stations making high-quality measurements of atmospheric composition that began official operations in 1991 after 5 years of planning. Apart from sonde measurements, all measurements in the network are performed by ground-based remote-sensing techniques. Originally named the Network for the Detection of Stratospheric Change (NDSC), the name of the network was changed to NDACC in 2005 to better reflect the expanded scope of its measurements. The primary goal of NDACC is to establish long-term databases for detecting changes and trends in the chemical and physical state of the atmosphere (mesosphere, stratosphere, and troposphere) and to assess the coupling of such changes with climate and air quality. NDACC's origins, station locations, organizational structure, and data archiving are described. NDACC is structured around categories of ground-based observational techniques (sonde, lidar, microwave radiometers, Fourier-transform infrared, UV-visible DOAS (differential optical absorption spectroscopy)-type, and Dobson-Brewer spectrometers, as well as spectral UV radiometers), timely cross-cutting themes (ozone, water vapour, measurement strategies, cross-network data integration), satellite measurement systems, and theory and analyses. Participation in NDACC requires compliance with strict measurement and data protocols to ensure that the network data are of high and consistent quality. To widen its scope, NDACC has established formal collaborative agreements with eight other cooperating networks and Global Atmosphere Watch (GAW). A brief history is provided, major accomplishments of NDACC during its first 25 years of operation are reviewed, and a forward-looking perspective is presented.

  10. The Network for the Detection of Atmospheric Composition Change (NDACC: history, status and perspectives

    Directory of Open Access Journals (Sweden)

    M. De Mazière

    2018-04-01

    Full Text Available The Network for the Detection of Atmospheric Composition Change (NDACC is an international global network of more than 90 stations making high-quality measurements of atmospheric composition that began official operations in 1991 after 5 years of planning. Apart from sonde measurements, all measurements in the network are performed by ground-based remote-sensing techniques. Originally named the Network for the Detection of Stratospheric Change (NDSC, the name of the network was changed to NDACC in 2005 to better reflect the expanded scope of its measurements. The primary goal of NDACC is to establish long-term databases for detecting changes and trends in the chemical and physical state of the atmosphere (mesosphere, stratosphere, and troposphere and to assess the coupling of such changes with climate and air quality. NDACC's origins, station locations, organizational structure, and data archiving are described. NDACC is structured around categories of ground-based observational techniques (sonde, lidar, microwave radiometers, Fourier-transform infrared, UV-visible DOAS (differential optical absorption spectroscopy-type, and Dobson–Brewer spectrometers, as well as spectral UV radiometers, timely cross-cutting themes (ozone, water vapour, measurement strategies, cross-network data integration, satellite measurement systems, and theory and analyses. Participation in NDACC requires compliance with strict measurement and data protocols to ensure that the network data are of high and consistent quality. To widen its scope, NDACC has established formal collaborative agreements with eight other cooperating networks and Global Atmosphere Watch (GAW. A brief history is provided, major accomplishments of NDACC during its first 25 years of operation are reviewed, and a forward-looking perspective is presented.

  11. Detection of land cover change using an Artificial Neural Network on a time-series of MODIS satellite data

    CSIR Research Space (South Africa)

    Olivier, JC

    2007-11-01

    Full Text Available An Artificial Neural Network (ANN) is proposed to detect human-induced land cover change using a sliding window through a time-series of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite surface reflectance pixel values. Training...

  12. Detection of retinal changes from illumination normalized fundus images using convolutional neural networks

    NARCIS (Netherlands)

    Adal, K.M.; Van Etten, Peter G.; Martinez, Jose P; Rouwen, Kenneth; Vermeer, K.A.; van Vliet, L.J.; Armato, Samuel G.; Petrick, Nicholas A.

    2017-01-01

    Automated detection and quantification of spatio-temporal retinal changes is an important step to objectively assess disease progression and treatment effects for dynamic retinal diseases such as diabetic retinopathy (DR). However, detecting retinal changes caused by early DR lesions such as

  13. Changing change detection

    DEFF Research Database (Denmark)

    Kyllingsbæk, Søren; Bundesen, Claus

    2009-01-01

    The change detection paradigm is a popular way of measuring visual short-term memory capacity. Using the paradigm, researchers have found evidence for a capacity of about four independent visual objects, confirming classic estimates that were based on the number of items that could be reported...

  14. Comparison of pixel -based and artificial neural networks classification methods for detecting forest cover changes in Malaysia

    International Nuclear Information System (INIS)

    Deilmai, B R; Rasib, A W; Ariffin, A; Kanniah, K D

    2014-01-01

    According to the FAO (Food and Agriculture Organization), Malaysia lost 8.6% of its forest cover between 1990 and 2005. In forest cover change detection, remote sensing plays an important role. A lot of change detection methods have been developed, and most of them are semi-automated. These methods are time consuming and difficult to apply. One of the new and robust methods for change detection is artificial neural network (ANN). In this study, (ANN) classification scheme is used to detect the forest cover changes in the Johor state in Malaysia. Landsat Thematic Mapper images covering a period of 9 years (2000 and 2009) are used. Results obtained with ANN technique was compared with Maximum likelihood classification (MLC) to investigate whether ANN can perform better in the tropical environment. Overall accuracy of the ANN and MLC techniques are 75%, 68% (2000) and 80%, 75% (2009) respectively. Using the ANN method, it was found that forest area in Johor decreased as much as 1298 km2 between 2000 and 2009. The results also showed the potential and advantages of neural network in classification and change detection analysis

  15. Invasive species change detection using artificial neural networks and CASI hyperspectral imagery

    Science.gov (United States)

    For monitoring and controlling the extent and intensity of an invasive species, a direct multi-date image classification method was applied in invasive species (saltcedar) change detection in the study area of Lovelock, Nevada. With multi-date Compact Airborne Spectrographic Imager (CASI) hyperspec...

  16. Land Cover Change Detection using Neural Network and Grid Cells Techniques

    Science.gov (United States)

    Bagan, H.; Li, Z.; Tangud, T.; Yamagata, Y.

    2017-12-01

    In recent years, many advanced neural network methods have been applied in land cover classification, each of which has both strengths and limitations. In which, the self-organizing map (SOM) neural network method have been used to solve remote sensing data classification problems and have shown potential for efficient classification of remote sensing data. In SOM, both the distribution and the topology of features of the input layer are identified by using an unsupervised, competitive, neighborhood learning method. The high-dimensional data are then projected onto a low-dimensional map (competitive layer), usually as a two-dimensional map. The neurons (nodes) in the competitive layer are arranged by topological order in the input space. Spatio-temporal analyses of land cover change based on grid cells have demonstrated that gridded data are useful for obtaining spatial and temporal information about areas that are smaller than municipal scale and are uniform in size. Analysis based on grid cells has many advantages: grid cells all have the same size allowing for easy comparison; grids integrate easily with other scientific data; grids are stable over time and thus facilitate the modelling and analysis of very large multivariate spatial data sets. This study chose time-series MODIS and Landsat images as data sources, applied SOM neural network method to identify the land utilization in Inner Mongolia Autonomous Region of China. Then the results were integrated into grid cell to get the dynamic change maps. Land cover change using MODIS data in Inner Mongolia showed that urban area increased more than fivefold in recent 15 years, along with the growth of mining area. In terms of geographical distribution, the most obvious place of urban expansion is Ordos in southwest Inner Mongolia. The results using Landsat images from 1986 to 2014 in northeastern part of the Inner Mongolia show degradation in grassland from 1986 to 2014. Grid-cell-based spatial correlation

  17. Imaging Fracture Networks Using Angled Crosshole Seismic Logging and Change Detection Techniques

    Science.gov (United States)

    Knox, H. A.; Grubelich, M. C.; Preston, L. A.; Knox, J. M.; King, D. K.

    2015-12-01

    We present results from a SubTER funded series of cross borehole geophysical imaging efforts designed to characterize fracture zones generated with an alternative stimulation method, which is being developed for Enhanced Geothermal Systems (EGS). One important characteristic of this stimulation method is that each detonation will produce multiple fractures without damaging the wellbore. To date, we have collected six full data sets with ~30k source-receiver pairs each for the purposes of high-resolution cross borehole seismic tomographic imaging. The first set of data serves as the baseline measurement (i.e. un-stimulated), three sets evaluate material changes after fracture emplacement and/or enhancement, and two sets are used for evaluation of pick error and seismic velocity changes attributable to changing environmental factors (i.e. saturation due to rain/snowfall in the shallow subsurface). Each of the six datasets has been evaluated for data quality and first arrivals have been picked on nearly 200k waveforms in the target area. Each set of data is then inverted using a Vidale-Hole finite-difference 3-D eikonal solver in two ways: 1) allowing for iterative ray tracing and 2) with fixed ray paths determined from the test performed before the fracture stimulation of interest. Utilizing these two methods allows us to compare and contrast the results from two commonly used change detection techniques. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Anomaly Detection in Dynamic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, Melissa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. A second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the

  19. Network based statistical analysis detects changes induced by continuous theta burst stimulation on brain activity at rest.

    Directory of Open Access Journals (Sweden)

    Chiara eMastropasqua

    2014-08-01

    Full Text Available We combined continuous theta burst stimulation (cTBS and resting state (RS -fMRI approaches to investigate changes in functional connectivity (FC induced by right dorso-lateral prefrontal cortex (DLPFC cTBS at rest in a group of healthy subjects. Seed based fMRI analysis revealed a specific pattern of correlation between the right prefrontal cortex and several brain regions: based on these results, we defined a 29-node network to assess changes in each network connection before and after, respectively, DLPFC-cTBS and sham sessions. A decrease of correlation between the right prefrontal cortex and right parietal cortex (Brodmann areas 46 and 40 respectively was detected after cTBS, while no significant result was found when analyzing sham-session data. To our knowledge, this is the first study that demonstrates within-subject changes in FC induced by cTBS applied on prefrontal area. The possibility to induce selective changes in a specific region without interfering with functionally correlated area could have several implications for the study of functional properties of the brain, and for the emerging therapeutic strategies based on transcranial stimulation.

  20. Object-Oriented Analysis of Satellite Images Using Artificial Neural Networks for Post-Earthquake Buildings Change Detection

    Science.gov (United States)

    Khodaverdi zahraee, N.; Rastiveis, H.

    2017-09-01

    Earthquake is one of the most divesting natural events that threaten human life during history. After the earthquake, having information about the damaged area, the amount and type of damage can be a great help in the relief and reconstruction for disaster managers. It is very important that these measures should be taken immediately after the earthquake because any negligence could be more criminal losses. The purpose of this paper is to propose and implement an automatic approach for mapping destructed buildings after an earthquake using pre- and post-event high resolution satellite images. In the proposed method after preprocessing, segmentation of both images is performed using multi-resolution segmentation technique. Then, the segmentation results are intersected with ArcGIS to obtain equal image objects on both images. After that, appropriate textural features, which make a better difference between changed or unchanged areas, are calculated for all the image objects. Finally, subtracting the extracted textural features from pre- and post-event images, obtained values are applied as an input feature vector in an artificial neural network for classifying the area into two classes of changed and unchanged areas. The proposed method was evaluated using WorldView2 satellite images, acquired before and after the 2010 Haiti earthquake. The reported overall accuracy of 93% proved the ability of the proposed method for post-earthquake buildings change detection.

  1. Path scanning for the detection of anomalous subgraphs and use of DNS requests and host agents for anomaly/change detection and network situational awareness

    Science.gov (United States)

    Neil, Joshua Charles; Fisk, Michael Edward; Brugh, Alexander William; Hash, Curtis Lee; Storlie, Curtis Byron; Uphoff, Benjamin; Kent, Alexander

    2017-11-21

    A system, apparatus, computer-readable medium, and computer-implemented method are provided for detecting anomalous behavior in a network. Historical parameters of the network are determined in order to determine normal activity levels. A plurality of paths in the network are enumerated as part of a graph representing the network, where each computing system in the network may be a node in the graph and the sequence of connections between two computing systems may be a directed edge in the graph. A statistical model is applied to the plurality of paths in the graph on a sliding window basis to detect anomalous behavior. Data collected by a Unified Host Collection Agent ("UHCA") may also be used to detect anomalous behavior.

  2. Long-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC)

    NARCIS (Netherlands)

    Steinbrecht, W; Claude, H; Schönenborn, F; McDermid, I S; Leblanc, T; Godin, S; Song, T; Swart, D P J; Meijer, Y J; Bodeker, G E; Connor, B J; Kämpfer, N; Hocke, K; Calisesi, Y; Schneider, N; Noë, J de la; Parrish, A D; Boyd, I S; Brühl, C; Steil, B; Giorgetta, M A; Manzini, E; Thomason, L W; Zawodny, J M; McCormick, M P; Russell, J M; Bhartia, P K; Stolarski, R S; Hollandsworth-Frith, S M

    2006-01-01

    The long-term evolution of upper stratospheric ozone has been recorded by lidars and microwave radiometers within the ground-based Network for the Detection of Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet instruments (SBUV), Stratospheric Aerosol and Gas

  3. Adaptively detecting changes in Autonomic Grid Computing

    KAUST Repository

    Zhang, Xiangliang; Germain, Cé cile; Sebag, Michè le

    2010-01-01

    Detecting the changes is the common issue in many application fields due to the non-stationary distribution of the applicative data, e.g., sensor network signals, web logs and gridrunning logs. Toward Autonomic Grid Computing, adaptively detecting

  4. Supervised / unsupervised change detection

    OpenAIRE

    de Alwis Pitts, Dilkushi; De Vecchi, Daniele; Harb, Mostapha; So, Emily; Dell'Acqua, Fabio

    2014-01-01

    The aim of this deliverable is to provide an overview of the state of the art in change detection techniques and a critique of what could be programmed to derive SENSUM products. It is the product of the collaboration between UCAM and EUCENTRE. The document includes as a necessary requirement a discussion about a proposed technique for co-registration. Since change detection techniques require an assessment of a series of images and the basic process involves comparing and contrasting the sim...

  5. First intercalibration of column-averaged methane from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change

    Directory of Open Access Journals (Sweden)

    R. Sussmann

    2013-02-01

    Full Text Available We present the first intercalibration of dry-air column-averaged mole fractions of methane (XCH4 retrieved from solar Fourier transform infrared (FTIR measurements of the Network for the Detection of Atmospheric Composition Change (NDACC in the mid-infrared (MIR versus near-infrared (NIR soundings from the Total Carbon Column Observing Network (TCCON. The study uses multi-annual quasi-coincident MIR and NIR measurements from the stations Garmisch, Germany (47.48° N, 11.06° E, 743 m a.s.l., and Wollongong, Australia (34.41° S, 150.88° E, 30 m a.s.l..

    Direct comparison of the retrieved MIR and NIR XCH4 time series for Garmisch shows a quasi-periodic seasonal bias leading to a standard deviation (stdv of the difference time series (NIR–MIR of 7.2 ppb. After reducing time-dependent a priori impact by using realistic site- and time-dependent ACTM-simulated profiles as a common prior, the seasonal bias is reduced (stdv = 5.2 ppb. A linear fit to the MIR/NIR scatter plot of monthly means based on same-day coincidences does not show a y-intercept that is statistically different from zero, and the MIR/NIR intercalibration factor is found to be close to ideal within 2-σ uncertainty, i.e. 0.9996(8. The difference time series (NIR–MIR do not show a significant trend. The same basic findings hold for Wollongong. In particular an overall MIR/NIR intercalibration factor close to the ideal 1 is found within 2-σ uncertainty. At Wollongong the seasonal cycle of methane is less pronounced and corresponding smoothing errors are not as significant, enabling standard MIR and NIR retrievals to be used directly, without correction to a common a priori.

    Our results suggest that it is possible to set up a harmonized NDACC and TCCON XCH4 data set which can be exploited for joint trend studies, satellite validation, or the inverse modeling of sources and sinks.

  6. Community detection using preference networks

    Science.gov (United States)

    Tasgin, Mursel; Bingol, Haluk O.

    2018-04-01

    Community detection is the task of identifying clusters or groups of nodes in a network where nodes within the same group are more connected with each other than with nodes in different groups. It has practical uses in identifying similar functions or roles of nodes in many biological, social and computer networks. With the availability of very large networks in recent years, performance and scalability of community detection algorithms become crucial, i.e. if time complexity of an algorithm is high, it cannot run on large networks. In this paper, we propose a new community detection algorithm, which has a local approach and is able to run on large networks. It has a simple and effective method; given a network, algorithm constructs a preference network of nodes where each node has a single outgoing edge showing its preferred node to be in the same community with. In such a preference network, each connected component is a community. Selection of the preferred node is performed using similarity based metrics of nodes. We use two alternatives for this purpose which can be calculated in 1-neighborhood of nodes, i.e. number of common neighbors of selector node and its neighbors and, the spread capability of neighbors around the selector node which is calculated by the gossip algorithm of Lind et.al. Our algorithm is tested on both computer generated LFR networks and real-life networks with ground-truth community structure. It can identify communities accurately in a fast way. It is local, scalable and suitable for distributed execution on large networks.

  7. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  8. Network anomaly detection a machine learning perspective

    CERN Document Server

    Bhattacharyya, Dhruba Kumar

    2013-01-01

    With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents mach

  9. Attribute and topology based change detection in a constellation of previously detected objects

    Science.gov (United States)

    Paglieroni, David W.; Beer, Reginald N.

    2016-01-19

    A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.

  10. Adaptively detecting changes in Autonomic Grid Computing

    KAUST Repository

    Zhang, Xiangliang

    2010-10-01

    Detecting the changes is the common issue in many application fields due to the non-stationary distribution of the applicative data, e.g., sensor network signals, web logs and gridrunning logs. Toward Autonomic Grid Computing, adaptively detecting the changes in a grid system can help to alarm the anomalies, clean the noises, and report the new patterns. In this paper, we proposed an approach of self-adaptive change detection based on the Page-Hinkley statistic test. It handles the non-stationary distribution without the assumption of data distribution and the empirical setting of parameters. We validate the approach on the EGEE streaming jobs, and report its better performance on achieving higher accuracy comparing to the other change detection methods. Meanwhile this change detection process could help to discover the device fault which was not claimed in the system logs. © 2010 IEEE.

  11. Mapping change in large networks.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    2010-01-01

    Full Text Available Change is a fundamental ingredient of interaction patterns in biology, technology, the economy, and science itself: Interactions within and between organisms change; transportation patterns by air, land, and sea all change; the global financial flow changes; and the frontiers of scientific research change. Networks and clustering methods have become important tools to comprehend instances of these large-scale structures, but without methods to distinguish between real trends and noisy data, these approaches are not useful for studying how networks change. Only if we can assign significance to the partitioning of single networks can we distinguish meaningful structural changes from random fluctuations. Here we show that bootstrap resampling accompanied by significance clustering provides a solution to this problem. To connect changing structures with the changing function of networks, we highlight and summarize the significant structural changes with alluvial diagrams and realize de Solla Price's vision of mapping change in science: studying the citation pattern between about 7000 scientific journals over the past decade, we find that neuroscience has transformed from an interdisciplinary specialty to a mature and stand-alone discipline.

  12. Detecting P2P Botnet in Software Defined Networks

    Directory of Open Access Journals (Sweden)

    Shang-Chiuan Su

    2018-01-01

    Full Text Available Software Defined Network separates the control plane from network equipment and has great advantage in network management as compared with traditional approaches. With this paradigm, the security issues persist to exist and could become even worse because of the flexibility on handling the packets. In this paper we propose an effective framework by integrating SDN and machine learning to detect and categorize P2P network traffics. This work provides experimental evidence showing that our approach can automatically analyze network traffic and flexibly change flow entries in OpenFlow switches through the SDN controller. This can effectively help the network administrators manage related security problems.

  13. Border detection in complex networks

    International Nuclear Information System (INIS)

    Travencolo, Bruno A N; Viana, Matheus Palhares; Costa, Luciano da Fontoura

    2009-01-01

    One important issue implied by the finite nature of real-world networks regards the identification of their more external (border) and internal nodes. The present work proposes a formal and objective definition of these properties, founded on the recently introduced concept of node diversity. It is shown that this feature does not exhibit any relevant correlation with several well-established complex networks measurements. A methodology for the identification of the borders of complex networks is described and illustrated with respect to theoretical (geographical and knitted networks) as well as real-world networks (urban and word association networks), yielding interesting results and insights in both cases.

  14. Efficient Network Monitoring for Attack Detection

    OpenAIRE

    Limmer, Tobias

    2011-01-01

    Techniques for network-based intrusion detection have been evolving for years, and the focus of most research is on detection algorithms, although networks are distributed and dynamically managed nowadays. A data processing framework is required that allows to embed multiple detection techniques and to provide data with the needed aggregation levels. Within that framework, this work concentrates on methods that improve the interoperability of intrusion detection techniques and focuses on data...

  15. Adaptive filtering and change detection

    CERN Document Server

    Gustafsson, Fredrik

    2003-01-01

    Adaptive filtering is a classical branch of digital signal processing (DSP). Industrial interest in adaptive filtering grows continuously with the increase in computer performance that allows ever more conplex algorithms to be run in real-time. Change detection is a type of adaptive filtering for non-stationary signals and is also the basic tool in fault detection and diagnosis. Often considered as separate subjects Adaptive Filtering and Change Detection bridges a gap in the literature with a unified treatment of these areas, emphasizing that change detection is a natural extensi

  16. Network Intrusion Detection System using Apache Storm

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Manzoor

    2017-06-01

    Full Text Available Network security implements various strategies for the identification and prevention of security breaches. Network intrusion detection is a critical component of network management for security, quality of service and other purposes. These systems allow early detection of network intrusion and malicious activities; so that the Network Security infrastructure can react to mitigate these threats. Various systems are proposed to enhance the network security. We are proposing to use anomaly based network intrusion detection system in this work. Anomaly based intrusion detection system can identify the new network threats. We also propose to use Real-time Big Data Stream Processing Framework, Apache Storm, for the implementation of network intrusion detection system. Apache Storm can help to manage the network traffic which is generated at enormous speed and size and the network traffic speed and size is constantly increasing. We have used Support Vector Machine in this work. We use Knowledge Discovery and Data Mining 1999 (KDD’99 dataset to test and evaluate our proposed solution.

  17. Social network analysis community detection and evolution

    CERN Document Server

    Missaoui, Rokia

    2015-01-01

    This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit

  18. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  19. Network Anomaly Detection Based on Wavelet Analysis

    Science.gov (United States)

    Lu, Wei; Ghorbani, Ali A.

    2008-12-01

    Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  20. Apriori-based network intrusion detection system

    International Nuclear Information System (INIS)

    Wang Wenjin; Liu Junrong; Liu Baoxu

    2012-01-01

    With the development of network communication technology, more and more social activities run by Internet. In the meantime, the network information security is getting increasingly serious. Intrusion Detection System (IDS) has greatly improved the general security level of whole network. But there are still many problem exists in current IDS, e.g. high leak rate detection/false alarm rates and feature library need frequently upgrade. This paper presents an association-rule based IDS. This system can detect unknown attack by generate rules from training data. Experiment in last chapter proved the system has great accuracy on unknown attack detection. (authors)

  1. Data Fault Detection in Medical Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-03-01

    Full Text Available Medical body sensors can be implanted or attached to the human body to monitor the physiological parameters of patients all the time. Inaccurate data due to sensor faults or incorrect placement on the body will seriously influence clinicians’ diagnosis, therefore detecting sensor data faults has been widely researched in recent years. Most of the typical approaches to sensor fault detection in the medical area ignore the fact that the physiological indexes of patients aren’t changing synchronously at the same time, and fault values mixed with abnormal physiological data due to illness make it difficult to determine true faults. Based on these facts, we propose a Data Fault Detection mechanism in Medical sensor networks (DFD-M. Its mechanism includes: (1 use of a dynamic-local outlier factor (D-LOF algorithm to identify outlying sensed data vectors; (2 use of a linear regression model based on trapezoidal fuzzy numbers to predict which readings in the outlying data vector are suspected to be faulty; (3 the proposal of a novel judgment criterion of fault state according to the prediction values. The simulation results demonstrate the efficiency and superiority of DFD-M.

  2. A neural network approach to burst detection.

    Science.gov (United States)

    Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J

    2002-01-01

    This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.

  3. Multilayer Statistical Intrusion Detection in Wireless Networks

    Science.gov (United States)

    Hamdi, Mohamed; Meddeb-Makhlouf, Amel; Boudriga, Noureddine

    2008-12-01

    The rapid proliferation of mobile applications and services has introduced new vulnerabilities that do not exist in fixed wired networks. Traditional security mechanisms, such as access control and encryption, turn out to be inefficient in modern wireless networks. Given the shortcomings of the protection mechanisms, an important research focuses in intrusion detection systems (IDSs). This paper proposes a multilayer statistical intrusion detection framework for wireless networks. The architecture is adequate to wireless networks because the underlying detection models rely on radio parameters and traffic models. Accurate correlation between radio and traffic anomalies allows enhancing the efficiency of the IDS. A radio signal fingerprinting technique based on the maximal overlap discrete wavelet transform (MODWT) is developed. Moreover, a geometric clustering algorithm is presented. Depending on the characteristics of the fingerprinting technique, the clustering algorithm permits to control the false positive and false negative rates. Finally, simulation experiments have been carried out to validate the proposed IDS.

  4. Epileptiform spike detection via convolutional neural networks

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz

    2016-01-01

    The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated...

  5. Social Network Aided Plagiarism Detection

    Science.gov (United States)

    Zrnec, Aljaž; Lavbic, Dejan

    2017-01-01

    The prevalence of different kinds of electronic devices and the volume of content on the Web have increased the amount of plagiarism, which is considered an unethical act. If we want to be efficient in the detection and prevention of these acts, we have to improve today's methods of discovering plagiarism. The paper presents a research study where…

  6. Land-cover change detection

    Science.gov (United States)

    Chen, Xuexia; Giri, Chandra; Vogelmann, James

    2012-01-01

    Land cover is the biophysical material on the surface of the earth. Land-cover types include grass, shrubs, trees, barren, water, and man-made features. Land cover changes continuously.  The rate of change can be either dramatic and abrupt, such as the changes caused by logging, hurricanes and fire, or subtle and gradual, such as regeneration of forests and damage caused by insects (Verbesselt et al., 2001).  Previous studies have shown that land cover has changed dramatically during the past sevearal centuries and that these changes have severely affected our ecosystems (Foody, 2010; Lambin et al., 2001). Lambin and Strahlers (1994b) summarized five types of cause for land-cover changes: (1) long-term natural changes in climate conditions, (2) geomorphological and ecological processes, (3) human-induced alterations of vegetation cover and landscapes, (4) interannual climate variability, and (5) human-induced greenhouse effect.  Tools and techniques are needed to detect, describe, and predict these changes to facilitate sustainable management of natural resources.

  7. Saliency detection by conditional generative adversarial network

    Science.gov (United States)

    Cai, Xiaoxu; Yu, Hui

    2018-04-01

    Detecting salient objects in images has been a fundamental problem in computer vision. In recent years, deep learning has shown its impressive performance in dealing with many kinds of vision tasks. In this paper, we propose a new method to detect salient objects by using Conditional Generative Adversarial Network (GAN). This type of network not only learns the mapping from RGB images to salient regions, but also learns a loss function for training the mapping. To the best of our knowledge, this is the first time that Conditional GAN has been used in salient object detection. We evaluate our saliency detection method on 2 large publicly available datasets with pixel accurate annotations. The experimental results have shown the significant and consistent improvements over the state-of-the-art method on a challenging dataset, and the testing speed is much faster.

  8. Wireless sensor network for sodium leak detection

    International Nuclear Information System (INIS)

    Satya Murty, S.A.V.; Raj, Baldev; Sivalingam, Krishna M.; Ebenezer, Jemimah; Chandran, T.; Shanmugavel, M.; Rajan, K.K.

    2012-01-01

    Highlights: ► Early detection of sodium leak is mandatory in any reactor handling liquid sodium. ► Wireless sensor networking technology has been introduced for detecting sodium leak. ► We designed and developed a wireless sensor node in-house. ► We deployed a pilot wireless sensor network for handling nine sodium leak signals. - Abstract: To study the mechanical properties of Prototype Fast Breeder Reactor component materials under the influence of sodium, the IN Sodium Test (INSOT) facility has been erected and commissioned at Indira Gandhi Centre for Atomic Research. Sodium reacts violently with air/moisture leading to fire. Hence early detection of sodium leak if any is mandatory for such plants and almost 140 sodium leak detectors are placed throughout the loop. All these detectors are wired to the control room for data collection and monitoring. To reduce the cost, space and maintenance that are involved in cabling, the wireless sensor networking technology has been introduced in the sodium leak detection system of INSOT. This paper describes about the deployment details of the pilot wireless sensor network and the measures taken for the successful deployment.

  9. Anomaly-based Network Intrusion Detection Methods

    Directory of Open Access Journals (Sweden)

    Pavel Nevlud

    2013-01-01

    Full Text Available The article deals with detection of network anomalies. Network anomalies include everything that is quite different from the normal operation. For detection of anomalies were used machine learning systems. Machine learning can be considered as a support or a limited type of artificial intelligence. A machine learning system usually starts with some knowledge and a corresponding knowledge organization so that it can interpret, analyse, and test the knowledge acquired. There are several machine learning techniques available. We tested Decision tree learning and Bayesian networks. The open source data-mining framework WEKA was the tool we used for testing the classify, cluster, association algorithms and for visualization of our results. The WEKA is a collection of machine learning algorithms for data mining tasks.

  10. Effects of multi-state links in network community detection

    International Nuclear Information System (INIS)

    Rocco, Claudio M.; Moronta, José; Ramirez-Marquez, José E.; Barker, Kash

    2017-01-01

    A community is defined as a group of nodes of a network that are densely interconnected with each other but only sparsely connected with the rest of the network. The set of communities (i.e., the network partition) and their inter-community links could be derived using special algorithms account for the topology of the network and, in certain cases, the possible weights associated to the links. In general, the set of weights represents some characteristic as capacity, flow and reliability, among others. The effects of considering weights could be translated to obtain a different partition. In many real situations, particularly when modeling infrastructure systems, networks must be modeled as multi-state networks (e.g., electric power networks). In such networks, each link is characterized by a vector of known random capacities (i.e., the weight on each link could vary according to a known probability distribution). In this paper a simple Monte Carlo approach is proposed to evaluate the effects of multi-state links on community detection as well as on the performance of the network. The approach is illustrated with the topology of an electric power system. - Highlights: • Identify network communities when considering multi-state links. • Identified how effects of considering weights translate to different partition. • Identified importance of Inter-Community Links and changes with respect to community. • Preamble to performing a resilience assessment able to mimic the evolution of the state of each community.

  11. Generative adversarial networks for brain lesion detection

    Science.gov (United States)

    Alex, Varghese; Safwan, K. P. Mohammed; Chennamsetty, Sai Saketh; Krishnamurthi, Ganapathy

    2017-02-01

    Manual segmentation of brain lesions from Magnetic Resonance Images (MRI) is cumbersome and introduces errors due to inter-rater variability. This paper introduces a semi-supervised technique for detection of brain lesion from MRI using Generative Adversarial Networks (GANs). GANs comprises of a Generator network and a Discriminator network which are trained simultaneously with the objective of one bettering the other. The networks were trained using non lesion patches (n=13,000) from 4 different MR sequences. The network was trained on BraTS dataset and patches were extracted from regions excluding tumor region. The Generator network generates data by modeling the underlying probability distribution of the training data, (PData). The Discriminator learns the posterior probability P (Label Data) by classifying training data and generated data as "Real" or "Fake" respectively. The Generator upon learning the joint distribution, produces images/patches such that the performance of the Discriminator on them are random, i.e. P (Label Data = GeneratedData) = 0.5. During testing, the Discriminator assigns posterior probability values close to 0.5 for patches from non lesion regions, while patches centered on lesion arise from a different distribution (PLesion) and hence are assigned lower posterior probability value by the Discriminator. On the test set (n=14), the proposed technique achieves whole tumor dice score of 0.69, sensitivity of 91% and specificity of 59%. Additionally the generator network was capable of generating non lesion patches from various MR sequences.

  12. Subsurface Event Detection and Classification Using Wireless Signal Networks

    Directory of Open Access Journals (Sweden)

    Muhannad T. Suleiman

    2012-11-01

    Full Text Available Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs. The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  13. Subsurface event detection and classification using Wireless Signal Networks.

    Science.gov (United States)

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T

    2012-11-05

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  14. On Radar Resolution in Coherent Change Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    It is commonly observed that resolution plays a role in coherent change detection. Although this is the case, the relationship of the resolution in coherent change detection is not yet defined . In this document, we present an analytical method of evaluating this relationship using detection theory. Specifically we examine the effect of resolution on receiver operating characteristic curves for coherent change detection.

  15. Neural network approach to radiologic lesion detection

    International Nuclear Information System (INIS)

    Newman, F.D.; Raff, U.; Stroud, D.

    1989-01-01

    An area of artificial intelligence that has gained recent attention is the neural network approach to pattern recognition. The authors explore the use of neural networks in radiologic lesion detection with what is known in the literature as the novelty filter. This filter uses a linear model; images of normal patterns become training vectors and are stored as columns of a matrix. An image of an abnormal pattern is introduced and the abnormality or novelty is extracted. A VAX 750 was used to encode the novelty filter, and two experiments have been examined

  16. Adaptive filtering for hidden node detection and tracking in networks.

    Science.gov (United States)

    Hamilton, Franz; Setzer, Beverly; Chavez, Sergio; Tran, Hien; Lloyd, Alun L

    2017-07-01

    The identification of network connectivity from noisy time series is of great interest in the study of network dynamics. This connectivity estimation problem becomes more complicated when we consider the possibility of hidden nodes within the network. These hidden nodes act as unknown drivers on our network and their presence can lead to the identification of false connections, resulting in incorrect network inference. Detecting the parts of the network they are acting on is thus critical. Here, we propose a novel method for hidden node detection based on an adaptive filtering framework with specific application to neuronal networks. We consider the hidden node as a problem of missing variables when model fitting and show that the estimated system noise covariance provided by the adaptive filter can be used to localize the influence of the hidden nodes and distinguish the effects of different hidden nodes. Additionally, we show that the sequential nature of our algorithm allows for tracking changes in the hidden node influence over time.

  17. The effect of faulty local detectors on a detection network

    International Nuclear Information System (INIS)

    Mirjalily, G.; Emadi, S.

    2002-01-01

    Distributed detection theory has received increasing attention recently. Development of multiple sensors for signal detection results in improved performance and increased reliability. in a detection network, each local sensor decides locally whether a signal is detected or not. The local decisions are sent to the fusion center, where the final decision is made. In this paper, a theoretic approach is considered to data fusion when one of the sensors is faulty. If the fusion center does not have any knowledge of this fault, the performance of the system is different than its normal performance. The changes in the error probabilities depend on the type of the fault and on the threshold value of the fission center test. We derived some expressions of the changes in the values of error probabilities. For some type of faults, the system false alarm probability increases significantly, whereas for some other faults, the system detection probability decreases significantly. To illustrate the results, a numerical example is also given

  18. Deep Neural Network Detects Quantum Phase Transition

    Science.gov (United States)

    Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki

    2018-03-01

    We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.

  19. Community detection in networks with unequal groups.

    Science.gov (United States)

    Zhang, Pan; Moore, Cristopher; Newman, M E J

    2016-01-01

    Recently, a phase transition has been discovered in the network community detection problem below which no algorithm can tell which nodes belong to which communities with success any better than a random guess. This result has, however, so far been limited to the case where the communities have the same size or the same average degree. Here we consider the case where the sizes or average degrees differ. This asymmetry allows us to assign nodes to communities with better-than-random success by examining their local neighborhoods. Using the cavity method, we show that this removes the detectability transition completely for networks with four groups or fewer, while for more than four groups the transition persists up to a critical amount of asymmetry but not beyond. The critical point in the latter case coincides with the point at which local information percolates, causing a global transition from a less-accurate solution to a more-accurate one.

  20. Multiscale Convolutional Neural Networks for Hand Detection

    Directory of Open Access Journals (Sweden)

    Shiyang Yan

    2017-01-01

    Full Text Available Unconstrained hand detection in still images plays an important role in many hand-related vision problems, for example, hand tracking, gesture analysis, human action recognition and human-machine interaction, and sign language recognition. Although hand detection has been extensively studied for decades, it is still a challenging task with many problems to be tackled. The contributing factors for this complexity include heavy occlusion, low resolution, varying illumination conditions, different hand gestures, and the complex interactions between hands and objects or other hands. In this paper, we propose a multiscale deep learning model for unconstrained hand detection in still images. Deep learning models, and deep convolutional neural networks (CNNs in particular, have achieved state-of-the-art performances in many vision benchmarks. Developed from the region-based CNN (R-CNN model, we propose a hand detection scheme based on candidate regions generated by a generic region proposal algorithm, followed by multiscale information fusion from the popular VGG16 model. Two benchmark datasets were applied to validate the proposed method, namely, the Oxford Hand Detection Dataset and the VIVA Hand Detection Challenge. We achieved state-of-the-art results on the Oxford Hand Detection Dataset and had satisfactory performance in the VIVA Hand Detection Challenge.

  1. Multisensor Fusion for Change Detection

    Science.gov (United States)

    Schenk, T.; Csatho, B.

    2005-12-01

    with detecting surface elevation changes on the Byrd Glacier, Antarctica, with aerial imagery from 1980s and ICESat laser altimetry data from 2003-05. Change detection from such disparate data sets is an intricate fusion problem, beginning with sensor alignment, and on to reasoning with spatial information as to where changes occurred and to what extent.

  2. Network Community Detection on Metric Space

    Directory of Open Access Journals (Sweden)

    Suman Saha

    2015-08-01

    Full Text Available Community detection in a complex network is an important problem of much interest in recent years. In general, a community detection algorithm chooses an objective function and captures the communities of the network by optimizing the objective function, and then, one uses various heuristics to solve the optimization problem to extract the interesting communities for the user. In this article, we demonstrate the procedure to transform a graph into points of a metric space and develop the methods of community detection with the help of a metric defined for a pair of points. We have also studied and analyzed the community structure of the network therein. The results obtained with our approach are very competitive with most of the well-known algorithms in the literature, and this is justified over the large collection of datasets. On the other hand, it can be observed that time taken by our algorithm is quite less compared to other methods and justifies the theoretical findings.

  3. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  4. Detection of generalized synchronization using echo state networks

    Science.gov (United States)

    Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.

    2018-03-01

    Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.

  5. Lidar Cloud Detection with Fully Convolutional Networks

    Science.gov (United States)

    Cromwell, E.; Flynn, D.

    2017-12-01

    The vertical distribution of clouds from active remote sensing instrumentation is a widely used data product from global atmospheric measuring sites. The presence of clouds can be expressed as a binary cloud mask and is a primary input for climate modeling efforts and cloud formation studies. Current cloud detection algorithms producing these masks do not accurately identify the cloud boundaries and tend to oversample or over-represent the cloud. This translates as uncertainty for assessing the radiative impact of clouds and tracking changes in cloud climatologies. The Atmospheric Radiation Measurement (ARM) program has over 20 years of micro-pulse lidar (MPL) and High Spectral Resolution Lidar (HSRL) instrument data and companion automated cloud mask product at the mid-latitude Southern Great Plains (SGP) and the polar North Slope of Alaska (NSA) atmospheric observatory. Using this data, we train a fully convolutional network (FCN) with semi-supervised learning to segment lidar imagery into geometric time-height cloud locations for the SGP site and MPL instrument. We then use transfer learning to train a FCN for (1) the MPL instrument at the NSA site and (2) for the HSRL. In our semi-supervised approach, we pre-train the classification layers of the FCN with weakly labeled lidar data. Then, we facilitate end-to-end unsupervised pre-training and transition to fully supervised learning with ground truth labeled data. Our goal is to improve the cloud mask accuracy and precision for the MPL instrument to 95% and 80%, respectively, compared to the current cloud mask algorithms of 89% and 50%. For the transfer learning based FCN for the HSRL instrument, our goal is to achieve a cloud mask accuracy of 90% and a precision of 80%.

  6. Geographic wormhole detection in wireless sensor networks.

    Directory of Open Access Journals (Sweden)

    Mehdi Sookhak

    Full Text Available Wireless sensor networks (WSNs are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP. The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS, Authentication of Nodes Scheme (ANS, Wormhole Detection uses Hound Packet (WHOP, and Wormhole Detection with Neighborhood Information (WDI using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR in the geographic routing protocols.

  7. Establishing the functional connectivity of the frontotemporal network in pre-attentive change detection with Transcranial Magnetic Stimulation and event-related optical signal.

    Science.gov (United States)

    Tse, Chun-Yu; Long-Yin, Yip; Lui, Troby Ka-Yan; Xiao, Xue-Zhen; Wang, Yang; Chu, Winnie Chiu Wing; Parks, Nathan Allen; Chan, Sandra Sau-Man; Neggers, Sebastiaan Franciscus Wijnandus

    2018-06-18

    Current theories of pre-attentive deviant detection postulate that before the Superior Temporal Cortex (STC) detects a change, the Inferior Frontal Cortex (IFC) engages in stimulus analysis, which is particularly critical for ambiguous deviations (e.g., deviant preceded by a short train of standards). These theories rest on the assumption that IFC and STC are functionally connected, which has only been supported by correlational brain imaging studies. We examined this functional connectivity assumption by applying Transcranial Magnetic Stimulation (TMS) to disrupt IFC function, while measuring the later STC mismatch response with the event-related optical signal (EROS). EROS can localize brain activity in both spatial and temporal dimensions via measurement of optical property changes associated with neuronal activity, and is inert to the electromagnetic interference produced by TMS. Specifically, the STC mismatch response at 120-180 ms elicited by a deviant preceded by a short standard train when IFC TMS was applied at 80 ms was compared with the STC mismatch responses in temporal control (TMS with 200 ms delay), spatial control (sham TMS at vertex), auditory control (TMS pulse noise only), and cognitive control (deviant preceded by a long standard train) conditions. The STC mismatch response to deviants preceded by the short train was abolished by TMS of the IFC at 80 ms, while the STC responses remained intact in all other control conditions. These results confirm the involvement of the IFC in the STC mismatch response and support a functional connection between IFC and STC. Copyright © 2018. Published by Elsevier Inc.

  8. Body-Sensor-Network-Based Spasticity Detection.

    Science.gov (United States)

    Misgeld, Berno J E; Luken, Markus; Heitzmann, Daniel; Wolf, Sebastian I; Leonhardt, Steffen

    2016-05-01

    Spasticity is a common disorder of the skeletal muscle with a high incidence in industrialised countries. A quantitative measure of spasticity using body-worn sensors is important in order to assess rehabilitative motor training and to adjust the rehabilitative therapy accordingly. We present a new approach to spasticity detection using the Integrated Posture and Activity Network by Medit Aachen body sensor network (BSN). For this, a new electromyography (EMG) sensor node was developed and employed in human locomotion. Following an analysis of the clinical gait data of patients with unilateral cerebral palsy, a novel algorithm was developed based on the idea to detect coactivation of antagonistic muscle groups as observed in the exaggerated stretch reflex with associated joint rigidity. The algorithm applies a cross-correlation function to the EMG signals of two antagonistically working muscles and subsequent weighting using a Blackman window. The result is a coactivation index which is also weighted by the signal equivalent energy to exclude positive detection of inactive muscles. Our experimental study indicates good performance in the detection of coactive muscles associated with spasticity from clinical data as well as measurements from a BSN in qualitative comparison with the Modified Ashworth Scale as classified by clinical experts. Possible applications of the new algorithm include (but are not limited to) use in robotic sensorimotor therapy to reduce the effect of spasticity.

  9. Changing Conditions for Networked Learning?

    DEFF Research Database (Denmark)

    Ryberg, Thomas

    2011-01-01

    in describing the novel pedagogical potentials of these new technologies and practices (e.g. in debates around virtual learning environments versus personal learning environment). Likewise, I shall briefly discuss the notions of ‘digital natives’ or ‘the net generation’ from a critical perspective...... of social technologies. I argue that we are seeing the emergence of new architectures and scales of participation, collaboration and networking e.g. through interesting formations of learning networks at different levels of scale, for different purposes and often bridging boundaries such as formal...

  10. Intrusion detection in wireless ad-hoc networks

    CERN Document Server

    Chaki, Nabendu

    2014-01-01

    Presenting cutting-edge research, Intrusion Detection in Wireless Ad-Hoc Networks explores the security aspects of the basic categories of wireless ad-hoc networks and related application areas. Focusing on intrusion detection systems (IDSs), it explains how to establish security solutions for the range of wireless networks, including mobile ad-hoc networks, hybrid wireless networks, and sensor networks.This edited volume reviews and analyzes state-of-the-art IDSs for various wireless ad-hoc networks. It includes case studies on honesty-based intrusion detection systems, cluster oriented-based

  11. Defect detection on videos using neural network

    Directory of Open Access Journals (Sweden)

    Sizyakin Roman

    2017-01-01

    Full Text Available In this paper, we consider a method for defects detection in a video sequence, which consists of three main steps; frame compensation, preprocessing by a detector, which is base on the ranking of pixel values, and the classification of all pixels having anomalous values using convolutional neural networks. The effectiveness of the proposed method shown in comparison with the known techniques on several frames of the video sequence with damaged in natural conditions. The analysis of the obtained results indicates the high efficiency of the proposed method. The additional use of machine learning as postprocessing significantly reduce the likelihood of false alarm.

  12. Social networks: communication and change

    Directory of Open Access Journals (Sweden)

    Gustavo Cardoso

    2011-01-01

    Full Text Available Virtual social networks have brought about the possibility for open and plural debate, where all those with the necessary literacy skills and means are able to participate in the creation and dissemination of information. By pressing political agents and determining the “agenda” of a lot of the media, users demonstrate that we stand at an ideal platform for creating both real social movements and more or less fleeting events, as manifestos or virtual campaigns. Nonetheless, in order to understand the role of virtual social networks in today’s world, we need to answer some prior questions. Are we facing a new communication model, whereby the product of “disinterested” interactivity creates an aura of confidence in disseminated information, often quite higher that that seen in the “old media”? Will that interactivity be a chance to fight-off citizens’ growing detachment with regard to the “res publica”? Will we find in citizen-made journalism, transmitted through virtual social networks, the consecration of a true fourth power? On the other hand, can we call the distinct collective movements we have seen emerging true “social movements”?The present article aims to examine this and other issues that come to the fore in the intricate social world of cyberspace.

  13. Water Pollution Detection Based on Hypothesis Testing in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xu Luo

    2017-01-01

    Full Text Available Water pollution detection is of great importance in water conservation. In this paper, the water pollution detection problems of the network and of the node in sensor networks are discussed. The detection problems in both cases of the distribution of the monitoring noise being normal and nonnormal are considered. The pollution detection problems are analyzed based on hypothesis testing theory firstly; then, the specific detection algorithms are given. Finally, two implementation examples are given to illustrate how the proposed detection methods are used in the water pollution detection in sensor networks and prove the effectiveness of the proposed detection methods.

  14. Artificial neural network detects human uncertainty

    Science.gov (United States)

    Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.

    2018-03-01

    Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.

  15. A new fault detection method for computer networks

    International Nuclear Information System (INIS)

    Lu, Lu; Xu, Zhengguo; Wang, Wenhai; Sun, Youxian

    2013-01-01

    Over the past few years, fault detection for computer networks has attracted extensive attentions for its importance in network management. Most existing fault detection methods are based on active probing techniques which can detect the occurrence of faults fast and precisely. But these methods suffer from the limitation of traffic overhead, especially in large scale networks. To relieve traffic overhead induced by active probing based methods, a new fault detection method, whose key is to divide the detection process into multiple stages, is proposed in this paper. During each stage, only a small region of the network is detected by using a small set of probes. Meanwhile, it also ensures that the entire network can be covered after multiple detection stages. This method can guarantee that the traffic used by probes during each detection stage is small sufficiently so that the network can operate without severe disturbance from probes. Several simulation results verify the effectiveness of the proposed method

  16. Scientific Lightning Detection Network for Kazakhstan

    Science.gov (United States)

    Streltsov, A. V.; Lozbin, A.; Inchin, A.; Shpadi, Y.; Inchin, P.; Shpadi, M.; Ayazbayev, G.; Bykayev, R.; Mailibayeva, L.

    2015-12-01

    In the frame of grant financing of the scientific research in 2015-2017 the project "To Develop Electromagnetic System for lightning location and atmosphere-lithosphere coupling research" was found. The project was start in January, 2015 and should be done during 3 years. The purpose is to create a system of electromagnetic measurements for lightning location and atmosphere-lithosphere coupling research consisting of a network of electric and magnetic sensors and the dedicated complex for data processing and transfer to the end user. The main tasks are to set several points for electromagnetic measurements with 100-200 km distance between them, to develop equipment for these points, to develop the techniques and software for lightning location (Time-of-arrival and Direction Finding (TOA+DF)) and provide a lightning activity research in North Tien-Shan region with respect to seismicity and other natural and manmade activities. Also, it is planned to use lightning data for Global Electric Circuit (GEC) investigation. Currently, there are lightning detection networks in many countries. In Kazakhstan we have only separate units in airports. So, we don't have full lightning information for our region. It is planned, to setup 8-10 measurement points with magnetic and electric filed antennas for VLF range. The final data set should be including each stroke location, time, type (CG+, CG-, CC+ or CC-) and waveform from each station. As the magnetic field lightning antenna the ferrite rod VLF antenna will be used. As the electric field antenna the wide range antenna with specific frequencies filters will be used. For true event detection TOA and DF methods needs detected stroke from minimum 4 stations. In this case we can get location accuracy about 2-3 km and better.

  17. On Emulation-Based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Abbasi, Ali; Wetzel, Jos; Bokslag, Wouter; Zambon, Emmanuele; Etalle, Sandro

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an in- strumented environment and checking the execution traces for signs of shellcode activity.

  18. On emulation-based network intrusion detection systems

    NARCIS (Netherlands)

    Abbasi, A.; Wetzels, J.; Bokslag, W.; Zambon, E.; Etalle, S.; Stavrou, A.; Bos, H.; Portokalidis, G.

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an instrumented environment and checking the execution traces for signs of shellcode activity.

  19. Failure detection studies by layered neural network

    International Nuclear Information System (INIS)

    Ciftcioglu, O.; Seker, S.; Turkcan, E.

    1991-06-01

    Failure detection studies by layered neural network (NN) are described. The particular application area is an operating nuclear power plant and the failure detection is of concern as result of system surveillance in real-time. The NN system is considered to be consisting of 3 layers, one of which being hidden, and the NN parameters are determined adaptively by the backpropagation (BP) method, the process being the training phase. Studies are performed using the power spectra of the pressure signal of the primary system of an operating nuclear power plant of PWR type. The studies revealed that, by means of NN approach, failure detection can effectively be carried out using the redundant information as well as this is the case in this work; namely, from measurement of the primary pressure signals one can estimate the primary system coolant temperature and hence the deviation from the operational temperature state, the operational status identified in the training phase being referred to as normal. (author). 13 refs.; 4 figs.; 2 tabs

  20. Detection of Intelligent Intruders in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2016-01-01

    Full Text Available Most of the existing research works on the intrusion detection problem in a wireless sensor network (WSN assume linear or random mobility patterns in abstracting intruders’ models in traversing the WSN field. However, in real-life WSN applications, an intruder is usually an intelligent mobile robot with environment learning and detection avoidance capability (i.e., the capability to avoid surrounding sensors. Due to this, the literature results based on the linear or random mobility models may not be applied to the real-life WSN design and deployment for efficient and effective intrusion detection in practice. This motivates us to investigate the impact of intruder’s intelligence on the intrusion detection problem in a WSN for various applications. To be specific, we propose two intrusion algorithms, the pinball and flood-fill algorithms, to mimic the intelligent motion and behaviors of a mobile intruder in detecting and circumventing nearby sensors for detection avoidance while heading for its destination. The two proposed algorithms are integrated into a WSN framework for intrusion detection analysis in various circumstances. Monte Carlo simulations are conducted, and the results indicate that: (1 the performance of a WSN drastically changes as a result of the intruder’s intelligence in avoiding sensor detections and intrusion algorithms; (2 network parameters, including node density, sensing range and communication range, play a crucial part in the effectiveness of the intruder’s intrusion algorithms; and (3 it is imperative to integrate intruder’s intelligence in the WSN research for intruder detection problems under various application circumstances.

  1. fraud detection in mobile communications networks using user

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    Fraud detection is an important application, since network operators lose a relevant portion of their revenue to fraud. ... testing the methods with data from real mobile communications networks. Keywords: Call data, fraud ...... Ph. D. thesis. Pur-.

  2. Electrochemical Detection in Stacked Paper Networks.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  3. Overlapping community detection in weighted networks via a Bayesian approach

    Science.gov (United States)

    Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao

    2017-02-01

    Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.

  4. Wireless Sensor Networks for Detection of IED Emplacement

    Science.gov (United States)

    2009-06-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Abstract We are investigating the use of wireless nonimaging -sensor...networks for the difficult problem of detection of suspicious behavior related to IED emplacement. Hardware for surveillance by nonimaging -sensor networks...with people crossing a live sensor network. We conclude that nonimaging -sensor networks can detect a variety of suspicious behavior, but

  5. Detecting change-points in extremes

    KAUST Repository

    Dupuis, D. J.; Sun, Ying; Wang, Huixia Judy

    2015-01-01

    Even though most work on change-point estimation focuses on changes in the mean, changes in the variance or in the tail distribution can lead to more extreme events. In this paper, we develop a new method of detecting and estimating the change

  6. On-Line Detection of Distributed Attacks from Space-Time Network Flow Patterns

    National Research Council Canada - National Science Library

    Baras, J. S; Cardenas, A. A; Ramezani, V

    2003-01-01

    .... The directionality of the change in a network flow is assumed to have an objective or target. The particular problem of detecting distributed denial of service attacks from distributed observations is presented as a working framework...

  7. Microaneurysm detection using fully convolutional neural networks.

    Science.gov (United States)

    Chudzik, Piotr; Majumdar, Somshubra; Calivá, Francesco; Al-Diri, Bashir; Hunter, Andrew

    2018-05-01

    Diabetic retinopathy is a microvascular complication of diabetes that can lead to sight loss if treated not early enough. Microaneurysms are the earliest clinical signs of diabetic retinopathy. This paper presents an automatic method for detecting microaneurysms in fundus photographies. A novel patch-based fully convolutional neural network with batch normalization layers and Dice loss function is proposed. Compared to other methods that require up to five processing stages, it requires only three. Furthermore, to the best of the authors' knowledge, this is the first paper that shows how to successfully transfer knowledge between datasets in the microaneurysm detection domain. The proposed method was evaluated using three publicly available and widely used datasets: E-Ophtha, DIARETDB1, and ROC. It achieved better results than state-of-the-art methods using the FROC metric. The proposed algorithm accomplished highest sensitivities for low false positive rates, which is particularly important for screening purposes. Performance, simplicity, and robustness of the proposed method demonstrates its suitability for diabetic retinopathy screening applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Detecting and Understanding Changing Arctic Carbon Emissions

    Science.gov (United States)

    Bruhwiler, L.

    2017-12-01

    Warming in the Arctic has proceeded faster than anyplace on Earth. Our current understanding of biogeochemistry suggests that we can expect feedbacks between climate and carbon in the Arctic. Changes in terrestrial fluxes of carbon can be expected as the Arctic warms, and the vast stores of organic carbon frozen in Arctic soils could be mobilized to the atmosphere, with possible significant impacts on global climate. Quantifying trends in Arctic carbon exchanges is important for policymaking because greater reductions in anthropogenic emissions may be required to meet climate goals. Observations of greenhouse gases in the Arctic and globally have been collected for several decades. Analysis of this data does not currently support significantly changed Arctic emissions of CH4, however it is difficult to detect changes in Arctic emissions because of transport from lower latitudes and large inter-annual variability. Unfortunately, current space-based remote sensing systems have limitations at Arctic latitudes. Modeling systems can help untangle the Arctic budget of greenhouse gases, but they are dependent on underlying prior fluxes, wetland distributions and global anthropogenic emissions. Also, atmospheric transport models may have significant biases and errors. For example, unrealistic near-surface stability can lead to underestimation of emissions in atmospheric inversions. We discuss our current understanding of the Arctic carbon budget from both top-down and bottom-up approaches. We show that current atmospheric inversions agree well on the CH4 budget. On the other hand, bottom-up models vary widely in their predictions of natural emissions, with some models predicting emissions too large to be accommodated by the budget implied by global observations. Large emissions from the shallow Arctic ocean are also inconsistent with atmospheric observations. We also discuss the sensitivity of the current atmospheric network to what is likely small, gradual increases in

  9. Detection of network attacks based on adaptive resonance theory

    Science.gov (United States)

    Bukhanov, D. G.; Polyakov, V. M.

    2018-05-01

    The paper considers an approach to intrusion detection systems using a neural network of adaptive resonant theory. It suggests the structure of an intrusion detection system consisting of two types of program modules. The first module manages connections of user applications by preventing the undesirable ones. The second analyzes the incoming network traffic parameters to check potential network attacks. After attack detection, it notifies the required stations using a secure transmission channel. The paper describes the experiment on the detection and recognition of network attacks using the test selection. It also compares the obtained results with similar experiments carried out by other authors. It gives findings and conclusions on the sufficiency of the proposed approach. The obtained information confirms the sufficiency of applying the neural networks of adaptive resonant theory to analyze network traffic within the intrusion detection system.

  10. Trojan detection model based on network behavior analysis

    International Nuclear Information System (INIS)

    Liu Junrong; Liu Baoxu; Wang Wenjin

    2012-01-01

    Based on the analysis of existing Trojan detection technology, this paper presents a Trojan detection model based on network behavior analysis. First of all, we abstract description of the Trojan network behavior, then according to certain rules to establish the characteristic behavior library, and then use the support vector machine algorithm to determine whether a Trojan invasion. Finally, through the intrusion detection experiments, shows that this model can effectively detect Trojans. (authors)

  11. Patrol Detection for Replica Attacks on Wireless Sensor Networks

    OpenAIRE

    Wang, Liang-Min; Shi, Yang

    2011-01-01

    Replica attack is a critical concern in the security of wireless sensor networks. We employ mobile nodes as patrollers to detect replicas distributed in different zones in a network, in which a basic patrol detection protocol and two detection algorithms for stationary and mobile modes are presented. Then we perform security analysis to discuss the defense strategies against the possible attacks on the proposed detection protocol. Moreover, we show the advantages of the proposed protocol by d...

  12. Indigenous people's detection of rapid ecological change.

    Science.gov (United States)

    Aswani, Shankar; Lauer, Matthew

    2014-06-01

    When sudden catastrophic events occur, it becomes critical for coastal communities to detect and respond to environmental transformations because failure to do so may undermine overall ecosystem resilience and threaten people's livelihoods. We therefore asked how capable of detecting rapid ecological change following massive environmental disruptions local, indigenous people are. We assessed the direction and periodicity of experimental learning of people in the Western Solomon Islands after a tsunami in 2007. We compared the results of marine science surveys with local ecological knowledge of the benthos across 3 affected villages and 3 periods before and after the tsunami. We sought to determine how people recognize biophysical changes in the environment before and after catastrophic events such as earthquakes and tsunamis and whether people have the ability to detect ecological changes over short time scales or need longer time scales to recognize changes. Indigenous people were able to detect changes in the benthos over time. Detection levels differed between marine science surveys and local ecological knowledge sources over time, but overall patterns of statistically significant detection of change were evident for various habitats. Our findings have implications for marine conservation, coastal management policies, and disaster-relief efforts because when people are able to detect ecological changes, this, in turn, affects how they exploit and manage their marine resources. © 2014 Society for Conservation Biology.

  13. Analysis and detection of climate change

    International Nuclear Information System (INIS)

    Thejll, P.; Stendel, M.

    2001-01-01

    The authors first discuss the concepts 'climate' and 'climate change detection', outlining the difficulties of the latter in terms of the properties of the former. In more detail they then discuss the analysis and detection, carried out at the Danish Climate Centre, of anthropogenic climate change and the nonanthropogenic changes regarding anthropogenic climate change the emphasis is on the improvement of global and regional climate models, and the reconstruction of past climates regarding non-anthropogenic changes the authors describe two case studies of potential solar influence on climate. (LN)

  14. Interpreting the change detection error matrix

    NARCIS (Netherlands)

    Oort, van P.A.J.

    2007-01-01

    Two different matrices are commonly reported in assessment of change detection accuracy: (1) single date error matrices and (2) binary change/no change error matrices. The third, less common form of reporting, is the transition error matrix. This paper discuses the relation between these matrices.

  15. Community Detection for Multiplex Social Networks Based on Relational Bayesian Networks

    DEFF Research Database (Denmark)

    Jiang, Jiuchuan; Jaeger, Manfred

    2014-01-01

    Many techniques have been proposed for community detection in social networks. Most of these techniques are only designed for networks defined by a single relation. However, many real networks are multiplex networks that contain multiple types of relations and different attributes on the nodes...

  16. VoIP attacks detection engine based on neural network

    Science.gov (United States)

    Safarik, Jakub; Slachta, Jiri

    2015-05-01

    The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.

  17. A divisive spectral method for network community detection

    International Nuclear Information System (INIS)

    Cheng, Jianjun; Li, Longjie; Yao, Yukai; Chen, Xiaoyun; Leng, Mingwei; Lu, Weiguo

    2016-01-01

    Community detection is a fundamental problem in the domain of complex network analysis. It has received great attention, and many community detection methods have been proposed in the last decade. In this paper, we propose a divisive spectral method for identifying community structures from networks which utilizes a sparsification operation to pre-process the networks first, and then uses a repeated bisection spectral algorithm to partition the networks into communities. The sparsification operation makes the community boundaries clearer and sharper, so that the repeated spectral bisection algorithm extract high-quality community structures accurately from the sparsified networks. Experiments show that the combination of network sparsification and a spectral bisection algorithm is highly successful, the proposed method is more effective in detecting community structures from networks than the others. (paper: interdisciplinary statistical mechanics)

  18. Radial basis function neural network in fault detection of automotive ...

    African Journals Online (AJOL)

    Radial basis function neural network in fault detection of automotive engines. ... Five faults have been simulated on the MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor faults ... Keywords: Automotive engine, independent RBFNN model, RBF neural network, fault detection

  19. Network Intrusion Detection through Stacking Dilated Convolutional Autoencoders

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available Network intrusion detection is one of the most important parts for cyber security to protect computer systems against malicious attacks. With the emergence of numerous sophisticated and new attacks, however, network intrusion detection techniques are facing several significant challenges. The overall objective of this study is to learn useful feature representations automatically and efficiently from large amounts of unlabeled raw network traffic data by using deep learning approaches. We propose a novel network intrusion model by stacking dilated convolutional autoencoders and evaluate our method on two new intrusion detection datasets. Several experiments were carried out to check the effectiveness of our approach. The comparative experimental results demonstrate that the proposed model can achieve considerably high performance which meets the demand of high accuracy and adaptability of network intrusion detection systems (NIDSs. It is quite potential and promising to apply our model in the large-scale and real-world network environments.

  20. Wireless Sensor Network for Forest Fire Detection 2

    OpenAIRE

    João Gilberto Fernandes Gonçalves Teixeira

    2017-01-01

    The main purpose for this project is the development of a semi-autonomous wireless sensor network for fire detection in remote territory. Making use of the IEEE 802.15.4 standard, a wireless standard for low-power, low-rate wireless sensor networks, a real sensor network and web application will be developed and deployed with the ability to monitor sensor data, detect a fire occurrence and generate early fire alerts.

  1. Social Circles Detection from Ego Network and Profile Information

    Science.gov (United States)

    2014-12-19

    way of organizing contacts in personal networks . They are therefore currently implemented in the major social net- working systems, such as Facebook ...0704-0188 3. DATES COVERED (From - To) - UU UU UU UU Approved for public release; distribution is unlimited. Social Circles Detection from Ego Network ...structural network information but also the contents of social interactions, with the aim to detect copying communities. The views, opinions and/or findings

  2. Summary how Google's social network changes everything

    CERN Document Server

    2014-01-01

    This work offers a summary of the book: « Google+ for business: How Google's Social Network Changes Everything » by Chris Brogan.Summary of the ideas in Chris Brogan's book « Google+ for business » highlights that the social network created by Google now has lore than 175 million users and is tied to the largest search engines in the world. Therefore, Google+ could end up being the best online business building tool ever developed. So if you can master using Google+ today, you will be well positioned for what happens in the future as Google, YouTube and others continue to bring new developmen

  3. Detection of cardiac activity changes from human speech

    Science.gov (United States)

    Tovarek, Jaromir; Partila, Pavol; Voznak, Miroslav; Mikulec, Martin; Mehic, Miralem

    2015-05-01

    Impact of changes in blood pressure and pulse from human speech is disclosed in this article. The symptoms of increased physical activity are pulse, systolic and diastolic pressure. There are many methods of measuring and indicating these parameters. The measurements must be carried out using devices which are not used in everyday life. In most cases, the measurement of blood pressure and pulse following health problems or other adverse feelings. Nowadays, research teams are trying to design and implement modern methods in ordinary human activities. The main objective of the proposal is to reduce the delay between detecting the adverse pressure and to the mentioned warning signs and feelings. Common and frequent activity of man is speaking, while it is known that the function of the vocal tract can be affected by the change in heart activity. Therefore, it can be a useful parameter for detecting physiological changes. A method for detecting human physiological changes by speech processing and artificial neural network classification is described in this article. The pulse and blood pressure changes was induced by physical exercises in this experiment. The set of measured subjects was formed by ten healthy volunteers of both sexes. None of the subjects was a professional athlete. The process of the experiment was divided into phases before, during and after physical training. Pulse, systolic, diastolic pressure was measured and voice activity was recorded after each of them. The results of this experiment describe a method for detecting increased cardiac activity from human speech using artificial neural network.

  4. Overlapping community detection in networks with positive and negative links

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Yuan, B; Tang, B Z

    2014-01-01

    Complex networks considering both positive and negative links have gained considerable attention during the past several years. Community detection is one of the main challenges for complex network analysis. Most of the existing algorithms for community detection in a signed network aim at providing a hard-partition of the network where any node should belong to a community or not. However, they cannot detect overlapping communities where a node is allowed to belong to multiple communities. The overlapping communities widely exist in many real-world networks. In this paper, we propose a signed probabilistic mixture (SPM) model for overlapping community detection in signed networks. Compared with the existing models, the advantages of our methodology are (i) providing soft-partition solutions for signed networks; (ii) providing soft memberships of nodes. Experiments on a number of signed networks show that our SPM model: (i) can identify assortative structures or disassortative structures as the same as other state-of-the-art models; (ii) can detect overlapping communities; (iii) outperforms other state-of-the-art models at shedding light on the community detection in synthetic signed networks. (paper)

  5. On the usability of frequency distributions and source attribution of Cs-137 detections encountered in the IMS radio-nuclide network for radionuclide event screening and climate change monitoring

    Science.gov (United States)

    Becker, A.; Wotawa, G.; Zähringer, M.

    2009-04-01

    Under the provisions of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), airborne radioactivity is measured by means of high purity Germanium gamma ray detectors deployed in a global monitoring network. Almost 60 of the scheduled 80 stations have been put in provisional operations by the end of 2008. Each station daily sends the 24 hour samples' spectroscopic data to the Vienna based Provisional Technical Secretariat (PTS) of the CTBT Organization (CTBTO) for review for treaty-relevant nuclides. Cs-137 is one of these relevant isotopes. Its typical minimum detectable concentration is in the order of a few Bq/m3. However, this isotope is also known to occur in atmospheric trace concentrations, due to known non CTBT relevant processes and sources related to, for example, the re-suspension of cesium from historic nuclear tests and/or the Chernobyl reactor disaster, temporarily enhanced by bio-mass burning (Wotawa et al. 2006). Properly attributed cesium detections can be used as a proxy to detect Aeolian dust events (Igarashi et al, 2001) that potentially carry cesium from all aforementioned sources but are also known to play an important role for the radiative forcing in the atmosphere (shadow effect), at the surface (albedo) and the carbon dioxide cycle when interacting with oceanic phytoplankton (Mikami and Shi, 2005). In this context this paper provides a systematic attribution of recent Cs-137 detections in the PTS monitoring network in order to Characterize those stations which are regularly affected by Cs-137 Provide input for procedures that distinguish CTBT relevant detection from other sources (event screening) Explore on the capability of certain stations to use their Cs-137 detections as a proxy to detect aeolian dust events and to flag the belonging filters to be relevant for further investigations in this field (-> EGU-2009 Session CL16/AS4.6/GM10.1: Aeolian dust: initiator, player, and recorder of environmental change). References Igarashi, Y., M

  6. An Entropy-Based Network Anomaly Detection Method

    Directory of Open Access Journals (Sweden)

    Przemysław Bereziński

    2015-04-01

    Full Text Available Data mining is an interdisciplinary subfield of computer science involving methods at the intersection of artificial intelligence, machine learning and statistics. One of the data mining tasks is anomaly detection which is the analysis of large quantities of data to identify items, events or observations which do not conform to an expected pattern. Anomaly detection is applicable in a variety of domains, e.g., fraud detection, fault detection, system health monitoring but this article focuses on application of anomaly detection in the field of network intrusion detection.The main goal of the article is to prove that an entropy-based approach is suitable to detect modern botnet-like malware based on anomalous patterns in network. This aim is achieved by realization of the following points: (i preparation of a concept of original entropy-based network anomaly detection method, (ii implementation of the method, (iii preparation of original dataset, (iv evaluation of the method.

  7. Detecting change-points in extremes

    KAUST Repository

    Dupuis, D. J.

    2015-01-01

    Even though most work on change-point estimation focuses on changes in the mean, changes in the variance or in the tail distribution can lead to more extreme events. In this paper, we develop a new method of detecting and estimating the change-points in the tail of multiple time series data. In addition, we adapt existing tail change-point detection methods to our specific problem and conduct a thorough comparison of different methods in terms of performance on the estimation of change-points and computational time. We also examine three locations on the U.S. northeast coast and demonstrate that the methods are useful for identifying changes in seasonally extreme warm temperatures.

  8. Stochastic Tools for Network Intrusion Detection

    OpenAIRE

    Yu, Lu; Brooks, Richard R.

    2017-01-01

    With the rapid development of Internet and the sharp increase of network crime, network security has become very important and received a lot of attention. We model security issues as stochastic systems. This allows us to find weaknesses in existing security systems and propose new solutions. Exploring the vulnerabilities of existing security tools can prevent cyber-attacks from taking advantages of the system weaknesses. We propose a hybrid network security scheme including intrusion detecti...

  9. Sensor for detecting changes in magnetic fields

    Science.gov (United States)

    Praeg, Walter F.

    1981-01-01

    A sensor for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  10. Anomaly Detection in the Bitcoin System - A Network Perspective

    OpenAIRE

    Pham, Thai; Lee, Steven

    2016-01-01

    The problem of anomaly detection has been studied for a long time, and many Network Analysis techniques have been proposed as solutions. Although some results appear to be quite promising, no method is clearly to be superior to the rest. In this paper, we particularly consider anomaly detection in the Bitcoin transaction network. Our goal is to detect which users and transactions are the most suspicious; in this case, anomalous behavior is a proxy for suspicious behavior. To this end, we use ...

  11. Autonomic intrusion detection: Adaptively detecting anomalies over unlabeled audit data streams in computer networks

    KAUST Repository

    Wang, Wei; Guyet, Thomas; Quiniou, René ; Cordier, Marie-Odile; Masseglia, Florent; Zhang, Xiangliang

    2014-01-01

    In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical clustering of the streaming data. It automatically labels the data and adapts to normal behavior changes while identifies anomalies. Two large real HTTP traffic streams collected in our institute as well as a set of benchmark KDD’99 data are used to validate the framework and the method. The test results show that the autonomic model achieves better results in terms of effectiveness and efficiency compared to adaptive Sequential Karhunen–Loeve method and static AP as well as three other static anomaly detection methods, namely, k-NN, PCA and SVM.

  12. Autonomic intrusion detection: Adaptively detecting anomalies over unlabeled audit data streams in computer networks

    KAUST Repository

    Wang, Wei

    2014-06-22

    In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical clustering of the streaming data. It automatically labels the data and adapts to normal behavior changes while identifies anomalies. Two large real HTTP traffic streams collected in our institute as well as a set of benchmark KDD’99 data are used to validate the framework and the method. The test results show that the autonomic model achieves better results in terms of effectiveness and efficiency compared to adaptive Sequential Karhunen–Loeve method and static AP as well as three other static anomaly detection methods, namely, k-NN, PCA and SVM.

  13. Alerts Visualization and Clustering in Network-based Intrusion Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dr. Li [University of Tennessee; Gasior, Wade C [ORNL; Dasireddy, Swetha [University of Tennessee

    2010-04-01

    Today's Intrusion detection systems when deployed on a busy network overload the network with huge number of alerts. This behavior of producing too much raw information makes it less effective. We propose a system which takes both raw data and Snort alerts to visualize and analyze possible intrusions in a network. Then we present with two models for the visualization of clustered alerts. Our first model gives the network administrator with the logical topology of the network and detailed information of each node that involves its associated alerts and connections. In the second model, flocking model, presents the network administrator with the visual representation of IDS data in which each alert is represented in different color and the alerts with maximum similarity move together. This gives network administrator with the idea of detecting various of intrusions through visualizing the alert patterns.

  14. Networking Technologies and the Rate of Technological Change

    Directory of Open Access Journals (Sweden)

    Charles Mitchell

    2005-12-01

    Full Text Available Network technology is changing rapidly and those adept at ICT analysis need resolve rate of change issues. Developments in networking now are in the direction of heuristic intelligence. Since about 1980, networking techniques have encouraged combining bits of information with imagination cognitively to improve ideas about reality. ICT enterprise projects utilize networking to sustain requisite imagination. Assumptions and misassuptions of project builders are rationally comprehended as networking sustains creative processes. The monopolization of valuable network techniques influences in the direction of esoteric networking. Data presents that substantial knowledge and networking is now occurring globally. As a netaphor, networking

  15. Detecting Change in Longitudinal Social Networks

    Science.gov (United States)

    2011-01-01

    M Statistic of e decision in d in the year hange in the time that the this point in n analyst sho rating enviro extremism o ians in Luxo nnual...Density of Bacterial Populations, with Particular Reference to the Use of Thornton’s Agar Medium with Soil Samples.” Annals of Applied Biology 9

  16. Patrol Detection for Replica Attacks on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Shi

    2011-02-01

    Full Text Available Replica attack is a critical concern in the security of wireless sensor networks. We employ mobile nodes as patrollers to detect replicas distributed in different zones in a network, in which a basic patrol detection protocol and two detection algorithms for stationary and mobile modes are presented. Then we perform security analysis to discuss the defense strategies against the possible attacks on the proposed detection protocol. Moreover, we show the advantages of the proposed protocol by discussing and comparing the communication cost and detection probability with some existing methods.

  17. Intrusion detection and monitoring for wireless networks.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda (Indiana University); Tabriz, Parisa (University of Illinois at Urbana-Champaign); Pelon, Kristen (Cedarville University); McCoy, Damon (University of Colorado, Boulder); Lodato, Mark (Lafayette College); Hemingway, Franklin (University of New Mexico); Custer, Ryan P.; Averin, Dimitry (Polytechnic University); Franklin, Jason (Carnegie Mellon University); Kilman, Dominique Marie

    2005-11-01

    Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more

  18. Video change detection for fixed wing UAVs

    Science.gov (United States)

    Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa

    2017-10-01

    In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the

  19. File Detection On Network Traffic Using Approximate Matching

    Directory of Open Access Journals (Sweden)

    Frank Breitinger

    2014-09-01

    Full Text Available In recent years, Internet technologies changed enormously and allow faster Internet connections, higher data rates and mobile usage. Hence, it is possible to send huge amounts of data / files easily which is often used by insiders or attackers to steal intellectual property. As a consequence, data leakage prevention systems (DLPS have been developed which analyze network traffic and alert in case of a data leak. Although the overall concepts of the detection techniques are known, the systems are mostly closed and commercial.Within this paper we present a new technique for network trac analysis based on approximate matching (a.k.a fuzzy hashing which is very common in digital forensics to correlate similar files. This paper demonstrates how to optimize and apply them on single network packets. Our contribution is a straightforward concept which does not need a comprehensive conguration: hash the file and store the digest in the database. Within our experiments we obtained false positive rates between 10-4 and 10-5 and an algorithm throughput of over 650 Mbit/s.

  20. DETECTION OF TOPOLOGICAL PATTERNS IN PROTEIN NETWORKS.

    Energy Technology Data Exchange (ETDEWEB)

    MASLOV,S.SNEPPEN,K.

    2003-11-17

    Complex networks appear in biology on many different levels: (1) All biochemical reactions taking place in a single cell constitute its metabolic network, where nodes are individual metabolites, and edges are metabolic reactions converting them to each other. (2) Virtually every one of these reactions is catalyzed by an enzyme and the specificity of this catalytic function is ensured by the key and lock principle of its physical interaction with the substrate. Often the functional enzyme is formed by several mutually interacting proteins. Thus the structure of the metabolic network is shaped by the network of physical interactions of cell's proteins with their substrates and each other. (3) The abundance and the level of activity of each of the proteins in the physical interaction network in turn is controlled by the regulatory network of the cell. Such regulatory network includes all of the multiple mechanisms in which proteins in the cell control each other including transcriptional and translational regulation, regulation of mRNA editing and its transport out of the nucleus, specific targeting of individual proteins for degradation, modification of their activity e.g. by phosphorylation/dephosphorylation or allosteric regulation, etc. To get some idea about the complexity and interconnectedness of protein-protein regulations in baker's yeast Saccharomyces Cerevisiae in Fig. 1 we show a part of the regulatory network corresponding to positive or negative regulations that regulatory proteins exert on each other. (4) On yet higher level individual cells of a multicellular organism exchange signals with each other. This gives rise to several new networks such as e.g. nervous, hormonal, and immune systems of animals. The intercellular signaling network stages the development of a multicellular organism from the fertilized egg. (5) Finally, on the grandest scale, the interactions between individual species in ecosystems determine their food webs. An

  1. Evaluation of Techniques to Detect Significant Network Performance Problems using End-to-End Active Network Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, R.Les; Logg, Connie; Chhaparia, Mahesh; /SLAC; Grigoriev, Maxim; /Fermilab; Haro, Felipe; /Chile U., Catolica; Nazir, Fawad; /NUST, Rawalpindi; Sandford, Mark

    2006-01-25

    End-to-End fault and performance problems detection in wide area production networks is becoming increasingly hard as the complexity of the paths, the diversity of the performance, and dependency on the network increase. Several monitoring infrastructures are built to monitor different network metrics and collect monitoring information from thousands of hosts around the globe. Typically there are hundreds to thousands of time-series plots of network metrics which need to be looked at to identify network performance problems or anomalous variations in the traffic. Furthermore, most commercial products rely on a comparison with user configured static thresholds and often require access to SNMP-MIB information, to which a typical end-user does not usually have access. In our paper we propose new techniques to detect network performance problems proactively in close to realtime and we do not rely on static thresholds and SNMP-MIB information. We describe and compare the use of several different algorithms that we have implemented to detect persistent network problems using anomalous variations analysis in real end-to-end Internet performance measurements. We also provide methods and/or guidance for how to set the user settable parameters. The measurements are based on active probes running on 40 production network paths with bottlenecks varying from 0.5Mbits/s to 1000Mbit/s. For well behaved data (no missed measurements and no very large outliers) with small seasonal changes most algorithms identify similar events. We compare the algorithms' robustness with respect to false positives and missed events especially when there are large seasonal effects in the data. Our proposed techniques cover a wide variety of network paths and traffic patterns. We also discuss the applicability of the algorithms in terms of their intuitiveness, their speed of execution as implemented, and areas of applicability. Our encouraging results compare and evaluate the accuracy of our

  2. Network Traffic Features for Anomaly Detection in Specific Industrial Control System Network

    Directory of Open Access Journals (Sweden)

    Matti Mantere

    2013-09-01

    Full Text Available The deterministic and restricted nature of industrial control system networks sets them apart from more open networks, such as local area networks in office environments. This improves the usability of network security, monitoring approaches that would be less feasible in more open environments. One of such approaches is machine learning based anomaly detection. Without proper customization for the special requirements of the industrial control system network environment, many existing anomaly or misuse detection systems will perform sub-optimally. A machine learning based approach could reduce the amount of manual customization required for different industrial control system networks. In this paper we analyze a possible set of features to be used in a machine learning based anomaly detection system in the real world industrial control system network environment under investigation. The network under investigation is represented by architectural drawing and results derived from network trace analysis. The network trace is captured from a live running industrial process control network and includes both control data and the data flowing between the control network and the office network. We limit the investigation to the IP traffic in the traces.

  3. Picture this: Managed change and resistance in business network settings

    DEFF Research Database (Denmark)

    Kragh, Hanne; Andersen, Poul Houman

    2009-01-01

    This paper discusses change management in networks. The literature on business networks tends to downplay the role of managerial initiative in network change. The change management literature addresses such initiative, but with its single-firm perspective it overlooks the interdependence of network...... actors. In exploring the void between these two streams of literature, we deploy the concept of network pictures to discuss managed change in network settings. We analyze a change project from the furniture industry and address the consequences of attempting to manage change activities in a network...... context characterized by limited managerial authority over these activities. Our analysis suggests that change efforts unfold as a negotiated process during which the change project is re-negotiated to fit the multiple actor constituencies. The degree of overlap in the co-existing network pictures...

  4. fraud detection in mobile communications networks using user

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    testing the methods with data from real mobile communications networks. Keywords: Call .... System. Monitoring. Database. Database. Fig. 3: Mobile communication detection tools ..... receiver operating characteristic curve (ROC). ROC is a ...

  5. Ensemble of classifiers based network intrusion detection system performance bound

    CSIR Research Space (South Africa)

    Mkuzangwe, Nenekazi NP

    2017-11-01

    Full Text Available This paper provides a performance bound of a network intrusion detection system (NIDS) that uses an ensemble of classifiers. Currently researchers rely on implementing the ensemble of classifiers based NIDS before they can determine the performance...

  6. A Novel Congestion Detection Scheme in TCP Over OBS Networks

    KAUST Repository

    Shihada, Basem; Ho, Pin-Han; Zhang, Qiong

    2009-01-01

    This paper introduces a novel congestion detection scheme for high-bandwidth TCP flows over optical burst switching (OBS) networks, called statistical additive increase multiplicative decrease (SAIMD). SAIMD maintains and analyzes a number

  7. On Event Detection and Localization in Acyclic Flow Networks

    KAUST Repository

    Suresh, Mahima Agumbe; Stoleru, Radu; Zechman, Emily M.; Shihada, Basem

    2013-01-01

    Acyclic flow networks, present in many infrastructures of national importance (e.g., oil and gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against

  8. Efficient Cancer Detection Using Multiple Neural Networks.

    Science.gov (United States)

    Shell, John; Gregory, William D

    2017-01-01

    The inspection of live excised tissue specimens to ascertain malignancy is a challenging task in dermatopathology and generally in histopathology. We introduce a portable desktop prototype device that provides highly accurate neural network classification of malignant and benign tissue. The handheld device collects 47 impedance data samples from 1 Hz to 32 MHz via tetrapolar blackened platinum electrodes. The data analysis was implemented with six different backpropagation neural networks (BNN). A data set consisting of 180 malignant and 180 benign breast tissue data files in an approved IRB study at the Aurora Medical Center, Milwaukee, WI, USA, were utilized as a neural network input. The BNN structure consisted of a multi-tiered consensus approach autonomously selecting four of six neural networks to determine a malignant or benign classification. The BNN analysis was then compared with the histology results with consistent sensitivity of 100% and a specificity of 100%. This implementation successfully relied solely on statistical variation between the benign and malignant impedance data and intricate neural network configuration. This device and BNN implementation provides a novel approach that could be a valuable tool to augment current medical practice assessment of the health of breast, squamous, and basal cell carcinoma and other excised tissue without requisite tissue specimen expertise. It has the potential to provide clinical management personnel with a fast non-invasive accurate assessment of biopsied or sectioned excised tissue in various clinical settings.

  9. Power to Detect Intervention Effects on Ensembles of Social Networks

    Science.gov (United States)

    Sweet, Tracy M.; Junker, Brian W.

    2016-01-01

    The hierarchical network model (HNM) is a framework introduced by Sweet, Thomas, and Junker for modeling interventions and other covariate effects on ensembles of social networks, such as what would be found in randomized controlled trials in education research. In this article, we develop calculations for the power to detect an intervention…

  10. Outlier Detection Techniques For Wireless Sensor Networks: A Survey

    NARCIS (Netherlands)

    Zhang, Y.; Meratnia, Nirvana; Havinga, Paul J.M.

    2008-01-01

    In the field of wireless sensor networks, measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are

  11. Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection

    Directory of Open Access Journals (Sweden)

    Jayakumar Kaliappan

    2015-01-01

    Full Text Available An intrusion detection system (IDS helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU, there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate.

  12. Neural correlates of change detection and change blindness in a working memory task.

    Science.gov (United States)

    Pessoa, Luiz; Ungerleider, Leslie G

    2004-05-01

    Detecting changes in an ever-changing environment is highly advantageous, and this ability may be critical for survival. In the present study, we investigated the neural substrates of change detection in the context of a visual working memory task. Subjects maintained a sample visual stimulus in short-term memory for 6 s, and were asked to indicate whether a subsequent, test stimulus matched or did not match the original sample. To study change detection largely uncontaminated by attentional state, we compared correct change and correct no-change trials at test. Our results revealed that correctly detecting a change was associated with activation of a network comprising parietal and frontal brain regions, as well as activation of the pulvinar, cerebellum, and inferior temporal gyrus. Moreover, incorrectly reporting a change when none occurred led to a very similar pattern of activations. Finally, few regions were differentially activated by trials in which a change occurred but subjects failed to detect it (change blindness). Thus, brain activation was correlated with a subject's report of a change, instead of correlated with the physical change per se. We propose that frontal and parietal regions, possibly assisted by the cerebellum and the pulvinar, might be involved in controlling the deployment of attention to the location of a change, thereby allowing further processing of the visual stimulus. Visual processing areas, such as the inferior temporal gyrus, may be the recipients of top-down feedback from fronto-parietal regions that control the reactive deployment of attention, and thus exhibit increased activation when a change is reported (irrespective of whether it occurred or not). Whereas reporting that a change occurred, be it correctly or incorrectly, was associated with strong activation in fronto-parietal sites, change blindness appears to involve very limited territories.

  13. Game theory and extremal optimization for community detection in complex dynamic networks.

    Science.gov (United States)

    Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca

    2014-01-01

    The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.

  14. Automated Change Detection for Synthetic Aperture Sonar

    Science.gov (United States)

    2014-01-01

    alerting to the presence of an acoustically chameleonic object. While the utility of exploiting changes in signal phase degrades over time, with time...pp. 643–656, October 2003. [7] D. Brie, M. Tomczak, H. Oehlmann, and A. Richard, “Gear crack detection by adaptive amplitude and phase demodulation

  15. A novel community detection method in bipartite networks

    Science.gov (United States)

    Zhou, Cangqi; Feng, Liang; Zhao, Qianchuan

    2018-02-01

    Community structure is a common and important feature in many complex networks, including bipartite networks, which are used as a standard model for many empirical networks comprised of two types of nodes. In this paper, we propose a two-stage method for detecting community structure in bipartite networks. Firstly, we extend the widely-used Louvain algorithm to bipartite networks. The effectiveness and efficiency of the Louvain algorithm have been proved by many applications. However, there lacks a Louvain-like algorithm specially modified for bipartite networks. Based on bipartite modularity, a measure that extends unipartite modularity and that quantifies the strength of partitions in bipartite networks, we fill the gap by developing the Bi-Louvain algorithm that iteratively groups the nodes in each part by turns. This algorithm in bipartite networks often produces a balanced network structure with equal numbers of two types of nodes. Secondly, for the balanced network yielded by the first algorithm, we use an agglomerative clustering method to further cluster the network. We demonstrate that the calculation of the gain of modularity of each aggregation, and the operation of joining two communities can be compactly calculated by matrix operations for all pairs of communities simultaneously. At last, a complete hierarchical community structure is unfolded. We apply our method to two benchmark data sets and a large-scale data set from an e-commerce company, showing that it effectively identifies community structure in bipartite networks.

  16. Airplane detection in remote sensing images using convolutional neural networks

    Science.gov (United States)

    Ouyang, Chao; Chen, Zhong; Zhang, Feng; Zhang, Yifei

    2018-03-01

    Airplane detection in remote sensing images remains a challenging problem and has also been taking a great interest to researchers. In this paper we propose an effective method to detect airplanes in remote sensing images using convolutional neural networks. Deep learning methods show greater advantages than the traditional methods with the rise of deep neural networks in target detection, and we give an explanation why this happens. To improve the performance on detection of airplane, we combine a region proposal algorithm with convolutional neural networks. And in the training phase, we divide the background into multi classes rather than one class, which can reduce false alarms. Our experimental results show that the proposed method is effective and robust in detecting airplane.

  17. Botnet detection and prevention in anonymous networks

    NARCIS (Netherlands)

    Kuhnert, Katharina; Steinberger, Jessica; Baier, Harald

    Botnets are a major threat to the Internet landscape and have been responsible for large scale distributed attacks on online services. To make take down measures more difficult, Botnet operators started to incorporate anonymous networks into their software to protect their users and their Botnets.

  18. Cellular telephone-based wide-area radiation detection network

    Science.gov (United States)

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2009-06-09

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  19. Data Fusion for Network Intrusion Detection: A Review

    Directory of Open Access Journals (Sweden)

    Guoquan Li

    2018-01-01

    Full Text Available Rapid progress of networking technologies leads to an exponential growth in the number of unauthorized or malicious network actions. As a component of defense-in-depth, Network Intrusion Detection System (NIDS has been expected to detect malicious behaviors. Currently, NIDSs are implemented by various classification techniques, but these techniques are not advanced enough to accurately detect complex or synthetic attacks, especially in the situation of facing massive high-dimensional data. Besides, the inherent defects of NIDSs, namely, high false alarm rate and low detection rate, have not been effectively solved. In order to solve these problems, data fusion (DF has been applied into network intrusion detection and has achieved good results. However, the literature still lacks thorough analysis and evaluation on data fusion techniques in the field of intrusion detection. Therefore, it is necessary to conduct a comprehensive review on them. In this article, we focus on DF techniques for network intrusion detection and propose a specific definition to describe it. We review the recent advances of DF techniques and propose a series of criteria to compare their performance. Finally, based on the results of the literature review, a number of open issues and future research directions are proposed at the end of this work.

  20. Power-Aware Intrusion Detection in Mobile Ad Hoc Networks

    Science.gov (United States)

    Şen, Sevil; Clark, John A.; Tapiador, Juan E.

    Mobile ad hoc networks (MANETs) are a highly promising new form of networking. However they are more vulnerable to attacks than wired networks. In addition, conventional intrusion detection systems (IDS) are ineffective and inefficient for highly dynamic and resource-constrained environments. Achieving an effective operational MANET requires tradeoffs to be made between functional and non-functional criteria. In this paper we show how Genetic Programming (GP) together with a Multi-Objective Evolutionary Algorithm (MOEA) can be used to synthesise intrusion detection programs that make optimal tradeoffs between security criteria and the power they consume.

  1. Dynamic baseline detection method for power data network service

    Science.gov (United States)

    Chen, Wei

    2017-08-01

    This paper proposes a dynamic baseline Traffic detection Method which is based on the historical traffic data for the Power data network. The method uses Cisco's NetFlow acquisition tool to collect the original historical traffic data from network element at fixed intervals. This method uses three dimensions information including the communication port, time, traffic (number of bytes or number of packets) t. By filtering, removing the deviation value, calculating the dynamic baseline value, comparing the actual value with the baseline value, the method can detect whether the current network traffic is abnormal.

  2. Rapid Change Detection Algorithm for Disaster Management

    Science.gov (United States)

    Michel, U.; Thunig, H.; Ehlers, M.; Reinartz, P.

    2012-07-01

    This paper focuses on change detection applications in areas where catastrophic events took place which resulted in rapid destruction especially of manmade objects. Standard methods for automated change detection prove not to be sufficient; therefore a new method was developed and tested. The presented method allows a fast detection and visualization of change in areas of crisis or catastrophes. While often new methods of remote sensing are developed without user oriented aspects, organizations and authorities are not able to use these methods because of absence of remote sensing know how. Therefore a semi-automated procedure was developed. Within a transferable framework, the developed algorithm can be implemented for a set of remote sensing data among different investigation areas. Several case studies are the base for the retrieved results. Within a coarse dividing into statistical parts and the segmentation in meaningful objects, the framework is able to deal with different types of change. By means of an elaborated Temporal Change Index (TCI) only panchromatic datasets are used to extract areas which are destroyed, areas which were not affected and in addition areas where rebuilding has already started.

  3. Total least squares for anomalous change detection

    Science.gov (United States)

    Theiler, James; Matsekh, Anna M.

    2010-04-01

    A family of subtraction-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQbased anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and special cases of it are equivalent to canonical correlation analysis and optimized covariance equalization. What whitened TLSQ offers is a generalization of these algorithms with the potential for better performance.

  4. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Directory of Open Access Journals (Sweden)

    Min-Joo Kang

    Full Text Available A novel intrusion detection system (IDS using a deep neural network (DNN is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN, therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN bus.

  5. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Science.gov (United States)

    Kang, Min-Joo; Kang, Je-Won

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.

  6. CHANGE DETECTION VIA SELECTIVE GUIDED CONTRASTING FILTERS

    Directory of Open Access Journals (Sweden)

    Y. V. Vizilter

    2017-05-01

    Full Text Available Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (difference map could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some smoothing operator (SO is applied for elimination of test image details; at the second step all matched details are restored with local contrast proportional to the value of some local similarity coefficient (LSC. The guided contrasting filter was proposed based on local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, morphological correlation coefficient (MCC, mutual information, mean square MCC and geometrical correlation coefficients are applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided contrasting filters. All

  7. Methods of Profile Cloning Detection in Online Social Networks

    Directory of Open Access Journals (Sweden)

    Zabielski Michał

    2016-01-01

    Full Text Available With the arrival of online social networks, the importance of privacy on the Internet has increased dramatically. Thus, it is important to develop mechanisms that will prevent our hidden personal data from unauthorized access and use. In this paper an attempt was made to present a concept of profile cloning detection in Online Social Networks (OSN using Graph and Networks Theory. By analysing structural similarity of network and value of attributes of user personal profile, we will be able to search for attackers which steal our identity.

  8. Detecting Distributed Network Traffic Anomaly with Network-Wide Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yang Dan

    2008-12-01

    Full Text Available Distributed network traffic anomaly refers to a traffic abnormal behavior involving many links of a network and caused by the same source (e.g., DDoS attack, worm propagation. The anomaly transiting in a single link might be unnoticeable and hard to detect, while the anomalous aggregation from many links can be prevailing, and does more harm to the networks. Aiming at the similar features of distributed traffic anomaly on many links, this paper proposes a network-wide detection method by performing anomalous correlation analysis of traffic signals' instantaneous parameters. In our method, traffic signals' instantaneous parameters are firstly computed, and their network-wide anomalous space is then extracted via traffic prediction. Finally, an anomaly is detected by a global correlation coefficient of anomalous space. Our evaluation using Abilene traffic traces demonstrates the excellent performance of this approach for distributed traffic anomaly detection.

  9. Anomaly detection in an automated safeguards system using neural networks

    International Nuclear Information System (INIS)

    Whiteson, R.; Howell, J.A.

    1992-01-01

    An automated safeguards system must be able to detect an anomalous event, identify the nature of the event, and recommend a corrective action. Neural networks represent a new way of thinking about basic computational mechanisms for intelligent information processing. In this paper, we discuss the issues involved in applying a neural network model to the first step of this process: anomaly detection in materials accounting systems. We extend our previous model to a 3-tank problem and compare different neural network architectures and algorithms. We evaluate the computational difficulties in training neural networks and explore how certain design principles affect the problems. The issues involved in building a neural network architecture include how the information flows, how the network is trained, how the neurons in a network are connected, how the neurons process information, and how the connections between neurons are modified. Our approach is based on the demonstrated ability of neural networks to model complex, nonlinear, real-time processes. By modeling the normal behavior of the processes, we can predict how a system should be behaving and, therefore, detect when an abnormality occurs

  10. Patch layout generation by detecting feature networks

    KAUST Repository

    Cao, Yuanhao; Yan, Dongming; Wonka, Peter

    2015-01-01

    The patch layout of 3D surfaces reveals the high-level geometric and topological structures. In this paper, we study the patch layout computation by detecting and enclosing feature loops on surfaces. We present a hybrid framework which combines

  11. Incorporating profile information in community detection for online social networks

    Science.gov (United States)

    Fan, W.; Yeung, K. H.

    2014-07-01

    Community structure is an important feature in the study of complex networks. It is because nodes of the same community may have similar properties. In this paper we extend two popular community detection methods to partition online social networks. In our extended methods, the profile information of users is used for partitioning. We apply the extended methods in several sample networks of Facebook. Compared with the original methods, the community structures we obtain have higher modularity. Our results indicate that users' profile information is consistent with the community structure of their friendship network to some extent. To the best of our knowledge, this paper is the first to discuss how profile information can be used to improve community detection in online social networks.

  12. Utilizing Weak Indicators to Detect Anomalous Behaviors in Networks

    Energy Technology Data Exchange (ETDEWEB)

    Egid, Adin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-01

    We consider the use of a novel weak in- dicator alongside more commonly used weak indicators to help detect anomalous behavior in a large computer network. The data of the network which we are studying in this research paper concerns remote log-in information (Virtual Private Network, or VPN sessions) from the internal network of Los Alamos National Laboratory (LANL). The novel indicator we are utilizing is some- thing which, while novel in its application to data science/cyber security research, is a concept borrowed from the business world. The Her ndahl-Hirschman Index (HHI) is a computationally trivial index which provides a useful heuristic for regulatory agencies to ascertain the relative competitiveness of a particular industry. Using this index as a lagging indicator in the monthly format we have studied could help to detect anomalous behavior by a particular or small set of users on the network.

  13. Utilizing Weak Indicators to Detect Anomalous Behaviors in Networks

    Energy Technology Data Exchange (ETDEWEB)

    Egid, Adin Ezra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-06

    We consider the use of a novel weak in- dicator alongside more commonly used weak indicators to help detect anomalous behavior in a large computer network. The data of the network which we are studying in this research paper concerns remote log-in information (Virtual Private Network, or VPN sessions) from the internal network of Los Alamos National Laboratory (LANL). The novel indicator we are utilizing is some- thing which, while novel in its application to data science/cyber security research, is a concept borrowed from the business world. The Her ndahl-Hirschman Index (HHI) is a computationally trivial index which provides a useful heuristic for regulatory agencies to ascertain the relative competitiveness of a particular industry. Using this index as a lagging indicator in the monthly format we have studied could help to detect anomalous behavior by a particular or small set of users on the network. Additionally, we study indicators related to the speed of movement of a user based on the physical location of their current and previous logins. This data can be ascertained from the IP addresses of the users, and is likely very similar to the fraud detection schemes regularly utilized by credit card networks to detect anomalous activity. In future work we would look to nd a way to combine these indicators for use as an internal fraud detection system.

  14. Detecting Target Data in Network Traffic

    Science.gov (United States)

    2017-03-01

    perimeter around a network and create a single point of entry where security policies can be enforced and auditing can be performed [16]. Security...that we used in this thesis. 2.4.1 bulk_extractor Bulk_extractor is a forensic analysis tool designed for directly extracting artifacts of forensic ...educated guess whether or not the file is there. Shields et al. explains that they need other forensics tools to ensure that all forensic evidence is used

  15. Revisiting Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.

    2009-01-01

    Intrusion detection systems (IDSs) are well-known and widely-deployed security tools to detect cyber-attacks and malicious activities in computer systems and networks. A signature-based IDS works similar to anti-virus software. It employs a signature database of known attacks, and a successful match

  16. Approaches in anomaly-based network intrusion detection systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, S.; Di Pietro, R.; Mancini, L.V.

    2008-01-01

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  17. Approaches in Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  18. Generative adversarial networks for anomaly detection in images

    OpenAIRE

    Batiste Ros, Guillem

    2018-01-01

    Anomaly detection is used to identify abnormal observations that don t follow a normal pattern. Inthis work, we use the power of Generative Adversarial Networks in sampling from image distributionsto perform anomaly detection with images and to identify local anomalous segments within thisimages. Also, we explore potential application of this method to support pathological analysis ofbiological tissues

  19. Artificial-neural-network-based failure detection and isolation

    Science.gov (United States)

    Sadok, Mokhtar; Gharsalli, Imed; Alouani, Ali T.

    1998-03-01

    This paper presents the design of a systematic failure detection and isolation system that uses the concept of failure sensitive variables (FSV) and artificial neural networks (ANN). The proposed approach was applied to tube leak detection in a utility boiler system. Results of the experimental testing are presented in the paper.

  20. Information dynamics algorithm for detecting communities in networks

    Science.gov (United States)

    Massaro, Emanuele; Bagnoli, Franco; Guazzini, Andrea; Lió, Pietro

    2012-11-01

    The problem of community detection is relevant in many scientific disciplines, from social science to statistical physics. Given the impact of community detection in many areas, such as psychology and social sciences, we have addressed the issue of modifying existing well performing algorithms by incorporating elements of the domain application fields, i.e. domain-inspired. We have focused on a psychology and social network-inspired approach which may be useful for further strengthening the link between social network studies and mathematics of community detection. Here we introduce a community-detection algorithm derived from the van Dongen's Markov Cluster algorithm (MCL) method [4] by considering networks' nodes as agents capable to take decisions. In this framework we have introduced a memory factor to mimic a typical human behavior such as the oblivion effect. The method is based on information diffusion and it includes a non-linear processing phase. We test our method on two classical community benchmark and on computer generated networks with known community structure. Our approach has three important features: the capacity of detecting overlapping communities, the capability of identifying communities from an individual point of view and the fine tuning the community detectability with respect to prior knowledge of the data. Finally we discuss how to use a Shannon entropy measure for parameter estimation in complex networks.

  1. Mixture models with entropy regularization for community detection in networks

    Science.gov (United States)

    Chang, Zhenhai; Yin, Xianjun; Jia, Caiyan; Wang, Xiaoyang

    2018-04-01

    Community detection is a key exploratory tool in network analysis and has received much attention in recent years. NMM (Newman's mixture model) is one of the best models for exploring a range of network structures including community structure, bipartite and core-periphery structures, etc. However, NMM needs to know the number of communities in advance. Therefore, in this study, we have proposed an entropy regularized mixture model (called EMM), which is capable of inferring the number of communities and identifying network structure contained in a network, simultaneously. In the model, by minimizing the entropy of mixing coefficients of NMM using EM (expectation-maximization) solution, the small clusters contained little information can be discarded step by step. The empirical study on both synthetic networks and real networks has shown that the proposed model EMM is superior to the state-of-the-art methods.

  2. Patch layout generation by detecting feature networks

    KAUST Repository

    Cao, Yuanhao

    2015-02-01

    The patch layout of 3D surfaces reveals the high-level geometric and topological structures. In this paper, we study the patch layout computation by detecting and enclosing feature loops on surfaces. We present a hybrid framework which combines several key ingredients, including feature detection, feature filtering, feature curve extension, patch subdivision and boundary smoothing. Our framework is able to compute patch layouts through concave features as previous approaches, but also able to generate nice layouts through smoothing regions. We demonstrate the effectiveness of our framework by comparing with the state-of-the-art methods.

  3. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    Science.gov (United States)

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  4. Probability of detection of clinical seizures using heart rate changes.

    Science.gov (United States)

    Osorio, Ivan; Manly, B F J

    2015-08-01

    Heart rate-based seizure detection is a viable complement or alternative to ECoG/EEG. This study investigates the role of various biological factors on the probability of clinical seizure detection using heart rate. Regression models were applied to 266 clinical seizures recorded from 72 subjects to investigate if factors such as age, gender, years with epilepsy, etiology, seizure site origin, seizure class, and data collection centers, among others, shape the probability of EKG-based seizure detection. Clinical seizure detection probability based on heart rate changes, is significantly (pprobability of detecting clinical seizures (>0.8 in the majority of subjects) using heart rate is highest for complex partial seizures, increases with a patient's years with epilepsy, is lower for females than for males and is unrelated to the side of hemisphere origin. Clinical seizure detection probability using heart rate is multi-factorially dependent and sufficiently high (>0.8) in most cases to be clinically useful. Knowledge of the role that these factors play in shaping said probability will enhance its applicability and usefulness. Heart rate is a reliable and practical signal for extra-cerebral detection of clinical seizures originating from or spreading to central autonomic network structures. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  5. Detecting changes during pregnancy with Raman spectroscopy

    Science.gov (United States)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  6. On Event Detection and Localization in Acyclic Flow Networks

    KAUST Repository

    Suresh, Mahima Agumbe

    2013-05-01

    Acyclic flow networks, present in many infrastructures of national importance (e.g., oil and gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against these infrastructures have been proven costly and imprecise, particularly when dealing with large-scale distribution systems. In this article, to the best of our knowledge, for the first time, we investigate how mobile sensor networks can be used for optimal event detection and localization in acyclic flow networks. We propose the idea of using sensors that move along the edges of the network and detect events (i.e., attacks). To localize the events, sensors detect proximity to beacons, which are devices with known placement in the network. We formulate the problem of minimizing the cost of monitoring infrastructure (i.e., minimizing the number of sensors and beacons deployed) in a predetermined zone of interest, while ensuring a degree of coverage by sensors and a required accuracy in locating events using beacons. We propose algorithms for solving the aforementioned problem and demonstrate their effectiveness with results obtained from a realistic flow network simulator.

  7. Bayesian network models for error detection in radiotherapy plans

    International Nuclear Information System (INIS)

    Kalet, Alan M; Ford, Eric C; Phillips, Mark H; Gennari, John H

    2015-01-01

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures. (paper)

  8. Detecting groups of similar components in complex networks

    International Nuclear Information System (INIS)

    Wang Jiao; Lai, C-H

    2008-01-01

    We study how to detect groups in a complex network each of which consists of component nodes sharing a similar connection pattern. Based on the mixture models and the exploratory analysis set up by Newman and Leicht (2007 Proc. Natl. Acad. Sci. USA 104 9564), we develop an algorithm that is applicable to a network with any degree distribution. The partition of a network suggested by this algorithm also applies to its complementary network. In general, groups of similar components are not necessarily identical with the communities in a community network; thus partitioning a network into groups of similar components provides additional information of the network structure. The proposed algorithm can also be used for community detection when the groups and the communities overlap. By introducing a tunable parameter that controls the involved effects of the heterogeneity, we can also investigate conveniently how the group structure can be coupled with the heterogeneity characteristics. In particular, an interesting example shows a group partition can evolve into a community partition in some situations when the involved heterogeneity effects are tuned. The extension of this algorithm to weighted networks is discussed as well.

  9. Detecting the influence of spreading in social networks with excitable sensor networks.

    Directory of Open Access Journals (Sweden)

    Sen Pei

    Full Text Available Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of humans' physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (Facebook, coauthor, and email social networks, we find that the excitable sensor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods.

  10. Cooperative Detection for Primary User in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Zhu Jia

    2009-01-01

    Full Text Available We propose two novel cooperative detection schemes based on the AF (Amplify and Forward and DF (Decode and Forward protocols to achieve spatial diversity gains for cognitive radio networks, which are referred to as the AF-CDS, (AF-based Cooperative Detection Scheme and DF-CDS (DF-based Cooperative Detection Scheme, respectively. Closed-form expressions of detection probabilities for the noncooperation scheme, AND-CDS (AND-based Cooperative Detection Scheme, AF-CDS and DF-CDS, are derived over Rayleigh fading channels. Also, we analyze the overall agility for the proposed cooperative detection schemes and show that our schemes can further reduce the detection time. In addition, we compare the DF-CDS with the AF-CDS in terms of detection probability and agility gain, depicting the advantage of DF-CDS at low SNR region and high false alarm probability region.

  11. Using new edges for anomaly detection in computer networks

    Science.gov (United States)

    Neil, Joshua Charles

    2015-05-19

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  12. Brain correlates of automatic visual change detection.

    Science.gov (United States)

    Cléry, H; Andersson, F; Fonlupt, P; Gomot, M

    2013-07-15

    A number of studies support the presence of visual automatic detection of change, but little is known about the brain generators involved in such processing and about the modulation of brain activity according to the salience of the stimulus. The study presented here was designed to locate the brain activity elicited by unattended visual deviant and novel stimuli using fMRI. Seventeen adult participants were presented with a passive visual oddball sequence while performing a concurrent visual task. Variations in BOLD signal were observed in the modality-specific sensory cortex, but also in non-specific areas involved in preattentional processing of changing events. A degree-of-deviance effect was observed, since novel stimuli elicited more activity in the sensory occipital regions and at the medial frontal site than small changes. These findings could be compared to those obtained in the auditory modality and might suggest a "general" change detection process operating in several sensory modalities. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Removing Parallax-Induced False Changes in Change Detection

    Science.gov (United States)

    2014-03-27

    Teller , “Equation of state calculations by fast computing machines ,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953. [89] J. D’Errico...especially in the case of HS data, due to its hundreds of spectral channels. Therefore, there is a strong need for methodologies that enable automated ...researchers for many years due in large part to the number of applications across diverse disciplines. Automated image change detection (CD) is the

  14. Fuzzy Based Advanced Hybrid Intrusion Detection System to Detect Malicious Nodes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rupinder Singh

    2017-01-01

    Full Text Available In this paper, an Advanced Hybrid Intrusion Detection System (AHIDS that automatically detects the WSNs attacks is proposed. AHIDS makes use of cluster-based architecture with enhanced LEACH protocol that intends to reduce the level of energy consumption by the sensor nodes. AHIDS uses anomaly detection and misuse detection based on fuzzy rule sets along with the Multilayer Perceptron Neural Network. The Feed Forward Neural Network along with the Backpropagation Neural Network are utilized to integrate the detection results and indicate the different types of attackers (i.e., Sybil attack, wormhole attack, and hello flood attack. For detection of Sybil attack, Advanced Sybil Attack Detection Algorithm is developed while the detection of wormhole attack is done by Wormhole Resistant Hybrid Technique. The detection of hello flood attack is done by using signal strength and distance. An experimental analysis is carried out in a set of nodes; 13.33% of the nodes are determined as misbehaving nodes, which classified attackers along with a detection rate of the true positive rate and false positive rate. Sybil attack is detected at a rate of 99,40%; hello flood attack has a detection rate of 98, 20%; and wormhole attack has a detection rate of 99, 20%.

  15. Detecting and evaluating communities in complex human and biological networks

    Science.gov (United States)

    Morrison, Greg; Mahadevan, L.

    2012-02-01

    We develop a simple method for detecting the community structure in a network can by utilizing a measure of closeness between nodes. This approach readily leads to a method of coarse graining the network, which allows the detection of the natural hierarchy (or hierarchies) of community structure without appealing to an unknown resolution parameter. The closeness measure can also be used to evaluate the robustness of an individual node's assignment to its community (rather than evaluating only the quality of the global structure). Each of these methods in community detection and evaluation are illustrated using a variety of real world networks of either biological or sociological importance and illustrate the power and flexibility of the approach.

  16. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  17. DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks.

    Science.gov (United States)

    Li, Chao; Wang, Xinggang; Liu, Wenyu; Latecki, Longin Jan

    2018-04-01

    Mitotic count is a critical predictor of tumor aggressiveness in the breast cancer diagnosis. Nowadays mitosis counting is mainly performed by pathologists manually, which is extremely arduous and time-consuming. In this paper, we propose an accurate method for detecting the mitotic cells from histopathological slides using a novel multi-stage deep learning framework. Our method consists of a deep segmentation network for generating mitosis region when only a weak label is given (i.e., only the centroid pixel of mitosis is annotated), an elaborately designed deep detection network for localizing mitosis by using contextual region information, and a deep verification network for improving detection accuracy by removing false positives. We validate the proposed deep learning method on two widely used Mitosis Detection in Breast Cancer Histological Images (MITOSIS) datasets. Experimental results show that we can achieve the highest F-score on the MITOSIS dataset from ICPR 2012 grand challenge merely using the deep detection network. For the ICPR 2014 MITOSIS dataset that only provides the centroid location of mitosis, we employ the segmentation model to estimate the bounding box annotation for training the deep detection network. We also apply the verification model to eliminate some false positives produced from the detection model. By fusing scores of the detection and verification models, we achieve the state-of-the-art results. Moreover, our method is very fast with GPU computing, which makes it feasible for clinical practice. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Anomaly detection in wide area network mesh using two machine learning anomaly detection algorithms

    OpenAIRE

    Zhang, James; Vukotic, Ilija; Gardner, Robert

    2018-01-01

    Anomaly detection is the practice of identifying items or events that do not conform to an expected behavior or do not correlate with other items in a dataset. It has previously been applied to areas such as intrusion detection, system health monitoring, and fraud detection in credit card transactions. In this paper, we describe a new method for detecting anomalous behavior over network performance data, gathered by perfSONAR, using two machine learning algorithms: Boosted Decision Trees (BDT...

  19. Community structures and role detection in music networks

    Science.gov (United States)

    Teitelbaum, T.; Balenzuela, P.; Cano, P.; Buldú, Javier M.

    2008-12-01

    We analyze the existence of community structures in two different social networks using data obtained from similarity and collaborative features between musical artists. Our analysis reveals some characteristic organizational patterns and provides information about the driving forces behind the growth of the networks. In the similarity network, we find a strong correlation between clusters of artists and musical genres. On the other hand, the collaboration network shows two different kinds of communities: rather small structures related to music bands and geographic zones, and much bigger communities built upon collaborative clusters with a high number of participants related through the period the artists were active. Finally, we detect the leading artists inside their corresponding communities and analyze their roles in the network by looking at a few topological properties of the nodes.

  20. STRAY DOG DETECTION IN WIRED CAMERA NETWORK

    Directory of Open Access Journals (Sweden)

    C. Prashanth

    2013-08-01

    Full Text Available Existing surveillance systems impose high level of security on humans but lacks attention on animals. Stray dogs could be used as an alternative to humans to carry explosive material. It is therefore imperative to ensure the detection of stray dogs for necessary corrective action. In this paper, a novel composite approach to detect the presence of stray dogs is proposed. The captured frame from the surveillance camera is initially pre-processed using Gaussian filter to remove noise. The foreground object of interest is extracted utilizing ViBe algorithm. Histogram of Oriented Gradients (HOG algorithm is used as the shape descriptor which derives the shape and size information of the extracted foreground object. Finally, stray dogs are classified from humans using a polynomial Support Vector Machine (SVM of order 3. The proposed composite approach is simulated in MATLAB and OpenCV. Further it is validated with real time video feeds taken from an existing surveillance system. From the results obtained, it is found that a classification accuracy of about 96% is achieved. This encourages the utilization of the proposed composite algorithm in real time surveillance systems.

  1. Online fouling detection in electrical circulation heaters using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lalot, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Valenciennes (France). LME; Lecoeuche, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Lille (France). Laboratoire 13D

    2003-06-01

    Here is presented a method that is able to detect fouling during the service of a circulation electrical heater. The neural based technique is divided in two major steps: identification and classification. Each step uses a neural network, the connection weights of the first one being the inputs of the second network. Each step is detailed and the main characteristics and abilities of the two neural networks are given. It is shown that the method is able to discriminate fouling from viscosity modification that would lead to the same type of effect on the total heat transfer coefficient. (author)

  2. Applied network security monitoring collection, detection, and analysis

    CERN Document Server

    Sanders, Chris

    2013-01-01

    Applied Network Security Monitoring is the essential guide to becoming an NSM analyst from the ground up. This book takes a fundamental approach to NSM, complete with dozens of real-world examples that teach you the key concepts of NSM. Network security monitoring is based on the principle that prevention eventually fails. In the current threat landscape, no matter how much you try, motivated attackers will eventually find their way into your network. At that point, it is your ability to detect and respond to that intrusion that can be the difference between a small incident and a major di

  3. Practical Algorithms for Subgroup Detection in Covert Networks

    DEFF Research Database (Denmark)

    Memon, Nasrullah; Wiil, Uffe Kock; Qureshi, Pir Abdul Rasool

    2010-01-01

    In this paper, we present algorithms for subgroup detection and demonstrated them with a real-time case study of USS Cole bombing terrorist network. The algorithms are demonstrated in an application by a prototype system. The system finds associations between terrorist and terrorist organisations...... and is capable of determining links between terrorism plots occurred in the past, their affiliation with terrorist camps, travel record, funds transfer, etc. The findings are represented by a network in the form of an Attributed Relational Graph (ARG). Paths from a node to any other node in the network indicate...

  4. Module detection in complex networks using integer optimisation

    Directory of Open Access Journals (Sweden)

    Tsoka Sophia

    2010-11-01

    Full Text Available Abstract Background The detection of modules or community structure is widely used to reveal the underlying properties of complex networks in biology, as well as physical and social sciences. Since the adoption of modularity as a measure of network topological properties, several methodologies for the discovery of community structure based on modularity maximisation have been developed. However, satisfactory partitions of large graphs with modest computational resources are particularly challenging due to the NP-hard nature of the related optimisation problem. Furthermore, it has been suggested that optimising the modularity metric can reach a resolution limit whereby the algorithm fails to detect smaller communities than a specific size in large networks. Results We present a novel solution approach to identify community structure in large complex networks and address resolution limitations in module detection. The proposed algorithm employs modularity to express network community structure and it is based on mixed integer optimisation models. The solution procedure is extended through an iterative procedure to diminish effects that tend to agglomerate smaller modules (resolution limitations. Conclusions A comprehensive comparative analysis of methodologies for module detection based on modularity maximisation shows that our approach outperforms previously reported methods. Furthermore, in contrast to previous reports, we propose a strategy to handle resolution limitations in modularity maximisation. Overall, we illustrate ways to improve existing methodologies for community structure identification so as to increase its efficiency and applicability.

  5. Stochastic fluctuations and the detectability limit of network communities.

    Science.gov (United States)

    Floretta, Lucio; Liechti, Jonas; Flammini, Alessandro; De Los Rios, Paolo

    2013-12-01

    We have analyzed the detectability limits of network communities in the framework of the popular Girvan and Newman benchmark. By carefully taking into account the inevitable stochastic fluctuations that affect the construction of each and every instance of the benchmark, we come to the conclusion that the native, putative partition of the network is completely lost even before the in-degree/out-degree ratio becomes equal to that of a structureless Erdös-Rényi network. We develop a simple iterative scheme, analytically well described by an infinite branching process, to provide an estimate of the true detectability limit. Using various algorithms based on modularity optimization, we show that all of them behave (semiquantitatively) in the same way, with the same functional form of the detectability threshold as a function of the network parameters. Because the same behavior has also been found by further modularity-optimization methods and for methods based on different heuristics implementations, we conclude that indeed a correct definition of the detectability limit must take into account the stochastic fluctuations of the network construction.

  6. Neuronal synchrony detection on single-electron neural networks

    International Nuclear Information System (INIS)

    Oya, Takahide; Asai, Tetsuya; Kagaya, Ryo; Hirose, Tetsuya; Amemiya, Yoshihito

    2006-01-01

    Synchrony detection between burst and non-burst spikes is known to be one functional example of depressing synapses. Kanazawa et al. demonstrated synchrony detection with MOS depressing synapse circuits. They found that the performance of a network with depressing synapses that discriminates between burst and random input spikes increases non-monotonically as the static device mismatch is increased. We designed a single-electron depressing synapse and constructed the same network as in Kanazawa's study to develop noise-tolerant single-electron circuits. We examined the temperature characteristics and explored possible architecture that enables single-electron circuits to operate at T > 0 K

  7. Salient regions detection using convolutional neural networks and color volume

    Science.gov (United States)

    Liu, Guang-Hai; Hou, Yingkun

    2018-03-01

    Convolutional neural network is an important technique in machine learning, pattern recognition and image processing. In order to reduce the computational burden and extend the classical LeNet-5 model to the field of saliency detection, we propose a simple and novel computing model based on LeNet-5 network. In the proposed model, hue, saturation and intensity are utilized to extract depth cues, and then we integrate depth cues and color volume to saliency detection following the basic structure of the feature integration theory. Experimental results show that the proposed computing model outperforms some existing state-of-the-art methods on MSRA1000 and ECSSD datasets.

  8. Imaging, object detection, and change detection with a polarized multistatic GPR array

    Science.gov (United States)

    Beer, N. Reginald; Paglieroni, David W.

    2015-07-21

    A polarized detection system performs imaging, object detection, and change detection factoring in the orientation of an object relative to the orientation of transceivers. The polarized detection system may operate on one of several modes of operation based on whether the imaging, object detection, or change detection is performed separately for each transceiver orientation. In combined change mode, the polarized detection system performs imaging, object detection, and change detection separately for each transceiver orientation, and then combines changes across polarizations. In combined object mode, the polarized detection system performs imaging and object detection separately for each transceiver orientation, and then combines objects across polarizations and performs change detection on the result. In combined image mode, the polarized detection system performs imaging separately for each transceiver orientation, and then combines images across polarizations and performs object detection followed by change detection on the result.

  9. Detecting change in stochastic sound sequences.

    Directory of Open Access Journals (Sweden)

    Benjamin Skerritt-Davis

    2018-05-01

    Full Text Available Our ability to parse our acoustic environment relies on the brain's capacity to extract statistical regularities from surrounding sounds. Previous work in regularity extraction has predominantly focused on the brain's sensitivity to predictable patterns in sound sequences. However, natural sound environments are rarely completely predictable, often containing some level of randomness, yet the brain is able to effectively interpret its surroundings by extracting useful information from stochastic sounds. It has been previously shown that the brain is sensitive to the marginal lower-order statistics of sound sequences (i.e., mean and variance. In this work, we investigate the brain's sensitivity to higher-order statistics describing temporal dependencies between sound events through a series of change detection experiments, where listeners are asked to detect changes in randomness in the pitch of tone sequences. Behavioral data indicate listeners collect statistical estimates to process incoming sounds, and a perceptual model based on Bayesian inference shows a capacity in the brain to track higher-order statistics. Further analysis of individual subjects' behavior indicates an important role of perceptual constraints in listeners' ability to track these sensory statistics with high fidelity. In addition, the inference model facilitates analysis of neural electroencephalography (EEG responses, anchoring the analysis relative to the statistics of each stochastic stimulus. This reveals both a deviance response and a change-related disruption in phase of the stimulus-locked response that follow the higher-order statistics. These results shed light on the brain's ability to process stochastic sound sequences.

  10. Lake Chapala change detection using time series

    Science.gov (United States)

    López-Caloca, Alejandra; Tapia-Silva, Felipe-Omar; Escalante-Ramírez, Boris

    2008-10-01

    The Lake Chapala is the largest natural lake in Mexico. It presents a hydrological imbalance problem caused by diminishing intakes from the Lerma River, pollution from said volumes, native vegetation and solid waste. This article presents a study that allows us to determine with high precision the extent of the affectation in both extension and volume reduction of the Lake Chapala in the period going from 1990 to 2007. Through satellite images this above-mentioned period was monitored. Image segmentation was achieved through a Markov Random Field model, extending the application towards edge detection. This allows adequately defining the lake's limits as well as determining new zones within the lake, both changes pertaining the Lake Chapala. Detected changes are related to a hydrological balance study based on measuring variables such as storage volumes, evapotranspiration and water balance. Results show that the changes in the Lake Chapala establish frail conditions which pose a future risk situation. Rehabilitation of the lake requires a hydrologic balance in its banks and aquifers.

  11. Nationwide Hybrid Change Detection of Buildings

    Science.gov (United States)

    Hron, V.; Halounova, L.

    2016-06-01

    The Fundamental Base of Geographic Data of the Czech Republic (hereinafter FBGD) is a national 2D geodatabase at a 1:10,000 scale with more than 100 geographic objects. This paper describes the design of the permanent updating mechanism of buildings in FBGD. The proposed procedure belongs to the category of hybrid change detection (HCD) techniques which combine pixel-based and object-based evaluation. The main sources of information for HCD are cadastral information and bi-temporal vertical digital aerial photographs. These photographs have great information potential because they contain multispectral, position and also elevation information. Elevation information represents a digital surface model (DSM) which can be obtained using the image matching technique. Pixel-based evaluation of bi-temporal DSMs enables fast localization of places with potential building changes. These coarse results are subsequently classified through the object-based image analysis (OBIA) using spectral, textural and contextual features and GIS tools. The advantage of the two-stage evaluation is the pre-selection of locations where image segmentation (a computationally demanding part of OBIA) is performed. It is not necessary to apply image segmentation to the entire scene, but only to the surroundings of detected changes, which contributes to significantly faster processing and lower hardware requirements. The created technology is based on open-source software solutions that allow easy portability on multiple computers and parallelization of processing. This leads to significant savings of financial resources which can be expended on the further development of FBGD.

  12. Fast Detection Method in Cooperative Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Zhengyi Li

    2010-01-01

    Full Text Available Cognitive Radio (CR technology improves the utilization of spectrum highly via opportunistic spectrum sharing, which requests fast detection as the spectrum utilization is dynamic. Taking into consideration the characteristic of wireless channels, we propose a fast detection scheme for a cooperative cognitive radio network, which consists of multiple CRs and a central control office. Specifically, each CR makes individual detection decision using the sequential probability ratio test combined with Neyman Pearson detection with respect to a specific observation window length. The proposed method upper bounds the detection delay. In addition, a weighted K out of N fusion rule is also proposed for the central control office to reach fast global decision based on the information collected from CRs, with more weights assigned for CRs with good channel conditions. Simulation results show that the proposed scheme can achieve fast detection while maintaining the detection accuracy.

  13. Detecting significant changes in protein abundance

    Directory of Open Access Journals (Sweden)

    Kai Kammers

    2015-06-01

    Full Text Available We review and demonstrate how an empirical Bayes method, shrinking a protein's sample variance towards a pooled estimate, leads to far more powerful and stable inference to detect significant changes in protein abundance compared to ordinary t-tests. Using examples from isobaric mass labelled proteomic experiments we show how to analyze data from multiple experiments simultaneously, and discuss the effects of missing data on the inference. We also present easy to use open source software for normalization of mass spectrometry data and inference based on moderated test statistics.

  14. Sensitivity of the Positive and Negative Syndrome Scale (PANSS) in Detecting Treatment Effects via Network Analysis.

    Science.gov (United States)

    Esfahlani, Farnaz Zamani; Sayama, Hiroki; Visser, Katherine Frost; Strauss, Gregory P

    2017-12-01

    Objective: The Positive and Negative Syndrome Scale is a primary outcome measure in clinical trials examining the efficacy of antipsychotic medications. Although the Positive and Negative Syndrome Scale has demonstrated sensitivity as a measure of treatment change in studies using traditional univariate statistical approaches, its sensitivity to detecting network-level changes in dynamic relationships among symptoms has yet to be demonstrated using more sophisticated multivariate analyses. In the current study, we examined the sensitivity of the Positive and Negative Syndrome Scale to detecting antipsychotic treatment effects as revealed through network analysis. Design: Participants included 1,049 individuals diagnosed with psychotic disorders from the Phase I portion of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. Of these participants, 733 were clinically determined to be treatment-responsive and 316 were found to be treatment-resistant. Item level data from the Positive and Negative Syndrome Scale were submitted to network analysis, and macroscopic, mesoscopic, and microscopic network properties were evaluated for the treatment-responsive and treatment-resistant groups at baseline and post-phase I antipsychotic treatment. Results: Network analysis indicated that treatment-responsive patients had more densely connected symptom networks after antipsychotic treatment than did treatment-responsive patients at baseline, and that symptom centralities increased following treatment. In contrast, symptom networks of treatment-resistant patients behaved more randomly before and after treatment. Conclusions: These results suggest that the Positive and Negative Syndrome Scale is sensitive to detecting treatment effects as revealed through network analysis. Its findings also provide compelling new evidence that strongly interconnected symptom networks confer an overall greater probability of treatment responsiveness in patients with

  15. Android malware detection based on evolutionary super-network

    Science.gov (United States)

    Yan, Haisheng; Peng, Lingling

    2018-04-01

    In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.

  16. ANOMALY DETECTION IN NETWORKING USING HYBRID ARTIFICIAL IMMUNE ALGORITHM

    Directory of Open Access Journals (Sweden)

    D. Amutha Guka

    2012-01-01

    Full Text Available Especially in today’s network scenario, when computers are interconnected through internet, security of an information system is very important issue. Because no system can be absolutely secure, the timely and accurate detection of anomalies is necessary. The main aim of this research paper is to improve the anomaly detection by using Hybrid Artificial Immune Algorithm (HAIA which is based on Artificial Immune Systems (AIS and Genetic Algorithm (GA. In this research work, HAIA approach is used to develop Network Anomaly Detection System (NADS. The detector set is generated by using GA and the anomalies are identified using Negative Selection Algorithm (NSA which is based on AIS. The HAIA algorithm is tested with KDD Cup 99 benchmark dataset. The detection rate is used to measure the effectiveness of the NADS. The results and consistency of the HAIA are compared with earlier approaches and the results are presented. The proposed algorithm gives best results when compared to the earlier approaches.

  17. [Early detection of cervical cancer in Chile: time for change].

    Science.gov (United States)

    Léniz Martelli, Javiera; Van De Wyngard, Vanessa; Lagos, Marcela; Barriga, María Isabel; Puschel Illanes, Klaus; Ferreccio Readi, Catterina

    2014-08-01

    Mortality rates for cervical cancer (CC) in Chile are higher than those of developed countries and it has an unequal socioeconomic distribution. The recognition of human papilloma virus (HPV) as the causal agent of cervical cancer in the early 80's changed the prevention paradigms. Current goals are to prevent HPV infection by vaccination before the onset of sexual activity and to detect HPV infection in women older than 30 years. This article reviews CC prevention and early detection methods, discusses relevant evidence to support a change in Chile and presents an innovation proposal. A strategy of primary screening based on HPV detection followed by triage of HPV-positive women by colposcopy in primary care or by cytological or molecular reflex testing is proposed. Due to the existence in Chile of a well-organized nationwide CC prevention program, the replacement of a low-sensitivity screening test such as the Papanicolau test with a highly sensitive one such as HPV detection, could quickly improve the effectiveness of the program. The program also has a network of personnel qualified to conduct naked-eye inspections of the cervix, who could easily be trained to perform triage colposcopy. The incorporation of new prevention strategies could reduce the deaths of Chilean women and correct inequities.

  18. LSTM-Based Hierarchical Denoising Network for Android Malware Detection

    OpenAIRE

    Yan, Jinpei; Qi, Yong; Rao, Qifan

    2018-01-01

    Mobile security is an important issue on Android platform. Most malware detection methods based on machine learning models heavily rely on expert knowledge for manual feature engineering, which are still difficult to fully describe malwares. In this paper, we present LSTM-based hierarchical denoise network (HDN), a novel static Android malware detection method which uses LSTM to directly learn from the raw opcode sequences extracted from decompiled Android files. However, most opcode sequence...

  19. European network for research in global change (ENRICH)

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, A [European Commission, Bruxelles (Belgium). DG XII/JRC

    1996-12-31

    While approaching the beginning of the twenty first century, the scientific community is faced with the formidable tasks of monitoring and detecting, understanding and predicting changes in the Earth System and its interactions with human beings. A crucial challenge is to make scientific research results accessible and usable for those involved in the decision making process related to the concept of Sustainable Development. Major international scientific programmes under the umbrella of ICSU, such as the IGBP and WCRP, are dealing with these issues. Although there exist many well developed global change research programmes in several European countries and effective collaboration networks between research institutes, there is an urgent need for overall communication with a view to promoting wider international links ensuring complementarity, synergy and coherence. Recognizing the importance of promoting coherence in research and utilising research results for various European Union (EU) policies, the European Commissioner responsible for Science, Research and Development wrote in March 1992 to all the EU Research Ministers to propose an initiative in this domain. In a rapid response, a group of Senior Experts from the EU Member States was set up in April 1992. This Group established a Task Force to develop the concept of the European Network for Research In Global CHange (ENRICH) which was approved in July 1993

  20. European network for research in global change (ENRICH)

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, A. [European Commission, Bruxelles (Belgium). DG XII/JRC

    1995-12-31

    While approaching the beginning of the twenty first century, the scientific community is faced with the formidable tasks of monitoring and detecting, understanding and predicting changes in the Earth System and its interactions with human beings. A crucial challenge is to make scientific research results accessible and usable for those involved in the decision making process related to the concept of Sustainable Development. Major international scientific programmes under the umbrella of ICSU, such as the IGBP and WCRP, are dealing with these issues. Although there exist many well developed global change research programmes in several European countries and effective collaboration networks between research institutes, there is an urgent need for overall communication with a view to promoting wider international links ensuring complementarity, synergy and coherence. Recognizing the importance of promoting coherence in research and utilising research results for various European Union (EU) policies, the European Commissioner responsible for Science, Research and Development wrote in March 1992 to all the EU Research Ministers to propose an initiative in this domain. In a rapid response, a group of Senior Experts from the EU Member States was set up in April 1992. This Group established a Task Force to develop the concept of the European Network for Research In Global CHange (ENRICH) which was approved in July 1993

  1. Detecting atrial fibrillation by deep convolutional neural networks.

    Science.gov (United States)

    Xia, Yong; Wulan, Naren; Wang, Kuanquan; Zhang, Henggui

    2018-02-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia. The incidence of AF increases with age, causing high risks of stroke and increased morbidity and mortality. Efficient and accurate diagnosis of AF based on the ECG is valuable in clinical settings and remains challenging. In this paper, we proposed a novel method with high reliability and accuracy for AF detection via deep learning. The short-term Fourier transform (STFT) and stationary wavelet transform (SWT) were used to analyze ECG segments to obtain two-dimensional (2-D) matrix input suitable for deep convolutional neural networks. Then, two different deep convolutional neural network models corresponding to STFT output and SWT output were developed. Our new method did not require detection of P or R peaks, nor feature designs for classification, in contrast to existing algorithms. Finally, the performances of the two models were evaluated and compared with those of existing algorithms. Our proposed method demonstrated favorable performances on ECG segments as short as 5 s. The deep convolutional neural network using input generated by STFT, presented a sensitivity of 98.34%, specificity of 98.24% and accuracy of 98.29%. For the deep convolutional neural network using input generated by SWT, a sensitivity of 98.79%, specificity of 97.87% and accuracy of 98.63% was achieved. The proposed method using deep convolutional neural networks shows high sensitivity, specificity and accuracy, and, therefore, is a valuable tool for AF detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Towards Optimal Event Detection and Localization in Acyclic Flow Networks

    KAUST Repository

    Agumbe Suresh, Mahima

    2012-01-03

    Acyclic flow networks, present in many infrastructures of national importance (e.g., oil & gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against these infrastructures, have been proven costly and imprecise, especially when dealing with large scale distribution systems. In this paper, to the best of our knowledge for the first time, we investigate how mobile sensor networks can be used for optimal event detection and localization in acyclic flow networks. Sensor nodes move along the edges of the network and detect events (i.e., attacks) and proximity to beacon nodes with known placement in the network. We formulate the problem of minimizing the cost of monitoring infrastructure (i.e., minimizing the number of sensor and beacon nodes deployed), while ensuring a degree of sensing coverage in a zone of interest and a required accuracy in locating events. We propose algorithms for solving these problems and demonstrate their effectiveness with results obtained from a high fidelity simulator.

  3. Optimizing a neural network for detection of moving vehicles in video

    Science.gov (United States)

    Fischer, Noëlle M.; Kruithof, Maarten C.; Bouma, Henri

    2017-10-01

    In the field of security and defense, it is extremely important to reliably detect moving objects, such as cars, ships, drones and missiles. Detection and analysis of moving objects in cameras near borders could be helpful to reduce illicit trading, drug trafficking, irregular border crossing, trafficking in human beings and smuggling. Many recent benchmarks have shown that convolutional neural networks are performing well in the detection of objects in images. Most deep-learning research effort focuses on classification or detection on single images. However, the detection of dynamic changes (e.g., moving objects, actions and events) in streaming video is extremely relevant for surveillance and forensic applications. In this paper, we combine an end-to-end feedforward neural network for static detection with a recurrent Long Short-Term Memory (LSTM) network for multi-frame analysis. We present a practical guide with special attention to the selection of the optimizer and batch size. The end-to-end network is able to localize and recognize the vehicles in video from traffic cameras. We show an efficient way to collect relevant in-domain data for training with minimal manual labor. Our results show that the combination with LSTM improves performance for the detection of moving vehicles.

  4. Change Detection Based on Persistent Scatterer Interferometry - a New Method of Monitoring Building Changes

    Science.gov (United States)

    Yang, C. H.; Kenduiywo, B. K.; Soergel, U.

    2016-06-01

    Persistent Scatterer Interferometry (PSI) is a technique to detect a network of extracted persistent scatterer (PS) points which feature temporal phase stability and strong radar signal throughout time-series of SAR images. The small surface deformations on such PS points are estimated. PSI particularly works well in monitoring human settlements because regular substructures of man-made objects give rise to large number of PS points. If such structures and/or substructures substantially alter or even vanish due to big change like construction, their PS points are discarded without additional explorations during standard PSI procedure. Such rejected points are called big change (BC) points. On the other hand, incoherent change detection (ICD) relies on local comparison of multi-temporal images (e.g. image difference, image ratio) to highlight scene modifications of larger size rather than detail level. However, image noise inevitably degrades ICD accuracy. We propose a change detection approach based on PSI to synergize benefits of PSI and ICD. PS points are extracted by PSI procedure. A local change index is introduced to quantify probability of a big change for each point. We propose an automatic thresholding method adopting change index to extract BC points along with a clue of the period they emerge. In the end, PS ad BC points are integrated into a change detection image. Our method is tested at a site located around north of Berlin main station where steady, demolished, and erected building substructures are successfully detected. The results are consistent with ground truth derived from time-series of aerial images provided by Google Earth. In addition, we apply our technique for traffic infrastructure, business district, and sports playground monitoring.

  5. CHANGE DETECTION BASED ON PERSISTENT SCATTERER INTERFEROMETRY – A NEW METHOD OF MONITORING BUILDING CHANGES

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2016-06-01

    Full Text Available Persistent Scatterer Interferometry (PSI is a technique to detect a network of extracted persistent scatterer (PS points which feature temporal phase stability and strong radar signal throughout time-series of SAR images. The small surface deformations on such PS points are estimated. PSI particularly works well in monitoring human settlements because regular substructures of man-made objects give rise to large number of PS points. If such structures and/or substructures substantially alter or even vanish due to big change like construction, their PS points are discarded without additional explorations during standard PSI procedure. Such rejected points are called big change (BC points. On the other hand, incoherent change detection (ICD relies on local comparison of multi-temporal images (e.g. image difference, image ratio to highlight scene modifications of larger size rather than detail level. However, image noise inevitably degrades ICD accuracy. We propose a change detection approach based on PSI to synergize benefits of PSI and ICD. PS points are extracted by PSI procedure. A local change index is introduced to quantify probability of a big change for each point. We propose an automatic thresholding method adopting change index to extract BC points along with a clue of the period they emerge. In the end, PS ad BC points are integrated into a change detection image. Our method is tested at a site located around north of Berlin main station where steady, demolished, and erected building substructures are successfully detected. The results are consistent with ground truth derived from time-series of aerial images provided by Google Earth. In addition, we apply our technique for traffic infrastructure, business district, and sports playground monitoring.

  6. Statistical analysis of longitudinal network data with changing composition

    NARCIS (Netherlands)

    Huisman, M; Snijders, TAB; Snijders, Tom A.B.

    2003-01-01

    Markov chains can be used for the modeling of complex longitudinal network data. One class of probability models to model the evolution of social networks are stochastic actor-oriented models for network change proposed by Snijders. These models are continuous-time Markov chain models that are

  7. A framework for unsupervised spam detection in social networking sites

    NARCIS (Netherlands)

    Bosma, M.; Meij, E.; Weerkamp, W.

    2012-01-01

    Social networking sites offer users the option to submit user spam reports for a given message, indicating this message is inappropriate. In this paper we present a framework that uses these user spam reports for spam detection. The framework is based on the HITS web link analysis framework and is

  8. Distributed Event Detection in Wireless Sensor Networks for Disaster Management

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Poel, Mannes; Taghikhaki, Zahra; Havinga, Paul J.M.

    2010-01-01

    Recently, wireless sensor networks (WSNs) have become mature enough to go beyond being simple fine-grained continuous monitoring platforms and become one of the enabling technologies for disaster early-warning systems. Event detection functionality of WSNs can be of great help and importance for

  9. Deep convolutional neural networks for detection of rail surface defects

    NARCIS (Netherlands)

    Faghih Roohi, S.; Hajizadeh, S.; Nunez Vicencio, Alfredo; Babuska, R.; De Schutter, B.H.K.; Estevez, Pablo A.; Angelov, Plamen P.; Del Moral Hernandez, Emilio

    2016-01-01

    In this paper, we propose a deep convolutional neural network solution to the analysis of image data for the detection of rail surface defects. The images are obtained from many hours of automated video recordings. This huge amount of data makes it impossible to manually inspect the images and

  10. Image objects detection based on boosting neural network

    NARCIS (Netherlands)

    Liang, N.; Hegt, J.A.; Mladenov, V.M.

    2010-01-01

    This paper discusses the problem of object area detection of video frames. The goal is to design a pixel accurate detector for grass, which could be used for object adaptive video enhancement. A boosting neural network is used for creating such a detector. The resulted detector uses both textural

  11. Application of Cellular Automata to Detection of Malicious Network Packets

    Science.gov (United States)

    Brown, Robert L.

    2014-01-01

    A problem in computer security is identification of attack signatures in network packets. An attack signature is a pattern of bits that characterizes a particular attack. Because there are many kinds of attacks, there are potentially many attack signatures. Furthermore, attackers may seek to avoid detection by altering the attack mechanism so that…

  12. An analysis of network traffic classification for botnet detection

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2015-01-01

    of detecting botnet network traffic using three methods that target protocols widely considered as the main carriers of botnet Command and Control (C&C) and attack traffic, i.e. TCP, UDP and DNS. We propose three traffic classification methods based on capable Random Forests classifier. The proposed methods...

  13. Expert knowledge for automatic detection of bullies in social networks

    NARCIS (Netherlands)

    Dadvar, M.; Trieschnigg, Rudolf Berend; de Jong, Franciska M.G.

    2013-01-01

    Cyberbullying is a serious social problem in online environments and social networks. Current approaches to tackle this problem are still inadequate for detecting bullying incidents or to flag bullies. In this study we used a multi-criteria evaluation system to obtain a better understanding of

  14. A framework for detecting communities of unbalanced sizes in networks

    Science.gov (United States)

    Žalik, Krista Rizman; Žalik, Borut

    2018-01-01

    Community detection in large networks has been a focus of recent research in many of fields, including biology, physics, social sciences, and computer science. Most community detection methods partition the entire network into communities, groups of nodes that have many connections within communities and few connections between them and do not identify different roles that nodes can have in communities. We propose a community detection model that integrates more different measures that can fast identify communities of different sizes and densities. We use node degree centrality, strong similarity with one node from community, maximal similarity of node to community, compactness of communities and separation between communities. Each measure has its own strength and weakness. Thus, combining different measures can benefit from the strengths of each one and eliminate encountered problems of using an individual measure. We present a fast local expansion algorithm for uncovering communities of different sizes and densities and reveals rich information on input networks. Experimental results show that the proposed algorithm is better or as effective as the other community detection algorithms for both real-world and synthetic networks while it requires less time.

  15. Efficient Mining and Detection of Sequential Intrusion Patterns for Network Intrusion Detection Systems

    Science.gov (United States)

    Shyu, Mei-Ling; Huang, Zifang; Luo, Hongli

    In recent years, pervasive computing infrastructures have greatly improved the interaction between human and system. As we put more reliance on these computing infrastructures, we also face threats of network intrusion and/or any new forms of undesirable IT-based activities. Hence, network security has become an extremely important issue, which is closely connected with homeland security, business transactions, and people's daily life. Accurate and efficient intrusion detection technologies are required to safeguard the network systems and the critical information transmitted in the network systems. In this chapter, a novel network intrusion detection framework for mining and detecting sequential intrusion patterns is proposed. The proposed framework consists of a Collateral Representative Subspace Projection Modeling (C-RSPM) component for supervised classification, and an inter-transactional association rule mining method based on Layer Divided Modeling (LDM) for temporal pattern analysis. Experiments on the KDD99 data set and the traffic data set generated by a private LAN testbed show promising results with high detection rates, low processing time, and low false alarm rates in mining and detecting sequential intrusion detections.

  16. An artifical neural network for detection of simulated dental caries

    Energy Technology Data Exchange (ETDEWEB)

    Kositbowornchai, S. [Khon Kaen Univ. (Thailand). Dept. of Oral Diagnosis; Siriteptawee, S.; Plermkamon, S.; Bureerat, S. [Khon Kaen Univ. (Thailand). Dept. of Mechanical Engineering; Chetchotsak, D. [Khon Kaen Univ. (Thailand). Dept. of Industrial Engineering

    2006-08-15

    Objects: A neural network was developed to diagnose artificial dental caries using images from a charged-coupled device (CCD)camera and intra-oral digital radiography. The diagnostic performance of this neural network was evaluated against a gold standard. Materials and methods: The neural network design was the Learning Vector Quantization (LVQ) used to classify a tooth surface as sound or as having dental caries. The depth of the dental caries was indicated on a graphic user interface (GUI) screen developed by Matlab programming. Forty-nine images of both sound and simulated dental caries, derived from a CCD camera and by digital radiography, were used to 'train' an artificial neural network. After the 'training' process, a separate test-set comprising 322 unseen images was evaluated. Tooth sections and microscopic examinations were used to confirm the actual dental caries status.The performance of neural network was evaluated using diagnostic test. Results: The sensitivity (95%CI)/specificity (95%CI) of dental caries detection by the CCD camera and digital radiography were 0.77(0.68-0.85)/0.85(0.75-0.92) and 0.81(0.72-0.88)/0.93(0.84-0.97), respectively. The accuracy of caries depth-detection by the CCD camera and digital radiography was 58 and 40%, respectively. Conclusions: The model neural network used in this study could be a prototype for caries detection but should be improved for classifying caries depth. Our study suggests an artificial neural network can be trained to make the correct interpretations of dental caries. (orig.)

  17. An artifical neural network for detection of simulated dental caries

    International Nuclear Information System (INIS)

    Kositbowornchai, S.; Siriteptawee, S.; Plermkamon, S.; Bureerat, S.; Chetchotsak, D.

    2006-01-01

    Objects: A neural network was developed to diagnose artificial dental caries using images from a charged-coupled device (CCD)camera and intra-oral digital radiography. The diagnostic performance of this neural network was evaluated against a gold standard. Materials and methods: The neural network design was the Learning Vector Quantization (LVQ) used to classify a tooth surface as sound or as having dental caries. The depth of the dental caries was indicated on a graphic user interface (GUI) screen developed by Matlab programming. Forty-nine images of both sound and simulated dental caries, derived from a CCD camera and by digital radiography, were used to 'train' an artificial neural network. After the 'training' process, a separate test-set comprising 322 unseen images was evaluated. Tooth sections and microscopic examinations were used to confirm the actual dental caries status.The performance of neural network was evaluated using diagnostic test. Results: The sensitivity (95%CI)/specificity (95%CI) of dental caries detection by the CCD camera and digital radiography were 0.77(0.68-0.85)/0.85(0.75-0.92) and 0.81(0.72-0.88)/0.93(0.84-0.97), respectively. The accuracy of caries depth-detection by the CCD camera and digital radiography was 58 and 40%, respectively. Conclusions: The model neural network used in this study could be a prototype for caries detection but should be improved for classifying caries depth. Our study suggests an artificial neural network can be trained to make the correct interpretations of dental caries. (orig.)

  18. Marketing and social networks: a criterion for detecting opinion leaders

    Directory of Open Access Journals (Sweden)

    Arnaldo Mario Litterio

    2017-10-01

    Full Text Available Purpose - The purpose of this paper is to use the practical application of tools provided by social network theory for the detection of potential influencers from the point of view of marketing within online communities. It proposes a method to detect significant actors based on centrality metrics. Design/methodology/approach - A matrix is proposed for the classification of the individuals that integrate a social network based on the combination of eigenvector centrality and betweenness centrality. The model is tested on a Facebook fan page for a sporting event. NodeXL is used to extract and analyze information. Semantic analysis and agent-based simulation are used to test the model. Findings - The proposed model is effective in detecting actors with the potential to efficiently spread a message in relation to the rest of the community, which is achieved from their position within the network. Social network analysis (SNA and the proposed model, in particular, are useful to detect subgroups of components with particular characteristics that are not evident from other analysis methods. Originality/value - This paper approaches the application of SNA to online social communities from an empirical and experimental perspective. Its originality lies in combining information from two individual metrics to understand the phenomenon of influence. Online social networks are gaining relevance and the literature that exists in relation to this subject is still fragmented and incipient. This paper contributes to a better understanding of this phenomenon of networks and the development of better tools to manage it through the proposal of a novel method.

  19. INTRUSION DETECTION PREVENTION SYSTEM (IDPS PADA LOCAL AREA NETWORK (LAN

    Directory of Open Access Journals (Sweden)

    Didit Suhartono

    2015-02-01

    Full Text Available Penelitian ini berjudul “Intrusion Detection Prevention System Local Area Network (LAN” yang bertujuan untuk memproteksi jaringan dari usaha- usaha penyusupan yang dilakukan oleh seorang intruder. Metode yang digunakan pada penelitian ini adalah menggunakan metode kerangka pikir sebagai acuan dari tahap- tahap penelitian yang penulis lakukan. IDS difungsikan sebagai pendeteksi adanya serangan sesuai rule yang ada kemudian pesan peringatan disimpan dalam database dan dikirim via sms kepada seorang network administrator, sedangkan Firewall digunakan sebagai packet filtering dengan cara menentukan security policy yang dinilai penting. Hasilnya adalah ketika IDS memberikanpesan peringatan ketika ada serangan, seorang network administrator dapat memblok adanya serangan tersebut dengan cara manual dengan firewall, ataupun firewall akan memblok sendiri serangan tersebut sesuai dengan security policy yang diterapkan oleh network adminisrator sebelumnya

  20. NATIONWIDE HYBRID CHANGE DETECTION OF BUILDINGS

    Directory of Open Access Journals (Sweden)

    V. Hron

    2016-06-01

    Full Text Available The Fundamental Base of Geographic Data of the Czech Republic (hereinafter FBGD is a national 2D geodatabase at a 1:10,000 scale with more than 100 geographic objects. This paper describes the design of the permanent updating mechanism of buildings in FBGD. The proposed procedure belongs to the category of hybrid change detection (HCD techniques which combine pixel-based and object-based evaluation. The main sources of information for HCD are cadastral information and bi-temporal vertical digital aerial photographs. These photographs have great information potential because they contain multispectral, position and also elevation information. Elevation information represents a digital surface model (DSM which can be obtained using the image matching technique. Pixel-based evaluation of bi-temporal DSMs enables fast localization of places with potential building changes. These coarse results are subsequently classified through the object-based image analysis (OBIA using spectral, textural and contextual features and GIS tools. The advantage of the two-stage evaluation is the pre-selection of locations where image segmentation (a computationally demanding part of OBIA is performed. It is not necessary to apply image segmentation to the entire scene, but only to the surroundings of detected changes, which contributes to significantly faster processing and lower hardware requirements. The created technology is based on open-source software solutions that allow easy portability on multiple computers and parallelization of processing. This leads to significant savings of financial resources which can be expended on the further development of FBGD.

  1. A dynamic evolutionary clustering perspective: Community detection in signed networks by reconstructing neighbor sets

    Science.gov (United States)

    Chen, Jianrui; Wang, Hua; Wang, Lina; Liu, Weiwei

    2016-04-01

    Community detection in social networks has been intensively studied in recent years. In this paper, a novel similarity measurement is defined according to social balance theory for signed networks. Inter-community positive links are found and deleted due to their low similarity. The positive neighbor sets are reconstructed by this method. Then, differential equations are proposed to imitate the constantly changing states of nodes. Each node will update its state based on the difference between its state and average state of its positive neighbors. Nodes in the same community will evolve together with time and nodes in the different communities will evolve far away. Communities are detected ultimately when states of nodes are stable. Experiments on real world and synthetic networks are implemented to verify detection performance. The thorough comparisons demonstrate the presented method is more efficient than two acknowledged better algorithms.

  2. Weekly changes of power supplier - consequences for the network owner

    International Nuclear Information System (INIS)

    Graabak, Ingeborg

    1997-01-01

    In Norway, it is expected that owners of electric distribution networks will be required to make it possible for the customers to change supplier each week. This report examines what consequences such a requirement will have for the network owners. An inquiry among nine network owners shows that at present changing supplier implies a great deal of manual work on the part of the network owner since many do not have computer based tools adapted to handle the situation. If the number of weekly changes of suppliers does not increase beyond a few percent of the network owner's total number of customers over 1 to 3 years, the network owner can cope with the situation. However, if for some reason the increase becomes larger, many network owners will have great problems because they lack the necessary computer tools. 1 table

  3. Moving Target Detection and Active Tracking with a Multicamera Network

    Directory of Open Access Journals (Sweden)

    Long Zhao

    2014-01-01

    Full Text Available We propose a systematic framework for Intelligence Video Surveillance System (IVSS with a multicamera network. The proposed framework consists of low-cost static and PTZ cameras, target detection and tracking algorithms, and a low-cost PTZ camera feedback control algorithm based on target information. The target detection and tracking is realized by fixed cameras using a moving target detection and tracking algorithm; the PTZ camera is manoeuvred to actively track the target from the tracking results of the static camera. The experiments are carried out using practical surveillance system data, and the experimental results show that the systematic framework and algorithms presented in this paper are efficient.

  4. Mapping of networks to detect priority zoonoses in Jordan

    Directory of Open Access Journals (Sweden)

    Erin M Sorrell

    2015-10-01

    Full Text Available Early detection of emerging disease events is a priority focus area for cooperative bioengagement programs. Communication and coordination among national disease surveillance and response networks are essential for timely detection and control of a public health event. Although systematic information sharing between the human and animal health sectors can help stakeholders detect and respond to zoonotic diseases rapidly, resource constraints and other barriers often prevent efficient cross-sector reporting. The purpose of this research project was to map the laboratory and surveillance networks currently in place for detecting and reporting priority zoonotic diseases in Jordan in order to identify the nodes of communication, coordination, and decision-making where health and veterinary sectors intersect, and to identify priorities and gaps that limit information-sharing for action. We selected three zoonotic diseases as case studies: highly pathogenic avian influenza (HPAI H5N1, rabies, and brucellosis. Through meetings with government agencies and health officials, and desk research, we mapped each system from the index case through response – including both surveillance and laboratory networks, highlighting both areas of strength and those that would benefit from capacity-building resources. Our major findings indicate informal communication exists across sectors; in the event of emergence of one of the priority zoonoses studied there is effective coordination across the Ministry of Health and Ministry of Agriculture. However, routine formal coordination is lacking. Overall, there is a strong desire and commitment for multi-sectoral coordination in detection and response to zoonoses across public health and veterinary sectors. Our analysis indicates that the networks developed in response to HPAI can and should be leveraged to develop a comprehensive laboratory and surveillance One Health network.

  5. Profile-based adaptive anomaly detection for network security.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengchu C. (Sandia National Laboratories, Albuquerque, NM); Durgin, Nancy Ann

    2005-11-01

    As information systems become increasingly complex and pervasive, they become inextricably intertwined with the critical infrastructure of national, public, and private organizations. The problem of recognizing and evaluating threats against these complex, heterogeneous networks of cyber and physical components is a difficult one, yet a solution is vital to ensuring security. In this paper we investigate profile-based anomaly detection techniques that can be used to address this problem. We focus primarily on the area of network anomaly detection, but the approach could be extended to other problem domains. We investigate using several data analysis techniques to create profiles of network hosts and perform anomaly detection using those profiles. The ''profiles'' reduce multi-dimensional vectors representing ''normal behavior'' into fewer dimensions, thus allowing pattern and cluster discovery. New events are compared against the profiles, producing a quantitative measure of how ''anomalous'' the event is. Most network intrusion detection systems (IDSs) detect malicious behavior by searching for known patterns in the network traffic. This approach suffers from several weaknesses, including a lack of generalizability, an inability to detect stealthy or novel attacks, and lack of flexibility regarding alarm thresholds. Our research focuses on enhancing current IDS capabilities by addressing some of these shortcomings. We identify and evaluate promising techniques for data mining and machine-learning. The algorithms are ''trained'' by providing them with a series of data-points from ''normal'' network traffic. A successful algorithm can be trained automatically and efficiently, will have a low error rate (low false alarm and miss rates), and will be able to identify anomalies in ''pseudo real-time'' (i.e., while the intrusion is still in progress

  6. Betweenness centrality and its applications from modeling traffic flows to network community detection

    Science.gov (United States)

    Ren, Yihui

    network and we demonstrate that the changes can propagate globally, affecting traffic several hundreds of miles away. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events. In the second part of the thesis we focus on network deconstruction and community detection problems, both intensely studied topics in network science, using a weighted betweenness centrality approach. We present an algorithm that solves both problems efficiently and accurately and demonstrate that on both benchmark networks and data networks.

  7. Detecting Network Communities: An Application to Phylogenetic Analysis

    Science.gov (United States)

    Andrade, Roberto F. S.; Rocha-Neto, Ivan C.; Santos, Leonardo B. L.; de Santana, Charles N.; Diniz, Marcelo V. C.; Lobão, Thierry Petit; Goés-Neto, Aristóteles; Pinho, Suani T. R.; El-Hani, Charbel N.

    2011-01-01

    This paper proposes a new method to identify communities in generally weighted complex networks and apply it to phylogenetic analysis. In this case, weights correspond to the similarity indexes among protein sequences, which can be used for network construction so that the network structure can be analyzed to recover phylogenetically useful information from its properties. The analyses discussed here are mainly based on the modular character of protein similarity networks, explored through the Newman-Girvan algorithm, with the help of the neighborhood matrix . The most relevant networks are found when the network topology changes abruptly revealing distinct modules related to the sets of organisms to which the proteins belong. Sound biological information can be retrieved by the computational routines used in the network approach, without using biological assumptions other than those incorporated by BLAST. Usually, all the main bacterial phyla and, in some cases, also some bacterial classes corresponded totally (100%) or to a great extent (>70%) to the modules. We checked for internal consistency in the obtained results, and we scored close to 84% of matches for community pertinence when comparisons between the results were performed. To illustrate how to use the network-based method, we employed data for enzymes involved in the chitin metabolic pathway that are present in more than 100 organisms from an original data set containing 1,695 organisms, downloaded from GenBank on May 19, 2007. A preliminary comparison between the outcomes of the network-based method and the results of methods based on Bayesian, distance, likelihood, and parsimony criteria suggests that the former is as reliable as these commonly used methods. We conclude that the network-based method can be used as a powerful tool for retrieving modularity information from weighted networks, which is useful for phylogenetic analysis. PMID:21573202

  8. Networked Community Change: Understanding Community Systems Change through the Lens of Social Network Analysis.

    Science.gov (United States)

    Lawlor, Jennifer A; Neal, Zachary P

    2016-06-01

    Addressing complex problems in communities has become a key area of focus in recent years (Kania & Kramer, 2013, Stanford Social Innovation Review). Building on existing approaches to understanding and addressing problems, such as action research, several new approaches have emerged that shift the way communities solve problems (e.g., Burns, 2007, Systemic Action Research; Foth, 2006, Action Research, 4, 205; Kania & Kramer, 2011, Stanford Social Innovation Review, 1, 36). Seeking to bring clarity to the emerging literature on community change strategies, this article identifies the common features of the most widespread community change strategies and explores the conditions under which such strategies have the potential to be effective. We identify and describe five common features among the approaches to change. Then, using an agent-based model, we simulate network-building behavior among stakeholders participating in community change efforts using these approaches. We find that the emergent stakeholder networks are efficient when the processes are implemented under ideal conditions. © Society for Community Research and Action 2016.

  9. Distributed clone detection in static wireless sensor networks: random walk with network division.

    Science.gov (United States)

    Khan, Wazir Zada; Aalsalem, Mohammed Y; Saad, N M

    2015-01-01

    Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.

  10. Distributed clone detection in static wireless sensor networks: random walk with network division.

    Directory of Open Access Journals (Sweden)

    Wazir Zada Khan

    Full Text Available Wireless Sensor Networks (WSNs are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.

  11. Detectable perfusion changes in MAG3 studies

    International Nuclear Information System (INIS)

    Shuter, B.; Bernar, A.; Roach, P.

    1998-01-01

    Full text: The use of 120 MBq 99m Tc-MAG 3 instead of 600 MBq 99m Tc-DTPA in renal imaging has degraded the images obtained during the perfusion phase. An increase of the minimum detectable change (MDC) in blood flow (BF) would also be expected. In transplant patients, renal BF is an important factor in patient management and the MDC should be small to allow early detection of reduced perfusion. We determined the mean and coefficient of variation (CoV: standard deviation/mean) of three renal perfusion indices as a function of counts in the time-activity curves (TACs). Transplant patients were given a dose of about 300 MBq of 99m Tc-MAG3 and images acquired at 8 fps for 60s. TACs made up from 8, 4, 2 or I images per second allowed calculation of renal perfusion indices as if doses of 300, 150, 75 and 38 MBq had been administered. Perfusion indices based on area under the TACs up to the arterial peak (API), the maximum slopes of the TACs (SPI) and the maximum slope of renal TAC and height of arterial TAC (BPI) were calculated by our routine renal software package. As the administered dose decreased, the CoV rose for all indices, least for BPI and most for API. BPI CoV increased from ∼10% at 300 MBq to 20% at 75 MBq, but API CoV rose from 6% to 46%. Mean BPI was stable over the dose range, but mean API showed a systematic increase of about 50% over the 300 MBq result. We conclude that at 120 MBq the MDC (expressed as 2*CoV) in BF is 30-60%, whereas at 600 MBq it may be as low as 10%, allowing earlier confident detection of a change in BF. The BPI was the preferred perfusion index as its mean value changed little and it had the least CoV at lower activities. The data also imply that relative kidney perfusion in the one individual will be much less accurate with 120 MBq of MAG 3

  12. Networked gamma radiation detection system for tactical deployment

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Smith, Ethan; Guss, Paul; Mitchell, Stephen

    2015-08-01

    A networked gamma radiation detection system with directional sensitivity and energy spectral data acquisition capability is being developed by the National Security Technologies, LLC, Remote Sensing Laboratory to support the close and intense tactical engagement of law enforcement who carry out counterterrorism missions. In the proposed design, three clusters of 2″ × 4″ × 16″ sodium iodide crystals (4 each) with digiBASE-E (for list mode data collection) would be placed on the passenger side of a minivan. To enhance localization and facilitate rapid identification of isotopes, advanced smart real-time localization and radioisotope identification algorithms like WAVRAD (wavelet-assisted variance reduction for anomaly detection) and NSCRAD (nuisance-rejection spectral comparison ratio anomaly detection) will be incorporated. We will test a collection of algorithms and analysis that centers on the problem of radiation detection with a distributed sensor network. We will study the basic characteristics of a radiation sensor network and focus on the trade-offs between false positive alarm rates, true positive alarm rates, and time to detect multiple radiation sources in a large area. Empirical and simulation analyses of critical system parameters, such as number of sensors, sensor placement, and sensor response functions, will be examined. This networked system will provide an integrated radiation detection architecture and framework with (i) a large nationally recognized search database equivalent that would help generate a common operational picture in a major radiological crisis; (ii) a robust reach back connectivity for search data to be evaluated by home teams; and, finally, (iii) a possibility of integrating search data from multi-agency responders.

  13. Using Networks For Changing Innovation Strategy: The Case of IBM

    OpenAIRE

    Dittrich, Koen; Duysters, Geert; Man, Ard-Pieter

    2004-01-01

    textabstractLarge-scale strategic change projects in companies may be supported by using alliance networks. This paper shows that IBM’s change from an exploitation strategy towards an exploration strategy required a radically different network strategy as well. By entering into more non-equity alliances, involving new partners in the network and loosening the ties with existing partners, IBM supported its transformation from a hardware manufacturing company to a global service provider and so...

  14. Maximum-entropy networks pattern detection, network reconstruction and graph combinatorics

    CERN Document Server

    Squartini, Tiziano

    2017-01-01

    This book is an introduction to maximum-entropy models of random graphs with given topological properties and their applications. Its original contribution is the reformulation of many seemingly different problems in the study of both real networks and graph theory within the unified framework of maximum entropy. Particular emphasis is put on the detection of structural patterns in real networks, on the reconstruction of the properties of networks from partial information, and on the enumeration and sampling of graphs with given properties.  After a first introductory chapter explaining the motivation, focus, aim and message of the book, chapter 2 introduces the formal construction of maximum-entropy ensembles of graphs with local topological constraints. Chapter 3 focuses on the problem of pattern detection in real networks and provides a powerful way to disentangle nontrivial higher-order structural features from those that can be traced back to simpler local constraints. Chapter 4 focuses on the problem o...

  15. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  16. Consensus-based methodology for detection communities in multilayered networks

    Science.gov (United States)

    Karimi-Majd, Amir-Mohsen; Fathian, Mohammad; Makrehchi, Masoud

    2018-03-01

    Finding groups of network users who are densely related with each other has emerged as an interesting problem in the area of social network analysis. These groups or so-called communities would be hidden behind the behavior of users. Most studies assume that such behavior could be understood by focusing on user interfaces, their behavioral attributes or a combination of these network layers (i.e., interfaces with their attributes). They also assume that all network layers refer to the same behavior. However, in real-life networks, users' behavior in one layer may differ from their behavior in another one. In order to cope with these issues, this article proposes a consensus-based community detection approach (CBC). CBC finds communities among nodes at each layer, in parallel. Then, the results of layers should be aggregated using a consensus clustering method. This means that different behavior could be detected and used in the analysis. As for other significant advantages, the methodology would be able to handle missing values. Three experiments on real-life and computer-generated datasets have been conducted in order to evaluate the performance of CBC. The results indicate superiority and stability of CBC in comparison to other approaches.

  17. Adaptive multi-resolution Modularity for detecting communities in networks

    Science.gov (United States)

    Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He

    2018-02-01

    Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.

  18. Distributed detection of communities in complex networks using synthetic coordinates

    International Nuclear Information System (INIS)

    Papadakis, H; Fragopoulou, P; Panagiotakis, C

    2014-01-01

    Various applications like finding Web communities, detecting the structure of social networks, and even analyzing a graph’s structure to uncover Internet attacks are just some of the applications for which community detection is important. In this paper, we propose an algorithm that finds the entire community structure of a network, on the basis of local interactions between neighboring nodes and an unsupervised distributed hierarchical clustering algorithm. The novelty of the proposed approach, named SCCD (standing for synthetic coordinate community detection), lies in the fact that the algorithm is based on the use of Vivaldi synthetic network coordinates computed by a distributed algorithm. The current paper not only presents an efficient distributed community finding algorithm, but also demonstrates that synthetic network coordinates could be used to derive efficient solutions to a variety of problems. Experimental results and comparisons with other methods from the literature are presented for a variety of benchmark graphs with known community structure, derived from varying a number of graph parameters and real data set graphs. The experimental results and comparisons to existing methods with similar computation cost on real and synthetic data sets demonstrate the high performance and robustness of the proposed scheme. (paper)

  19. Detecting TLEs using a massive all-sky camera network

    Science.gov (United States)

    Garnung, M. B.; Celestin, S. J.

    2017-12-01

    Transient Luminous Events (TLEs) are large-scale optical events occurring in the upper-atmosphere from the top of thunderclouds up to the ionosphere. TLEs may have important effects in local, regional, and global scales, and many features of TLEs are not fully understood yet [e.g, Pasko, JGR, 115, A00E35, 2010]. Moreover, meteor events have been suggested to play a role in sprite initiation by producing ionospheric irregularities [e.g, Qin et al., Nat. Commun., 5, 3740, 2014]. The French Fireball Recovery and InterPlanetary Observation Network (FRIPON, https://www.fripon.org/?lang=en), is a national all-sky 30 fps camera network designed to continuously detect meteor events. We seek to make use of this network to observe TLEs over unprecedented space and time scales ( 1000×1000 km with continuous acquisition). To do so, we had to significantly modify FRIPON's triggering software Freeture (https://github.com/fripon/freeture) while leaving the meteor detection capability uncompromised. FRIPON has a great potential in the study of TLEs. Not only could it produce new results about spatial and time distributions of TLEs over a very large area, it could also be used to validate and complement observations from future space missions such as ASIM (ESA) and TARANIS (CNES). In this work, we present an original image processing algorithm that can detect sprites using all-sky cameras while strongly limiting the frequency of false positives and our ongoing work on sprite triangulation using the FRIPON network.

  20. Using Networks For Changing Innovation Strategy: The Case of IBM

    NARCIS (Netherlands)

    K. Dittrich (Koen); G.M. Duysters (Geert); A-P. de Man (Ard-Pieter)

    2004-01-01

    textabstractLarge-scale strategic change projects in companies may be supported by using alliance networks. This paper shows that IBM’s change from an exploitation strategy towards an exploration strategy required a radically different network strategy as well. By entering into more non-equity

  1. Community detection in complex networks using proximate support vector clustering

    Science.gov (United States)

    Wang, Feifan; Zhang, Baihai; Chai, Senchun; Xia, Yuanqing

    2018-03-01

    Community structure, one of the most attention attracting properties in complex networks, has been a cornerstone in advances of various scientific branches. A number of tools have been involved in recent studies concentrating on the community detection algorithms. In this paper, we propose a support vector clustering method based on a proximity graph, owing to which the introduced algorithm surpasses the traditional support vector approach both in accuracy and complexity. Results of extensive experiments undertaken on computer generated networks and real world data sets illustrate competent performances in comparison with the other counterparts.

  2. Tansig activation function (of MLP network) for cardiac abnormality detection

    Science.gov (United States)

    Adnan, Ja'afar; Daud, Nik Ghazali Nik; Ishak, Mohd Taufiq; Rizman, Zairi Ismael; Rahman, Muhammad Izzuddin Abd

    2018-02-01

    Heart abnormality often occurs regardless of gender, age and races. This problem sometimes does not show any symptoms and it can cause a sudden death to the patient. In general, heart abnormality is the irregular electrical activity of the heart. This paper attempts to develop a program that can detect heart abnormality activity through implementation of Multilayer Perceptron (MLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP network by using several training algorithms with Tansig activation function.

  3. A Tensor Decomposition-Based Approach for Detecting Dynamic Network States From EEG.

    Science.gov (United States)

    Mahyari, Arash Golibagh; Zoltowski, David M; Bernat, Edward M; Aviyente, Selin

    2017-01-01

    Functional connectivity (FC), defined as the statistical dependency between distinct brain regions, has been an important tool in understanding cognitive brain processes. Most of the current works in FC have focused on the assumption of temporally stationary networks. However, recent empirical work indicates that FC is dynamic due to cognitive functions. The purpose of this paper is to understand the dynamics of FC for understanding the formation and dissolution of networks of the brain. In this paper, we introduce a two-step approach to characterize the dynamics of functional connectivity networks (FCNs) by first identifying change points at which the network connectivity across subjects shows significant changes and then summarizing the FCNs between consecutive change points. The proposed approach is based on a tensor representation of FCNs across time and subjects yielding a four-mode tensor. The change points are identified using a subspace distance measure on low-rank approximations to the tensor at each time point. The network summarization is then obtained through tensor-matrix projections across the subject and time modes. The proposed framework is applied to electroencephalogram (EEG) data collected during a cognitive control task. The detected change-points are consistent with a priori known ERN interval. The results show significant connectivities in medial-frontal regions which are consistent with widely observed ERN amplitude measures. The tensor-based method outperforms conventional matrix-based methods such as singular value decomposition in terms of both change-point detection and state summarization. The proposed tensor-based method captures the topological structure of FCNs which provides more accurate change-point-detection and state summarization.

  4. Public Agility and Change in a Network Environment

    Directory of Open Access Journals (Sweden)

    Tom van Engers

    2011-03-01

    Full Text Available Preparing for change is increasingly core business for governmental organizations. The networked society and the increasing connectedness of governmental organizations have as much impact on the complexity of the change process as the complexities of the corpus of law. Change is not only driven by changes in the law; changes in the organization’s environment often create a need to redesign business processes, reallocate roles and responsibilities, and reorder tasks. Moreover, preparations for change are not limited to the internal processes and systems of these organizations. Propagation of changes to network partners and redesign of network arrangements can be an enormous challenge. In the AGILE project, we develop a design method, distributed service architecture, and supporting tools that enable organizations - administrative and otherwise - to orchestrate their law-based services in a networked environment. This paper explains the Agile approach and describes some of its key principles.

  5. Noticing climate change in electricity network design and construction

    International Nuclear Information System (INIS)

    Syri, S.; Martikeinen, A.; Lehtonen, M.

    2007-01-01

    The climate change is widely known to cause remarkable effects to electricity network systems on the whole. Some of the changes are good but the most of the changes cause disadvantages to electricity network. Consequence of climate change, blackouts can be long-standing which affect remarkable society and economic life. Most of electricity networks are coming to a renovation phase and the solutions, that are being made nowadays, affect still after decades. Taking account of climate change, now when networks are being developed and planned, it is possible to avoid possible large repair operation and increase reliability of distribution in the future. The aim of this project is to clarify how climate change should be noticed in planning and construction processes. According to the results of this project electricity network companies can be prepared for climate change by developing planning processes and network cost effectively. Also construction processes are being developed but emphasis is on planning process. The results and developed knowledge of VTT research project 'Impacts of climate change on electricity network business' are exploited in this project. In addition, impacts of climate change on cables and transformers are analyzed in collaboration with TKK in the project. (orig.)

  6. Online Adaboost-Based Parameterized Methods for Dynamic Distributed Network Intrusion Detection.

    Science.gov (United States)

    Hu, Weiming; Gao, Jun; Wang, Yanguo; Wu, Ou; Maybank, Stephen

    2014-01-01

    Current network intrusion detection systems lack adaptability to the frequently changing network environments. Furthermore, intrusion detection in the new distributed architectures is now a major requirement. In this paper, we propose two online Adaboost-based intrusion detection algorithms. In the first algorithm, a traditional online Adaboost process is used where decision stumps are used as weak classifiers. In the second algorithm, an improved online Adaboost process is proposed, and online Gaussian mixture models (GMMs) are used as weak classifiers. We further propose a distributed intrusion detection framework, in which a local parameterized detection model is constructed in each node using the online Adaboost algorithm. A global detection model is constructed in each node by combining the local parametric models using a small number of samples in the node. This combination is achieved using an algorithm based on particle swarm optimization (PSO) and support vector machines. The global model in each node is used to detect intrusions. Experimental results show that the improved online Adaboost process with GMMs obtains a higher detection rate and a lower false alarm rate than the traditional online Adaboost process that uses decision stumps. Both the algorithms outperform existing intrusion detection algorithms. It is also shown that our PSO, and SVM-based algorithm effectively combines the local detection models into the global model in each node; the global model in a node can handle the intrusion types that are found in other nodes, without sharing the samples of these intrusion types.

  7. Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks.

    Science.gov (United States)

    Martens, Marijn B; Houweling, Arthur R; E Tiesinga, Paul H

    2017-02-01

    Neuronal circuits in the rodent barrel cortex are characterized by stable low firing rates. However, recent experiments show that short spike trains elicited by electrical stimulation in single neurons can induce behavioral responses. Hence, the underlying neural networks provide stability against internal fluctuations in the firing rate, while simultaneously making the circuits sensitive to small external perturbations. Here we studied whether stability and sensitivity are affected by the connectivity structure in recurrently connected spiking networks. We found that anti-correlation between the number of afferent (in-degree) and efferent (out-degree) synaptic connections of neurons increases stability against pathological bursting, relative to networks where the degrees were either positively correlated or uncorrelated. In the stable network state, stimulation of a few cells could lead to a detectable change in the firing rate. To quantify the ability of networks to detect the stimulation, we used a receiver operating characteristic (ROC) analysis. For a given level of background noise, networks with anti-correlated degrees displayed the lowest false positive rates, and consequently had the highest stimulus detection performance. We propose that anti-correlation in the degree distribution may be a computational strategy employed by sensory cortices to increase the detectability of external stimuli. We show that networks with anti-correlated degrees can in principle be formed by applying learning rules comprised of a combination of spike-timing dependent plasticity, homeostatic plasticity and pruning to networks with uncorrelated degrees. To test our prediction we suggest a novel experimental method to estimate correlations in the degree distribution.

  8. Power plant fault detection using artificial neural network

    Science.gov (United States)

    Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Joini, Nur Fazriana; Hidzir, Hidzrin Dayana Mohd; Awira, Mohammad Zulfikar Khairul

    2018-02-01

    The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.

  9. Event-Triggered Fault Detection of Nonlinear Networked Systems.

    Science.gov (United States)

    Li, Hongyi; Chen, Ziran; Wu, Ligang; Lam, Hak-Keung; Du, Haiping

    2017-04-01

    This paper investigates the problem of fault detection for nonlinear discrete-time networked systems under an event-triggered scheme. A polynomial fuzzy fault detection filter is designed to generate a residual signal and detect faults in the system. A novel polynomial event-triggered scheme is proposed to determine the transmission of the signal. A fault detection filter is designed to guarantee that the residual system is asymptotically stable and satisfies the desired performance. Polynomial approximated membership functions obtained by Taylor series are employed for filtering analysis. Furthermore, sufficient conditions are represented in terms of sum of squares (SOSs) and can be solved by SOS tools in MATLAB environment. A numerical example is provided to demonstrate the effectiveness of the proposed results.

  10. Detection of mobile user location on next generation wireless networks

    DEFF Research Database (Denmark)

    Schou, Saowanee; Olesen, Henning

    2005-01-01

    This paper proposes a novel conceptual mechanism for detecting the location of a mobile user on next generation wireless networks. This mechanism can provide location information of a mobile user at different levels of accuracy, by applying the movement detection mechanism of Mobile IPv6 at both...... macro- and micromobility level. In this scheme, an intradomain mobility management protocol (IDMP) is applied to manage the location of the mobile terminal. The mobile terminal needs two care-of addresses, a global care-of address (GCoA) and a local care-of address (LCoA). The current location...... of a Mobile IPv6 device can be determined by mapping the geographical location information with the two care-of-addresses and the physical address of the access point where the user is connected. Such a mechanism makes location services for mobile entities available on a global IP network. The end-users can...

  11. Cortical network during deception detection by functional neuroimaging

    International Nuclear Information System (INIS)

    Saito, Keiichi

    2008-01-01

    We examined the coherence of cortical network during deception detection. First, we performed combined EEG-MRI experiments during the Guilty Knowledge Test (GKT) using number cards which has been used to model deception and 5 right-handed healthy participants performed the experiment. The superior frontal gyrus, the anterior cingulate cortex and the inferior parietal lobule were activated and the P 300 event-related brain potential (300-450 ms) was detected at only 'Lie' card. Secondary, we measured magnetoencephalography (MEG) data during GKT and the other 5 right-handed healthy subjects participated in the next experiment. The coherence between the superior frontal gyrus and the inferior parietal lobule showed significant differences between 'Lie' card and 'truth' cards during P 300 emerging. This results indicates that the coherence of cortical network is useful for GKT. (author)

  12. Multi-Branch Fully Convolutional Network for Face Detection

    KAUST Repository

    Bai, Yancheng

    2017-07-20

    Face detection is a fundamental problem in computer vision. It is still a challenging task in unconstrained conditions due to significant variations in scale, pose, expressions, and occlusion. In this paper, we propose a multi-branch fully convolutional network (MB-FCN) for face detection, which considers both efficiency and effectiveness in the design process. Our MB-FCN detector can deal with faces at all scale ranges with only a single pass through the backbone network. As such, our MB-FCN model saves computation and thus is more efficient, compared to previous methods that make multiple passes. For each branch, the specific skip connections of the convolutional feature maps at different layers are exploited to represent faces in specific scale ranges. Specifically, small faces can be represented with both shallow fine-grained and deep powerful coarse features. With this representation, superior improvement in performance is registered for the task of detecting small faces. We test our MB-FCN detector on two public face detection benchmarks, including FDDB and WIDER FACE. Extensive experiments show that our detector outperforms state-of-the-art methods on all these datasets in general and by a substantial margin on the most challenging among them (e.g. WIDER FACE Hard subset). Also, MB-FCN runs at 15 FPS on a GPU for images of size 640 x 480 with no assumption on the minimum detectable face size.

  13. Network structure detection and analysis of Shanghai stock market

    Directory of Open Access Journals (Sweden)

    Sen Wu

    2015-04-01

    Full Text Available Purpose: In order to investigate community structure of the component stocks of SSE (Shanghai Stock Exchange 180-index, a stock correlation network is built to find the intra-community and inter-community relationship. Design/methodology/approach: The stock correlation network is built taking the vertices as stocks and edges as correlation coefficients of logarithm returns of stock price. It is built as undirected weighted at first. GN algorithm is selected to detect community structure after transferring the network into un-weighted with different thresholds. Findings: The result of the network community structure analysis shows that the stock market has obvious industrial characteristics. Most of the stocks in the same industry or in the same supply chain are assigned to the same community. The correlation of the internal stock prices’ fluctuation is closer than in different communities. The result of community structure detection also reflects correlations among different industries. Originality/value: Based on the analysis of the community structure in Shanghai stock market, the result reflects some industrial characteristics, which has reference value to relationship among industries or sub-sectors of listed companies.

  14. Abnormality Detection in Mammography using Deep Convolutional Neural Networks

    OpenAIRE

    Xi, Pengcheng; Shu, Chang; Goubran, Rafik

    2018-01-01

    Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be tra...

  15. Detection of generalized synchronization using echo state networks

    OpenAIRE

    Ibáñez-Soria, D.; García Ojalvo, Jordi; Soria Frisch, Aureli; Ruffini, G.

    2018-01-01

    Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences i...

  16. Studying Fake News via Network Analysis: Detection and Mitigation

    OpenAIRE

    Shu, Kai; Bernard, H. Russell; Liu, Huan

    2018-01-01

    Social media for news consumption is becoming increasingly popular due to its easy access, fast dissemination, and low cost. However, social media also enable the wide propagation of "fake news", i.e., news with intentionally false information. Fake news on social media poses significant negative societal effects, and also presents unique challenges. To tackle the challenges, many existing works exploit various features, from a network perspective, to detect and mitigate fake news. In essence...

  17. Impacts of climate change on electricity network business

    International Nuclear Information System (INIS)

    Martikainen, A.

    2006-04-01

    Climate has a significant impact on the electricity network business. The electricity network is under the weather pressure all the time and it is planned and constructed to withstand normal climatic stresses. The electricity network that has been planned and constructed now, is expected to be in operation next 40 years. If climatic stresses change in this period, it can cause significant impacts on electricity network business. If the impacts of climate change are figured out in advance, it is possible to mitigate negative points of climate change and exploit the positive points. In this paper the impact of climate change on electricity network business is presented. The results are based on RCAO climate model scenarios. The climate predictions were composed to the period 2016. 2045. The period 1960.1990 was used as a control period. The climate predictions were composed for precipitation, temperature, hoarfrost, thunder, ground frost and wind. The impacts of the change of the climate variables on electricity network business were estimated from technical and economical points of view. The estimation was based on the change predictions of the climate variables. It is expected that climate change will cause more damages than benefits on the electricity network business. The increase of the number of network faults will be the most significant and demanding disadvantage caused by climate change. If networks are not improved to be more resistant for faults, then thunder, heavy snow and wind cause more damages especially to overhead lines in medium voltage network. Increasing precipitation and decreasing amount of ground frost weaken the strength of soil. The construction work will be more difficult with the present vehicles because wet and unfrozen ground can not carry heavy vehicles. As a consequence of increasing temperature, the demand of heating energy will decrease and the demand of cooling energy will increase. This is significant for the electricity

  18. Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor

    Directory of Open Access Journals (Sweden)

    Dong Seop Kim

    2018-03-01

    Full Text Available Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR open database, show that our method outperforms previous works.

  19. The effect of destination linked feature selection in real-time network intrusion detection

    CSIR Research Space (South Africa)

    Mzila, P

    2013-07-01

    Full Text Available techniques in the network intrusion detection system (NIDS) is the feature selection technique. The ability of NIDS to accurately identify intrusion from the network traffic relies heavily on feature selection, which describes the pattern of the network...

  20. Wavelet-based higher-order neural networks for mine detection in thermal IR imagery

    Science.gov (United States)

    Baertlein, Brian A.; Liao, Wen-Jiao

    2000-08-01

    An image processing technique is described for the detection of miens in RI imagery. The proposed technique is based on a third-order neural network, which processes the output of a wavelet packet transform. The technique is inherently invariant to changes in signature position, rotation and scaling. The well-known memory limitations that arise with higher-order neural networks are addressed by (1) the data compression capabilities of wavelet packets, (2) protections of the image data into a space of similar triangles, and (3) quantization of that 'triangle space'. Using these techniques, image chips of size 28 by 28, which would require 0(109) neural net weights, are processed by a network having 0(102) weights. ROC curves are presented for mine detection in real and simulated imagery.

  1. Coherent network detection of gravitational waves: the redundancy veto

    International Nuclear Information System (INIS)

    Wen Linqing; Schutz, Bernard F

    2005-01-01

    A network of gravitational wave detectors is called redundant if, given the direction to a source, the strain induced by a gravitational wave in one or more of the detectors can be fully expressed in terms of the strain induced in others in the network. Because gravitational waves have only two polarizations, any network of three or more differently oriented interferometers with similar observing bands is redundant. The three-armed LISA space interferometer has three outputs that are redundant at low frequencies. The two aligned LIGO interferometers at Hanford WA are redundant, and the LIGO detector at Livingston LA is nearly redundant with either of the Hanford detectors. Redundant networks have a powerful veto against spurious noise, a linear combination of the detector outputs that contains no gravitational wave signal. For LISA, this 'null' output is known as the Sagnac mode, and its use in discriminating between detector noise and a cosmological gravitational wave background is well understood. But the usefulness of the null veto for ground-based detector networks has been ignored until now. We show that it should make it possible to discriminate in a model-independent way between real gravitational waves and accidentally coincident non-Gaussian noise 'events' in redundant networks of two or more broadband detectors. It has been shown that with three detectors, the null output can even be used to locate the direction to the source, and then two other linear combinations of detector outputs give the optimal 'coherent' reconstruction of the two polarization components of the signal. We discuss briefly the implementation of such a detection strategy in realistic networks, where signals are weak, detector calibration is a significant uncertainty, and the various detectors may have different (but overlapping) observing bands

  2. Potential fire detection based on Kalman-driven change detection

    CSIR Research Space (South Africa)

    Van Den Bergh, F

    2009-07-01

    Full Text Available A new active fire event detection algorithm for data collected with the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor, based on the extended Kalman filter, is introduced. Instead of using the observed temperatures of the spatial...

  3. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    OpenAIRE

    Ren, Shaoqing; He, Kaiming; Girshick, Ross; Sun, Jian

    2015-01-01

    State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet and Fast R-CNN have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultan...

  4. Structural Changes in Online Discussion Networks

    DEFF Research Database (Denmark)

    Yang, Yang; Medaglia, Rony

    2014-01-01

    Social networking platforms in China provide a hugely interesting and relevant source for understanding dynamics of online discussions in a unique socio-cultural and institutional environment. This paper investigates the evolution of patterns of similar-minded and different-minded interactions ov...

  5. Erasure Coded Storage on a Changing Network

    DEFF Research Database (Denmark)

    Sipos, Marton A.; Venkat, Narayan; Oran, David

    2016-01-01

    As faster storage devices become commercially viable alternatives to disk drives, the network is increasingly becoming the bottleneck in achieving good performance in distributed storage systems. This is especially true for erasure coded storage, where the reconstruction of lost data can signific...

  6. Arresting Strategy Based on Dynamic Criminal Networks Changing over Time

    Directory of Open Access Journals (Sweden)

    Junqing Yuan

    2013-01-01

    Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.

  7. Radiation detection and situation management by distributed sensor networks

    International Nuclear Information System (INIS)

    Jan, Frigo; Mielke, Angela; Cai, D. Michael

    2009-01-01

    Detection of radioactive materials in an urban environment usually requires large, portal-monitor-style radiation detectors. However, this may not be a practical solution in many transport scenarios. Alternatively, a distributed sensor network (DSN) could complement portal-style detection of radiological materials through the implementation of arrays of low cost, small heterogeneous sensors with the ability to detect the presence of radioactive materials in a moving vehicle over a specific region. In this paper, we report on the use of a heterogeneous, wireless, distributed sensor network for traffic monitoring in a field demonstration. Through wireless communications, the energy spectra from different radiation detectors are combined to improve the detection confidence. In addition, the DSN exploits other sensor technologies and algorithms to provide additional information about the vehicle, such as its speed, location, class (e.g. car, truck), and license plate number. The sensors are in-situ and data is processed in real-time at each node. Relevant information from each node is sent to a base station computer which is used to assess the movement of radioactive materials

  8. AdaBoost-based algorithm for network intrusion detection.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  9. Sleep Deprivation Attack Detection in Wireless Sensor Network

    Science.gov (United States)

    Bhattasali, Tapalina; Chaki, Rituparna; Sanyal, Sugata

    2012-02-01

    Deployment of sensor network in hostile environment makes it mainly vulnerable to battery drainage attacks because it is impossible to recharge or replace the battery power of sensor nodes. Among different types of security threats, low power sensor nodes are immensely affected by the attacks which cause random drainage of the energy level of sensors, leading to death of the nodes. The most dangerous type of attack in this category is sleep deprivation, where target of the intruder is to maximize the power consumption of sensor nodes, so that their lifetime is minimized. Most of the existing works on sleep deprivation attack detection involve a lot of overhead, leading to poor throughput. The need of the day is to design a model for detecting intrusions accurately in an energy efficient manner. This paper proposes a hierarchical framework based on distributed collaborative mechanism for detecting sleep deprivation torture in wireless sensor network efficiently. Proposed model uses anomaly detection technique in two steps to reduce the probability of false intrusion.

  10. GLRT Based Anomaly Detection for Sensor Network Monitoring

    KAUST Repository

    Harrou, Fouzi

    2015-12-07

    Proper operation of antenna arrays requires continuously monitoring their performances. When a fault occurs in an antenna array, the radiation pattern changes and can significantly deviate from the desired design performance specifications. In this paper, the problem of fault detection in linear antenna arrays is addressed within a statistical framework. Specifically, a statistical fault detection method based on the generalized likelihood ratio (GLR) principle is utilized for detecting potential faults in linear antenna arrays. The proposed method relies on detecting deviations in the radiation pattern of the monitored array with respect to a reference (fault-free) one. To assess the abilities of the GLR based fault detection method, three case studies involving different types of faults have been performed. The simulation results clearly illustrate the effectiveness of the GLR-based fault detection method in monitoring the performance of linear antenna arrays.

  11. GLRT Based Anomaly Detection for Sensor Network Monitoring

    KAUST Repository

    Harrou, Fouzi; Sun, Ying

    2015-01-01

    Proper operation of antenna arrays requires continuously monitoring their performances. When a fault occurs in an antenna array, the radiation pattern changes and can significantly deviate from the desired design performance specifications. In this paper, the problem of fault detection in linear antenna arrays is addressed within a statistical framework. Specifically, a statistical fault detection method based on the generalized likelihood ratio (GLR) principle is utilized for detecting potential faults in linear antenna arrays. The proposed method relies on detecting deviations in the radiation pattern of the monitored array with respect to a reference (fault-free) one. To assess the abilities of the GLR based fault detection method, three case studies involving different types of faults have been performed. The simulation results clearly illustrate the effectiveness of the GLR-based fault detection method in monitoring the performance of linear antenna arrays.

  12. Social Network Sensors for Early Detection of Contagious Outbreaks

    Science.gov (United States)

    Christakis, Nicholas A.; Fowler, James H.

    2010-01-01

    Current methods for the detection of contagious outbreaks give contemporaneous information about the course of an epidemic at best. It is known that individuals near the center of a social network are likely to be infected sooner during the course of an outbreak, on average, than those at the periphery. Unfortunately, mapping a whole network to identify central individuals who might be monitored for infection is typically very difficult. We propose an alternative strategy that does not require ascertainment of global network structure, namely, simply monitoring the friends of randomly selected individuals. Such individuals are known to be more central. To evaluate whether such a friend group could indeed provide early detection, we studied a flu outbreak at Harvard College in late 2009. We followed 744 students who were either members of a group of randomly chosen individuals or a group of their friends. Based on clinical diagnoses, the progression of the epidemic in the friend group occurred 13.9 days (95% C.I. 9.9–16.6) in advance of the randomly chosen group (i.e., the population as a whole). The friend group also showed a significant lead time (pepidemic, a full 46 days before the peak in daily incidence in the population as a whole. This sensor method could provide significant additional time to react to epidemics in small or large populations under surveillance. The amount of lead time will depend on features of the outbreak and the network at hand. The method could in principle be generalized to other biological, psychological, informational, or behavioral contagions that spread in networks. PMID:20856792

  13. Phylogenetically informed logic relationships improve detection of biological network organization

    Science.gov (United States)

    2011-01-01

    Background A "phylogenetic profile" refers to the presence or absence of a gene across a set of organisms, and it has been proven valuable for understanding gene functional relationships and network organization. Despite this success, few studies have attempted to search beyond just pairwise relationships among genes. Here we search for logic relationships involving three genes, and explore its potential application in gene network analyses. Results Taking advantage of a phylogenetic matrix constructed from the large orthologs database Roundup, we invented a method to create balanced profiles for individual triplets of genes that guarantee equal weight on the different phylogenetic scenarios of coevolution between genes. When we applied this idea to LAPP, the method to search for logic triplets of genes, the balanced profiles resulted in significant performance improvement and the discovery of hundreds of thousands more putative triplets than unadjusted profiles. We found that logic triplets detected biological network organization and identified key proteins and their functions, ranging from neighbouring proteins in local pathways, to well separated proteins in the whole pathway, and to the interactions among different pathways at the system level. Finally, our case study suggested that the directionality in a logic relationship and the profile of a triplet could disclose the connectivity between the triplet and surrounding networks. Conclusion Balanced profiles are superior to the raw profiles employed by traditional methods of phylogenetic profiling in searching for high order gene sets. Gene triplets can provide valuable information in detection of biological network organization and identification of key genes at different levels of cellular interaction. PMID:22172058

  14. Feedback surveys for transnational social change networks : a step ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Feedback surveys are an assessment exercise that differs from conventional evaluation by creating a comparative data set. Transnational social change networks are international networks with members spread across multiple countries working to collectively organize towards a common long-term goal that would not be ...

  15. Network contact changes in early and later postseparation years

    NARCIS (Netherlands)

    Terhell, E.L.; Broese Van Groenou, M.I.; van Tilburg, T.G.

    2007-01-01

    This study explains changes in contact frequency in relationships of the preseparation personal network in the early and later years after partners separate. The explanation includes general and separation-related characteristics of the network relationship and the individual. Personal interviews

  16. Distance Based Method for Outlier Detection of Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Haibin Zhang

    2016-01-01

    Full Text Available We propose a distance based method for the outlier detection of body sensor networks. Firstly, we use a Kernel Density Estimation (KDE to calculate the probability of the distance to k nearest neighbors for diagnosed data. If the probability is less than a threshold, and the distance of this data to its left and right neighbors is greater than a pre-defined value, the diagnosed data is decided as an outlier. Further, we formalize a sliding window based method to improve the outlier detection performance. Finally, to estimate the KDE by training sensor readings with errors, we introduce a Hidden Markov Model (HMM based method to estimate the most probable ground truth values which have the maximum probability to produce the training data. Simulation results show that the proposed method possesses a good detection accuracy with a low false alarm rate.

  17. A Partially Distributed Intrusion Detection System for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Eung Jun Cho

    2013-11-01

    Full Text Available The increasing use of wireless sensor networks, which normally comprise several very small sensor nodes, makes their security an increasingly important issue. They can be practically and efficiently secured using intrusion detection systems. Conventional security mechanisms are not usually applicable due to the sensor nodes having limitations of computational power, memory capacity, and battery power. Therefore, specific security systems should be designed to function under constraints of energy or memory. A partially distributed intrusion detection system with low memory and power demands is proposed here. It employs a Bloom filter, which allows reduced signature code size. Multiple Bloom filters can be combined to reduce the signature code for each Bloom filter array. The mechanism could then cope with potential denial of service attacks, unlike many previous detection systems with Bloom filters. The mechanism was evaluated and validated through analysis and simulation.

  18. CONEDEP: COnvolutional Neural network based Earthquake DEtection and Phase Picking

    Science.gov (United States)

    Zhou, Y.; Huang, Y.; Yue, H.; Zhou, S.; An, S.; Yun, N.

    2017-12-01

    We developed an automatic local earthquake detection and phase picking algorithm based on Fully Convolutional Neural network (FCN). The FCN algorithm detects and segments certain features (phases) in 3 component seismograms to realize efficient picking. We use STA/LTA algorithm and template matching algorithm to construct the training set from seismograms recorded 1 month before and after the Wenchuan earthquake. Precise P and S phases are identified and labeled to construct the training set. Noise data are produced by combining back-ground noise and artificial synthetic noise to form the equivalent scale of noise set as the signal set. Training is performed on GPUs to achieve efficient convergence. Our algorithm has significantly improved performance in terms of the detection rate and precision in comparison with STA/LTA and template matching algorithms.

  19. Gas Detection Instrument Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    ANSONG FENG

    2013-06-01

    Full Text Available The wireless sensor network is used to simulate poisonous gas generating system in the Fire-Fighting Simulated Training System. In the paper, we use the wireless signal to simulate the poisonous gas source and use received signal strength indicator (RSSI to simulate the distance between the fireman and the gas source. The gas detection instrument samples the temperature and sphygmus of the trainee and uses the wireless signal as poisonous gas signal. When the trainee enters into the poisonous gas area, the gas detection instrument warns with sound and light and sends the type, density value, the location of the poisonous gas and vital signs of the trainee to host. The paper discusses the software and hardware design of the gas detection instrument. The system has been used to the several of Fire-Fighting training systems.

  20. Identifying changes in the support networks of end-of-life carers using social network analysis.

    Science.gov (United States)

    Leonard, Rosemary; Horsfall, Debbie; Noonan, Kerrie

    2015-06-01

    End-of-life caring is often associated with reduced social networks for both the dying person and for the carer. However, those adopting a community participation and development approach, see the potential for the expansion and strengthening of networks. This paper uses Knox, Savage and Harvey's definitions of three generations social network analysis to analyse the caring networks of people with a terminal illness who are being cared for at home and identifies changes in these caring networks that occurred over the period of caring. Participatory network mapping of initial and current networks was used in nine focus groups. The analysis used key concepts from social network analysis (size, density, transitivity, betweenness and local clustering) together with qualitative analyses of the group's reflections on the maps. The results showed an increase in the size of the networks and that ties between the original members of the network strengthened. The qualitative data revealed the importance between core and peripheral network members and the diverse contributions of the network members. The research supports the value of third generation social network analysis and the potential for end-of-life caring to build social capital. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. LSTM-Based Hierarchical Denoising Network for Android Malware Detection

    Directory of Open Access Journals (Sweden)

    Jinpei Yan

    2018-01-01

    Full Text Available Mobile security is an important issue on Android platform. Most malware detection methods based on machine learning models heavily rely on expert knowledge for manual feature engineering, which are still difficult to fully describe malwares. In this paper, we present LSTM-based hierarchical denoise network (HDN, a novel static Android malware detection method which uses LSTM to directly learn from the raw opcode sequences extracted from decompiled Android files. However, most opcode sequences are too long for LSTM to train due to the gradient vanishing problem. Hence, HDN uses a hierarchical structure, whose first-level LSTM parallelly computes on opcode subsequences (we called them method blocks to learn the dense representations; then the second-level LSTM can learn and detect malware through method block sequences. Considering that malicious behavior only appears in partial sequence segments, HDN uses method block denoise module (MBDM for data denoising by adaptive gradient scaling strategy based on loss cache. We evaluate and compare HDN with the latest mainstream researches on three datasets. The results show that HDN outperforms these Android malware detection methods,and it is able to capture longer sequence features and has better detection efficiency than N-gram-based malware detection which is similar to our method.

  2. Morphometric Changes in the Cortical Microvascular Network in Alzheimer's Disease

    NARCIS (Netherlands)

    Richard, E.; van Gool, W.A.; Hoozemans, J.J.M.; van Haastert, E.S.; Eikelenboom, P.; Rozemuller, A.J.M.; van de Berg, W.D.J.

    2010-01-01

    Alzheimer's disease (AD) pathology is accompanied by abnormalities of the microvasculature. Despite the potential importance of morphometric changes in the cortical capillary network on neuronal dysfunction and cognitive impairment, few autopsy studies have addressed this issue. In the present

  3. Orthogonal transformations for change detection, Matlab code

    DEFF Research Database (Denmark)

    2005-01-01

    Matlab code to do multivariate alteration detection (MAD) analysis, maximum autocorrelation factor (MAF) analysis, canonical correlation analysis (CCA) and principal component analysis (PCA) on image data.......Matlab code to do multivariate alteration detection (MAD) analysis, maximum autocorrelation factor (MAF) analysis, canonical correlation analysis (CCA) and principal component analysis (PCA) on image data....

  4. Feature learning and change feature classification based on deep learning for ternary change detection in SAR images

    Science.gov (United States)

    Gong, Maoguo; Yang, Hailun; Zhang, Puzhao

    2017-07-01

    Ternary change detection aims to detect changes and group the changes into positive change and negative change. It is of great significance in the joint interpretation of spatial-temporal synthetic aperture radar images. In this study, sparse autoencoder, convolutional neural networks (CNN) and unsupervised clustering are combined to solve ternary change detection problem without any supervison. Firstly, sparse autoencoder is used to transform log-ratio difference image into a suitable feature space for extracting key changes and suppressing outliers and noise. And then the learned features are clustered into three classes, which are taken as the pseudo labels for training a CNN model as change feature classifier. The reliable training samples for CNN are selected from the feature maps learned by sparse autoencoder with certain selection rules. Having training samples and the corresponding pseudo labels, the CNN model can be trained by using back propagation with stochastic gradient descent. During its training procedure, CNN is driven to learn the concept of change, and more powerful model is established to distinguish different types of changes. Unlike the traditional methods, the proposed framework integrates the merits of sparse autoencoder and CNN to learn more robust difference representations and the concept of change for ternary change detection. Experimental results on real datasets validate the effectiveness and superiority of the proposed framework.

  5. Flexible and Efficient Wireless Sensor Networks for Detecting Rainfall-Induced Landslides

    OpenAIRE

    Nguyen, Chinh D.; Tran, Tan D.; Tran, Nghia D.; Huynh, Tue Huu; Nguyen, Duc T.

    2015-01-01

    The effect of climate change and human activities leads to a series of dangerous phenomena, such as landslides and flood. In such a context, building a system to monitor environmental hazards is seriously needed. Some studies propose to use wireless sensor network (WSN) technique for landslide monitoring systems. Two important factors for these systems are the flexibility and the energy management. This paper focuses on the development of a flexible and efficient WSN for detecting rainfall-in...

  6. Detection of strong attractors in social media networks.

    Science.gov (United States)

    Qasem, Ziyaad; Jansen, Marc; Hecking, Tobias; Hoppe, H Ulrich

    2016-01-01

    Detection of influential actors in social media such as Twitter or Facebook plays an important role for improving the quality and efficiency of work and services in many fields such as education and marketing. The work described here aims to introduce a new approach that characterizes the influence of actors by the strength of attracting new active members into a networked community. We present a model of influence of an actor that is based on the attractiveness of the actor in terms of the number of other new actors with which he or she has established relations over time. We have used this concept and measure of influence to determine optimal seeds in a simulation of influence maximization using two empirically collected social networks for the underlying graphs. Our empirical results on the datasets demonstrate that our measure stands out as a useful measure to define the attractors comparing to the other influence measures.

  7. ID card number detection algorithm based on convolutional neural network

    Science.gov (United States)

    Zhu, Jian; Ma, Hanjie; Feng, Jie; Dai, Leiyan

    2018-04-01

    In this paper, a new detection algorithm based on Convolutional Neural Network is presented in order to realize the fast and convenient ID information extraction in multiple scenarios. The algorithm uses the mobile device equipped with Android operating system to locate and extract the ID number; Use the special color distribution of the ID card, select the appropriate channel component; Use the image threshold segmentation, noise processing and morphological processing to take the binary processing for image; At the same time, the image rotation and projection method are used for horizontal correction when image was tilting; Finally, the single character is extracted by the projection method, and recognized by using Convolutional Neural Network. Through test shows that, A single ID number image from the extraction to the identification time is about 80ms, the accuracy rate is about 99%, It can be applied to the actual production and living environment.

  8. Boundary Region Detection for Continuous Objects in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yaqiang Zhang

    2018-01-01

    Full Text Available Industrial Internet of Things has been widely used to facilitate disaster monitoring applications, such as liquid leakage and toxic gas detection. Since disasters are usually harmful to the environment, detecting accurate boundary regions for continuous objects in an energy-efficient and timely fashion is a long-standing research challenge. This article proposes a novel mechanism for continuous object boundary region detection in a fog computing environment, where sensing holes may exist in the deployed network region. Leveraging sensory data that have been gathered, interpolation algorithms have been applied to estimate sensory data at certain geographical locations, in order to estimate a more accurate boundary line. To examine whether estimated sensory data reflect that fact, mobile sensors are adopted to traverse these locations for gathering their sensory data, and the boundary region is calibrated accordingly. Experimental evaluation shows that this technique can generate a precise object boundary region with certain time constraints, and the network lifetime can be prolonged significantly.

  9. Mind-Body Practice Changes Fractional Amplitude of Low Frequency Fluctuations in Intrinsic Control Networks

    Directory of Open Access Journals (Sweden)

    Gao-Xia Wei

    2017-07-01

    Full Text Available Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the “immune system” of mental health recently developed in relation to flexible hub theory.

  10. Mind-Body Practice Changes Fractional Amplitude of Low Frequency Fluctuations in Intrinsic Control Networks.

    Science.gov (United States)

    Wei, Gao-Xia; Gong, Zhu-Qing; Yang, Zhi; Zuo, Xi-Nian

    2017-01-01

    Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC) practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF) in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the "immune system" of mental health recently developed in relation to flexible hub theory.

  11. Minimal changes in health status questionnaires: distinction between minimally detectable change and minimally important change

    Directory of Open Access Journals (Sweden)

    Knol Dirk L

    2006-08-01

    Full Text Available Abstract Changes in scores on health status questionnaires are difficult to interpret. Several methods to determine minimally important changes (MICs have been proposed which can broadly be divided in distribution-based and anchor-based methods. Comparisons of these methods have led to insight into essential differences between these approaches. Some authors have tried to come to a uniform measure for the MIC, such as 0.5 standard deviation and the value of one standard error of measurement (SEM. Others have emphasized the diversity of MIC values, depending on the type of anchor, the definition of minimal importance on the anchor, and characteristics of the disease under study. A closer look makes clear that some distribution-based methods have been merely focused on minimally detectable changes. For assessing minimally important changes, anchor-based methods are preferred, as they include a definition of what is minimally important. Acknowledging the distinction between minimally detectable and minimally important changes is useful, not only to avoid confusion among MIC methods, but also to gain information on two important benchmarks on the scale of a health status measurement instrument. Appreciating the distinction, it becomes possible to judge whether the minimally detectable change of a measurement instrument is sufficiently small to detect minimally important changes.

  12. Long Short-Term Memory Neural Networks for Online Disturbance Detection in Satellite Image Time Series

    Directory of Open Access Journals (Sweden)

    Yun-Long Kong

    2018-03-01

    Full Text Available A satellite image time series (SITS contains a significant amount of temporal information. By analysing this type of data, the pattern of the changes in the object of concern can be explored. The natural change in the Earth’s surface is relatively slow and exhibits a pronounced pattern. Some natural events (for example, fires, floods, plant diseases, and insect pests and human activities (for example, deforestation and urbanisation will disturb this pattern and cause a relatively profound change on the Earth’s surface. These events are usually referred to as disturbances. However, disturbances in ecosystems are not easy to detect from SITS data, because SITS contain combined information on disturbances, phenological variations and noise in remote sensing data. In this paper, a novel framework is proposed for online disturbance detection from SITS. The framework is based on long short-term memory (LSTM networks. First, LSTM networks are trained by historical SITS. The trained LSTM networks are then used to predict new time series data. Last, the predicted data are compared with real data, and the noticeable deviations reveal disturbances. Experimental results using 16-day compositions of the moderate resolution imaging spectroradiometer (MOD13Q1 illustrate the effectiveness and stability of the proposed approach for online disturbance detection.

  13. Impacts of climate change on electricity network business

    International Nuclear Information System (INIS)

    Auvinen, O.; Martikainen, A.

    2006-01-01

    In this project the impact of climate change on electricity network business was study. The results are based on RCAO climate model scenarios. The climate predictions were composed to the period 2016- 2045. The period 1960-1990 was used as a control period. The climate predictions were composed for precipitation, temperature, hoarfrost, thunder, ground frost and wind. Impacts of the change of the climate variables on electricity network business were estimated from technical and economical points of view. It is expected that climate change will cause more damages than benefits on the electricity network business. The increase of the number of network faults will be the most significant and demanding disadvantage caused by climate change in distribution network. If networks are not improved to be more resistant for faults, then thunder, heavy snow and wind cause more damages especially to overhead lines in medium voltage network. Increasing precipitation and decreasing amount of ground frost weaken the strength of soil. The construction work will be more difficult with the present vehicles because wet and unfrozen ground can not carry heavy vehicles. As a consequence of increasing temperature, the demand of heating energy will decrease and the demand of cooling energy will increase. This is significant for the electricity consumption and the peak load of temperature-dependent electricity users. (orig.)

  14. Epigenetic changes detected in micropropagated hop plants.

    Science.gov (United States)

    Peredo, Elena L; Arroyo-García, Rosa; Revilla, M Angeles

    2009-07-01

    Micropropagation is a widely used technique in hops (Humulus lupulus L.). However, to the best of our knowledge, the genetic and epigenetic stability of the microplants has never been tested before. In the present study, two hop accessions were established in vitro and micropropagated for 2 years. The genetic and epigenetic stability of the in vitro plants was analyzed with several molecular techniques: random amplified DNA polymorphism (RAPD), retrotransposon microsatellite amplified polymorphism (REMAP), and methylation-sensitive amplification polymorphism (MSAP). No genetic variation among control and treated plants was found, even after 12 cycles of micropropagation. Epigenetic variation was detected, first, when field and in vitro samples were compared. Nearly a 30% of the detected fragments presented the same pattern of alterations in all the vitroplants. Second, lower levels of epigenetic variation were detected among plants from the different subcultures. Part of this detected variation seemed to be accumulated along the 12 sequential subcultures tested.

  15. Activity Level Change Detection for Persistent Surveillance

    National Research Council Canada - National Science Library

    Liu, F; Bush, L. A

    2004-01-01

    .... Instead of traditional target tracking, this approach utilizes GMTI data as moving spots on the ground to estimate the level of activities and detect unusual activities such as military deployments...

  16. Detecting Holocene changes in thermohaline circulation

    OpenAIRE

    Keigwin, L. D.; Boyle, E. A.

    2000-01-01

    Throughout the last glacial cycle, reorganizations of deep ocean water masses were coincident with rapid millennial-scale changes in climate. Climate changes have been less severe during the present interglacial, but evidence for concurrent deep ocean circulation change is ambiguous.

  17. Change Detection in Naturalistic Pictures among Children with Autism

    Science.gov (United States)

    Burack, Jacob A.; Joseph, Shari; Russo, Natalie; Shore, David I.; Porporino, Mafalda; Enns, James T.

    2009-01-01

    Persons with autism often show strong reactions to changes in the environment, suggesting that they may detect changes more efficiently than typically developing (TD) persons. However, Fletcher-Watson et al. (Br J Psychol 97:537-554, 2006) reported no differences between adults with autism and TD adults with a change-detection task. In this study,…

  18. Real-time change detection for countering improvised explosive devices

    NARCIS (Netherlands)

    Wouw, van de D.W.J.M.; Rens, van K.; Lint, van R.H.; Jaspers, Egbert; With, de P.H.N.; Loce, R.P.; Saber, E.

    2014-01-01

    We explore an automatic real-time change detection system to assist military personnel during transport and surveillance, by detection changes in the environment with respect to a previous operation. Such changes may indicate the presence of Improvised Explosive Devices (IEDs), which can then be

  19. The role of iconic memory in change-detection tasks.

    Science.gov (United States)

    Becker, M W; Pashler, H; Anstis, S M

    2000-01-01

    In three experiments, subjects attempted to detect the change of a single item in a visually presented array of items. Subjects' ability to detect a change was greatly reduced if a blank interstimulus interval (ISI) was inserted between the original array and an array in which one item had changed ('change blindness'). However, change detection improved when the location of the change was cued during the blank ISI. This suggests that people represent more information of a scene than change blindness might suggest. We test two possible hypotheses why, in the absence of a cue, this representation fails to produce good change detection. The first claims that the intervening events employed to create change blindness result in multiple neural transients which co-occur with the to-be-detected change. Poor detection rates occur because a serial search of all the transient locations is required to detect the change, during which time the representation of the original scene fades. The second claims that the occurrence of the second frame overwrites the representation of the first frame, unless that information is insulated against overwriting by attention. The results support the second hypothesis. We conclude that people may have a fairly rich visual representation of a scene while the scene is present, but fail to detect changes because they lack the ability to simultaneously represent two complete visual representations.

  20. Cyber-Physical Trade-Offs in Distributed Detection Networks

    International Nuclear Information System (INIS)

    Rao, Nageswara S.; Yao, David K.Y.; Chin, J.C.; Ma, Chris Y.T.; Madan, Rabinder

    2010-01-01

    We consider a network of sensors that measure the scalar intensity due to the background or a source combined with background, inside a two-dimensional monitoring area. The sensor measurements may be random due to the underlying nature of the source and background or due to sensor errors or both. The detection problem is to infer the presence of a source of unknown intensity and location based on sensor measurements. In the conventional approach, detection decisions are made at the individual sensors, which are then combined at the fusion center, for example using the majority rule. With increased communication and computation costs, we show that a more complex fusion algorithm based on measurements achieves better detection performance under smooth and non-smooth source intensity functions, Lipschitz conditions on probability ratios and a minimum packing number for the state-space. We show that these conditions for trade-offs between the cyber costs and physical detection performance are applicable for two detection problems: (i) point radiation sources amidst background radiation, and (ii) sources and background with Gaussian distributions.

  1. Cellular neural networks for motion estimation and obstacle detection

    Directory of Open Access Journals (Sweden)

    D. Feiden

    2003-01-01

    Full Text Available Obstacle detection is an important part of Video Processing because it is indispensable for a collision prevention of autonomously navigating moving objects. For example, vehicles driving without human guidance need a robust prediction of potential obstacles, like other vehicles or pedestrians. Most of the common approaches of obstacle detection so far use analytical and statistical methods like motion estimation or generation of maps. In the first part of this contribution a statistical algorithm for obstacle detection in monocular video sequences is presented. The proposed procedure is based on a motion estimation and a planar world model which is appropriate to traffic scenes. The different processing steps of the statistical procedure are a feature extraction, a subsequent displacement vector estimation and a robust estimation of the motion parameters. Since the proposed procedure is composed of several processing steps, the error propagation of the successive steps often leads to inaccurate results. In the second part of this contribution it is demonstrated, that the above mentioned problems can be efficiently overcome by using Cellular Neural Networks (CNN. It will be shown, that a direct obstacle detection algorithm can be easily performed, based only on CNN processing of the input images. Beside the enormous computing power of programmable CNN based devices, the proposed method is also very robust in comparison to the statistical method, because is shows much less sensibility to noisy inputs. Using the proposed approach of obstacle detection in planar worlds, a real time processing of large input images has been made possible.

  2. Seismic network based detection, classification and location of volcanic tremors

    Science.gov (United States)

    Nikolai, S.; Soubestre, J.; Seydoux, L.; de Rosny, J.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    Volcanic tremors constitute an important attribute of volcanic unrest in many volcanoes, and their detection and characterization is a challenging issue of volcano monitoring. The main goal of the present work is to develop a network-based method to automatically classify volcanic tremors, to locate their sources and to estimate the associated wave speed. The method is applied to four and a half years of seismic data continuously recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group (KVG) in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. The method is based on the analysis of eigenvalues and eigenvectors of the daily array covariance matrix. As a first step, following Seydoux et al. (2016), most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. With this approach, the volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the array covariance matrix's first eigenvectors computed every day. The main hypothesis of our analysis is that these eigenvectors represent the principal component of the daily seismic wavefield and, for days with tremor activity, characterize the dominant tremor sources. Those first eigenvectors can therefore be used as network-based fingerprints of tremor sources. A clustering process is developed to analyze this collection of first eigenvectors, using correlation coefficient as a measure of their similarity. Then, we locate tremor sources based on cross-correlations amplitudes. We characterize seven tremor sources associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge, is fully automatic and the database of network-based tremor fingerprints

  3. Sustained change blindness to incremental scene rotation: a dissociation between explicit change detection and visual memory.

    Science.gov (United States)

    Hollingworth, Andrew; Henderson, John M

    2004-07-01

    In a change detection paradigm, the global orientation of a natural scene was incrementally changed in 1 degree intervals. In Experiments 1 and 2, participants demonstrated sustained change blindness to incremental rotation, often coming to consider a significantly different scene viewpoint as an unchanged continuation of the original view. Experiment 3 showed that participants who failed to detect the incremental rotation nevertheless reliably detected a single-step rotation back to the initial view. Together, these results demonstrate an important dissociation between explicit change detection and visual memory. Following a change, visual memory is updated to reflect the changed state of the environment, even if the change was not detected.

  4. Real-time method for establishing a detection map for a network of sensors

    Science.gov (United States)

    Nguyen, Hung D; Koch, Mark W; Giron, Casey; Rondeau, Daniel M; Russell, John L

    2012-09-11

    A method for establishing a detection map of a dynamically configurable sensor network. This method determines an appropriate set of locations for a plurality of sensor units of a sensor network and establishes a detection map for the network of sensors while the network is being set up; the detection map includes the effects of the local terrain and individual sensor performance. Sensor performance is characterized during the placement of the sensor units, which enables dynamic adjustment or reconfiguration of the placement of individual elements of the sensor network during network set-up to accommodate variations in local terrain and individual sensor performance. The reconfiguration of the network during initial set-up to accommodate deviations from idealized individual sensor detection zones improves the effectiveness of the sensor network in detecting activities at a detection perimeter and can provide the desired sensor coverage of an area while minimizing unintentional gaps in coverage.

  5. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    Science.gov (United States)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community

  6. Illumination Invariant Change Detection (iicd): from Earth to Mars

    Science.gov (United States)

    Wan, X.; Liu, J.; Qin, M.; Li, S. Y.

    2018-04-01

    Multi-temporal Earth Observation and Mars orbital imagery data with frequent repeat coverage provide great capability for planetary surface change detection. When comparing two images taken at different times of day or in different seasons for change detection, the variation of topographic shades and shadows caused by the change of sunlight angle can be so significant that it overwhelms the real object and environmental changes, making automatic detection unreliable. An effective change detection algorithm therefore has to be robust to the illumination variation. This paper presents our research on developing and testing an Illumination Invariant Change Detection (IICD) method based on the robustness of phase correlation (PC) to the variation of solar illumination for image matching. The IICD is based on two key functions: i) initial change detection based on a saliency map derived from pixel-wise dense PC matching and ii) change quantization which combines change type identification, motion estimation and precise appearance change identification. Experiment using multi-temporal Landsat 7 ETM+ satellite images, Rapid eye satellite images and Mars HiRiSE images demonstrate that our frequency based image matching method can reach sub-pixel accuracy and thus the proposed IICD method can effectively detect and precisely segment large scale change such as landslide as well as small object change such as Mars rover, under daily and seasonal sunlight changes.

  7. A complex network based model for detecting isolated communities in water distribution networks

    Science.gov (United States)

    Sheng, Nan; Jia, Youwei; Xu, Zhao; Ho, Siu-Lau; Wai Kan, Chi

    2013-12-01

    Water distribution network (WDN) is a typical real-world complex network of major infrastructure that plays an important role in human's daily life. In this paper, we explore the formation of isolated communities in WDN based on complex network theory. A graph-algebraic model is proposed to effectively detect the potential communities due to pipeline failures. This model can properly illustrate the connectivity and evolution of WDN during different stages of contingency events, and identify the emerging isolated communities through spectral analysis on Laplacian matrix. A case study on a practical urban WDN in China is conducted, and the consistency between the simulation results and the historical data are reported to showcase the feasibility and effectiveness of the proposed model.

  8. Sensitive change detection for remote sensing monitoring of nuclear treaties

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg; Schlittenhardt, Jörg

    2005-01-01

    change is a commonplace application in remote sensing, the detection of anthropogenic changes associated with nuclear activities, whether declared or clandestine, presents a difficult challenge. It is necessary to discriminate subtle, often weak signals of interest on a background of irrelevant...... in multispectral, bitemporal image data: New approaches to change detection studies, Remote Sens. Environ. 64(1), 1998, pp. 1--19. Nielsen, A. A., Iteratively re-weighted multivariate alteration detection in multi- and hyperspectral data, to be published....

  9. Cellular Neural Network-Based Methods for Distributed Network Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2015-01-01

    Full Text Available According to the problems of current distributed architecture intrusion detection systems (DIDS, a new online distributed intrusion detection model based on cellular neural network (CNN was proposed, in which discrete-time CNN (DTCNN was used as weak classifier in each local node and state-controlled CNN (SCCNN was used as global detection method, respectively. We further proposed a new method for design template parameters of SCCNN via solving Linear Matrix Inequality. Experimental results based on KDD CUP 99 dataset show its feasibility and effectiveness. Emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation which allows the distributed intrusion detection to be performed better.

  10. Changing Network Support for Drinking: Network Support Project 2-Year Follow-up

    Science.gov (United States)

    Litt, Mark D.; Kadden, Ronald M.; Kabela-Cormier, Elise; Petry, Nancy M.

    2009-01-01

    The Network Support Project was designed to determine whether a treatment could lead patients to change their social network from one that supports drinking to one that supports sobriety. This study reports 2-year posttreatment outcomes. Alcohol-dependent men and women (N = 210) were randomly assigned to 1 of 3 outpatient treatment conditions:…

  11. Kernel principal component analysis for change detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Morton, J.C.

    2008-01-01

    region acquired at two different time points. If change over time does not dominate the scene, the projection of the original two bands onto the second eigenvector will show change over time. In this paper a kernel version of PCA is used to carry out the analysis. Unlike ordinary PCA, kernel PCA...... with a Gaussian kernel successfully finds the change observations in a case where nonlinearities are introduced artificially....

  12. A dual-process account of auditory change detection.

    Science.gov (United States)

    McAnally, Ken I; Martin, Russell L; Eramudugolla, Ranmalee; Stuart, Geoffrey W; Irvine, Dexter R F; Mattingley, Jason B

    2010-08-01

    Listeners can be "deaf" to a substantial change in a scene comprising multiple auditory objects unless their attention has been directed to the changed object. It is unclear whether auditory change detection relies on identification of the objects in pre- and post-change scenes. We compared the rates at which listeners correctly identify changed objects with those predicted by change-detection models based on signal detection theory (SDT) and high-threshold theory (HTT). Detected changes were not identified as accurately as predicted by models based on either theory, suggesting that some changes are detected by a process that does not support change identification. Undetected changes were identified as accurately as predicted by the HTT model but much less accurately than predicted by the SDT models. The process underlying change detection was investigated further by determining receiver-operating characteristics (ROCs). ROCs did not conform to those predicted by either a SDT or a HTT model but were well modeled by a dual-process that incorporated HTT and SDT components. The dual-process model also accurately predicted the rates at which detected and undetected changes were correctly identified.

  13. Early grey matter changes in structural covariance networks in Huntington's disease.

    Science.gov (United States)

    Coppen, Emma M; van der Grond, Jeroen; Hafkemeijer, Anne; Rombouts, Serge A R B; Roos, Raymund A C

    2016-01-01

    Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neurodegenerative disorder. Less is known about the occurrence and cohesion of whole brain grey matter changes in HD. We aimed to detect network integrity changes in grey matter structural covariance networks and examined relationships with clinical assessments. Structural magnetic resonance imaging data of premanifest HD ( n  = 30), HD patients (n = 30) and controls (n = 30) was used to identify ten structural covariance networks based on a novel technique using the co-variation of grey matter with independent component analysis in FSL. Group differences were studied controlling for age and gender. To explore whether our approach is effective in examining grey matter changes, regional voxel-based analysis was additionally performed. Premanifest HD and HD patients showed decreased network integrity in two networks compared to controls. One network included the caudate nucleus, precuneous and anterior cingulate cortex (in HD p  covariance might be a sensitive approach to reveal early grey matter changes, especially for premanifest HD.

  14. A Recurrent Neural Network Approach to Rear Vehicle Detection Which Considered State Dependency

    Directory of Open Access Journals (Sweden)

    Kayichirou Inagaki

    2003-08-01

    Full Text Available Experimental vision-based detection often fails in cases when the acquired image quality is reduced by changing optical environments. In addition, the shape of vehicles in images that are taken from vision sensors change due to approaches by vehicle. Vehicle detection methods are required to perform successfully under these conditions. However, the conventional methods do not consider especially in rapidly varying by brightness conditions. We suggest a new detection method that compensates for those conditions in monocular vision-based vehicle detection. The suggested method employs a Recurrent Neural Network (RNN, which has been applied for spatiotemporal processing. The RNN is able to respond to consecutive scenes involving the target vehicle and can track the movements of the target by the effect of the past network states. The suggested method has a particularly beneficial effect in environments with sudden, extreme variations such as bright sunlight and shield. Finally, we demonstrate effectiveness by state-dependent of the RNN-based method by comparing its detection results with those of a Multi Layered Perceptron (MLP.

  15. Community detection, link prediction, and layer interdependence in multilayer networks

    Science.gov (United States)

    De Bacco, Caterina; Power, Eleanor A.; Larremore, Daniel B.; Moore, Cristopher

    2017-04-01

    Complex systems are often characterized by distinct types of interactions between the same entities. These can be described as a multilayer network where each layer represents one type of interaction. These layers may be interdependent in complicated ways, revealing different kinds of structure in the network. In this work we present a generative model, and an efficient expectation-maximization algorithm, which allows us to perform inference tasks such as community detection and link prediction in this setting. Our model assumes overlapping communities that are common between the layers, while allowing these communities to affect each layer in a different way, including arbitrary mixtures of assortative, disassortative, or directed structure. It also gives us a mathematically principled way to define the interdependence between layers, by measuring how much information about one layer helps us predict links in another layer. In particular, this allows us to bundle layers together to compress redundant information and identify small groups of layers which suffice to predict the remaining layers accurately. We illustrate these findings by analyzing synthetic data and two real multilayer networks, one representing social support relationships among villagers in South India and the other representing shared genetic substring material between genes of the malaria parasite.

  16. Neonatal Seizure Detection Using Deep Convolutional Neural Networks.

    Science.gov (United States)

    Ansari, Amir H; Cherian, Perumpillichira J; Caicedo, Alexander; Naulaers, Gunnar; De Vos, Maarten; Van Huffel, Sabine

    2018-04-02

    Identifying a core set of features is one of the most important steps in the development of an automated seizure detector. In most of the published studies describing features and seizure classifiers, the features were hand-engineered, which may not be optimal. The main goal of the present paper is using deep convolutional neural networks (CNNs) and random forest to automatically optimize feature selection and classification. The input of the proposed classifier is raw multi-channel EEG and the output is the class label: seizure/nonseizure. By training this network, the required features are optimized, while fitting a nonlinear classifier on the features. After training the network with EEG recordings of 26 neonates, five end layers performing the classification were replaced with a random forest classifier in order to improve the performance. This resulted in a false alarm rate of 0.9 per hour and seizure detection rate of 77% using a test set of EEG recordings of 22 neonates that also included dubious seizures. The newly proposed CNN classifier outperformed three data-driven feature-based approaches and performed similar to a previously developed heuristic method.

  17. Protecting Clock Synchronization: Adversary Detection through Network Monitoring

    Directory of Open Access Journals (Sweden)

    Elena Lisova

    2016-01-01

    Full Text Available Nowadays, industrial networks are often used for safety-critical applications with real-time requirements. Such applications usually have a time-triggered nature with message scheduling as a core property. Scheduling requires nodes to share the same notion of time, that is, to be synchronized. Therefore, clock synchronization is a fundamental asset in real-time networks. However, since typical standards for clock synchronization, for example, IEEE 1588, do not provide the required level of security, it raises the question of clock synchronization protection. In this paper, we identify a way to break synchronization based on the IEEE 1588 standard, by conducting a man-in-the-middle (MIM attack followed by a delay attack. A MIM attack can be accomplished through, for example, Address Resolution Protocol (ARP poisoning. Using the AVISPA tool, we evaluate the potential to perform a delay attack using ARP poisoning and analyze its consequences showing both that the attack can, indeed, break clock synchronization and that some design choices, such as a relaxed synchronization condition mode, delay bounding, and using knowledge of environmental conditions, can make the network more robust/resilient against these kinds of attacks. Lastly, a Configuration Agent is proposed to monitor and detect anomalies introduced by an adversary performing attacks targeting clock synchronization.

  18. Transcriptome and network changes in climbers at extreme altitudes.

    Directory of Open Access Journals (Sweden)

    Fang Chen

    Full Text Available Extreme altitude can induce a range of cellular and systemic responses. Although it is known that hypoxia underlies the major changes and that the physiological responses include hemodynamic changes and erythropoiesis, the molecular mechanisms and signaling pathways mediating such changes are largely unknown. To obtain a more complete picture of the transcriptional regulatory landscape and networks involved in extreme altitude response, we followed four climbers on an expedition up Mount Xixiabangma (8,012 m, and collected blood samples at four stages during the climb for mRNA and miRNA expression assays. By analyzing dynamic changes of gene networks in response to extreme altitudes, we uncovered a highly modular network with 7 modules of various functions that changed in response to extreme altitudes. The erythrocyte differentiation module is the most prominently up-regulated, reflecting increased erythrocyte differentiation from hematopoietic stem cells, probably at the expense of differentiation into other cell lineages. These changes are accompanied by coordinated down-regulation of general translation. Network topology and flow analyses also uncovered regulators known to modulate hypoxia responses and erythrocyte development, as well as unknown regulators, such as the OCT4 gene, an important regulator in stem cells and assumed to only function in stem cells. We predicted computationally and validated experimentally that increased OCT4 expression at extreme altitude can directly elevate the expression of hemoglobin genes. Our approach established a new framework for analyzing the transcriptional regulatory network from a very limited number of samples.

  19. Convolution neural-network-based detection of lung structures

    Science.gov (United States)

    Hasegawa, Akira; Lo, Shih-Chung B.; Freedman, Matthew T.; Mun, Seong K.

    1994-05-01

    Chest radiography is one of the most primary and widely used techniques in diagnostic imaging. Nowadays with the advent of digital radiology, the digital medical image processing techniques for digital chest radiographs have attracted considerable attention, and several studies on the computer-aided diagnosis (CADx) as well as on the conventional image processing techniques for chest radiographs have been reported. In the automatic diagnostic process for chest radiographs, it is important to outline the areas of the lungs, the heart, and the diaphragm. This is because the original chest radiograph is composed of important anatomic structures and, without knowing exact positions of the organs, the automatic diagnosis may result in unexpected detections. The automatic extraction of an anatomical structure from digital chest radiographs can be a useful tool for (1) the evaluation of heart size, (2) automatic detection of interstitial lung diseases, (3) automatic detection of lung nodules, and (4) data compression, etc. Based on the clearly defined boundaries of heart area, rib spaces, rib positions, and rib cage extracted, one should be able to use this information to facilitate the tasks of the CADx on chest radiographs. In this paper, we present an automatic scheme for the detection of lung field from chest radiographs by using a shift-invariant convolution neural network. A novel algorithm for smoothing boundaries of lungs is also presented.

  20. Vision-Based Fall Detection with Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Adrián Núñez-Marcos

    2017-01-01

    Full Text Available One of the biggest challenges in modern societies is the improvement of healthy aging and the support to older persons in their daily activities. In particular, given its social and economic impact, the automatic detection of falls has attracted considerable attention in the computer vision and pattern recognition communities. Although the approaches based on wearable sensors have provided high detection rates, some of the potential users are reluctant to wear them and thus their use is not yet normalized. As a consequence, alternative approaches such as vision-based methods have emerged. We firmly believe that the irruption of the Smart Environments and the Internet of Things paradigms, together with the increasing number of cameras in our daily environment, forms an optimal context for vision-based systems. Consequently, here we propose a vision-based solution using Convolutional Neural Networks to decide if a sequence of frames contains a person falling. To model the video motion and make the system scenario independent, we use optical flow images as input to the networks followed by a novel three-step training phase. Furthermore, our method is evaluated in three public datasets achieving the state-of-the-art results in all three of them.

  1. A Novel Congestion Detection Scheme in TCP Over OBS Networks

    KAUST Repository

    Shihada, Basem

    2009-02-01

    This paper introduces a novel congestion detection scheme for high-bandwidth TCP flows over optical burst switching (OBS) networks, called statistical additive increase multiplicative decrease (SAIMD). SAIMD maintains and analyzes a number of previous round-trip time (RTTs) at the TCP senders in order to identify the confidence with which a packet loss event is due to network congestion. The confidence is derived by positioning short-term RTT in the spectrum of long-term historical RTTs. The derived confidence corresponding to the packet loss is then taken in the developed policy for TCP congestion window adjustment. We will show through extensive simulation that the proposed scheme can effectively solve the false congestion detection problem and significantly outperform the conventional TCP counterparts without losing fairness. The advantages gained in our scheme are at the expense of introducing more overhead in the SAIMD TCP senders. Based on the proposed congestion control algorithm, a throughput model is formulated, and is further verified by simulation results.

  2. Aggregated channels network for real-time pedestrian detection

    Science.gov (United States)

    Ghorban, Farzin; Marín, Javier; Su, Yu; Colombo, Alessandro; Kummert, Anton

    2018-04-01

    Convolutional neural networks (CNNs) have demonstrated their superiority in numerous computer vision tasks, yet their computational cost results prohibitive for many real-time applications such as pedestrian detection which is usually performed on low-consumption hardware. In order to alleviate this drawback, most strategies focus on using a two-stage cascade approach. Essentially, in the first stage a fast method generates a significant but reduced amount of high quality proposals that later, in the second stage, are evaluated by the CNN. In this work, we propose a novel detection pipeline that further benefits from the two-stage cascade strategy. More concretely, the enriched and subsequently compressed features used in the first stage are reused as the CNN input. As a consequence, a simpler network architecture, adapted for such small input sizes, allows to achieve real-time performance and obtain results close to the state-of-the-art while running significantly faster without the use of GPU. In particular, considering that the proposed pipeline runs in frame rate, the achieved performance is highly competitive. We furthermore demonstrate that the proposed pipeline on itself can serve as an effective proposal generator.

  3. Higher Education Change and Social Networks: A Review of Research

    Science.gov (United States)

    Kezar, Adrianna

    2014-01-01

    This article reviews literature on the potential for understanding higher education change processes through social network analysis (SNA). In this article, the main tenets of SNA are reviewed and, in conjunction with organizational theory, are applied to higher education change to develop a set of hypotheses that can be tested in future research.

  4. Detecting Change-Point via Saddlepoint Approximations

    Institute of Scientific and Technical Information of China (English)

    Zhaoyuan LI; Maozai TIAN

    2017-01-01

    It's well-known that change-point problem is an important part of model statistical analysis.Most of the existing methods are not robust to criteria of the evaluation of change-point problem.In this article,we consider "mean-shift" problem in change-point studies.A quantile test of single quantile is proposed based on saddlepoint approximation method.In order to utilize the information at different quantile of the sequence,we further construct a "composite quantile test" to calculate the probability of every location of the sequence to be a change-point.The location of change-point can be pinpointed rather than estimated within a interval.The proposed tests make no assumptions about the functional forms of the sequence distribution and work sensitively on both large and small size samples,the case of change-point in the tails,and multiple change-points situation.The good performances of the tests are confirmed by simulations and real data analysis.The saddlepoint approximation based distribution of the test statistic that is developed in the paper is of independent interest and appealing.This finding may be of independent interest to the readers in this research area.

  5. Probabilistic monitoring in intrusion detection module for energy efficiency in mobile ad hoc networks

    Science.gov (United States)

    De Rango, Floriano; Lupia, Andrea

    2016-05-01

    MANETs allow mobile nodes communicating to each other using the wireless medium. A key aspect of these kind of networks is the security, because their setup is done without an infrastructure, so external nodes could interfere in the communication. Mobile nodes could be compromised, misbehaving during the multi-hop transmission of data, or they could have a selfish behavior to save energy, which is another important constraint in MANETs. The detection of these behaviors need a framework that takes into account the latest interactions among nodes, so malicious or selfish nodes could be detected also if their behavior is changed over time. The monitoring activity increases the energy consumption, so our proposal takes into account this issue reducing the energy required by the monitoring system, keeping the effectiveness of the intrusion detection system. The results show an improvement in the saved energy, improving the detection performance too.

  6. Changes of hierarchical network in local and world stock market

    Science.gov (United States)

    Patwary, Enayet Ullah; Lee, Jong Youl; Nobi, Ashadun; Kim, Doo Hwan; Lee, Jae Woo

    2017-10-01

    We consider the cross-correlation coefficients of the daily returns in the local and global stock markets. We generate the minimal spanning tree (MST) using the correlation matrix. We observe that the MSTs change their structure from chain-like networks to star-like networks during periods of market uncertainty. We quantify the measure of the hierarchical network utilizing the value of the hierarchy measured by the hierarchical path. The hierarchy and betweenness centrality characterize the state of the market regarding the impact of crises. During crises, the non-financial company is established as the central node of the MST. However, before the crisis and during stable periods, the financial company is occupying the central node of the MST in the Korean and the U.S. stock markets. The changes in the network structure and the central node are good indicators of an upcoming crisis.

  7. Explicit behavioral detection of visual changes develops without their implicit neurophysiological detectability

    Directory of Open Access Journals (Sweden)

    Pessi eLyyra

    2012-03-01

    Full Text Available Change blindness is a failure of explicitly detecting changes between consecutively presented images when separated, e.g., by a brief blank screen. There is a growing body of evidence of implicit detection of even explicitly undetectable changes, pointing to the possibility of the implicit change detection as a prerequisite for its explicit counterpart. We recorded event-related potentials (ERPs of the electroencephalography in adults during an oddball-variant of change blindness flicker paradigm. In this variant, rare pictures with a change were interspersed with frequent pictures with no change. In separate stimulus blocks, the blank screen between the change and no-change picture was either of 100 ms or 500 ms in duration. In both stimulus conditions the participants eventually explicitly detect the changed pictures, the blank screen of the longer duration only requiring in average 10 % longer exposure to the picture series until the ability emerged. However, during the change blindness, ERPs were displaced towards negative polarity at 200–260 ms after the stimulus onset (visual mismatch negativity only with the blank screens of the shorter ISI. Our finding of ‘implicit change blindness’ for pictorial material that, nevertheless, successfully prepares the visual system for explicit change detection suggests that implicit change detection may not be a necessary condition for explicit change detection and that they may recruit at least partially distinct memory mechanisms.

  8. Appling a Novel Cost Function to Hopfield Neural Network for Defects Boundaries Detection of Wood Image

    Directory of Open Access Journals (Sweden)

    Qi Dawei

    2010-01-01

    Full Text Available A modified Hopfield neural network with a novel cost function was presented for detecting wood defects boundary in the image. Different from traditional methods, the boundary detection problem in this paper was formulated as an optimization process that sought the boundary points to minimize a cost function. An initial boundary was estimated by Canny algorithm first. The pixel gray value was described as a neuron state of Hopfield neural network. The state updated till the cost function touches the minimum value. The designed cost function ensured that few neurons were activated except the neurons corresponding to actual boundary points and ensured that the activated neurons are positioned in the points which had greatest change in gray value. The tools of Matlab were used to implement the experiment. The results show that the noises of the image are effectively removed, and our method obtains more noiseless and vivid boundary than those of the traditional methods.

  9. Using Hybrid Algorithm to Improve Intrusion Detection in Multi Layer Feed Forward Neural Networks

    Science.gov (United States)

    Ray, Loye Lynn

    2014-01-01

    The need for detecting malicious behavior on a computer networks continued to be important to maintaining a safe and secure environment. The purpose of this study was to determine the relationship of multilayer feed forward neural network architecture to the ability of detecting abnormal behavior in networks. This involved building, training, and…

  10. How has climate change altered network connectivity in a mountain stream network?

    Science.gov (United States)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.; Johnson, S.

    2017-12-01

    Connectivity along river networks is broadly recognized as dynamic, with seasonal and event-based expansion and contraction of the network extent. Intermittently flowing streams are particularly important as they define a crucial threshold for continuously connected waters that enable migration by aquatic species. In the Pacific northwestern U.S., changes in atmospheric circulation have been found to alter rainfall patterns and result in decreased summer low-flows in the region. However, the impact of this climate dynamic on network connectivity is heretofore unstudied. Thus, we ask: How has connectivity in the riparian corridor changed in response to observed changes in climate? In this study we take the well-studied H.J. Andrews Experimental Forest as representative of mountain river networks in the Pacific northwestern U.S. First, we analyze 63 years of stream gauge information from a network of 11 gauges to document observed changes in timing and magnitude of stream discharge. We found declining magnitudes of seasonal low-flows and shifting seasonality of water export from the catchment, both of which we attribute to changes in precipitation timing and storage as snow vs. rainfall. Next, we use these discharge data to drive a reduced-complexity model of the river network to simulate network connectivity over 63 years. Model results show that network contraction (i.e., minimum network extent) has decreased over the past 63 years. Unexpectedly, the increasing winter peak flows did not correspond with increasing network expansion, suggesting a geologic control on maximum flowing network extent. We find dynamic expansion and contraction of the network primarily occurs during period of catchment discharge less than about 1 m3/s at the outlet, whereas the network extent is generally constant for discharges from 1 to 300 m3/s. Results of our study are of interest to scientists focused on connectivity as a control on ecological processes both directly (e.g., fish

  11. A Typology to Explain Changing Social Networks Post Stroke.

    Science.gov (United States)

    Northcott, Sarah; Hirani, Shashivadan P; Hilari, Katerina

    2018-05-08

    Social network typologies have been used to classify the general population but have not previously been applied to the stroke population. This study investigated whether social network types remain stable following a stroke, and if not, why some people shift network type. We used a mixed methods design. Participants were recruited from two acute stroke units. They completed the Stroke Social Network Scale (SSNS) two weeks and six months post stroke and in-depth interviews 8-15 months following the stroke. Qualitative data was analysed using Framework Analysis; k-means cluster analysis was applied to the six-month data set. Eighty-seven participants were recruited, 71 were followed up at six months, and 29 completed in-depth interviews. It was possible to classify all 29 participants into one of the following network types both prestroke and post stroke: diverse; friends-based; family-based; restricted-supported; restricted-unsupported. The main shift that took place post stroke was participants moving out of a diverse network into a family-based one. The friends-based network type was relatively stable. Two network types became more populated post stroke: restricted-unsupported and family-based. Triangulatory evidence was provided by k-means cluster analysis, which produced a cluster solution (for n = 71) with comparable characteristics to the network types derived from qualitative analysis. Following a stroke, a person's social network is vulnerable to change. Explanatory factors for shifting network type included the physical and also psychological impact of having a stroke, as well as the tendency to lose contact with friends rather than family.

  12. Specializing network analysis to detect anomalous insider actions

    Science.gov (United States)

    Chen, You; Nyemba, Steve; Zhang, Wen; Malin, Bradley

    2012-01-01

    Collaborative information systems (CIS) enable users to coordinate efficiently over shared tasks in complex distributed environments. For flexibility, they provide users with broad access privileges, which, as a side-effect, leave such systems vulnerable to various attacks. Some of the more damaging malicious activities stem from internal misuse, where users are authorized to access system resources. A promising class of insider threat detection models for CIS focuses on mining access patterns from audit logs, however, current models are limited in that they assume organizations have significant resources to generate label cases for training classifiers or assume the user has committed a large number of actions that deviate from “normal” behavior. In lieu of the previous assumptions, we introduce an approach that detects when specific actions of an insider deviate from expectation in the context of collaborative behavior. Specifically, in this paper, we introduce a specialized network anomaly detection model, or SNAD, to detect such events. This approach assesses the extent to which a user influences the similarity of the group of users that access a particular record in the CIS. From a theoretical perspective, we show that the proposed model is appropriate for detecting insider actions in dynamic collaborative systems. From an empirical perspective, we perform an extensive evaluation of SNAD with the access logs of two distinct environments: the patient record access logs a large electronic health record system (6,015 users, 130,457 patients and 1,327,500 accesses) and the editing logs of Wikipedia (2,394,385 revisors, 55,200 articles and 6,482,780 revisions). We compare our model with several competing methods and demonstrate SNAD is significantly more effective: on average it achieves 20–30% greater area under an ROC curve. PMID:23399988

  13. Stochastic Change Detection based on an Active Fault Diagnosis Approach

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2007-01-01

    The focus in this paper is on stochastic change detection applied in connection with active fault diagnosis (AFD). An auxiliary input signal is applied in AFD. This signal injection in the system will in general allow to obtain a fast change detection/isolation by considering the output or an err...

  14. Unsupervised Speaker Change Detection for Broadcast News Segmentation

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Winther; Mølgaard, Lasse Lohilahti; Hansen, Lars Kai

    2006-01-01

    This paper presents a speaker change detection system for news broadcast segmentation based on a vector quantization (VQ) approach. The system does not make any assumption about the number of speakers or speaker identity. The system uses mel frequency cepstral coefficients and change detection...

  15. Regularisation in multi- and hyperspectral remote sensing change detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2005-01-01

    Change detection methods for multi- and hypervariate data look for differences in data acquired over the same area at different points in time. These differences may be due to noise or differences in (atmospheric etc.) conditions at the two acquisition time points. To prevent a change detection m...

  16. Modern Adaptive Analytics Approach to Lowering Seismic Network Detection Thresholds

    Science.gov (United States)

    Johnson, C. E.

    2017-12-01

    Modern seismic networks present a number of challenges, but perhaps most notably are those related to 1) extreme variation in station density, 2) temporal variation in station availability, and 3) the need to achieve detectability for much smaller events of strategic importance. The first of these has been reasonably addressed in the development of modern seismic associators, such as GLASS 3.0 by the USGS/NEIC, though some work still remains to be done in this area. However, the latter two challenges demand special attention. Station availability is impacted by weather, equipment failure or the adding or removing of stations, and while thresholds have been pushed to increasingly smaller magnitudes, new algorithms are needed to achieve even lower thresholds. Station availability can be addressed by a modern, adaptive architecture that maintains specified performance envelopes using adaptive analytics coupled with complexity theory. Finally, detection thresholds can be lowered using a novel approach that tightly couples waveform analytics with the event detection and association processes based on a principled repicking algorithm that uses particle realignment for enhanced phase discrimination.

  17. Unsupervised Condition Change Detection In Large Diesel Engines

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2003-01-01

    This paper presents a new method for unsupervised change detection which combines independent component modeling and probabilistic outlier etection. The method further provides a compact data representation, which is amenable to interpretation, i.e., the detected condition changes can be investig...... be investigated further. The method is successfully applied to unsupervised condition change detection in large diesel engines from acoustical emission sensor signal and compared to more classical techniques based on principal component analysis and Gaussian mixture models.......This paper presents a new method for unsupervised change detection which combines independent component modeling and probabilistic outlier etection. The method further provides a compact data representation, which is amenable to interpretation, i.e., the detected condition changes can...

  18. Detecting evolutionary forces in language change.

    Science.gov (United States)

    Newberry, Mitchell G; Ahern, Christopher A; Clark, Robin; Plotkin, Joshua B

    2017-11-09

    Both language and genes evolve by transmission over generations with opportunity for differential replication of forms. The understanding that gene frequencies change at random by genetic drift, even in the absence of natural selection, was a seminal advance in evolutionary biology. Stochastic drift must also occur in language as a result of randomness in how linguistic forms are copied between speakers. Here we quantify the strength of selection relative to stochastic drift in language evolution. We use time series derived from large corpora of annotated texts dating from the 12th to 21st centuries to analyse three well-known grammatical changes in English: the regularization of past-tense verbs, the introduction of the periphrastic 'do', and variation in verbal negation. We reject stochastic drift in favour of selection in some cases but not in others. In particular, we infer selection towards the irregular forms of some past-tense verbs, which is likely driven by changing frequencies of rhyming patterns over time. We show that stochastic drift is stronger for rare words, which may explain why rare forms are more prone to replacement than common ones. This work provides a method for testing selective theories of language change against a null model and reveals an underappreciated role for stochasticity in language evolution.

  19. Faulty node detection in wireless sensor networks using a recurrent neural network

    Science.gov (United States)

    Atiga, Jamila; Mbarki, Nour Elhouda; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    The wireless sensor networks (WSN) consist of a set of sensors that are more and more used in surveillance applications on a large scale in different areas: military, Environment, Health ... etc. Despite the minimization and the reduction of the manufacturing costs of the sensors, they can operate in places difficult to access without the possibility of reloading of battery, they generally have limited resources in terms of power of emission, of processing capacity, data storage and energy. These sensors can be used in a hostile environment, such as, for example, on a field of battle, in the presence of fires, floods, earthquakes. In these environments the sensors can fail, even in a normal operation. It is therefore necessary to develop algorithms tolerant and detection of defects of the nodes for the network of sensor without wires, therefore, the faults of the sensor can reduce the quality of the surveillance if they are not detected. The values that are measured by the sensors are used to estimate the state of the monitored area. We used the Non-linear Auto- Regressive with eXogeneous (NARX), the recursive architecture of the neural network, to predict the state of a node of a sensor from the previous values described by the functions of time series. The experimental results have verified that the prediction of the State is enhanced by our proposed model.

  20. Deep Recurrent Neural Networks for seizure detection and early seizure detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Talathi, S. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-05

    Epilepsy is common neurological diseases, affecting about 0.6-0.8 % of world population. Epileptic patients suffer from chronic unprovoked seizures, which can result in broad spectrum of debilitating medical and social consequences. Since seizures, in general, occur infrequently and are unpredictable, automated seizure detection systems are recommended to screen for seizures during long-term electroencephalogram (EEG) recordings. In addition, systems for early seizure detection can lead to the development of new types of intervention systems that are designed to control or shorten the duration of seizure events. In this article, we investigate the utility of recurrent neural networks (RNNs) in designing seizure detection and early seizure detection systems. We propose a deep learning framework via the use of Gated Recurrent Unit (GRU) RNNs for seizure detection. We use publicly available data in order to evaluate our method and demonstrate very promising evaluation results with overall accuracy close to 100 %. We also systematically investigate the application of our method for early seizure warning systems. Our method can detect about 98% of seizure events within the first 5 seconds of the overall epileptic seizure duration.

  1. Community detection for networks with unipartite and bipartite structure

    Science.gov (United States)

    Chang, Chang; Tang, Chao

    2014-09-01

    Finding community structures in networks is important in network science, technology, and applications. To date, most algorithms that aim to find community structures only focus either on unipartite or bipartite networks. A unipartite network consists of one set of nodes and a bipartite network consists of two nonoverlapping sets of nodes with only links joining the nodes in different sets. However, a third type of network exists, defined here as the mixture network. Just like a bipartite network, a mixture network also consists of two sets of nodes, but some nodes may simultaneously belong to two sets, which breaks the nonoverlapping restriction of a bipartite network. The mixture network can be considered as a general case, with unipartite and bipartite networks viewed as its limiting cases. A mixture network can represent not only all the unipartite and bipartite networks, but also a wide range of real-world networks that cannot be properly represented as either unipartite or bipartite networks in fields such as biology and social science. Based on this observation, we first propose a probabilistic model that can find modules in unipartite, bipartite, and mixture networks in a unified framework based on the link community model for a unipartite undirected network [B Ball et al (2011 Phys. Rev. E 84 036103)]. We test our algorithm on synthetic networks (both overlapping and nonoverlapping communities) and apply it to two real-world networks: a southern women bipartite network and a human transcriptional regulatory mixture network. The results suggest that our model performs well for all three types of networks, is competitive with other algorithms for unipartite or bipartite networks, and is applicable to real-world networks.

  2. Saliency predicts change detection in pictures of natural scenes.

    Science.gov (United States)

    Wright, Michael J

    2005-01-01

    It has been proposed that the visual system encodes the salience of objects in the visual field in an explicit two-dimensional map that guides visual selective attention. Experiments were conducted to determine whether salience measurements applied to regions of pictures of outdoor scenes could predict the detection of changes in those regions. To obtain a quantitative measure of change detection, observers located changes in pairs of colour pictures presented across an interstimulus interval (ISI). Salience measurements were then obtained from different observers for image change regions using three independent methods, and all were positively correlated with change detection. Factor analysis extracted a single saliency factor that accounted for 62% of the variance contained in the four measures. Finally, estimates of the magnitude of the image change in each picture pair were obtained, using nine separate visual filters representing low-level vision features (luminance, colour, spatial frequency, orientation, edge density). None of the feature outputs was significantly associated with change detection or saliency. On the other hand it was shown that high-level (structural) properties of the changed region were related to saliency and to change detection: objects were more salient than shadows and more detectable when changed.

  3. Statistics of leaders and lead changes in growing networks

    International Nuclear Information System (INIS)

    Godrèche, C; Grandclaude, H; Luck, J M

    2010-01-01

    We investigate various aspects of the statistics of leaders in growing network models defined by stochastic attachment rules. The leader is the node with highest degree at a given time (or the node which reached that degree first if there are co-leaders). This comprehensive study includes the full distribution of the degree of the leader, its identity, the number of co-leaders, as well as several observables characterizing the whole history of lead changes: number of lead changes, number of distinct leaders, lead persistence probability. We successively consider the following network models: uniform attachment, linear attachment (the Barabási–Albert model), and generalized preferential attachment with initial attractiveness

  4. Detection of Hydrological changes of Wujiang River

    Science.gov (United States)

    Dong, L.; Chen, Y.

    2016-12-01

    In the century our earth experienced a rapid environment changes due to strong human activities, which impactedthe earth'shydrology and water resources systems negatively, and causedsevere problems to the society, such as increased flood and drought risk, water pollution and ecosystem degradation. Understanding the variations of hydrological characteristics has important meaning to solve the problem of hydrology and water resources and maintain sustainable development of river basin water resources.This paper takesWujiangriveras an example,which is a typical medium watershedaffected by human activities seriously in southern China.Using the methods of Mann-Kendall test and serial cluster analysis, this paper studies the characteristics and laws of historical hydrological process inWujiang river, detectsthe impact of changing environment to watershed hydrological processes, based on the observed hydrological data of 36 years from 1980 to 2015 in three representative hydrological stationsnamedFenshi,Chixi and Pingshi. The results show that the annual runoffandannual precipitation has some kind of changes.

  5. Land cover change detection in West Jilin using ETM+ images

    Institute of Scientific and Technical Information of China (English)

    Edward M.Osei,Jr.; ZHOU Yun-xuan

    2004-01-01

    In order to assess the information content and accuracy ofLandsat ETM+ digital images in land cover change detection,change-detection techniques of image differencing,normalized difference vegetation index,principal components analysis and tasseled-cap transformation were applied to yield 13 images. These images were thresholded into change and no change areas. The thresholded images were then checked in terms of various accuracies. The experiment results show that kappa coefficients of the 13 images range from 48.05 ~78.09. Different images do detect different types of changes. Images associated with changes in the near-infrared-reflectance or greenness detects crop-type changes and changes between vegetative and non-vegetative features. A unique means of using only Landsat imagery without reference data for the assessment of change in arid land are presented. Images of 12th June, 2000 and 2nd June, 2002 are used to validate the means. Analyses of standard accuracy and spatial agreement are performed to compare the new images (hereafter called "change images" ) representing the change between the two dates. Spatial agreement evaluates the conformity in the classified "change pixels" and "no-change pixels" at the same location on different change images and comprehensively examines the different techniques. This method would enable authorities to monitor land degradation efficiently and accurately.

  6. The Vigil Network: A means of observing landscape change in drainage basins

    Science.gov (United States)

    Osterkamp, W.R.; Emmett, W.W.; Leopold, Luna Bergere

    1991-01-01

    Long-term monitoring of geomorphic, hydrological, and biological characteristics of landscapes provides an effective means of relating observed change to possible causes of the change. Identification of changes in basin characteristics, especially in arid areas where the response to altered climate or land use is generally rapid and readily apparent, might provide the initial direct indications that factors such as global warming and cultural impacts have affected the environment. The Vigil Network provides an opportunity for earth and life scientists to participate in a systematic monitoring effort to detect landscape changes over time, and to relate such changes to possible causes. The Vigil Network is an ever-increasing group of sites and basins used to monitor landscape features with as much as 50 years of documented geomorphic and related observations.

  7. Detecting malicious chaotic signals in wireless sensor network

    Science.gov (United States)

    Upadhyay, Ranjit Kumar; Kumari, Sangeeta

    2018-02-01

    In this paper, an e-epidemic Susceptible-Infected-Vaccinated (SIV) model has been proposed to analyze the effect of node immunization and worms attacking dynamics in wireless sensor network. A modified nonlinear incidence rate with cyrtoid type functional response has been considered using sleep and active mode approach. Detailed stability analysis and the sufficient criteria for the persistence of the model system have been established. We also established different types of bifurcation analysis for different equilibria at different critical points of the control parameters. We performed a detailed Hopf bifurcation analysis and determine the direction and stability of the bifurcating periodic solutions using center manifold theorem. Numerical simulations are carried out to confirm the theoretical results. The impact of the control parameters on the dynamics of the model system has been investigated and malicious chaotic signals are detected. Finally, we have analyzed the effect of time delay on the dynamics of the model system.

  8. CRITICAL INFORMATION INFRASTRUCTURE SECURITY - NETWORK INTRUSION DETECTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cristea DUMITRU

    2011-12-01

    Full Text Available Critical Information Infrastructure security will always be difficult to ensure, just because of the features that make it irreplaceable tor other critical infrastructures normal operation. It is decentralized, interconnected interdependent, controlled by multiple actors (mainly private and incorporating diverse types of technologies. It is almost axiomatic that the disruption of the Critical Information Infrastructure affects systems located much farther away, and the cyber problems have direct consequences on the real world. Indeed the Internet can be used as a multiplier in order to amplify the effects of an attack on some critical infrastructures. Security challenges increase with the technological progress. One of the last lines of defense which comes to complete the overall security scheme of the Critical Information Infrastructure is represented by the Network Intrusion Detection Systems.

  9. Vessel network detection using contour evolution and color components

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Medeiros, Fatima; Cuadros, Jorge; Martins, Charles

    2011-06-22

    Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration, among other applications. There is an extensive literature related to this problem, often excluding the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper relies on an algorithm using front propagation to segment the vessel network. The algorithm includes a penalty in the wait queue on the fast marching heap to minimize leakage of the evolving interface. The method requires no manual labeling, a minimum number of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.

  10. Multisensor Network System for Wildfire Detection Using Infrared Image Processing

    Directory of Open Access Journals (Sweden)

    I. Bosch

    2013-01-01

    Full Text Available This paper presents the next step in the evolution of multi-sensor wireless network systems in the early automatic detection of forest fires. This network allows remote monitoring of each of the locations as well as communication between each of the sensors and with the control stations. The result is an increased coverage area, with quicker and safer responses. To determine the presence of a forest wildfire, the system employs decision fusion in thermal imaging, which can exploit various expected characteristics of a real fire, including short-term persistence and long-term increases over time. Results from testing in the laboratory and in a real environment are presented to authenticate and verify the accuracy of the operation of the proposed system. The system performance is gauged by the number of alarms and the time to the first alarm (corresponding to a real fire, for different probability of false alarm (PFA. The necessity of including decision fusion is thereby demonstrated.

  11. Duplicate Address Detection Table in IPv6 Mobile Networks

    Science.gov (United States)

    Alisherov, Farkhod; Kim, Taihoon

    In IP networks, each computer or communication equipment needs an IP address. To supply enough IP addresses, the new Internet protocol IPv6 is used in next generatoion mobile communication. Although IPv6 improves the existing IPv4 Internet protocol, Duplicate Address Detection (DAD) mechanism may consume resources and suffer from long delay. DAD is used to ensure whether the IP address is unique or not. When a mobile node performs an inter-domain handoff, it will first generate a new IP and perform a DAD procedure. The DAD procedure not only wastes time but also increases the signaling load on Internet. In this paper, the author proposes a new DAD mechanism to speed up the DAD procedure. A DAD table is created in access or mobility routers in IP networks and record all IP addresses of the area. When a new IP address needs to perform DAD, it can just search in the DAD table to confirm the uniqueness of the address.

  12. Automated embolic signal detection using Deep Convolutional Neural Network.

    Science.gov (United States)

    Sombune, Praotasna; Phienphanich, Phongphan; Phuechpanpaisal, Sutanya; Muengtaweepongsa, Sombat; Ruamthanthong, Anuchit; Tantibundhit, Charturong

    2017-07-01

    This work investigated the potential of Deep Neural Network in detection of cerebral embolic signal (ES) from transcranial Doppler ultrasound (TCD). The resulting system is aimed to couple with TCD devices in diagnosing a risk of stroke in real-time with high accuracy. The Adaptive Gain Control (AGC) approach developed in our previous study is employed to capture suspected ESs in real-time. By using spectrograms of the same TCD signal dataset as that of our previous work as inputs and the same experimental setup, Deep Convolutional Neural Network (CNN), which can learn features while training, was investigated for its ability to bypass the traditional handcrafted feature extraction and selection process. Extracted feature vectors from the suspected ESs are later determined whether they are of an ES, artifact (AF) or normal (NR) interval. The effectiveness of the developed system was evaluated over 19 subjects going under procedures generating emboli. The CNN-based system could achieve in average of 83.0% sensitivity, 80.1% specificity, and 81.4% accuracy, with considerably much less time consumption in development. The certainly growing set of training samples and computational resources will contribute to high performance. Besides having potential use in various clinical ES monitoring settings, continuation of this promising study will benefit developments of wearable applications by leveraging learnable features to serve demographic differentials.

  13. Robust Deep Network with Maximum Correntropy Criterion for Seizure Detection

    Directory of Open Access Journals (Sweden)

    Yu Qi

    2014-01-01

    Full Text Available Effective seizure detection from long-term EEG is highly important for seizure diagnosis. Existing methods usually design the feature and classifier individually, while little work has been done for the simultaneous optimization of the two parts. This work proposes a deep network to jointly learn a feature and a classifier so that they could help each other to make the whole system optimal. To deal with the challenge of the impulsive noises and outliers caused by EMG artifacts in EEG signals, we formulate a robust stacked autoencoder (R-SAE as a part of the network to learn an effective feature. In R-SAE, the maximum correntropy criterion (MCC is proposed to reduce the effect of noise/outliers. Unlike the mean square error (MSE, the output of the new kernel MCC increases more slowly than that of MSE when the input goes away from the center. Thus, the effect of those noises/outliers positioned far away from the center can be suppressed. The proposed method is evaluated on six patients of 33.6 hours of scalp EEG data. Our method achieves a sensitivity of 100% and a specificity of 99%, which is promising for clinical applications.

  14. Intrusion detection techniques for plant-wide network in a nuclear power plant

    International Nuclear Information System (INIS)

    Rajasekhar, P.; Shrikhande, S.V.; Biswas, B.B.; Patil, R.K.

    2012-01-01

    Nuclear power plants have a lot of critical data to be sent to the operator workstations. A plant wide integrated communication network, with high throughput, determinism and redundancy, is required between the workstations and the field. Switched Ethernet network is a promising prospect for such an integrated communication network. But for such an integrated system, intrusion is a major issue. Hence the network should have an intrusion detection system to make the network data secure and enhance the network availability. Intrusion detection is the process of monitoring the events occurring in a network and analyzing them for signs of possible incidents, which are violations or imminent threats of violation of network security policies, acceptable user policies, or standard security practices. This paper states the various intrusion detection techniques and approaches which are applicable for analysis of a plant wide network. (author)

  15. One new method for road data shape change detection

    Science.gov (United States)

    Tang, Luliang; Li, Qingquan; Xu, Feng; Chang, Xiaomeng

    2009-10-01

    Similarity is a psychological cognition; this paper defines the Difference Distance and puts forward the Similarity Measuring Model for linear spatial data (SMM-L) based on the integration of the Distance View and the Feature Set View which are the views for similarity cognition. Based on the study of the relationship between the spatial data change and the similarity, a change detection algorithm for linear spatial data is developed, and a test on road data change detection is realized.

  16. Convolutional neural networks for event-related potential detection: impact of the architecture.

    Science.gov (United States)

    Cecotti, H

    2017-07-01

    The detection of brain responses at the single-trial level in the electroencephalogram (EEG) such as event-related potentials (ERPs) is a difficult problem that requires different processing steps to extract relevant discriminant features. While most of the signal and classification techniques for the detection of brain responses are based on linear algebra, different pattern recognition techniques such as convolutional neural network (CNN), as a type of deep learning technique, have shown some interests as they are able to process the signal after limited pre-processing. In this study, we propose to investigate the performance of CNNs in relation of their architecture and in relation to how they are evaluated: a single system for each subject, or a system for all the subjects. More particularly, we want to address the change of performance that can be observed between specifying a neural network to a subject, or by considering a neural network for a group of subjects, taking advantage of a larger number of trials from different subjects. The results support the conclusion that a convolutional neural network trained on different subjects can lead to an AUC above 0.9 by using an appropriate architecture using spatial filtering and shift invariant layers.

  17. Scalable High-Performance Parallel Design for Network Intrusion Detection Systems on Many-Core Processors

    OpenAIRE

    Jiang, Hayang; Xie, Gaogang; Salamatian, Kavé; Mathy, Laurent

    2013-01-01

    Network Intrusion Detection Systems (NIDSes) face significant challenges coming from the relentless network link speed growth and increasing complexity of threats. Both hardware accelerated and parallel software-based NIDS solutions, based on commodity multi-core and GPU processors, have been proposed to overcome these challenges. Network Intrusion Detection Systems (NIDSes) face significant challenges coming from the relentless network link speed growth and increasing complexity of threats. ...

  18. Detection and assessment of flood susceptible irrigation networks in Licab, Nueva Ecija, Philippines using LiDAR DTM

    Science.gov (United States)

    Alberto, R. T.; Hernando, P. J. C.; Tagaca, R. C.; Celestino, A. B.; Palado, G. C.; Camaso, E. E.; Damian, G. B.

    2017-09-01

    Climate change has wide-ranging effects on the environment and socio-economic and related sectors which includes water resources, agriculture and food security, human health, terrestrial ecosystems, coastal zones and biodiversity. Farmers are under pressure to the changing weather and increasing unpredictable water supply. Because of rainfall deficiencies, artificial application of water has been made through irrigation. Irrigation is a basic determinant of agriculture because its inadequacies are the most powerful constraints on the increase of agricultural production. Irrigation networks are permanent and temporary conduits that supply water to agricultural areas from an irrigation source. Detection of irrigation networks using LiDAR DTM, and flood susceptible assessment of irrigation networks could give baseline information on the development and management of sustainable agriculture. Map Gully Depth (MGD) in Whitebox GAT was used to generate the potential irrigation networks. The extracted MGD was overlaid in ArcGIS as guide in the digitization of potential irrigation networks. A flood hazard map was also used to identify the flood susceptible irrigation networks in the study area. The study was assessed through field validation of points which were generated using random sampling method. Results of the study showed that most of the detected irrigation networks have low to moderate susceptibility to flooding while the rest have high susceptibility to flooding which is due to shifting weather. These irrigation networks may cause flood when it overflows that could also bring huge damage to rice and other agricultural areas.

  19. Improving Intrusion Detection System Based on Snort Rules for Network Probe Attacks Detection with Association Rules Technique of Data Mining

    Directory of Open Access Journals (Sweden)

    Nattawat Khamphakdee

    2015-07-01

    Full Text Available The intrusion detection system (IDS is an important network security tool for securing computer and network systems. It is able to detect and monitor network traffic data. Snort IDS is an open-source network security tool. It can search and match rules with network traffic data in order to detect attacks, and generate an alert. However, the Snort IDS  can detect only known attacks. Therefore, we have proposed a procedure for improving Snort IDS rules, based on the association rules data mining technique for detection of network probe attacks.  We employed the MIT-DARPA 1999 data set for the experimental evaluation. Since behavior pattern traffic data are both normal and abnormal, the abnormal behavior data is detected by way of the Snort IDS. The experimental results showed that the proposed Snort IDS rules, based on data mining detection of network probe attacks, proved more efficient than the original Snort IDS rules, as well as icmp.rules and icmp-info.rules of Snort IDS.  The suitable parameters for the proposed Snort IDS rules are defined as follows: Min_sup set to 10%, and Min_conf set to 100%, and through the application of eight variable attributes. As more suitable parameters are applied, higher accuracy is achieved.

  20. Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra

    OpenAIRE

    M. Khouil; N. Saber; M. Mestari

    2014-01-01

    In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the coll...

  1. The rise of China in the International Trade Network: a community core detection approach.

    Science.gov (United States)

    Zhu, Zhen; Cerina, Federica; Chessa, Alessandro; Caldarelli, Guido; Riccaboni, Massimo

    2014-01-01

    Theory of complex networks proved successful in the description of a variety of complex systems ranging from biology to computer science and to economics and finance. Here we use network models to describe the evolution of a particular economic system, namely the International Trade Network (ITN). Previous studies often assume that globalization and regionalization in international trade are contradictory to each other. We re-examine the relationship between globalization and regionalization by viewing the international trade system as an interdependent complex network. We use the modularity optimization method to detect communities and community cores in the ITN during the years 1995-2011. We find rich dynamics over time both inter- and intra-communities. In particular, the Asia-Oceania community disappeared and reemerged over time along with a switch in leadership from Japan to China. We provide a multilevel description of the evolution of the network where the global dynamics (i.e., communities disappear or reemerge) and the regional dynamics (i.e., community core changes between community members) are related. Moreover, simulation results show that the global dynamics can be generated by a simple dynamic-edge-weight mechanism.

  2. A combinatorial approach to detect coevolved amino acid networks in protein families of variable divergence.

    Directory of Open Access Journals (Sweden)

    Julie Baussand

    2009-09-01

    Full Text Available Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence.

  3. Complex networks: Effect of subtle changes in nature of randomness

    Science.gov (United States)

    Goswami, Sanchari; Biswas, Soham; Sen, Parongama

    2011-03-01

    In two different classes of network models, namely, the Watts Strogatz type and the Euclidean type, subtle changes have been introduced in the randomness. In the Watts Strogatz type network, rewiring has been done in different ways and although the qualitative results remain the same, finite differences in the exponents are observed. In the Euclidean type networks, where at least one finite phase transition occurs, two models differing in a similar way have been considered. The results show a possible shift in one of the phase transition points but no change in the values of the exponents. The WS and Euclidean type models are equivalent for extreme values of the parameters; we compare their behaviour for intermediate values.

  4. Early Wheel Train Damage Detection Using Wireless Sensor Network Antenna

    Science.gov (United States)

    Fazilah, A. F. M.; Azemi, S. N.; Azremi, A. A. H.; Soh, P. J.; Kamarudin, L. M.

    2018-03-01

    Antenna for a wireless sensor network for early wheel trains damage detection has successfully developed and fabricated with the aim to minimize the risk and increase the safety guaranty for train. Current antenna design is suffered in gain and big in size. For the sensor, current existing sensor only detect when the wheel malfunction. Thus, a compact microstrip patch antenna with operating frequency at 2.45GHz is design with high gain of 4.95dB will attach to the wireless sensor device. Simulation result shows that the antenna is working at frequency 2.45GHz and the return loss at -34.46dB are in a good agreement. The result also shows the good radiation pattern and almost ideal VSWR which is 1.04. The Arduino Nano, LM35DZ and ESP8266-07 Wi-Fi module is applied to the core system with capability to sense the temperature and send the data wirelessly to the cloud. An android application has been created to monitor the temperature reading based on the real time basis. The mainly focuses for the future improvement is by minimize the size of the antenna in order to make in more compact. In addition, upgrade an android application that can collect the raw data from cloud and make an alarm system to alert the loco pilot.

  5. Sensor Anomaly Detection in Wireless Sensor Networks for Healthcare

    Science.gov (United States)

    Haque, Shah Ahsanul; Rahman, Mustafizur; Aziz, Syed Mahfuzul

    2015-01-01

    Wireless Sensor Networks (WSN) are vulnerable to various sensor faults and faulty measurements. This vulnerability hinders efficient and timely response in various WSN applications, such as healthcare. For example, faulty measurements can create false alarms which may require unnecessary intervention from healthcare personnel. Therefore, an approach to differentiate between real medical conditions and false alarms will improve remote patient monitoring systems and quality of healthcare service afforded by WSN. In this paper, a novel approach is proposed to detect sensor anomaly by analyzing collected physiological data from medical sensors. The objective of this method is to effectively distinguish false alarms from true alarms. It predicts a sensor value from historic values and compares it with the actual sensed value for a particular instance. The difference is compared against a threshold value, which is dynamically adjusted, to ascertain whether the sensor value is anomalous. The proposed approach has been applied to real healthcare datasets and compared with existing approaches. Experimental results demonstrate the effectiveness of the proposed system, providing high Detection Rate (DR) and low False Positive Rate (FPR). PMID:25884786

  6. Pneumothorax detection in chest radiographs using convolutional neural networks

    Science.gov (United States)

    Blumenfeld, Aviel; Konen, Eli; Greenspan, Hayit

    2018-02-01

    This study presents a computer assisted diagnosis system for the detection of pneumothorax (PTX) in chest radiographs based on a convolutional neural network (CNN) for pixel classification. Using a pixel classification approach allows utilization of the texture information in the local environment of each pixel while training a CNN model on millions of training patches extracted from a relatively small dataset. The proposed system uses a pre-processing step of lung field segmentation to overcome the large variability in the input images coming from a variety of imaging sources and protocols. Using a CNN classification, suspected pixel candidates are extracted within each lung segment. A postprocessing step follows to remove non-physiological suspected regions and noisy connected components. The overall percentage of suspected PTX area was used as a robust global decision for the presence of PTX in each lung. The system was trained on a set of 117 chest x-ray images with ground truth segmentations of the PTX regions. The system was tested on a set of 86 images and reached diagnosis accuracy of AUC=0.95. Overall preliminary results are promising and indicate the growing ability of CAD based systems to detect findings in medical imaging on a clinical level accuracy.

  7. Detecting Boundary Nodes and Coverage Holes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Li-Hui Zhao

    2016-01-01

    Full Text Available The emergence of coverage holes in wireless sensor networks (WSNs means that some special events have broken out and the function of WSNs will be seriously influenced. Therefore, the issues of coverage holes have attracted considerable attention. In this paper, we focus on the identification of boundary nodes and coverage holes, which is crucially important to preventing the enlargement of coverage holes and ensuring the transmission of data. We define the problem of coverage holes and propose two novel algorithms to identify the coverage holes in WSNs. The first algorithm, Distributed Sector Cover Scanning (DSCS, can be used to identify the nodes on hole borders and the outer boundary of WSNs. The second scheme, Directional Walk (DW, can locate the coverage holes based on the boundary nodes identified with DSCS. We implement the algorithms in various scenarios and fully evaluate their performance. The simulation results show that the boundary nodes can be accurately detected by DSCS and the holes enclosed by the detected boundary nodes can be identified by DW. The comparisons confirm that the proposed algorithms outperform the existing ones.

  8. Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network

    Directory of Open Access Journals (Sweden)

    Yuexiang Li

    2018-02-01

    Full Text Available Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1, lesion dermoscopic feature extraction (task 2 and lesion classification (task 3. A deep learning framework consisting of two fully convolutional residual networks (FCRN is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved.

  9. Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network.

    Science.gov (United States)

    Li, Yuexiang; Shen, Linlin

    2018-02-11

    Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved.

  10. Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network

    Science.gov (United States)

    2018-01-01

    Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved. PMID:29439500

  11. Perspective Effects during Reading: Evidence from Text Change-Detection

    Science.gov (United States)

    Bohan, Jason; Filik, Ruth

    2018-01-01

    We report two text change-detection studies in which we investigate the influence of reading perspective on text memory. In Experiment 1 participants read from the perspective of one of two characters in a series of short stories, and word changes were either semantically close or distant. Participants correctly reported more changes to…

  12. SmartPipes: Smart Wireless Sensor Networks for Leak Detection in Water Pipelines

    Directory of Open Access Journals (Sweden)

    Ali M. Sadeghioon

    2014-02-01

    Full Text Available Asset monitoring, specifically infrastructure monitoring such as water distribution pipelines, is becoming increasingly critical for utility owners who face new challenges due to an aging network. In the UK alone, during the period of 2009–2010, approximately 3281 mega litres (106 of water were wasted due to failure or leaks in water pipelines. Various techniques can be used for the monitoring of water distribution networks. This paper presents the design, development and testing of a smart wireless sensor network for leak detection in water pipelines, based on the measurement of relative indirect pressure changes in plastic pipes. Power consumption of the sensor nodes is minimised to 2.2 mW based on one measurement every 6 h in order to prolong the lifetime of the network and increase the sensor nodes’ compatibility with current levels of power available by energy harvesting methods and long life batteries. A novel pressure sensing method is investigated for its performance and capabilities by both laboratory and field trials. The sensors were capable of measuring pressure changes due to leaks. These pressure profiles can also be used to locate the leaks.

  13. Sensor Fusion-based Event Detection in Wireless Sensor Networks

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2009-01-01

    Recently, Wireless Sensor Networks (WSN) community has witnessed an application focus shift. Although, monitoring was the initial application of wireless sensor networks, in-network data processing and (near) real-time actuation capability have made wireless sensor networks suitable candidate for

  14. Network-based analysis of software change propagation.

    Science.gov (United States)

    Wang, Rongcun; Huang, Rubing; Qu, Binbin

    2014-01-01

    The object-oriented software systems frequently evolve to meet new change requirements. Understanding the characteristics of changes aids testers and system designers to improve the quality of softwares. Identifying important modules becomes a key issue in the process of evolution. In this context, a novel network-based approach is proposed to comprehensively investigate change distributions and the correlation between centrality measures and the scope of change propagation. First, software dependency networks are constructed at class level. And then, the number of times of cochanges among classes is minded from software repositories. According to the dependency relationships and the number of times of cochanges among classes, the scope of change propagation is calculated. Using Spearman rank correlation analyzes the correlation between centrality measures and the scope of change propagation. Three case studies on java open source software projects Findbugs, Hibernate, and Spring are conducted to research the characteristics of change propagation. Experimental results show that (i) change distribution is very uneven; (ii) PageRank, Degree, and CIRank are significantly correlated to the scope of change propagation. Particularly, CIRank shows higher correlation coefficient, which suggests it can be a more useful indicator for measuring the scope of change propagation of classes in object-oriented software system.

  15. Detection and Attribution of Regional Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and ocean circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.

  16. Aerial Images and Convolutional Neural Network for Cotton Bloom Detection.

    Science.gov (United States)

    Xu, Rui; Li, Changying; Paterson, Andrew H; Jiang, Yu; Sun, Shangpeng; Robertson, Jon S

    2017-01-01

    Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.

  17. Adaptive 4d Psi-Based Change Detection

    Science.gov (United States)

    Yang, Chia-Hsiang; Soergel, Uwe

    2018-04-01

    In a previous work, we proposed a PSI-based 4D change detection to detect disappearing and emerging PS points (3D) along with their occurrence dates (1D). Such change points are usually caused by anthropic events, e.g., building constructions in cities. This method first divides an entire SAR image stack into several subsets by a set of break dates. The PS points, which are selected based on their temporal coherences before or after a break date, are regarded as change candidates. Change points are then extracted from these candidates according to their change indices, which are modelled from their temporal coherences of divided image subsets. Finally, we check the evolution of the change indices for each change point to detect the break date that this change occurred. The experiment validated both feasibility and applicability of our method. However, two questions still remain. First, selection of temporal coherence threshold associates with a trade-off between quality and quantity of PS points. This selection is also crucial for the amount of change points in a more complex way. Second, heuristic selection of change index thresholds brings vulnerability and causes loss of change points. In this study, we adapt our approach to identify change points based on statistical characteristics of change indices rather than thresholding. The experiment validates this adaptive approach and shows increase of change points compared with the old version. In addition, we also explore and discuss optimal selection of temporal coherence threshold.

  18. PERFORMANCE COMPARISON FOR INTRUSION DETECTION SYSTEM USING NEURAL NETWORK WITH KDD DATASET

    Directory of Open Access Journals (Sweden)

    S. Devaraju

    2014-04-01

    Full Text Available Intrusion Detection Systems are challenging task for finding the user as normal user or attack user in any organizational information systems or IT Industry. The Intrusion Detection System is an effective method to deal with the kinds of problem in networks. Different classifiers are used to detect the different kinds of attacks in networks. In this paper, the performance of intrusion detection is compared with various neural network classifiers. In the proposed research the four types of classifiers used are Feed Forward Neural Network (FFNN, Generalized Regression Neural Network (GRNN, Probabilistic Neural Network (PNN and Radial Basis Neural Network (RBNN. The performance of the full featured KDD Cup 1999 dataset is compared with that of the reduced featured KDD Cup 1999 dataset. The MATLAB software is used to train and test the dataset and the efficiency and False Alarm Rate is measured. It is proved that the reduced dataset is performing better than the full featured dataset.

  19. RelEx: Visualization for Actively Changing Overlay Network Specifications.

    Science.gov (United States)

    Sedlmair, M; Frank, A; Munzner, T; Butz, A

    2012-12-01

    We present a network visualization design study focused on supporting automotive engineers who need to specify and optimize traffic patterns for in-car communication networks. The task and data abstractions that we derived support actively making changes to an overlay network, where logical communication specifications must be mapped to an underlying physical network. These abstractions are very different from the dominant use case in visual network analysis, namely identifying clusters and central nodes, that stems from the domain of social network analysis. Our visualization tool RelEx was created and iteratively refined through a full user-centered design process that included a full problem characterization phase before tool design began, paper prototyping, iterative refinement in close collaboration with expert users for formative evaluation, deployment in the field with real analysts using their own data, usability testing with non-expert users, and summative evaluation at the end of the deployment. In the summative post-deployment study, which entailed domain experts using the tool over several weeks in their daily practice, we documented many examples where the use of RelEx simplified or sped up their work compared to previous practices.

  20. Wireless and embedded carbon nanotube networks for damage detection in concrete structures

    International Nuclear Information System (INIS)

    Saafi, Mohamed

    2009-01-01

    Concrete structures undergo an uncontrollable damage process manifesting in the form of cracks due to the coupling of fatigue loading and environmental effects. In order to achieve long-term durability and performance, continuous health monitoring systems are needed to make critical decisions regarding operation, maintenance and repairs. Recent advances in nanostructured materials such as carbon nanotubes have opened the door for new smart and advanced sensing materials that could effectively be used in health monitoring of structures where wireless and real time sensing could provide information on damage development. In this paper, carbon nanotube networks were embedded into a cement matrix to develop an in situ wireless and embedded sensor for damage detection in concrete structures. By wirelessly measuring the change in the electrical resistance of the carbon nanotube networks, the progress of damage can be detected and monitored. As a proof of concept, wireless cement-carbon nanotube sensors were embedded into concrete beams and subjected to monotonic and cyclic loading to evaluate the effect of damage on their response. Experimental results showed that the wireless response of the embedded nanotube sensors changes due to the formation of cracks during loading. In addition, the nanotube sensors were able to detect the initiation of damage at an early stage of loading.

  1. Wireless and embedded carbon nanotube networks for damage detection in concrete structures

    Science.gov (United States)

    Saafi, Mohamed

    2009-09-01

    Concrete structures undergo an uncontrollable damage process manifesting in the form of cracks due to the coupling of fatigue loading and environmental effects. In order to achieve long-term durability and performance, continuous health monitoring systems are needed to make critical decisions regarding operation, maintenance and repairs. Recent advances in nanostructured materials such as carbon nanotubes have opened the door for new smart and advanced sensing materials that could effectively be used in health monitoring of structures where wireless and real time sensing could provide information on damage development. In this paper, carbon nanotube networks were embedded into a cement matrix to develop an in situ wireless and embedded sensor for damage detection in concrete structures. By wirelessly measuring the change in the electrical resistance of the carbon nanotube networks, the progress of damage can be detected and monitored. As a proof of concept, wireless cement-carbon nanotube sensors were embedded into concrete beams and subjected to monotonic and cyclic loading to evaluate the effect of damage on their response. Experimental results showed that the wireless response of the embedded nanotube sensors changes due to the formation of cracks during loading. In addition, the nanotube sensors were able to detect the initiation of damage at an early stage of loading.

  2. Teleconnection Paths via Climate Network Direct Link Detection.

    Science.gov (United States)

    Zhou, Dong; Gozolchiani, Avi; Ashkenazy, Yosef; Havlin, Shlomo

    2015-12-31

    Teleconnections describe remote connections (typically thousands of kilometers) of the climate system. These are of great importance in climate dynamics as they reflect the transportation of energy and climate change on global scales (like the El Niño phenomenon). Yet, the path of influence propagation between such remote regions, and weighting associated with different paths, are only partially known. Here we propose a systematic climate network approach to find and quantify the optimal paths between remotely distant interacting locations. Specifically, we separate the correlations between two grid points into direct and indirect components, where the optimal path is found based on a minimal total cost function of the direct links. We demonstrate our method using near surface air temperature reanalysis data, on identifying cross-latitude teleconnections and their corresponding optimal paths. The proposed method may be used to quantify and improve our understanding regarding the emergence of climate patterns on global scales.

  3. Detecting and Attributing Health Burdens to Climate Change.

    Science.gov (United States)

    Ebi, Kristie L; Ogden, Nicholas H; Semenza, Jan C; Woodward, Alistair

    2017-08-07

    Detection and attribution of health impacts caused by climate change uses formal methods to determine a ) whether the occurrence of adverse health outcomes has changed, and b ) the extent to which that change could be attributed to climate change. There have been limited efforts to undertake detection and attribution analyses in health. Our goal was to show a range of approaches for conducting detection and attribution analyses. Case studies for heatwaves, Lyme disease in Canada, and Vibrio emergence in northern Europe highlight evidence that climate change is adversely affecting human health. Changes in rates and geographic distribution of adverse health outcomes were detected, and, in each instance, a proportion of the observed changes could, in our judgment, be attributed to changes in weather patterns associated with climate change. The results of detection and attribution studies can inform evidence-based risk management to reduce current, and plan for future, changes in health risks associated with climate change. Gaining a better understanding of the size, timing, and distribution of the climate change burden of disease and injury requires reliable long-term data sets, more knowledge about the factors that confound and modify the effects of climate on health, and refinement of analytic techniques for detection and attribution. At the same time, significant advances are possible in the absence of complete data and statistical certainty: there is a place for well-informed judgments, based on understanding of underlying processes and matching of patterns of health, climate, and other determinants of human well-being. https://doi.org/10.1289/EHP1509.

  4. Pedestrian detection in video surveillance using fully convolutional YOLO neural network

    Science.gov (United States)

    Molchanov, V. V.; Vishnyakov, B. V.; Vizilter, Y. V.; Vishnyakova, O. V.; Knyaz, V. A.

    2017-06-01

    More than 80% of video surveillance systems are used for monitoring people. Old human detection algorithms, based on background and foreground modelling, could not even deal with a group of people, to say nothing of a crowd. Recent robust and highly effective pedestrian detection algorithms are a new milestone of video surveillance systems. Based on modern approaches in deep learning, these algorithms produce very discriminative features that can be used for getting robust inference in real visual scenes. They deal with such tasks as distinguishing different persons in a group, overcome problem with sufficient enclosures of human bodies by the foreground, detect various poses of people. In our work we use a new approach which enables to combine detection and classification tasks into one challenge using convolution neural networks. As a start point we choose YOLO CNN, whose authors propose a very efficient way of combining mentioned above tasks by learning a single neural network. This approach showed competitive results with state-of-the-art models such as FAST R-CNN, significantly overcoming them in speed, which allows us to apply it in real time video surveillance and other video monitoring systems. Despite all advantages it suffers from some known drawbacks, related to the fully-connected layers that obstruct applying the CNN to images with different resolution. Also it limits the ability to distinguish small close human figures in groups which is crucial for our tasks since we work with rather low quality images which often include dense small groups of people. In this work we gradually change network architecture to overcome mentioned above problems, train it on a complex pedestrian dataset and finally get the CNN detecting small pedestrians in real scenes.

  5. Changes in dynamic resting state network connectivity following aphasia therapy.

    Science.gov (United States)

    Duncan, E Susan; Small, Steven L

    2017-10-24

    Resting state magnetic resonance imaging (rsfMRI) permits observation of intrinsic neural networks produced by task-independent correlations in low frequency brain activity. Various resting state networks have been described, with each thought to reflect common engagement in some shared function. There has been limited investigation of the plasticity in these network relationships after stroke or induced by therapy. Twelve individuals with language disorders after stroke (aphasia) were imaged at multiple time points before (baseline) and after an imitation-based aphasia therapy. Language assessment using a narrative production task was performed at the same time points. Group independent component analysis (ICA) was performed on the rsfMRI data to identify resting state networks. A sliding window approach was then applied to assess the dynamic nature of the correlations among these networks. Network correlations during each 30-second window were used to cluster the data into ten states for each window at each time point for each subject. Correlation was performed between changes in time spent in each state and therapeutic gains on the narrative task. The amount of time spent in a single one of the (ten overall) dynamic states was positively associated with behavioral improvement on the narrative task at the 6-week post-therapy maintenance interval, when compared with either baseline or assessment immediately following therapy. This particular state was characterized by minimal correlation among the task-independent resting state networks. Increased functional independence and segregation of resting state networks underlies improvement on a narrative production task following imitation-based aphasia treatment. This has important clinical implications for the targeting of noninvasive brain stimulation in post-stroke remediation.

  6. Fast Change Point Detection for Electricity Market Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berkeley, UC; Gu, William; Choi, Jaesik; Gu, Ming; Simon, Horst; Wu, Kesheng

    2013-08-25

    Electricity is a vital part of our daily life; therefore it is important to avoid irregularities such as the California Electricity Crisis of 2000 and 2001. In this work, we seek to predict anomalies using advanced machine learning algorithms. These algorithms are effective, but computationally expensive, especially if we plan to apply them on hourly electricity market data covering a number of years. To address this challenge, we significantly accelerate the computation of the Gaussian Process (GP) for time series data. In the context of a Change Point Detection (CPD) algorithm, we reduce its computational complexity from O($n^{5}$) to O($n^{2}$). Our efficient algorithm makes it possible to compute the Change Points using the hourly price data from the California Electricity Crisis. By comparing the detected Change Points with known events, we show that the Change Point Detection algorithm is indeed effective in detecting signals preceding major events.

  7. Unsupervised land cover change detection: meaningful sequential time series analysis

    CSIR Research Space (South Africa)

    Salmon, BP

    2011-06-01

    Full Text Available An automated land cover change detection method is proposed that uses coarse spatial resolution hyper-temporal earth observation satellite time series data. The study compared three different unsupervised clustering approaches that operate on short...

  8. Acoustic change detection algorithm using an FM radio

    Science.gov (United States)

    Goldman, Geoffrey H.; Wolfe, Owen

    2012-06-01

    The U.S. Army is interested in developing low-cost, low-power, non-line-of-sight sensors for monitoring human activity. One modality that is often overlooked is active acoustics using sources of opportunity such as speech or music. Active acoustics can be used to detect human activity by generating acoustic images of an area at different times, then testing for changes among the imagery. A change detection algorithm was developed to detect physical changes in a building, such as a door changing positions or a large box being moved using acoustics sources of opportunity. The algorithm is based on cross correlating the acoustic signal measured from two microphones. The performance of the algorithm was shown using data generated with a hand-held FM radio as a sound source and two microphones. The algorithm could detect a door being opened in a hallway.

  9. Detection of Greenhouse-Gas-Induced Climatic Change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  10. On the pilot's behavior of detecting a system parameter change

    Science.gov (United States)

    Morizumi, N.; Kimura, H.

    1986-01-01

    The reaction of a human pilot, engaged in compensatory control, to a sudden change in the controlled element's characteristics is described. Taking the case where the change manifests itself as a variance change of the monitored signal, it is shown that the detection time, defined to be the time elapsed until the pilot detects the change, is related to the monitored signal and its derivative. Then, the detection behavior is modeled by an optimal controller, an optimal estimator, and a variance-ratio test mechanism that is performed for the monitored signal and its derivative. Results of a digital simulation show that the pilot's detection behavior can be well represented by the model proposed here.

  11. Deep Fully Convolutional Networks for the Detection of Informal Settlements in VHR Images

    NARCIS (Netherlands)

    Persello, Claudio; Stein, Alfred

    2017-01-01

    This letter investigates fully convolutional networks (FCNs) for the detection of informal settlements in very high resolution (VHR) satellite images. Informal settlements or slums are proliferating in developing countries and their detection and classification provides vital information for

  12. Pattern detection in stream networks: Quantifying spatialvariability in fish distribution

    Science.gov (United States)

    Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.

    2004-01-01

    Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.

  13. Private and Flexible Proximity Detection in Mobile Social Networks

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Thomsen, Jeppe Rishede; Saltenis, Simonas

    2010-01-01

    A privacy-aware proximity detection service determines if two mobile users are close to each other without requiring them to disclose their exact locations. Existing proposals for such services provide weak privacy, give low accuracy guarantees, incur high communication costs, or lack flexibility......, in contrast to related work, can be of any shape and can be flexibly changed on the fly. Encryption and blind evaluation on the server ensures strong privacy, while low communication costs are achieved by an adaptive location-update policy. Experimental results show that the flexible functionality...... of the proposed solution is provided with low communication cost....

  14. Weak signal transmission in complex networks and its application in detecting connectivity.

    Science.gov (United States)

    Liang, Xiaoming; Liu, Zonghua; Li, Baowen

    2009-10-01

    We present a network model of coupled oscillators to study how a weak signal is transmitted in complex networks. Through both theoretical analysis and numerical simulations, we find that the response of other nodes to the weak signal decays exponentially with their topological distance to the signal source and the coupling strength between two neighboring nodes can be figured out by the responses. This finding can be conveniently used to detect the topology of unknown network, such as the degree distribution, clustering coefficient and community structure, etc., by repeatedly choosing different nodes as the signal source. Through four typical networks, i.e., the regular one dimensional, small world, random, and scale-free networks, we show that the features of network can be approximately given by investigating many fewer nodes than the network size, thus our approach to detect the topology of unknown network may be efficient in practical situations with large network size.

  15. Change detection in polarimetric SAR data over several time points

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Skriver, Henning

    2014-01-01

    A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution is introduced. The test statistic is applied successfully to detect change in C-band EMISAR polarimetric SAR data over four time points.......A test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution is introduced. The test statistic is applied successfully to detect change in C-band EMISAR polarimetric SAR data over four time points....

  16. Building change detection via a combination of CNNs using only RGB aerial imageries

    Science.gov (United States)

    Nemoto, Keisuke; Hamaguchi, Ryuhei; Sato, Masakazu; Fujita, Aito; Imaizumi, Tomoyuki; Hikosaka, Shuhei

    2017-10-01

    Building change information extracted from remote sensing imageries is important for various applications such as urban management and marketing planning. The goal of this work is to develop a methodology for automatically capturing building changes from remote sensing imageries. Recent studies have addressed this goal by exploiting 3-D information as a proxy for building height. In contrast, because in practice it is expensive or impossible to prepare 3-D information, we do not rely on 3-D data but focus on using only RGB aerial imageries. Instead, we employ deep convolutional neural networks (CNNs) to extract effective features, and improve change detection accuracy in RGB remote sensing imageries. We consider two aspects of building change detection, building detection and subsequent change detection. Our proposed methodology was tested on several areas, which has some differences such as dominant building characteristics and varying brightness values. On all over the tested areas, the proposed method provides good results for changed objects, with recall values over 75 % with a strict overlap requirement of over 50% in intersection-over-union (IoU). When the IoU threshold was relaxed to over 10%, resulting recall values were over 81%. We conclude that use of CNNs enables accurate detection of building changes without employing 3-D information.

  17. Organisational adaptation in an activist network: social networks, leadership, and change in al-Muhajiroun.

    Science.gov (United States)

    Kenney, Michael; Horgan, John; Horne, Cale; Vining, Peter; Carley, Kathleen M; Bigrigg, Michael W; Bloom, Mia; Braddock, Kurt

    2013-09-01

    Social networks are said to facilitate learning and adaptation by providing the connections through which network nodes (or agents) share information and experience. Yet, our understanding of how this process unfolds in real-world networks remains underdeveloped. This paper explores this gap through a case study of al-Muhajiroun, an activist network that continues to call for the establishment of an Islamic state in Britain despite being formally outlawed by British authorities. Drawing on organisation theory and social network analysis, we formulate three hypotheses regarding the learning capacity and social network properties of al-Muhajiroun (AM) and its successor groups. We then test these hypotheses using mixed methods. Our methods combine quantitative analysis of three agent-based networks in AM measured for structural properties that facilitate learning, including connectedness, betweenness centrality and eigenvector centrality, with qualitative analysis of interviews with AM activists focusing organisational adaptation and learning. The results of these analyses confirm that al-Muhajiroun activists respond to government pressure by changing their operations, including creating new platforms under different names and adjusting leadership roles among movement veterans to accommodate their spiritual leader's unwelcome exodus to Lebanon. Simple as they are effective, these adaptations have allowed al-Muhajiroun and its successor groups to continue their activism in an increasingly hostile environment. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. International earth science information network for global change decision making

    Energy Technology Data Exchange (ETDEWEB)

    Autrey-Hunley, C.; Kuhn, W.R.; Kasischke, E.; Trichel, M.T.; Coppola, R.

    1991-01-01

    Effective environmental decision making depends upon the ability to predict physical changes in the environment, societal responses to these changes, and how both the physical changes and societal responses will be affected by changes in government regulations, public perceptions and the environment. Technological advances in remote sensing have provided a wealth of earth science data necessary to study global change problems; the Earth Observatory System will provide an unprecedented data source in the late 1990's. The Consortium for an International Earth Science Information Network (CIESIN) will combine earth science data (both satellite and ground-based) with data on the social sciences (e.g., economics, demographics, public health) to support informed policy decisions and to transfer knowledge on global change and its causes to the public.

  19. Experts Networks and the European Commission on Demographic Change

    DEFF Research Database (Denmark)

    Seabrooke, Leonard; Tsingou, Eleni; Willers, Johann Ole

    experts on demographic change. Our findings suggest that on demographic change issues at the EU level, DG EMPL has taken the lead, while DG ECFIN is the secondary actor. Still, internal European Commission dynamics mean that the lead actor on demographic issues has less autonomy in articulating a funded......This paper examines who populates the expert and policy network around demographic change issues in Europe. We examine how competing policy departments in the European Commission Directorates-General (DGs) deal with the issue of Europe’s changing demography, as well as discuss the role of external...... and clear policy position on how to address them. As a consequence, there is little institutional memory and hardly a depository of activity on demographic change. While outside expertise comes primarily from demographers, and other scholars concerned with demographic change, they are primarily an academic...

  20. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more

  1. Anomaly Detection in SCADA Systems - A Network Based Approach

    NARCIS (Netherlands)

    Barbosa, R.R.R.

    2014-01-01

    Supervisory Control and Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities, such as water treatment facilities. Historically, these networks were composed by special-purpose embedded devices communicating through proprietary protocols.

  2. Anomaly detection in SCADA systems: a network based approach

    NARCIS (Netherlands)

    Barbosa, R.R.R.

    2014-01-01

    Supervisory Control and Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities, such as water treatment facilities. Historically, these networks were composed by special-purpose embedded devices communicating through proprietary protocols.

  3. Local area networks in radiation detection systems: advantages and pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Blaauw, M [Interfaculty Reactor Inst., Delft Univ. of Technology (Netherlands); Lindstrom, R M [Inorganic Analytical Research Div., National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1993-06-01

    Both at the Interfaculty Reactor Institute (IRI) and at the National Institute of Standards and Technology (NIST), local area networks are being used to acquire and process data from multiple [gamma]-ray spectrometers. The IRI system was only recently set up. A comparison is made between the NIST network, the old IRI network and the new IRI network, resulting in recommendations for new systems to be set up. (orig.)

  4. Multi-scale Fully Convolutional Network for Face Detection in the Wild

    KAUST Repository

    Bai, Yancheng

    2017-08-24

    Face detection is a classical problem in computer vision. It is still a difficult task due to many nuisances that naturally occur in the wild. In this paper, we propose a multi-scale fully convolutional network for face detection. To reduce computation, the intermediate convolutional feature maps (conv) are shared by every scale model. We up-sample and down-sample the final conv map to approximate K levels of a feature pyramid, leading to a wide range of face scales that can be detected. At each feature pyramid level, a FCN is trained end-to-end to deal with faces in a small range of scale change. Because of the up-sampling, our method can detect very small faces (10×10 pixels). We test our MS-FCN detector on four public face detection datasets, including FDDB, WIDER FACE, AFW and PASCAL FACE. Extensive experiments show that it outperforms state-of-the-art methods. Also, MS-FCN runs at 23 FPS on a GPU for images of size 640×480 with no assumption on the minimum detectable face size.

  5. Proposed Network Intrusion Detection System ‎In Cloud Environment Based on Back ‎Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Shawq Malik Mehibs

    2017-12-01

    Full Text Available Cloud computing is distributed architecture, providing computing facilities and storage resource as a service over the internet. This low-cost service fulfills the basic requirements of users. Because of the open nature and services introduced by cloud computing intruders impersonate legitimate users and misuse cloud resource and services. To detect intruders and suspicious activities in and around the cloud computing environment, intrusion detection system used to discover the illegitimate users and suspicious action by monitors different user activities on the network .this work proposed based back propagation artificial neural network to construct t network intrusion detection in the cloud environment. The proposed module evaluated with kdd99 dataset the experimental results shows promising approach to detect attack with high detection rate and low false alarm rate

  6. Low-Cost Ground Sensor Network for Intrusion Detection

    Science.gov (United States)

    2017-09-01

    their suitability to our research. 1. Wireless Sensor Networks The backend network infrastructure forms the communication links for the network...were not ideal as they were perpetually turned on. Our research considered the backend communication infrastructure and its power requirements when...7 3. Border Patrol— Mobile Situation Awareness Tool (MSAT

  7. Spatial anomaly detection in sensor networks using neighborhood information

    NARCIS (Netherlands)

    Bosman, H.H.W.J.; Iacca, G.; Tejada, A.; Wörtche, H.J.; Liotta, A.

    2016-01-01

    The field of wireless sensor networks (WSNs), embedded systems with sensing and networking capabil- ity, has now matured after a decade-long research effort and technological advances in electronics and networked systems. An important remaining challenge now is to extract meaningful information from

  8. Spatial anomaly detection in sensor networks using neighborhood information

    NARCIS (Netherlands)

    Bosman, H.H.W.J.; Iacca, G.; Tejada, A.; Wörtche, H.J.; Liotta, A.

    The field of wireless sensor networks (WSNs), embedded systems with sensing and networking capability, has now matured after a decade-long research effort and technological advances in electronics and networked systems. An important remaining challenge now is to extract meaningful information from

  9. Detecting Statistically Significant Communities of Triangle Motifs in Undirected Networks

    Science.gov (United States)

    2016-04-26

    Systems, Statistics & Management Science, University of Alabama, USA. 1 DISTRIBUTION A: Distribution approved for public release. Contents 1 Summary 5...13 5 Application to Real Networks 18 5.1 2012 FBS Football Schedule Network... football schedule network. . . . . . . . . . . . . . . . . . . . . . 21 14 Stem plot of degree-ordered vertices versus the degree for college football

  10. An investigation of scalable anomaly detection techniques for a large network of Wi-Fi hotspots

    CSIR Research Space (South Africa)

    Machaka, P

    2015-01-01

    Full Text Available . The Neural Networks, Bayesian Networks and Artificial Immune Systems were used for this experiment. Using a set of data extracted from a live network of Wi-Fi hotspots managed by an ISP; we integrated algorithms into a data collection system to detect...

  11. Leakage detection and estimation algorithm for loss reduction in water piping networks

    CSIR Research Space (South Africa)

    Adedeji, KB

    2017-10-01

    Full Text Available the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs) are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s) of the network and the exact...

  12. Wormhole Detection Based on Ordinal MDS Using RTT in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Saswati Mukherjee

    2016-01-01

    Full Text Available In wireless communication, wormhole attack is a crucial threat that deteriorates the normal functionality of the network. Invasion of wormholes destroys the network topology completely. However, most of the existing solutions require special hardware or synchronized clock or long processing time to defend against long path wormhole attacks. In this work, we propose a wormhole detection method using range-based topology comparison that exploits the local neighbourhood subgraph. The Round Trip Time (RTT for each node pair is gathered to generate neighbour information. Then, the network is reconstructed by ordinal Multidimensional Scaling (MDS followed by a suspicion phase that enlists the suspected wormholes based on the spatial reconstruction. Iterative computation of MDS helps to visualize the topology changes and can localize the potential wormholes. Finally, a verification phase is used to remove falsely accused nodes and identify real adversaries. The novelty of our algorithm is that it can detect both short path and long path wormhole links. Extensive simulations are executed to demonstrate the efficacy of our approach compared to existing ones.

  13. Vector network analyzer ferromagnetic resonance spectrometer with field differential detection

    Science.gov (United States)

    Tamaru, S.; Tsunegi, S.; Kubota, H.; Yuasa, S.

    2018-05-01

    This work presents a vector network analyzer ferromagnetic resonance (VNA-FMR) spectrometer with field differential detection. This technique differentiates the S-parameter by applying a small binary modulation field in addition to the DC bias field to the sample. By setting the modulation frequency sufficiently high, slow sensitivity fluctuations of the VNA, i.e., low-frequency components of the trace noise, which limit the signal-to-noise ratio of the conventional VNA-FMR spectrometer, can be effectively removed, resulting in a very clean FMR signal. This paper presents the details of the hardware implementation and measurement sequence as well as the data processing and analysis algorithms tailored for the FMR spectrum obtained with this technique. Because the VNA measures a complex S-parameter, it is possible to estimate the Gilbert damping parameter from the slope of the phase variation of the S-parameter with respect to the bias field. We show that this algorithm is more robust against noise than the conventional algorithm based on the linewidth.

  14. Climate Change Literacy across the Critical Zone Observatory Network

    Science.gov (United States)

    Moore, A.; Derry, L. A.; Zabel, I.; Duggan-Haas, D.; Ross, R. M.

    2017-12-01

    Earth's Critical Zone extends from the top of the tree canopy to the base of the groundwater lens. Thus the Critical Zone is examined as a suite of interconnected systems and study of the CZ is inherently interdisciplinary. Climate change is an important driver of CZ processes. The US Critical Zone Observatory Network comprises nine observatories and a coordinating National Office. Educational programs and materials developed at each CZO and the National Office have been collected, reviewed, and presented on-line at the CZONO (criticalzone.org/national/education-outreach/resources). Because the CZOs are designed to observe and measure a suite of common parameters on varying geological substrates and within different ecological contexts, educational resources reflect the diversity of processes represented across the network. As climate change has a network-wide impact, the fundamental building blocks of climate change literacy are key elements in many activities within the CZONO resource collection. Carbon-cycle and hydrologic cycle processes are well-represented, with emphasis on human interactions with these resources, as well as the impact of extreme events and the changing climate. Current work on the resource collection focuses on connecting individual resources to "Teach Climate Science" project and the Teacher-Friendly Guide to Climate Change (teachclimatescience.wordpress.com). The Teacher-Friendly Guide is a manual for K-12 teachers that presents both the fundamentals of climate science alongside resources for effective teaching of this controversial topic. Using the reach of the CZO network we hope to disseminate effective climate literacy resources and support to the K-12 community.

  15. Automated baseline change detection phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Automated Baseline Change Detection (ABCD) project is supported by the DOE Morgantown Energy Technology Center (METC) as part of its ER&WM cross-cutting technology program in robotics. Phase 1 of the Automated Baseline Change Detection project is summarized in this topical report. The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrel and on feature recognition in images. In support of this primary objective, there are secondary objectives to determine DOE operational inspection requirements and DOE system fielding requirements.

  16. Automated baseline change detection phase I. Final report

    International Nuclear Information System (INIS)

    1995-12-01

    The Automated Baseline Change Detection (ABCD) project is supported by the DOE Morgantown Energy Technology Center (METC) as part of its ER ampersand WM cross-cutting technology program in robotics. Phase 1 of the Automated Baseline Change Detection project is summarized in this topical report. The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrel and on feature recognition in images. In support of this primary objective, there are secondary objectives to determine DOE operational inspection requirements and DOE system fielding requirements

  17. A model-guided symbolic execution approach for network protocol implementations and vulnerability detection.

    Science.gov (United States)

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Formal techniques have been devoted to analyzing whether network protocol specifications violate security policies; however, these methods cannot detect vulnerabilities in the implementations of the network protocols themselves. Symbolic execution can be used to analyze the paths of the network protocol implementations, but for stateful network protocols, it is difficult to reach the deep states of the protocol. This paper proposes a novel model-guided approach to detect vulnerabilities in network protocol implementations. Our method first abstracts a finite state machine (FSM) model, then utilizes the model to guide the symbolic execution. This approach achieves high coverage of both the code and the protocol states. The proposed method is implemented and applied to test numerous real-world network protocol implementations. The experimental results indicate that the proposed method is more effective than traditional fuzzing methods such as SPIKE at detecting vulnerabilities in the deep states of network protocol implementations.

  18. A model-guided symbolic execution approach for network protocol implementations and vulnerability detection.

    Directory of Open Access Journals (Sweden)

    Shameng Wen

    Full Text Available Formal techniques have been devoted to analyzing whether network protocol specifications violate security policies; however, these methods cannot detect vulnerabilities in the implementations of the network protocols themselves. Symbolic execution can be used to analyze the paths of the network protocol implementations, but for stateful network protocols, it is difficult to reach the deep states of the protocol. This paper proposes a novel model-guided approach to detect vulnerabilities in network protocol implementations. Our method first abstracts a finite state machine (FSM model, then utilizes the model to guide the symbolic execution. This approach achieves high coverage of both the code and the protocol states. The proposed method is implemented and applied to test numerous real-world network protocol implementations. The experimental results indicate that the proposed method is more effective than traditional fuzzing methods such as SPIKE at detecting vulnerabilities in the deep states of network protocol implementations.

  19. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Science.gov (United States)

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  20. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Directory of Open Access Journals (Sweden)

    Shameng Wen

    Full Text Available Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  1. Combining Host-based and network-based intrusion detection system

    African Journals Online (AJOL)

    These attacks were simulated using hping. The proposed system is implemented in Java. The results show that the proposed system is able to detect attacks both from within (host-based) and outside sources (network-based). Key Words: Intrusion Detection System (IDS), Host-based, Network-based, Signature, Security log.

  2. Towards software-based signature detection for intrusion prevention on the network card

    NARCIS (Netherlands)

    Bos, H.; Huang, Kaiming

    2006-01-01

    CardGuard is a signature detection system for intrusion detection and prevention that scans the entire payload of packets for suspicious patterns and is implemented in software on a network card equiped with an Intel IXP1200 network processor. One card can be used to protect either a single host, or

  3. Fault detection for hydraulic pump based on chaotic parallel RBF network

    Directory of Open Access Journals (Sweden)

    Ma Ning

    2011-01-01

    Full Text Available Abstract In this article, a parallel radial basis function network in conjunction with chaos theory (CPRBF network is presented, and applied to practical fault detection for hydraulic pump, which is a critical component in aircraft. The CPRBF network consists of a number of radial basis function (RBF subnets connected in parallel. The number of input nodes for each RBF subnet is determined by different embedding dimension based on chaotic phase-space reconstruction. The output of CPRBF is a weighted sum of all RBF subnets. It was first trained using the dataset from normal state without fault, and then a residual error generator was designed to detect failures based on the trained CPRBF network. Then, failure detection can be achieved by the analysis of the residual error. Finally, two case studies are introduced to compare the proposed CPRBF network with traditional RBF networks, in terms of prediction and detection accuracy.

  4. Innovation Network Development Model in Telemedicine: A Change in Participation.

    Science.gov (United States)

    Goodarzi, Maryam; Torabi, Mashallah; Safdari, Reza; Dargahi, Hossein; Naeimi, Sara

    2015-10-01

    This paper introduces a telemedicine innovation network and reports its implementation in Tehran University of Medical Sciences. The required conditions for the development of future projects in the field of telemedicine are also discussed; such projects should be based on the common needs and opportunities in the areas of healthcare, education, and technology. The development of the telemedicine innovation network in Tehran University of Medical Sciences was carried out in two phases: identifying the beneficiaries of telemedicine, and codification of the innovation network memorandum; and brainstorming of three workgroup members, and completion and clustering ideas. The present study employed a qualitative survey by using brain storming method. Thus, the ideas of the innovation network members were gathered, and by using Freeplane software, all of them were clustered and innovation projects were defined. In the services workgroup, 87 and 25 ideas were confirmed in phase 1 and phase 2, respectively. In the education workgroup, 8 new programs in the areas of telemedicine, tele-education and teleconsultation were codified. In the technology workgroup, 101 and 11 ideas were registered in phase 1 and phase 2, respectively. Today, innovation is considered a major infrastructural element of any change or progress. Thus, the successful implementation of a telemedicine project not only needs funding, human resources, and full equipment. It also requires the use of innovation models to cover several different aspects of change and progress. The results of the study can provide a basis for the implementation of future telemedicine projects using new participatory, creative, and innovative models.

  5. European network infrastructures of observatories for terrestrial Global Change research

    Science.gov (United States)

    Vereecken, H.; Bogena, H.; Lehning, M.

    2009-04-01

    The earth's climate is significantly changing (e.g. IPCC, 2007) and thus directly affecting the terrestrial systems. The number and intensity hydrological extremes, such as floods and droughts, are continually increasing, resulting in major economical and social impacts. Furthermore, the land cover in Europe has been modified fundamentally by conversions for agriculture, forest and for other purposes such as industrialisation and urbanisation. Additionally, water resources are more than ever used for human development, especially as a key resource for agricultural and industrial activities. As a special case, the mountains of the world are of significant importance in terms of water resources supply, biodiversity, economy, agriculture, traffic and recreation but particularly vulnerable to environmental change. The Alps are unique because of the pronounced small scale variability they contain, the high population density they support and their central position in Europe. The Alps build a single coherent physical and natural environment, artificially cut by national borders. The scientific community and governmental bodies have responded to these environmental changes by performing dedicated experiments and by establishing environmental research networks to monitor, analyse and predict the impact of Global Change on different terrestrial systems of the Earths' environment. Several European network infrastructures for terrestrial Global Change research are presently immerging or upgrading, such as ICOS, ANAEE, LifeWatch or LTER-Europe. However, the strongest existing networks are still operating on a regional or national level and the historical growth of such networks resulted in a very heterogeneous landscape of observation networks. We propose therefore the establishment of two complementary networks: The NetwOrk of Hydrological observAtories, NOHA. NOHA aims to promote the sustainable management of water resources in Europe, to support the prediction of

  6. Detection and Attribution of Anthropogenic Climate Change Impacts

    Science.gov (United States)

    Rosenzweig, Cynthia; Neofotis, Peter

    2013-01-01

    Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.

  7. MULTI-TEMPORAL CLASSIFICATION AND CHANGE DETECTION USING UAV IMAGES

    Directory of Open Access Journals (Sweden)

    S. Makuti

    2018-05-01

    Full Text Available In this paper different methodologies for the classification and change detection of UAV image blocks are explored. UAV is not only the cheapest platform for image acquisition but it is also the easiest platform to operate in repeated data collections over a changing area like a building construction site. Two change detection techniques have been evaluated in this study: the pre-classification and the post-classification algorithms. These methods are based on three main steps: feature extraction, classification and change detection. A set of state of the art features have been used in the tests: colour features (HSV, textural features (GLCM and 3D geometric features. For classification purposes Conditional Random Field (CRF has been used: the unary potential was determined using the Random Forest algorithm while the pairwise potential was defined by the fully connected CRF. In the performed tests, different feature configurations and settings have been considered to assess the performance of these methods in such challenging task. Experimental results showed that the post-classification approach outperforms the pre-classification change detection method. This was analysed using the overall accuracy, where by post classification have an accuracy of up to 62.6 % and the pre classification change detection have an accuracy of 46.5 %. These results represent a first useful indication for future works and developments.

  8. Automated Change Detection for Validation and Update of Geodata

    DEFF Research Database (Denmark)

    Olsen, Brian Pilemann; Knudsen, Thomas

    )is presented. Height information is used to determine the location of object which stands above terrain, and the CIR-Imagery is used to exclude vegetation, leading to a potential buildings mask. Comparing the existing objects in the map database with these extracted objects leads to a validation of the map...... to newer (raster based) remote sensing images in order to detect changes in objects. In this paper an automatic change detection method considering changes in the building theme and based on colourinfrared (CIR) aerial photographs in combination with height information (LIDAR, digital photogrammetry...

  9. Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network

    Science.gov (United States)

    2013-05-26

    public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University

  10. Hardware accelerator design for change detection in smart camera

    Science.gov (United States)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Chaudhury, Santanu; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in Human Computer Interaction. In any remote surveillance scenario, smart cameras have to take intelligent decisions to select frames of significant changes to minimize communication and processing overhead. Among many of the algorithms for change detection, one based on clustering based scheme was proposed for smart camera systems. However, such an algorithm could achieve low frame rate far from real-time requirements on a general purpose processors (like PowerPC) available on FPGAs. This paper proposes the hardware accelerator capable of detecting real time changes in a scene, which uses clustering based change detection scheme. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA board. Resulted frame rate is 30 frames per second for QVGA resolution in gray scale.

  11. Detecting abrupt dynamic change based on changes in the fractal properties of spatial images

    Science.gov (United States)

    Liu, Qunqun; He, Wenping; Gu, Bin; Jiang, Yundi

    2017-10-01

    Many abrupt climate change events often cannot be detected timely by conventional abrupt detection methods until a few years after these events have occurred. The reason for this lag in detection is that abundant and long-term observational data are required for accurate abrupt change detection by these methods, especially for the detection of a regime shift. So, these methods cannot help us understand and forecast the evolution of the climate system in a timely manner. Obviously, spatial images, generated by a coupled spatiotemporal dynamical model, contain more information about a dynamic system than a single time series, and we find that spatial images show the fractal properties. The fractal properties of spatial images can be quantitatively characterized by the Hurst exponent, which can be estimated by two-dimensional detrended fluctuation analysis (TD-DFA). Based on this, TD-DFA is used to detect an abrupt dynamic change of a coupled spatiotemporal model. The results show that the TD-DFA method can effectively detect abrupt parameter changes in the coupled model by monitoring the changing in the fractal properties of spatial images. The present method provides a new way for abrupt dynamic change detection, which can achieve timely and efficient abrupt change detection results.

  12. Short-term change detection for UAV video

    Science.gov (United States)

    Saur, Günter; Krüger, Wolfgang

    2012-11-01

    In the last years, there has been an increased use of unmanned aerial vehicles (UAV) for video reconnaissance and surveillance. An important application in this context is change detection in UAV video data. Here we address short-term change detection, in which the time between observations ranges from several minutes to a few hours. We distinguish this task from video motion detection (shorter time scale) and from long-term change detection, based on time series of still images taken between several days, weeks, or even years. Examples for relevant changes we are looking for are recently parked or moved vehicles. As a pre-requisite, a precise image-to-image registration is needed. Images are selected on the basis of the geo-coordinates of the sensor's footprint and with respect to a certain minimal overlap. The automatic imagebased fine-registration adjusts the image pair to a common geometry by using a robust matching approach to handle outliers. The change detection algorithm has to distinguish between relevant and non-relevant changes. Examples for non-relevant changes are stereo disparity at 3D structures of the scene, changed length of shadows, and compression or transmission artifacts. To detect changes in image pairs we analyzed image differencing, local image correlation, and a transformation-based approach (multivariate alteration detection). As input we used color and gradient magnitude images. To cope with local misalignment of image structures we extended the approaches by a local neighborhood search. The algorithms are applied to several examples covering both urban and rural scenes. The local neighborhood search in combination with intensity and gradient magnitude differencing clearly improved the results. Extended image differencing performed better than both the correlation based approach and the multivariate alternation detection. The algorithms are adapted to be used in semi-automatic workflows for the ABUL video exploitation system of Fraunhofer

  13. Reconfiguration of Cortical Networks in MDD Uncovered by Multiscale Community Detection with fMRI.

    Science.gov (United States)

    He, Ye; Lim, Sol; Fortunato, Santo; Sporns, Olaf; Zhang, Lei; Qiu, Jiang; Xie, Peng; Zuo, Xi-Nian

    2018-04-01

    Major depressive disorder (MDD) is known to be associated with altered interactions between distributed brain regions. How these regional changes relate to the reorganization of cortical functional systems, and their modulation by antidepressant medication, is relatively unexplored. To identify changes in the community structure of cortical functional networks in MDD, we performed a multiscale community detection algorithm on resting-state functional connectivity networks of unmedicated MDD (uMDD) patients (n = 46), medicated MDD (mMDD) patients (n = 38), and healthy controls (n = 50), which yielded a spectrum of multiscale community partitions. we selected an optimal resolution level by identifying the most stable community partition for each group. uMDD and mMDD groups exhibited a similar reconfiguration of the community structure of the visual association and the default mode systems but showed different reconfiguration profiles in the frontoparietal control (FPC) subsystems. Furthermore, the central system (somatomotor/salience) and 3 frontoparietal subsystems showed strengthened connectivity with other communities in uMDD but, with the exception of 1 frontoparietal subsystem, returned to control levels in mMDD. These findings provide evidence for reconfiguration of specific cortical functional systems associated with MDD, as well as potential effects of medication in restoring disease-related network alterations, especially those of the FPC system.

  14. No evidence for an item limit in change detection.

    Directory of Open Access Journals (Sweden)

    Shaiyan Keshvari

    Full Text Available Change detection is a classic paradigm that has been used for decades to argue that working memory can hold no more than a fixed number of items ("item-limit models". Recent findings force us to consider the alternative view that working memory is limited by the precision in stimulus encoding, with mean precision decreasing with increasing set size ("continuous-resource models". Most previous studies that used the change detection paradigm have ignored effects of limited encoding precision by using highly discriminable stimuli and only large changes. We conducted two change detection experiments (orientation and color in which change magnitudes were drawn from a wide range, including small changes. In a rigorous comparison of five models, we found no evidence of an item limit. Instead, human change detection performance was best explained by a continuous-resource model in which encoding precision is variable across items and trials even at a given set size. This model accounts for comparison errors in a principled, probabilistic manner. Our findings sharply challenge the theoretical basis for most neural studies of working memory capacity.

  15. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    Science.gov (United States)

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.

  16. Similarity between community structures of different online social networks and its impact on underlying community detection

    Science.gov (United States)

    Fan, W.; Yeung, K. H.

    2015-03-01

    As social networking services are popular, many people may register in more than one online social network. In this paper we study a set of users who have accounts of three online social networks: namely Foursquare, Facebook and Twitter. Community structure of this set of users may be reflected in these three online social networks. Therefore, high correlation between these reflections and the underlying community structure may be observed. In this work, community structures are detected in all three online social networks. Also, we investigate the similarity level of community structures across different networks. It is found that they show strong correlation with each other. The similarity between different networks may be helpful to find a community structure close to the underlying one. To verify this, we propose a method to increase the weights of some connections in networks. With this method, new networks are generated to assist community detection. By doing this, value of modularity can be improved and the new community structure match network's natural structure better. In this paper we also show that the detected community structures of online social networks are correlated with users' locations which are identified on Foursquare. This information may also be useful for underlying community detection.

  17. Local community detection as pattern restoration by attractor dynamics of recurrent neural networks.

    Science.gov (United States)

    Okamoto, Hiroshi

    2016-08-01

    Densely connected parts in networks are referred to as "communities". Community structure is a hallmark of a variety of real-world networks. Individual communities in networks form functional modules of complex systems described by networks. Therefore, finding communities in networks is essential to approaching and understanding complex systems described by networks. In fact, network science has made a great deal of effort to develop effective and efficient methods for detecting communities in networks. Here we put forward a type of community detection, which has been little examined so far but will be practically useful. Suppose that we are given a set of source nodes that includes some (but not all) of "true" members of a particular community; suppose also that the set includes some nodes that are not the members of this community (i.e., "false" members of the community). We propose to detect the community from this "imperfect" and "inaccurate" set of source nodes using attractor dynamics of recurrent neural networks. Community detection by the proposed method can be viewed as restoration of the original pattern from a deteriorated pattern, which is analogous to cue-triggered recall of short-term memory in the brain. We demonstrate the effectiveness of the proposed method using synthetic networks and real social networks for which correct communities are known. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Developmental changes in organization of structural brain networks.

    Science.gov (United States)

    Khundrakpam, Budhachandra S; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C

    2013-09-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.

  19. Cortical dynamics of visual change detection based on sensory memory.

    Science.gov (United States)

    Urakawa, Tomokazu; Inui, Koji; Yamashiro, Koya; Tanaka, Emi; Kakigi, Ryusuke

    2010-08-01

    Detecting a visual change was suggested to relate closely to the visual sensory memory formed by visual stimuli before the occurrence of the change, because change detection involves identifying a difference between ongoing and preceding sensory conditions. Previous neuroimaging studies showed that an abrupt visual change activates the middle occipital gyrus (MOG). However, it still remains to be elucidated whether the MOG is related to visual change detection based on sensory memory. Here we tried to settle this issue using a new method of stimulation with blue and red LEDs to emphasize a memory-based change detection process. There were two stimuli, a standard trial stimulus and a deviant trial stimulus. The former was a red light lasting 500 ms, and the latter was a red light lasting 250 ms immediately followed by a blue light lasting 250 ms. Effects of the trial-trial interval, 250 approximately 2000 ms, were investigated to know how cortical responses to the abrupt change (from red to blue) were affected by preceding conditions. The brain response to the deviant trial stimulus was recorded by magnetoencephalography. Results of a multi-dipole analysis showed that the activity in the MOG, peaking at around 150 ms after the change onset, decreased in amplitude as the interval increased, but the earlier activity in BA 17/18 was not affected by the interval. These results suggested that the MOG is an important cortical area relating to the sensory memory-based visual change-detecting system. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Change of mobile network coverage in France from 29 August

    CERN Multimedia

    IT Department

    2016-01-01

    The change of mobile network coverage on the French part of the CERN site will take effect on 29 August and not on 11 July as previously announced.    From 29 August, the Swisscom transmitters in France will be deactivated and Orange France will thenceforth provide coverage on the French part of the CERN site.  This switch will result in changes to billing. You should also ensure that you can still be contacted by your colleagues when you are on the French part of the CERN site. Please consult the information and instructions in this official communication.

  1. Asymmetric intimacy and algorithm for detecting communities in bipartite networks

    Science.gov (United States)

    Wang, Xingyuan; Qin, Xiaomeng

    2016-11-01

    In this paper, an algorithm to choose a good partition in bipartite networks has been proposed. Bipartite networks have more theoretical significance and broader prospect of application. In view of distinctive structure of bipartite networks, in our method, two parameters are defined to show the relationships between the same type nodes and heterogeneous nodes respectively. Moreover, our algorithm employs a new method of finding and expanding the core communities in bipartite networks. Two kinds of nodes are handled separately and merged, and then the sub-communities are obtained. After that, objective communities will be found according to the merging rule. The proposed algorithm has been simulated in real-world networks and artificial networks, and the result verifies the accuracy and reliability of the parameters on intimacy for our algorithm. Eventually, comparisons with similar algorithms depict that the proposed algorithm has better performance.

  2. A Survey on Distributed Filtering and Fault Detection for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hongli Dong

    2014-01-01

    Full Text Available In recent years, theoretical and practical research on large-scale networked systems has gained an increasing attention from multiple disciplines including engineering, computer science, and mathematics. Lying in the core part of the area are the distributed estimation and fault detection problems that have recently been attracting growing research interests. In particular, an urgent need has arisen to understand the effects of distributed information structures on filtering and fault detection in sensor networks. In this paper, a bibliographical review is provided on distributed filtering and fault detection problems over sensor networks. The algorithms employed to study the distributed filtering and detection problems are categorised and then discussed. In addition, some recent advances on distributed detection problems for faulty sensors and fault events are also summarized in great detail. Finally, we conclude the paper by outlining future research challenges for distributed filtering and fault detection for sensor networks.

  3. Detection of rainfall-induced landslides on regional seismic networks

    Science.gov (United States)

    Manconi, Andrea; Coviello, Velio; Gariano, Stefano Luigi; Picozzi, Matteo

    2017-04-01

    Seismic techniques are increasingly adopted to detect signals induced by mass movements and to quantitatively evaluate geo-hydrological hazards at different spatial and temporal scales. By analyzing landslide-induced seismicity, it is possible obtaining significant information on the source of the mass wasting, as well as on its dynamics. However, currently only few studies have performed a systematic back analysis on comprehensive catalogues of events to evaluate the performance of proposed algorithms. In this work, we analyze a catalogue of 1058 landslides induced by rainfall in Italy. Among these phenomena, there are 234 rock falls, 55 debris flows, 54 mud flows, and 715 unspecified shallow landslides. This is a subset of a larger catalogue collected by the Italian research institute for geo-hydrological protection (CNR IRPI) during the period 2000-2014 (Brunetti et al., 2015). For each record, the following information are available: the type of landslide; the geographical location of the landslide (coordinates, site, municipality, province, and 3 classes of geographic accuracy); the temporal information on the landslide occurrence (day, month, year, time, date, and 3 classes of temporal accuracy); the rainfall conditions (rainfall duration and cumulated event rainfall) that have resulted in the landslide. We consider here only rainfall-induced landslides for which exact date and time were known from chronicle information. The analysis of coeval seismic data acquired by regional seismic networks show clear signals in at least 3 stations for 64 events (6% of the total dataset). Among them, 20 are associated to local earthquakes and 2 to teleseisms; 10 are anomalous signals characterized by irregular and impulsive waveforms in both time and frequency domains; 33 signals are likely associated to the landslide occurrence, as they have a cigar-shaped waveform characterized by emerging onsets, duration of several tens of seconds, and low frequencies (1-10 Hz). For

  4. Partial Information Community Detection in a Multilayer Network

    Science.gov (United States)

    2016-06-01

    26 3 Methodology 33 3.1 Topology of the Noordin Top Terrorist Network . . . . . . . . . . . . 33 3.2 Partial Information... Topology of Synthetic Network. . . . . . . . . . . . . . . . . . . 69 4.4 Four Discovery Algorithms Discovering Red Vertices in a Synthetic Network 72 4.5...without their expertise and analysis. I have been lucky enough to have learned from the wonderful faculty of Applied Mathe - matics Department at the Naval

  5. Using Hierarchical Temporal Memory for Detecting Anomalous Network Activity

    Science.gov (United States)

    2008-03-01

    warfare, computer network operations, psychological operations, military deception, and operations security, in concert with specified supporting and...you up short—you were subconsciously predicting something else and were surprised by the mismatch” [3]. Notable neurobiologist Horace Barlow of the...malicious network activity is flagged as abnormal . That is, test data should present the N-HTM network with spatial-temporal patterns that do not match 46

  6. Correlation Networks for Identifying Changes in Brain Connectivity during Epileptiform Discharges and Transcranial Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Elsa Siggiridou

    2014-07-01

    Full Text Available The occurrence of epileptiform discharges (ED in electroencephalographic (EEG recordings of patients with epilepsy signifies a change in brain dynamics and particularly brain connectivity. Transcranial magnetic stimulation (TMS has been recently acknowledged as a non-invasive brain stimulation technique that can be used in focal epilepsy for therapeutic purposes. In this case study, it is investigated whether simple time-domain connectivity measures, namely cross-correlation and partial cross-correlation, can detect alterations in the connectivity structure estimated from selected EEG channels before and during ED, as well as how this changes with the application of TMS. The correlation for each channel pair is computed on non-overlapping windows of 1 s duration forming weighted networks. Further, binary networks are derived by thresholding or statistical significance tests (parametric and randomization tests. The information for the binary networks is summarized by statistical network measures, such as the average degree and the average path length. Alterations of brain connectivity before, during and after ED with or without TMS are identified by statistical analysis of the network measures at each state.

  7. Detection of greenhouse-gas-induced climatic change

    International Nuclear Information System (INIS)

    Wigley, T.M.L.; Jones, P.D.

    1992-01-01

    The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO 2 and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs)

  8. Towards a Framework for Change Detection in Data Sets

    Science.gov (United States)

    Böttcher, Mirko; Nauck, Detlef; Ruta, Dymitr; Spott, Martin

    Since the world with its markets, innovations and customers is changing faster than ever before, the key to survival for businesses is the ability to detect, assess and respond to changing conditions rapidly and intelligently. Discovering changes and reacting to or acting upon them before others do has therefore become a strategical issue for many companies. However, existing data analysis techniques are insufflent for this task since they typically assume that the domain under consideration is stable over time. This paper presents a framework that detects changes within a data set at virtually any level of granularity. The underlying idea is to derive a rule-based description of the data set at different points in time and to subsequently analyse how these rules change. Nevertheless, further techniques are required to assist the data analyst in interpreting and assessing their changes. Therefore the framework also contains methods to discard rules that are non-drivers for change and to assess the interestingness of detected changes.

  9. How Networked Communication Has Changed the Ways We Tell Stories

    Directory of Open Access Journals (Sweden)

    Anna Notaro

    2014-12-01

    Full Text Available In the midst of the digital revolution, we are confronted with the task of defining how media will change our lives and how we communicate with each other in the years to come. Narrative, as one of the most ancient communication tools, has undergone substantial structural changes. This paper addresses how these changes impact the way we read and write. Does the same story conveyed through different media channels signify in the same manner? In other words, what are the differences between a printed story and a digitally presented one? Have electronic reader devices altered the way stories are told and created? And how is networked communication changing the ways we tell stories?

  10. AN INVESTIGATION OF AUTOMATIC CHANGE DETECTION FOR TOPOGRAPHIC MAP UPDATING

    Directory of Open Access Journals (Sweden)

    P. Duncan

    2012-08-01

    Full Text Available Changes to the landscape are constantly occurring and it is essential for geospatial and mapping organisations that these changes are regularly detected and captured, so that map databases can be updated to reflect the current status of the landscape. The Chief Directorate of National Geospatial Information (CD: NGI, South Africa's national mapping agency, currently relies on manual methods of detecting changes and capturing these changes. These manual methods are time consuming and labour intensive, and rely on the skills and interpretation of the operator. It is therefore necessary to move towards more automated methods in the production process at CD: NGI. The aim of this research is to do an investigation into a methodology for automatic or semi-automatic change detection for the purpose of updating topographic databases. The method investigated for detecting changes is through image classification as well as spatial analysis and is focussed on urban landscapes. The major data input into this study is high resolution aerial imagery and existing topographic vector data. Initial results indicate the traditional pixel-based image classification approaches are unsatisfactory for large scale land-use mapping and that object-orientated approaches hold more promise. Even in the instance of object-oriented image classification generalization of techniques on a broad-scale has provided inconsistent results. A solution may lie with a hybrid approach of pixel and object-oriented techniques.

  11. A new method of small target detection based on neural network

    Science.gov (United States)

    Hu, Jing; Hu, Yongli; Lu, Xinxin

    2018-02-01

    The detection and tracking of moving dim target in infrared image have been an research hotspot for many years. The target in each frame of images only occupies several pixels without any shape and structure information. Moreover, infrared small target is often submerged in complicated background with low signal-to-clutter ratio, making the detection very difficult. Different backgrounds exhibit different statistical properties, making it becomes extremely complex to detect the target. If the threshold segmentation is not reasonable, there may be more noise points in the final detection, which is unfavorable for the detection of the trajectory of the target. Single-frame target detection may not be able to obtain the desired target and cause high false alarm rate. We believe the combination of suspicious target detection spatially in each frame and temporal association for target tracking will increase reliability of tracking dim target. The detection of dim target is mainly divided into two parts, In the first part, we adopt bilateral filtering method in background suppression, after the threshold segmentation, the suspicious target in each frame are extracted, then we use LSTM(long short term memory) neural network to predict coordinates of target of the next frame. It is a brand-new method base on the movement characteristic of the target in sequence images which could respond to the changes in the relationship between past and future values of the values. Simulation results demonstrate proposed algorithm can effectively predict the trajectory of the moving small target and work efficiently and robustly with low false alarm.

  12. A Hybrid Change Detection Approach for Damage Detection and Recovery Monitoring

    Science.gov (United States)

    de Alwis Pitts, Dilkushi; Wieland, Marc; Wang, Shifeng; So, Emily; Pittore, Massimiliano

    2014-05-01

    Following a disaster, change detection via pre- and post-event very high resolution remote sensing images is an essential technique for damage assessment and recovery monitoring over large areas in complex urban environments. Most assessments to date focus on detection, destruction and recovery of man-made objects that facilitate shelter and accessibility, such as buildings, roads, bridges, etc., as indicators for assessment and better decision making. Moreover, many current change-detection mechanisms do not use all the data and knowledge which are often available for the pre-disaster state. Recognizing the continuous rather than dichotomous character of the data-rich/data-poor distinction permits the incorporation of ancillary data and existing knowledge into the processing flow. Such incorporation could improve the reliability of the results and thereby enhance the usability of robust methods for disaster management. This study proposes an application-specific and robust change detection method from multi-temporal very high resolution multi-spectral satellite images. This hybrid indicator-specific method uses readily available pre-disaster GIS data and integrates existing knowledge into the processing flow to optimize the change detection while offering the possibility to target specific types of changes to man-made objects. The indicator-specific information of the GIS objects is used as a series of masks to treat the GIS objects with similar characteristics similarly for better accuracy. The proposed approach is based on a fusion of a multi-index change detection method based on gradient, texture and edge similarity filters. The change detection index is flexible for disaster cases in which the pre-disaster and post-disaster images are not of the same resolution. The proposed automated method is evaluated with QuickBird and Ikonos datasets for abrupt changes soon after disaster. The method could also be extended in a semi-automated way for monitoring

  13. Extended image differencing for change detection in UAV video mosaics

    Science.gov (United States)

    Saur, Günter; Krüger, Wolfgang; Schumann, Arne

    2014-03-01

    Change detection is one of the most important tasks when using unmanned aerial vehicles (UAV) for video reconnaissance and surveillance. We address changes of short time scale, i.e. the observations are taken in time distances from several minutes up to a few hours. Each observation is a short video sequence acquired by the UAV in near-nadir view and the relevant changes are, e.g., recently parked or moved vehicles. In this paper we extend our previous approach of image differencing for single video frames to video mosaics. A precise image-to-image registration combined with a robust matching approach is needed to stitch the video frames to a mosaic. Additionally, this matching algorithm is applied to mosaic pairs in order to align them to a common geometry. The resulting registered video mosaic pairs are the input of the change detection procedure based on extended image differencing. A change mask is generated by an adaptive threshold applied to a linear combination of difference images of intensity and gradient magnitude. The change detection algorithm has to distinguish between relevant and non-relevant changes. Examples for non-relevant changes are stereo disparity at 3D structures of the scene, changed size of shadows, and compression or transmission artifacts. The special effects of video mosaicking such as geometric distortions and artifacts at moving objects have to be considered, too. In our experiments we analyze the influence of these effects on the change detection results by considering several scenes. The results show that for video mosaics this task is more difficult than for single video frames. Therefore, we extended the image registration by estimating an elastic transformation using a thin plate spline approach. The results for mosaics are comparable to that of single video frames and are useful for interactive image exploitation due to a larger scene coverage.

  14. Incrementally Detecting Change Types of Spatial Area Object: A Hierarchical Matching Method Considering Change Process

    Directory of Open Access Journals (Sweden)

    Yanhui Wang

    2018-01-01

    Full Text Available Detecting and extracting the change types of spatial area objects can track area objects’ spatiotemporal change pattern and provide the change backtracking mechanism for incrementally updating spatial datasets. To respond to the problems of high complexity of detection methods, high redundancy rate of detection factors, and the low automation degree during incrementally update process, we take into account the change process of area objects in an integrated way and propose a hierarchical matching method to detect the nine types of changes of area objects, while minimizing the complexity of the algorithm and the redundancy rate of detection factors. We illustrate in details the identification, extraction, and database entry of change types, and how we achieve a close connection and organic coupling of incremental information extraction and object type-of-change detection so as to characterize the whole change process. The experimental results show that this method can successfully detect incremental information about area objects in practical applications, with the overall accuracy reaching above 90%, which is much higher than the existing weighted matching method, making it quite feasible and applicable. It helps establish the corresponding relation between new-version and old-version objects, and facilitate the linked update processing and quality control of spatial data.

  15. Processes linked to contact changes in adoptive kinship networks.

    Science.gov (United States)

    Dunbar, Nora; van Dulmen, Manfred H M; Ayers-Lopez, Susan; Berge, Jerica M; Christian, Cinda; Gossman, Ginger; Henney, M Susan M; Mendenhall, Tai J; Grotevant, Harold D; McRoy, Ruth G

    2006-12-01

    The purpose of this study was to reveal underlying processes in adoptive kinship networks that experienced increases or decreases in levels of openness during the child's adolescent years. Intensive case study analyses were conducted for 8 adoptive kinship networks (each including an adoptive mother, adoptive father, adopted adolescent, and birth mother), half of whom had experienced an increase in openness from indirect (mediated) to direct (fully disclosed) contact and half of whom had ceased indirect contact between Waves 1 and 2 of a longitudinal study. Adoptive mothers tended to be more involved in contact with the birth mother than were adoptive fathers or adopted adolescents. Members of adoptive kinship networks in which a decrease in level of contact took place had incongruent perspectives about who initiated the stop in contact and why the stop took place. Birth mothers were less satisfied with their degree of contact than were adoptive parents. Adults' satisfaction with contact was related to feelings of control over type and amount of interactions and permeability of family boundaries. In all adoptive kinship networks, responsibility for contact had shifted toward the adopted adolescent regardless of whether the adolescent was aware of this change in responsibility.

  16. Uncovering changes in university teachers' professional networks during an instructional development program

    NARCIS (Netherlands)

    Van Waes, Sara; Van den Bossche, Piet; Moolenaar, Nienke M.|info:eu-repo/dai/nl/304352802; Stes, Ann; Van Petegem, Peter

    2015-01-01

    This study examined (1) the extent to which university teachers' networks changed while they participated in an instructional development program, (2) which mechanisms supported or constrained network change, and (3) the extent to which value was created through networks. Longitudinal social network

  17. Automatic Fire Detection: A Survey from Wireless Sensor Network Perspective

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2008-01-01

    Automatic fire detection is important for early detection and promptly extinguishing fire. There are ample studies investigating the best sensor combinations and appropriate techniques for early fire detection. In the previous studies fire detection has either been considered as an application of a

  18. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  19. An Overlapping Communities Detection Algorithm via Maxing Modularity in Opportunistic Networks

    Directory of Open Access Journals (Sweden)

    Gao Zhi-Peng

    2016-01-01

    Full Text Available Community detection in opportunistic networks has been a significant and hot issue, which is used to understand characteristics of networks through analyzing structure of it. Community is used to represent a group of nodes in a network where nodes inside the community have more internal connections than external connections. However, most of the existing community detection algorithms focus on binary networks or disjoint community detection. In this paper, we propose a novel algorithm via maxing modularity of communities (MMCto find overlapping community structure in opportunistic networks. It utilizes contact history of nodes to calculate the relation intensity between nodes. It finds nodes with high relation intensity as the initial community and extend the community with nodes of higher belong degree. The algorithm achieves a rapid and efficient overlapping community detection method by maxing the modularity of community continuously. The experiments prove that MMC is effective for uncovering overlapping communities and it achieves better performance than COPRA and Conductance.

  20. On the reliability of Quake-Catcher Network earthquake detections

    Science.gov (United States)

    Yildirim, Battalgazi; Cochran, Elizabeth S.; Chung, Angela I.; Christensen, Carl M.; Lawrence, Jesse F.

    2015-01-01

    Over the past two decades, there have been several initiatives to create volunteer‐based seismic networks. The Personal Seismic Network, proposed around 1990, used a short‐period seismograph to record earthquake waveforms using existing phone lines (Cranswick and Banfill, 1990; Cranswicket al., 1993). NetQuakes (Luetgert et al., 2010) deploys triaxial Micro‐Electromechanical Systems (MEMS) sensors in private homes, businesses, and public buildings where there is an Internet connection. Other seismic networks using a dense array of low‐cost MEMS sensors are the Community Seismic Network (Clayton et al., 2012; Kohler et al., 2013) and the Home Seismometer Network (Horiuchi et al., 2009). One main advantage of combining low‐cost MEMS sensors and existing Internet connection in public and private buildings over the traditional networks is the reduction in installation and maintenance costs (Koide et al., 2006). In doing so, it is possible to create a dense seismic network for a fraction of the cost of traditional seismic networks (D’Alessandro and D’Anna, 2013; D’Alessandro, 2014; D’Alessandro et al., 2014).

  1. A SVM-based quantitative fMRI method for resting-state functional network detection.

    Science.gov (United States)

    Song, Xiaomu; Chen, Nan-kuei

    2014-09-01

    Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Influences of sampling effort on detected patterns and structuring processes of a Neotropical plant-hummingbird network.

    Science.gov (United States)

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro K; Debastiani, Vanderlei J; Duarte, L da S; Dalsgaard, Bo; Sazima, Marlies

    2016-01-01

    Virtually all empirical ecological interaction networks to some extent suffer from undersampling. However, how limitations imposed by sampling incompleteness affect our understanding of ecological networks is still poorly explored, which may hinder further advances in the field. Here, we use a plant-hummingbird network with unprecedented sampling effort (2716 h of focal observations) from the Atlantic Rainforest in Brazil, to investigate how sampling effort affects the description of network structure (i.e. widely used network metrics) and the relative importance of distinct processes (i.e. species abundances vs. traits) in determining the frequency of pairwise interactions. By dividing the network into time slices representing a gradient of sampling effort, we show that quantitative metrics, such as interaction evenness, specialization (H2 '), weighted nestedness (wNODF) and modularity (Q; QuanBiMo algorithm) were less biased by sampling incompleteness than binary metrics. Furthermore, the significance of some network metrics changed along the sampling effort gradient. Nevertheless, the higher importance of traits in structuring the network was apparent even with small sampling effort. Our results (i) warn against using very poorly sampled networks as this may bias our understanding of networks, both their patterns and structuring processes, (ii) encourage the use of quantitative metrics little influenced by sampling when performing spatio-temporal comparisons and (iii) indicate that in networks strongly constrained by species traits, such as plant-hummingbird networks, even small sampling is sufficient to detect their relative importance for the frequencies of interactions. Finally, we argue that similar effects of sampling are expected for other highly specialized subnetworks. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  3. Using adversary text to detect adversary phase changes.

    Energy Technology Data Exchange (ETDEWEB)

    Speed, Ann Elizabeth; Doser, Adele Beatrice; Warrender, Christina E.

    2009-05-01

    The purpose of this work was to help develop a research roadmap and small proof ofconcept for addressing key problems and gaps from the perspective of using text analysis methods as a primary tool for detecting when a group is undergoing a phase change. Self- rganizing map (SOM) techniques were used to analyze text data obtained from the tworld-wide web. Statistical studies indicate that it may be possible to predict phase changes, as well as detect whether or not an example of writing can be attributed to a group of interest.

  4. Landsat change detection can aid in water quality monitoring

    Science.gov (United States)

    Macdonald, H. C.; Steele, K. F.; Waite, W. P.; Shinn, M. R.

    1977-01-01

    Comparison between Landsat-1 and -2 imagery of Arkansas provided evidence of significant land use changes during the 1972-75 time period. Analysis of Arkansas historical water quality information has shown conclusively that whereas point source pollution generally can be detected by use of water quality data collected by state and federal agencies, sampling methodologies for nonpoint source contamination attributable to surface runoff are totally inadequate. The expensive undertaking of monitoring all nonpoint sources for numerous watersheds can be lessened by implementing Landsat change detection analyses.

  5. Replica Node Detection Using Enhanced Single Hop Detection with Clonal Selection Algorithm in Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    L. S. Sindhuja

    2016-01-01

    Full Text Available Security of Mobile Wireless Sensor Networks is a vital challenge as the sensor nodes are deployed in unattended environment and they are prone to various attacks. One among them is the node replication attack. In this, the physically insecure nodes are acquired by the adversary to clone them by having the same identity of the captured node, and the adversary deploys an unpredictable number of replicas throughout the network. Hence replica node detection is an important challenge in Mobile Wireless Sensor Networks. Various replica node detection techniques have been proposed to detect these replica nodes. These methods incur control overheads and the detection accuracy is low when the replica is selected as a witness node. This paper proposes to solve these issues by enhancing the Single Hop Detection (SHD method using the Clonal Selection algorithm to detect the clones by selecting the appropriate witness nodes. The advantages of the proposed method include (i increase in the detection ratio, (ii decrease in the control overhead, and (iii increase in throughput. The performance of the proposed work is measured using detection ratio, false detection ratio, packet delivery ratio, average delay, control overheads, and throughput. The implementation is done using ns-2 to exhibit the actuality of the proposed work.

  6. An Efficient Hierarchy Algorithm for Community Detection in Complex Networks

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2014-01-01

    Full Text Available Community structure is one of the most fundamental and important topology characteristics of complex networks. The research on community structure has wide applications and is very important for analyzing the topology structure, understanding the functions, finding the hidden properties, and forecasting the time-varying of the networks. This paper analyzes some related algorithms and proposes a new algorithm—CN agglomerative algorithm based on graph theory and the local connectedness of network to find communities in network. We show this algorithm is distributed and polynomial; meanwhile the simulations show it is accurate and fine-grained. Furthermore, we modify this algorithm to get one modified CN algorithm and apply it to dynamic complex networks, and the simulations also verify that the modified CN algorithm has high accuracy too.

  7. Detecting Network Vulnerabilities Through Graph TheoreticalMethods

    Energy Technology Data Exchange (ETDEWEB)

    Cesarz, Patrick; Pomann, Gina-Maria; Torre, Luis de la; Villarosa, Greta; Flournoy, Tamara; Pinar, Ali; Meza Juan

    2007-09-30

    Identifying vulnerabilities in power networks is an important problem, as even a small number of vulnerable connections can cause billions of dollars in damage to a network. In this paper, we investigate a graph theoretical formulation for identifying vulnerabilities of a network. We first try to find the most critical components in a network by finding an optimal solution for each possible cutsize constraint for the relaxed version of the inhibiting bisection problem, which aims to find loosely coupled subgraphs with significant demand/supply mismatch. Then we investigate finding critical components by finding a flow assignment that minimizes the maximum among flow assignments on all edges. We also report experiments on IEEE 30, IEEE 118, and WSCC 179 benchmark power networks.

  8. Anterior prefrontal involvement in implicit contextual change detection

    Directory of Open Access Journals (Sweden)

    Stefan Pollmann

    2009-10-01

    Full Text Available Anterior prefrontal cortex is usually associated with high level executive functions. Here, we show that the frontal pole, specifically left lateral frontopolar cortex, is involved in signaling change in implicitly learned spatial contexts, in the absence of conscious change detection. In a variant of the contextual cueing paradigm, participants first learned implicitly contingencies between distractor contexts and target locations. After learning, repeated distractor contexts were paired with new target locations. Left lateral frontopolar (BA10 and superior frontal (BA9 cortices showed selective signal increase for this target location change in repeated displays in an event-related fMRI experiment, which was most pronounced in participants with high contextual facilitation before the change. The data support the view that left lateral frontopolar cortex is involved in signaling contextual change to posterior brain areas as a precondition for adaptive changes of attentional resource allocation. This signaling occurs in the absence of awareness of learned contingencies or contextual change.

  9. A two-stage flow-based intrusion detection model for next-generation networks.

    Science.gov (United States)

    Umer, Muhammad Fahad; Sher, Muhammad; Bi, Yaxin

    2018-01-01

    The next-generation network provides state-of-the-art access-independent services over converged mobile and fixed networks. Security in the converged network environment is a major challenge. Traditional packet and protocol-based intrusion detection techniques cannot be used in next-generation networks due to slow throughput, low accuracy and their inability to inspect encrypted payload. An alternative solution for protection of next-generation networks is to use network flow records for detection of malicious activity in the network traffic. The network flow records are independent of access networks and user applications. In this paper, we propose a two-stage flow-based intrusion detection system for next-generation networks. The first stage uses an enhanced unsupervised one-class support vector machine which separates malicious flows from normal network traffic. The second stage uses a self-organizing map which automatically groups malicious flows into different alert clusters. We validated the proposed approach on two flow-based datasets and obtained promising results.

  10. A density-based clustering model for community detection in complex networks

    Science.gov (United States)

    Zhao, Xiang; Li, Yantao; Qu, Zehui

    2018-04-01

    Network clustering (or graph partitioning) is an important technique for uncovering the underlying community structures in complex networks, which has been widely applied in various fields including astronomy, bioinformatics, sociology, and bibliometric. In this paper, we propose a density-based clustering model for community detection in complex networks (DCCN). The key idea is to find group centers with a higher density than their neighbors and a relatively large integrated-distance from nodes with higher density. The experimental results indicate that our approach is efficient and effective for community detection of complex networks.

  11. Pigeons (Columba livia) show change blindness in a color-change detection task.

    Science.gov (United States)

    Herbranson, Walter T; Jeffers, Jacob S

    2017-07-01

    Change blindness is a phenomenon whereby changes to a stimulus are more likely go unnoticed under certain circumstances. Pigeons learned a change detection task, in which they observed sequential stimulus displays consisting of individual colors back-projected onto three response keys. The color of one response key changed during each sequence and pecks to the key that displayed the change were reinforced. Pigeons showed a change blindness effect, in that change detection accuracy was worse when there was an inter-stimulus interval interrupting the transition between consecutive stimulus displays. Birds successfully transferred to stimulus displays involving novel colors, indicating that pigeons learned a general change detection rule. Furthermore, analysis of responses to specific color combinations showed that pigeons could detect changes involving both spectral and non-spectral colors and that accuracy was better for changes involving greater differences in wavelength. These results build upon previous investigations of change blindness in both humans and pigeons and suggest that change blindness may be a general consequence of selective visual attention relevant to multiple species and stimulus dimensions.

  12. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.

    Science.gov (United States)

    Zhong, Jiandan; Lei, Tao; Yao, Guangle

    2017-11-24

    Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.

  13. A Computationally Intelligent Approach to the Detection of Wormhole Attacks in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Nurul Afsar Shaon

    2017-05-01

    Full Text Available A wormhole attack is one of the most critical and challenging security threats for wireless sensor networks because of its nature and ability to perform concealed malicious activities. This paper proposes an innovative wormhole detection scheme to detect wormhole attacks using computational intelligence and an artificial neural network (ANN. Most wormhole detection schemes reported in the literature assume the sensors are uniformly distributed in a network, and, furthermore, they use statistical and topological information and special hardware for their detection. However, these schemes may perform poorly in non-uniformly distributed networks, and, moreover, they may fail to defend against “out of band” and “in band” wormhole attacks. The aim of the proposed research is to develop a detection scheme that is able to detect all kinds of wormhole attacks in both uniformly and non-uniformly distributed sensor networks. Furthermore, the proposed research does not require any special hardware and causes no significant network overhead throughout the network. Most importantly, the probable location of the malicious nodes can be identified by the proposed ANN based detection scheme. We evaluate the efficacy of the proposed detection scheme in terms of detection accuracy, false positive rate, and false negative rate. The performance of the proposed algorithm is also compared with other machine learning techniques (i.e. SVM and regularized nonlinear logistic regression (LR based detection models. The simulation results show that proposed ANN based algorithm outperforms the SVM or LR based detection schemes in terms of detection accuracy, false positive rate, and false negative rates.

  14. A distribution analysis of the central Maya lowlands ecoinformation network: its rises, falls, and changes

    Directory of Open Access Journals (Sweden)

    Joel D. Gunn

    2017-03-01

    Full Text Available We report a study of central Maya lowland dynastic information networks, i.e., six cities' external elite ceramic influences, and how they reflect the decision-making practices of Maya elites over 3000 years. Forest cover, i.e., Moraceae family pollen, was added to the network analysis to provide ecological boundary conditions, thus ecologically moderated information networks. Principal components analysis revealed three dominant patterns. First, the networking of interior cities into powerful polities in the Late Preclassic and Classic periods (400 BCE-800 CE. In a second pattern, coastal cities emerged as key entrepôts based on marine navigation (Terminal and Postclassic periods, 800-1500 CE. Climate dynamics and sustainability considerations facilitated the transition. Forest cover, a measure of ecosystem health, shows interior forests diminished as interior cities networked but rebounded as their networks declined. By contrast, coastal forests flourished with networks implying that the marine-based economy was sustainable. Third, in the Classic, the network-dominant coast, west or east, changed with interior polities' political struggles, the critical transition occurring after 695 CE as Tikal gained dominance over the Calakmul-Caracol alliance. Beginning with the Late Preclassic about 2000 years ago, it is possible to assign names to the decision makers by referencing the growing literature on written Maya records. Although the detectable decision sequence evident in this analysis is very basic, we believe it does open possible avenues to much deeper understanding as the study proceeds into the future. The Integrated History and Future of People on Earth-Maya working group that sponsored the analysis anticipates that it will provide actionable social science intelligence for future decision making at the global scale.

  15. Does facial processing prioritize change detection?: change blindness illustrates costs and benefits of holistic processing.

    Science.gov (United States)

    Wilford, Miko M; Wells, Gary L

    2010-11-01

    There is broad consensus among researchers both that faces are processed more holistically than other objects and that this type of processing is beneficial. We predicted that holistic processing of faces also involves a cost, namely, a diminished ability to localize change. This study (N = 150) utilized a modified change-blindness paradigm in which some trials involved a change in one feature of an image (nose, chin, mouth, hair, or eyes for faces; chimney, porch, window, roof, or door for houses), whereas other trials involved no change. People were better able to detect the occurrence of a change for faces than for houses, but were better able to localize which feature had changed for houses than for faces. Half the trials used inverted images, a manipulation that disrupts holistic processing. With inverted images, the critical interaction between image type (faces vs. houses) and task (change detection vs. change localization) disappeared. The results suggest that holistic processing reduces change-localization abilities.

  16. A Gaussian Process Based Online Change Detection Algorithm for Monitoring Periodic Time Series

    Energy Technology Data Exchange (ETDEWEB)

    Chandola, Varun [ORNL; Vatsavai, Raju [ORNL

    2011-01-01

    Online time series change detection is a critical component of many monitoring systems, such as space and air-borne remote sensing instruments, cardiac monitors, and network traffic profilers, which continuously analyze observations recorded by sensors. Data collected by such sensors typically has a periodic (seasonal) component. Most existing time series change detection methods are not directly applicable to handle such data, either because they are not designed to handle periodic time series or because they cannot operate in an online mode. We propose an online change detection algorithm which can handle periodic time series. The algorithm uses a Gaussian process based non-parametric time series prediction model and monitors the difference between the predictions and actual observations within a statistically principled control chart framework to identify changes. A key challenge in using Gaussian process in an online mode is the need to solve a large system of equations involving the associated covariance matrix which grows with every time step. The proposed algorithm exploits the special structure of the covariance matrix and can analyze a time series of length T in O(T^2) time while maintaining a O(T) memory footprint, compared to O(T^4) time and O(T^2) memory requirement of standard matrix manipulation methods. We experimentally demonstrate the superiority of the proposed algorithm over several existing time series change detection algorithms on a set of synthetic and real time series. Finally, we illustrate the effectiveness of the proposed algorithm for identifying land use land cover changes using Normalized Difference Vegetation Index (NDVI) data collected for an agricultural region in Iowa state, USA. Our algorithm is able to detect different types of changes in a NDVI validation data set (with ~80% accuracy) which occur due to crop type changes as well as disruptive changes (e.g., natural disasters).

  17. Detecting Hidden Hierarchy of Non Hierarchical Terrorist Networks

    DEFF Research Database (Denmark)

    Memon, Nasrullah

    measures (and combinations of them) to identify key players (important nodes) in terrorist networks. Our recently introduced techniques and algorithms (which are also implemented in the investigative data mining toolkit known as iMiner) will be particularly useful for law enforcement agencies that need...... to analyze terrorist networks and prioritize their targets. Applying recently introduced mathematical methods for constructing the hidden hierarchy of "nonhierarchical" terrorist networks; we present case studies of the terrorist attacks occurred / planned in the past, in order to identify hidden hierarchy...

  18. A REVIEW PAPER ON PROFILE CLONE DETECTION IN SOCIAL NETWORKS

    OpenAIRE

    Akshay Sharma*, Dr. Sanjeev Dhawan, Dr. Kulvinder Singh

    2016-01-01

    An online social network is used day by day. Social networking is one of the trendiest Internet behaviors, with billions of users from around the humanity. The times use up on public networking sites like facebook, twitter or LinkedIn is frequently increasing at a notable rate. At the similar time, peoples fill their online profile with an overload of information that aims at providing a complete and faultless representation of them. Attackers may duplicate a user’s online existence in the sa...

  19. DETECTION AND LOCALIZATION OF MULTIPLE SPOOFING ATTACKERS FOR MOBILE WIRELESS NETWORKS

    Directory of Open Access Journals (Sweden)

    R. Maivizhi

    2015-06-01

    Full Text Available The openness nature of wireless networks allows adversaries to easily launch variety of spoofing attacks and causes havoc in network performance. Recent approaches used Received Signal Strength (RSS traces, which only detect spoofing attacks in mobile wireless networks. However, it is not always desirable to use these methods as RSS values fluctuate significantly over time due to distance, noise and interference. In this paper, we discusses a novel approach, Mobile spOofing attack DEtection and Localization in WIireless Networks (MODELWIN system, which exploits location information about nodes to detect identity-based spoofing attacks in mobile wireless networks. Also, this approach determines the number of attackers who used the same node identity to masquerade as legitimate device. Moreover, multiple adversaries can be localized accurately. By eliminating attackers the proposed system enhances network performance. We have evaluated our technique through simulation using an 802.11 (WiFi network and an 802.15.4 (Zigbee networks. The results prove that MODELWIN can detect spoofing attacks with a very high detection rate and localize adversaries accurately.

  20. Stock price change rate prediction by utilizing social network activities.

    Science.gov (United States)

    Deng, Shangkun; Mitsubuchi, Takashi; Sakurai, Akito

    2014-01-01

    Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS) before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL) and genetic algorithm (GA). MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques.

  1. Stock Price Change Rate Prediction by Utilizing Social Network Activities

    Directory of Open Access Journals (Sweden)

    Shangkun Deng

    2014-01-01

    Full Text Available Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL and genetic algorithm (GA. MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques.

  2. Blind spot detection & passive lane change assist systems

    NARCIS (Netherlands)

    Surovtcev, I.

    2015-01-01

    The project goal was design and implementation of proof-of-concept for two systems that aim to tackle the blind spot problem of for the commercial vehicles: Blind Spot Detection and Passive Lane Change Assist functions. The system implementation was done using Rapid Control Prototype (RCP) hardware.

  3. Efficient Incorporation of Markov Random Fields in Change Detection

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Nielsen, Allan Aasbjerg; Carstensen, Jens Michael

    2009-01-01

    of noise, implying that the pixel-wise classifier is also noisy. There is thus a need for incorporating local homogeneity constraints into such a change detection framework. For this modelling task Markov Random Fields are suitable. Markov Random Fields have, however, previously been plagued by lack...

  4. Real-time change detection in data streams with FPGAs

    International Nuclear Information System (INIS)

    Vega, J.; Dormido-Canto, S.; Cruz, T.; Ruiz, M.; Barrera, E.; Castro, R.; Murari, A.; Ochando, M.

    2014-01-01

    Highlights: • Automatic recognition of changes in data streams of multidimensional signals. • Detection algorithm based on testing exchangeability on-line. • Real-time and off-line applicability. • Real-time implementation in FPGAs. - Abstract: The automatic recognition of changes in data streams is useful in both real-time and off-line data analyses. This article shows several effective change-detecting algorithms (based on martingales) and describes their real-time applicability in the data acquisition systems through the use of Field Programmable Gate Arrays (FPGA). The automatic event recognition system is absolutely general and it does not depend on either the particular event to detect or the specific data representation (waveforms, images or multidimensional signals). The developed approach provides good results for change detection in both the temporal evolution of profiles and the two-dimensional spatial distribution of volume emission intensity. The average computation time in the FPGA is 210 μs per profile

  5. Fundamental differences in change detection between vision and audition.

    Science.gov (United States)

    Demany, Laurent; Semal, Catherine; Cazalets, Jean-René; Pressnitzer, Daniel

    2010-06-01

    We compared auditory change detection to visual change detection using closely matched stimuli and tasks in the two modalities. On each trial, participants were presented with a test stimulus consisting of ten elements: pure tones with various frequencies for audition, or dots with various spatial positions for vision. The test stimulus was preceded or followed by a probe stimulus consisting of a single element, and two change-detection tasks were performed. In the "present/absent" task, the probe either matched one randomly selected element of the test stimulus or none of them; participants reported present or absent. In the "direction-judgment" task, the probe was always slightly shifted relative to one randomly selected element of the test stimulus; participants reported the direction of the shift. Whereas visual performance was systematically better in the present/absent task than in the direction-judgment task, the opposite was true for auditory performance. Moreover, whereas visual performance was strongly dependent on selective attention and on the time interval separating the probe from the test stimulus, this was not the case for auditory performance. Our results show that small auditory changes can be detected automatically across relatively long temporal gaps, using an implicit memory system that seems to have no similar counterpart in the visual domain.

  6. Reference chart for relative weight change to detect hypernatraemic dehydration

    NARCIS (Netherlands)

    Dommelen, P. van; Wouwe, J.P. van; Breuning-Boers, J.M.; Buuren, S. van; Verkerk, P.H.

    2007-01-01

    Objective: The validity of the rule of thumb that infants may have a weight loss of 10% in the first days after birth is unknown. We assessed the validity of this and other rules to detect breast-fed infants with hypernatraemic dehydration. Design: A reference chart for relative weight change was

  7. Consumer behaviour in district heating systems. Detecting changes

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, G.R. [University of Iceland (Iceland). Dept. of Mechanical and Industrial Engineering

    2002-10-01

    This paper focuses on methods or measures that can be used to detect changes in the consumer behavior regarding hot water use. This is done by estimating models that describe the average daily flow using several climate variables as input variables. (orig.)

  8. Scientific Uncertainties in Climate Change Detection and Attribution Studies

    Science.gov (United States)

    Santer, B. D.

    2017-12-01

    It has been claimed that the treatment and discussion of key uncertainties in climate science is "confined to hushed sidebar conversations at scientific conferences". This claim is demonstrably incorrect. Climate change detection and attribution studies routinely consider key uncertainties in observational climate data, as well as uncertainties in model-based estimates of natural variability and the "fingerprints" in response to different external forcings. The goal is to determine whether such uncertainties preclude robust identification of a human-caused climate change fingerprint. It is also routine to investigate the impact of applying different fingerprint identification strategies, and to assess how detection and attribution results are impacted by differences in the ability of current models to capture important aspects of present-day climate. The exploration of the uncertainties mentioned above will be illustrated using examples from detection and attribution studies with atmospheric temperature and moisture.

  9. Detecting the overlapping and hierarchical community structure in complex networks

    International Nuclear Information System (INIS)

    Lancichinetti, Andrea; Fortunato, Santo; Kertesz, Janos

    2009-01-01

    Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this community structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here, we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling different hierarchical levels of organization to be investigated. Tests on real and artificial networks give excellent results.

  10. Probabilistic BPRRC: Robust Change Detection against Illumination Changes and Background Movements

    Science.gov (United States)

    Yokoi, Kentaro

    This paper presents Probabilistic Bi-polar Radial Reach Correlation (PrBPRRC), a change detection method that is robust against illumination changes and background movements. Most of the traditional change detection methods are robust against either illumination changes or background movements; BPRRC is one of the illumination-robust change detection methods. We introduce a probabilistic background texture model into BPRRC and add the robustness against background movements including foreground invasions such as moving cars, walking people, swaying trees, and falling snow. We show the superiority of PrBPRRC in the environment with illumination changes and background movements by using three public datasets and one private dataset: ATON Highway data, Karlsruhe traffic sequence data, PETS 2007 data, and Walking-in-a-room data.

  11. Functional brain networks underlying detection and integration of disconfirmatory evidence.

    Science.gov (United States)

    Lavigne, Katie M; Metzak, Paul D; Woodward, Todd S

    2015-05-15

    Processing evidence that disconfirms a prior interpretation is a fundamental aspect of belief revision, and has clear social and clinical relevance. This complex cognitive process requires (at minimum) an alerting stage and an integration stage, and in the current functional magnetic resonance imaging (fMRI) study, we used multivariate analysis methodology on two datasets in an attempt to separate these sequentially-activated cognitive stages and link them to distinct functional brain networks. Thirty-nine healthy participants completed one of two versions of an evidence integration experiment involving rating two consecutive animal images, both of which consisted of two intact images of animal faces morphed together at different ratios (e.g., 70/30 bird/dolphin followed by 10/90 bird/dolphin). The two versions of the experiment differed primarily in terms of stimulus presentation and timing, which facilitated functional interpretation of brain networks based on differences in the hemodynamic response shapes between versions. The data were analyzed using constrained principal component analysis for fMRI (fMRI-CPCA), which allows distinct, simultaneously active task-based networks to be separated, and these were interpreted using both temporal (task-based hemodynamic response shapes) and spatial (dominant brain regions) information. Three networks showed increased activity during integration of disconfirmatory relative to confirmatory evidence: (1) a network involved in alerting to the requirement to revise an interpretation, identified as the salience network (dorsal anterior cingulate cortex and bilateral insula); (2) a sensorimotor response-related network (pre- and post-central gyri, supplementary motor area, and thalamus); and (3) an integration network involving rostral prefrontal, orbitofrontal and posterior parietal cortex. These three networks were staggered in their peak activity (alerting, responding, then integrating), but at certain time points (e

  12. Change Detection with Polarimetric SAR Imagery for Nuclear Verification

    International Nuclear Information System (INIS)

    Canty, M.

    2015-01-01

    This paper investigates the application of multivariate statistical change detection with high-resolution polarimetric SAR imagery acquired from commercial satellite platforms for observation and verification of nuclear activities. A prototype software tool comprising a processing chain starting from single look complex (SLC) multitemporal data through to change detection maps is presented. Multivariate change detection algorithms applied to polarimetric SAR data are not common. This is because, up until recently, not many researchers or practitioners have had access to polarimetric data. However with the advent of several spaceborne polarimetric SAR instruments such as the Japanese ALOS, the Canadian Radarsat-2, the German TerraSAR-X, the Italian COSMO-SkyMed missions and the European Sentinal SAR platform, the situation has greatly improved. There is now a rich source of weather-independent satellite radar data which can be exploited for Nuclear Safeguards purposes. The method will also work for univariate data, that is, it is also applicable to scalar or single polarimetric SAR data. The change detection procedure investigated here exploits the complex Wishart distribution of dual and quad polarimetric imagery in look-averaged covariance matrix format in order to define a per-pixel change/no-change hypothesis test. It includes approximations for the probability distribution of the test statistic, and so permits quantitative significance levels to be quoted for change pixels. The method has been demonstrated previously with polarimetric images from the airborne EMISAR sensor, but is applied here for the first time to satellite platforms. In addition, an improved multivariate method is used to estimate the so-called equivalent number of looks (ENL), which is a critical parameter of the hypothesis test. (author)

  13. Robust Meter Network for Water Distribution Pipe Burst Detection

    OpenAIRE

    Donghwi Jung; Joong Hoon Kim

    2017-01-01

    A meter network is a set of meters installed throughout a water distribution system to measure system variables, such as the pipe flow rate and pressure. In the current hyper-connected world, meter networks are being exposed to meter failure conditions, such as malfunction of the meter’s physical system and communication system failure. Therefore, a meter network’s robustness should be secured for reliable provision of informative meter data. This paper introduces a multi-objective optimal me...

  14. Content-Based Covert Group Detection in Social Networks

    Science.gov (United States)

    2017-09-06

    The students took courses in natural language processing, data mining in various multi-media data sets, text retrieval, text summarization and... mining in social media including: we performed work, on (a) diffusion in social networks, (b) influence maximization in signed social networks, (c...Learning, Information Retrieval, Data Mining and Database. There are 8,293 messages. Our method outperformed state of the art methods based on content

  15. The fate of object memory traces under change detection and change blindness.

    Science.gov (United States)

    Busch, Niko A

    2013-07-03

    Observers often fail to detect substantial changes in a visual scene. This so-called change blindness is often taken as evidence that visual representations are sparse and volatile. This notion rests on the assumption that the failure to detect a change implies that representations of the changing objects are lost all together. However, recent evidence suggests that under change blindness, object memory representations may be formed and stored, but not retrieved. This study investigated the fate of object memory representations when changes go unnoticed. Participants were presented with scenes consisting of real world objects, one of which changed on each trial, while recording event-related potentials (ERPs). Participants were first asked to localize where the change had occurred. In an additional recognition task, participants then discriminated old objects, either from the pre-change or the post-change scene, from entirely new objects. Neural traces of object memories were studied by comparing ERPs for old and novel objects. Participants performed poorly in the detection task and often failed to recognize objects from the scene, especially pre-change objects. However, a robust old/novel effect was observed in the ERP, even when participants were change blind and did not recognize the old object. This implicit memory trace was found both for pre-change and post-change objects. These findings suggest that object memories are stored even under change blindness. Thus, visual representations may not be as sparse and volatile as previously thought. Rather, change blindness may point to a failure to retrieve and use these representations for change detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Drillstring Washout Diagnosis Using Friction Estimation and Statistical Change Detection

    DEFF Research Database (Denmark)

    Willersrud, Anders; Blanke, Mogens; Imsland, Lars

    2015-01-01

    In oil and gas drilling, corrosion or tensile stress can give small holes in the drillstring, which can cause leakage and prevent sufficient flow of drilling fluid. If such washout remains undetected and develops, the consequence can be a complete twist-off of the drillstring. Aiming at early...... washout diagnosis, this paper employs an adaptive observer to estimate friction parameters in the nonlinear pro- cess. Non-Gaussian noise is a nuisance in the parameter estimates, and dedicated generalized likelihood tests are developed to make efficient washout detection with the multivariate t...... -distribution encountered in data. Change detection methods are developed using logged sensor data from a horizontal 1400 m managed pressure drilling test rig. Detection scheme design is conducted using probabilities for false alarm and detection to determine thresholds in hypothesis tests. A multivariate...

  17. Using Active Networking to Detect and Troubleshoot Issues in Tactical Data Networks

    Science.gov (United States)

    2014-06-01

    networking (SDN) paradigm, which has gained popularity in recent years, has its roots in the idea of programmable networks [6]. By extending the...278–289, Aug. 2011. 67 [13] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles , “Plan: A programming language for active networks,” ACM

  18. Super-Resolution Community Detection for Layer-Aggregated Multilayer Networks

    Directory of Open Access Journals (Sweden)

    Dane Taylor

    2017-09-01

    Full Text Available Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the trade-offs of this preprocessing are not well understood. Focusing on the problem of detecting small communities in multilayer networks, we study the effects of layer aggregation by developing random-matrix theory for modularity matrices associated with layer-aggregated networks with N nodes and L layers, which are drawn from an ensemble of Erdős–Rényi networks with communities planted in subsets of layers. We study phase transitions in which eigenvectors localize onto communities (allowing their detection and which occur for a given community provided its size surpasses a detectability limit K^{*}. When layers are aggregated via a summation, we obtain K^{*}∝O(sqrt[NL]/T, where T is the number of layers across which the community persists. Interestingly, if T is allowed to vary with L, then summation-based layer aggregation enhances small-community detection even if the community persists across a vanishing fraction of layers, provided that T/L decays more slowly than O(L^{-1/2}. Moreover, we find that thresholding the summation can, in some cases, cause K^{*} to decay exponentially, decreasing by orders of magnitude in a phenomenon we call super-resolution community detection. In other words, layer aggregation with thresholding is a nonlinear data filter enabling detection of communities that are otherwise too small to detect. Importantly, different thresholds generally enhance the detectability of communities having different properties, illustrating that community detection can be obscured if one analyzes network data using a single threshold.

  19. Super-Resolution Community Detection for Layer-Aggregated Multilayer Networks.

    Science.gov (United States)

    Taylor, Dane; Caceres, Rajmonda S; Mucha, Peter J

    2017-01-01

    Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the trade-offs of this preprocessing are not well understood. Focusing on the problem of detecting small communities in multilayer networks, we study the effects of layer aggregation by developing random-matrix theory for modularity matrices associated with layer-aggregated networks with N nodes and L layers, which are drawn from an ensemble of Erdős-Rényi networks with communities planted in subsets of layers. We study phase transitions in which eigenvectors localize onto communities (allowing their detection) and which occur for a given community provided its size surpasses a detectability limit K * . When layers are aggregated via a summation, we obtain [Formula: see text], where T is the number of layers across which the community persists. Interestingly, if T is allowed to vary with L , then summation-based layer aggregation enhances small-community detection even if the community persists across a vanishing fraction of layers, provided that T/L decays more slowly than ( L -1/2 ). Moreover, we find that thresholding the summation can, in some cases, cause K * to decay exponentially, decreasing by orders of magnitude in a phenomenon we call super-resolution community detection. In other words, layer aggregation with thresholding is a nonlinear data filter enabling detection of communities that are otherwise too small to detect. Importantly, different thresholds generally enhance the detectability of communities having different properties, illustrating that community detection can be obscured if one analyzes network data using a single threshold.

  20. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Komeil Rokni

    2014-05-01

    Full Text Available Lake Urmia is the 20th largest lake and the second largest hyper saline lake (before September 2010 in the world. It is also the largest inland body of salt water in the Middle East. Nevertheless, the lake has been in a critical situation in recent years due to decreasing surface water and increasing salinity. This study modeled the spatiotemporal changes of Lake Urmia in the period 2000–2013 using the multi-temporal Landsat 5-TM, 7-ETM+ and 8-OLI images. In doing so, the applicability of different satellite-derived indexes including Normalized Difference Water Index (NDWI, Modified NDWI (MNDWI, Normalized Difference Moisture Index (NDMI, Water Ratio Index (WRI, Normalized Difference Vegetation Index (NDVI, and Automated Water Extraction Index (AWEI were investigated for the extraction of surface water from Landsat data. Overall, the NDWI was found superior to other indexes and hence it was used to model the spatiotemporal changes of the lake. In addition, a new approach based on Principal Components of multi-temporal NDWI (NDWI-PCs was proposed and evaluated for surface water change detection. The results indicate an intense decreasing trend in Lake Urmia surface area in the period 2000–2013, especially between 2010 and 2013 when the lake lost about one third of its surface area compared to the year 2000. The results illustrate the effectiveness of the NDWI-PCs approach for surface water change detection, especially in detecting the changes between two and three different times, simultaneously.