WorldWideScience

Sample records for network based predictive

  1. Based on BP Neural Network Stock Prediction

    Science.gov (United States)

    Liu, Xiangwei; Ma, Xin

    2012-01-01

    The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…

  2. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non......-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  3. Meta-path based heterogeneous combat network link prediction

    Science.gov (United States)

    Li, Jichao; Ge, Bingfeng; Yang, Kewei; Chen, Yingwu; Tan, Yuejin

    2017-09-01

    The combat system-of-systems in high-tech informative warfare, composed of many interconnected combat systems of different types, can be regarded as a type of complex heterogeneous network. Link prediction for heterogeneous combat networks (HCNs) is of significant military value, as it facilitates reconfiguring combat networks to represent the complex real-world network topology as appropriate with observed information. This paper proposes a novel integrated methodology framework called HCNMP (HCN link prediction based on meta-path) to predict multiple types of links simultaneously for an HCN. More specifically, the concept of HCN meta-paths is introduced, through which the HCNMP can accumulate information by extracting different features of HCN links for all the six defined types. Next, an HCN link prediction model, based on meta-path features, is built to predict all types of links of the HCN simultaneously. Then, the solution algorithm for the HCN link prediction model is proposed, in which the prediction results are obtained by iteratively updating with the newly predicted results until the results in the HCN converge or reach a certain maximum iteration number. Finally, numerical experiments on the dataset of a real HCN are conducted to demonstrate the feasibility and effectiveness of the proposed HCNMP, in comparison with 30 baseline methods. The results show that the performance of the HCNMP is superior to those of the baseline methods.

  4. Compressed sensing based missing nodes prediction in temporal communication network

    Science.gov (United States)

    Cheng, Guangquan; Ma, Yang; Liu, Zhong; Xie, Fuli

    2018-02-01

    The reconstruction of complex network topology is of great theoretical and practical significance. Most research so far focuses on the prediction of missing links. There are many mature algorithms for link prediction which have achieved good results, but research on the prediction of missing nodes has just begun. In this paper, we propose an algorithm for missing node prediction in complex networks. We detect the position of missing nodes based on their neighbor nodes under the theory of compressed sensing, and extend the algorithm to the case of multiple missing nodes using spectral clustering. Experiments on real public network datasets and simulated datasets show that our algorithm can detect the locations of hidden nodes effectively with high precision.

  5. Quantitative Method for Network Security Situation Based on Attack Prediction

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2017-01-01

    Full Text Available Multistep attack prediction and security situation awareness are two big challenges for network administrators because future is generally unknown. In recent years, many investigations have been made. However, they are not sufficient. To improve the comprehensiveness of prediction, in this paper, we quantitatively convert attack threat into security situation. Actually, two algorithms are proposed, namely, attack prediction algorithm using dynamic Bayesian attack graph and security situation quantification algorithm based on attack prediction. The first algorithm aims to provide more abundant information of future attack behaviors by simulating incremental network penetration. Through timely evaluating the attack capacity of intruder and defense strategies of defender, the likely attack goal, path, and probability and time-cost are predicted dynamically along with the ongoing security events. Furthermore, in combination with the common vulnerability scoring system (CVSS metric and network assets information, the second algorithm quantifies the concealed attack threat into the surfaced security risk from two levels: host and network. Examples show that our method is feasible and flexible for the attack-defense adversarial network environment, which benefits the administrator to infer the security situation in advance and prerepair the critical compromised hosts to maintain normal network communication.

  6. In silico network topology-based prediction of gene essentiality

    CERN Document Server

    da Silva, Joao Paulo Muller; Mombach, Jose Carlos Merino; Vieira, Renata; da Silva, Jose Guliherme Camargo; Lemke, Ney; Sinigaglia, Marialva

    2007-01-01

    The identification of genes essential for survival is important for the understanding of the minimal requirements for cellular life and for drug design. As experimental studies with the purpose of building a catalog of essential genes for a given organism are time-consuming and laborious, a computational approach which could predict gene essentiality with high accuracy would be of great value. We present here a novel computational approach, called NTPGE (Network Topology-based Prediction of Gene Essentiality), that relies on network topology features of a gene to estimate its essentiality. The first step of NTPGE is to construct the integrated molecular network for a given organism comprising protein physical, metabolic and transcriptional regulation interactions. The second step consists in training a decision tree-based machine learning algorithm on known essential and non-essential genes of the organism of interest, considering as learning attributes the network topology information for each of these genes...

  7. Prediction of coal slurry concentration based on artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Li, Y.; Cheng, J.; Zhou, Z.; Li, S.; Liu, J.; Cen, K. [Zhejiang University, Hangzhou (China)

    2005-12-15

    Based on experimental data of coal slurry, three BP neural network models with 8, 7 and 5 input factors, were set up for predicting the slurry concentration. Three BP neural networks algorithm was Levenberg Marquardt algorithm, and their learning rate was 0.01. The hidden neurons number was settled by practical training effect of the networks. The hidden neurons number of BP model, with 8, 7 and 5 input factors is 27, 30 and 24, respectively. Two data treated methods were tested by seven input factors network model, which proves that the first method is the better one. The mean absolute error of the neural network models with 5, 7 and 8 factors is 0.53%, 0.50% and 0.74%, respectively, while that of the existed regression model is 1.15%. This indicates that the neural network models, especially the 7 factors model, are effective in predicting the slurry. The HGI input neuron in eight input factors model affects the prediction result because of its interference to other input factors. The effect of H and N in coal on the slurry is slight. 8 refs., 7 figs., 3 tabs.

  8. In silico network topology-based prediction of gene essentiality

    Science.gov (United States)

    da Silva, João Paulo Müller; Acencio, Marcio Luis; Mombach, José Carlos Merino; Vieira, Renata; da Silva, José Camargo; Lemke, Ney; Sinigaglia, Marialva

    2008-02-01

    The identification of genes essential for survival is important for the understanding of the minimal requirements for cellular life and for drug design. As experimental studies with the purpose of building a catalog of essential genes for a given organism are time-consuming and laborious, a computational approach which could predict gene essentiality with high accuracy would be of great value. We present here a novel computational approach, called NTPGE (Network Topology-based Prediction of Gene Essentiality), that relies on the network topology features of a gene to estimate its essentiality. The first step of NTPGE is to construct the integrated molecular network for a given organism comprising protein physical, metabolic and transcriptional regulation interactions. The second step consists in training a decision-tree-based machine-learning algorithm on known essential and non-essential genes of the organism of interest, considering as learning attributes the network topology information for each of these genes. Finally, the decision-tree classifier generated is applied to the set of genes of this organism to estimate essentiality for each gene. We applied the NTPGE approach for discovering the essential genes in Escherichia coli and then assessed its performance.

  9. Network Traffic Prediction Based on Deep Belief Network and Spatiotemporal Compressive Sensing in Wireless Mesh Backbone Networks

    Directory of Open Access Journals (Sweden)

    Laisen Nie

    2018-01-01

    Full Text Available Wireless mesh network is prevalent for providing a decentralized access for users and other intelligent devices. Meanwhile, it can be employed as the infrastructure of the last few miles connectivity for various network applications, for example, Internet of Things (IoT and mobile networks. For a wireless mesh backbone network, it has obtained extensive attention because of its large capacity and low cost. Network traffic prediction is important for network planning and routing configurations that are implemented to improve the quality of service for users. This paper proposes a network traffic prediction method based on a deep learning architecture and the Spatiotemporal Compressive Sensing method. The proposed method first adopts discrete wavelet transform to extract the low-pass component of network traffic that describes the long-range dependence of itself. Then, a prediction model is built by learning a deep architecture based on the deep belief network from the extracted low-pass component. Otherwise, for the remaining high-pass component that expresses the gusty and irregular fluctuations of network traffic, the Spatiotemporal Compressive Sensing method is adopted to predict it. Based on the predictors of two components, we can obtain a predictor of network traffic. From the simulation, the proposed prediction method outperforms three existing methods.

  10. The Dissolved Oxygen Prediction Method Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Zhong Xiao

    2017-01-01

    Full Text Available The dissolved oxygen (DO is oxygen dissolved in water, which is an important factor for the aquaculture. Using BP neural network method with the combination of purelin, logsig, and tansig activation functions is proposed for the prediction of aquaculture’s dissolved oxygen. The input layer, hidden layer, and output layer are introduced in detail including the weight adjustment process. The breeding data of three ponds in actual 10 consecutive days were used for experiments; these ponds were located in Beihai, Guangxi, a traditional aquaculture base in southern China. The data of the first 7 days are used for training, and the data of the latter 3 days are used for the test. Compared with the common prediction models, curve fitting (CF, autoregression (AR, grey model (GM, and support vector machines (SVM, the experimental results show that the prediction accuracy of the neural network is the highest, and all the predicted values are less than 5% of the error limit, which can meet the needs of practical applications, followed by AR, GM, SVM, and CF. The prediction model can help to improve the water quality monitoring level of aquaculture which will prevent the deterioration of water quality and the outbreak of disease.

  11. Prediction Based Energy Balancing Forwarding in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Yang Jian-Jun

    2017-01-01

    Full Text Available In the recent cellular network technologies, relay stations extend cell coverage and enhance signal strength for mobile users. However, busy traffic makes the relay stations in hot area run out of energy quickly. Energy is a very important factor in the forwarding of cellular network since mobile users(cell phones in hot cells often suffer from low throughput due to energy lack problems. In many situations, the energy lack problems take place because the energy loading is not balanced. In this paper, we present a prediction based forwarding algorithm to let a mobile node dynamically select the next relay station with highest potential energy capacity to resume communication. Key to this strategy is that a relay station only maintains three past status, and then it is able to predict the potential energy capacity. Then, the node selects the next hop with potential maximal energy. Moreover, a location based algorithm is developed to let the mobile node figure out the target region in order to avoid flooding. Simulations demonstrate that our approach significantly increase the aggregate throughput and decrease the delay in cellular network environment.

  12. Stock Price Prediction Based on Procedural Neural Networks

    OpenAIRE

    Jiuzhen Liang; Wei Song; Mei Wang

    2011-01-01

    We present a spatiotemporal model, namely, procedural neural networks for stock price prediction. Compared with some successful traditional models on simulating stock market, such as BNN (backpropagation neural networks, HMM (hidden Markov model) and SVM (support vector machine)), the procedural neural network model processes both spacial and temporal information synchronously without slide time window, which is typically used in the well-known recurrent neural networks. Two differen...

  13. A network security situation prediction model based on wavelet neural network with optimized parameters

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2016-08-01

    Full Text Available The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN with optimized parameters by the Improved Niche Genetic Algorithm (INGA. The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN, Genetic Algorithm-Back Propagation Neural Network (GA-BPNN and WNN.

  14. Creative elements: network-based predictions of active centres in proteins, cellular and social networks

    CERN Document Server

    Csermely, Peter

    2008-01-01

    Active centres and hot spots of proteins have a paramount importance in enzyme action, protein complex formation and drug design. Recently a number of publications successfully applied the analysis of residue networks to predict active centres in proteins. Most real-world networks show a number of properties, such as small-worldness or scale-free degree distribution, which are rather general features of networks from molecules to the society. Based on extensive analogies I propose that the existing findings and methodology enable us to detect active centres in cells, social networks and ecosystems. Members of these active centres are creative elements of the respective networks, which may help them to survive unprecedented, novel challenges, and play a key role in the development, survival and evolvability of complex systems.

  15. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...

  16. Classification-based Financial Markets Prediction using Deep Neural Networks

    OpenAIRE

    Dixon, Matthew; Klabjan, Diego; Bang, Jin Hoon

    2016-01-01

    Deep neural networks (DNNs) are powerful types of artificial neural networks (ANNs) that use several hidden layers. They have recently gained considerable attention in the speech transcription and image recognition community (Krizhevsky et al., 2012) for their superior predictive properties including robustness to overfitting. However their application to algorithmic trading has not been previously researched, partly because of their computational complexity. This paper describes the applicat...

  17. A Network Traffic Prediction Model Based on Quantum-Behaved Particle Swarm Optimization Algorithm and Fuzzy Wavelet Neural Network

    OpenAIRE

    Kun Zhang; Zhao Hu; Xiao-Ting Gan; Jian-Bo Fang

    2016-01-01

    Due to the fact that the fluctuation of network traffic is affected by various factors, accurate prediction of network traffic is regarded as a challenging task of the time series prediction process. For this purpose, a novel prediction method of network traffic based on QPSO algorithm and fuzzy wavelet neural network is proposed in this paper. Firstly, quantum-behaved particle swarm optimization (QPSO) was introduced. Then, the structure and operation algorithms of WFNN are presented. The pa...

  18. Network-based prediction and knowledge mining of disease genes.

    Science.gov (United States)

    Carson, Matthew B; Lu, Hui

    2015-01-01

    In recent years, high-throughput protein interaction identification methods have generated a large amount of data. When combined with the results from other in vivo and in vitro experiments, a complex set of relationships between biological molecules emerges. The growing popularity of network analysis and data mining has allowed researchers to recognize indirect connections between these molecules. Due to the interdependent nature of network entities, evaluating proteins in this context can reveal relationships that may not otherwise be evident. We examined the human protein interaction network as it relates to human illness using the Disease Ontology. After calculating several topological metrics, we trained an alternating decision tree (ADTree) classifier to identify disease-associated proteins. Using a bootstrapping method, we created a tree to highlight conserved characteristics shared by many of these proteins. Subsequently, we reviewed a set of non-disease-associated proteins that were misclassified by the algorithm with high confidence and searched for evidence of a disease relationship. Our classifier was able to predict disease-related genes with 79% area under the receiver operating characteristic (ROC) curve (AUC), which indicates the tradeoff between sensitivity and specificity and is a good predictor of how a classifier will perform on future data sets. We found that a combination of several network characteristics including degree centrality, disease neighbor ratio, eccentricity, and neighborhood connectivity help to distinguish between disease- and non-disease-related proteins. Furthermore, the ADTree allowed us to understand which combinations of strongly predictive attributes contributed most to protein-disease classification. In our post-processing evaluation, we found several examples of potential novel disease-related proteins and corresponding literature evidence. In addition, we showed that first- and second-order neighbors in the PPI network

  19. Energy savings in mobile broadband network based on load predictions

    DEFF Research Database (Denmark)

    Samulevicius, Saulius; Pedersen, Torben Bach; Sørensen, Troels Bundgaard

    2012-01-01

    in wireless networks. To save energy in MBNs, one of the options is to turn off parts of the network equipment in areas where traffic falls below a specific predefined threshold. This paper looks at a methodology for identifying periods of the day when cells or sites carrying low traffic are candidates...... for being totally or partly switched off, given that the decrease in service quality can be controlled gracefully when the sites are switched off. Based on traffic data from an operational network, potential average energy savings of approximately 30% with some few low traffic cells/sites reaching up to 99......Abstract—The deployment of new network equipment is resulting in increasing energy consumption in mobile broadband networks (MBNs). This contributes to higher CO2 emissions. Over the last 10 years MBNs have grown considerably, and are still growing to meet the evolution in traffic volume carried...

  20. Dynamic Network Traffic Flow Prediction Model based on Modified Quantum-Behaved Particle Swarm Optimization

    OpenAIRE

    Hongying Jin; Linhao Li

    2013-01-01

    This paper aims at effectively predicting the dynamic network traffic flow based on quantum-behaved particle swarm optimization algorithm. Firstly, the dynamic network traffic flow prediction problem is analyzed through formal description. Secondly, the structure of the network traffic flow prediction model is given. In this structure, Users can used a computer to start the traffic flow prediction process, and data collecting module can collect and return the data through the destination devi...

  1. Predicting thunderstorm evolution using ground-based lightning detection networks

    Science.gov (United States)

    Goodman, Steven J.

    1990-01-01

    Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.

  2. Artificial neural network based particle size prediction of polymeric nanoparticles.

    Science.gov (United States)

    Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf

    2017-10-01

    Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Distributed estimation based on observations prediction in wireless sensor networks

    KAUST Repository

    Bouchoucha, Taha

    2015-03-19

    We consider wireless sensor networks (WSNs) used for distributed estimation of unknown parameters. Due to the limited bandwidth, sensor nodes quantize their noisy observations before transmission to a fusion center (FC) for the estimation process. In this letter, the correlation between observations is exploited to reduce the mean-square error (MSE) of the distributed estimation. Specifically, sensor nodes generate local predictions of their observations and then transmit the quantized prediction errors (innovations) to the FC rather than the quantized observations. The analytic and numerical results show that transmitting the innovations rather than the observations mitigates the effect of quantization noise and hence reduces the MSE. © 2015 IEEE.

  4. Prediction of Industrial Electric Energy Consumption in Anhui Province Based on GA-BP Neural Network

    Science.gov (United States)

    Zhang, Jiajing; Yin, Guodong; Ni, Youcong; Chen, Jinlan

    2018-01-01

    In order to improve the prediction accuracy of industrial electrical energy consumption, a prediction model of industrial electrical energy consumption was proposed based on genetic algorithm and neural network. The model use genetic algorithm to optimize the weights and thresholds of BP neural network, and the model is used to predict the energy consumption of industrial power in Anhui Province, to improve the prediction accuracy of industrial electric energy consumption in Anhui province. By comparing experiment of GA-BP prediction model and BP neural network model, the GA-BP model is more accurate with smaller number of neurons in the hidden layer.

  5. Experimental method to predict avalanches based on neural networks

    Directory of Open Access Journals (Sweden)

    V. V. Zhdanov

    2016-01-01

    Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.

  6. Refining ensembles of predicted gene regulatory networks based on characteristic interaction sets.

    Directory of Open Access Journals (Sweden)

    Lukas Windhager

    Full Text Available Different ensemble voting approaches have been successfully applied for reverse-engineering of gene regulatory networks. They are based on the assumption that a good approximation of true network structure can be derived by considering the frequencies of individual interactions in a large number of predicted networks. Such approximations are typically superior in terms of prediction quality and robustness as compared to considering a single best scoring network only. Nevertheless, ensemble approaches only work well if the predicted gene regulatory networks are sufficiently similar to each other. If the topologies of predicted networks are considerably different, an ensemble of all networks obscures interesting individual characteristics. Instead, networks should be grouped according to local topological similarities and ensemble voting performed for each group separately. We argue that the presence of sets of co-occurring interactions is a suitable indicator for grouping predicted networks. A stepwise bottom-up procedure is proposed, where first mutual dependencies between pairs of interactions are derived from predicted networks. Pairs of co-occurring interactions are subsequently extended to derive characteristic interaction sets that distinguish groups of networks. Finally, ensemble voting is applied separately to the resulting topologically similar groups of networks to create distinct group-ensembles. Ensembles of topologically similar networks constitute distinct hypotheses about the reference network structure. Such group-ensembles are easier to interpret as their characteristic topology becomes clear and dependencies between interactions are known. The availability of distinct hypotheses facilitates the design of further experiments to distinguish between plausible network structures. The proposed procedure is a reasonable refinement step for non-deterministic reverse-engineering applications that produce a large number of candidate

  7. Refining Ensembles of Predicted Gene Regulatory Networks Based on Characteristic Interaction Sets

    Science.gov (United States)

    Windhager, Lukas; Zierer, Jonas; Küffner, Robert

    2014-01-01

    Different ensemble voting approaches have been successfully applied for reverse-engineering of gene regulatory networks. They are based on the assumption that a good approximation of true network structure can be derived by considering the frequencies of individual interactions in a large number of predicted networks. Such approximations are typically superior in terms of prediction quality and robustness as compared to considering a single best scoring network only. Nevertheless, ensemble approaches only work well if the predicted gene regulatory networks are sufficiently similar to each other. If the topologies of predicted networks are considerably different, an ensemble of all networks obscures interesting individual characteristics. Instead, networks should be grouped according to local topological similarities and ensemble voting performed for each group separately. We argue that the presence of sets of co-occurring interactions is a suitable indicator for grouping predicted networks. A stepwise bottom-up procedure is proposed, where first mutual dependencies between pairs of interactions are derived from predicted networks. Pairs of co-occurring interactions are subsequently extended to derive characteristic interaction sets that distinguish groups of networks. Finally, ensemble voting is applied separately to the resulting topologically similar groups of networks to create distinct group-ensembles. Ensembles of topologically similar networks constitute distinct hypotheses about the reference network structure. Such group-ensembles are easier to interpret as their characteristic topology becomes clear and dependencies between interactions are known. The availability of distinct hypotheses facilitates the design of further experiments to distinguish between plausible network structures. The proposed procedure is a reasonable refinement step for non-deterministic reverse-engineering applications that produce a large number of candidate predictions for a gene

  8. Network of listed companies based on common shareholders and the prediction of market volatility

    Science.gov (United States)

    Li, Jie; Ren, Da; Feng, Xu; Zhang, Yongjie

    2016-11-01

    In this paper, we build a network of listed companies in the Chinese stock market based on common shareholding data from 2003 to 2013. We analyze the evolution of topological characteristics of the network (e.g., average degree, diameter, average path length and clustering coefficient) with respect to the time sequence. Additionally, we consider the economic implications of topological characteristic changes on market volatility and use them to make future predictions. Our study finds that the network diameter significantly predicts volatility. After adding control variables used in traditional financial studies (volume, turnover and previous volatility), network topology still significantly influences volatility and improves the predictive ability of the model.

  9. A Network Traffic Prediction Model Based on Quantum-Behaved Particle Swarm Optimization Algorithm and Fuzzy Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2016-01-01

    Full Text Available Due to the fact that the fluctuation of network traffic is affected by various factors, accurate prediction of network traffic is regarded as a challenging task of the time series prediction process. For this purpose, a novel prediction method of network traffic based on QPSO algorithm and fuzzy wavelet neural network is proposed in this paper. Firstly, quantum-behaved particle swarm optimization (QPSO was introduced. Then, the structure and operation algorithms of WFNN are presented. The parameters of fuzzy wavelet neural network were optimized by QPSO algorithm. Finally, the QPSO-FWNN could be used in prediction of network traffic simulation successfully and evaluate the performance of different prediction models such as BP neural network, RBF neural network, fuzzy neural network, and FWNN-GA neural network. Simulation results show that QPSO-FWNN has a better precision and stability in calculation. At the same time, the QPSO-FWNN also has better generalization ability, and it has a broad prospect on application.

  10. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  11. Viscosity Prediction of Different Ethylene Glycol/Water Based Nanofluids Using a RBF Neural Network

    National Research Council Canada - National Science Library

    Ningbo Zhao; Zhiming Li

    2017-01-01

    In this study, a radial basis function (RBF) neural network with three-layer feed forward architecture was developed to effectively predict the viscosity ratio of different ethylene glycol/water based nanofluids...

  12. An Artificial Neural Network Based Short-term Dynamic Prediction of Algae Bloom

    Directory of Open Access Journals (Sweden)

    Yao Junyang

    2014-06-01

    Full Text Available This paper proposes a method of short-term prediction of algae bloom based on artificial neural network. Firstly, principal component analysis is applied to water environmental factors in algae bloom raceway ponds to get main factors that influence the formation of algae blooms. Then, a model of short-term dynamic prediction based on neural network is built with the current chlorophyll_a values as input and the chlorophyll_a values in the next moment as output to realize short-term dynamic prediction of algae bloom. Simulation results show that the model can realize short-term prediction of algae bloom effectively.

  13. A Predictive Neural Network-Based Cascade Control for pH Reactors

    Directory of Open Access Journals (Sweden)

    Mujahed AlDhaifallah

    2016-01-01

    Full Text Available This paper is concerned with the development of predictive neural network-based cascade control for pH reactors. The cascade structure consists of a master control loop (fuzzy proportional-integral and a slave one (predictive neural network. The master loop is chosen to be more accurate but slower than the slave one. The strong features found in cascade structure have been added to the inherent features in model predictive neural network. The neural network is used to alleviate modeling difficulties found with pH reactor and to predict its behavior. The parameters of predictive algorithm are determined using an optimization algorithm. The effectiveness and feasibility of the proposed design have been demonstrated using MatLab.

  14. Neural network predicts sequence of TP53 gene based on DNA chip

    DEFF Research Database (Denmark)

    Spicker, J.S.; Wikman, F.; Lu, M.L.

    2002-01-01

    We have trained an artificial neural network to predict the sequence of the human TP53 tumor suppressor gene based on a p53 GeneChip. The trained neural network uses as input the fluorescence intensities of DNA hybridized to oligonucleotides on the surface of the chip and makes between zero...

  15. H∞ Guaranteed Cost Control for Networked Control Systems under Scheduling Policy Based on Predicted Error

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2014-01-01

    Full Text Available Scheduling policy based on model prediction error is presented to reduce energy consumption and network conflicts at the actuator node, where the characters of networked control systems are considered, such as limited network bandwidth, limited node energy, and high collision probability. The object model is introduced to predict the state of system at the sensor node. And scheduling threshold is set at the controller node. Control signal is transmitted only if the absolute value of prediction error is larger than the threshold value. Furthermore, the model of networked control systems under scheduling policy based on predicted error is established by taking uncertain parameters and long time delay into consideration. The design method of H∞ guaranteed cost controller is presented by using the theory of Lyapunov and linear matrix inequality (LMI. Finally, simulations are included to demonstrate the theoretical results.

  16. The performance of immune-based neural network with financial time series prediction

    Directory of Open Access Journals (Sweden)

    Dhiya Al-Jumeily

    2015-12-01

    Full Text Available This paper presents the use of immune-based neural networks that include multilayer perceptron (MLP and functional neural network for the prediction of financial time series signals. Extensive simulations for the prediction of one- and five-steps-ahead of stationary and non-stationary time series were performed which indicate that immune-based neural networks in most cases demonstrated advantages in capturing chaotic movement in the financial signals with an improvement in the profit return and rapid convergence over MLPs.

  17. Prediction of epitopes using neural network based methods

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Lund, Ole; Nielsen, Morten

    2011-01-01

    In this paper, we describe the methodologies behind three different aspects of the NetMHC family for prediction of MHC class I binding, mainly to HLAs. We have updated the prediction servers, NetMHC-3.2, NetMHCpan-2.2, and a new consensus method, NetMHCcons, which, in their previous versions, hav...

  18. Prediction Approach of Critical Node Based on Multiple Attribute Decision Making for Opportunistic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qifan Chen

    2016-01-01

    Full Text Available Predicting critical nodes of Opportunistic Sensor Network (OSN can help us not only to improve network performance but also to decrease the cost in network maintenance. However, existing ways of predicting critical nodes in static network are not suitable for OSN. In this paper, the conceptions of critical nodes, region contribution, and cut-vertex in multiregion OSN are defined. We propose an approach to predict critical node for OSN, which is based on multiple attribute decision making (MADM. It takes RC to present the dependence of regions on Ferry nodes. TOPSIS algorithm is employed to find out Ferry node with maximum comprehensive contribution, which is a critical node. The experimental results show that, in different scenarios, this approach can predict the critical nodes of OSN better.

  19. Neural-networks-based feedback linearization versus model predictive control of continuous alcoholic fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Mjalli, F.S.; Al-Asheh, S. [Chemical Engineering Department, Qatar University, Doha (Qatar)

    2005-10-01

    In this work advanced nonlinear neural networks based control system design algorithms are adopted to control a mechanistic model for an ethanol fermentation process. The process model equations for such systems are highly nonlinear. A neural network strategy has been implemented in this work for capturing the dynamics of the mechanistic model for the fermentation process. The neural network achieved has been validated against the mechanistic model. Two neural network based nonlinear control strategies have also been adopted using the model identified. The performance of the feedback linearization technique was compared to neural network model predictive control in terms of stability and set point tracking capabilities. Under servo conditions, the feedback linearization algorithm gave comparable tracking and stability. The feedback linearization controller achieved the control target faster than the model predictive one but with vigorous and sudden controller moves. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  20. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  1. Sunspots Time-Series Prediction Based on Complementary Ensemble Empirical Mode Decomposition and Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Guohui Li

    2017-01-01

    Full Text Available The sunspot numbers are the major target which describes the solar activity level. Long-term prediction of sunspot activity is of great importance for aerospace, communication, disaster prevention, and so on. To improve the prediction accuracy of sunspot time series, the prediction model based on complementary ensemble empirical mode decomposition (CEEMD and wavelet neural network (WNN is proposed. First, the sunspot time series are decomposed by CEEMD to obtain a set of intrinsic modal functions (IMFs. Then, the IMFs and residuals are reconstructed to obtain the training samples and the prediction samples, and these samples are trained and predicted by WNN. Finally, the reconstructed IMFs and residuals are the final prediction results. Five kinds of prediction models are compared, which are BP neural network prediction model, WNN prediction model, empirical mode decomposition and WNN hybrid prediction model, ensemble empirical mode decomposition and WNN hybrid prediction model, and the proposed method in this paper. The same sunspot time series are predicted with five kinds of prediction models. The experimental results show that the proposed model has better prediction accuracy and smaller error.

  2. Predicting commuter flows in spatial networks using a radiation model based on temporal ranges

    Science.gov (United States)

    Ren, Yihui; Ercsey-Ravasz, Mária; Wang, Pu; González, Marta C.; Toroczkai, Zoltán

    2014-11-01

    Understanding network flows such as commuter traffic in large transportation networks is an ongoing challenge due to the complex nature of the transportation infrastructure and human mobility. Here we show a first-principles based method for traffic prediction using a cost-based generalization of the radiation model for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events.

  3. ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster.

    Science.gov (United States)

    Volna, Eva; Kotyrba, Martin; Habiballa, Hashim

    2015-01-01

    The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series.

  4. ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster

    Directory of Open Access Journals (Sweden)

    Eva Volna

    2015-01-01

    Full Text Available The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series.

  5. Application of clustering analysis in the prediction of photovoltaic power generation based on neural network

    Science.gov (United States)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.

  6. Context-sensitive network-based disease genetics prediction and its implications in drug discovery.

    Science.gov (United States)

    Chen, Yang; Xu, Rong

    2017-04-01

    Disease phenotype networks play an important role in computational approaches to identifying new disease-gene associations. Current disease phenotype networks often model disease relationships based on pairwise similarities, therefore ignore the specific context on how two diseases are connected. In this study, we propose a new strategy to model disease associations using context-sensitive networks (CSNs). We developed a CSN-based phenome-driven approach for disease genetics prediction, and investigated the translational potential of the predicted genes in drug discovery. We constructed CSNs by directly connecting diseases with associated phenotypes. Here, we constructed two CSNs using different data sources; the two networks contain 26 790 and 13 822 nodes respectively. We integrated the CSNs with a genetic functional relationship network and predicted disease genes using a network-based ranking algorithm. For comparison, we built Similarity-Based disease Networks (SBN) using the same disease phenotype data. In a de novo cross validation for 3324 diseases, the CSN-based approach significantly increased the average rank from top 12.6 to top 8.8% for all tested genes comparing with the SBN-based approach ( pdisease using CSNs, and demonstrated that the top-ranked genes are highly relevant to PD pathologenesis. We pin-pointed a top-ranked drug target gene for PD, and found its association with neurodegeneration supported by literature. In summary, CSNs lead to significantly improve the disease genetics prediction comparing with SBNs and provide leads for potential drug targets. nlp.case.edu/public/data/. rxx@case.edu.

  7. [Prediction of network drug target based on improved model of bipartite graph valuation].

    Science.gov (United States)

    Liu, Xi; Lu, Peng; Zuo, Xiaohan; Chen, Jianxin; Yang, Hongjun; Yang, Yiping; Gao, Yibo

    2012-01-01

    Network pharmacology, as a new developmental direction of drug discovery, was generating attention of more and more researchers. The key problem in drug discovery was how to identify the new interactions between drugs and target proteins. Prediction of new interaction was made to find potential targets based on the predicting model constructed by the known drug-protein interactions. According to the deficiencies of existing predicting algorithm based bipartite graph, a supervised learning integration method of bipartite graph was proposed in this paper. Firstly, the bipartite graph network was constructed based on the known interactions between drugs and target proteins. Secondly, the evaluation model for association between drugs and target proteins was created. Thirdly, the model was used to predict the new interactions between drugs and target proteins and confirm the new predicted targets. On the testing dataset, our method performed much better than three other predicting methods. The proposed method integrated chemical space, therapeutic space and genomic space, constructed the interaction network of drugs and target proteins, created the evaluation model and predicted the new interactions with good performance.

  8. Lung cancer risk prediction method based on feature selection and artificial neural network.

    Science.gov (United States)

    Xie, Nan-Nan; Hu, Liang; Li, Tai-Hui

    2014-01-01

    A method to predict the risk of lung cancer is proposed, based on two feature selection algorithms: Fisher and ReliefF, and BP Neural Networks. An appropriate quantity of risk factors was chosen for lung cancer risk prediction. The process featured two steps, firstly choosing the risk factors by combining two feature selection algorithms, then providing the predictive value by neural network. Based on the method framework, an algorithm LCRP (lung cancer risk prediction) is presented, to reduce the amount of risk factors collected in practical applications. The proposed method is suitable for health monitoring and self-testing. Experiments showed it can actually provide satisfactory accuracy under low dimensions of risk factors.

  9. Research on the Wire Network Signal Prediction Based on the Improved NNARX Model

    Science.gov (United States)

    Zhang, Zipeng; Fan, Tao; Wang, Shuqing

    It is difficult to obtain accurately the wire net signal of power system's high voltage power transmission lines in the process of monitoring and repairing. In order to solve this problem, the signal measured in remote substation or laboratory is employed to make multipoint prediction to gain the needed data. But, the obtained power grid frequency signal is delay. In order to solve the problem, an improved NNARX network which can predict frequency signal based on multi-point data collected by remote substation PMU is describes in this paper. As the error curved surface of the NNARX network is more complicated, this paper uses L-M algorithm to train the network. The result of the simulation shows that the NNARX network has preferable predication performance which provides accurate real time data for field testing and maintenance.

  10. Rahnuma: hypergraph-based tool for metabolic pathway prediction and network comparison.

    Science.gov (United States)

    Mithani, Aziz; Preston, Gail M; Hein, Jotun

    2009-07-15

    We present a tool called Rahnuma for prediction and analysis of metabolic pathways and comparison of metabolic networks. Rahnuma represents metabolic networks as hypergraphs and computes all possible pathways between two or more metabolites. It provides an intuitive way to answer biological ques- tions focusing on differences between organisms or the evolution of different species by allowing pathway-based metabolic network comparisons at an organism as well as at a phylogenetic level. Rahnuma is available online at http://portal.stats.ox.ac.uk:8080/rahnuma/.

  11. A prediction method for the wax deposition rate based on a radial basis function neural network

    Directory of Open Access Journals (Sweden)

    Ying Xie

    2017-06-01

    Full Text Available The radial basis function neural network is a popular supervised learning tool based on machinery learning technology. Its high precision having been proven, the radial basis function neural network has been applied in many areas. The accumulation of deposited materials in the pipeline may lead to the need for increased pumping power, a decreased flow rate or even to the total blockage of the line, with losses of production and capital investment, so research on predicting the wax deposition rate is significant for the safe and economical operation of an oil pipeline. This paper adopts the radial basis function neural network to predict the wax deposition rate by considering four main influencing factors, the pipe wall temperature gradient, pipe wall wax crystal solubility coefficient, pipe wall shear stress and crude oil viscosity, by the gray correlational analysis method. MATLAB software is employed to establish the RBF neural network. Compared with the previous literature, favorable consistency exists between the predicted outcomes and the experimental results, with a relative error of 1.5%. It can be concluded that the prediction method of wax deposition rate based on the RBF neural network is feasible.

  12. Prediction of Force Measurements of a Microbend Sensor Based on an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kemal Fidanboylu

    2009-09-01

    Full Text Available Artificial neural network (ANN based prediction of the response of a microbend fiber optic sensor is presented. To the best of our knowledge no similar work has been previously reported in the literature. Parallel corrugated plates with three deformation cycles, 6 mm thickness of the spacer material and 16 mm mechanical periodicity between deformations were used in the microbend sensor. Multilayer Perceptron (MLP with different training algorithms, Radial Basis Function (RBF network and General Regression Neural Network (GRNN are used as ANN models in this work. All of these models can predict the sensor responses with considerable errors. RBF has the best performance with the smallest mean square error (MSE values of training and test results. Among the MLP algorithms and GRNN the Levenberg-Marquardt algorithm has good results. These models successfully predict the sensor responses, hence ANNs can be used as useful tool in the design of more robust fiber optic sensors.

  13. Video Quality Prediction Models Based on Video Content Dynamics for H.264 Video over UMTS Networks

    Directory of Open Access Journals (Sweden)

    Asiya Khan

    2010-01-01

    Full Text Available The aim of this paper is to present video quality prediction models for objective non-intrusive, prediction of H.264 encoded video for all content types combining parameters both in the physical and application layer over Universal Mobile Telecommunication Systems (UMTS networks. In order to characterize the Quality of Service (QoS level, a learning model based on Adaptive Neural Fuzzy Inference System (ANFIS and a second model based on non-linear regression analysis is proposed to predict the video quality in terms of the Mean Opinion Score (MOS. The objective of the paper is two-fold. First, to find the impact of QoS parameters on end-to-end video quality for H.264 encoded video. Second, to develop learning models based on ANFIS and non-linear regression analysis to predict video quality over UMTS networks by considering the impact of radio link loss models. The loss models considered are 2-state Markov models. Both the models are trained with a combination of physical and application layer parameters and validated with unseen dataset. Preliminary results show that good prediction accuracy was obtained from both the models. The work should help in the development of a reference-free video prediction model and QoS control methods for video over UMTS networks.

  14. Modulation of grasping force in prosthetic hands using neural network-based predictive control.

    Science.gov (United States)

    Pasluosta, Cristian F; Chiu, Alan W L

    2015-01-01

    This chapter describes the implementation of a neural network-based predictive control system for driving a prosthetic hand. Nonlinearities associated with the electromechanical aspects of prosthetic devices present great challenges for precise control of this type of device. Model-based controllers may overcome this issue. Moreover, given the complexity of these kinds of electromechanical systems, neural network-based modeling arises as a good fit for modeling the fingers' dynamics. The results of simulations mimicking potential situations encountered during activities of daily living demonstrate the feasibility of this technique.

  15. Network-based auto-probit modeling for protein function prediction.

    Science.gov (United States)

    Jiang, Xiaoyu; Gold, David; Kolaczyk, Eric D

    2011-09-01

    Predicting the functional roles of proteins based on various genome-wide data, such as protein-protein association networks, has become a canonical problem in computational biology. Approaching this task as a binary classification problem, we develop a network-based extension of the spatial auto-probit model. In particular, we develop a hierarchical Bayesian probit-based framework for modeling binary network-indexed processes, with a latent multivariate conditional autoregressive Gaussian process. The latter allows for the easy incorporation of protein-protein association network topologies-either binary or weighted-in modeling protein functional similarity. We use this framework to predict protein functions, for functions defined as terms in the Gene Ontology (GO) database, a popular rigorous vocabulary for biological functionality. Furthermore, we show how a natural extension of this framework can be used to model and correct for the high percentage of false negative labels in training data derived from GO, a serious shortcoming endemic to biological databases of this type. Our method performance is evaluated and compared with standard algorithms on weighted yeast protein-protein association networks, extracted from a recently developed integrative database called Search Tool for the Retrieval of INteracting Genes/proteins (STRING). Results show that our basic method is competitive with these other methods, and that the extended method-incorporating the uncertainty in negative labels among the training data-can yield nontrivial improvements in predictive accuracy. © 2010, The International Biometric Society.

  16. Similarity-based Regularized Latent Feature Model for Link Prediction in Bipartite Networks.

    Science.gov (United States)

    Wang, Wenjun; Chen, Xue; Jiao, Pengfei; Jin, Di

    2017-12-05

    Link prediction is an attractive research topic in the field of data mining and has significant applications in improving performance of recommendation system and exploring evolving mechanisms of the complex networks. A variety of complex systems in real world should be abstractly represented as bipartite networks, in which there are two types of nodes and no links connect nodes of the same type. In this paper, we propose a framework for link prediction in bipartite networks by combining the similarity based structure and the latent feature model from a new perspective. The framework is called Similarity Regularized Nonnegative Matrix Factorization (SRNMF), which explicitly takes the local characteristics into consideration and encodes the geometrical information of the networks by constructing a similarity based matrix. We also develop an iterative scheme to solve the objective function based on gradient descent. Extensive experiments on a variety of real world bipartite networks show that the proposed framework of link prediction has a more competitive, preferable and stable performance in comparison with the state-of-art methods.

  17. Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference

    Science.gov (United States)

    Jiang, Jing; Lu, Weiqiang; Li, Weihua; Liu, Guixia; Zhou, Weixing; Huang, Jin; Tang, Yun

    2012-01-01

    Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning. PMID:22589709

  18. Prediction of drug-target interactions and drug repositioning via network-based inference.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    Full Text Available Drug-target interaction (DTI is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI, target-based similarity inference (TBSI and network-based inference (NBI. Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning.

  19. Ontology-based Deep Learning for Human Behavior Prediction with Explanations in Health Social Networks.

    Science.gov (United States)

    Phan, Nhathai; Dou, Dejing; Wang, Hao; Kil, David; Piniewski, Brigitte

    2017-04-01

    Human behavior modeling is a key component in application domains such as healthcare and social behavior research. In addition to accurate prediction, having the capacity to understand the roles of human behavior determinants and to provide explanations for the predicted behaviors is also important. Having this capacity increases trust in the systems and the likelihood that the systems actually will be adopted, thus driving engagement and loyalty. However, most prediction models do not provide explanations for the behaviors they predict. In this paper, we study the research problem, human behavior prediction with explanations, for healthcare intervention systems in health social networks. We propose an ontology-based deep learning model (ORBM+) for human behavior prediction over undirected and nodes-attributed graphs. We first propose a bottom-up algorithm to learn the user representation from health ontologies. Then the user representation is utilized to incorporate self-motivation, social influences, and environmental events together in a human behavior prediction model, which extends a well-known deep learning method, the Restricted Boltzmann Machine. ORBM+ not only predicts human behaviors accurately, but also, it generates explanations for each predicted behavior. Experiments conducted on both real and synthetic health social networks have shown the tremendous effectiveness of our approach compared with conventional methods.

  20. Reliability–based economic model predictive control for generalised flow–based networks including actuators’ health–aware capabilities

    Directory of Open Access Journals (Sweden)

    Grosso Juan M.

    2016-09-01

    Full Text Available This paper proposes a reliability-based economic model predictive control (MPC strategy for the management of generalised flow-based networks, integrating some ideas on network service reliability, dynamic safety stock planning, and degradation of equipment health. The proposed strategy is based on a single-layer economic optimisation problem with dynamic constraints, which includes two enhancements with respect to existing approaches. The first enhancement considers chance-constraint programming to compute an optimal inventory replenishment policy based on a desired risk acceptability level, leading to dynamical allocation of safety stocks in flow-based networks to satisfy non-stationary flow demands. The second enhancement computes a smart distribution of the control effort and maximises actuators’ availability by estimating their degradation and reliability. The proposed approach is illustrated with an application of water transport networks using the Barcelona network as the case study considered.

  1. Modeling infection transmission in primate networks to predict centrality-based risk.

    Science.gov (United States)

    Romano, Valéria; Duboscq, Julie; Sarabian, Cécile; Thomas, Elodie; Sueur, Cédric; MacIntosh, Andrew J J

    2016-07-01

    Social structure can theoretically regulate disease risk by mediating exposure to pathogens via social proximity and contact. Investigating the role of central individuals within a network may help predict infectious agent transmission as well as implement disease control strategies, but little is known about such dynamics in real primate networks. We combined social network analysis and a modeling approach to better understand transmission of a theoretical infectious agent in wild Japanese macaques, highly social animals which form extended but highly differentiated social networks. We collected focal data from adult females living on the islands of Koshima and Yakushima, Japan. Individual identities as well as grooming networks were included in a Markov graph-based simulation. In this model, the probability that an individual will transmit an infectious agent depends on the strength of its relationships with other group members. Similarly, its probability of being infected depends on its relationships with already infected group members. We correlated: (i) the percentage of subjects infected during a latency-constrained epidemic; (ii) the mean latency to complete transmission; (iii) the probability that an individual is infected first among all group members; and (iv) each individual's mean rank in the chain of transmission with different individual network centralities (eigenvector, strength, betweenness). Our results support the hypothesis that more central individuals transmit infections in a shorter amount of time and to more subjects but also become infected more quickly than less central individuals. However, we also observed that the spread of infectious agents on the Yakushima network did not always differ from expectations of spread on random networks. Generalizations about the importance of observed social networks in pathogen flow should thus be made with caution, since individual characteristics in some real world networks appear less relevant than

  2. SVM-based spectrum mobility prediction scheme in mobile cognitive radio networks.

    Science.gov (United States)

    Wang, Yao; Zhang, Zhongzhao; Ma, Lin; Chen, Jiamei

    2014-01-01

    Spectrum mobility as an essential issue has not been fully investigated in mobile cognitive radio networks (CRNs). In this paper, a novel support vector machine based spectrum mobility prediction (SVM-SMP) scheme is presented considering time-varying and space-varying characteristics simultaneously in mobile CRNs. The mobility of cognitive users (CUs) and the working activities of primary users (PUs) are analyzed in theory. And a joint feature vector extraction (JFVE) method is proposed based on the theoretical analysis. Then spectrum mobility prediction is executed through the classification of SVM with a fast convergence speed. Numerical results validate that SVM-SMP gains better short-time prediction accuracy rate and miss prediction rate performance than the two algorithms just depending on the location and speed information. Additionally, a rational parameter design can remedy the prediction performance degradation caused by high speed SUs with strong randomness movements.

  3. Location Prediction-Based Data Dissemination Using Swarm Intelligence in Opportunistic Cognitive Networks

    Directory of Open Access Journals (Sweden)

    Jie Li

    2014-01-01

    Full Text Available Swarm intelligence is widely used in the application of communication networks. In this paper we adopt a biologically inspired strategy to investigate the data dissemination problem in the opportunistic cognitive networks (OCNs. We model the system as a centralized and distributed hybrid system including a location prediction server and a pervasive environment deploying the large-scale human-centric devices. To exploit such environment, data gathering and dissemination are fundamentally based on the contact opportunities. To tackle the lack of contemporaneous end-to-end connectivity in opportunistic networks, we apply ant colony optimization as a cognitive heuristic technology to formulate a self-adaptive dissemination-based routing scheme in opportunistic cognitive networks. This routing strategy has attempted to find the most appropriate nodes conveying messages to the destination node based on the location prediction information and intimacy between nodes, which uses the online unsupervised learning on geographical locations and the biologically inspired algorithm on the relationship of nodes to estimate the delivery probability. Extensive simulation is carried out on the real-world traces to evaluate the accuracy of the location prediction and the proposed scheme in terms of transmission cost, delivery ratio, average hops, and delivery latency, which achieves better routing performances compared to the typical routing schemes in OCNs.

  4. Nonparametric Tree-Based Predictive Modeling of Storm Outages on an Electric Distribution Network.

    Science.gov (United States)

    He, Jichao; Wanik, David W; Hartman, Brian M; Anagnostou, Emmanouil N; Astitha, Marina; Frediani, Maria E B

    2017-03-01

    This article compares two nonparametric tree-based models, quantile regression forests (QRF) and Bayesian additive regression trees (BART), for predicting storm outages on an electric distribution network in Connecticut, USA. We evaluated point estimates and prediction intervals of outage predictions for both models using high-resolution weather, infrastructure, and land use data for 89 storm events (including hurricanes, blizzards, and thunderstorms). We found that spatially BART predicted more accurate point estimates than QRF. However, QRF produced better prediction intervals for high spatial resolutions (2-km grid cells and towns), while BART predictions aggregated to coarser resolutions (divisions and service territory) more effectively. We also found that the predictive accuracy was dependent on the season (e.g., tree-leaf condition, storm characteristics), and that the predictions were most accurate for winter storms. Given the merits of each individual model, we suggest that BART and QRF be implemented together to show the complete picture of a storm's potential impact on the electric distribution network, which would allow for a utility to make better decisions about allocating prestorm resources. © 2016 Society for Risk Analysis.

  5. A Wavelet Analysis-Based Dynamic Prediction Algorithm to Network Traffic

    Directory of Open Access Journals (Sweden)

    Meng Fan-Bo

    2016-01-01

    Full Text Available Network traffic is a significantly important parameter for network traffic engineering, while it holds highly dynamic nature in the network. Accordingly, it is difficult and impossible to directly predict traffic amount of end-to-end flows. This paper proposes a new prediction algorithm to network traffic using the wavelet analysis. Firstly, network traffic is converted into the time-frequency domain to capture time-frequency feature of network traffic. Secondly, in different frequency components, we model network traffic in the time-frequency domain. Finally, we build the prediction model about network traffic. At the same time, the corresponding prediction algorithm is presented to attain network traffic prediction. Simulation results indicates that our approach is promising.

  6. Prediction of annual water consumption in Guangdong Province based on Bayesian neural network

    Science.gov (United States)

    Tian, Tao; Xue, Huifeng

    2017-06-01

    In the context of the implementation of the most stringent water resources management system, the role of water demand forecasting for regional water resources management is becoming increasingly significant. Based on the analysis of the influencing factors of water consumption in Guangdong Province, we made the forecast index system of annual water consumption, and constructed the forecast model of annual water consumption of BP neural network, then optimized the regularization BP neural network in utilization rate of water. The results showed that the average absolute percentage error of Bayesian neural network prediction model and BP neural network prediction model is 0.70% and 0.46% respectively. BP neural network model by Bayesian regularization is more ability to improve the accuracy of about 0.24%, more in line with the regional annual water demand forecast high precision requirements. Take the planning index value of Guangdong Province’s thirteen five plan into Bayesian neural network forecasting model, and its forecast value is 45.432 billion cubic meters, which will reach 456.04 billion cubic meters of red water in Guangdong Province in 2020.

  7. Evaluation and prediction of solar radiation for energy management based on neural networks

    Science.gov (United States)

    Aldoshina, O. V.; Van Tai, Dinh

    2017-08-01

    Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.

  8. Respiratory signal prediction based on adaptive boosting and multi-layer perceptron neural network

    Science.gov (United States)

    Sun, W. Z.; Jiang, M. Y.; Ren, L.; Dang, J.; You, T.; Yin, F.-F.

    2017-09-01

    To improve the prediction accuracy of respiratory signals using adaptive boosting and multi-layer perceptron neural network (ADMLP-NN) for gated treatment of moving target in radiation therapy. The respiratory signals acquired using a real-time position management (RPM) device from 138 previous 4DCT scans were retrospectively used in this study. The ADMLP-NN was composed of several artificial neural networks (ANNs) which were used as weaker predictors to compose a stronger predictor. The respiratory signal was initially smoothed using a Savitzky-Golay finite impulse response smoothing filter (S-G filter). Then, several similar multi-layer perceptron neural networks (MLP-NNs) were configured to estimate future respiratory signal position from its previous positions. Finally, an adaptive boosting (Adaboost) decision algorithm was used to set weights for each MLP-NN based on the sample prediction error of each MLP-NN. Two prediction methods, MLP-NN and ADMLP-NN (MLP-NN plus adaptive boosting), were evaluated by calculating correlation coefficient and root-mean-square-error between true and predicted signals. For predicting 500 ms ahead of prediction, average correlation coefficients were improved from 0.83 (MLP-NN method) to 0.89 (ADMLP-NN method). The average of root-mean-square-error (relative unit) for 500 ms ahead of prediction using ADMLP-NN were reduced by 27.9%, compared to those using MLP-NN. The preliminary results demonstrate that the ADMLP-NN respiratory prediction method is more accurate than the MLP-NN method and can improve the respiration prediction accuracy.

  9. Traffic Flow Prediction Model for Large-Scale Road Network Based on Cloud Computing

    Directory of Open Access Journals (Sweden)

    Zhaosheng Yang

    2014-01-01

    Full Text Available To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface. The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.

  10. Research on the Prediction Model of CPU Utilization Based on ARIMA-BP Neural Network

    Directory of Open Access Journals (Sweden)

    Wang Jina

    2016-01-01

    Full Text Available The dynamic deployment technology of the virtual machine is one of the current cloud computing research focuses. The traditional methods mainly work after the degradation of the service performance that usually lag. To solve the problem a new prediction model based on the CPU utilization is constructed in this paper. A reference offered by the new prediction model of the CPU utilization is provided to the VM dynamic deployment process which will speed to finish the deployment process before the degradation of the service performance. By this method it not only ensure the quality of services but also improve the server performance and resource utilization. The new prediction method of the CPU utilization based on the ARIMA-BP neural network mainly include four parts: preprocess the collected data, build the predictive model of ARIMA-BP neural network, modify the nonlinear residuals of the time series by the BP prediction algorithm and obtain the prediction results by analyzing the above data comprehensively.

  11. Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.

    Science.gov (United States)

    Ko, Chien-Ho

    2013-01-01

    Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  12. Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Chien-Ho Ko

    2013-01-01

    Full Text Available Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs, Fuzzy Logic (FL, and Neural Networks (NNs. FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  13. Prediction of Ship Traffic Flow Based on BP Neural Network and Markov Model

    Directory of Open Access Journals (Sweden)

    Lv Pengfei

    2016-01-01

    Full Text Available This paper discusses the distribution regularity of ship arrival and departure and the method of prediction of ship traffic flow. Depict the frequency histograms of ships arriving to port every day and fit the curve of the frequency histograms with a variety of distribution density function by using the mathematical statistic methods based on the samples of ship-to-port statistics of Fangcheng port nearly a year. By the chi-square testing: the fitting with Negative Binomial distribution and t-Location Scale distribution are superior to normal distribution and Logistic distribution in the branch channel; the fitting with Logistic distribution is superior to normal distribution, Negative Binomial distribution and t-Location Scale distribution in main channel. Build the BP neural network and Markov model based on BP neural network model to forecast ship traffic flow of Fangcheng port. The new prediction model is superior to BP neural network model by comparing the relative residuals of predictive value, which means the new model can improve the prediction accuracy.

  14. Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network

    Science.gov (United States)

    Yang, Bin

    2017-07-01

    Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately

  15. Knowledge base and neural network approach for protein secondary structure prediction.

    Science.gov (United States)

    Patel, Maulika S; Mazumdar, Himanshu S

    2014-11-21

    Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A hybrid deep neural network and physically based distributed model for river stage prediction

    Science.gov (United States)

    hitokoto, Masayuki; sakuraba, Masaaki

    2016-04-01

    We developed the real-time river stage prediction model, using the hybrid deep neural network and physically based distributed model. As the basic model, 4 layer feed-forward artificial neural network (ANN) was used. As a network training method, the deep learning technique was applied. To optimize the network weight, the stochastic gradient descent method based on the back propagation method was used. As a pre-training method, the denoising autoencoder was used. Input of the ANN model is hourly change of water level and hourly rainfall, output data is water level of downstream station. In general, the desirable input of the ANN has strong correlation with the output. In conceptual hydrological model such as tank model and storage-function model, river discharge is governed by the catchment storage. Therefore, the change of the catchment storage, downstream discharge subtracted from rainfall, can be the potent input candidate of the ANN model instead of rainfall. From this point of view, the hybrid deep neural network and physically based distributed model was developed. The prediction procedure of the hybrid model is as follows; first, downstream discharge was calculated by the distributed model, and then estimates the hourly change of catchment storage form rainfall and calculated discharge as the input of the ANN model, and finally the ANN model was calculated. In the training phase, hourly change of catchment storage can be calculated by the observed rainfall and discharge data. The developed model was applied to the one catchment of the OOYODO River, one of the first-grade river in Japan. The modeled catchment is 695 square km. For the training data, 5 water level gauging station and 14 rain-gauge station in the catchment was used. The training floods, superior 24 events, were selected during the period of 2005-2014. Prediction was made up to 6 hours, and 6 models were developed for each prediction time. To set the proper learning parameters and network

  17. A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.

    Science.gov (United States)

    Cai, Binghuang; Jiang, Xia

    2014-04-01

    Biomedical prediction based on clinical and genome-wide data has become increasingly important in disease diagnosis and classification. To solve the prediction problem in an effective manner for the improvement of clinical care, we develop a novel Artificial Neural Network (ANN) method based on Matrix Pseudo-Inversion (MPI) for use in biomedical applications. The MPI-ANN is constructed as a three-layer (i.e., input, hidden, and output layers) feed-forward neural network, and the weights connecting the hidden and output layers are directly determined based on MPI without a lengthy learning iteration. The LASSO (Least Absolute Shrinkage and Selection Operator) method is also presented for comparative purposes. Single Nucleotide Polymorphism (SNP) simulated data and real breast cancer data are employed to validate the performance of the MPI-ANN method via 5-fold cross validation. Experimental results demonstrate the efficacy of the developed MPI-ANN for disease classification and prediction, in view of the significantly superior accuracy (i.e., the rate of correct predictions), as compared with LASSO. The results based on the real breast cancer data also show that the MPI-ANN has better performance than other machine learning methods (including support vector machine (SVM), logistic regression (LR), and an iterative ANN). In addition, experiments demonstrate that our MPI-ANN could be used for bio-marker selection as well. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Degradation Prediction Model Based on a Neural Network with Dynamic Windows

    Directory of Open Access Journals (Sweden)

    Xinghui Zhang

    2015-03-01

    Full Text Available Tracking degradation of mechanical components is very critical for effective maintenance decision making. Remaining useful life (RUL estimation is a widely used form of degradation prediction. RUL prediction methods when enough run-to-failure condition monitoring data can be used have been fully researched, but for some high reliability components, it is very difficult to collect run-to-failure condition monitoring data, i.e., from normal to failure. Only a certain number of condition indicators in certain period can be used to estimate RUL. In addition, some existing prediction methods have problems which block RUL estimation due to poor extrapolability. The predicted value converges to a certain constant or fluctuates in certain range. Moreover, the fluctuant condition features also have bad effects on prediction. In order to solve these dilemmas, this paper proposes a RUL prediction model based on neural network with dynamic windows. This model mainly consists of three steps: window size determination by increasing rate, change point detection and rolling prediction. The proposed method has two dominant strengths. One is that the proposed approach does not need to assume the degradation trajectory is subject to a certain distribution. The other is it can adapt to variation of degradation indicators which greatly benefits RUL prediction. Finally, the performance of the proposed RUL prediction model is validated by real field data and simulation data.

  19. An adaptive handover prediction scheme for seamless mobility based wireless networks.

    Science.gov (United States)

    Sadiq, Ali Safa; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime

    2014-01-01

    We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches.

  20. An Adaptive Handover Prediction Scheme for Seamless Mobility Based Wireless Networks

    Directory of Open Access Journals (Sweden)

    Ali Safa Sadiq

    2014-01-01

    Full Text Available We propose an adaptive handover prediction (AHP scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches.

  1. Fluvial facies reservoir productivity prediction method based on principal component analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Pengyu Gao

    2016-03-01

    Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.

  2. Research on wind field algorithm of wind lidar based on BP neural network and grey prediction

    Science.gov (United States)

    Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei

    2018-01-01

    This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.

  3. The prediction of the residual life of electromechanical equipment based on the artificial neural network

    Science.gov (United States)

    Zhukovskiy, Yu L.; Korolev, N. A.; Babanova, I. S.; Boikov, A. V.

    2017-10-01

    This article is devoted to the prediction of the residual life based on an estimate of the technical state of the induction motor. The proposed system allows to increase the accuracy and completeness of diagnostics by using an artificial neural network (ANN), and also identify and predict faulty states of an electrical equipment in dynamics. The results of the proposed system for estimation the technical condition are probability technical state diagrams and a quantitative evaluation of the residual life, taking into account electrical, vibrational, indirect parameters and detected defects. Based on the evaluation of the technical condition and the prediction of the residual life, a decision is made to change the control of the operating and maintenance modes of the electric motors.

  4. A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data.

    Science.gov (United States)

    Kang, Tianyu; Ding, Wei; Zhang, Luoyan; Ziemek, Daniel; Zarringhalam, Kourosh

    2017-12-19

    Stratification of patient subpopulations that respond favorably to treatment or experience and adverse reaction is an essential step toward development of new personalized therapies and diagnostics. It is currently feasible to generate omic-scale biological measurements for all patients in a study, providing an opportunity for machine learning models to identify molecular markers for disease diagnosis and progression. However, the high variability of genetic background in human populations hampers the reproducibility of omic-scale markers. In this paper, we develop a biological network-based regularized artificial neural network model for prediction of phenotype from transcriptomic measurements in clinical trials. To improve model sparsity and the overall reproducibility of the model, we incorporate regularization for simultaneous shrinkage of gene sets based on active upstream regulatory mechanisms into the model. We benchmark our method against various regression, support vector machines and artificial neural network models and demonstrate the ability of our method in predicting the clinical outcomes using clinical trial data on acute rejection in kidney transplantation and response to Infliximab in ulcerative colitis. We show that integration of prior biological knowledge into the classification as developed in this paper, significantly improves the robustness and generalizability of predictions to independent datasets. We provide a Java code of our algorithm along with a parsed version of the STRING DB database. In summary, we present a method for prediction of clinical phenotypes using baseline genome-wide expression data that makes use of prior biological knowledge on gene-regulatory interactions in order to increase robustness and reproducibility of omic-scale markers. The integrated group-wise regularization methods increases the interpretability of biological signatures and gives stable performance estimates across independent test sets.

  5. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network

    Science.gov (United States)

    Ben Ali, Jaouher; Chebel-Morello, Brigitte; Saidi, Lotfi; Malinowski, Simon; Fnaiech, Farhat

    2015-05-01

    Accurate remaining useful life (RUL) prediction of critical assets is an important challenge in condition based maintenance to improve reliability and decrease machine's breakdown and maintenance's cost. Bearing is one of the most important components in industries which need to be monitored and the user should predict its RUL. The challenge of this study is to propose an original feature able to evaluate the health state of bearings and to estimate their RUL by Prognostics and Health Management (PHM) techniques. In this paper, the proposed method is based on the data-driven prognostic approach. The combination of Simplified Fuzzy Adaptive Resonance Theory Map (SFAM) neural network and Weibull distribution (WD) is explored. WD is used just in the training phase to fit measurement and to avoid areas of fluctuation in the time domain. SFAM training process is based on fitted measurements at present and previous inspection time points as input. However, the SFAM testing process is based on real measurements at present and previous inspections. Thanks to the fuzzy learning process, SFAM has an important ability and a good performance to learn nonlinear time series. As output, seven classes are defined; healthy bearing and six states for bearing degradation. In order to find the optimal RUL prediction, a smoothing phase is proposed in this paper. Experimental results show that the proposed method can reliably predict the RUL of rolling element bearings (REBs) based on vibration signals. The proposed prediction approach can be applied to prognostic other various mechanical assets.

  6. Link prediction in social network based on local information and attributes of nodes

    Science.gov (United States)

    Liang, Yingying; Huang, Lan; Wang, Zhe

    2017-08-01

    Link prediction is essential to both research areas and practical applications. In order to make full use of information of the network, we proposed a new method to predict links in the social network. Firstly, we extracted topological information and attributes of nodes in the social network. Secondly, we integrated them into feature vectors. Finally, we used XGB classifier to predict links using feature vectors. Through expanding information source, experiments on a co-authorship network suggest that our method can improve the accuracy of link prediction significantly.

  7. Long-term Failure Prediction based on an ARP Model of Global Risk Network

    Science.gov (United States)

    Lin, Xin; Moussawi, Alaa; Szymanski, Boleslaw; Korniss, Gyorgy

    Risks that threaten modern societies form an intricately interconnected network. Hence, it is important to understand how risk materializations in distinct domains influence each other. In the paper, we study the global risks network defined by World Economic Forum experts in the form of Stochastic Block Model. We model risks as Alternating Renewal Processes with variable intensities driven by hidden values of exogenous and endogenous failure probabilities. Based on the expert assessments and historical status of each risk, we use Maximum Likelihood Evaluation to find the optimal model parameters and demonstrate that the model considering network effects significantly outperforms the others. In the talk, we discuss how the model can be used to provide quantitative means for measuring interdependencies and materialization of risks in the network. We also present recent results of long-term predictions in the form of predicated distributions of materializations over various time periods. Finally we show how the simulation of ARP's enables us to probe limits of the predictability of the system parameters from historical data and ability to recover hidden variable. Supported in part by DTRA, ARL NS-CTA.

  8. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm.

    Science.gov (United States)

    Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-12-08

    We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.

  9. Flare Occurrence Prediction based on Convolution Neural Network using SOHO MDI data

    Science.gov (United States)

    Yi, Kangwoo; Moon, Yong-Jae; Park, Eunsu; Shin, Seulki

    2017-08-01

    In this study we apply Convolution Neural Network(CNN) to solar flare occurrence prediction with various parameter options using the 00:00 UT MDI images from 1996 to 2010 (total 4962 images). We assume that only X, M and C class flares correspond to “flare occurrence” and the others to “non-flare”. We have attempted to look for the best options for the models with two CNN pre-trained models (AlexNet and GoogLeNet), by modifying training images and changing hyper parameters. Our major results from this study are as follows. First, the flare occurrence predictions are relatively good with about 80 % accuracies. Second, both flare prediction models based on AlexNet and GoogLeNet have similar results but AlexNet is faster than GoogLeNet. Third, modifying the training images to reduce the projection effect is not effective.

  10. Predictive structural dynamic network analysis.

    Science.gov (United States)

    Chen, Rong; Herskovits, Edward H

    2015-04-30

    Classifying individuals based on magnetic resonance data is an important task in neuroscience. Existing brain network-based methods to classify subjects analyze data from a cross-sectional study and these methods cannot classify subjects based on longitudinal data. We propose a network-based predictive modeling method to classify subjects based on longitudinal magnetic resonance data. Our method generates a dynamic Bayesian network model for each group which represents complex spatiotemporal interactions among brain regions, and then calculates a score representing that subject's deviation from expected network patterns. This network-derived score, along with other candidate predictors, are used to construct predictive models. We validated the proposed method based on simulated data and the Alzheimer's Disease Neuroimaging Initiative study. For the Alzheimer's Disease Neuroimaging Initiative study, we built a predictive model based on the baseline biomarker characterizing the baseline state and the network-based score which was constructed based on the state transition probability matrix. We found that this combined model achieved 0.86 accuracy, 0.85 sensitivity, and 0.87 specificity. For the Alzheimer's Disease Neuroimaging Initiative study, the model based on the baseline biomarkers achieved 0.77 accuracy. The accuracy of our model is significantly better than the model based on the baseline biomarkers (p-value=0.002). We have presented a method to classify subjects based on structural dynamic network model based scores. This method is of great importance to distinguish subjects based on structural network dynamics and the understanding of the network architecture of brain processes and disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Trading network predicts stock price.

    Science.gov (United States)

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi

    2014-01-16

    Stock price prediction is an important and challenging problem for studying financial markets. Existing studies are mainly based on the time series of stock price or the operation performance of listed company. In this paper, we propose to predict stock price based on investors' trading behavior. For each stock, we characterize the daily trading relationship among its investors using a trading network. We then classify the nodes of trading network into three roles according to their connectivity pattern. Strong Granger causality is found between stock price and trading relationship indices, i.e., the fraction of trading relationship among nodes with different roles. We further predict stock price by incorporating these trading relationship indices into a neural network based on time series of stock price. Experimental results on 51 stocks in two Chinese Stock Exchanges demonstrate the accuracy of stock price prediction is significantly improved by the inclusion of trading relationship indices.

  12. Artificial neural network (ANN)-based prediction of depth filter loading capacity for filter sizing.

    Science.gov (United States)

    Agarwal, Harshit; Rathore, Anurag S; Hadpe, Sandeep Ramesh; Alva, Solomon J

    2016-11-01

    This article presents an application of artificial neural network (ANN) modelling towards prediction of depth filter loading capacity for clarification of a monoclonal antibody (mAb) product during commercial manufacturing. The effect of operating parameters on filter loading capacity was evaluated based on the analysis of change in the differential pressure (DP) as a function of time. The proposed ANN model uses inlet stream properties (feed turbidity, feed cell count, feed cell viability), flux, and time to predict the corresponding DP. The ANN contained a single output layer with ten neurons in hidden layer and employed a sigmoidal activation function. This network was trained with 174 training points, 37 validation points, and 37 test points. Further, a pressure cut-off of 1.1 bar was used for sizing the filter area required under each operating condition. The modelling results showed that there was excellent agreement between the predicted and experimental data with a regression coefficient (R2 ) of 0.98. The developed ANN model was used for performing variable depth filter sizing for different clarification lots. Monte-Carlo simulation was performed to estimate the cost savings by using different filter areas for different clarification lots rather than using the same filter area. A 10% saving in cost of goods was obtained for this operation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1436-1443, 2016. © 2016 American Institute of Chemical Engineers.

  13. Support Vector Machine Based Mobility Prediction Scheme in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Jiamei Chen

    2015-01-01

    Full Text Available To improve the intelligence of the mobile-aware applications in the heterogeneous wireless networks (HetNets, it is essential to establish an advanced mechanism to anticipate the change of the user location in every subnet for HetNets. This paper proposes a multiclass support vector machine based mobility prediction (Multi-SVMMP scheme to estimate the future location of mobile users according to the movement history information of each user in HetNets. In the location prediction process, the regular and random user movement patterns are treated differently, which can reflect the user movements more realistically than the existing movement models in HetNets. And different forms of multiclass support vector machines are embedded in the two mobility patterns according to the different characteristics of the two mobility patterns. Moreover, the introduction of target region (TR cuts down the energy consumption efficiently without impacting the prediction accuracy. As reported in the simulations, our Multi-SVMMP can overcome the difficulties found in the traditional methods and obtain a higher prediction accuracy and user adaptability while reducing the cost of prediction resources.

  14. Predictive control based on neural networks: an application to a fluid catalytic cracking industrial unit

    Directory of Open Access Journals (Sweden)

    V.M.L. Santos

    2000-12-01

    Full Text Available Artificial Neural Networks (ANNs constitute a technology that has recently become the focus of great attention. The reason for this is due mainly to its capacity to treat complex and nonlinear problems. This work consists of the identification and control of a fluid cracking catalytic unit (FCCU using techniques based on multilayered ANNs. The FCC unit is a typical example of a complex and nonlinear process, possessing great interaction among the operation variables and many operational constraints to be attended. Model Predictive Control is indicated in these occasions. The FCC model adopted was validated with plant data by Moro (1992; and was used in this work to replace the real process in the generation of data for the identification of the ANNs and to test the predictive control strategy. The results of the identification and control of the process through ANNs indicate the viability of the technique.

  15. Spread prediction model of continuous steel tube based on BP neural network

    Science.gov (United States)

    Zhai, Jian-wei; Yu, Hui; Zou, Hai-bei; Wang, San-zhong; Liu, Li-gang

    2017-07-01

    According to the geometric pass of roll and technological parameters of three-roller continuous mandrel rolling mill in a factory, a finite element model is established to simulate the continuous rolling process of seamless steel tube, and the reliability of finite element model is verified by comparing with the simulation results and actual results of rolling force, wall thickness and outer diameter of the tube. The effect of roller reduction, roller rotation speed and blooming temperature on the spread rule is studied. Based on BP(Back Propagation) neural network technology, a spread prediction model of continuous rolling tube is established for training wall thickness coefficient and spread coefficient of the continuous rolling tube, and the rapid and accurate prediction of continuous rolling tube size is realized.

  16. A Bayesian network model for predicting type 2 diabetes risk based on electronic health records

    Science.gov (United States)

    Xie, Jiang; Liu, Yan; Zeng, Xu; Zhang, Wu; Mei, Zhen

    2017-07-01

    An extensive, in-depth study of diabetes risk factors (DBRF) is of crucial importance to prevent (or reduce) the chance of suffering from type 2 diabetes (T2D). Accumulation of electronic health records (EHRs) makes it possible to build nonlinear relationships between risk factors and diabetes. However, the current DBRF researches mainly focus on qualitative analyses, and the inconformity of physical examination items makes the risk factors likely to be lost, which drives us to study the novel machine learning approach for risk model development. In this paper, we use Bayesian networks (BNs) to analyze the relationship between physical examination information and T2D, and to quantify the link between risk factors and T2D. Furthermore, with the quantitative analyses of DBRF, we adopt EHR and propose a machine learning approach based on BNs to predict the risk of T2D. The experiments demonstrate that our approach can lead to better predictive performance than the classical risk model.

  17. Neural network based forward prediction of bladder pressure using pudendal nerve electrical activity.

    Science.gov (United States)

    Geramipour, A; Makki, S; Erfanian, A

    2015-01-01

    Individuals with spinal cord injury or neurological disorders have problems in urinary bladder storage and in voiding function. In these people, the detrusor of bladder contracts at low volume and this causes incontinence. The goal of bladder control is to increase the bladder capacity by electrical stimulation of relative nerves such as pelvic nerves, sacral nerve roots or pudendal nerves. For this purpose, the bladder pressure has to be monitored continuously. In this paper, we propose a method for real-time estimating the bladder pressure using artificial neural network. The method is based upon measurements of electroneurogram (ENG) signal of pudendal nerve. This approach yields synthetic bladder pressure estimates during bladder contraction. The experiments were conducted on three rats. The results show that neural predictor can provide accurate estimation and prediction of bladder pressure with good generalization ability. The average error of 1-second and 5-second ahead prediction of bladder pressure are 9.62% and 10.54%, respectively.

  18. Research on the life prediction of light-emitting diode based on neural network

    Science.gov (United States)

    Song, Yang; Qian, Keyuan

    2017-08-01

    This paper establishes a neural network model that can predict LED lifetime. The ideal factor, luminous flux, light quantum number and fluorescence efficiency are taken as input variables of neural network, whose output variable is the life of the LED. Through the repeated training of the experimental sample, the hidden layer number, the hidden layer unit number and the transfer function of the neural network are determined, and the life prediction model function is established. Predicting the LED life only need once measurement of the LED through the model function, which can predict different types of LED life on the same time. Respectively, the model can precisely predict LED life under the using current of 60mA and 40mA. The accuracy of the life prediction model under aging current can reach more than 85%.

  19. Predicting mental conditions based on "history of present illness" in psychiatric notes with deep neural networks.

    Science.gov (United States)

    Tran, Tung; Kavuluru, Ramakanth

    2017-11-01

    Applications of natural language processing to mental health notes are not common given the sensitive nature of the associated narratives. The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing (NLP) changed this scenario by providing the first set of neuropsychiatric notes to participants. This study summarizes our efforts and results in proposing a novel data use case for this dataset as part of the third track in this shared task. We explore the feasibility and effectiveness of predicting a set of common mental conditions a patient has based on the short textual description of patient's history of present illness typically occurring in the beginning of a psychiatric initial evaluation note. We clean and process the 1000 records made available through the N-GRID clinical NLP task into a key-value dictionary and build a dataset of 986 examples for which there is a narrative for history of present illness as well as Yes/No responses with regards to presence of specific mental conditions. We propose two independent deep neural network models: one based on convolutional neural networks (CNN) and another based on recurrent neural networks with hierarchical attention (ReHAN), the latter of which allows for interpretation of model decisions. We conduct experiments to compare these methods to each other and to baselines based on linear models and named entity recognition (NER). Our CNN model with optimized thresholding of output probability estimates achieves best overall mean micro-F score of 63.144% for 11 common mental conditions with statistically significant gains (ptext segment averaging 300 words, it is a good predictor for a few conditions such as anxiety, depression, panic disorder, and attention deficit hyperactivity disorder. Proposed CNN and RNN models outperform baseline approaches and complement each other when evaluating on a per-label basis. Copyright © 2017. Published by Elsevier Inc.

  20. Ship Attitude Prediction Based on Input Delay Neural Network and Measurements of Gyroscopes

    DEFF Research Database (Denmark)

    Wang, Yunlong; N. Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2017-01-01

    Due to the uncertainty and random nature of ocean waves, the accurate prediction of ship attitude is hard to be achieved, especially in high sea states. A ship attitude prediction method using Input Delay Neural Network (IDNN) is proposed in this paper. One of the advantages of this method is tha...

  1. Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Cox regression is commonly used to predict the outcome by the time to an event of interest and in addition, identify relevant features for survival analysis in cancer genomics. Due to the high-dimensionality of high-throughput genomic data, existing Cox models trained on any particular dataset usually generalize poorly to other independent datasets. In this paper, we propose a network-based Cox regression model called Net-Cox and applied Net-Cox for a large-scale survival analysis across multiple ovarian cancer datasets. Net-Cox integrates gene network information into the Cox's proportional hazard model to explore the co-expression or functional relation among high-dimensional gene expression features in the gene network. Net-Cox was applied to analyze three independent gene expression datasets including the TCGA ovarian cancer dataset and two other public ovarian cancer datasets. Net-Cox with the network information from gene co-expression or functional relations identified highly consistent signature genes across the three datasets, and because of the better generalization across the datasets, Net-Cox also consistently improved the accuracy of survival prediction over the Cox models regularized by L(2 or L(1. This study focused on analyzing the death and recurrence outcomes in the treatment of ovarian carcinoma to identify signature genes that can more reliably predict the events. The signature genes comprise dense protein-protein interaction subnetworks, enriched by extracellular matrix receptors and modulators or by nuclear signaling components downstream of extracellular signal-regulated kinases. In the laboratory validation of the signature genes, a tumor array experiment by protein staining on an independent patient cohort from Mayo Clinic showed that the protein expression of the signature gene FBN1 is a biomarker significantly associated with the early recurrence after 12 months of the treatment in the ovarian cancer patients who are

  2. Modeling and simulation of adaptive Neuro-fuzzy based intelligent system for predictive stabilization in structured overlay networks

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2017-02-01

    Full Text Available Intelligent prediction of neighboring node (k well defined neighbors as specified by the dht protocol dynamism is helpful to improve the resilience and can reduce the overhead associated with topology maintenance of structured overlay networks. The dynamic behavior of overlay nodes depends on many factors such as underlying user’s online behavior, geographical position, time of the day, day of the week etc. as reported in many applications. We can exploit these characteristics for efficient maintenance of structured overlay networks by implementing an intelligent predictive framework for setting stabilization parameters appropriately. Considering the fact that human driven behavior usually goes beyond intermittent availability patterns, we use a hybrid Neuro-fuzzy based predictor to enhance the accuracy of the predictions. In this paper, we discuss our predictive stabilization approach, implement Neuro-fuzzy based prediction in MATLAB simulation and apply this predictive stabilization model in a chord based overlay network using OverSim as a simulation tool. The MATLAB simulation results present that the behavior of neighboring nodes is predictable to a large extent as indicated by the very small RMSE. The OverSim based simulation results also observe significant improvements in the performance of chord based overlay network in terms of lookup success ratio, lookup hop count and maintenance overhead as compared to periodic stabilization approach.

  3. Landslide Displacement Prediction With Uncertainty Based on Neural Networks With Random Hidden Weights.

    Science.gov (United States)

    Lian, Cheng; Zeng, Zhigang; Yao, Wei; Tang, Huiming; Chen, Chun Lung Philip

    2016-12-01

    In this paper, we propose a new approach to establish a landslide displacement forecasting model based on artificial neural networks (ANNs) with random hidden weights. To quantify the uncertainty associated with the predictions, a framework for probabilistic forecasting of landslide displacement is developed. The aim of this paper is to construct prediction intervals (PIs) instead of deterministic forecasting. A lower-upper bound estimation (LUBE) method is adopted to construct ANN-based PIs, while a new single hidden layer feedforward ANN with random hidden weights for LUBE is proposed. Unlike the original implementation of LUBE, the input weights and hidden biases of the ANN are randomly chosen, and only the output weights need to be adjusted. Combining particle swarm optimization (PSO) and gravitational search algorithm (GSA), a hybrid evolutionary algorithm, PSOGSA, is utilized to optimize the output weights. Furthermore, a new ANN objective function, which combines a modified combinational coverage width-based criterion with one-norm regularization, is proposed. Two benchmark data sets and two real-world landslide data sets are presented to illustrate the capability and merit of our method. Experimental results reveal that the proposed method can construct high-quality PIs.

  4. A neural network based intelligent predictive sensor for cloudiness, solar radiation and air temperature.

    Science.gov (United States)

    Ferreira, Pedro M; Gomes, João M; Martins, Igor A C; Ruano, António E

    2012-11-12

    Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature.

  5. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    Science.gov (United States)

    Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  6. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    Directory of Open Access Journals (Sweden)

    Pedro M. Ferreira

    2012-11-01

    Full Text Available Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are importantfor different areas of applications, such as agriculture, renewable energy and energymanagement, or thermal comfort in buildings. For this reason, an intelligent, light-weightand portable sensor was developed, using artificial neural network models as the time-seriespredictor mechanisms. These have been identified with the aid of a procedure based on themulti-objective genetic algorithm. As cloudiness is the most significant factor affecting thesolar radiation reaching a particular location on the Earth surface, it has great impact on theperformance of predictive solar radiation models for that location. This work also representsone step towards the improvement of such models by using ground-to-sky hemisphericalcolour digital images as a means to estimate cloudiness by the fraction of visible skycorresponding to clouds and to clear sky. The implementation of predictive models inthe prototype has been validated and the system is able to function reliably, providingmeasurements and four-hour forecasts of cloudiness, solar radiation and air temperature.

  7. Prediction-Based Energy Saving Mechanism in 3GPP NB-IoT Networks.

    Science.gov (United States)

    Lee, Jinseong; Lee, Jaiyong

    2017-09-01

    The current expansion of the Internet of things (IoT) demands improved communication platforms that support a wide area with low energy consumption. The 3rd Generation Partnership Project introduced narrowband IoT (NB-IoT) as IoT communication solutions. NB-IoT devices should be available for over 10 years without requiring a battery replacement. Thus, a low energy consumption is essential for the successful deployment of this technology. Given that a high amount of energy is consumed for radio transmission by the power amplifier, reducing the uplink transmission time is key to ensure a long lifespan of an IoT device. In this paper, we propose a prediction-based energy saving mechanism (PBESM) that is focused on enhanced uplink transmission. The mechanism consists of two parts: first, the network architecture that predicts the uplink packet occurrence through a deep packet inspection; second, an algorithm that predicts the processing delay and pre-assigns radio resources to enhance the scheduling request procedure. In this way, our mechanism reduces the number of random accesses and the energy consumed by radio transmission. Simulation results showed that the energy consumption using the proposed PBESM is reduced by up to 34% in comparison with that in the conventional NB-IoT method.

  8. Classification and Prediction of Traffic Flow Based on Real Data Using Neural Networks

    Science.gov (United States)

    Pamuła, Teresa

    2012-12-01

    This paper presents a method of classification of time series of traffic flow, on the section of the main road leading into the city of Gliwice. Video detectors recorded traffic volume data was used, covering the period of one year in 5-minute intervals - from June 2011 to May 2012. In order to classify the data a statistical analysis was performed, which resulted in the proposition of splitting the daily time series into four classes. The series were smoothed to obtain hourly flow rates. The classification was performed using neural networks with different structures and using a variable number of input data. The purpose of classification is the prediction of traffic flow rates in the afternoon basing on the morning traffic and the assessment of daily traffic volumes for a particular day of the week. The results can be utilized by intelligent urban traffic management systems.

  9. Prediction of microRNAs involved in immune system diseases through network based features.

    Science.gov (United States)

    Prabahar, Archana; Natarajan, Jeyakumar

    2017-01-01

    MicroRNAs are a class of small non-coding regulatory RNA molecules that modulate the expression of several genes at post-transcriptional level and play a vital role in disease pathogenesis. Recent research shows that a range of miRNAs are involved in the regulation of immunity and its deregulation results in immune mediated diseases such as cancer, inflammation and autoimmune diseases. Computational discovery of these immune miRNAs using a set of specific features is highly desirable. In the current investigation, we present a SVM based classification system which uses a set of novel network based topological and motif features in addition to the baseline sequential and structural features to predict immune specific miRNAs from other non-immune miRNAs. The classifier was trained and tested on a balanced set of equal number of positive and negative examples to show the discriminative power of our network features. Experimental results show that our approach achieves an accuracy of 90.2% and outperforms the classification accuracy of 63.2% reported using the traditional miRNA sequential and structural features. The proposed classifier was further validated with two immune disease sub-class datasets related to multiple sclerosis microarray data and psoriasis RNA-seq data with higher accuracy. These results indicate that our classifier which uses network and motif features along with sequential and structural features will lead to significant improvement in classifying immune miRNAs and hence can be applied to identify other specific classes of miRNAs as an extensible miRNA classification system. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. STOCHASTIC MODELLING BASED MONTHLY RAINFALL PREDICTION USING SEASONAL ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    S.M. Karthik

    2017-01-01

    Full Text Available India is an agrarian society where 13.7% of GDP and 50% of workforce are involved with agriculture. Rainfall plays a vital role in irrigating the land and replenishing the rivers and underground water sources. Therefore the study of rainfall is vital to the economic development and wellbeing of the nation. Accurate prediction of rainfall leads to better agricultural planning, flood prevention and control. The seasonal artificial neural networks can predict monthly rainfall by exploiting the cyclical nature of the weather system. It is dependent on historical time series data and therefore independent of changes in the fundamental models of climate known collectively as manmade climate change. This paper presents the seasonal artificial neural networks applied on the prediction of monthly rainfall. The amounts of rainfall in the twelve months of a year are fed to the neural networks to predict the next twelve months. The gradient descent method is used for training the neural networks. Four performance measures viz. MSE, RMSE, MAD and MAPE are used to assess the system. Experimental results indicate that monthly rainfall patterns can be predicted accurately by seasonal neural networks.

  11. Prediction of soft soil foundation settlement in Guangxi granite area based on fuzzy neural network model

    Science.gov (United States)

    Luo, Junhui; Wu, Chao; Liu, Xianlin; Mi, Decai; Zeng, Fuquan; Zeng, Yongjun

    2018-01-01

    At present, the prediction of soft foundation settlement mostly use the exponential curve and hyperbola deferred approximation method, and the correlation between the results is poor. However, the application of neural network in this area has some limitations, and none of the models used in the existing cases adopted the TS fuzzy neural network of which calculation combines the characteristics of fuzzy system and neural network to realize the mutual compatibility methods. At the same time, the developed and optimized calculation program is convenient for engineering designers. Taking the prediction and analysis of soft foundation settlement of gully soft soil in granite area of Guangxi Guihe road as an example, the fuzzy neural network model is established and verified to explore the applicability. The TS fuzzy neural network is used to construct the prediction model of settlement and deformation, and the corresponding time response function is established to calculate and analyze the settlement of soft foundation. The results show that the prediction of short-term settlement of the model is accurate and the final settlement prediction result has certain engineering reference value.

  12. Adaptive-network-based fuzzy inference system (ANFIS modelbased prediction of the surface ozone concentration

    Directory of Open Access Journals (Sweden)

    Savić Marija

    2014-01-01

    Full Text Available This paper presents the results of the tropospheric ozone concentration modeling as the dependence on volatile organic compounds - VOCs (Benzene, Toluene, m,p-Xylene, o-Xylene, Ethylbenzene; nonorganic compounds - NOx (NO, NO2, NOx, CO, H2S, SO2 and PM10 in the ambient air in parallel with the meteorological parameters: temperature, solar radiation, relative humidity, wind speed and direction. Modeling is based on measured results obtained during the year 2009. The measurements were performed at the measuring station located within an agricultural area, in vicinity of city of Zrenjanin (Serbian Banat, Serbia. Statistical analysis of obtained data, based on bivariate correlation analysis indicated that accurate modeling cannot be performed using linear statistics approach. Also, considering that almost all input variables have wide range of relative change (ratio of variance compared to range, nonlinear statistic analysis method based on only one rule describing the behavior of input variable, most certainly wouldn’t present accurate enough results. From that reason, modeling approach was based on Adaptive-Network-Based Fuzzy Inference System (ANFIS. Model obtained using ANFIS methodology resulted with high accuracy, with prediction potential of above 80%, considering that obtained determination coefficient for the final model was R2=0.802.

  13. Prediction of MicroRNA-Disease Associations Based on Social Network Analysis Methods

    Directory of Open Access Journals (Sweden)

    Quan Zou

    2015-01-01

    Full Text Available MicroRNAs constitute an important class of noncoding, single-stranded, ~22 nucleotide long RNA molecules encoded by endogenous genes. They play an important role in regulating gene transcription and the regulation of normal development. MicroRNAs can be associated with disease; however, only a few microRNA-disease associations have been confirmed by traditional experimental approaches. We introduce two methods to predict microRNA-disease association. The first method, KATZ, focuses on integrating the social network analysis method with machine learning and is based on networks derived from known microRNA-disease associations, disease-disease associations, and microRNA-microRNA associations. The other method, CATAPULT, is a supervised machine learning method. We applied the two methods to 242 known microRNA-disease associations and evaluated their performance using leave-one-out cross-validation and 3-fold cross-validation. Experiments proved that our methods outperformed the state-of-the-art methods.

  14. Research on Fault Prediction of Distribution Network Based on Large Data

    Directory of Open Access Journals (Sweden)

    Jinglong Zhou

    2017-01-01

    Full Text Available With the continuous development of information technology and the improvement of distribution automation level. Especially, the amount of on-line monitoring and statistical data is increasing, and large data is used data distribution system, describes the technology to collect, data analysis and data processing of the data distribution system. The artificial neural network mining algorithm and the large data are researched in the fault diagnosis and prediction of the distribution network.

  15. Prediction of Palm Oil-Based Methyl Ester Biodiesel Density Using Artificial Neural Networks

    Science.gov (United States)

    Baroutian, Saeid; Kheireddine Aroua, Mohamed; Raman, Abdul Aziz Abdul; Meriam Nik Sulaiman, Nik

    In this study, a new approach based on Artificial Neural Networks (ANNs) has been designed to estimate the density of pure palm oil-based methyl ester biodiesel. The experimental density data measured at various temperatures from 14 to 90°C at 1°C intervals were used to train the networks. The present research, applied a three layer back propagation neural network with seven neurons in the hidden layer. The results from the network are in good agreement with the measured data and the average absolute percent deviation is 0.29%. The results of ANNs have also been compared with the results of empirical and theoretical estimations.

  16. Bayesian Markov Random Field analysis for protein function prediction based on network data.

    Science.gov (United States)

    Kourmpetis, Yiannis A I; van Dijk, Aalt D J; Bink, Marco C A M; van Ham, Roeland C H J; ter Braak, Cajo J F

    2010-02-24

    Inference of protein functions is one of the most important aims of modern biology. To fully exploit the large volumes of genomic data typically produced in modern-day genomic experiments, automated computational methods for protein function prediction are urgently needed. Established methods use sequence or structure similarity to infer functions but those types of data do not suffice to determine the biological context in which proteins act. Current high-throughput biological experiments produce large amounts of data on the interactions between proteins. Such data can be used to infer interaction networks and to predict the biological process that the protein is involved in. Here, we develop a probabilistic approach for protein function prediction using network data, such as protein-protein interaction measurements. We take a Bayesian approach to an existing Markov Random Field method by performing simultaneous estimation of the model parameters and prediction of protein functions. We use an adaptive Markov Chain Monte Carlo algorithm that leads to more accurate parameter estimates and consequently to improved prediction performance compared to the standard Markov Random Fields method. We tested our method using a high quality S. cereviciae validation network with 1622 proteins against 90 Gene Ontology terms of different levels of abstraction. Compared to three other protein function prediction methods, our approach shows very good prediction performance. Our method can be directly applied to protein-protein interaction or coexpression networks, but also can be extended to use multiple data sources. We apply our method to physical protein interaction data from S. cerevisiae and provide novel predictions, using 340 Gene Ontology terms, for 1170 unannotated proteins and we evaluate the predictions using the available literature.

  17. [Study on a back propogation neural network-based predictive model for prevalence of birth defect].

    Science.gov (United States)

    Wang, Wei; Xu, Wei; Zheng, Ya-jun; Zhou, Bao-sen

    2007-05-01

    To evaluate the value of a back propogation (BP) network on prediction of birth defect and to give clues on its prevention. Data of birth defect in Shenyang from 1995 to 2005 were used as a training set to predict the prevalence rate of birth defect. Neural network tools box of Software MATLAB 6.5 was used to train and simulate BP Artificial Neural Network. When using data of the year 1995-2003 to predict the prevalence rate of birth defect in 2004-2005, the results showed that: the fitting average error of prevalence rate was 1.34%, RNL was 0.9874, and the prediction of average error was 1.78%. Using data of the year 1995-2005 to predict the prevalence rate of birth defect in 2006-2007, the results showed that: the fitting average error was 0.33%, RNL was 0.9954, the prevalence rates of birth defect in 2006-2007 were 11.00% and 11.29%. Compared to the conventional statistics method, BP not only showed better prediction precision, but had no limit to the type or distribution of relevant data, thus providing a powerful method in epidemiological prediction.

  18. DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing.

    Science.gov (United States)

    Vidaki, Athina; Ballard, David; Aliferi, Anastasia; Miller, Thomas H; Barron, Leon P; Syndercombe Court, Denise

    2017-05-01

    The ability to estimate the age of the donor from recovered biological material at a crime scene can be of substantial value in forensic investigations. Aging can be complex and is associated with various molecular modifications in cells that accumulate over a person's lifetime including epigenetic patterns. The aim of this study was to use age-specific DNA methylation patterns to generate an accurate model for the prediction of chronological age using data from whole blood. In total, 45 age-associated CpG sites were selected based on their reported age coefficients in a previous extensive study and investigated using publicly available methylation data obtained from 1156 whole blood samples (aged 2-90 years) analysed with Illumina's genome-wide methylation platforms (27K/450K). Applying stepwise regression for variable selection, 23 of these CpG sites were identified that could significantly contribute to age prediction modelling and multiple regression analysis carried out with these markers provided an accurate prediction of age (R2=0.92, mean absolute error (MAE)=4.6 years). However, applying machine learning, and more specifically a generalised regression neural network model, the age prediction significantly improved (R2=0.96) with a MAE=3.3 years for the training set and 4.4 years for a blind test set of 231 cases. The machine learning approach used 16 CpG sites, located in 16 different genomic regions, with the top 3 predictors of age belonged to the genes NHLRC1, SCGN and CSNK1D. The proposed model was further tested using independent cohorts of 53 monozygotic twins (MAE=7.1 years) and a cohort of 1011 disease state individuals (MAE=7.2 years). Furthermore, we highlighted the age markers' potential applicability in samples other than blood by predicting age with similar accuracy in 265 saliva samples (R2=0.96) with a MAE=3.2 years (training set) and 4.0 years (blind test). In an attempt to create a sensitive and accurate age prediction test, a next

  19. A Network-Based Model of Oncogenic Collaboration for Prediction of Drug Sensitivity

    Science.gov (United States)

    Laderas, Ted G.; Heiser, Laura M.; Sönmez, Kemal

    2015-01-01

    Tumorigenesis is a multi-step process, involving the acquisition of multiple oncogenic mutations that transform cells, resulting in systemic dysregulation that enables proliferation, invasion, and other cancer hallmarks. The goal of precision medicine is to identify therapeutically-actionable mutations from large-scale omic datasets. However, the multiplicity of oncogenes required for transformation, known as oncogenic collaboration, makes assigning effective treatments difficult. Motivated by this observation, we propose a new type of oncogenic collaboration where mutations in genes that interact with an oncogene may contribute to the oncogene’s deleterious potential, a new genomic feature that we term “surrogate oncogenes.” Surrogate oncogenes are representatives of these mutated subnetworks that interact with oncogenes. By mapping mutations to a protein–protein interaction network, we determine the significance of the observed distribution using permutation-based methods. For a panel of 38 breast cancer cell lines, we identified a significant number of surrogate oncogenes in known oncogenes such as BRCA1 and ESR1, lending credence to this approach. In addition, using Random Forest Classifiers, we show that these significant surrogate oncogenes predict drug sensitivity for 74 drugs in the breast cancer cell lines with a mean error rate of 30.9%. Additionally, we show that surrogate oncogenes are predictive of survival in patients. The surrogate oncogene framework incorporates unique or rare mutations from a single sample, and therefore has the potential to integrate patient-unique mutations into drug sensitivity predictions, suggesting a new direction in precision medicine and drug development. Additionally, we show the prevalence of significant surrogate oncogenes in multiple cancers from The Cancer Genome Atlas, suggesting that surrogate oncogenes may be a useful genomic feature for guiding pancancer analyses and assigning therapies across many tissue

  20. Artificial Neural Network and Response Surface Methodology Modeling in Ionic Conductivity Predictions of Phthaloylchitosan-Based Gel Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    Ahmad Danial Azzahari

    2016-01-01

    Full Text Available A gel polymer electrolyte system based on phthaloylchitosan was prepared. The effects of process variables, such as lithium iodide, caesium iodide, and 1-butyl-3-methylimidazolium iodide were investigated using a distance-based ternary mixture experimental design. A comparative approach was made between response surface methodology (RSM and artificial neural network (ANN to predict the ionic conductivity. The predictive capabilities of the two methodologies were compared in terms of coefficient of determination R2 based on the validation data set. It was shown that the developed ANN model had better predictive outcome as compared to the RSM model.

  1. Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network.

    Science.gov (United States)

    Yao, Xin; Hao, Han; Li, Yanda; Li, Shao

    2011-05-20

    Protein-protein interaction networks and phenotype similarity information have been synthesized together to discover novel disease-causing genes. Genetic or phenotypic similarities are manifested as certain modularity properties in a phenotype-gene heterogeneous network consisting of the phenotype-phenotype similarity network, protein-protein interaction network and gene-disease association network. However, the quantitative analysis of modularity in the heterogeneous network and its influence on disease-gene discovery are still unaddressed. Furthermore, the genetic correspondence of the disease subtypes can be identified by marking the genes and phenotypes in the phenotype-gene network. We present a novel network inference method to measure the network modularity, and in particular to suggest the subtypes of diseases based on the heterogeneous network. Based on a measure which is introduced to evaluate the closeness between two nodes in the phenotype-gene heterogeneous network, we developed a Hitting-Time-based method, CIPHER-HIT, for assessing the modularity of disease gene predictions and credibly prioritizing disease-causing genes, and then identifying the genetic modules corresponding to potential subtypes of the queried phenotype. The CIPHER-HIT is free to rely on any preset parameters. We found that when taking into account the modularity levels, the CIPHER-HIT method can significantly improve the performance of disease gene predictions, which demonstrates modularity is one of the key features for credible inference of disease genes on the phenotype-gene heterogeneous network. By applying the CIPHER-HIT to the subtype analysis of Breast cancer, we found that the prioritized genes can be divided into two sub-modules, one contains the members of the Fanconi anemia gene family, and the other contains a reported protein complex MRE11/RAD50/NBN. The phenotype-gene heterogeneous network contains abundant information for not only disease genes discovery but also

  2. Short-term load and wind power forecasting using neural network-based prediction intervals.

    Science.gov (United States)

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2014-02-01

    Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.

  3. Prediction of maize phenotype based on whole-genome single nucleotide polymorphisms using deep belief networks

    Science.gov (United States)

    Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.

    2017-05-01

    Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.

  4. Predictive Modeling of Mechanical Properties of Welded Joints Based on Dynamic Fuzzy RBF Neural Network

    Directory of Open Access Journals (Sweden)

    ZHANG Yongzhi

    2016-10-01

    Full Text Available A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for predicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.

  5. Predicting the random drift of MEMS gyroscope based on K-means clustering and OLS RBF Neural Network

    Science.gov (United States)

    Wang, Zhen-yu; Zhang, Li-jie

    2017-10-01

    Measure error of the sensor can be effectively compensated with prediction. Aiming at large random drift error of MEMS(Micro Electro Mechanical System))gyroscope, an improved learning algorithm of Radial Basis Function(RBF) Neural Network(NN) based on K-means clustering and Orthogonal Least-Squares (OLS) is proposed in this paper. The algorithm selects the typical samples as the initial cluster centers of RBF NN firstly, candidates centers with K-means algorithm secondly, and optimizes the candidate centers with OLS algorithm thirdly, which makes the network structure simpler and makes the prediction performance better. Experimental results show that the proposed K-means clustering OLS learning algorithm can predict the random drift of MEMS gyroscope effectively, the prediction error of which is 9.8019e-007°/s and the prediction time of which is 2.4169e-006s

  6. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    Directory of Open Access Journals (Sweden)

    Zhijia Chen

    2015-01-01

    Full Text Available In IaaS (infrastructure as a service cloud environment, users are provisioned with virtual machines (VMs. To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN. We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands.

  7. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    Science.gov (United States)

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896

  8. Predictions on the Development Dimensions of Provincial Tourism Discipline Based on the Artificial Neural Network BP Model

    Science.gov (United States)

    Yang, Yang; Hu, Jun; Lv, Yingchun; Zhang, Mu

    2013-01-01

    As the tourism industry has gradually become the strategic mainstay industry of the national economy, the scope of the tourism discipline has developed rigorously. This paper makes a predictive study on the development of the scope of Guangdong provincial tourism discipline based on the artificial neural network BP model in order to find out how…

  9. Rolling Force Prediction in Heavy Plate Rolling Based on Uniform Differential Neural Network

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2016-01-01

    Full Text Available Accurate prediction of the rolling force is critical to assuring the quality of the final product in steel manufacturing. Exit thickness of plate for each pass is calculated from roll gap, mill spring, and predicted roll force. Ideal pass scheduling is dependent on a precise prediction of the roll force in each pass. This paper will introduce a concept that allows obtaining the material model parameters directly from the rolling process on an industrial scale by the uniform differential neural network. On the basis of the characteristics that the uniform distribution can fully characterize the solution space and enhance the diversity of the population, uniformity research on differential evolution operator is made to get improved crossover with uniform distribution. When its original function is transferred with a transfer function, the uniform differential evolution algorithms can quickly solve complex optimization problems. Neural network structure and weights threshold are optimized by uniform differential evolution algorithm, and a uniform differential neural network is formed to improve rolling force prediction accuracy in process control system.

  10. Egg volume prediction using machine vision technique based on pappus theorem and artificial neural network.

    Science.gov (United States)

    Soltani, Mahmoud; Omid, Mahmoud; Alimardani, Reza

    2015-05-01

    Egg size is one of the important properties of egg that is judged by customers. Accordingly, in egg sorting and grading, the size of eggs must be considered. In this research, a new method of egg volume prediction was proposed without need to measure weight of egg. An accurate and efficient image processing algorithm was designed and implemented for computing major and minor diameters of eggs. Two methods of egg size modeling were developed. In the first method, a mathematical model was proposed based on Pappus theorem. In second method, Artificial Neural Network (ANN) technique was used to estimate egg volume. The determined egg volume by these methods was compared statistically with actual values. For mathematical modeling, the R(2), Mean absolute error and maximum absolute error values were obtained as 0.99, 0.59 cm(3) and 1.69 cm(3), respectively. To determine the best ANN, R(2) test and RMSEtest were used as selection criteria. The best ANN topology was 2-28-1 which had the R(2) test and RMSEtest of 0.992 and 0.66, respectively. After system calibration, the proposed models were evaluated. The results which indicated the mathematical modeling yielded more satisfying results. So this technique was selected for egg size determination.

  11. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.

    Science.gov (United States)

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2015-09-01

    Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.

  12. A hybrid predictive model for acoustic noise in urban areas based on time series analysis and artificial neural network

    Science.gov (United States)

    Guarnaccia, Claudio; Quartieri, Joseph; Tepedino, Carmine

    2017-06-01

    The dangerous effect of noise on human health is well known. Both the auditory and non-auditory effects are largely documented in literature, and represent an important hazard in human activities. Particular care is devoted to road traffic noise, since it is growing according to the growth of residential, industrial and commercial areas. For these reasons, it is important to develop effective models able to predict the noise in a certain area. In this paper, a hybrid predictive model is presented. The model is based on the mixing of two different approach: the Time Series Analysis (TSA) and the Artificial Neural Network (ANN). The TSA model is based on the evaluation of trend and seasonality in the data, while the ANN model is based on the capacity of the network to "learn" the behavior of the data. The mixed approach will consist in the evaluation of noise levels by means of TSA and, once the differences (residuals) between TSA estimations and observed data have been calculated, in the training of a ANN on the residuals. This hybrid model will exploit interesting features and results, with a significant variation related to the number of steps forward in the prediction. It will be shown that the best results, in terms of prediction, are achieved predicting one step ahead in the future. Anyway, a 7 days prediction can be performed, with a slightly greater error, but offering a larger range of prediction, with respect to the single day ahead predictive model.

  13. Time-dependent prediction degredation assessment of neural-networks-based TEC forecasting models

    Directory of Open Access Journals (Sweden)

    Th. D. Xenos

    2003-01-01

    Full Text Available An estimation of the difference in TEC prediction accuracy achieved when the prediction varies from 1 h to 7 days in advance is described using classical neural networks. Hourly-daily Faraday-rotation derived TEC measurements from Florence are used. It is shown that the prediction accuracy for the examined dataset, though degrading when time span increases, is always high. In fact, when a relative prediction error margin of ± 10% is considered, the population percentage included therein is almost always well above the 55%. It is found that the results are highly dependent on season and the dataset wealth, whereas they highly depend on the foF2 - TEC variability difference and on hysteresis-like effect between these two ionospheric characteristics.

  14. Short-Term Power Load Point Prediction Based on the Sharp Degree and Chaotic RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2015-01-01

    Full Text Available In order to realize the predicting and positioning of short-term load inflection point, this paper made reference to related research in the field of computer image recognition. It got a load sharp degree sequence by the transformation of the original load sequence based on the algorithm of sharp degree. Then this paper designed a forecasting model based on the chaos theory and RBF neural network. It predicted the load sharp degree sequence based on the forecasting model to realize the positioning of short-term load inflection point. Finally, in the empirical example analysis, this paper predicted the daily load point of a region using the actual load data of the certain region to verify the effectiveness and applicability of this method. Prediction results showed that most of the test sample load points could be accurately predicted.

  15. Neural Network Based on Quantum Chemistry for Predicting Melting Point of Organic Compounds

    Science.gov (United States)

    Lazzús, Juan A.

    2009-02-01

    The melting points of organic compounds were estimated using a combined method that includes a backpropagation neural network and quantitative structure property relationship (QSPR) parameters in quantum chemistry. Eleven descriptors that reflect the intermolecular forces and molecular symmetry were used as input variables. QSPR parameters were calculated using molecular modeling and PM3 semi-empirical molecular orbital theories. A total of 260 compounds were used to train the network, which was developed using MatLab. Then, the melting points of 73 other compounds were predicted and results were compared to experimental data from the literature. The study shows that the chosen artificial neural network and the quantitative structure property relationships method present an excellent alternative for the estimation of the melting point of an organic compound, with average absolute deviation of 5%.

  16. Predicting clinical symptoms of attention deficit hyperactivity disorder based on temporal patterns between and within intrinsic connectivity networks.

    Science.gov (United States)

    Wang, Xun-Heng; Jiao, Yun; Li, Lihua

    2017-10-24

    Attention deficit hyperactivity disorder (ADHD) is a common brain disorder with high prevalence in school-age children. Previously developed machine learning-based methods have discriminated patients with ADHD from normal controls by providing label information of the disease for individuals. Inattention and impulsivity are the two most significant clinical symptoms of ADHD. However, predicting clinical symptoms (i.e., inattention and impulsivity) is a challenging task based on neuroimaging data. The goal of this study is twofold: to build predictive models for clinical symptoms of ADHD based on resting-state fMRI and to mine brain networks for predictive patterns of inattention and impulsivity. To achieve this goal, a cohort of 74 boys with ADHD and a cohort of 69 age-matched normal controls were recruited from the ADHD-200 Consortium. Both structural and resting-state fMRI images were obtained for each participant. Temporal patterns between and within intrinsic connectivity networks (ICNs) were applied as raw features in the predictive models. Specifically, sample entropy was taken asan intra-ICN feature, and phase synchronization (PS) was used asan inter-ICN feature. The predictive models were based on the least absolute shrinkage and selectionator operator (LASSO) algorithm. The performance of the predictive model for inattention is r=0.79 (p<10(-8)), and the performance of the predictive model for impulsivity is r=0.48 (p<10(-8)). The ICN-related predictive patterns may provide valuable information for investigating the brain network mechanisms of ADHD. In summary, the predictive models for clinical symptoms could be beneficial for personalizing ADHD medications. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Integrating multiple networks for protein function prediction.

    Science.gov (United States)

    Yu, Guoxian; Zhu, Hailong; Domeniconi, Carlotta; Guo, Maozu

    2015-01-01

    High throughput techniques produce multiple functional association networks. Integrating these networks can enhance the accuracy of protein function prediction. Many algorithms have been introduced to generate a composite network, which is obtained as a weighted sum of individual networks. The weight assigned to an individual network reflects its benefit towards the protein functional annotation inference. A classifier is then trained on the composite network for predicting protein functions. However, since these techniques model the optimization of the composite network and the prediction tasks as separate objectives, the resulting composite network is not necessarily optimal for the follow-up protein function prediction. We address this issue by modeling the optimization of the composite network and the prediction problems within a unified objective function. In particular, we use a kernel target alignment technique and the loss function of a network based classifier to jointly adjust the weights assigned to the individual networks. We show that the proposed method, called MNet, can achieve a performance that is superior (with respect to different evaluation criteria) to related techniques using the multiple networks of four example species (yeast, human, mouse, and fly) annotated with thousands (or hundreds) of GO terms. MNet can effectively integrate multiple networks for protein function prediction and is robust to the input parameters. Supplementary data is available at https://sites.google.com/site/guoxian85/home/mnet. The Matlab code of MNet is available upon request.

  18. Prediction of the moderator temperature field in a heavy water reactor based on a cellular neural network

    Directory of Open Access Journals (Sweden)

    S.O. Starkov

    2017-06-01

    Full Text Available Reactors with heavy water coolants and moderators have been used extensively in today's power industry. Monitoring of the moderator condition plays an important role in ensuring normal operation of a power plant. A cellular neural network, the architecture of which has been adapted for hardware implementation, is proposed for use in a system for prediction of the heavy water moderator temperature. A reactor model composed in accordance with the CANDU Darlington heavy water reactor design was used to form the training sample collection and to control correct operation of the neural network structure. The sample components for the adjustment and configuration of the network topology include key parameters that characterize the energy generation process in the core. The paper considers the feasibility of the temperature prediction only for the calandria's central cross-section. To solve this problem, the cellular neural network architecture has been designed, and major parts of the digital computational element and methods for their implementation based on an FPLD have also been developed. The method is described for organizing an optical coupling between individual neural modules within the network, which enables not only the restructuring of the topology in the training process, but also the assignment of priorities for the propagation of the information signals of neurons depending on the activity in a situation analysis at the neural network structure inlet. Asynchronous activation of cells was used based on an oscillating fractal network, the basis for which was a modified ring oscillator. The efficiency of training the proposed architecture using stochastic diffusion search algorithms is evaluated. A comparative analysis of the model behavior and the results of the neural network operation have shown that the use of the neural network approach is effective in safety systems of power plants.

  19. A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building

    Directory of Open Access Journals (Sweden)

    Hamid R. Khosravani

    2016-01-01

    Full Text Available Energy consumption has been increasing steadily due to globalization and industrialization. Studies have shown that buildings are responsible for the biggest proportion of energy consumption; for example in European Union countries, energy consumption in buildings represents around 40% of the total energy consumption. In order to control energy consumption in buildings, different policies have been proposed, from utilizing bioclimatic architectures to the use of predictive models within control approaches. There are mainly three groups of predictive models including engineering, statistical and artificial intelligence models. Nowadays, artificial intelligence models such as neural networks and support vector machines have also been proposed because of their high potential capabilities of performing accurate nonlinear mappings between inputs and outputs in real environments which are not free of noise. The main objective of this paper is to compare a neural network model which was designed utilizing statistical and analytical methods, with a group of neural network models designed benefiting from a multi objective genetic algorithm. Moreover, the neural network models were compared to a naïve autoregressive baseline model. The models are intended to predict electric power demand at the Solar Energy Research Center (Centro de Investigación en Energía SOLar or CIESOL in Spanish bioclimatic building located at the University of Almeria, Spain. Experimental results show that the models obtained from the multi objective genetic algorithm (MOGA perform comparably to the model obtained through a statistical and analytical approach, but they use only 0.8% of data samples and have lower model complexity.

  20. Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects

    Science.gov (United States)

    Niu, Z. M.; Liang, H. Z.

    2018-03-01

    Bayesian neural network (BNN) approach is employed to improve the nuclear mass predictions of various models. It is found that the noise error in the likelihood function plays an important role in the predictive performance of the BNN approach. By including a distribution for the noise error, an appropriate value can be found automatically in the sampling process, which optimizes the nuclear mass predictions. Furthermore, two quantities related to nuclear pairing and shell effects are added to the input layer in addition to the proton and mass numbers. As a result, the theoretical accuracies are significantly improved not only for nuclear masses but also for single-nucleon separation energies. Due to the inclusion of the shell effect, in the unknown region, the BNN approach predicts a similar shell-correction structure to that in the known region, e.g., the predictions of underestimation of nuclear mass around the magic numbers in the relativistic mean-field model. This manifests that better predictive performance can be achieved if more physical features are included in the BNN approach.

  1. Prediction of enzyme activity with neural network models based on electronic and geometrical features of substrates.

    Science.gov (United States)

    Szaleniec, Maciej

    2012-01-01

    Artificial Neural Networks (ANNs) are introduced as robust and versatile tools in quantitative structure-activity relationship (QSAR) modeling. Their application to the modeling of enzyme reactivity is discussed, along with methodological issues. Methods of input variable selection, optimization of network internal structure, data set division and model validation are discussed. The application of ANNs in the modeling of enzyme activity over the last 20 years is briefly recounted. The discussed methodology is exemplified by the case of ethylbenzene dehydrogenase (EBDH). Intelligent Problem Solver and genetic algorithms are applied for input vector selection, whereas k-means clustering is used to partition the data into training and test cases. The obtained models exhibit high correlation between the predicted and experimental values (R(2) > 0.9). Sensitivity analyses and study of the response curves are used as tools for the physicochemical interpretation of the models in terms of the EBDH reaction mechanism. Neural networks are shown to be a versatile tool for the construction of robust QSAR models that can be applied to a range of aspects important in drug design and the prediction of biological activity.

  2. Artificial neural networks as an engine of Internet based hypertension prediction tool.

    Science.gov (United States)

    Polak, Sebastian; Mendyk, Aleksander

    2004-01-01

    Hypertension is the most common cause of death. Therefore it is recognized as a major civilization disease next to diabetes, hyperuricemia, asthma etc. The objective was to use artificial neural networks (ANNs) to handle demographic data and to produce system of hypertension risk prediction. Database used in the development of hypertension risk model was obtained from CDC (BRFSS--Behavioral Risk Factor Surveillance System). Screening for optimal ANN architecture was performed among various backpropagation and fuzzy neural networks with use of 10-fold cross-validation scheme. Single ANNs as well as experts committees were tested. Best results were found to be around 75%--expressed as total classification rate. Java applet was designed to be the interface between ANN system and end user. Spreadsheet form was chosen to facilitate navigation and used by healthcare non-specialists. Free of charge Internet publication is expected soon at the address [url: see text].

  3. One Prediction Model Based on BP Neural Network for Newcastle Disease

    Science.gov (United States)

    Wang, Hongbin; Gong, Duqiang; Xiao, Jianhua; Zhang, Ru; Li, Lin

    The purpose of this paper is to investigate the correlation between meteorological factors and Newcastle disease incidence, and to determine the key factors that affect Newcastle disease. Having built BP neural network forecasting model by Matlab 7.0 software, we tested the performance of the model according to the coefficient of determination (R2) and absolute values of the difference between predictive value and practical incidence. The result showed that 6 kinds of meteorological factors determined, and the model's coefficient of determination is 0.760, and the performance of the model is very good. Finally, we build Newcastle disease forecasting model, and apply BP neural network theory in animal disease forecasting research firstly.

  4. Leuconostoc Mesenteroides Growth in Food Products: Prediction and Sensitivity Analysis by Adaptive-Network-Based Fuzzy Inference Systems

    OpenAIRE

    Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien

    2013-01-01

    BACKGROUND: An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. METHODS: THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED B...

  5. Application of a neural network predictive control based on GGAP-RBF for the supercritical main steam

    Science.gov (United States)

    Li, Yun-Juan; Fang, Yan-jun; Li, Qi

    2012-01-01

    The Supercritical Main Steam has a large inertia, delay and nonlinear and dynamic characteristics change with the operating conditions, it is difficult to establish the precise mathematical model, this algorithm based on RBF neural network GGAP posed a direct neural network predictive controller, the combination of online learning and control to a supercritical power plant main stream temperature as the research object, MATLAB simulation results show that the superheated steam temperature system can achieve effective control, performance than the conventional PID control has greatly improved.

  6. Prediction of disease-related genes based on weighted tissue-specific networks by using DNA methylation.

    Science.gov (United States)

    Li, Min; Zhang, Jiayi; Liu, Qing; Wang, Jianxin; Wu, Fang-Xiang

    2014-01-01

    Predicting disease-related genes is one of the most important tasks in bioinformatics and systems biology. With the advances in high-throughput techniques, a large number of protein-protein interactions are available, which make it possible to identify disease-related genes at the network level. However, network-based identification of disease-related genes is still a challenge as the considerable false-positives are still existed in the current available protein interaction networks (PIN). Considering the fact that the majority of genetic disorders tend to manifest only in a single or a few tissues, we constructed tissue-specific networks (TSN) by integrating PIN and tissue-specific data. We further weighed the constructed tissue-specific network (WTSN) by using DNA methylation as it plays an irreplaceable role in the development of complex diseases. A PageRank-based method was developed to identify disease-related genes from the constructed networks. To validate the effectiveness of the proposed method, we constructed PIN, weighted PIN (WPIN), TSN, WTSN for colon cancer and leukemia, respectively. The experimental results on colon cancer and leukemia show that the combination of tissue-specific data and DNA methylation can help to identify disease-related genes more accurately. Moreover, the PageRank-based method was effective to predict disease-related genes on the case studies of colon cancer and leukemia. Tissue-specific data and DNA methylation are two important factors to the study of human diseases. The same method implemented on the WTSN can achieve better results compared to those being implemented on original PIN, WPIN, or TSN. The PageRank-based method outperforms degree centrality-based method for identifying disease-related genes from WTSN.

  7. A geometrically based method for predicting stress-induced fracture aperture and flow in discrete fracture networks

    DEFF Research Database (Denmark)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid

    2016-01-01

    Modeling of fluid flow in naturally fractured reservoirs is often done through modeling and upscaling of discrete fracture networks (DFNs). The two-dimensional fracture geometry required for DFNs is obtained from subsurface and outcropping analog data. However, these data provide little information...... to DFNs using the fracture orientation and spacing distributions in combination with an estimate of the regional stress tensor and orientation. The frequency distribution of hydraulic aperture from the geometrically based method is compared with finite-element models constructed from five real fracture...... networks, digitized from outcropping pavements. These networks cover a wide range of possible geometries and spatial distributions. The geometrically based method predicts the average hydraulic aperture and equivalent permeability of fractured porous media with error margins of less than 5%....

  8. Modeling and Prediction of Coal Ash Fusion Temperature based on BP Neural Network

    Directory of Open Access Journals (Sweden)

    Miao Suzhen

    2016-01-01

    Full Text Available Coal ash is the residual generated from combustion of coal. The ash fusion temperature (AFT of coal gives detail information on the suitability of a coal source for gasification procedures, and specifically to which extent ash agglomeration or clinkering is likely to occur within the gasifier. To investigate the contribution of oxides in coal ash to AFT, data of coal ash chemical compositions and Softening Temperature (ST in different regions of China were collected in this work and a BP neural network model was established by XD-APC PLATFORM. In the BP model, the inputs were the ash compositions and the output was the ST. In addition, the ash fusion temperature prediction model was obtained by industrial data and the model was generalized by different industrial data. Compared to empirical formulas, the BP neural network obtained better results. By different tests, the best result and the best configurations for the model were obtained: hidden layer nodes of the BP network was setted as three, the component contents (SiO2, Al2O3, Fe2O3, CaO, MgO were used as inputs and ST was used as output of the model.

  9. Leuconostoc mesenteroides growth in food products: prediction and sensitivity analysis by adaptive-network-based fuzzy inference systems.

    Directory of Open Access Journals (Sweden)

    Hue-Yu Wang

    Full Text Available BACKGROUND: An adaptive-network-based fuzzy inference system (ANFIS was compared with an artificial neural network (ANN in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C, pH level (5.5 to 7.5, sodium chloride level (0.25% to 6.25% and sodium nitrite level (0 to 200 ppm on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. METHODS: THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED BY COMPARING THEIR PREDICTION RESULTS WITH ACTUAL DATA: mean absolute percentage error (MAPE, root mean square error (RMSE, standard error of prediction percentage (SEP, bias factor (Bf, accuracy factor (Af, and absolute fraction of variance (R (2. Graphical plots were also used for model comparison. CONCLUSIONS: The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions.

  10. Leuconostoc mesenteroides growth in food products: prediction and sensitivity analysis by adaptive-network-based fuzzy inference systems.

    Science.gov (United States)

    Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien

    2013-01-01

    An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED BY COMPARING THEIR PREDICTION RESULTS WITH ACTUAL DATA: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R (2)). Graphical plots were also used for model comparison. The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions.

  11. Link prediction in multiplex online social networks.

    Science.gov (United States)

    Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž

    2017-02-01

    Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.

  12. Link prediction in multiplex online social networks

    Science.gov (United States)

    Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž

    2017-02-01

    Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.

  13. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lund, Ole

    2009-01-01

    this binding event. RESULTS: Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data...... class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. CONCLUSION: The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http://www.cbs.dtu.dk/services/Net...

  14. ChloroP, a neural network-based method for predicting chloroplast transitpeptides and their cleavage sites

    DEFF Research Database (Denmark)

    Emanuelsson, O.; Nielsen, Henrik; von Heijne, Gunnar

    1999-01-01

    We present a neural network based method (ChloroP) for identifying chloroplast transit peptides and their cleavage sites. Using cross-validation, 88% of the sequences in our homology reduced training set were correctly classified as transit peptides or nontransit peptides. This performance level...... is well above that of the publicly available chloroplast localization predictor PSORT. Cleavage sites are predicted using a scoring matrix derived by an automatic motif-finding algorithm. Approximately 60% of the known cleavage sites in our sequence collection were predicted to within +/-2 residues from...

  15. Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory.

    Science.gov (United States)

    Durán, Claudio; Daminelli, Simone; Thomas, Josephine M; Haupt, V Joachim; Schroeder, Michael; Cannistraci, Carlo Vittorio

    2017-04-26

    The bipartite network representation of the drug-target interactions (DTIs) in a biosystem enhances understanding of the drugs' multifaceted action modes, suggests therapeutic switching for approved drugs and unveils possible side effects. As experimental testing of DTIs is costly and time-consuming, computational predictors are of great aid. Here, for the first time, state-of-the-art DTI supervised predictors custom-made in network biology were compared-using standard and innovative validation frameworks-with unsupervised pure topological-based models designed for general-purpose link prediction in bipartite networks. Surprisingly, our results show that the bipartite topology alone, if adequately exploited by means of the recently proposed local-community-paradigm (LCP) theory-initially detected in brain-network topological self-organization and afterwards generalized to any complex network-is able to suggest highly reliable predictions, with comparable performance with the state-of-the-art-supervised methods that exploit additional (non-topological, for instance biochemical) DTI knowledge. Furthermore, a detailed analysis of the novel predictions revealed that each class of methods prioritizes distinct true interactions; hence, combining methodologies based on diverse principles represents a promising strategy to improve drug-target discovery. To conclude, this study promotes the power of bio-inspired computing, demonstrating that simple unsupervised rules inspired by principles of topological self-organization and adaptiveness arising during learning in living intelligent systems (like the brain) can efficiently equal perform complicated algorithms based on advanced, supervised and knowledge-based engineering. © The Author 2017. Published by Oxford University Press.

  16. Predicting the Water Level Fluctuation in an Alpine Lake Using Physically Based, Artificial Neural Network, and Time Series Forecasting Models

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Young

    2015-01-01

    Full Text Available Accurate prediction of water level fluctuation is important in lake management due to its significant impacts in various aspects. This study utilizes four model approaches to predict water levels in the Yuan-Yang Lake (YYL in Taiwan: a three-dimensional hydrodynamic model, an artificial neural network (ANN model (back propagation neural network, BPNN, a time series forecasting (autoregressive moving average with exogenous inputs, ARMAX model, and a combined hydrodynamic and ANN model. Particularly, the black-box ANN model and physically based hydrodynamic model are coupled to more accurately predict water level fluctuation. Hourly water level data (a total of 7296 observations was collected for model calibration (training and validation. Three statistical indicators (mean absolute error, root mean square error, and coefficient of correlation were adopted to evaluate model performances. Overall, the results demonstrate that the hydrodynamic model can satisfactorily predict hourly water level changes during the calibration stage but not for the validation stage. The ANN and ARMAX models better predict the water level than the hydrodynamic model does. Meanwhile, the results from an ANN model are superior to those by the ARMAX model in both training and validation phases. The novel proposed concept using a three-dimensional hydrodynamic model in conjunction with an ANN model has clearly shown the improved prediction accuracy for the water level fluctuation.

  17. A geometrically based method for predicting stress-induced fracture aperture and flow in discrete fracture networks

    DEFF Research Database (Denmark)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid

    2016-01-01

    a geometrically based method for calculating the shear-induced hydraulic aperture, that is, an aperture of up to 0.5 mm (0.02 in.) that can result from shear displacement along irregular fracture walls. The geometrically based method does not require numerical simulations, but it can instead be directly applied...... to DFNs using the fracture orientation and spacing distributions in combination with an estimate of the regional stress tensor and orientation. The frequency distribution of hydraulic aperture from the geometrically based method is compared with finite-element models constructed from five real fracture...... networks, digitized from outcropping pavements. These networks cover a wide range of possible geometries and spatial distributions. The geometrically based method predicts the average hydraulic aperture and equivalent permeability of fractured porous media with error margins of less than 5%....

  18. The prediction in computer color matching of dentistry based on GA+BP neural network.

    Science.gov (United States)

    Li, Haisheng; Lai, Long; Chen, Li; Lu, Cheng; Cai, Qiang

    2015-01-01

    Although the use of computer color matching can reduce the influence of subjective factors by technicians, matching the color of a natural tooth with a ceramic restoration is still one of the most challenging topics in esthetic prosthodontics. Back propagation neural network (BPNN) has already been introduced into the computer color matching in dentistry, but it has disadvantages such as unstable and low accuracy. In our study, we adopt genetic algorithm (GA) to optimize the initial weights and threshold values in BPNN for improving the matching precision. To our knowledge, we firstly combine the BPNN with GA in computer color matching in dentistry. Extensive experiments demonstrate that the proposed method improves the precision and prediction robustness of the color matching in restorative dentistry.

  19. Neural Network Based Response Prediction of rTMS in Major Depressive Disorder Using QEEG Cordance.

    Science.gov (United States)

    Erguzel, Turker Tekin; Ozekes, Serhat; Gultekin, Selahattin; Tarhan, Nevzat; Hizli Sayar, Gokben; Bayram, Ali

    2015-01-01

    The combination of repetitive transcranial magnetic stimulation (rTMS), a non-pharmacological form of therapy for treating major depressive disorder (MDD), and electroencephalogram (EEG) is a valuable tool for investigating the functional connectivity in the brain. This study aims to explore whether pre-treating frontal quantitative EEG (QEEG) cordance is associated with response to rTMS treatment among MDD patients by using an artificial intelligence approach, artificial neural network (ANN). The artificial neural network using pre-treatment cordance of frontal QEEG classification was carried out to identify responder or non-responder to rTMS treatment among 55 MDD subjects. The classification performance was evaluated using k-fold cross-validation. The ANN classification identified responders to rTMS treatment with a sensitivity of 93.33%, and its overall accuracy reached to 89.09%. Area under Receiver Operating Characteristic (ROC) curve (AUC) value for responder detection using 6, 8 and 10 fold cross validation were 0.917, 0.823 and 0.894 respectively. Potential utility of ANN approach method can be used as a clinical tool in administering rTMS therapy to a targeted group of subjects suffering from MDD. This methodology is more potentially useful to the clinician as prediction is possible using EEG data collected before this treatment process is initiated. It is worth using feature selection algorithms to raise the sensitivity and accuracy values.

  20. A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks.

    Science.gov (United States)

    Xiang, Zuoshuang; Qin, Tingting; Qin, Zhaohui S; He, Yongqun

    2013-10-16

    The large amount of literature in the post-genomics era enables the study of gene interactions and networks using all available articles published for a specific organism. MeSH is a controlled vocabulary of medical and scientific terms that is used by biomedical scientists to manually index articles in the PubMed literature database. We hypothesized that genome-wide gene-MeSH term associations from the PubMed literature database could be used to predict implicit gene-to-gene relationships and networks. While the gene-MeSH associations have been used to detect gene-gene interactions in some studies, different methods have not been well compared, and such a strategy has not been evaluated for a genome-wide literature analysis. Genome-wide literature mining of gene-to-gene interactions allows ranking of the best gene interactions and investigation of comprehensive biological networks at a genome level. The genome-wide GenoMesh literature mining algorithm was developed by sequentially generating a gene-article matrix, a normalized gene-MeSH term matrix, and a gene-gene matrix. The gene-gene matrix relies on the calculation of pairwise gene dissimilarities based on gene-MeSH relationships. An optimized dissimilarity score was identified from six well-studied functions based on a receiver operating characteristic (ROC) analysis. Based on the studies with well-studied Escherichia coli and less-studied Brucella spp., GenoMesh was found to accurately identify gene functions using weighted MeSH terms, predict gene-gene interactions not reported in the literature, and cluster all the genes studied from an organism using the MeSH-based gene-gene matrix. A web-based GenoMesh literature mining program is also available at: http://genomesh.hegroup.org. GenoMesh also predicts gene interactions and networks among genes associated with specific MeSH terms or user-selected gene lists. The GenoMesh algorithm and web program provide the first genome-wide, MeSH-based literature mining

  1. Response surface and neural network based predictive models of cutting temperature in hard turning

    Directory of Open Access Journals (Sweden)

    Mozammel Mia

    2016-11-01

    Full Text Available The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM and Artificial Neural Network (ANN were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA and mean absolute percentage error (MAPE were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.

  2. Response surface and neural network based predictive models of cutting temperature in hard turning.

    Science.gov (United States)

    Mia, Mozammel; Dhar, Nikhil R

    2016-11-01

    The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM) and Artificial Neural Network (ANN) were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC) environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA) and mean absolute percentage error (MAPE) were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.

  3. Model-Based Hookload Monitoring and Prediction at Drilling Rigs using Neural Networks and Forward-Selection Algorithm

    Science.gov (United States)

    Arnaout, A.; Fruhwirth, R.; Winter, M.; Esmael, B.; Thonhauser, G.

    2012-04-01

    The use of neural networks and advanced machine learning techniques in the oil & gas industry is a growing trend in the market. Especially in drilling oil & gas wells, prediction and monitoring different drilling parameters is an essential task to prevent serious problems like "Kick", "Lost Circulation" or "Stuck Pipe" among others. The hookload represents the weight load of the drill string at the crane hook. It is one of the most important parameters. During drilling the parameter "Weight on Bit" is controlled by the driller whereby the hookload is the only measure to monitor how much weight on bit is applied to the bit to generate the hole. Any changes in weight on bit will be directly reflected at the hookload. Furthermore any unwanted contact between the drill string and the wellbore - potentially leading to stuck pipe problem - will appear directly in the measurements of the hookload. Therefore comparison of the measured to the predicted hookload will not only give a clear idea on what is happening down-hole, it also enables the prediction of a number of important events that may cause problems in the borehole and yield in some - fortunately rare - cases in catastrophes like blow-outs. Heuristic models using highly sophisticated neural networks were designed for the hookload prediction; the training data sets were prepared in cooperation with drilling experts. Sensor measurements as well as a set of derived feature channels were used as input to the models. The contents of the final data set can be separated into (1) features based on rig operation states, (2) real-time sensors features and (3) features based on physics. A combination of novel neural network architecture - the Completely Connected Perceptron and parallel learning techniques which avoid trapping into local error minima - was used for building the models. In addition automatic network growing algorithms and highly sophisticated stopping criterions offer robust and efficient estimation of the

  4. Comprehensive model-based prediction of micropollutants from diffuse sources in the Swiss river network

    Science.gov (United States)

    Strahm, Ivo; Munz, Nicole; Braun, Christian; Gälli, René; Leu, Christian; Stamm, Christian

    2014-05-01

    Water quality in the Swiss river network is affected by many micropollutants from a variety of diffuse sources. This study compares, for the first time, in a comprehensive manner the diffuse sources and the substance groups that contribute the most to water contamination in Swiss streams and highlights the major regions for water pollution. For this a simple but comprehensive model was developed to estimate emission from diffuse sources for the entire Swiss river network of 65 000 km. Based on emission factors the model calculates catchment specific losses to streams for more than 15 diffuse sources (such as crop lands, grassland, vineyards, fruit orchards, roads, railways, facades, roofs, green space in urban areas, landfills, etc.) and more than 130 different substances from 5 different substance groups (pesticides, biocides, heavy metals, human drugs, animal drugs). For more than 180 000 stream sections estimates of mean annual pollutant loads and mean annual concentration levels were modeled. This data was validated with a set of monitoring data and evaluated based on annual average environmental quality standards (AA-EQS). Model validation showed that the estimated mean annual concentration levels are within the range of measured data. Therefore simulations were considered as adequately robust for identifying the major sources of diffuse pollution. The analysis depicted that in Switzerland widespread pollution of streams can be expected. Along more than 18 000 km of the river network one or more simulated substances has a concentration exceeding the AA-EQS. In single stream sections it could be more than 50 different substances. Moreover, the simulations showed that in two-thirds of small streams (Strahler order 1 and 2) at least one AA-EQS is always exceeded. The highest number of substances exceeding the AA-EQS are in areas with large fractions of arable cropping, vineyards and fruit orchards. Urban areas are also of concern even without considering

  5. A Bipartite Network-based Method for Prediction of Long Non-coding RNA–protein Interactions

    Directory of Open Access Journals (Sweden)

    Mengqu Ge

    2016-02-01

    Full Text Available As one large class of non-coding RNAs (ncRNAs, long ncRNAs (lncRNAs have gained considerable attention in recent years. Mutations and dysfunction of lncRNAs have been implicated in human disorders. Many lncRNAs exert their effects through interactions with the corresponding RNA-binding proteins. Several computational approaches have been developed, but only few are able to perform the prediction of these interactions from a network-based point of view. Here, we introduce a computational method named lncRNA–protein bipartite network inference (LPBNI. LPBNI aims to identify potential lncRNA–interacting proteins, by making full use of the known lncRNA–protein interactions. Leave-one-out cross validation (LOOCV test shows that LPBNI significantly outperforms other network-based methods, including random walk (RWR and protein-based collaborative filtering (ProCF. Furthermore, a case study was performed to demonstrate the performance of LPBNI using real data in predicting potential lncRNA–interacting proteins.

  6. Introducing a new formula based on an artificial neural network for prediction of droplet size in venturi scrubbers

    Directory of Open Access Journals (Sweden)

    A. Sharifi

    2012-09-01

    Full Text Available Droplet size is a fundamental parameter for Venturi scrubber performance. For many years, the correlations proposed by Nukiyama and Tanasawa (1938 and Boll et al. (1974 were used for calculating mean droplet size in Venturi scrubbers with limited operating parameters. This study proposes an alternative approach on the basis of artificial neural networks (ANNs to determine the mean droplet size in Venturi scrubbers, in a wide range of operating parameters. Experimental data were used to design the ANNs. A neural network was trained based on the liquid to gas ratio (L/G and throat gas velocity (Vgth, as input parameters, and the Sauter mean diameter (D32 as the desired parameter. The back-propagation learning algorithms were used in the network and the best approach was found. A new formula for the prediction of D32 using the weights of the network was then generated. This formula predicts mean droplet size in Venturi scrubbers more accurately than the correlations of Boll et al. (1974 and Nukiyama and Tanasawa (1938. The Average Absolute Percent Deviation (AAPD of our formula and the Boll et al. and Nukiyama and Tanasawa correlations for the full ranges of experimental data are 26.04%, 40.19% and 32.99%, respectively.

  7. Prediction of Ship Traffic Flow Based on BP Neural Network and Markov Model

    OpenAIRE

    Lv Pengfei; Zhuang Yuan; Yang Kun

    2016-01-01

    This paper discusses the distribution regularity of ship arrival and departure and the method of prediction of ship traffic flow. Depict the frequency histograms of ships arriving to port every day and fit the curve of the frequency histograms with a variety of distribution density function by using the mathematical statistic methods based on the samples of ship-to-port statistics of Fangcheng port nearly a year. By the chi-square testing: the fitting with Negative Binomial distribution and t...

  8. A computational method based on the integration of heterogeneous networks for predicting disease-gene associations.

    Directory of Open Access Journals (Sweden)

    Xingli Guo

    Full Text Available The identification of disease-causing genes is a fundamental challenge in human health and of great importance in improving medical care, and provides a better understanding of gene functions. Recent computational approaches based on the interactions among human proteins and disease similarities have shown their power in tackling the issue. In this paper, a novel systematic and global method that integrates two heterogeneous networks for prioritizing candidate disease-causing genes is provided, based on the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein interactions. In this method, the association score function between a query disease and a candidate gene is defined as the weighted sum of all the association scores between similar diseases and neighbouring genes. Moreover, the topological correlation of these two heterogeneous networks can be incorporated into the definition of the score function, and finally an iterative algorithm is designed for this issue. This method was tested with 10-fold cross-validation on all 1,126 diseases that have at least a known causal gene, and it ranked the correct gene as one of the top ten in 622 of all the 1,428 cases, significantly outperforming a state-of-the-art method called PRINCE. The results brought about by this method were applied to study three multi-factorial disorders: breast cancer, Alzheimer disease and diabetes mellitus type 2, and some suggestions of novel causal genes and candidate disease-causing subnetworks were provided for further investigation.

  9. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks

    Directory of Open Access Journals (Sweden)

    Haiyang Yu

    2017-06-01

    Full Text Available Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs, for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs and long short-term memory (LSTM neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction.

  10. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks

    Science.gov (United States)

    Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei

    2017-01-01

    Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction. PMID:28672867

  11. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    Directory of Open Access Journals (Sweden)

    WenBo Xiao

    Full Text Available In this article, we introduced an artificial neural network (ANN based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-, multi-crystalline (multi-, and amorphous (amor- crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  12. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis.

    Science.gov (United States)

    Uzun, Harun; Yıldız, Zeynep; Goldfarb, Jillian L; Ceylan, Selim

    2017-06-01

    As biomass becomes more integrated into our energy feedstocks, the ability to predict its combustion enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent sigmoid architecture to predict biomasses' higher heating values from only their proximate analyses, requiring minimal specificity as compared to models based on elemental composition. The model presented has a considerably higher correlation coefficient (0.963) and lower root mean square (0.375), mean absolute (0.328), and mean bias errors (0.010) than other models presented in the literature which, at least when applied to the present data set, tend to under-predict the combustion enthalpy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    Science.gov (United States)

    Xiao, WenBo; Nazario, Gina; Wu, HuaMing; Zhang, HuaMing; Cheng, Feng

    2017-01-01

    In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  14. An Entropy-Based Kernel Learning Scheme toward Efficient Data Prediction in Cloud-Assisted Network Environments

    Directory of Open Access Journals (Sweden)

    Xiong Luo

    2016-07-01

    Full Text Available With the recent emergence of wireless sensor networks (WSNs in the cloud computing environment, it is now possible to monitor and gather physical information via lots of sensor nodes to meet the requirements of cloud services. Generally, those sensor nodes collect data and send data to sink node where end-users can query all the information and achieve cloud applications. Currently, one of the main disadvantages in the sensor nodes is that they are with limited physical performance relating to less memory for storage and less source of power. Therefore, in order to avoid such limitation, it is necessary to develop an efficient data prediction method in WSN. To serve this purpose, by reducing the redundant data transmission between sensor nodes and sink node while maintaining the required acceptable errors, this article proposes an entropy-based learning scheme for data prediction through the use of kernel least mean square (KLMS algorithm. The proposed scheme called E-KLMS develops a mechanism to maintain the predicted data synchronous at both sides. Specifically, the kernel-based method is able to adjust the coefficients adaptively in accordance with every input, which will achieve a better performance with smaller prediction errors, while employing information entropy to remove these data which may cause relatively large errors. E-KLMS can effectively solve the tradeoff problem between prediction accuracy and computational efforts while greatly simplifying the training structure compared with some other data prediction approaches. What’s more, the kernel-based method and entropy technique could ensure the prediction effect by both improving the accuracy and reducing errors. Experiments with some real data sets have been carried out to validate the efficiency and effectiveness of E-KLMS learning scheme, and the experiment results show advantages of the our method in prediction accuracy and computational time.

  15. Artificial neural network-based predictive emission monitoring system for NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ciccone, A.; Cinnamon, C.; Niejadlik, P.R. [TransCanada Energy Ltd., Toronto, ON (Canada)]|[Golder Associates, Toronto, ON (Canada)

    2005-07-01

    Considering the nature of long term power supply contracts that do not include mechanisms for cost recovery, developing cost-effective ways to handle changes in legislation impacting on facilities already in operation is extremely important. Also of importance is the age of the facilities, since continuous emissions monitoring (CEM) systems were not required when they were originally put into operation, but they are not yet old enough for capital stock turnover to allow for equipment changes or transition to new operations. An alternative monitoring method that is less expensive and as accurate as traditional (CEM) systems is discussed. TransCanada Energy Ltd., developed a predictive emission monitoring (PEM) system that achieved the required accuracy of the regulatory authorities using four of its gas turbine power plant facilities. Using the power plant operation variables to predict the nitric oxide (NO) portion of the exhaust emissions, the systems are founded on an artificial neural network (ANN). This paper provides a summary of the PEM system architecture and provides background information on the facilities used in the development of this approach. It was concluded that the PEM system provides a cost effective method to monitor emissions accurately and reliably at low emitting natural gas fired facilities. As well, there is a great potential for the system to be used by other industries to monitor and report emissions. The PEM system is an ideal system for the low emitting natural gas fired generating plants however the system could be adapted for other types of industries. 5 refs., 5 tabs., 2 figs.

  16. Novel transformation-based response prediction of shear building using interval neural network

    Science.gov (United States)

    Chakraverty, S.; Sahoo, Deepti Moyi

    2017-04-01

    Present paper uses powerful technique of interval neural network (INN) to simulate and estimate structural response of multi-storey shear buildings subject to earthquake motion. The INN is first trained for a real earthquake data, viz., the ground acceleration as input and the numerically generated responses of different floors of multi-storey buildings as output. Till date, no model exists to handle positive and negative data in the INN. As such here, the bipolar data in [ -1, 1] are converted first to unipolar form, i.e., to [0, 1] by means of a novel transformation for the first time to handle the above training patterns in normalized form. Once the training is done, again the unipolar data are converted back to its bipolar form by using the inverse transformation. The trained INN architecture is then used to simulate and test the structural response of different floors for various intensity earthquake data and it is found that the predicted responses given by INN model are good for practical purposes.

  17. Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review

    Science.gov (United States)

    Zhang, Xue; Acencio, Marcio Luis; Lemke, Ney

    2016-01-01

    Essential proteins/genes are indispensable to the survival or reproduction of an organism, and the deletion of such essential proteins will result in lethality or infertility. The identification of essential genes is very important not only for understanding the minimal requirements for survival of an organism, but also for finding human disease genes and new drug targets. Experimental methods for identifying essential genes are costly, time-consuming, and laborious. With the accumulation of sequenced genomes data and high-throughput experimental data, many computational methods for identifying essential proteins are proposed, which are useful complements to experimental methods. In this review, we show the state-of-the-art methods for identifying essential genes and proteins based on machine learning and network topological features, point out the progress and limitations of current methods, and discuss the challenges and directions for further research. PMID:27014079

  18. Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review.

    Science.gov (United States)

    Zhang, Xue; Acencio, Marcio Luis; Lemke, Ney

    2016-01-01

    Essential proteins/genes are indispensable to the survival or reproduction of an organism, and the deletion of such essential proteins will result in lethality or infertility. The identification of essential genes is very important not only for understanding the minimal requirements for survival of an organism, but also for finding human disease genes and new drug targets. Experimental methods for identifying essential genes are costly, time-consuming, and laborious. With the accumulation of sequenced genomes data and high-throughput experimental data, many computational methods for identifying essential proteins are proposed, which are useful complements to experimental methods. In this review, we show the state-of-the-art methods for identifying essential genes and proteins based on machine learning and network topological features, point out the progress and limitations of current methods, and discuss the challenges and directions for further research.

  19. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks

    Directory of Open Access Journals (Sweden)

    Martin Alberto JM

    2009-01-01

    Full Text Available Abstract Background Prediction of protein structures from their sequences is still one of the open grand challenges of computational biology. Some approaches to protein structure prediction, especially ab initio ones, rely to some extent on the prediction of residue contact maps. Residue contact map predictions have been assessed at the CASP competition for several years now. Although it has been shown that exact contact maps generally yield correct three-dimensional structures, this is true only at a relatively low resolution (3–4 Å from the native structure. Another known weakness of contact maps is that they are generally predicted ab initio, that is not exploiting information about potential homologues of known structure. Results We introduce a new class of distance restraints for protein structures: multi-class distance maps. We show that Cα trace reconstructions based on 4-class native maps are significantly better than those from residue contact maps. We then build two predictors of 4-class maps based on recursive neural networks: one ab initio, or relying on the sequence and on evolutionary information; one template-based, or in which homology information to known structures is provided as a further input. We show that virtually any level of sequence similarity to structural templates (down to less than 10% yields more accurate 4-class maps than the ab initio predictor. We show that template-based predictions by recursive neural networks are consistently better than the best template and than a number of combinations of the best available templates. We also extract binary residue contact maps at an 8 Å threshold (as per CASP assessment from the 4-class predictors and show that the template-based version is also more accurate than the best template and consistently better than the ab initio one, down to very low levels of sequence identity to structural templates. Furthermore, we test both ab-initio and template-based 8

  20. Classification and Prediction of Event-based Suspended Sediment Dynamics using Artificial Neural Networks

    Science.gov (United States)

    Hamshaw, S. D.; Underwood, K.; Wemple, B. C.; Rizzo, D.

    2016-12-01

    Sediment transport can be an immensely complex process, yet plays a vital role in the transport of substances and nutrients that can impact receiving waters. Advancements in the use of sensors for indirect measurement of suspended sediments have allowed access to high frequency sediment data. This has promoted the use of more advanced computational tools to identify patterns in sediment data to improve our understanding of physical processes occurring in the watershed. In this study, a network of weather stations and in-stream turbidity sensors were deployed to capture more than three years of sediment dynamics and meteorological data in the Mad River watershed in central Vermont. Monitoring sites were located along the main stem of the the Mad River and on five tributaries. Separate storm events were identified from the data at each site to study event sediment dynamics associated with erosion and deposition over space and time. Two types of artificial neural networks (ANNs), a self-organizing map (SOM) and a radial basis function (RBF), were used to cluster the storm event data based on hydrometeorological metrics and were subsequently compared to traditional classes of hysteresis patterns in suspended sediment concentration - discharge (SSC-Q) relationships. Hysteresis patterns were also directly used as inputs to both ANNs to identify distinct patterns and test the applicability of performing pattern recognition on hysteresis patterns. The results of this study will be used to gain insight into the dynamic physical processes (both spatial and temporal) occurring in the watershed based on patterns observed in SSQ-Q data.

  1. PREDIKSI MASA KEDALUWARSA WAFER DENGAN ARTIFICIAL NEURAL NETWORK (ANN BERDASARKAN PARAMETER NILAI KAPASITANSI (Prediction of Wafer Shelf Life Using Artificial Neural Network Based on Capacitance Parameter

    Directory of Open Access Journals (Sweden)

    Erna Rusliana Muhamad Saleh

    2014-02-01

    Full Text Available Wafer is type of biscuit frequently found on expired condition in market, therefore prediction method should be implemented to avoid this condition. apart from the prediction of shelf-life of wafer done by laboratory test, which were time-consuming, expensive, required trained panelists, complex equipment and suitable ambience, artificial neural network (ANN based dielectric parameters was proposed in nthis study. The aim of study was to develop model to predict shelf-life employing aNN based capacitance parameter. Back propagation algorithm with trial and error was applied in variations of nodes per hidden layer, number of hidden layers, activation functions, the function of learnings and epochs. The result of study was the model was able to predict wafer shelf-life. The accuracy level was shown by low MSE value (0.01 and high coefficient correlation value (89.25%. Keywords: artificial Neural Network, shelf-life, waffer, dielectric, capacitance   ABSTRAK Wafer adalah jenis makanan kering yang sering ditemukan kedaluwarsa. Penentuan masa kedaluwarsa dengan observasi laboratorium memiliki beberapa kelemahan, diantaranya memakan waktu, panelis terlatih, suasana yang tepat, biaya dan alat uji yang kompleks. alternatif solusinya adalah penggunaan artificial Neural Network (ANN berbasiskan parameter kapasitansi. Tujuan kerja ilmiah ini adalah untuk memprediksi masa kedaluwarsa wafer menggunakan aNN berbasiskan parameter kapasitansi. algoritma pembelajaran yang digunakan adalah Backpropagation dengan trial and error variasi jumlah node per hidden layer, jumlah hidden layer, fungsi aktivasi, fungsi pembelajaran dan epoch. Hasil prediksi menunjukkan bahwa aNN hasil pelatihan yang dikombinasikan dengan parameter kapasitansi mampu memprediksi masa kedaluwarsa wafer dengan MSE terendah 0,01 dan R tertinggi 89,25%. Kata kunci: Jaringan Syaraf Tiruan, masa kedaluwarsa, wafer, dielektrik, kapasitansi

  2. Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks.

    Science.gov (United States)

    León-Roque, Noemí; Abderrahim, Mohamed; Nuñez-Alejos, Luis; Arribas, Silvia M; Condezo-Hoyos, Luis

    2016-12-01

    Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Prediction of coal grindability based on petrography, proximate and ultimate analysis using neural networks and particle swarm optimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Modarres, Hamid Reza; Kor, Mohammad; Abkhoshk, Emad; Alfi, Alireza; Lower, James C.

    2009-06-15

    In recent years, use of artificial neural networks have increased for estimation of Hardgrove grindability index (HGI) of coals. For training of the neural networks, gradient descent methods such as Backpropagaition (BP) method are used frequently. However they originally showed good performance in some non-linearly separable problems, but have a very slow convergence and can get stuck in local minima. In this paper, to overcome the lack of gradient descent methods, a novel particle swarm optimization and artificial neural network was employed for predicting the HGI of Kentucky coals by featuring eight coal parameters. The proposed approach also compared with two kinds of artificial neural network (generalized regression neural network and back propagation neural network). Results indicate that the neural networks - particle swarm optimization method gave the most accurate HGI prediction.

  4. Prediction of coal grindability based on petrography, proximate and ultimate analysis using multiple regression and artificial neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Chelgani, S. Chehreh; Jorjani, E.; Mesroghli, Sh.; Bagherieh, A.H. [Department of Mining Engineering, Research and Science Campus, Islamic Azad University, Poonak, Hesarak Tehran (Iran); Hower, James C. [Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511 (United States)

    2008-01-15

    The effects of proximate and ultimate analysis, maceral content, and coal rank (R{sub max}) for a wide range of Kentucky coal samples from calorific value of 4320 to 14960 (BTU/lb) (10.05 to 34.80 MJ/kg) on Hardgrove Grindability Index (HGI) have been investigated by multivariable regression and artificial neural network methods (ANN). The stepwise least square mathematical method shows that the relationship between (a) Moisture, ash, volatile matter, and total sulfur; (b) ln (total sulfur), hydrogen, ash, ln ((oxygen + nitrogen)/carbon) and moisture; (c) ln (exinite), semifusinite, micrinite, macrinite, resinite, and R{sub max} input sets with HGI in linear condition can achieve the correlation coefficients (R{sup 2}) of 0.77, 0.75, and 0.81, respectively. The ANN, which adequately recognized the characteristics of the coal samples, can predict HGI with correlation coefficients of 0.89, 0.89 and 0.95 respectively in testing process. It was determined that ln (exinite), semifusinite, micrinite, macrinite, resinite, and R{sub max} can be used as the best predictor for the estimation of HGI on multivariable regression (R{sup 2} = 0.81) and also artificial neural network methods (R{sup 2} = 0.95). The ANN based prediction method, as used in this paper, can be further employed as a reliable and accurate method, in the hardgrove grindability index prediction. (author)

  5. Network-based predictions of retail store commercial categories and optimal locations

    Science.gov (United States)

    Jensen, Pablo

    2006-09-01

    I study the spatial organization of retail commercial activities. These are organized in a network comprising “antilinks,” i.e., links of negative weight. From pure location data, network analysis leads to a community structure that closely follows the commercial classification of the U.S. Department of Labor. The interaction network allows one to build a “quality” index of optimal location niches for stores, which has been empirically tested.

  6. Network traffic anomaly prediction using Artificial Neural Network

    Science.gov (United States)

    Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea

    2017-03-01

    As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.

  7. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis.

    Science.gov (United States)

    Gan, Yanxiong; Zheng, Shichao; Baak, Jan P A; Zhao, Silei; Zheng, Yongfeng; Luo, Nini; Liao, Wan; Fu, Chaomei

    2015-11-01

    Curcumin, the medically active component from Curcuma longa (Turmeric), is widely used to treat inflammatory diseases. Protein interaction network (PIN) analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein-protein interactions (PPIs) were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO) enrichment analysis based on molecular complex detection (MCODE). A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation.

  8. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis

    Directory of Open Access Journals (Sweden)

    Yanxiong Gan

    2015-11-01

    Full Text Available Curcumin, the medically active component from Curcuma longa (Turmeric, is widely used to treat inflammatory diseases. Protein interaction network (PIN analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein–protein interactions (PPIs were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO enrichment analysis based on molecular complex detection (MCODE. A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation.

  9. Ship Attitude Prediction Based on Input Delay Neural Network and Measurements of Gyroscopes

    DEFF Research Database (Denmark)

    Wang, Yunlong; N. Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2017-01-01

    sampled in a ship simulation hardware system. Moreover, the factors that affect the prediction performance are also explored through a set of experiments. The prediction method proposed can achieve high precision, that is, the root-mean-square prediction errors for roll, pitch and yaw, are 0.26 deg, 0.......12 deg and 0.26 deg, respectively, when the prediction time is 2 sec. This precision is high enough for most attitude stabilization control systems....

  10. Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes.

    Directory of Open Access Journals (Sweden)

    Christof Winter

    Full Text Available Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice.

  11. ProLanGO: Protein Function Prediction Using Neural Machine Translation Based on a Recurrent Neural Network.

    Science.gov (United States)

    Cao, Renzhi; Freitas, Colton; Chan, Leong; Sun, Miao; Jiang, Haiqing; Chen, Zhangxin

    2017-10-17

    With the development of next generation sequencing techniques, it is fast and cheap to determine protein sequences but relatively slow and expensive to extract useful information from protein sequences because of limitations of traditional biological experimental techniques. Protein function prediction has been a long standing challenge to fill the gap between the huge amount of protein sequences and the known function. In this paper, we propose a novel method to convert the protein function problem into a language translation problem by the new proposed protein sequence language "ProLan" to the protein function language "GOLan", and build a neural machine translation model based on recurrent neural networks to translate "ProLan" language to "GOLan" language. We blindly tested our method by attending the latest third Critical Assessment of Function Annotation (CAFA 3) in 2016, and also evaluate the performance of our methods on selected proteins whose function was released after CAFA competition. The good performance on the training and testing datasets demonstrates that our new proposed method is a promising direction for protein function prediction. In summary, we first time propose a method which converts the protein function prediction problem to a language translation problem and applies a neural machine translation model for protein function prediction.

  12. A NETWORK-BASED APPROACH FOR PREDICTING HSP27 KNOCK-OUT TARGETS IN MOUSE SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Malek Kammoun

    2013-03-01

    Full Text Available Thanks to genomics, we have previously identified markers of beef tenderness, and computed a bioinformatic analysis that enabled us to build an interactome in which we found Hsp27 at a crucial node. Here, we have used a network-based approach for understanding the contribution of Hsp27 to tenderness through the prediction of its interactors related to tenderness. We have revealed the direct interactors of Hsp27. The predicted partners of Hsp27 included proteins involved in different functions, e.g. members of Hsp families (Hsp20, Cryab, Hsp70a1a, and Hsp90aa1, regulators of apoptosis (Fas, Chuk, and caspase-3, translation factors (Eif4E, and Eif4G1, cytoskeletal proteins (Desmin and antioxidants (Sod1. The abundances of 15 proteins were quantified by Western blotting in two muscles of HspB1-null mice and their controls. We observed changes in the amount of most of the Hsp27 predicted targets in mice devoid of Hsp27 mainly in the most oxidative muscle. Our study demonstrates the functional links between Hsp27 and its predicted targets. It suggests that Hsp status, apoptotic processes and protection against oxidative stress are crucial for post-mortem muscle metabolism, subsequent proteolysis, and therefore for beef tenderness.

  13. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    Directory of Open Access Journals (Sweden)

    Lund Ole

    2009-09-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC molecule plays a central role in controlling the adaptive immune response to infections. MHC class I molecules present peptides derived from intracellular proteins to cytotoxic T cells, whereas MHC class II molecules stimulate cellular and humoral immunity through presentation of extracellularly derived peptides to helper T cells. Identification of which peptides will bind a given MHC molecule is thus of great importance for the understanding of host-pathogen interactions, and large efforts have been placed in developing algorithms capable of predicting this binding event. Results Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data due to redundant binding core representation. Incorporation of information about the residues flanking the peptide-binding core is shown to significantly improve the prediction accuracy. The method is evaluated on a large-scale benchmark consisting of six independent data sets covering 14 human MHC class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. Conclusion The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http://www.cbs.dtu.dk/services/NetMHCII-2.0.

  14. Prediction of Negative Conversion Days of Childhood Nephrotic Syndrome Based on the Improved Backpropagation Neural Network with Momentum

    Directory of Open Access Journals (Sweden)

    Yi-jun Liu

    2015-12-01

    Full Text Available Childhood nephrotic syndrome is a chronic disease harmful to growth of children. Scientific and accurate prediction of negative conversion days for children with nephrotic syndrome offers potential benefits for treatment of patients and helps achieve better cure effect. In this study, the improved backpropagation neural network with momentum is used for prediction. Momentum speeds up convergence and maintains the generalization performance of the neural network, and therefore overcomes weaknesses of the standard backpropagation algorithm. The three-tier network structure is constructed. Eight indicators including age, lgG, lgA and lgM, etc. are selected for network inputs. The scientific computing software of MATLAB and its neural network tools are used to create model and predict. The training sample of twenty-eight cases is used to train the neural network. The test sample of six typical cases belonging to six different age groups respectively is used to test the predictive model. The low mean absolute error of predictive results is achieved at 0.83. The experimental results of the small-size sample show that the proposed approach is to some degree applicable for the prediction of negative conversion days of childhood nephrotic syndrome.

  15. Development of an artificial neural network to predict critical heat flux based on the look up tables

    Energy Technology Data Exchange (ETDEWEB)

    Terng, Nilton; Carajilescov, Pedro, E-mail: Nil.terng@gmail.com, E-mail: pedro.carajilescov@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais

    2015-07-01

    The critical heat flux (CHF) is one of the principal thermal hydraulic limits of PWR type nuclear reactors. The present work consists in the development of an artificial neural network (ANN) to estimate the CHF, based on Look Up Table CHF data, published by Groeneveld (2006). Three parameters were considered in the development of the ANN: the pressure in the range of 1 to 21 MPa, the mass flux in the range of 50 to 8000 kg m{sup -2} s{sup -1} and the thermodynamic quality in the range of - 0.5 to 0.9. The ANN model considered was a multi feed forward net, which have two feedforward ANN. The first one, called main neural network, is used to calculate the result of CHF, and the second, denominated spacenet, is responsible to modify the main neural network according to the input. Comparing the ANN predictions with the data of the Look Up Table, it was observed an average of the ratio of 0.993 and a root mean square error of 13.3%. With the developed ANN, a parametric study of CHF was performed to observe the influence of each parameter in the CHF. It was possible to note that the CHF decreases with the increase of pressure and thermodynamic quality, while CHF increases with the mass flow rate, as expected. However, some erratic trends were also observed which can be attributed to either unknown aspect of the CHF phenomenon or uncertainties in the data. (author)

  16. Prediction of PM10 grades in Seoul, Korea using a neural network model based on synoptic patterns

    Science.gov (United States)

    Hur, S. K.; Oh, H. R.; Ho, C. H.; Kim, J.; Song, C. K.; Chang, L. S.; Lee, J. B.

    2016-12-01

    As of November 2014, the Korean Ministry of Environment (KME) started forecasting the level of ambient particulate matter with diameters ≤ 10 μm (PM10) as four grades: low (PM10 ≤ 30 μg m-3), moderate (30 150 μg m-3). Due to short history of forecast, overall performance of the operational forecasting system and its hit rate for the four PM10 grades are difficult to evaluate. In attempt to provide a statistical reference for the current air quality forecasting system, we hindcasted the four PM10 grades for the cold seasons (October-March) of 2001-2014 in Seoul, Korea using a neural network model based on the synoptic patterns of meteorological fields such as geopotential height, air temperature, relative humidity, and wind. In the form of cosine similarity, the distinctive synoptic patterns for each PM10 grades are well quantified as predictors to train the neural network model. Using these fields as predictors and considering the PM10 concentration in Seoul from the day before prediction as an additional predictor, an overall hit rate of 69% was achieved; the hit rates for the low, moderate, high, and very high PM10 grades were 33%, 83%, 45%, and 33%, respectively. This study reveals that the synoptic patterns of meteorological fields are useful predictors for the identification of favorable conditions for each PM10 grade, and the associated transboundary transport and local accumulation of PM10 from the industrialized regions of China. Consequently, the assessments of predictability obtained from the neural network model in this study are reliable to use as a statistical reference for the current air quality forecasting system.

  17. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network.

    Science.gov (United States)

    Ding, Fangrui; Tan, Aidi; Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  18. A fuzzy logic based network intrusion detection system for predicting the TCP SYN flooding attack

    CSIR Research Space (South Africa)

    Mkuzangwe, Nenekazi NP

    2017-04-01

    Full Text Available Fuzzy logic is one of the powerful tools for reasoning under uncertainty and since uncertainty is an intrinsic characteristic of intrusion analysis, Fuzzy logic is therefore an appropriate tool to use to analyze intrusions in a Network. This paper...

  19. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-02-01

    Full Text Available Due to their special environment, Underwater Wireless Sensor Networks (UWSNs are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object’s mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  20. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms.

    Science.gov (United States)

    Zhang, Ying; Liang, Jixing; Jiang, Shengming; Chen, Wei

    2016-02-06

    Due to their special environment, Underwater Wireless Sensor Networks (UWSNs) are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO) is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object's mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  1. Predicting a Containership's Arrival Punctuality in Liner Operations by Using a Fuzzy Rule-Based Bayesian Network (FRBBN

    Directory of Open Access Journals (Sweden)

    Nurul Haqimin Mohd Salleh

    2017-07-01

    Full Text Available One of the biggest concerns in liner operations is punctuality of containerships. Managing the time factor has become a crucial issue in today's liner shipping operations. A statistic in 2015 showed that the overall punctuality for containerships only reached an on-time performance of 73%. However, vessel punctuality is affected by many factors such as the port and vessel conditions and knock-on effects of delays. As a result, this paper develops a model for analyzing and predicting the arrival punctuality of a liner vessel at ports of call under uncertain environments by using a hybrid decision-making technique, the Fuzzy Rule-Based Bayesian Network (FRBBN. In order to ensure the practicability of the model, two container vessels have been tested by using the proposed model. The results have shown that the differences between prediction values and real arrival times are only 4.2% and 6.6%, which can be considered as reasonable. This model is capable of helping liner shipping operators (LSOs to predict the arrival punctuality of their vessel at a particular port of call.

  2. DT-Web: a web-based application for drug-target interaction and drug combination prediction through domain-tuned network-based inference.

    Science.gov (United States)

    Alaimo, Salvatore; Bonnici, Vincenzo; Cancemi, Damiano; Ferro, Alfredo; Giugno, Rosalba; Pulvirenti, Alfredo

    2015-01-01

    The identification of drug-target interactions (DTI) is a costly and time-consuming step in drug discovery and design. Computational methods capable of predicting reliable DTI play an important role in the field. Algorithms may aim to design new therapies based on a single approved drug or a combination of them. Recently, recommendation methods relying on network-based inference in connection with knowledge coming from the specific domain have been proposed. Here we propose a web-based interface to the DT-Hybrid algorithm, which applies a recommendation technique based on bipartite network projection implementing resources transfer within the network. This technique combined with domain-specific knowledge expressing drugs and targets similarity is used to compute recommendations for each drug. Our web interface allows the users: (i) to browse all the predictions inferred by the algorithm; (ii) to upload their custom data on which they wish to obtain a prediction through a DT-Hybrid based pipeline; (iii) to help in the early stages of drug combinations, repositioning, substitution, or resistance studies by finding drugs that can act simultaneously on multiple targets in a multi-pathway environment. Our system is periodically synchronized with DrugBank and updated accordingly. The website is free, open to all users, and available at http://alpha.dmi.unict.it/dtweb/. Our web interface allows users to search and visualize information on drugs and targets eventually providing their own data to compute a list of predictions. The user can visualize information about the characteristics of each drug, a list of predicted and validated targets, associated enzymes and transporters. A table containing key information and GO classification allows the users to perform their own analysis on our data. A special interface for data submission allows the execution of a pipeline, based on DT-Hybrid, predicting new targets with the corresponding p-values expressing the reliability of

  3. Tool And Algorithms for Rapid Source Term Prediction (RASTEP) Based on Bayesian Belief Networks

    OpenAIRE

    Agrawal, Prerna

    2015-01-01

    In case of an accident in a nuclear power plant (NPP), the fast and cor-rect identification of the NPP state that would give a prediction of a possible radioactive release presents a major challenge to both nuclear power plants and regulators. Such prediction is important so that correct and timely decisions and measures are taken to mitigate accident consequences, such as evacuation of people from areas around the power plant. Recent research work [2][3] proposes analyzing the NPP using the ...

  4. Prediction of SEM–X-ray images’ data of cement-based materials using artificial neural network algorithm

    Directory of Open Access Journals (Sweden)

    Ashraf Ragab Mohamed

    2014-09-01

    Full Text Available Recent advances of computational capabilities have motivated the development of more sophisticated models to simulate cement-based hydration. However, the input parameters for such models, obtained from SEM–X-ray image analyses, are quite complicated and hinder their versatile application. This paper addresses the utilization of the artificial neural networks (ANNs to predict the SEM–X-ray images’ data of cement-based materials (surface area fraction and the cement phases’ correlation functions. ANNs have been used to correlate these data, already obtained for 21 types of cement, to basic cement data (cement compounds and fineness. Two approaches have been proposed; the ANN, and the ANN-regression method. Comparisons have shown that the ANN proves effectiveness in predicting the surface area fraction, while the ANN-regression is more computationally suitable for the correlation functions. Results have shown good agreement between the proposed techniques and the actual data with respect to hydration products, degree of hydration, and simulated images.

  5. Bayesian Markov random field analysis for integrated network-based protein function prediction

    NARCIS (Netherlands)

    Kourmpetis, Y.I.A.

    2011-01-01

    Unravelling the functions of proteins is one of the most important aims of modern biology. Experimental inference of protein function is expensive and not scalable to large datasets. In this thesis a probabilistic method for protein function prediction is presented that integrates different types of

  6. Bayesian Markov Random Rield Analysis for Protein Function Prediction Based on Network Data

    NARCIS (Netherlands)

    Kourmpetis, Y.I.A.; Dijk, van A.D.J.; Bink, M.C.A.M.; Ham, van R.C.H.J.; Braak, ter C.J.F.

    2010-01-01

    Inference of protein functions is one of the most important aims of modern biology. To fully exploit the large volumes of genomic data typically produced in modern-day genomic experiments, automated computational methods for protein function prediction are urgently needed. Established methods use

  7. Structural network efficiency predicts conversion to dementia

    NARCIS (Netherlands)

    Tuladhar, A.; van Uden, I.W.M.; Rutten-Jacobs, L.C.A.; van der Holst, H.; van Norden, A.; de Laat, K.; Dijk, E.; Claassen, J.A.H.R.; Kessels, R.P.C.; Markus, H.S.; Norris, David Gordon; de Leeuw, F.E.

    2016-01-01

    Objective: To examine whether structural network connectivity at baseline predicts incident all-cause dementia in a prospective hospital-based cohort of elderly participants with MRI evidence of small vessel disease (SVD). Methods: A total of 436 participants from the Radboud University Nijmegen

  8. Geo-Based Statistical Models for Vulnerability Prediction of Highway Network Segments

    Directory of Open Access Journals (Sweden)

    Keren Pollak

    2014-04-01

    Full Text Available This study describes four statistical models—Poisson; Negative Binomial; Zero-Inflated Poisson; and Zero-Inflated Negative Binomial—which were devised in order to examine traffic accidents and estimate the best probability estimating model in terms of future risk assessment at interurban road sections. The study was conducted on four sets of fixed-length sections of the road network: 500, 750, 1000, and 1500 m. The contribution of transportation and spatial parameters as predictors of road accident rates was evaluated for all four data sets separately. In addition, the Empirical Bayes method was applied. This method uses historical accidents information, allowing regression to the mean phenomenon so as to improve model results. The study was performed using Geographic Information System (GIS software. Other analyses, such as statistical analyses combined with spatial parameters, interactions, and examination of other geographical areas, were also performed. The results showed that the short road sections data sets of 500 and 750 m yielded the most stable models. This allows focused treatment on short sections of the road network as a way to save resources (enforcement; education and information; finance and potentially gain maximum benefit at minimum investment. It was found that the significant parameters affecting accident rates are: curvature of the road section; the region and traffic volume. An interaction between the region and traffic volume was also found.

  9. Link Label Prediction in Signed Citation Network

    KAUST Repository

    Akujuobi, Uchenna

    2016-04-12

    Link label prediction is the problem of predicting the missing labels or signs of all the unlabeled edges in a network. For signed networks, these labels can either be positive or negative. In recent years, different algorithms have been proposed such as using regression, trust propagation and matrix factorization. These approaches have tried to solve the problem of link label prediction by using ideas from social theories, where most of them predict a single missing label given that labels of other edges are known. However, in most real-world social graphs, the number of labeled edges is usually less than that of unlabeled edges. Therefore, predicting a single edge label at a time would require multiple runs and is more computationally demanding. In this thesis, we look at link label prediction problem on a signed citation network with missing edge labels. Our citation network consists of papers from three major machine learning and data mining conferences together with their references, and edges showing the relationship between them. An edge in our network is labeled either positive (dataset relevant) if the reference is based on the dataset used in the paper or negative otherwise. We present three approaches to predict the missing labels. The first approach converts the label prediction problem into a standard classification problem. We then, generate a set of features for each edge and then adopt Support Vector Machines in solving the classification problem. For the second approach, we formalize the graph such that the edges are represented as nodes with links showing similarities between them. We then adopt a label propagation method to propagate the labels on known nodes to those with unknown labels. In the third approach, we adopt a PageRank approach where we rank the nodes according to the number of incoming positive and negative edges, after which we set a threshold. Based on the ranks, we can infer an edge would be positive if it goes a node above the

  10. Silicon microgyroscope temperature prediction and control system based on BP neural network and Fuzzy-PID control method

    Science.gov (United States)

    Xia, Dunzhu; Kong, Lun; Hu, Yiwei; Ni, Peizhen

    2015-02-01

    We present a novel silicon microgyroscope (SMG) temperature prediction and control system in a narrow space. As the temperature of SMG is closely related to its drive mode frequency and driving voltage, a temperature prediction model can be established based on the BP neural network. The simulation results demonstrate that the established temperature prediction model can estimate the temperature in the range of -40 to 60 °C with an error of less than ±0.05 °C. Then, a temperature control system based on the combination of fuzzy logic controller and the increment PID control method is proposed. The simulation results prove that the Fuzzy-PID controller has a smaller steady state error, less rise time and better robustness than the PID controller. This is validated by experimental results that show the Fuzzy-PID control method can achieve high precision in keeping the SMG temperature stable at 55 °C with an error of less than 0.2 °C. The scale factor can be stabilized at 8.7 mV/°/s with a temperature coefficient of 33 ppm °C-1. ZRO (zero rate output) instability is decreased from 1.10°/s (9.5 mV) to 0.08°/s (0.7 mV) when the temperature control system is implemented over an ambient temperature range of -40 to 60 °C.

  11. Artificial neural network intelligent method for prediction

    Science.gov (United States)

    Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi

    2017-09-01

    Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.

  12. Open source tool for prediction of genome wide protein-protein interaction network based on ortholog information

    Directory of Open Access Journals (Sweden)

    Pedamallu Chandra Sekhar

    2010-08-01

    Full Text Available Abstract Background Protein-protein interactions are crucially important for cellular processes. Knowledge of these interactions improves the understanding of cell cycle, metabolism, signaling, transport, and secretion. Information about interactions can hint at molecular causes of diseases, and can provide clues for new therapeutic approaches. Several (usually expensive and time consuming experimental methods can probe protein - protein interactions. Data sets, derived from such experiments make the development of prediction methods feasible, and make the creation of protein-protein interaction network predicting tools possible. Methods Here we report the development of a simple open source program module (OpenPPI_predictor that can generate a putative protein-protein interaction network for target genomes. This tool uses the orthologous interactome network data from a related, experimentally studied organism. Results Results from our predictions can be visualized using the Cytoscape visualization software, and can be piped to downstream processing algorithms. We have employed our program to predict protein-protein interaction network for the human parasite roundworm Brugia malayi, using interactome data from the free living nematode Caenorhabditis elegans. Availability The OpenPPI_predictor source code is available from http://tools.neb.com/~posfai/.

  13. Late rectal bleeding after 3D-CRT for prostate cancer: development of a neural-network-based predictive model

    Science.gov (United States)

    Tomatis, S.; Rancati, T.; Fiorino, C.; Vavassori, V.; Fellin, G.; Cagna, E.; Mauro, F. A.; Girelli, G.; Monti, A.; Baccolini, M.; Naldi, G.; Bianchi, C.; Menegotti, L.; Pasquino, M.; Stasi, M.; Valdagni, R.

    2012-03-01

    The aim of this study was to develop a model exploiting artificial neural networks (ANNs) to correlate dosimetric and clinical variables with late rectal bleeding in prostate cancer patients undergoing radical radiotherapy and to compare the ANN results with those of a standard logistic regression (LR) analysis. 718 men included in the AIROPROS 0102 trial were analyzed. This multicenter protocol was characterized by the prospective evaluation of rectal toxicity, with a minimum follow-up of 36 months. Radiotherapy doses were between 70 and 80 Gy. Information was recorded for comorbidity, previous abdominal surgery, use of drugs and hormonal therapy. For each patient, a rectal dose-volume histogram (DVH) of the whole treatment was recorded and the equivalent uniform dose (EUD) evaluated as an effective descriptor of the whole DVH. Late rectal bleeding of grade ≥ 2 was considered to define positive events in this study (52 of 718 patients). The overall population was split into training and verification sets, both of which were involved in model instruction, and a test set, used to evaluate the predictive power of the model with independent data. Fourfold cross-validation was also used to provide realistic results for the full dataset. The LR was performed on the same data. Five variables were selected to predict late rectal bleeding: EUD, abdominal surgery, presence of hemorrhoids, use of anticoagulants and androgen deprivation. Following a receiver operating characteristic analysis of the independent test set, the areas under the curves (AUCs) were 0.704 and 0.655 for ANN and LR, respectively. When evaluated with cross-validation, the AUC was 0.714 for ANN and 0.636 for LR, which differed at a significance level of p = 0.03. When a practical discrimination threshold was selected, ANN could classify data with sensitivity and specificity both equal to 68.0%, whereas these values were 61.5% for LR. These data provide reasonable evidence that results obtained with

  14. Using multiple regression, Bayesian networks and artificial neural networks for prediction of total egg production in European quails based on earlier expressed phenotypes.

    Science.gov (United States)

    Felipe, Vivian P S; Silva, Martinho A; Valente, Bruno D; Rosa, Guilherme J M

    2015-04-01

    The prediction of total egg production (TEP) potential in poultry is an important task to aid optimized management decisions in commercial enterprises. The objective of the present study was to compare different modeling approaches for prediction of TEP in meat type quails (Coturnix coturnix coturnix) using phenotypes such as weight, weight gain, egg production and egg quality measurements. Phenotypic data on 30 traits from two lines (L1, n=180; and L2, n=205) of quail were modeled to predict TEP. Prediction models included multiple linear regression and artificial neural network (ANN). Moreover, Bayesian network (BN) and a stepwise approach were used as variable selection methods. BN results showed that TEP is independent from other earlier expressed traits when conditioned on egg production from 35 to 80 days of age (EP1). In addition, the prediction accuracy was much lower when EP1 was not included in the model. The best predictive model was ANN, after feature selection, showing prediction correlations of r=0.792 and r=0.714 for L1 and L2, respectively. In conclusion, machine learning methods may be useful, but reasonable prediction accuracies are obtained only when partial egg production measurements are included in the model. © 2015 Poultry Science Association Inc.

  15. Forex Market Prediction Using NARX Neural Network with Bagging

    Directory of Open Access Journals (Sweden)

    Shahbazi Nima

    2016-01-01

    Full Text Available We propose a new methodfor predicting movements in Forex market based on NARX neural network withtime shifting bagging techniqueand financial indicators, such as relative strength index and stochastic indicators. Neural networks have prominent learning ability but they often exhibit bad and unpredictable performance for noisy data. When compared with the static neural networks, our method significantly reducesthe error rate of the responseandimproves the performance of the prediction. We tested three different types ofarchitecture for predicting the response and determined the best network approach. We applied our method to prediction the hourly foreign exchange rates and found remarkable predictability in comprehensive experiments with 2 different foreign exchange rates (GBPUSD and EURUSD.

  16. Predicting targeted drug combinations based on Pareto optimal patterns of coexpression network connectivity.

    Science.gov (United States)

    Penrod, Nadia M; Greene, Casey S; Moore, Jason H

    2014-01-01

    Molecularly targeted drugs promise a safer and more effective treatment modality than conventional chemotherapy for cancer patients. However, tumors are dynamic systems that readily adapt to these agents activating alternative survival pathways as they evolve resistant phenotypes. Combination therapies can overcome resistance but finding the optimal combinations efficiently presents a formidable challenge. Here we introduce a new paradigm for the design of combination therapy treatment strategies that exploits the tumor adaptive process to identify context-dependent essential genes as druggable targets. We have developed a framework to mine high-throughput transcriptomic data, based on differential coexpression and Pareto optimization, to investigate drug-induced tumor adaptation. We use this approach to identify tumor-essential genes as druggable candidates. We apply our method to a set of ER(+) breast tumor samples, collected before (n = 58) and after (n = 60) neoadjuvant treatment with the aromatase inhibitor letrozole, to prioritize genes as targets for combination therapy with letrozole treatment. We validate letrozole-induced tumor adaptation through coexpression and pathway analyses in an independent data set (n = 18). We find pervasive differential coexpression between the untreated and letrozole-treated tumor samples as evidence of letrozole-induced tumor adaptation. Based on patterns of coexpression, we identify ten genes as potential candidates for combination therapy with letrozole including EPCAM, a letrozole-induced essential gene and a target to which drugs have already been developed as cancer therapeutics. Through replication, we validate six letrozole-induced coexpression relationships and confirm the epithelial-to-mesenchymal transition as a process that is upregulated in the residual tumor samples following letrozole treatment. To derive the greatest benefit from molecularly targeted drugs it is critical to design combination

  17. Improved Short-Term Load Forecasting Based on Two-Stage Predictions with Artificial Neural Networks in a Microgrid Environment

    Directory of Open Access Journals (Sweden)

    Jaime Lloret

    2013-08-01

    Full Text Available Short-Term Load Forecasting plays a significant role in energy generation planning, and is specially gaining momentum in the emerging Smart Grids environment, which usually presents highly disaggregated scenarios where detailed real-time information is available thanks to Communications and Information Technologies, as it happens for example in the case of microgrids. This paper presents a two stage prediction model based on an Artificial Neural Network in order to allow Short-Term Load Forecasting of the following day in microgrid environment, which first estimates peak and valley values of the demand curve of the day to be forecasted. Those, together with other variables, will make the second stage, forecast of the entire demand curve, more precise than a direct, single-stage forecast. The whole architecture of the model will be presented and the results compared with recent work on the same set of data, and on the same location, obtaining a Mean Absolute Percentage Error of 1.62% against the original 2.47% of the single stage model.

  18. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.

    Science.gov (United States)

    Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J

    2017-07-17

    Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (Mc ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking Mc and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between Mc and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  19. A New Prediction Model for Transformer Winding Hotspot Temperature Fluctuation Based on Fuzzy Information Granulation and an Optimized Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-12-01

    Full Text Available Winding hotspot temperature is the key factor affecting the load capacity and service life of transformers. For the early detection of transformer winding hotspot temperature anomalies, a new prediction model for the hotspot temperature fluctuation range based on fuzzy information granulation (FIG and the chaotic particle swarm optimized wavelet neural network (CPSO-WNN is proposed in this paper. The raw data are firstly processed by FIG to extract useful information from each time window. The extracted information is then used to construct a wavelet neural network (WNN prediction model. Furthermore, the structural parameters of WNN are optimized by chaotic particle swarm optimization (CPSO before it is used to predict the fluctuation range of the hotspot temperature. By analyzing the experimental data with four different prediction models, we find that the proposed method is more effective and is of guiding significance for the operation and maintenance of transformers.

  20. Model Predictive Control of Sewer Networks

    DEFF Research Database (Denmark)

    Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik

    2016-01-01

    The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and cont...... benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control....

  1. Energy prediction using spatiotemporal pattern networks

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhanhong; Liu, Chao; Akintayo, Adedotun; Henze, Gregor P.; Sarkar, Soumik

    2017-11-01

    This paper presents a novel data-driven technique based on the spatiotemporal pattern network (STPN) for energy/power prediction for complex dynamical systems. Built on symbolic dynamical filtering, the STPN framework is used to capture not only the individual system characteristics but also the pair-wise causal dependencies among different sub-systems. To quantify causal dependencies, a mutual information based metric is presented and an energy prediction approach is subsequently proposed based on the STPN framework. To validate the proposed scheme, two case studies are presented, one involving wind turbine power prediction (supply side energy) using the Western Wind Integration data set generated by the National Renewable Energy Laboratory (NREL) for identifying spatiotemporal characteristics, and the other, residential electric energy disaggregation (demand side energy) using the Building America 2010 data set from NREL for exploring temporal features. In the energy disaggregation context, convex programming techniques beyond the STPN framework are developed and applied to achieve improved disaggregation performance.

  2. SU-F-E-09: Respiratory Signal Prediction Based On Multi-Layer Perceptron Neural Network Using Adjustable Training Samples

    Energy Technology Data Exchange (ETDEWEB)

    Sun, W; Jiang, M; Yin, F [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: Dynamic tracking of moving organs, such as lung and liver tumors, under radiation therapy requires prediction of organ motions prior to delivery. The shift of moving organ may change a lot due to huge transform of respiration at different periods. This study aims to reduce the influence of that changes using adjustable training signals and multi-layer perceptron neural network (ASMLP). Methods: Respiratory signals obtained using a Real-time Position Management(RPM) device were used for this study. The ASMLP uses two multi-layer perceptron neural networks(MLPs) to infer respiration position alternately and the training sample will be updated with time. Firstly, a Savitzky-Golay finite impulse response smoothing filter was established to smooth the respiratory signal. Secondly, two same MLPs were developed to estimate respiratory position from its previous positions separately. Weights and thresholds were updated to minimize network errors according to Leverberg-Marquart optimization algorithm through backward propagation method. Finally, MLP 1 was used to predict 120∼150s respiration position using 0∼120s training signals. At the same time, MLP 2 was trained using 30∼150s training signals. Then MLP is used to predict 150∼180s training signals according to 30∼150s training signals. The respiration position is predicted as this way until it was finished. Results: In this experiment, the two methods were used to predict 2.5 minute respiratory signals. For predicting 1s ahead of response time, correlation coefficient was improved from 0.8250(MLP method) to 0.8856(ASMLP method). Besides, a 30% improvement of mean absolute error between MLP(0.1798 on average) and ASMLP(0.1267 on average) was achieved. For predicting 2s ahead of response time, correlation coefficient was improved from 0.61415 to 0.7098.Mean absolute error of MLP method(0.3111 on average) was reduced by 35% using ASMLP method(0.2020 on average). Conclusion: The preliminary results

  3. Network information improves cancer outcome prediction.

    Science.gov (United States)

    Roy, Janine; Winter, Christof; Isik, Zerrin; Schroeder, Michael

    2014-07-01

    Disease progression in cancer can vary substantially between patients. Yet, patients often receive the same treatment. Recently, there has been much work on predicting disease progression and patient outcome variables from gene expression in order to personalize treatment options. Despite first diagnostic kits in the market, there are open problems such as the choice of random gene signatures or noisy expression data. One approach to deal with these two problems employs protein-protein interaction networks and ranks genes using the random surfer model of Google's PageRank algorithm. In this work, we created a benchmark dataset collection comprising 25 cancer outcome prediction datasets from literature and systematically evaluated the use of networks and a PageRank derivative, NetRank, for signature identification. We show that the NetRank performs significantly better than classical methods such as fold change or t-test. Despite an order of magnitude difference in network size, a regulatory and protein-protein interaction network perform equally well. Experimental evaluation on cancer outcome prediction in all of the 25 underlying datasets suggests that the network-based methodology identifies highly overlapping signatures over all cancer types, in contrast to classical methods that fail to identify highly common gene sets across the same cancer types. Integration of network information into gene expression analysis allows the identification of more reliable and accurate biomarkers and provides a deeper understanding of processes occurring in cancer development and progression. © The Author 2012. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network

    DEFF Research Database (Denmark)

    Míguez González, M; López Peña, F.; Díaz Casás, V.

    2011-01-01

    acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network...

  5. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions.

    Directory of Open Access Journals (Sweden)

    Zixuan Cang

    2017-07-01

    Full Text Available Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D biomolecular structural data sets have been hindered by the geometric and biological complexity. To address this problem we introduce the element-specific persistent homology (ESPH method. ESPH represents 3D complex geometry by one-dimensional (1D topological invariants and retains important biological information via a multichannel image-like representation. This representation reveals hidden structure-function relationships in biomolecules. We further integrate ESPH and deep convolutional neural networks to construct a multichannel topological neural network (TopologyNet for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the deep learning limitations from small and noisy training sets, we propose a multi-task multichannel topological convolutional neural network (MM-TCNN. We demonstrate that TopologyNet outperforms the latest methods in the prediction of protein-ligand binding affinities, mutation induced globular protein folding free energy changes, and mutation induced membrane protein folding free energy changes.weilab.math.msu.edu/TDL/.

  6. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions

    Science.gov (United States)

    2017-01-01

    Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the geometric and biological complexity. To address this problem we introduce the element-specific persistent homology (ESPH) method. ESPH represents 3D complex geometry by one-dimensional (1D) topological invariants and retains important biological information via a multichannel image-like representation. This representation reveals hidden structure-function relationships in biomolecules. We further integrate ESPH and deep convolutional neural networks to construct a multichannel topological neural network (TopologyNet) for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the deep learning limitations from small and noisy training sets, we propose a multi-task multichannel topological convolutional neural network (MM-TCNN). We demonstrate that TopologyNet outperforms the latest methods in the prediction of protein-ligand binding affinities, mutation induced globular protein folding free energy changes, and mutation induced membrane protein folding free energy changes. Availability: weilab.math.msu.edu/TDL/ PMID:28749969

  7. Predicting cryptic links in host-parasite networks.

    Directory of Open Access Journals (Sweden)

    Tad Dallas

    2017-05-01

    Full Text Available Networks are a way to represent interactions among one (e.g., social networks or more (e.g., plant-pollinator networks classes of nodes. The ability to predict likely, but unobserved, interactions has generated a great deal of interest, and is sometimes referred to as the link prediction problem. However, most studies of link prediction have focused on social networks, and have assumed a completely censused network. In biological networks, it is unlikely that all interactions are censused, and ignoring incomplete detection of interactions may lead to biased or incorrect conclusions. Previous attempts to predict network interactions have relied on known properties of network structure, making the approach sensitive to observation errors. This is an obvious shortcoming, as networks are dynamic, and sometimes not well sampled, leading to incomplete detection of links. Here, we develop an algorithm to predict missing links based on conditional probability estimation and associated, node-level features. We validate this algorithm on simulated data, and then apply it to a desert small mammal host-parasite network. Our approach achieves high accuracy on simulated and observed data, providing a simple method to accurately predict missing links in networks without relying on prior knowledge about network structure.

  8. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization.

    Science.gov (United States)

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method.

  9. An artificial neural network prediction model of congenital heart disease based on risk factors: A hospital-based case-control study.

    Science.gov (United States)

    Li, Huixia; Luo, Miyang; Zheng, Jianfei; Luo, Jiayou; Zeng, Rong; Feng, Na; Du, Qiyun; Fang, Junqun

    2017-02-01

    An artificial neural network (ANN) model was developed to predict the risks of congenital heart disease (CHD) in pregnant women.This hospital-based case-control study involved 119 CHD cases and 239 controls all recruited from birth defect surveillance hospitals in Hunan Province between July 2013 and June 2014. All subjects were interviewed face-to-face to fill in a questionnaire that covered 36 CHD-related variables. The 358 subjects were randomly divided into a training set and a testing set at the ratio of 85:15. The training set was used to identify the significant predictors of CHD by univariate logistic regression analyses and develop a standard feed-forward back-propagation neural network (BPNN) model for the prediction of CHD. The testing set was used to test and evaluate the performance of the ANN model. Univariate logistic regression analyses were performed on SPSS 18.0. The ANN models were developed on Matlab 7.1.The univariate logistic regression identified 15 predictors that were significantly associated with CHD, including education level (odds ratio  = 0.55), gravidity (1.95), parity (2.01), history of abnormal reproduction (2.49), family history of CHD (5.23), maternal chronic disease (4.19), maternal upper respiratory tract infection (2.08), environmental pollution around maternal dwelling place (3.63), maternal exposure to occupational hazards (3.53), maternal mental stress (2.48), paternal chronic disease (4.87), paternal exposure to occupational hazards (2.51), intake of vegetable/fruit (0.45), intake of fish/shrimp/meat/egg (0.59), and intake of milk/soymilk (0.55). After many trials, we selected a 3-layer BPNN model with 15, 12, and 1 neuron in the input, hidden, and output layers, respectively, as the best prediction model. The prediction model has accuracies of 0.91 and 0.86 on the training and testing sets, respectively. The sensitivity, specificity, and Yuden Index on the testing set (training set) are 0.78 (0.83), 0.90 (0.95), and 0

  10. Design of modified structure multi-layer perceptron networks based on decision trees for the prediction of flow parameters in 90° open-channel bends

    Directory of Open Access Journals (Sweden)

    Azadeh Gholami

    2016-01-01

    Full Text Available A modified multi-layer perceptron (MLP model based on decision trees (DT-MLP is presented to predict velocity and water free-surface profiles in a 90° open-channel bend. The ability of the new hybrid model to predict the velocity and flow depth in a 90° sharp bend is investigated and compared with the abilities of MLP and multiple-linear regression (MLR models. The MLP and DT-MLP networks are trained and tested using 520 and 506 experimental data measured for velocity and flow depth, respectively, at five different discharge rates of 5, 7.8, 13.6, 19.1 and 25.3 l/s. The MLP and DT-MLP comparison results against MLR reveal that the two artificial neural networks (ANNs are 84% and 16% more accurate than the MLR model in predicting the velocity and flow depth variables, respectively. According to the results, the root mean square error (RMSE value of the DT-MLP model decreases by 9% and 7.5% in predicting velocity and flow depth, respectively, compared with the MLP model. It was found that the hybrid decision-tree-based method can significantly improve MLP neural network performance in forecasting velocity and free-surface profiles in a 90° open-channel bend.

  11. Neural network-based crop growth model to predict processing tomato yield on a site-specific basis using remotely sensed data

    Science.gov (United States)

    Koller, Michal

    Remote sensing is one of the major data acquisition tools available to rapidly acquire soil and plant related information over a wide area for use in precision agriculture. Green canopy has very specific reflectance characteristics distinguishing it from other materials such as soil and dry vegetative matter. Reflectance values in red (R) and near infra-red (NIR) spectral bands have been widely used for calculating normalized difference vegetation index (NDVI). Many researchers have related NDVI values to plant vigor, water stress, leaf area index (LAI) and/or yield. However, vegetative indices such as NDVI are usually sensitive to background reflectance characteristics. Often soil adjusted vegetation indices (SAVI) are used to minimize the background effect. In this study we have developed a relationship between the processing tomato yield and SAVI based on the R and NIR reflectance. Eight three band (R, NIR and green) aerial images were obtained at approximately two-week intervals during the 2000 processing tomato growing season. These images were analyzed to obtain SAVI values which were in turn related to LAI using regression techniques. A tuned neural network was developed to predict daily LAI values based on the biweekly experimental LAI values derived from aerial images. The coefficients of multiple determination between the actual LAI and neural network predicted LAI values were greater than 0.96 for all 56 grid points. The LAI values were numerically integrated over the whole growing season to obtain cumulative leaf area index days (CLAID). The CLAID values predicted from the neural network correlated very well with experimentally derived CLAID values (coefficient of determination, r2 = 0.83) indicating that the neural network model simulated processing tomato growth well. A crop growth model that was capable of predicting crop yield based on neural network predicted LAI values and CIMIS weather data was developed. Although predicted yield tended to be low

  12. A mobile dose prediction system based on artificial neural networks for NPP emergencies with radioactive material releases

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Claudio M.N.A.; Schirru, Roberto; Gomes, Kelcio J.; Cunha, José Luiz, E-mail: cmnap@ien.gov.br, E-mail: schirru@lmp.ufrj.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    This work presents the approach of a mobile dose prediction system for NPP emergencies with nuclear material release. The objective is to provide extra support to field teams decisions when plant information systems are not available. However, predicting doses due to atmospheric dispersion of radionuclide generally requires execution of complex and computationally intensive physical models. In order to allow such predictions to be made by using limited computational resources such as mobile phones, it is proposed the use of artificial neural networks (ANN) previously trained (offline) with data generated by precise simulations using the NPP atmospheric dispersion system. Typical situations for each postulated accident and respective source terms, as well as a wide range of meteorological conditions have been considered. As a first step, several ANN architectures have been investigated in order to evaluate their ability for dose prediction in hypothetical scenarios in the vicinity of CNAAA Brazilian NPP, in Angra dos Reis, Brazil. As a result, good generalization and a correlation coefficient of 0.99 was achieved for a validation data set (untrained patterns). Then, selected ANNs have been coded in Java programming language to run as an Android application aimed to plot the spatial dose distribution into a map.In this paper, the general architecture of the proposed system is described; numerical results and comparisons between investigated ANN architectures are discussed; performance and limitations of running the Application into a commercial mobile phone are evaluated and possible improvements and future works are pointed. (author)

  13. Neural Networks for protein Structure Prediction

    DEFF Research Database (Denmark)

    Bohr, Henrik

    1998-01-01

    This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...

  14. Application of artificial neural network in precise prediction of cement elements percentages based on the neutron activation analysis

    Science.gov (United States)

    Eftekhari Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.; Rezaei, A.

    2016-05-01

    Due to variation of neutron energy spectrum in the target sample during the activation process and to peak overlapping caused by the Compton effect with gamma radiations emitted from activated elements, which results in background changes and consequently complex gamma spectrum during the measurement process, quantitative analysis will ultimately be problematic. Since there is no simple analytical correlation between peaks' counts with elements' concentrations, an artificial neural network for analyzing spectra can be a helpful tool. This work describes a study on the application of a neural network to determine the percentages of cement elements (mainly Ca, Si, Al, and Fe) using the neutron capture delayed gamma-ray spectra of the substance emitted by the activated nuclei as patterns which were simulated via the Monte Carlo N-particle transport code, version 2.7. The Radial Basis Function (RBF) network is developed with four specific peaks related to Ca, Si, Al and Fe, which were extracted as inputs. The proposed RBF model is developed and trained with MATLAB 7.8 software. To obtain the optimal RBF model, several structures have been constructed and tested. The comparison between simulated and predicted values using the proposed RBF model shows that there is a good agreement between them.

  15. Advanced Wind Speed Prediction Model Based on a Combination of Weibull Distribution and an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Athraa Ali Kadhem

    2017-10-01

    Full Text Available One of the most crucial prerequisites for effective wind power planning and operation in power systems is precise wind speed forecasting. Highly random fluctuations of wind influenced by the conditions of the atmosphere, weather and terrain result in difficulties of forecasting regardless of whether it is short-term or long-term. The current study has developed a method to model wind speed data predictions with dependence on seasonal wind variations over a particular time frame, usually a year, in the form of a Weibull distribution model with an artificial neural network (ANN. As a result, the essential dependencies between the wind speed and seasonal weather variation are exploited. The proposed model utilizes the ANN to predict the wind speed data, which has similar chronological and seasonal characteristics to the actual wind data. This model was applied to wind speed databases from selected sites in Malaysia, namely Mersing, Kudat, and Kuala Terengganu, to validate the proposed model. The results indicate that the proposed hybrid artificial neural network (HANN model is capable of depicting the fluctuating wind speed during different seasons of the year at different locations.

  16. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  17. Prediction of Student's Mood during an Online Test Using Formula-based and Neural Network-based Method

    Science.gov (United States)

    Moridis, Christos N.; Economides, Anastasios A.

    2009-01-01

    Building computerized mechanisms that will accurately, immediately and continually recognize a learner's affective state and activate an appropriate response based on integrated pedagogical models is becoming one of the main aims of artificial intelligence in education. The goal of this paper is to demonstrate how the various kinds of evidence…

  18. Link prediction in weighted networks

    DEFF Research Database (Denmark)

    Wind, David Kofoed; Mørup, Morten

    2012-01-01

    Many complex networks feature relations with weight information. Some models utilize this information while other ignore the weight information when inferring the structure. In this paper we investigate if edge-weights when modeling real networks, carry important information about the network...

  19. Artificial neural networks in predicting current in electric arc furnaces

    Science.gov (United States)

    Panoiu, M.; Panoiu, C.; Iordan, A.; Ghiormez, L.

    2014-03-01

    The paper presents a study of the possibility of using artificial neural networks for the prediction of the current and the voltage of Electric Arc Furnaces. Multi-layer perceptron and radial based functions Artificial Neural Networks implemented in Matlab were used. The study is based on measured data items from an Electric Arc Furnace in an industrial plant in Romania.

  20. Characterizing and Predicting the Robustness of Power-law Networks

    CERN Document Server

    LaRocca, Sarah

    2013-01-01

    Power-law networks such as the Internet, terrorist cells, species relationships, and cellular metabolic interactions are susceptible to node failures, yet maintaining network connectivity is essential for network functionality. Disconnection of the network leads to fragmentation and, in some cases, collapse of the underlying system. However, the influences of the topology of networks on their ability to withstand node failures are poorly understood. Based on a study of the response of 2,000 power-law networks to node failures, we find that networks with higher nodal degree and clustering coefficient, lower betweenness centrality, and lower variability in path length and clustering coefficient maintain their cohesion better during such events. We also find that network robustness, i.e., the ability to withstand node failures, can be accurately predicted a priori for power-law networks across many fields. These results provide a basis for designing new, more robust networks, improving the robustness of existing...

  1. The design and optimization for light-algae bioreactor controller based on Artificial Neural Network-Model Predictive Control

    Science.gov (United States)

    Hu, Dawei; Liu, Hong; Yang, Chenliang; Hu, Enzhu

    As a subsystem of the bioregenerative life support system (BLSS), light-algae bioreactor (LABR) has properties of high reaction rate, efficiently synthesizing microalgal biomass, absorbing CO2 and releasing O2, so it is significant for BLSS to provide food and maintain gas balance. In order to manipulate the LABR properly, it has been designed as a closed-loop control system, and technology of Artificial Neural Network-Model Predictive Control (ANN-MPC) is applied to design the controller for LABR in which green microalgae, Spirulina platensis is cultivated continuously. The conclusion is drawn by computer simulation that ANN-MPC controller can intelligently learn the complicated dynamic performances of LABR, and automatically, robustly and self-adaptively regulate the light intensity illuminating on the LABR, hence make the growth of microalgae in the LABR be changed in line with the references, meanwhile provide appropriate damping to improve markedly the transient response performance of LABR.

  2. The General Regression Neural Network Based on the Fruit Fly Optimization Algorithm and the Data Inconsistency Rate for Transmission Line Icing Prediction

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2017-12-01

    Full Text Available Accurate and stable prediction of icing thickness on transmission lines is of great significance for ensuring the safe operation of the power grid. In order to improve the accuracy and stability of icing prediction, an innovative prediction model based on the generalized regression neural network (GRNN and the fruit fly optimization algorithm (FOA is proposed. Firstly, a feature selection method based on the data inconsistency rate (IR is adopted to select the optimal feature, which aims to reduce redundant input vectors. Then, the fruit FOA is utilized for optimization of smoothing factor for the GRNN. Lastly, the icing forecasting method FOA-IR-GRNN is established. Two cases in different locations and different months are selected to validate the proposed model. The results indicate that the new hybrid FOA-IR-GRNN model presents better accuracy, robustness, and generality in icing forecasting.

  3. A Knowledge-Based System for Display and Prediction of O-Glycosylation Network Behaviour in Response to Enzyme Knockouts.

    Directory of Open Access Journals (Sweden)

    Andrew G McDonald

    2016-04-01

    Full Text Available O-linked glycosylation is an important post-translational modification of mucin-type protein, changes to which are important biomarkers of cancer. For this study of the enzymes of O-glycosylation, we developed a shorthand notation for representing GalNAc-linked oligosaccharides, a method for their graphical interpretation, and a pattern-matching algorithm that generates networks of enzyme-catalysed reactions. Software for generating glycans from the enzyme activities is presented, and is also available online. The degree distributions of the resulting enzyme-reaction networks were found to be Poisson in nature. Simple graph-theoretic measures were used to characterise the resulting reaction networks. From a study of in-silico single-enzyme knockouts of each of 25 enzymes known to be involved in mucin O-glycan biosynthesis, six of them, β-1,4-galactosyltransferase (β4Gal-T4, four glycosyltransferases and one sulfotransferase, play the dominant role in determining O-glycan heterogeneity. In the absence of β4Gal-T4, all Lewis X, sialyl-Lewis X, Lewis Y and Sda/Cad glycoforms were eliminated, in contrast to knockouts of the N-acetylglucosaminyltransferases, which did not affect the relative abundances of O-glycans expressing these epitopes. A set of 244 experimentally determined mucin-type O-glycans obtained from the literature was used to validate the method, which was able to predict up to 98% of the most common structures obtained from human and engineered CHO cell glycoforms.

  4. Predictive Abuse Detection for a PLC Smart Lighting Network Based on Automatically Created Models of Exponential Smoothing

    Directory of Open Access Journals (Sweden)

    Tomasz Andrysiak

    2017-01-01

    Full Text Available One of the basic elements of a Smart City is the urban infrastructure management system, in particular, systems of intelligent street lighting control. However, for their reliable operation, they require special care for the safety of their critical communication infrastructure. This article presents solutions for the detection of different kinds of abuses in network traffic of Smart Lighting infrastructure, realized by Power Line Communication technology. Both the structure of the examined Smart Lighting network and its elements are described. The article discusses the key security problems which have a direct impact on the correct performance of the Smart Lighting critical infrastructure. In order to detect an anomaly/attack, we proposed the usage of a statistical model to obtain forecasting intervals. Then, we calculated the value of the differences between the forecast in the estimated traffic model and its real variability so as to detect abnormal behavior (which may be symptomatic of an abuse attempt. Due to the possibility of appearance of significant fluctuations in the real network traffic, we proposed a procedure of statistical models update which is based on the criterion of interquartile spacing. The results obtained during the experiments confirmed the effectiveness of the presented misuse detection method.

  5. Comparison Between Wind Power Prediction Models Based on Wavelet Decomposition with Least-Squares Support Vector Machine (LS-SVM and Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2014-08-01

    Full Text Available A high penetration of wind energy into the electricity market requires a parallel development of efficient wind power forecasting models. Different hybrid forecasting methods were applied to wind power prediction, using historical data and numerical weather predictions (NWP. A comparative study was carried out for the prediction of the power production of a wind farm located in complex terrain. The performances of Least-Squares Support Vector Machine (LS-SVM with Wavelet Decomposition (WD were evaluated at different time horizons and compared to hybrid Artificial Neural Network (ANN-based methods. It is acknowledged that hybrid methods based on LS-SVM with WD mostly outperform other methods. A decomposition of the commonly known root mean square error was beneficial for a better understanding of the origin of the differences between prediction and measurement and to compare the accuracy of the different models. A sensitivity analysis was also carried out in order to underline the impact that each input had in the network training process for ANN. In the case of ANN with the WD technique, the sensitivity analysis was repeated on each component obtained by the decomposition.

  6. Permeability prediction in shale gas reservoirs using Neural Network

    Science.gov (United States)

    Aliouane, Leila; Ouadfeul, Sid-Ali

    2017-04-01

    Here, we suggest the use of the artificial neural network for permeability prediction in shale gas reservoirs using artificial neural network. Prediction of Permeability in shale gas reservoirs is a complicated task that requires new models where Darcy's fluid flow model is not suitable. Proposed idea is based on the training of neural network machine using the set of well-logs data as an input and the measured permeability as an output. In this case the Multilayer Perceptron neural network machines is used with Levenberg Marquardt algorithm. Application to two horizontal wells drilled in the Barnett shale formation exhibit the power of neural network model to resolve such as problem. Keywords: Artificial neural network, permeability, prediction , shale gas.

  7. Application of Artificial Neural Networks in Cancer Classification and Diagnosis Prediction of a Subtype of Lymphoma Based on Gene Expression Profile

    Directory of Open Access Journals (Sweden)

    L Ziaei

    2006-01-01

    Full Text Available Background: Diffuse Large B-cell Lymphoma (DLBCL is the most common subtype of non-Hodgkin’s Lymphoma. DLBCL patients have different survivals after diagnosis. 40% of patients respond well to current therapy and have prolonged survival, whereas the remainders survive less than 5 years. In this study, we have applied artificial neural network to classify patients with DLBCL on the basis of their gene expression profiles. Finally, we have attempted to extract a number of genes that their differential expression were significant in DLBCL subtypes. Methods: We studied 40 patients and 4026 genes. In this study, genes were ranked based on their signal to noise (S/N ratios. After selecting a suitable threshold, some of them whose ratios were less than the threshold were removed. Then we used PCA for more reducing and Perceptron neural network for classification of these patients. We extracted some appropriate genes based on their prediction ability. Results: We considered various targets for patients classifying. Thus patients were classified based on their 5 years survival with accuracy of 93%, in regard to Alizadeh et al study results with accuracy of 100%, and regarding with their International Prognosis Index (IPI with accuracy of 89%. Conclusion: Combination of PCA and S/N ratio is an effective method for the reduction of the dimension and neural network is a robust tool for classification of patients according to their gene expression profile. Keywords: classification, gene expression, DLBCL, neural network, Perceptron

  8. Pressure prediction model based on artificial neural network optimized by genetic algorithm and its application in quasi-static calibration of piezoelectric high-pressure sensor.

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Jiang, Jian; Shang, Fei; Chen, Jing

    2016-12-01

    This paper applies back propagation neural network (BPNN) optimized by genetic algorithm (GA) for the prediction of pressure generated by a drop-weight device and the quasi-static calibration of piezoelectric high-pressure sensors for the measurement of propellant powder gas pressure. The method can effectively overcome the slow convergence and local minimum problems of BPNN. Based on test data of quasi-static comparison calibration method, a mathematical model between each parameter of drop-weight device and peak pressure and pulse width was established, through which the practical quasi-static calibration without continuously using expensive reference sensors could be realized. Compared with multiple linear regression method, the GA-BPNN model has higher prediction accuracy and stability. The percentages of prediction error of peak pressure and pulse width are less than 0.7% and 0.3%, respectively.

  9. MOVING OBJECTS TRAJECTOTY PREDICTION BASED ON ARTIFICIAL NEURAL NETWORK APPROXIMATOR BY CONSIDERING INSTANTANEOUS REACTION TIME, CASE STUDY: CAR FOLLOWING

    Directory of Open Access Journals (Sweden)

    M. Poor Arab Moghadam

    2015-12-01

    Full Text Available Car following models as well-known moving objects trajectory problems have been used for more than half a century in all traffic simulation software for describing driving behaviour in traffic flows. However, previous empirical studies and modeling about car following behavior had some important limitations. One of the main and clear defects of the introduced models was the very large number of parameters that made their calibration very time-consuming and costly. Also, any change in these parameters, even slight ones, severely disrupted the output. In this study, an artificial neural network approximator was used to introduce a trajectory model for vehicle movements. In this regard, the Levenberg-Marquardt back propagation function and the hyperbolic tangent sigmoid function were employed as the training and the transfer functions, respectively. One of the important aspects in identifying driver behavior is the reaction time. This parameter shows the period between the time the driver recognizes a stimulus and the time a suitable response is shown to that stimulus. In this paper, the actual data on car following from the NGSIM project was used to determine the performance of the proposed model. This dataset was used for the purpose of expanding behavioral algorithm in micro simulation. Sixty percent of the data was entered into the designed artificial neural network approximator as the training data, twenty percent as the testing data, and twenty percent as the evaluation data. A statistical and a micro simulation method were employed to show the accuracy of the proposed model. Moreover, the two popular Gipps and Helly models were implemented. Finally, it was shown that the accuracy of the proposed model was much higher - and its computational costs were lower - than those of other models when calibration operations were not performed on these models. Therefore, the proposed model can be used for displaying and predicting trajectories of moving

  10. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ... (extended from Leavitt, 1965). This text identifies aspects of network-based effectiveness that can benefit from a better understanding of leadership and management development of people, procedures, technology, and organizations...

  11. Neural Network Based Prediction of Conformational Free Energies - A New Route toward Coarse-Grained Simulation Models.

    Science.gov (United States)

    Lemke, Tobias; Peter, Christine

    2017-12-12

    Coarse-grained (CG) simulation models have become very popular tools to study complex molecular systems with great computational efficiency on length and time scales that are inaccessible to simulations at atomistic resolution. In so-called bottom-up coarse-graining strategies, the interactions in the CG model are devised such that an accurate representation of an atomistic sampling of configurational phase space is achieved. This means the coarse-graining methods use the underlying multibody potential of mean force (i.e., free-energy surface) derived from the atomistic simulation as parametrization target. Here, we present a new method where a neural network (NN) is used to extract high-dimensional free energy surfaces (FES) from molecular dynamics (MD) simulation trajectories. These FES are used for simulations on a CG level of resolution. The method is applied to simulating homo-oligo-peptides (oligo-glutamic-acid (oligo-glu) and oligo-aspartic-acid (oligo-asp)) of different lengths. We show that the NN not only is able to correctly describe the free-energy surface for oligomer lengths that it was trained on but also is able to predict the conformational sampling of longer chains.

  12. Fast Prediction of HCCI and PCCI Combustion with an Artificial Neural Network-Based Chemical Kinetic Model

    Energy Technology Data Exchange (ETDEWEB)

    Piggott, W T; Aceves, S M; Flowers, D L; Chen, J Y

    2007-09-26

    We have added the capability to look at in-cylinder fuel distributions using a previously developed ignition model within a fluid mechanics code (KIVA3V) that uses an artificial neural network (ANN) to predict ignition (The combined code: KIVA3V-ANN). KIVA3V-ANN was originally developed and validated for analysis of Homogeneous Charge Compression Ignition (HCCI) combustion, but it is also applicable to the more difficult problem of Premixed Charge Compression Ignition (PCCI) combustion. PCCI combustion refers to cases where combustion occurs as a nonmixing controlled, chemical kinetics dominated, autoignition process, where the fuel, air, and residual gas mixtures are not necessarily as homogeneous as in HCCI combustion. This paper analyzes the effects of introducing charge non-uniformity into a KIVA3V-ANN simulation. The results are compared to experimental results, as well as simulation results using a more physically representative and computationally intensive code (KIVA3V-MPI-MZ), which links a fluid mechanics code to a multi-zone detailed chemical kinetics solver. The results indicate that KIVA3V-ANN produces reasonable approximations to the more accurate KIVA3V-MPI-MZ at a much reduced computational cost.

  13. Predicting disease associations via biological network analysis.

    Science.gov (United States)

    Sun, Kai; Gonçalves, Joana P; Larminie, Chris; Przulj, Nataša

    2014-09-17

    Understanding the relationship between diseases based on the underlying biological mechanisms is one of the greatest challenges in modern biology and medicine. Exploring disease-disease associations by using system-level biological data is expected to improve our current knowledge of disease relationships, which may lead to further improvements in disease diagnosis, prognosis and treatment. We took advantage of diverse biological data including disease-gene associations and a large-scale molecular network to gain novel insights into disease relationships. We analysed and compared four publicly available disease-gene association datasets, then applied three disease similarity measures, namely annotation-based measure, function-based measure and topology-based measure, to estimate the similarity scores between diseases. We systematically evaluated disease associations obtained by these measures against a statistical measure of comorbidity which was derived from a large number of medical patient records. Our results show that the correlation between our similarity measures and comorbidity scores is substantially higher than expected at random, confirming that our similarity measures are able to recover comorbidity associations. We also demonstrated that our predicted disease associations correlated with disease associations generated from genome-wide association studies significantly higher than expected at random. Furthermore, we evaluated our predicted disease associations via mining the literature on PubMed, and presented case studies to demonstrate how these novel disease associations can be used to enhance our current knowledge of disease relationships. We present three similarity measures for predicting disease associations. The strong correlation between our predictions and known disease associations demonstrates the ability of our measures to provide novel insights into disease relationships.

  14. [Development and Application of a Performance Prediction Model for Home Care Nursing Based on a Balanced Scorecard using the Bayesian Belief Network].

    Science.gov (United States)

    Noh, Wonjung; Seomun, Gyeongae

    2015-06-01

    This study was conducted to develop key performance indicators (KPIs) for home care nursing (HCN) based on a balanced scorecard, and to construct a performance prediction model of strategic objectives using the Bayesian Belief Network (BBN). This methodological study included four steps: establishment of KPIs, performance prediction modeling, development of a performance prediction model using BBN, and simulation of a suggested nursing management strategy. An HCN expert group and a staff group participated. The content validity index was analyzed using STATA 13.0, and BBN was analyzed using HUGIN 8.0. We generated a list of KPIs composed of 4 perspectives, 10 strategic objectives, and 31 KPIs. In the validity test of the performance prediction model, the factor with the greatest variance for increasing profit was maximum cost reduction of HCN services. The factor with the smallest variance for increasing profit was a minimum image improvement for HCN. During sensitivity analysis, the probability of the expert group did not affect the sensitivity. Furthermore, simulation of a 10% image improvement predicted the most effective way to increase profit. KPIs of HCN can estimate financial and non-financial performance. The performance prediction model for HCN will be useful to improve performance.

  15. A Self-Adaptive Back-off Optimization Scheme Based on Beacons Probability Prediction for Vehicle Ad-Hoc Networks

    Institute of Scientific and Technical Information of China (English)

    Haitao Zhao; Aiqian Du; Hongbo Zhu; Dapeng Li; Nanjie Liu

    2016-01-01

    In order to improve the broadcast reception rates of beacon messages in vehicle ad-hoc networks,a conclusion that the relationship between collision probability and minimum contention window size and the relationship between expiration probability and minimum window size was reached by building a Markov model. According to this conclusion,a back-off algorithm based on adjusting the size of minimum contention window called CEB is proposed, and this algorithm is on the basis of the differential size between the number of expiration beacons and preset threshold.Simulations were done to compare the performance of CEB with that of RBEB and BEB,and the results show that the performance of the new proposed algorithm is better than that of RBEB and BEB.

  16. Neural-network-based prediction techniques for single station modeling and regional mapping of the foF2 and M(3000F2 ionospheric characteristics

    Directory of Open Access Journals (Sweden)

    T. D. Xenos

    2002-01-01

    Full Text Available In this work, Neural-Network-based single-station hourly daily foF2 and M(3000F2 modelling of 15 European ionospheric stations is investigated. The data used are neural networks and hourly daily values from the period 1964- 1988 for training the neural networks and from the period 1989-1994 for checking the prediction accuracy. Two types of models are presented for the F2-layer critical frequency prediction and two for the propagation factor M(3000F2. The first foF2 model employs the E-layer local noon calculated daily critical frequency (foE12 and the local noon F2- layer critical frequency of the previous day. The second foF2 model, which introduces a new regional mapping technique, employs the Juliusruh neural network model and uses the E-layer local noon calculated daily critical frequency (foE12, and the previous day F2-layer critical frequency measured at Juliusruh at noon. The first M(3000F2 model employs the E-layer local noon calculated daily critical frequency (foE12, its ± 3 h deviations and the local noon cosine of the solar zenith angle (cos c12. The second model, which introduces a new M(3000F2 mapping technique, employs Juliusruh neural network model and uses the E-layer local noon calculated daily critical frequency (foE12, and the previous day F2-layer critical frequency measured at Juliusruh at noon.

  17. Network-wide BGP route prediction for traffic engineering

    Science.gov (United States)

    Feamster, Nick; Rexford, Jennifer

    2002-07-01

    The Internet consists of about 13,000 Autonomous Systems (AS's) that exchange routing information using the Border Gateway Protocol (BGP). The operators of each AS must have control over the flow of traffic through their network and between neighboring AS's. However, BGP is a complicated, policy-based protocol that does not include any direct support for traffic engineering. In previous work, we have demonstrated that network operators can adapt the flow of traffic in an efficient and predictable fashion through careful adjustments to the BGP policies running on their edge routers. Nevertheless, many details of the BGP protocol and decision process make predicting the effects of these policy changes difficult. In this paper, we describe a tool that predicts traffic flow at network exit points based on the network topology, the import policy associated with each BGP session, and the routing advertisements received from neighboring AS's. We present a linear-time algorithm that computes a network-wide view of the best BGP routes for each destination prefix given a static snapshot of the network state, without simulating the complex details of BGP message passing. We describe how to construct this snapshot using the BGP routing tables and router configuration files available from operational routers. We verify the accuracy of our algorithm by applying our tool to routing and configuration data from AT&T's commercial IP network. Our route prediction techniques help support the operation of large IP backbone networks, where interdomain routing is an important aspect of traffic engineering.

  18. A non-negative matrix factorization based method for predicting disease-associated miRNAs in miRNA-disease bilayer network.

    Science.gov (United States)

    Zhong, Yingli; Xuan, Ping; Wang, Xiao; Zhang, Tiangang; Li, Jianzhong; Liu, Yong; Zhang, Weixiong

    2017-09-01

    Identification of disease-associated miRNAs (disease miRNAs) is critical for understanding disease etiology and pathogenesis. Since miRNAs exert their functions by regulating the expression of their target mRNAs, several methods based on the target genes were proposed to predict disease miRNA candidates. They achieved only limited success as they all suffered from the high false-positive rate of target prediction results. Alternatively, other prediction methods were based on the observation that miRNAs with similar functions tend to be associated with similar diseases and vice versa. The methods exploited the information about miRNAs and diseases, including the functional similarities between miRNAs, the similarities between diseases, and the associations between miRNAs and diseases. However, how to integrate the multiple kinds of information completely and consider the biological characteristic of disease miRNAs is a challenging problem. We constructed a bilayer network to represent the complex relationships among miRNAs, among diseases and between miRNAs and diseases. We proposed a non-negative matrix factorization based method to rank, so as to predict, the disease miRNA candidates. The method integrated the miRNA functional similarity, the disease similarity, and the miRNA-disease associations seamlessly, which exploited the complex relationships within the bilayer network and the consensus relationship between multiple kinds of information. Considering the correlation between the candidates related to various diseases, it predicted their respective candidates for all the diseases simultaneously. In addition, the sparseness characteristic of disease miRNAs was introduced to generate more reliable prediction model that excludes those noisy candidates. The results on 15 common diseases showed a superior performance of the new method for not only well-characterized diseases but also new ones. A detailed case study on breast neoplasms, colorectal neoplasms, lung

  19. Predicting arsenic and heavy metals contamination in groundwater resources of Ghahavand plain based on an artificial neural network optimized by imperialist competitive algorithm

    Directory of Open Access Journals (Sweden)

    Meysam Alizamir

    2017-10-01

    Full Text Available Background: The effects of trace elements on human health and the environment gives importance to the analysis of heavy metals contamination in environmental samples and, more particularly, human food sources. Therefore, the current study aimed to predict arsenic and heavy metals (Cu, Pb, and Zn contamination in the groundwater resources of Ghahavand Plain based on an artificial neural network (ANN optimized by imperialist competitive algorithm (ICA. Methods: This study presents a new method for predicting heavy metal concentrations in the groundwater resources of Ghahavand plain based on ANN and ICA. The developed approaches were trained using 75% of the data to obtain the optimum coefficients and then tested using 25% of the data. Two statistical indicators, the coefficient of determination (R2 and the root-mean-square error (RMSE, were employed to evaluate model performance. A comparison of the performances of the ICA-ANN and ANN models revealed the superiority of the new model. Results of this study demonstrate that heavy metal concentrations can be reliably predicted by applying the new approach. Results: Results from different statistical indicators during the training and validation periods indicate that the best performance can be obtained with the ANN-ICA model. Conclusion: This method can be employed effectively to predict heavy metal concentrations in the groundwater resources of Ghahavand plain.

  20. Limits of Friendship Networks in Predicting Epidemic Risk

    CERN Document Server

    Coviello, Lorenzo; Rahwan, Iyad

    2015-01-01

    The spread of an infection on a real-world social network is determined by the interplay of two processes - the dynamics of the network, whose structure changes over time according to the encounters between individuals, and the dynamics on the network, whose nodes can infect each other after an encounter. Physical encounter is the most common vehicle for the spread of infectious diseases, but detailed information about said encounters is often unavailable because expensive, unpractical to collect or privacy sensitive. The present work asks whether the friendship ties between the individuals in a social network successfully predict who is at risk. Using a dataset from a popular online review service, we build a time-varying network that is a proxy of physical encounter between users and a static network based on their reported friendship. Through computer simulation, we compare infection processes on the resulting networks and show that friendship provides a poor identification of the individuals at risk if th...

  1. Predicting network instabilities in mobile directional wireless networks

    Science.gov (United States)

    Coleman, David M.; Milner, Stuart D.; Davis, Christopher C.

    2013-09-01

    We have been investigating the dynamics of molecular systems as analogies for directional wireless networks. This has provided significant insight into reconfigurations of mobile wireless networks using directional point-to-point links (e.g. free-space optics or radio frequency). In this effort, we conceptualize the network as a giant molecule comprised of atoms that exert forces (attraction and repulsion) that stretch and relax the corresponding links. We monitor second-order variations of a potential energy function to gain an improved understanding of the large dimensionality of the optimized reconfiguration for network topology management. Ultimately, we envision this approach will allow for the prediction of two distinct events: 1) localized link failures and 2) catastrophic network events such as a partition. Our results show the detection of localized link failures and the availability for resource allocation more than one minute ahead of the failure (due to known events such as range and antenna blockage) with <80% accuracy.

  2. A Novel C2C E-Commerce Recommender System Based on Link Prediction: Applying Social Network Analysis

    OpenAIRE

    Bahabadi, Mohammad Dehghan; Golpayegani, Alireza Hashemi; Esmaeili, Leila

    2014-01-01

    Social network analysis emerged as an important research topic in sociology decades ago, and it has also attracted scientists from various fields of study like psychology, anthropology, geography and economics. In recent years, a significant number of researches has been conducted on using social network analysis to design e-commerce recommender systems. Most of the current recommender systems are designed for B2C e-commerce websites. This paper focuses on building a recommendation algorithm ...

  3. A novel function prediction approach using protein overlap networks.

    Science.gov (United States)

    Liang, Shide; Zheng, Dandan; Standley, Daron M; Guo, Huarong; Zhang, Chi

    2013-07-17

    Construction of a reliable network remains the bottleneck for network-based protein function prediction. We built an artificial network model called protein overlap network (PON) for the entire genome of yeast, fly, worm, and human, respectively. Each node of the network represents a protein, and two proteins are connected if they share a domain according to InterPro database. The function of a protein can be predicted by counting the occurrence frequency of GO (gene ontology) terms associated with domains of direct neighbors. The average success rate and coverage were 34.3% and 43.9%, respectively, for the test genomes, and were increased to 37.9% and 51.3% when a composite PON of the four species was used for the prediction. As a comparison, the success rate was 7.0% in the random control procedure. We also made predictions with GO term annotations of the second layer nodes using the composite network and obtained an impressive success rate (>30%) and coverage (>30%), even for small genomes. Further improvement was achieved by statistical analysis of manually annotated GO terms for each neighboring protein. The PONs are composed of dense modules accompanied by a few long distance connections. Based on the PONs, we developed multiple approaches effective for protein function prediction.

  4. A Remote Sensing Data Based Artificial Neural Network Approach for Predicting Climate-Sensitive Infectious Disease Outbreaks: A Case Study of Human Brucellosis

    Directory of Open Access Journals (Sweden)

    Jiao Wang

    2017-09-01

    Full Text Available Remote sensing technologies can accurately capture environmental characteristics, and together with environmental modeling approaches, help to predict climate-sensitive infectious disease outbreaks. Brucellosis remains rampant worldwide in both domesticated animals and humans. This study used human brucellosis (HB as a test case to identify important environmental determinants of the disease and predict its outbreaks. A novel artificial neural network (ANN model was developed, using annual county-level numbers of HB cases and data on 37 environmental variables, potentially associated with HB in Inner Mongolia, China. Data from 2006 to 2008 were used to train, validate and test the model, while data for 2009–2010 were used to assess the model’s performance. The Enhanced Vegetation Index was identified as the most important predictor of HB incidence, followed by land surface temperature and other temperature- and precipitation-related variables. The suitable ecological niche of HB was modeled based on these predictors. Model estimates were found to be in good agreement with reported numbers of HB cases in both the model development and assessment phases. The study suggests that HB outbreaks may be predicted, with a reasonable degree of accuracy, using the ANN model and environmental variables obtained from satellite data. The study deepened the understanding of environmental determinants of HB and advanced the methodology for prediction of climate-sensitive infectious disease outbreaks.

  5. Neural network for prediction of superheater fireside corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Makkonen, P. [Foster Wheeler Energia Oy, Karhula R and D Center, Karhula (Finland)

    1998-12-31

    Superheater corrosion causes vast annual losses to the power companies. If the corrosion could be reliably predicted, new power plants could be designed accordingly, and knowledge of fuel selection and determination of process conditions could be utilized to minimize superheater corrosion. If relations between inputs and the output are poorly known, conventional models depending on corrosion theories will fail. A prediction model based on a neural network is capable of learning from errors and improving its performance as the amount of data increases. The neural network developed during this study predicts superheater corrosion with 80 % accuracy at early stage of the project. (orig.) 10 refs.

  6. Social networks predict selective observation and information spread in ravens

    Science.gov (United States)

    Rubenstein, Daniel I.; Bugnyar, Thomas; Hoppitt, William; Mikus, Nace; Schwab, Christine

    2016-01-01

    Animals are predicted to selectively observe and learn from the conspecifics with whom they share social connections. Yet, hardly anything is known about the role of different connections in observation and learning. To address the relationships between social connections, observation and learning, we investigated transmission of information in two raven (Corvus corax) groups. First, we quantified social connections in each group by constructing networks on affiliative interactions, aggressive interactions and proximity. We then seeded novel information by training one group member on a novel task and allowing others to observe. In each group, an observation network based on who observed whose task-solving behaviour was strongly correlated with networks based on affiliative interactions and proximity. Ravens with high social centrality (strength, eigenvector, information centrality) in the affiliative interaction network were also central in the observation network, possibly as a result of solving the task sooner. Network-based diffusion analysis revealed that the order that ravens first solved the task was best predicted by connections in the affiliative interaction network in a group of subadult ravens, and by social rank and kinship (which influenced affiliative interactions) in a group of juvenile ravens. Our results demonstrate that not all social connections are equally effective at predicting the patterns of selective observation and information transmission. PMID:27493780

  7. A Neural Network Model for Prediction of Sound Quality

    DEFF Research Database (Denmark)

    Nielsen,, Lars Bramsløw

    An artificial neural network structure has been specified, implemented and optimized for the purpose of predicting the perceived sound quality for normal-hearing and hearing-impaired subjects. The network was implemented by means of commercially available software and optimized to predict results...... error on the test set. The overall concept proved functional, but further testing with data obtained from a new rating experiment is necessary to better assess the utility of this measure. The weights in the trained neural networks were analyzed to qualitatively interpret the relation between...... obtained in subjective sound quality rating experiments based on input data from an auditory model. Various types of input data and data representations from the auditory model were used as input data for the chosen network structure, which was a three-layer perceptron. This network was trained by means...

  8. Exploring function prediction in protein interaction networks via clustering methods.

    Science.gov (United States)

    Trivodaliev, Kire; Bogojeska, Aleksandra; Kocarev, Ljupco

    2014-01-01

    Complex networks have recently become the focus of research in many fields. Their structure reveals crucial information for the nodes, how they connect and share information. In our work we analyze protein interaction networks as complex networks for their functional modular structure and later use that information in the functional annotation of proteins within the network. We propose several graph representations for the protein interaction network, each having different level of complexity and inclusion of the annotation information within the graph. We aim to explore what the benefits and the drawbacks of these proposed graphs are, when they are used in the function prediction process via clustering methods. For making this cluster based prediction, we adopt well established approaches for cluster detection in complex networks using most recent representative algorithms that have been proven as efficient in the task at hand. The experiments are performed using a purified and reliable Saccharomyces cerevisiae protein interaction network, which is then used to generate the different graph representations. Each of the graph representations is later analysed in combination with each of the clustering algorithms, which have been possibly modified and implemented to fit the specific graph. We evaluate results in regards of biological validity and function prediction performance. Our results indicate that the novel ways of presenting the complex graph improve the prediction process, although the computational complexity should be taken into account when deciding on a particular approach.

  9. Exploring function prediction in protein interaction networks via clustering methods.

    Directory of Open Access Journals (Sweden)

    Kire Trivodaliev

    Full Text Available Complex networks have recently become the focus of research in many fields. Their structure reveals crucial information for the nodes, how they connect and share information. In our work we analyze protein interaction networks as complex networks for their functional modular structure and later use that information in the functional annotation of proteins within the network. We propose several graph representations for the protein interaction network, each having different level of complexity and inclusion of the annotation information within the graph. We aim to explore what the benefits and the drawbacks of these proposed graphs are, when they are used in the function prediction process via clustering methods. For making this cluster based prediction, we adopt well established approaches for cluster detection in complex networks using most recent representative algorithms that have been proven as efficient in the task at hand. The experiments are performed using a purified and reliable Saccharomyces cerevisiae protein interaction network, which is then used to generate the different graph representations. Each of the graph representations is later analysed in combination with each of the clustering algorithms, which have been possibly modified and implemented to fit the specific graph. We evaluate results in regards of biological validity and function prediction performance. Our results indicate that the novel ways of presenting the complex graph improve the prediction process, although the computational complexity should be taken into account when deciding on a particular approach.

  10. Posterior Predictive Model Checking in Bayesian Networks

    Science.gov (United States)

    Crawford, Aaron

    2014-01-01

    This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…

  11. Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties

    National Research Council Canada - National Science Library

    Hu, Lele; Huang, Tao; Shi, Xiaohe; Lu, Wen-Cong; Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    With the huge amount of uncharacterized protein sequences generated in the post-genomic age, it is highly desirable to develop effective computational methods for quickly and accurately predicting their functions...

  12. Blood glucose prediction using neural network

    Science.gov (United States)

    Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock

    2008-02-01

    We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.

  13. Operational predictive optimal control of Barcelona water transport network

    OpenAIRE

    Pascual, J.; Romera, J.; Puig, V.; Cembrano, G.; Creus, R.; Minoves, M.

    2013-01-01

    This paper describes the application of model-based predictive control (MPC) techniques to the supervisory flow management in large-scale drinking water networks including a telemetry/telecontrol system. MPC is used to generate flow control strategies (set-points for the regulatory controllers) from the sources to the consumer areas to meet future demands, optimizing performance indexes associated to operational goals such as economic cost, safety storage volumes in the network and smoothness...

  14. Hybrid robust model based on an improved functional link neural network integrating with partial least square (IFLNN-PLS) and its application to predicting key process variables.

    Science.gov (United States)

    He, Yan-Lin; Xu, Yuan; Geng, Zhi-Qiang; Zhu, Qun-Xiong

    2016-03-01

    In this paper, a hybrid robust model based on an improved functional link neural network integrating with partial least square (IFLNN-PLS) is proposed. Firstly, an improved functional link neural network with small norm of expanded weights and high input-output correlation (SNEWHIOC-FLNN) was proposed for enhancing the generalization performance of FLNN. Unlike the traditional FLNN, the expanded variables of the original inputs are not directly used as the inputs in the proposed SNEWHIOC-FLNN model. The original inputs are attached to some small norm of expanded weights. As a result, the correlation coefficient between some of the expanded variables and the outputs is enhanced. The larger the correlation coefficient is, the more relevant the expanded variables tend to be. In the end, the expanded variables with larger correlation coefficient are selected as the inputs to improve the performance of the traditional FLNN. In order to test the proposed SNEWHIOC-FLNN model, three UCI (University of California, Irvine) regression datasets named Housing, Concrete Compressive Strength (CCS), and Yacht Hydro Dynamics (YHD) are selected. Then a hybrid model based on the improved FLNN integrating with partial least square (IFLNN-PLS) was built. In IFLNN-PLS model, the connection weights are calculated using the partial least square method but not the error back propagation algorithm. Lastly, IFLNN-PLS was developed as an intelligent measurement model for accurately predicting the key variables in the Purified Terephthalic Acid (PTA) process and the High Density Polyethylene (HDPE) process. Simulation results illustrated that the IFLNN-PLS could significant improve the prediction performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Predicting and validating protein interactions using network structure.

    Directory of Open Access Journals (Sweden)

    Pao-Yang Chen

    2008-07-01

    Full Text Available Protein interactions play a vital part in the function of a cell. As experimental techniques for detection and validation of protein interactions are time consuming, there is a need for computational methods for this task. Protein interactions appear to form a network with a relatively high degree of local clustering. In this paper we exploit this clustering by suggesting a score based on triplets of observed protein interactions. The score utilises both protein characteristics and network properties. Our score based on triplets is shown to complement existing techniques for predicting protein interactions, outperforming them on data sets which display a high degree of clustering. The predicted interactions score highly against test measures for accuracy. Compared to a similar score derived from pairwise interactions only, the triplet score displays higher sensitivity and specificity. By looking at specific examples, we show how an experimental set of interactions can be enriched and validated. As part of this work we also examine the effect of different prior databases upon the accuracy of prediction and find that the interactions from the same kingdom give better results than from across kingdoms, suggesting that there may be fundamental differences between the networks. These results all emphasize that network structure is important and helps in the accurate prediction of protein interactions. The protein interaction data set and the program used in our analysis, and a list of predictions and validations, are available at http://www.stats.ox.ac.uk/bioinfo/resources/PredictingInteractions.

  16. A survey of spectrum prediction methods in cognitive radio networks

    Science.gov (United States)

    Wu, Jianwei; Li, Yanling

    2017-04-01

    Spectrum prediction technology is an effective way to solve the problems of processing latency, spectrum access, spectrum collision and energy consumption in cognitive radio networks. Spectral prediction technology is divided into three categories according to its nature, namely, spectral prediction method based on regression analysis, spectrum prediction method based on Markov model and spectrum prediction method based on machine learning. By analyzing and comparing the three kinds of prediction models, the author hopes to provide some reference for the later researchers. In this paper, the development situation, practical application and existent problems of three kinds of forecasting models are analyzed and summarized. On this basis, this paper discusses the development trend of the next step.

  17. Predicting biological networks from genomic data

    DEFF Research Database (Denmark)

    Harrington, Eoghan D; Jensen, Lars J; Bork, Peer

    2008-01-01

    Continuing improvements in DNA sequencing technologies are providing us with vast amounts of genomic data from an ever-widening range of organisms. The resulting challenge for bioinformatics is to interpret this deluge of data and place it back into its biological context. Biological networks...... provide a conceptual framework with which we can describe part of this context, namely the different interactions that occur between the molecular components of a cell. Here, we review the computational methods available to predict biological networks from genomic sequence data and discuss how they relate...

  18. PREDICTION OF PM2.5 CONCENTRATIONS USING TEMPERATURE INVERSION EFFECTS BASED ON AN ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. A. Bahari

    2014-10-01

    Full Text Available Today, air pollutant is a big challenge for busy and big cities due to its direct effect on both human health and the environment. Tehran, as the capital city of Iran, concludes 12 million people and is one of the most polluted cities in Iran. According to the reports, the main cause of Tehran's pollution is particle matters. The main factors affecting the density and distribution of pollution in Tehran are topography, traffic, and meteorological parameters including wind speed and direction, environment temperature, cloud cover, relative humidity, the sunshine overs a day, the rainfall, pressure, and temperature inversion. To help the urban management of Tehran, in this paper, a novel method is proposed to predicted PM2.5 concentration for upcoming 72 hours. The results show that the proposed model has high capability in predicting PM2.5 concentration and the achieved statistic coefficient of determination (R2 was equal to 0.61–0.79, which indicates the goodness of fit of our proposed model supports the prediction of PM2.5 concentration.

  19. Predicting the future trend of popularity by network diffusion

    Science.gov (United States)

    Zeng, An; Yeung, Chi Ho

    2016-06-01

    Conventional approaches to predict the future popularity of products are mainly based on extrapolation of their current popularity, which overlooks the hidden microscopic information under the macroscopic trend. Here, we study diffusion processes on consumer-product and citation networks to exploit the hidden microscopic information and connect consumers to their potential purchase, publications to their potential citers to obtain a prediction for future item popularity. By using the data obtained from the largest online retailers including Netflix and Amazon as well as the American Physical Society citation networks, we found that our method outperforms the accurate short-term extrapolation and identifies the potentially popular items long before they become prominent.

  20. High solar activity predictions through an artificial neural network

    Science.gov (United States)

    Orozco-Del-Castillo, M. G.; Ortiz-Alemán, J. C.; Couder-Castañeda, C.; Hernández-Gómez, J. J.; Solís-Santomé, A.

    The effects of high-energy particles coming from the Sun on human health as well as in the integrity of outer space electronics make the prediction of periods of high solar activity (HSA) a task of significant importance. Since periodicities in solar indexes have been identified, long-term predictions can be achieved. In this paper, we present a method based on an artificial neural network to find a pattern in some harmonics which represent such periodicities. We used data from 1973 to 2010 to train the neural network, and different historical data for its validation. We also used the neural network along with a statistical analysis of its performance with known data to predict periods of HSA with different confidence intervals according to the three-sigma rule associated with solar cycles 24-26, which we found to occur before 2040.

  1. Evaluating the predictability of PM10 grades in Seoul, Korea using a neural network model based on synoptic patterns.

    Science.gov (United States)

    Hur, Sun-Kyong; Oh, Hye-Ryun; Ho, Chang-Hoi; Kim, Jinwon; Song, Chang-Keun; Chang, Lim-Seok; Lee, Jae-Bum

    2016-11-01

    As of November 2014, the Korean Ministry of Environment (KME) has been forecasting the concentration of particulate matter with diameters ≤ 10 μm (PM10) classified into four grades: low (PM10 ≤ 30 μg m(-3)), moderate (30  150 μg m(-3)). The KME operational center generates PM10 forecasts using statistical and chemistry-transport models, but the overall performance and the hit rate for the four PM10 grades has not previously been evaluated. To provide a statistical reference for the current air quality forecasting system, we have developed a neural network model based on the synoptic patterns of several meteorological fields such as geopotential height, air temperature, relative humidity, and wind. Hindcast of the four PM10 grades in Seoul, Korea was performed for the cold seasons (October-March) of 2001-2014 when the high and very high PM10 grades are frequently observed. Because synoptic patterns of the meteorological fields are distinctive for each PM10 grade, these fields were adopted and quantified as predictors in the form of cosine similarities to train the neural network model. Using these predictors in conjunction with the PM10 concentration in Seoul from the day before prediction as an additional predictor, an overall hit rate of 69% was achieved; the hit rates for the low, moderate, high, and very high PM10 grades were 33%, 83%, 45%, and 33%, respectively. Our findings also suggest that the synoptic patterns of meteorological variables are reliable predictors for the identification of the favorable conditions for each PM10 grade, as well as for the transboundary transport of PM10 from China. This evaluation of PM10 predictability can be reliably used as a statistical reference and further, complement to the current air quality forecasting system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica.

    Science.gov (United States)

    Prasad, Archana; Prakash, Om; Mehrotra, Shakti; Khan, Feroz; Mathur, Ajay Kumar; Mathur, Archana

    2017-01-01

    An artificial neural network (ANN)-based modelling approach is used to determine the synergistic effect of five major components of growth medium (Mg, Cu, Zn, nitrate and sucrose) on improved in vitro biomass yield in multiple shoot cultures of Centella asiatica. The back propagation neural network (BPNN) was employed to predict optimal biomass accumulation in terms of growth index over a defined culture duration of 35 days. The four variable concentrations of five media components, i.e. MgSO 4 (0, 0.75, 1.5, 3.0 mM), ZnSO 4 (0, 15, 30, 60 μM), CuSO 4 (0, 0.05, 0.1, 0.2 μM), NO 3 (20, 30, 40, 60 mM) and sucrose (1, 3, 5, 7 %, w/v) were taken as inputs for the ANN model. The designed model was evaluated by performing three different sets of validation experiments that indicated a greater similarity between the target and predicted dataset. The results of the modelling experiment suggested that 1.5 mM Mg, 30 μM Zn, 0.1 μM Cu, 40 mM NO 3 and 6 % (w/v) sucrose were the respective optimal concentrations of the tested medium components for achieving maximum growth index of 1654.46 with high centelloside yield (62.37 mg DW/culture) in the cultured multiple shoots. This study can facilitate the generation of higher biomass of uniform, clean, good quality C. asiatica herb that can efficiently be utilized by pharmaceutical industries.

  3. Prediction of tides using back-propagation neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    of tides. This neural network model predicts the time series data of hourly tides directly while using an efficient learning process called quickprop based on a previous set of data. Hourly tidal data measured at Gopalpur port - east coast of India was used...

  4. Wind Power Plant Prediction by Using Neural Networks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  5. Comparisons of Spatial Predictions of Conductivity on a Stream Network in an Appalachian Watershed

    Science.gov (United States)

    We made spatial predictions of specific conductance based on spatial stream network (SSN) modeling to compare conductivity measurements of components of the network, such as headwaters, tributaries, and mainstem, which have different spatial extents in a study Appalachian watersh...

  6. A scoring system based on artificial neural network for predicting 10-year survival in stage II A colon cancer patients after radical surgery.

    Science.gov (United States)

    Peng, Jian-Hong; Fang, Yu-Jing; Li, Cai-Xia; Ou, Qing-Jian; Jiang, Wu; Lu, Shi-Xun; Lu, Zhen-Hai; Li, Pei-Xing; Yun, Jing-Ping; Zhang, Rong-Xin; Pan, Zhi-Zhong; Wan, De Sen

    2016-04-19

    Nearly 20% patients with stage II A colon cancer will develop recurrent disease post-operatively. The present study aims to develop a scoring system based on Artificial Neural Network (ANN) model for predicting 10-year survival outcome. The clinical and molecular data of 117 stage II A colon cancer patients from Sun Yat-sen University Cancer Center were used for training set and test set; poor pathological grading (score 49), reduced expression of TGFBR2 (score 33), over-expression of TGF-β (score 45), MAPK (score 32), pin1 (score 100), β-catenin in tumor tissue (score 50) and reduced expression of TGF-β in normal mucosa (score 22) were selected as the prognostic risk predictors. According to the developed scoring system, the patients were divided into 3 subgroups, which were supposed with higher, moderate and lower risk levels. As a result, for the 3 subgroups, the 10-year overall survival (OS) rates were 16.7%, 62.9% and 100% (P cancer could help to predict long-term survival and screen out high-risk individuals for more vigorous treatment.

  7. Person Movement Prediction Using Neural Networks

    OpenAIRE

    Vintan, Lucian; Gellert, Arpad; Petzold, Jan; Ungerer, Theo

    2006-01-01

    Ubiquitous systems use context information to adapt appliance behavior to human needs. Even more convenience is reached if the appliance foresees the user's desires and acts proactively. This paper proposes neural prediction techniques to anticipate a person's next movement. We focus on neural predictors (multi-layer perceptron with back-propagation learning) with and without pre-training. The optimal configuration of the neural network is determined by evaluating movement sequences of real p...

  8. Predicting economic growth with stock networks

    Science.gov (United States)

    Heiberger, Raphael H.

    2018-01-01

    Networks derived from stock prices are often used to model developments on financial markets and are tightly intertwined with crises. Yet, the influence of changing market topologies on the broader economy (i.e. GDP) is unclear. In this paper, we propose a Bayesian approach that utilizes individual-level network measures of companies as lagged probabilistic features to predict national economic growth. We use a comprehensive data set consisting of Standard and Poor's 500 corporations from January 1988 until October 2016. The final model forecasts correctly all major recession and prosperity phases of the U.S. economy up to one year ahead. By employing different network measures on the level of corporations, we can also identify which companies' stocks possess a key role in a changing economic environment and may be used as indication of critical (and prosperous) developments. More generally, the proposed approach allows to predict probabilities for different overall states of social entities by using local network positions and could be applied on various phenomena.

  9. HEPNet: A Knowledge Base Model of Human Energy Pool Network for Predicting the Energy Availability Status of an Individual.

    Directory of Open Access Journals (Sweden)

    Abhishek Sengupta

    Full Text Available HEPNet is an electronic representation of metabolic reactions occurring within human cellular organization focusing on inflow and outflow of the energy currency ATP, GTP and other energy associated moieties. The backbone of HEPNet consists of primary bio-molecules such as carbohydrates, proteins and fats which ultimately constitute the chief source for the synthesis and obliteration of energy currencies in a cell. A series of biochemical pathways and reactions constituting the catabolism and anabolism of various metabolites are portrayed through cellular compartmentalization. The depicted pathways function synchronously toward an overarching goal of producing ATP and other energy associated moieties to bring into play a variety of cellular functions. HEPNet is manually curated with raw data from experiments and is also connected to KEGG and Reactome databases. This model has been validated by simulating it with physiological states like fasting, starvation, exercise and disease conditions like glycaemia, uremia and dihydrolipoamide dehydrogenase deficiency (DLDD. The results clearly indicate that ATP is the master regulator under different metabolic conditions and physiological states. The results also highlight that energy currencies play a minor role. However, the moiety creatine phosphate has a unique character, since it is a ready-made source of phosphoryl groups for the rapid synthesis of ATP from ADP. HEPNet provides a framework for further expanding the network diverse age groups of both the sexes, followed by the understanding of energetics in more complex metabolic pathways that are related to human disorders.

  10. Improving link prediction in complex networks by adaptively exploiting multiple structural features of networks

    Science.gov (United States)

    Ma, Chuang; Bao, Zhong-Kui; Zhang, Hai-Feng

    2017-10-01

    So far, many network-structure-based link prediction methods have been proposed. However, these methods only highlight one or two structural features of networks, and then use the methods to predict missing links in different networks. The performances of these existing methods are not always satisfied in all cases since each network has its unique underlying structural features. In this paper, by analyzing different real networks, we find that the structural features of different networks are remarkably different. In particular, even in the same network, their inner structural features are utterly different. Therefore, more structural features should be considered. However, owing to the remarkably different structural features, the contributions of different features are hard to be given in advance. Inspired by these facts, an adaptive fusion model regarding link prediction is proposed to incorporate multiple structural features. In the model, a logistic function combing multiple structural features is defined, then the weight of each feature in the logistic function is adaptively determined by exploiting the known structure information. Last, we use the "learnt" logistic function to predict the connection probabilities of missing links. According to our experimental results, we find that the performance of our adaptive fusion model is better than many similarity indices.

  11. Predicting the evolution of social networks with life cycle events.

    Science.gov (United States)

    Sharmeen, Fariya; Arentze, Theo; Timmermans, Harry

    This paper presents a model of social network evolution, to predict and simulate changes in social networks induced by lifecycle events. We argue that social networks change with lifecycle events, and we extend a model of friendship selection to incorporate these dynamics of personal social networks. The model uses theories of homophily and reciprocity and is formulated in a random utility maximization framework to predict the formation of social ties between individuals in the population. It is then extended to predict the evolution of social networks in response to life cycle events. The model is estimated using attribute data of a national sample and an event-based retrospective dataset collected in 2009 and 2011 respectively. Findings suggest that homophily has a strong effect on the formation of new ties. However, heterophily also plays a role in maintaining existing ties. Although the motivation of this research stems from incorporating social network dynamics in large-scale travel behaviour micro-simulation models, the research can be used in a variety of fields for similar purposes.

  12. Neural networks for the prediction organic chemistry reactions

    CERN Document Server

    Wei, Jennifer N; Aspuru-Guzik, Alán

    2016-01-01

    Reaction prediction remains one of the great challenges for organic chemistry. Solving this problem computationally requires the programming of a vast amount of knowledge and intuition of the rules of organic chemistry and the development of algorithms for their application. It is desirable to develop algorithms that, like humans, "learn" from being exposed to examples of the application of the rules of organic chemistry. In this work, we introduce a novel algorithm for predicting the products of organic chemistry reactions using machine learning to first identify the reaction type. In particular, we trained deep convolutional neural networks to predict the outcome of reactions based example reactions, using a new reaction fingerprint model. Due to the flexibility of neural networks, the system can attempt to predict reactions outside the domain where it was trained. We test this capability on problems from a popular organic chemistry textbook.

  13. MODEL JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PARAMETER KUALITAS TOMAT BERDASARKAN PARAMETER WARNA RGB (An artificial neural network model for predicting tomato quality parameters based on color

    Directory of Open Access Journals (Sweden)

    Rudiati Evi Masithoh

    2013-03-01

    Full Text Available Artificial neural networks (ANN was used to predict the quality parameters of tomato, i.e. Brix, citric acid, total carotene, and vitamin C. ANN was developed from Red Green Blue (RGB image data of tomatoes measured using a developed computer vision system (CVS. Qualitative analysis of tomato compositions were obtained from laboratory experiments. ANN model was based on a feedforward backpropagation network with different training functions, namely gradient descent (traingd, gradient descent with the resilient backpropagation (trainrp, Broyden, Fletcher, Goldfrab and Shanno (BFGS quasi-Newton (trainbfg, as well as Levenberg Marquardt (trainlm.  The network structure using logsig and linear (purelin activation function at the hidden and output layer, respectively, and using  the trainlm as a training function resulted in the best performance. Correlation coefficient (r of training and validation process were 0.97 - 0.99 and 0.92 - 0.99, whereas the MAE values ​​ranged from 0.01 to 0.23 and 0.03 to 0.59, respectively. Keywords: Artificial neural network, trainlm, tomato, RGB   Jaringan syaraf tiruan (JST digunakan untuk memprediksi parameter kualitas tomat, yaitu Brix, asam sitrat, karoten total, dan vitamin C. JST dikembangkan dari data Red Green Blue (RGB  citra tomat yang diukur menggunakan computer vision system. Data kualitas tomat diperoleh dari analisis di laboratorium. Struktur model JST didasarkan pada jaringan feedforward backpropagation dengan berbagai fungsi pelatihan, yaitu gradient descent (traingd, gradient descent dengan resilient backpropagation (trainrp, Broyden, Fletcher, Goldfrab dan Shanno (BFGS quasi-Newton (trainbfg, serta Levenberg Marquardt (trainlm. Fungsi pelatihan yang terbaik adalah menggunakan trainlm, serta pada struktur jaringan digunakan fungsi aktivasi logsig pada lapisan tersembunyi dan linier (purelin pada lapisan keluaran. dengan 1000 epoch. Nilai koefisien korelasi (r pada tahap pelatihan dan validasi

  14. Prediction of surface distress using neural networks

    Science.gov (United States)

    Hamdi, Hadiwardoyo, Sigit P.; Correia, A. Gomes; Pereira, Paulo; Cortez, Paulo

    2017-06-01

    Road infrastructures contribute to a healthy economy throughout a sustainable distribution of goods and services. A road network requires appropriately programmed maintenance treatments in order to keep roads assets in good condition, providing maximum safety for road users under a cost-effective approach. Surface Distress is the key element to identify road condition and may be generated by many different factors. In this paper, a new approach is aimed to predict Surface Distress Index (SDI) values following a data-driven approach. Later this model will be accordingly applied by using data obtained from the Integrated Road Management System (IRMS) database. Artificial Neural Networks (ANNs) are used to predict SDI index using input variables related to the surface of distress, i.e., crack area and width, pothole, rutting, patching and depression. The achieved results show that ANN is able to predict SDI with high correlation factor (R2 = 0.996%). Moreover, a sensitivity analysis was applied to the ANN model, revealing the influence of the most relevant input parameters for SDI prediction, namely rutting (59.8%), crack width (29.9%) and crack area (5.0%), patching (3.0%), pothole (1.7%) and depression (0.3%).

  15. Predicting model on ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter based on BP neural network

    Directory of Open Access Journals (Sweden)

    Yu Jingyuan

    2011-08-01

    Full Text Available In present study, BP neural network model was proposed for the prediction of ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The inputs of the BP neural network model were the applied load on the epispastic polystyrene template (F, centrifugal acceleration (v and sintering temperature (T, while the only output was the ultimate compressive strength (σ. According to the registered BP model, the effects of F, v, T on σ were analyzed. The predicted results agree with the actual data within reasonable experimental error, indicating that the BP model is practically a very useful tool in property prediction and process parameter design of the Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting.

  16. Contention aware mobility prediction routing for intermittently connected mobile networks

    KAUST Repository

    Elwhishi, Ahmed

    2013-04-26

    This paper introduces a novel multi-copy routing protocol, called predict and forward (PF), for delay tolerant networks, which aims to explore the possibility of using mobile nodes as message carriers for end-to-end delivery of the messages. With PF, the message forwarding decision is made by manipulating the probability distribution of future inter-contact and contact durations based on the network status, including wireless link condition and nodal buffer availability. In particular, PF is based on the observations that the node mobility behavior is semi-deterministic and could be predicted once there is sufficient mobility history information. We implemented the proposed protocol and compared it with a number of existing encounter-based routing approaches in terms of delivery delay, delivery ratio, and the number of transmissions required for message delivery. The simulation results show that PF outperforms all the counterpart multi-copy encounter-based routing protocols considered in the study.

  17. Radial-Basis-Function-Network-Based Prediction of Performance and Emission Characteristics in a Bio Diesel Engine Run on WCO Ester

    Directory of Open Access Journals (Sweden)

    Shiva Kumar

    2012-01-01

    Full Text Available Radial basis function neural networks (RBFNNs, which is a relatively new class of neural networks, have been investigated for their applicability for prediction of performance and emission characteristics of a diesel engine fuelled with waste cooking oil (WCO. The RBF networks were trained using the experimental data, where in load percentage, compression ratio, blend percentage, injection timing, and injection pressure were taken as the input parameters, and brake thermal efficiency (BTE, brake specific energy consumption (BSEC, exhaust gas temperature (, and engine emissions were used as the output parameters. The number of RBF centers was selected randomly. The network was initially trained using variable width values for the RBF units using a heuristic and then was trained by using fixed width values. Studies showed that RBFNN predicted results matched well with the experimental results over a wide range of operating conditions. Prediction accuracy for all the output parameters was above 90% in case of performance parameters and above 70% in case of emission parameters.

  18. Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network.

    Science.gov (United States)

    Rau, Hsiao-Hsien; Hsu, Chien-Yeh; Lin, Yu-An; Atique, Suleman; Fuad, Anis; Wei, Li-Ming; Hsu, Ming-Huei

    2016-03-01

    Diabetes mellitus is associated with an increased risk of liver cancer, and these two diseases are among the most common and important causes of morbidity and mortality in Taiwan. To use data mining techniques to develop a model for predicting the development of liver cancer within 6 years of diagnosis with type II diabetes. Data were obtained from the National Health Insurance Research Database (NHIRD) of Taiwan, which covers approximately 22 million people. In this study, we selected patients who were newly diagnosed with type II diabetes during the 2000-2003 periods, with no prior cancer diagnosis. We then used encrypted personal ID to perform data linkage with the cancer registry database to identify whether these patients were diagnosed with liver cancer. Finally, we identified 2060 cases and assigned them to a case group (patients diagnosed with liver cancer after diabetes) and a control group (patients with diabetes but no liver cancer). The risk factors were identified from the literature review and physicians' suggestion, then, chi-square test was conducted on each independent variable (or potential risk factor) for a comparison between patients with liver cancer and those without, those found to be significant were selected as the factors. We subsequently performed data training and testing to construct artificial neural network (ANN) and logistic regression (LR) prediction models. The dataset was randomly divided into 2 groups: a training group and a test group. The training group consisted of 1442 cases (70% of the entire dataset), and the prediction model was developed on the basis of the training group. The remaining 30% (618 cases) were assigned to the test group for model validation. The following 10 variables were used to develop the ANN and LR models: sex, age, alcoholic cirrhosis, nonalcoholic cirrhosis, alcoholic hepatitis, viral hepatitis, other types of chronic hepatitis, alcoholic fatty liver disease, other types of fatty liver disease, and

  19. Application of Functional Link Artificial Neural Network for Prediction of Machinery Noise in Opencast Mines

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Nanda

    2011-01-01

    Full Text Available Functional link-based neural network models were applied to predict opencast mining machineries noise. The paper analyzes the prediction capabilities of functional link neural network based noise prediction models vis-à-vis existing statistical models. In order to find the actual noise status in opencast mines, some of the popular noise prediction models, for example, ISO-9613-2, CONCAWE, VDI, and ENM, have been applied in mining and allied industries to predict the machineries noise by considering various attenuation factors. Functional link artificial neural network (FLANN, polynomial perceptron network (PPN, and Legendre neural network (LeNN were used to predict the machinery noise in opencast mines. The case study is based on data collected from an opencast coal mine of Orissa, India. From the present investigations, it could be concluded that the FLANN model give better noise prediction than the PPN and LeNN model.

  20. A Survey of Link Prediction in Social Networks

    Science.gov (United States)

    Hasan, Mohammad Al; Zaki, Mohammed J.

    Link prediction is an important task for analying social networks which also has applications in other domains like, information retrieval, bioinformatics and e-commerce. There exist a variety of techniques for link prediction, ranging from feature-based classification and kernel-based method to matrix factorization and probabilistic graphical models. These methods differ from each other with respect to model complexity, prediction performance, scalability, and generalization ability. In this article, we survey some representative link prediction methods by categorizing them by the type of the models. We largely consider three types of models: first, the traditional (non-Bayesian) models which extract a set of features to train a binary classification model. Second, the probabilistic approaches which model the joint-probability among the entities in a network by Bayesian graphical models. And, finally the linear algebraic approach which computes the similarity between the nodes in a network by rank-reduced similarity matrices. We discuss various existing link prediction models that fall in these broad categories and analyze their strength and weakness. We conclude the survey with a discussion on recent developments and future research direction.

  1. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  2. Applying Naive Bayesian Networks to Disease Prediction: a Systematic Review.

    Science.gov (United States)

    Langarizadeh, Mostafa; Moghbeli, Fateme

    2016-10-01

    Naive Bayesian networks (NBNs) are one of the most effective and simplest Bayesian networks for prediction. This paper aims to review published evidence about the application of NBNs in predicting disease and it tries to show NBNs as the fundamental algorithm for the best performance in comparison with other algorithms. PubMed was electronically checked for articles published between 2005 and 2015. For characterizing eligible articles, a comprehensive electronic searching method was conducted. Inclusion criteria were determined based on NBN and its effects on disease prediction. A total of 99 articles were found. After excluding the duplicates (n= 5), the titles and abstracts of 94 articles were skimmed according to the inclusion criteria. Finally, 38 articles remained. They were reviewed in full text and 15 articles were excluded. Eventually, 23 articles were selected which met our eligibility criteria and were included in this study. In this article, the use of NBN in predicting diseases was described. Finally, the results were reported in terms of Accuracy, Sensitivity, Specificity and Area under ROC curve (AUC). The last column in Table 2 shows the differences between NBNs and other algorithms. This systematic review (23 studies, 53,725 patients) indicates that predicting diseases based on a NBN had the best performance in most diseases in comparison with the other algorithms. Finally in most cases NBN works better than other algorithms based on the reported accuracy. The method, termed NBNs is proposed and can efficiently construct a prediction model for disease.

  3. Predicting student satisfaction with courses based on log data from a virtual learning environment – a neural network and classification tree model

    Directory of Open Access Journals (Sweden)

    Ivana Đurđević Babić

    2015-03-01

    Full Text Available Student satisfaction with courses in academic institutions is an important issue and is recognized as a form of support in ensuring effective and quality education, as well as enhancing student course experience. This paper investigates whether there is a connection between student satisfaction with courses and log data on student courses in a virtual learning environment. Furthermore, it explores whether a successful classification model for predicting student satisfaction with course can be developed based on course log data and compares the results obtained from implemented methods. The research was conducted at the Faculty of Education in Osijek and included analysis of log data and course satisfaction on a sample of third and fourth year students. Multilayer Perceptron (MLP with different activation functions and Radial Basis Function (RBF neural networks as well as classification tree models were developed, trained and tested in order to classify students into one of two categories of course satisfaction. Type I and type II errors, and input variable importance were used for model comparison and classification accuracy. The results indicate that a successful classification model using tested methods can be created. The MLP model provides the highest average classification accuracy and the lowest preference in misclassification of students with a low level of course satisfaction, although a t-test for the difference in proportions showed that the difference in performance between the compared models is not statistically significant. Student involvement in forum discussions is recognized as a valuable predictor of student satisfaction with courses in all observed models.

  4. Prediction of cyclosporine A blood levels: an application of the adaptive-network-based fuzzy inference system (ANFIS) in assisting drug therapy.

    Science.gov (United States)

    Gören, Sezer; Karahoca, Adem; Onat, Filiz Y; Gören, M Zafer

    2008-08-01

    Therapeutic drug monitoring (TDM) is a procedure in which the levels of drugs are assayed in various body fluids with the aim of individualizing the dose of critical drugs, such as cyclosporine A. Cyclosporine A assays are performed in blood. We proposed the use of the Takagi and Sugeno-type "adaptive-network-based fuzzy inference system" (ANFIS) to predict the concentration of cyclosporine A in blood samples taken from renal transplantation patients. We implemented the ANFIS model using TDM data collected from 138 patients and 20 input parameters. Input parameters for the model consisted of concurrent use of drugs, blood levels, sampling time, age, gender, and dosing intervals. Fuzzy modeling produced eight rules. The developed ANFIS model exhibited a root mean square error (RMSE) of 0.045 with respect to the training data and an error of 0.057 with respect to the checking data in the MATLAB: environment. ANFIS can effectively assist physicians in choosing best therapeutic drug dose in the clinical setting.

  5. Homophyly/kinship hypothesis: Natural communities, and predicting in networks

    Science.gov (United States)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng

    2015-02-01

    It has been a longstanding challenge to understand natural communities in real world networks. We proposed a community finding algorithm based on fitness of networks, two algorithms for prediction, accurate prediction and confirmation of keywords for papers in the citation network Arxiv HEP-TH (high energy physics theory), and the measures of internal centrality, external de-centrality, internal and external slopes to characterize the structures of communities. We implemented our algorithms on 2 citation and 5 cooperation graphs. Our experiments explored and validated a homophyly/kinship principle of real world networks. The homophyly/kinship principle includes: (1) homophyly is the natural selection in real world networks, similar to Darwin's kinship selection in nature, (2) real world networks consist of natural communities generated by the natural selection of homophyly, (3) most individuals in a natural community share a short list of common attributes, (4) natural communities have an internal centrality (or internal heterogeneity) that a natural community has a few nodes dominating most of the individuals in the community, (5) natural communities have an external de-centrality (or external homogeneity) that external links of a natural community homogeneously distributed in different communities, and (6) natural communities of a given network have typical structures determined by the internal slopes, and have typical patterns of outgoing links determined by external slopes, etc. Our homophyly/kinship principle perfectly matches Darwin's observation that animals from ants to people form social groups in which most individuals work for the common good, and that kinship could encourage altruistic behavior. Our homophyly/kinship principle is the network version of Darwinian theory, and builds a bridge between Darwinian evolution and network science.

  6. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China

    Science.gov (United States)

    Xu, Shiluo; Niu, Ruiqing

    2018-02-01

    Every year, landslides pose huge threats to thousands of people in China, especially those in the Three Gorges area. It is thus necessary to establish an early warning system to help prevent property damage and save peoples' lives. Most of the landslide displacement prediction models that have been proposed are static models. However, landslides are dynamic systems. In this paper, the total accumulative displacement of the Baijiabao landslide is divided into trend and periodic components using empirical mode decomposition. The trend component is predicted using an S-curve estimation, and the total periodic component is predicted using a long short-term memory neural network (LSTM). LSTM is a dynamic model that can remember historical information and apply it to the current output. Six triggering factors are chosen to predict the periodic term using the Pearson cross-correlation coefficient and mutual information. These factors include the cumulative precipitation during the previous month, the cumulative precipitation during a two-month period, the reservoir level during the current month, the change in the reservoir level during the previous month, the cumulative increment of the reservoir level during the current month, and the cumulative displacement during the previous month. When using one-step-ahead prediction, LSTM yields a root mean squared error (RMSE) value of 6.112 mm, while the support vector machine for regression (SVR) and the back-propagation neural network (BP) yield values of 10.686 mm and 8.237 mm, respectively. Meanwhile, the Elman network (Elman) yields an RMSE value of 6.579 mm. In addition, when using multi-step-ahead prediction, LSTM obtains an RMSE value of 8.648 mm, while SVR, BP and the Elman network obtains RSME values of 13.418 mm, 13.014 mm, and 13.370 mm. The predicted results indicate that, to some extent, the dynamic model (LSTM) achieves results that are more accurate than those of the static models (i.e., SVR and BP). LSTM even

  7. Wave transmission prediction of multilayer floating breakwater using neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Patil, S.G.; Hegde, A.V.

    in unison to solve a specific problem. The network learns through examples, so it requires good examples to train properly and further a trained network model can be used for prediction purpose. Proceedings of ICOE 2009 Wave transmission... prediction of multilayer floating breakwater using neural network 577 In order to allow the network to learn both non-linear and linear relationships between input nodes and output nodes, multiple-layer neural networks are often used...

  8. Network Medicine: A Network-based Approach to Human Diseases

    Science.gov (United States)

    Ghiassian, Susan Dina

    With the availability of large-scale data, it is now possible to systematically study the underlying interaction maps of many complex systems in multiple disciplines. Statistical physics has a long and successful history in modeling and characterizing systems with a large number of interacting individuals. Indeed, numerous approaches that were first developed in the context of statistical physics, such as the notion of random walks and diffusion processes, have been applied successfully to study and characterize complex systems in the context of network science. Based on these tools, network science has made important contributions to our understanding of many real-world, self-organizing systems, for example in computer science, sociology and economics. Biological systems are no exception. Indeed, recent studies reflect the necessity of applying statistical and network-based approaches in order to understand complex biological systems, such as cells. In these approaches, a cell is viewed as a complex network consisting of interactions among cellular components, such as genes and proteins. Given the cellular network as a platform, machinery, functionality and failure of a cell can be studied with network-based approaches, a field known as systems biology. Here, we apply network-based approaches to explore human diseases and their associated genes within the cellular network. This dissertation is divided in three parts: (i) A systematic analysis of the connectivity patterns among disease proteins within the cellular network. The quantification of these patterns inspires the design of an algorithm which predicts a disease-specific subnetwork containing yet unknown disease associated proteins. (ii) We apply the introduced algorithm to explore the common underlying mechanism of many complex diseases. We detect a subnetwork from which inflammatory processes initiate and result in many autoimmune diseases. (iii) The last chapter of this dissertation describes the

  9. Predicting local field potentials with recurrent neural networks.

    Science.gov (United States)

    Kim, Louis; Harer, Jacob; Rangamani, Akshay; Moran, James; Parks, Philip D; Widge, Alik; Eskandar, Emad; Dougherty, Darin; Chin, Sang Peter

    2016-08-01

    We present a Recurrent Neural Network using LSTM (Long Short Term Memory) that is capable of modeling and predicting Local Field Potentials. We train and test the network on real data recorded from epilepsy patients. We construct networks that predict multi-channel LFPs for 1, 10, and 100 milliseconds forward in time. Our results show that prediction using LSTM outperforms regression when predicting 10 and 100 millisecond forward in time.

  10. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.

    Science.gov (United States)

    Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan

    2017-02-01

    We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Evolving networks-Using past structure to predict the future

    Science.gov (United States)

    Shang, Ke-ke; Yan, Wei-sheng; Small, Michael

    2016-08-01

    Many previous studies on link prediction have focused on using common neighbors to predict the existence of links between pairs of nodes. More broadly, research into the structural properties of evolving temporal networks and temporal link prediction methods have recently attracted increasing attention. In this study, for the first time, we examine the use of links between a pair of nodes to predict their common neighbors and analyze the relationship between the weight and the structure in static networks, evolving networks, and in the corresponding randomized networks. We propose both new unweighted and weighted prediction methods and use six kinds of real networks to test our algorithms. In unweighted networks, we find that if a pair of nodes connect to each other in the current network, they will have a higher probability to connect common nodes both in the current and the future networks-and the probability will decrease with the increase of the number of neighbors. Furthermore, we find that the original networks have their particular structure and statistical characteristics which benefit link prediction. In weighted networks, the prediction algorithm performance of networks which are dominated by human factors decrease with the decrease of weight and are in general better in static networks. Furthermore, we find that geographical position and link weight both have significant influence on the transport network. Moreover, the evolving financial network has the lowest predictability. In addition, we find that the structure of non-social networks has more robustness than social networks. The structure of engineering networks has both best predictability and also robustness.

  12. Predicting the parameters of energy installations with laser ignition: Neural network models

    Directory of Open Access Journals (Sweden)

    Alexey A. Pastukhov

    2015-06-01

    Full Text Available This article considers the possibility of using artificial neural networks for predicting the parameters of the model energy installation with laser ignition. The main stages of creating a prognostic model based on an artificial neural network have been presented. Input data were analyzed by principal component method. The synthesized neural network was designed to predict the parameter value of the model in question. The artificial neural network was trained by a back-propagation algorithm. The efficiency of the artificial neural networks and their applicability to predicting parameter values of various rocket engine elements were demonstrated.

  13. Application of Artificial Neural Networks for Predicting Generated Wind Power

    OpenAIRE

    Vijendra Singh

    2016-01-01

    This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, gener...

  14. Prediction of Cyberbullying Incidents on the Instagram Social Network

    OpenAIRE

    Hosseinmardi, Homa; Mattson, Sabrina Arredondo; Rafiq, Rahat Ibn; Han, Richard; Lv, Qin; Mishr, Shivakant

    2015-01-01

    Cyberbullying is a growing problem affecting more than half of all American teens. The main goal of this paper is to investigate fundamentally new approaches to understand and automatically detect and predict incidents of cyberbullying in Instagram, a media-based mobile social network. In this work, we have collected a sample data set consisting of Instagram images and their associated comments. We then designed a labeling study and employed human contributors at the crowd-sourced CrowdFlower...

  15. Deep Recurrent Neural Networks for Sequential Phenotype Prediction in Genomics

    OpenAIRE

    Pouladi, Farhad; Salehinejad, Hojjat; Gilani, Amir Mohammad

    2015-01-01

    In analyzing of modern biological data, we are often dealing with ill-posed problems and missing data, mostly due to high dimensionality and multicollinearity of the dataset. In this paper, we have proposed a system based on matrix factorization (MF) and deep recurrent neural networks (DRNNs) for genotype imputation and phenotype sequences prediction. In order to model the long-term dependencies of phenotype data, the new Recurrent Linear Units (ReLU) learning strategy is utilized for the fir...

  16. Netter: re-ranking gene network inference predictions using structural network properties.

    Science.gov (United States)

    Ruyssinck, Joeri; Demeester, Piet; Dhaene, Tom; Saeys, Yvan

    2016-02-09

    Many algorithms have been developed to infer the topology of gene regulatory networks from gene expression data. These methods typically produce a ranking of links between genes with associated confidence scores, after which a certain threshold is chosen to produce the inferred topology. However, the structural properties of the predicted network do not resemble those typical for a gene regulatory network, as most algorithms only take into account connections found in the data and do not include known graph properties in their inference process. This lowers the prediction accuracy of these methods, limiting their usability in practice. We propose a post-processing algorithm which is applicable to any confidence ranking of regulatory interactions obtained from a network inference method which can use, inter alia, graphlets and several graph-invariant properties to re-rank the links into a more accurate prediction. To demonstrate the potential of our approach, we re-rank predictions of six different state-of-the-art algorithms using three simple network properties as optimization criteria and show that Netter can improve the predictions made on both artificially generated data as well as the DREAM4 and DREAM5 benchmarks. Additionally, the DREAM5 E.coli. community prediction inferred from real expression data is further improved. Furthermore, Netter compares favorably to other post-processing algorithms and is not restricted to correlation-like predictions. Lastly, we demonstrate that the performance increase is robust for a wide range of parameter settings. Netter is available at http://bioinformatics.intec.ugent.be. Network inference from high-throughput data is a long-standing challenge. In this work, we present Netter, which can further refine network predictions based on a set of user-defined graph properties. Netter is a flexible system which can be applied in unison with any method producing a ranking from omics data. It can be tailored to specific prior

  17. Evaluating the applicability domain in the case of classification predictive models for carcinogenicity based on the counter propagation artificial neural network.

    Science.gov (United States)

    Fjodorova, Natalja; Novič, Marjana; Roncaglioni, Alessandra; Benfenati, Emilio

    2011-12-01

    The applicability domain (AD) of models developed for regulatory use has attached great attention recently. The AD of quantitative structure-activity relationship (QSAR) models is the response and chemical structure space in which the model makes predictions with a given reliability. The evaluation of AD of regressions QSAR models for congeneric sets of chemicals can be find in many papers and books while the issue about metrics for the evaluation of an AD for the non-linear models (like neural networks) for the diverse set of chemicals represents the new field of investigations in QSAR studies. The scientific society is standing before the challenge to find out reliable way for the evaluation of an AD of non linear models. The new metrics for the evaluation of the AD of the counter propagation artificial neural network (CP ANN) models are discussed in the article: the Euclidean distances between an object (molecule) and the corresponding excited neuron of the neural network and between an object (molecule) and the representative object (vector of average values of descriptors). The investigation of the training and test sets chemicals coverage in the descriptors space was made with the respect to false predicted chemicals. The leverage approach was used to compare non linear (CP ANN) models with linear ones.

  18. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  19. Experimental and artificial neural network based prediction of performance and emission characteristics of DI diesel engine using Calophyllum inophyllum methyl ester at different nozzle opening pressure

    Science.gov (United States)

    Vairamuthu, G.; Thangagiri, B.; Sundarapandian, S.

    2017-07-01

    The present work investigates the effect of varying Nozzle Opening Pressures (NOP) from 220 bar to 250 bar on performance, emissions and combustion characteristics of Calophyllum inophyllum Methyl Ester (CIME) in a constant speed, Direct Injection (DI) diesel engine using Artificial Neural Network (ANN) approach. An ANN model has been developed to predict a correlation between specific fuel consumption (SFC), brake thermal efficiency (BTE), exhaust gas temperature (EGT), Unburnt hydrocarbon (UBHC), CO, CO2, NOx and smoke density using load, blend (B0 and B100) and NOP as input data. A standard Back-Propagation Algorithm (BPA) for the engine is used in this model. A Multi Layer Perceptron network (MLP) is used for nonlinear mapping between the input and the output parameters. An ANN model can predict the performance of diesel engine and the exhaust emissions with correlation coefficient (R2) in the range of 0.98-1. Mean Relative Errors (MRE) values are in the range of 0.46-5.8%, while the Mean Square Errors (MSE) are found to be very low. It is evident that the ANN models are reliable tools for the prediction of DI diesel engine performance and emissions. The test results show that the optimum NOP is 250 bar with B100.

  20. Experimental and artificial neural network based prediction of performance and emission characteristics of DI diesel engine using Calophyllum inophyllum methyl ester at different nozzle opening pressure

    Science.gov (United States)

    Vairamuthu, G.; Thangagiri, B.; Sundarapandian, S.

    2018-01-01

    The present work investigates the effect of varying Nozzle Opening Pressures (NOP) from 220 bar to 250 bar on performance, emissions and combustion characteristics of Calophyllum inophyllum Methyl Ester (CIME) in a constant speed, Direct Injection (DI) diesel engine using Artificial Neural Network (ANN) approach. An ANN model has been developed to predict a correlation between specific fuel consumption (SFC), brake thermal efficiency (BTE), exhaust gas temperature (EGT), Unburnt hydrocarbon (UBHC), CO, CO2, NOx and smoke density using load, blend (B0 and B100) and NOP as input data. A standard Back-Propagation Algorithm (BPA) for the engine is used in this model. A Multi Layer Perceptron network (MLP) is used for nonlinear mapping between the input and the output parameters. An ANN model can predict the performance of diesel engine and the exhaust emissions with correlation coefficient (R2) in the range of 0.98-1. Mean Relative Errors (MRE) values are in the range of 0.46-5.8%, while the Mean Square Errors (MSE) are found to be very low. It is evident that the ANN models are reliable tools for the prediction of DI diesel engine performance and emissions. The test results show that the optimum NOP is 250 bar with B100.

  1. Solar Energy Prediction for Malaysia Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Tamer Khatib

    2012-01-01

    Full Text Available This paper presents a solar energy prediction method using artificial neural networks (ANNs. An ANN predicts a clearness index that is used to calculate global and diffuse solar irradiations. The ANN model is based on the feed forward multilayer perception model with four inputs and one output. The inputs are latitude, longitude, day number, and sunshine ratio; the output is the clearness index. Data from 28 weather stations were used in this research, and 23 stations were used to train the network, while 5 stations were used to test the network. In addition, the measured solar irradiations from the sites were used to derive an equation to calculate the diffused solar irradiation, a function of the global solar irradiation and the clearness index. The proposed equation has reduced the mean absolute percentage error (MAPE in estimating the diffused solar irradiation compared with the conventional equation. Based on the results, the average MAPE, mean bias error and root mean square error for the predicted global solar irradiation are 5.92%, 1.46%, and 7.96%. The MAPE in estimating the diffused solar irradiation is 9.8%. A comparison with previous work was done, and the proposed approach was found to be more efficient and accurate than previous methods.

  2. Feedforward Backpropagation Neural Networks in Prediction of Farmer Risk Preferences

    OpenAIRE

    Kastens, Terry L.; Featherstone, Allen M.

    1996-01-01

    An out-of-sample prediction of Kansas farmers' responses to five surveyed questions involving risk is used to compare ordered multinomial logistic regression models with feedforward backpropagation neural network models. Although the logistic models often predict more accurately than the neural network models in a mean-squared error sense, the neural network models are shown to be more accommodating of loss functions associated with a desire to predict certain combinations of categorical resp...

  3. Semantic and layered protein function prediction from PPI networks.

    Science.gov (United States)

    Zhu, Wei; Hou, Jingyu; Chen, Yi-Ping Phoebe

    2010-11-21

    The past few years have seen a rapid development in novel high-throughput technologies that have created large-scale data on protein-protein interactions (PPI) across human and most model species. This data is commonly represented as networks, with nodes representing proteins and edges representing the PPIs. A fundamental challenge to bioinformatics is how to interpret this wealth of data to elucidate the interaction of patterns and the biological characteristics of the proteins. One significant purpose of this interpretation is to predict unknown protein functions. Although many approaches have been proposed in recent years, the challenge still remains how to reasonably and precisely measure the functional similarities between proteins to improve the prediction effectiveness. We used a Semantic and Layered Protein Function Prediction (SLPFP) framework to more effectively predict unknown protein functions at different functional levels. The framework relies on a new protein similarity measurement and a clustering-based protein function prediction algorithm. The new protein similarity measurement incorporates the topological structure of the PPI network, as well as the protein's semantic information in terms of known protein functions at different functional layers. Experiments on real PPI datasets were conducted to evaluate the effectiveness of the proposed framework in predicting unknown protein functions. The proposed framework has a higher prediction accuracy compared with other similar approaches. The prediction results are stable even for a large number of proteins. Furthermore, the framework is able to predict unknown functions at different functional layers within the Munich Information Center for Protein Sequence (MIPS) hierarchical functional scheme. The experimental results demonstrated that the new protein similarity measurement reflects more reasonably and precisely relationships between proteins. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Predictive Control of Networked Multiagent Systems via Cloud Computing.

    Science.gov (United States)

    Liu, Guo-Ping

    2017-01-18

    This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.

  5. Predicting product life cycle using fuzzy neural network

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi

    2014-09-01

    Full Text Available One of the most important tasks of science in different fields is to find the relationships among various phenomena in order to predict future. Production and service organizations are not exceptions and they should predict future to survive. Predicting the life cycle of the organization's products is one of the most important prediction cases in an organization. Predicting the product life cycle provides an opportunity to identify the product position and help to get a better insight about competitors. This paper deals with the predictability of the product life cycle with Adaptive Network-Based Fuzzy Inference System (ANFIS. The Population of this study was Pegah Fars products and the sample was this company's cheese products. In this regard, this paper attempts to model and predict the product life cycle of cheese products in Pegah Fars Company. In this due, a designed questionnaire was distributed among some experts, distributors and retailers and seven independent variables were selected. In this survey, ANFIS sales forecasting technique was employed and MATLAB software was used for data analysis. The results confirmed ANFIS as a good method to predict the product life cycle.

  6. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1999-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  7. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1998-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  8. Social network models predict movement and connectivity in ecological landscapes

    Science.gov (United States)

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  9. Predicting Expressive Dynamics in Piano Performances using Neural Networks

    NARCIS (Netherlands)

    van Herwaarden, Sam; Grachten, Maarten; de Haas, W. Bas

    2014-01-01

    This paper presents a model for predicting expressive accentuation in piano performances with neural networks. Using Restricted Boltzmann Machines (RBMs), features are learned from performance data, after which these features are used to predict performed loudness. During feature learning, data

  10. Failure mitigation in software defined networking employing load type prediction

    KAUST Repository

    Bouacida, Nader

    2017-07-31

    The controller is a critical piece of the SDN architecture, where it is considered as the mastermind of SDN networks. Thus, its failure will cause a significant portion of the network to fail. Overload is one of the common causes of failure since the controller is frequently invoked by new flows. Even through SDN controllers are often replicated, the significant recovery time can be an overkill for the availability of the entire network. In order to overcome the problem of the overloaded controller failure in SDN, this paper proposes a novel controller offload solution for failure mitigation based on a prediction module that anticipates the presence of a harmful long-term load. In fact, the long-standing load would eventually overwhelm the controller leading to a possible failure. To predict whether the load in the controller is short-term or long-term load, we used three different classification algorithms: Support Vector Machine, k-Nearest Neighbors, and Naive Bayes. Our evaluation results demonstrate that Support Vector Machine algorithm is applicable for detecting the type of load with an accuracy of 97.93% in a real-time scenario. Besides, our scheme succeeded to offload the controller by switching between the reactive and proactive mode in response to the prediction module output.

  11. CUFID-query: accurate network querying through random walk based network flow estimation.

    Science.gov (United States)

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive

  12. Personalized tag prediction via social influence in social networks

    Science.gov (United States)

    Yan, Zhenlei; Zhou, Jie

    2011-11-01

    Currently, social tagging systems have been adopted by many social websites. As tags help users to browse social content effectively, personalized tag prediction problem becomes important in social networks. In this paper, we present a new generative probabilistic model to solve personalized tag prediction problem. Differently with previous methods, we consider social influence between users and friends into this model. We bring two major contributions: 1) We propose a new probabilistic model which considers in social influence to describe users' actual tagging activities; 2) Based on this model, we propose a new approach to perform personalized tag prediction task. Experimental results on a real-world dataset crawled from Last.fm show that our method outperforms other methods.

  13. Common neighbours and the local-community-paradigm for topological link prediction in bipartite networks

    Science.gov (United States)

    Daminelli, Simone; Thomas, Josephine Maria; Durán, Claudio; Vittorio Cannistraci, Carlo

    2015-11-01

    Bipartite networks are powerful descriptions of complex systems characterized by two different classes of nodes and connections allowed only across but not within the two classes. Unveiling physical principles, building theories and suggesting physical models to predict bipartite links such as product-consumer connections in recommendation systems or drug-target interactions in molecular networks can provide priceless information to improve e-commerce or to accelerate pharmaceutical research. The prediction of nonobserved connections starting from those already present in the topology of a network is known as the link-prediction problem. It represents an important subject both in many-body interaction theory in physics and in new algorithms for applied tools in computer science. The rationale is that the existing connectivity structure of a network can suggest where new connections can appear with higher likelihood in an evolving network, or where nonobserved connections are missing in a partially known network. Surprisingly, current complex network theory presents a theoretical bottle-neck: a general framework for local-based link prediction directly in the bipartite domain is missing. Here, we overcome this theoretical obstacle and present a formal definition of common neighbour index and local-community-paradigm (LCP) for bipartite networks. As a consequence, we are able to introduce the first node-neighbourhood-based and LCP-based models for topological link prediction that utilize the bipartite domain. We performed link prediction evaluations in several networks of different size and of disparate origin, including technological, social and biological systems. Our models significantly improve topological prediction in many bipartite networks because they exploit local physical driving-forces that participate in the formation and organization of many real-world bipartite networks. Furthermore, we present a local-based formalism that allows to intuitively

  14. Artificial neural networks application for solid fuel slagging intensity predictions

    Directory of Open Access Journals (Sweden)

    Kakietek Sławomir

    2017-01-01

    Full Text Available Slagging issues present in pulverized steam boilers very often lead to heat transfer problems, corrosion and not planned outages of boilers which increase the cost of energy production and decrease the efficiency of energy production. Slagging especially occurs in regions with reductive atmospheres which nowadays are very common due to very strict limitations in NOx emissions. Moreover alternative fuels like biomass which are also used in combustion systems from two decades in order to decrease CO2 emissions also usually increase the risk of slagging. Thus the prediction of slagging properties of fuels is not the minor issue which can be neglected before purchasing or mixing of fuels. This however is rather difficult to estimate and even commonly known standard laboratory methods like fusion temperature determination or special indexers calculated on the basis of proximate and ultimate analyses, very often have no reasonable correlation to real boiler fuel behaviour. In this paper the method of determination of slagging properties of solid fuels based on laboratory investigation and artificial neural networks were presented. A fuel data base with over 40 fuels was created. Neural networks simulations were carried out in order to predict the beginning temperature and intensity of slagging. Reasonable results were obtained for some of tested neural networks, especially for hybrid feedforward networks with PCA technique. Consequently neural network model will be used in Common Intelligent Boiler Operation Platform (CIBOP being elaborated within CERUBIS research project for two BP-1150 and BB-1150 steam boilers. The model among others enables proper fuel selection in order to minimize slagging risk.

  15. Time series prediction with simple recurrent neural networks ...

    African Journals Online (AJOL)

    Simple recurrent neural networks are widely used in time series prediction. Most researchers and application developers often choose arbitrarily between Elman or Jordan simple recurrent neural networks for their applications. A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural network is also being used.

  16. Using Neural Networks to Predict MBA Student Success

    Science.gov (United States)

    Naik, Bijayananda; Ragothaman, Srinivasan

    2004-01-01

    Predicting MBA student performance for admission decisions is crucial for educational institutions. This paper evaluates the ability of three different models--neural networks, logit, and probit to predict MBA student performance in graduate programs. The neural network technique was used to classify applicants into successful and marginal student…

  17. Spatio-Temporal Ensemble Prediction on Mobile Broadband Network Data

    DEFF Research Database (Denmark)

    Samulevicius, Saulius; Pitarch, Yoann; Pedersen, Torben Bach

    2013-01-01

    network nodes, fully or partly, in low traffic loads. To accomplish such a dynamic network optimization, it is crucial to predict very accurately low traffic periods. In this paper, we tackle this problem using data mining and propose Spatio-Temporal Ensemble Prediction (STEP). In a nutshell, STEP...

  18. Artificial neural networks for prediction of percentage of water ...

    Indian Academy of Sciences (India)

    According to these input parameters, in the neural networks model, the percentage of water absorption of each specimen was predicted. The training and testing results in the neural networks model have shown a strong potential for predicting the percentage of water absorption of the geopolymer specimens.

  19. Centrality Robustness and Link Prediction in Complex Social Networks

    DEFF Research Database (Denmark)

    Davidsen, Søren Atmakuri; Ortiz-Arroyo, Daniel

    2012-01-01

    This chapter addresses two important issues in social network analysis that involve uncertainty. Firstly, we present am analysis on the robustness of centrality measures that extend the work presented in Borgati et al. using three types of complex network structures and one real social network....... Secondly, we present a method to predict edges in dynamic social networks. Our experimental results indicate that the robustness of the centrality measures applied to more realistic social networks follows a predictable pattern and that the use of temporal statistics could improve the accuracy achieved...

  20. A probabilistic neural network for earthquake magnitude prediction.

    Science.gov (United States)

    Adeli, Hojjat; Panakkat, Ashif

    2009-09-01

    A probabilistic neural network (PNN) is presented for predicting the magnitude of the largest earthquake in a pre-defined future time period in a seismic region using eight mathematically computed parameters known as seismicity indicators. The indicators considered are the time elapsed during a particular number (n) of significant seismic events before the month in question, the slope of the Gutenberg-Richter inverse power law curve for the n events, the mean square deviation about the regression line based on the Gutenberg-Richter inverse power law for the n events, the average magnitude of the last n events, the difference between the observed maximum magnitude among the last n events and that expected through the Gutenberg-Richter relationship known as the magnitude deficit, the rate of square root of seismic energy released during the n events, the mean time or period between characteristic events, and the coefficient of variation of the mean time. Prediction accuracies of the model are evaluated using three different statistical measures: the probability of detection, the false alarm ratio, and the true skill score or R score. The PNN model is trained and tested using data for the Southern California region. The model yields good prediction accuracies for earthquakes of magnitude between 4.5 and 6.0. The PNN model presented in this paper complements the recurrent neural network model developed by the authors previously, where good results were reported for predicting earthquakes with magnitude greater than 6.0.

  1. Network-based functional enrichment

    Directory of Open Access Journals (Sweden)

    Poirel Christopher L

    2011-11-01

    Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are

  2. Toward Predicting Social Support Needs in Online Health Social Networks.

    Science.gov (United States)

    Choi, Min-Je; Kim, Sung-Hee; Lee, Sukwon; Kwon, Bum Chul; Yi, Ji Soo; Choo, Jaegul; Huh, Jina

    2017-08-02

    While online health social networks (OHSNs) serve as an effective platform for patients to fulfill their various social support needs, predicting the needs of users and providing tailored information remains a challenge. The objective of this study was to discriminate important features for identifying users' social support needs based on knowledge gathered from survey data. This study also provides guidelines for a technical framework, which can be used to predict users' social support needs based on raw data collected from OHSNs. We initially conducted a Web-based survey with 184 OHSN users. From this survey data, we extracted 34 features based on 5 categories: (1) demographics, (2) reading behavior, (3) posting behavior, (4) perceived roles in OHSNs, and (5) values sought in OHSNs. Features from the first 4 categories were used as variables for binary classification. For the prediction outcomes, we used features from the last category: the needs for emotional support, experience-based information, unconventional information, and medical facts. We compared 5 binary classifier algorithms: gradient boosting tree, random forest, decision tree, support vector machines, and logistic regression. We then calculated the scores of the area under the receiver operating characteristic (ROC) curve (AUC) to understand the comparative effectiveness of the used features. The best performance was AUC scores of 0.89 for predicting users seeking emotional support, 0.86 for experience-based information, 0.80 for unconventional information, and 0.83 for medical facts. With the gradient boosting tree as our best performing model, we analyzed the strength of individual features in predicting one's social support need. Among other discoveries, we found that users seeking emotional support tend to post more in OHSNs compared with others. We developed an initial framework for automatically predicting social support needs in OHSNs using survey data. Future work should involve nonsurvey

  3. Convolutional neural network architectures for predicting DNA–protein binding

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  4. Convolutional neural network architectures for predicting DNA-protein binding.

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D; Liu, Ge; Gifford, David K

    2016-06-15

    Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA-protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. All the models analyzed are available at http://cnn.csail.mit.edu gifford@mit.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  5. An interaction switch predicts the nested architecture of mutualistic networks.

    Science.gov (United States)

    Zhang, Feng; Hui, Cang; Terblanche, John S

    2011-08-01

    Nested architecture is distinctive in plant-animal mutualistic networks. However, to date an integrative and quantitative explanation has been lacking. It is evident that species often switch their interactive partners in real-world mutualistic networks such as pollination and seed-dispersal networks. By incorporating an interaction switch into a novel multi-population model, we show that the nested architecture rapidly emerges from an initially random network. The model allowing interaction switches between partner species produced predictions which fit remarkably well with observations from 81 empirical networks. Thus, the nested architecture in mutualistic networks could be an intrinsic physical structure of dynamic networks and the interaction switch is likely a key ecological process that results in nestedness of real-world networks. Identifying the biological processes responsible for network structures is thus crucial for understanding the architecture of ecological networks. © 2011 Blackwell Publishing Ltd/CNRS.

  6. Predicting genetic interactions with random walks on biological networks

    Directory of Open Access Journals (Sweden)

    Singh Ambuj K

    2009-01-01

    classifier, integrate diverse biological networks and show that our method outperforms established methods. Results By applying random walks on biological networks, we were able to predict synthetic lethal interactions at a true positive rate of 95 percent against a false positive rate of 10 percent in S. cerevisiae. Similarly, in C. elegans, we achieved a true positive rate of 95 against a false positive rate of 7 percent. Furthermore, we demonstrate that the inclusion of non-interacting gene pairs results in a considerable performance improvement. Conclusion We presented a method based on random walks that accurately captures aspects of network topology towards the goal of classifying potential genetic interactions as either synthetic lethal or non-interacting. Our method, which is generalizable to all types of biological networks, is likely to perform well with limited information, as estimated by holding out large portions of the synthetic lethal interactions and non-interactions.

  7. Material procedure quality forecast based on genetic BP neural network

    Science.gov (United States)

    Zheng, Bao-Hua

    2017-07-01

    Material procedure quality forecast plays an important role in quality control. This paper proposes a prediction model based on genetic algorithm (GA) and back propagation (BP) neural network. It can obtain the initial weights and thresholds of optimized BP neural network with the GA global search ability. A material process quality prediction model with the optimized BP neural network is adopted to predict the error of future process to measure the accuracy of process quality. The results show that the proposed method has the advantages of high accuracy and fast convergence rate compared with BP neural network.

  8. Upset Prediction in Friction Welding Using Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-01-01

    Full Text Available This paper addresses the upset prediction problem of friction welded joints. Based on finite element simulations of inertia friction welding (IFW, a radial basis function (RBF neural network was developed initially to predict the final upset for a number of welding parameters. The predicted joint upset by the RBF neural network was compared to validated finite element simulations, producing an error of less than 8.16% which is reasonable. Furthermore, the effects of initial rotational speed and axial pressure on the upset were investigated in relation to energy conversion with the RBF neural network. The developed RBF neural network was also applied to linear friction welding (LFW and continuous drive friction welding (CDFW. The correlation coefficients of RBF prediction for LFW and CDFW were 0.963 and 0.998, respectively, which further suggest that an RBF neural network is an effective method for upset prediction of friction welded joints.

  9. How social network heterogeneity facilitates lexical access and lexical prediction.

    Science.gov (United States)

    Lev-Ari, Shiri; Shao, Zeshu

    2017-04-01

    People learn language from their social environment. As individuals differ in their social networks, they might be exposed to input with different lexical distributions, and these might influence their linguistic representations and lexical choices. In this article we test the relation between linguistic performance and 3 social network properties that should influence input variability, namely, network size, network heterogeneity, and network density. In particular, we examine how these social network properties influence lexical prediction, lexical access, and lexical use. To do so, in Study 1, participants predicted how people of different ages would name pictures, and in Study 2 participants named the pictures themselves. In both studies, we examined how participants' social network properties related to their performance. In Study 3, we ran simulations on norms we collected to see how age variability in one's network influences the distribution of different names in the input. In all studies, network age heterogeneity influenced performance leading to better prediction, faster response times for difficult-to-name items, and less entropy in input distribution. These results suggest that individual differences in social network properties can influence linguistic behavior. Specifically, they show that having a more heterogeneous network is associated with better performance. These results also show that the same factors influence lexical prediction and lexical production, suggesting the two might be related.

  10. Deep recurrent conditional random field network for protein secondary prediction

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Sønderby, Søren Kaae; Sønderby, Casper Kaae

    2017-01-01

    Deep learning has become the state-of-the-art method for predicting protein secondary structure from only its amino acid residues and sequence profile. Building upon these results, we propose to combine a bi-directional recurrent neural network (biRNN) with a conditional random field (CRF), which...... of the labels for all time-steps. We condition the CRF on the output of biRNN, which learns a distributed representation based on the entire sequence. The biRNN-CRF is therefore close to ideally suited for the secondary structure task because a high degree of cross-talk between neighboring elements can...

  11. PREDICTION OF FINANCIAL FAILURE OF BANKS BY ARTIFICAL NEURAL NETWORK MODEL

    National Research Council Canada - National Science Library

    Utku ALTUNÖZ

    2013-01-01

    In this article financial failure prediction models based on artificial neural network model, which is among the multivariable statistical techniques has been tested in a parallel with literature surveys...

  12. Experimental Parameter Tuning of Artificial Neural Network in Customer Churn Prediction

    National Research Council Canada - National Science Library

    Martin Fridrich

    2017-01-01

    Abstract Purpose of the article: The paper aim is to examine classification models, based on artificial neural networks through experimental parameter tuning, in domain of customer churn prediction in e-commerce retail...

  13. Fouling resistance prediction using artificial neural network nonlinear auto-regressive with exogenous input model based on operating conditions and fluid properties correlations

    Energy Technology Data Exchange (ETDEWEB)

    Biyanto, Totok R. [Department of Engineering Physics, Institute Technology of Sepuluh Nopember Surabaya, Surabaya, Indonesia 60111 (Indonesia)

    2016-06-03

    Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.

  14. Cold-start link prediction in multi-relational networks

    Science.gov (United States)

    Wu, Shun-yao; Zhang, Qi; Wu, Mei

    2017-10-01

    During the last decade, interaction data have accumulated exponentially in many fields and provide a new opportunity for cold start link prediction. It seems necessarily to take full advantages of diversified information. However, correlation between different interactions has to be pre-tested. Therefore, this paper abstracts complex systems as multi-relational networks, and employs latent space network model to extract low-dimensional factors of sub-networks and adopts likelihood ratio test to examine correlation between factors. Then, regression between target sub-networks and correlated auxiliary sub-networks could be established for cold start link prediction. Experiments on 8 bioinformatic data sets validate the effectiveness and potential of our strategy for network correlation analysis and cold-start link prediction.

  15. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    Science.gov (United States)

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423

  16. Neural Networks for Muscle Forces Prediction in Cycling

    Directory of Open Access Journals (Sweden)

    Giulio Cecchini

    2014-11-01

    Full Text Available This paper documents the research towards the development of a system based on Artificial Neural Networks to predict muscle force patterns of an athlete during cycling. Two independent inverse problems must be solved for the force estimation: evaluation of the kinematic model and evaluation of the forces distribution along the limb. By solving repeatedly the two inverse problems for different subjects and conditions, a training pattern for an Artificial Neural Network was created. Then, the trained network was validated against an independent validation set, and compared to evaluate agreement between the two alternative approaches using Bland-Altman method. The obtained neural network for the different test patterns yields a normalized error well below 1% and the Bland-Altman plot shows a considerable correlation between the two methods. The new approach proposed herein allows a direct and fast computation for the inverse dynamics of a cyclist, opening the possibility of integrating such algorithm in a real time environment such as an embedded application.

  17. Financial time series prediction using spiking neural networks.

    Directory of Open Access Journals (Sweden)

    David Reid

    Full Text Available In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.

  18. Protein function prediction using guilty by association from interaction networks.

    Science.gov (United States)

    Piovesan, Damiano; Giollo, Manuel; Ferrari, Carlo; Tosatto, Silvio C E

    2015-12-01

    Protein function prediction from sequence using the Gene Ontology (GO) classification is useful in many biological problems. It has recently attracted increasing interest, thanks in part to the Critical Assessment of Function Annotation (CAFA) challenge. In this paper, we introduce Guilty by Association on STRING (GAS), a tool to predict protein function exploiting protein-protein interaction networks without sequence similarity. The assumption is that whenever a protein interacts with other proteins, it is part of the same biological process and located in the same cellular compartment. GAS retrieves interaction partners of a query protein from the STRING database and measures enrichment of the associated functional annotations to generate a sorted list of putative functions. A performance evaluation based on CAFA metrics and a fair comparison with optimized BLAST similarity searches is provided. The consensus of GAS and BLAST is shown to improve overall performance. The PPI approach is shown to outperform similarity searches for biological process and cellular compartment GO predictions. Moreover, an analysis of the best practices to exploit protein-protein interaction networks is also provided.

  19. Protein distance constraints predicted by neural networks and probability density functions

    DEFF Research Database (Denmark)

    Lund, Ole; Frimand, Kenneth; Gorodkin, Jan

    1997-01-01

    We predict interatomic C-α distances by two independent data driven methods. The first method uses statistically derived probability distributions of the pairwise distance between two amino acids, whilst the latter method consists of a neural network prediction approach equipped with windows taking....... The predictions are based on a data set derived using a new threshold similarity. We show that distances in proteins are predicted more accurately by neural networks than by probability density functions. We show that the accuracy of the predictions can be further increased by using sequence profiles. A threading...

  20. A comparison of neural network-based predictions of foF2 with the IRI-2012 model at conjugate points in Southeast Asia

    Science.gov (United States)

    Wichaipanich, Noraset; Hozumi, Kornyanat; Supnithi, Pornchai; Tsugawa, Takuya

    2017-06-01

    This paper presents the development of Neural Network (NN) model for the prediction of the F2 layer critical frequency (foF2) at three ionosonde stations near the magnetic equator of Southeast Asia. Two of these stations including Chiang Mai (18.76°N, 98.93°E, dip angle 12.7°N) and Kototabang (0.2°S, 100.3°E, dip angle 10.1°S) are at the conjugate points while Chumphon (10.72°N, 99.37°E, dip angle 3.0°N) station is near the equator. To produce the model, the feed forward network with backpropagation algorithm is applied. The NN is trained with the daily hourly values of foF2 during 2004-2012, except 2009, and the selected input parameters, which affect the foF2 variability, include day number (DN), hour number (HR), solar zenith angle (C), geographic latitude (θ), magnetic inclination (I), magnetic declination (D) and angle of meridian (M) relative to the sub-solar point, the 7-day mean of F10.7 (F10.7_7), the 81-day mean of SSN (SSN_81) and the 2-day mean of Ap (Ap_2). The foF2 data of 2009 and 2013 are then used for testing the NN model during the foF2 interpolation and extrapolation, respectively. To examine the performance of the proposed NN, the root mean square error (RMSE) of the observed foF2, the proposed NN model and the IRI-2012 (CCIR and URSI options) model are compared. In general, the results show the same trends in foF2 variation between the models (NN and IRI-2012) and the observations in that they are higher during the day and lower at night. Besides, the results demonstrate that the proposed NN model can predict the foF2 values more closely during daytime than during nighttime as supported by the lower RMSE values during daytime (0.5 ≤ RMSE ≤ 1.0 for Chumphon and Kototabang, 0.7 ≤ RMSE ≤ 1.2 at Chiang Mai) and with the highest levels during nighttime (0.8 ≤ RMSE ≤ 1.5 for Chumphon and Kototabang, 1.2 ≤ RMSE ≤ 2.0 at Chiang Mai). Furthermore, the NN model predicts the foF2 values more accurately than the IRI model at the

  1. Prediction of CO2 Emission in China’s Power Generation Industry with Gauss Optimized Cuckoo Search Algorithm and Wavelet Neural Network Based on STIRPAT model with Ridge Regression

    Directory of Open Access Journals (Sweden)

    Weibo Zhao

    2017-12-01

    Full Text Available Power generation industry is the key industry of carbon dioxide (CO2 emission in China. Assessing its future CO2 emissions is of great significance to the formulation and implementation of energy saving and emission reduction policies. Based on the Stochastic Impacts by Regression on Population, Affluence and Technology model (STIRPAT, the influencing factors analysis model of CO2 emission of power generation industry is established. The ridge regression (RR method is used to estimate the historical data. In addition, a wavelet neural network (WNN prediction model based on Cuckoo Search algorithm optimized by Gauss (GCS is put forward to predict the factors in the STIRPAT model. Then, the predicted values are substituted into the regression model, and the CO2 emission estimation values of the power generation industry in China are obtained. It’s concluded that population, per capita Gross Domestic Product (GDP, standard coal consumption and thermal power specific gravity are the key factors affecting the CO2 emission from the power generation industry. Besides, the GCS-WNN prediction model has higher prediction accuracy, comparing with other models. Moreover, with the development of science and technology in the future, the CO2 emission growth in the power generation industry will gradually slow down according to the prediction results.

  2. Noise Filtering and Prediction in Biological Signaling Networks

    CERN Document Server

    Hathcock, David; Weisenberger, Casey; Ilker, Efe; Hinczewski, Michael

    2016-01-01

    Information transmission in biological signaling circuits has often been described using the metaphor of a noise filter. Cellular systems need accurate, real-time data about their environmental conditions, but the biochemical reaction networks that propagate, amplify, and process signals work with noisy representations of that data. Biology must implement strategies that not only filter the noise, but also predict the current state of the environment based on information delayed due to the finite speed of chemical signaling. The idea of a biochemical noise filter is actually more than just a metaphor: we describe recent work that has made an explicit mathematical connection between signaling fidelity in cellular circuits and the classic theories of optimal noise filtering and prediction that began with Wiener, Kolmogorov, Shannon, and Bode. This theoretical framework provides a versatile tool, allowing us to derive analytical bounds on the maximum mutual information between the environmental signal and the re...

  3. Applications of Wavelet Neural Network Model to Building Settlement Prediction: A Case Study

    Directory of Open Access Journals (Sweden)

    Qulin TAN

    2014-04-01

    Full Text Available Deformation monitoring is a significant work for engineering safety, which is performed throughout the entire process of engineering design, construction and operation. Based on the theoretic analysis of wavelet and neural network, we applied the improved BP neural network model, auxiliary wavelet neural network model and embedded wavelet neural network model to the settlement prediction in one practical engineering monitoring project with MATLAB software programming. The cumulative and the interval settlement was predicted and compared with measured data. The overall performances of the three models were analyzed and compared. The results show that the accuracies of two kinds of wavelet neural network models are roughly the same, which prediction errors of monitoring points are less than 1mm, obviously superior to the single BP neural network model.

  4. Network Based High Speed Product Innovation

    DEFF Research Database (Denmark)

    Lindgren, Peter

    In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...

  5. Development of Network Synchronization Predicts Language Abilities.

    Science.gov (United States)

    Doesburg, Sam M; Tingling, Keriann; MacDonald, Matt J; Pang, Elizabeth W

    2016-01-01

    Synchronization of oscillations among brain areas is understood to mediate network communication supporting cognition, perception, and language. How task-dependent synchronization during word production develops throughout childhood and adolescence, as well as how such network coherence is related to the development of language abilities, remains poorly understood. To address this, we recorded magnetoencephalography while 73 participants aged 4-18 years performed a verb generation task. Atlas-guided source reconstruction was performed, and phase synchronization among regions was calculated. Task-dependent increases in synchronization were observed in the theta, alpha, and beta frequency ranges, and network synchronization differences were observed between age groups. Task-dependent synchronization was strongest in the theta band, as were differences between age groups. Network topologies were calculated for brain regions associated with verb generation and were significantly associated with both age and language abilities. These findings establish the maturational trajectory of network synchronization underlying expressive language abilities throughout childhood and adolescence and provide the first evidence for an association between large-scale neurophysiological network synchronization and individual differences in the development of language abilities.

  6. Using neural networks to predict the functionality of reconfigurable nano-material networks

    NARCIS (Netherlands)

    Greff, Klaus; van Damme, Rudolf M.J.; Koutnik, Jan; Broersma, Haitze J.; Mikhal, Julia Olegivna; Lawrence, Celestine Preetham; van der Wiel, Wilfred Gerard; Schmidhuber, Jürgen

    2017-01-01

    This paper demonstrates how neural networks can be applied to model and predict the functional behaviour of disordered nano-particle and nano-tube networks. In recently published experimental work, nano-particle and nano-tube networks show promising functionality for future reconfigurable devices,

  7. Exploitation of genetic interaction network topology for the prediction of epistatic behavior

    KAUST Repository

    Alanis Lobato, Gregorio

    2013-10-01

    Genetic interaction (GI) detection impacts the understanding of human disease and the ability to design personalized treatment. The mapping of every GI in most organisms is far from complete due to the combinatorial amount of gene deletions and knockdowns required. Computational techniques to predict new interactions based only on network topology have been developed in network science but never applied to GI networks.We show that topological prediction of GIs is possible with high precision and propose a graph dissimilarity index that is able to provide robust prediction in both dense and sparse networks.Computational prediction of GIs is a strong tool to aid high-throughput GI determination. The dissimilarity index we propose in this article is able to attain precise predictions that reduce the universe of candidate GIs to test in the lab. © 2013 Elsevier Inc.

  8. [Tree-Augmented NaÏve Bayesian network model for predicting prostate cancer].

    Science.gov (United States)

    Xiao, Li-Hong; Chen, Pei-Ran; Li, Mei; Gou, Zhong-Ping; Xiang, Liang-Cheng; Li, Yong-Zhong; Feng, Ping

    2016-06-01

    To evaluate the integrated performance of age, serum PSA, and transrectal ultrasound images in the prediction of prostate cancer using a Tree-Augmented NaÏve (TAN) Bayesian network model. We collected such data as age, serum PSA, transrectal ultrasound findings, and pathological diagnoses from 941 male patients who underwent prostate biopsy from January 2008 to September 2011. Using a TAN Bayesian network model, we analyzed the data for predicting prostate cancer, and compared them with the gold standards of pathological diagnosis. The accuracy, sensitivity, specificity, positive prediction rate, and negative prediction rate of the TAN Bayesian network model were 85.11%, 88.37%, 83.67%, 70.37%, and 94.25%, respectively. Based on age, serum PSA, and transrectal ultrasound images, the TAN Bayesian network model has a high value for the prediction of prostate cancer, and can help improve the clinical screening and diagnosis of the disease.

  9. Neural networks for prediction and control of chaotic fluidized bed hydrodynamics : A first step

    NARCIS (Netherlands)

    Bakker, R; De Korte, RJ; Schouten, JC; Van den Bleek, CM; Takens, F

    A neural-network-based model that has learnt the chaotic hydrodynamics of a fluidized bed reactor is presented. The network is trained on measured electrical capacitance tomography data. A training algorithm is used that does not only minimize the short-term prediction error but also the information

  10. Context-sensitive data integration and prediction of biological networks

    National Research Council Canada - National Science Library

    Myers, Chad L; Troyanskaya, Olga G

    2007-01-01

    Motivation: Several recent methods have addressed the problem of heterogeneous data integration and network prediction by modeling the noise inherent in high-throughput genomic datasets, which can dramatically...

  11. The predictive power of local properties of financial networks

    Science.gov (United States)

    Caraiani, Petre

    2017-01-01

    The literature on analyzing the dynamics of financial networks has focused so far on the predictive power of global measures of networks like entropy or index cohesive force. In this paper, I show that the local network properties have similar predictive power. I focus on key network measures like average path length, average degree or cluster coefficient, and also consider the diameter and the s-metric. Using Granger causality tests, I show that some of these measures have statistically significant prediction power with respect to the dynamics of aggregate stock market. Average path length is most robust relative to the frequency of data used or specification (index or growth rate). Most measures are found to have predictive power only for monthly frequency. Further evidences that support this view are provided through a simple regression model.

  12. Using machine learning, neural networks and statistics to predict bankruptcy

    NARCIS (Netherlands)

    Pompe, P.P.M.; Feelders, A.J.; Feelders, A.J.

    1997-01-01

    Recent literature strongly suggests that machine learning approaches to classification outperform "classical" statistical methods. We make a comparison between the performance of linear discriminant analysis, classification trees, and neural networks in predicting corporate bankruptcy. Linear

  13. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  14. Neural Network Algorithm for Prediction of Secondary Protein Structure

    National Research Council Canada - National Science Library

    Zikrija Avdagic; Elvir Purisevic; Emir Buza; Zlatan Coralic

    2009-01-01

    .... In this paper we describe the method and results of using CB513 as a dataset suitable for development of artificial neural network algorithms for prediction of secondary protein structure with MATLAB...

  15. Neural Fuzzy Inference System-Based Weather Prediction Model and Its Precipitation Predicting Experiment

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2014-11-01

    Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.

  16. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2016-01-01

    (ERNN, the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

  17. Cloudified Mobility and Bandwidth Prediction in Virtualized LTE Networks

    NARCIS (Netherlands)

    Zhao, Zongliang; Karimzadeh Motallebi Azar, Morteza; Braun, Torsten; Pras, Aiko; van den Berg, Hans Leo

    2017-01-01

    Network Function Virtualization involves implementing network functions (e.g., virtualized LTE component) in software that can run on a range of industry standard server hardware, and can be migrated or instantiated on demand. A prediction service hosted on cloud infrastructures enables consumers to

  18. Structure-Dynamics Relationships in Bursting Neuronal Networks Revealed Using a Prediction Framework

    Science.gov (United States)

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Ruohonen, Keijo; Linne, Marja-Leena

    2013-01-01

    The question of how the structure of a neuronal network affects its functionality has gained a lot of attention in neuroscience. However, the vast majority of the studies on structure-dynamics relationships consider few types of network structures and assess limited numbers of structural measures. In this in silico study, we employ a wide diversity of network topologies and search among many possibilities the aspects of structure that have the greatest effect on the network excitability. The network activity is simulated using two point-neuron models, where the neurons are activated by noisy fluctuation of the membrane potential and their connections are described by chemical synapse models, and statistics on the number and quality of the emergent network bursts are collected for each network type. We apply a prediction framework to the obtained data in order to find out the most relevant aspects of network structure. In this framework, predictors that use different sets of graph-theoretic measures are trained to estimate the activity properties, such as burst count or burst length, of the networks. The performances of these predictors are compared with each other. We show that the best performance in prediction of activity properties for networks with sharp in-degree distribution is obtained when the prediction is based on clustering coefficient. By contrast, for networks with broad in-degree distribution, the maximum eigenvalue of the connectivity graph gives the most accurate prediction. The results shown for small () networks hold with few exceptions when different neuron models, different choices of neuron population and different average degrees are applied. We confirm our conclusions using larger () networks as well. Our findings reveal the relevance of different aspects of network structure from the viewpoint of network excitability, and our integrative method could serve as a general framework for structure-dynamics studies in biosciences. PMID:23935998

  19. Predicting concrete corrosion of sewers using artificial neural network.

    Science.gov (United States)

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Predicting the survival of diabetes using neural network

    Science.gov (United States)

    Mamuda, Mamman; Sathasivam, Saratha

    2017-08-01

    Data mining techniques at the present time are used in predicting diseases of health care industries. Neural Network is one among the prevailing method in data mining techniques of an intelligent field for predicting diseases in health care industries. This paper presents a study on the prediction of the survival of diabetes diseases using different learning algorithms from the supervised learning algorithms of neural network. Three learning algorithms are considered in this study: (i) The levenberg-marquardt learning algorithm (ii) The Bayesian regulation learning algorithm and (iii) The scaled conjugate gradient learning algorithm. The network is trained using the Pima Indian Diabetes Dataset with the help of MATLAB R2014(a) software. The performance of each algorithm is further discussed through regression analysis. The prediction accuracy of the best algorithm is further computed to validate the accurate prediction

  1. Predicting Peer Nominations Among Medical Students: A Social Network Approach.

    Science.gov (United States)

    Michalec, Barret; Grbic, Douglas; Veloski, J Jon; Cuddy, Monica M; Hafferty, Frederic W

    2016-06-01

    Minimal attention has been paid to what factors may predict peer nomination or how peer nominations might exhibit a clustering effect. Focusing on the homophily principle that "birds of a feather flock together," and using a social network analysis approach, the authors investigated how certain student- and/or school-based factors might predict the likelihood of peer nomination, and the clusters, if any, that occur among those nominations. In 2013, the Jefferson Longitudinal Study of Medical Education included a special instrument to evaluate peer nominations. A total of 211 (81%) of 260 graduating medical students from the Sidney Kimmel Medical College responded to the peer nomination question. Data were analyzed using a relational contingency table and an ANOVA density model. Although peer nominations did not cluster around gender, age, or class rank, those students within an accelerated program, as well as those entering certain specialties, were more likely to nominate each other. The authors suggest that clerkships in certain specialties, as well as the accelerated program, may provide structured opportunities for students to connect and integrate, and that these opportunities may have an impact on peer nomination. The findings suggest that social network analysis is a useful approach to examine various aspects of peer nomination processes. The authors discuss implications regarding harnessing social cohesion within clinical clerkships, the possible development of siloed departmental identity and in-group favoritism, and future research possibilities.

  2. Prediction based on mean subset

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Brown, P. J.; Madsen, Henrik

    2002-01-01

    , it is found that the proposed mean subset method has superior prediction performance than prediction based on the best subset method, and in some settings also better than the ridge regression and lasso methods. The conclusions drawn from the Monte Carlo study is corroborated in an example in which prediction......Shrinkage methods have traditionally been applied in prediction problems. In this article we develop a shrinkage method (mean subset) that forms an average of regression coefficients from individual subsets of the explanatory variables. A Bayesian approach is taken to derive an expression of how...... the coefficient vectors from each subset should be weighted. It is not computationally feasible to calculate the mean subset coefficient vector for larger problems, and thus we suggest an algorithm to find an approximation to the mean subset coefficient vector. In a comprehensive Monte Carlo simulation study...

  3. Convolutional neural networks for prostate cancer recurrence prediction

    Science.gov (United States)

    Kumar, Neeraj; Verma, Ruchika; Arora, Ashish; Kumar, Abhay; Gupta, Sanchit; Sethi, Amit; Gann, Peter H.

    2017-03-01

    Accurate prediction of the treatment outcome is important for cancer treatment planning. We present an approach to predict prostate cancer (PCa) recurrence after radical prostatectomy using tissue images. We used a cohort whose case vs. control (recurrent vs. non-recurrent) status had been determined using post-treatment follow up. Further, to aid the development of novel biomarkers of PCa recurrence, cases and controls were paired based on matching of other predictive clinical variables such as Gleason grade, stage, age, and race. For this cohort, tissue resection microarray with up to four cores per patient was available. The proposed approach is based on deep learning, and its novelty lies in the use of two separate convolutional neural networks (CNNs) - one to detect individual nuclei even in the crowded areas, and the other to classify them. To detect nuclear centers in an image, the first CNN predicts distance transform of the underlying (but unknown) multi-nuclear map from the input HE image. The second CNN classifies the patches centered at nuclear centers into those belonging to cases or controls. Voting across patches extracted from image(s) of a patient yields the probability of recurrence for the patient. The proposed approach gave 0.81 AUC for a sample of 30 recurrent cases and 30 non-recurrent controls, after being trained on an independent set of 80 case-controls pairs. If validated further, such an approach might help in choosing between a combination of treatment options such as active surveillance, radical prostatectomy, radiation, and hormone therapy. It can also generalize to the prediction of treatment outcomes in other cancers.

  4. water demand prediction using artificial neural network

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... estimate water quantity and to make decisions that can prevent water scarcity. Timely implementation of such decisions lead to the improvement of network reliability and to the reduced occurrence of pipe burst and plant breakdown. On the other hand long- term forecasting helps to know the water demand ...

  5. OCP: Opportunistic Carrier Prediction for Wireless Networks

    Science.gov (United States)

    2008-08-01

    Many protocols have been proposed for medium access control in wireless networks. MACA [13], MACAW [3], and FAMA [8] are the earlier proposals for...world performance of carrier sense. In Proceedings of ACM SIGCOMM E-WIND Workshop, 2005. [13] P. Karn. MACA : A new channel access method for packet radio

  6. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  7. Echo state network prediction method and its application in flue gas turbine condition prediction

    Science.gov (United States)

    Wang, Shaohong; Chen, Tao; Xu, Xiaoli

    2010-12-01

    On the background of the complex production process of fluid catalytic cracking energy recovery system in large-scale petrochemical refineries, this paper introduced an improved echo state network (ESN) model prediction method which is used to address the condition trend prediction problem of the key power equipment--flue gas turbine. Singular value decomposition method was used to obtain the ESN output weight. Through selecting the appropriate parameters and discarding small singular value, this method overcame the defective solution problem in the prediction by using the linear regression algorithm, improved the prediction performance of echo state network, and gave the network prediction process. In order to solve the problem of noise contained in production data, the translation-invariant wavelet transform analysis method is combined to denoise the noisy time series before prediction. Condition trend prediction results show the effectiveness of the proposed method.

  8. Stock market price prediction using artificial neural network: an ...

    African Journals Online (AJOL)

    This paper looks at the application of the artificial neural networks (ANN) in predicting stock market prices in Kenya. In particular the paper looks at the application of ANN in predicting future Equity Bank share prices using historical data. We have assumed that only previous prices affect future prices, then fitted ARIMA ...

  9. Predicting Water Levels at Kainji Dam Using Artificial Neural Networks

    African Journals Online (AJOL)

    Poor electricity generation in Nigeria is a very serious problem. Accurate prediction of water levels in dams is very important in power planning. Effective power planning helps in ensuring steady supply of electric power to consumers. The aim of this study is to develop artificial neural network models for predicting water ...

  10. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    Science.gov (United States)

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  11. Neural Network Predictive Control for Vanadium Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Hai-Feng Shen

    2013-01-01

    Full Text Available The vanadium redox flow battery (VRB is a nonlinear system with unknown dynamics and disturbances. The flowrate of the electrolyte is an important control mechanism in the operation of a VRB system. Too low or too high flowrate is unfavorable for the safety and performance of VRB. This paper presents a neural network predictive control scheme to enhance the overall performance of the battery. A radial basis function (RBF network is employed to approximate the dynamics of the VRB system. The genetic algorithm (GA is used to obtain the optimum initial values of the RBF network parameters. The gradient descent algorithm is used to optimize the objective function of the predictive controller. Compared with the constant flowrate, the simulation results show that the flowrate optimized by neural network predictive controller can increase the power delivered by the battery during the discharge and decrease the power consumed during the charge.

  12. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.

    Science.gov (United States)

    Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng

    2017-04-10

    This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.

  13. Combining neural networks for protein secondary structure prediction

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1995-01-01

    In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designed...... by using a priori knowledge of the mapping between protein building blocks and the secondary structure and by using weight sharing. Since none of the individual networks have more than 600 adjustable weights over-fitting is avoided. When ensembles of specialized experts are combined the performance...

  14. Artificial neural networks (ANN: prediction of sensory measurements from instrumental data

    Directory of Open Access Journals (Sweden)

    Naiara Barbosa Carvalho

    2013-12-01

    Full Text Available The objective of this study was to predict by means of Artificial Neural Network (ANN, multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters. Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.

  15. Prediction of geomagnetic indexes with the help of artificial neural networks

    Science.gov (United States)

    Myagkova, Irina; Shiroky, Vladimir; Dolenko, Sergey

    2017-10-01

    The results of prediction of geomagnetic indexes characterizing the state of the Earth's magnetosphere obtained with the help of artificial neural networks (ANN) for various prediction horizons are presented. The forecasts are based on multivariate time series including the values of the geomagnetic indices themselves, as well as data about the parameters of solar wind and interplanetary magnetic field, during several latest hours.

  16. Prediction of macroscopic properties of elastomeric networks

    Energy Technology Data Exchange (ETDEWEB)

    Al-ghamdi, A.M.S.; Rayes, T.B.; Galiatsatos, V. [Univ. of Akron, OH (United States)

    1993-12-31

    Monte Carlo simulations of amorphous elastomeric networks of polyisoprene and polybutadiene cured with sulfur have been prepared. The effect of molecular weight of the prepolymer, and the concentration and type of cross-links is studied. The affine modulus as a function of the extent of reaction is reported. Comparisons between the two polymers and reasons for their differing behavior are being attributed to their molecular characteristics.

  17. Predicting network structure using unlabeled interaction information

    OpenAIRE

    Nasim, Mehwish; Brandes, Ulrik

    2014-01-01

    We are interested in the question whether interactions in online social networks (OSNs) can serve as a proxy for more persistent social relation. With Facebook as the context of our analysis, we look at commenting on wall posts as a form of interaction, and friendship ties as social relations. Findings from a pretest suggest that others’ joint commenting patterns on someone’s status posts are indeed indicative of friendship ties between them, independent of the contents. This would have impli...

  18. CNEM: Cluster Based Network Evolution Model

    Directory of Open Access Journals (Sweden)

    Sarwat Nizamani

    2015-01-01

    Full Text Available This paper presents a network evolution model, which is based on the clustering approach. The proposed approach depicts the network evolution, which demonstrates the network formation from individual nodes to fully evolved network. An agglomerative hierarchical clustering method is applied for the evolution of network. In the paper, we present three case studies which show the evolution of the networks from the scratch. These case studies include: terrorist network of 9/11 incidents, terrorist network of WMD (Weapons Mass Destruction plot against France and a network of tweets discussing a topic. The network of 9/11 is also used for evaluation, using other social network analysis methods which show that the clusters created using the proposed model of network evolution are of good quality, thus the proposed method can be used by law enforcement agencies in order to further investigate the criminal networks

  19. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    conventional WSN . VSN enabled closed loop system consumes more energy than the VSN only system, because of the commands that are send to the nodes. Energy ...predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless Sensor Network ( WSN ) to...Network ( WSN ) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based monitoring

  20. Prediction of adsorption efficiencies of Ni (II in aqueous solutions with perlite via artificial neural networks

    Directory of Open Access Journals (Sweden)

    Turp Sinan Mehmet

    2017-12-01

    Full Text Available This study investigates the estimated adsorption efficiency of artificial Nickel (II ions with perlite in an aqueous solution using artificial neural networks, based on 140 experimental data sets. Prediction using artificial neural networks is performed by enhancing the adsorption efficiency with the use of Nickel (II ions, with the initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and the varying time of effect ranging from 5 to 30 mins. This study presents an artificial neural network that predicts the adsorption efficiency of Nickel (II ions with perlite. The best algorithm is determined as a quasi-Newton back-propagation algorithm. The performance of the artificial neural network is determined by coefficient determination (R2, and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship between the experimental data and the predicted values.

  1. Neural network definitions of highly predictable protein secondary structure classes

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A. [Los Alamos National Lab., NM (United States)]|[Santa Fe Inst., NM (United States); Steeg, E. [Toronto Univ., ON (Canada). Dept. of Computer Science; Farber, R. [Los Alamos National Lab., NM (United States)

    1994-02-01

    We use two co-evolving neural networks to determine new classes of protein secondary structure which are significantly more predictable from local amino sequence than the conventional secondary structure classification. Accurate prediction of the conventional secondary structure classes: alpha helix, beta strand, and coil, from primary sequence has long been an important problem in computational molecular biology. Neural networks have been a popular method to attempt to predict these conventional secondary structure classes. Accuracy has been disappointingly low. The algorithm presented here uses neural networks to similtaneously examine both sequence and structure data, and to evolve new classes of secondary structure that can be predicted from sequence with significantly higher accuracy than the conventional classes. These new classes have both similarities to, and differences with the conventional alpha helix, beta strand and coil.

  2. Predicting Successful Memes using Network and Community Structure

    OpenAIRE

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2014-01-01

    We investigate the predictability of successful memes using their early spreading patterns in the underlying social networks. We propose and analyze a comprehensive set of features and develop an accurate model to predict future popularity of a meme given its early spreading patterns. Our paper provides the first comprehensive comparison of existing predictive frameworks. We categorize our features into three groups: influence of early adopters, community concentration, and characteristics of...

  3. Predicting the Survival of Gastric Cancer Patients Using Artificial and Bayesian Neural Networks

    Science.gov (United States)

    Korhani Kangi, Azam; Bahrampour, Abbas

    2018-02-26

    Introduction and purpose: In recent years the use of neural networks without any premises for investigation of prognosis in analyzing survival data has increased. Artificial neural networks (ANN) use small processors with a continuous network to solve problems inspired by the human brain. Bayesian neural networks (BNN) constitute a neural-based approach to modeling and non-linearization of complex issues using special algorithms and statistical methods. Gastric cancer incidence is the first and third ranking for men and women in Iran, respectively. The aim of the present study was to assess the value of an artificial neural network and a Bayesian neural network for modeling and predicting of probability of gastric cancer patient death. Materials and Methods: In this study, we used information on 339 patients aged from 20 to 90 years old with positive gastric cancer, referred to Afzalipoor and Shahid Bahonar Hospitals in Kerman City from 2001 to 2015. The three layers perceptron neural network (ANN) and the Bayesian neural network (BNN) were used for predicting the probability of mortality using the available data. To investigate differences between the models, sensitivity, specificity, accuracy and the area under receiver operating characteristic curves (AUROCs) were generated. Results: In this study, the sensitivity and specificity of the artificial neural network and Bayesian neural network models were 0.882, 0.903 and 0.954, 0.909, respectively. Prediction accuracy and the area under curve ROC for the two models were 0.891, 0.944 and 0.935, 0.961. The age at diagnosis of gastric cancer was most important for predicting survival, followed by tumor grade, morphology, gender, smoking history, opium consumption, receiving chemotherapy, presence of metastasis, tumor stage, receiving radiotherapy, and being resident in a village. Conclusion: The findings of the present study indicated that the Bayesian neural network is preferable to an artificial neural network for

  4. A systems biology-based approach to uncovering the molecular mechanisms underlying the effects of dragon's blood tablet in colitis, involving the integration of chemical analysis, ADME prediction, and network pharmacology.

    Science.gov (United States)

    Xu, Haiyu; Zhang, Yanqiong; Lei, Yun; Gao, Xiumei; Zhai, Huaqiang; Lin, Na; Tang, Shihuan; Liang, Rixin; Ma, Yan; Li, Defeng; Zhang, Yi; Zhu, Guangrong; Yang, Hongjun; Huang, Luqi

    2014-01-01

    Traditional Chinese medicine (TCM) is one of the oldest East Asian medical systems. The present study adopted a systems biology-based approach to provide new insights relating to the active constituents and molecular mechanisms underlying the effects of dragon's blood (DB) tablets for the treatment of colitis. This study integrated chemical analysis, prediction of absorption, distribution, metabolism, and excretion (ADME), and network pharmacology. Firstly, a rapid, reliable, and accurate ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was employed to identify 48 components of DB tablets. In silico prediction of the passive absorption of these compounds, based on Caco-2 cell permeability, and their P450 metabolism enabled the identification of 22 potentially absorbed components and 8 metabolites. Finally, networks were constructed to analyze interactions between these DB components/metabolites absorbed and their putative targets, and between the putative DB targets and known therapeutic targets for colitis. This study provided a great opportunity to deepen the understanding of the complex pharmacological mechanisms underlying the effects of DB in colitis treatment.

  5. A systems biology-based approach to uncovering the molecular mechanisms underlying the effects of dragon's blood tablet in colitis, involving the integration of chemical analysis, ADME prediction, and network pharmacology.

    Directory of Open Access Journals (Sweden)

    Haiyu Xu

    Full Text Available Traditional Chinese medicine (TCM is one of the oldest East Asian medical systems. The present study adopted a systems biology-based approach to provide new insights relating to the active constituents and molecular mechanisms underlying the effects of dragon's blood (DB tablets for the treatment of colitis. This study integrated chemical analysis, prediction of absorption, distribution, metabolism, and excretion (ADME, and network pharmacology. Firstly, a rapid, reliable, and accurate ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was employed to identify 48 components of DB tablets. In silico prediction of the passive absorption of these compounds, based on Caco-2 cell permeability, and their P450 metabolism enabled the identification of 22 potentially absorbed components and 8 metabolites. Finally, networks were constructed to analyze interactions between these DB components/metabolites absorbed and their putative targets, and between the putative DB targets and known therapeutic targets for colitis. This study provided a great opportunity to deepen the understanding of the complex pharmacological mechanisms underlying the effects of DB in colitis treatment.

  6. HLA class I binding prediction via convolutional neural networks.

    Science.gov (United States)

    Vang, Yeeleng S; Xie, Xiaohui

    2017-09-01

    Many biological processes are governed by protein-ligand interactions. One such example is the recognition of self and non-self cells by the immune system. This immune response process is regulated by the major histocompatibility complex (MHC) protein which is encoded by the human leukocyte antigen (HLA) complex. Understanding the binding potential between MHC and peptides can lead to the design of more potent, peptide-based vaccines and immunotherapies for infectious autoimmune diseases. We apply machine learning techniques from the natural language processing (NLP) domain to address the task of MHC-peptide binding prediction. More specifically, we introduce a new distributed representation of amino acids, name HLA-Vec, that can be used for a variety of downstream proteomic machine learning tasks. We then propose a deep convolutional neural network architecture, name HLA-CNN, for the task of HLA class I-peptide binding prediction. Experimental results show combining the new distributed representation with our HLA-CNN architecture achieves state-of-the-art results in the majority of the latest two Immune Epitope Database (IEDB) weekly automated benchmark datasets. We further apply our model to predict binding on the human genome and identify 15 genes with potential for self binding. Codes to generate the HLA-Vec and HLA-CNN are publicly available at: https://github.com/uci-cbcl/HLA-bind . xhx@ics.uci.edu. Supplementary data are available at Bioinformatics online.

  7. Ground Motion Prediction Model Using Artificial Neural Network

    Science.gov (United States)

    Dhanya, J.; Raghukanth, S. T. G.

    2017-12-01

    This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude (M w), closest distance to rupture plane (R rup), shear wave velocity in the region (V s30) and focal mechanism (F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.

  8. [The mechanism of rosiglitazone compound based on network pharmacology].

    Science.gov (United States)

    Bai, Yu; Fan, Xue-mei; Sun, Han; Wang, Yi-ming; Liang, Qiong-lin; Luo, Guo-an

    2015-03-01

    Applications of network pharmacology are increasingly widespread and methods abound in the field of drug development and pharmacological research. In this study, we choose rosiglitazone compound as the object to predict the targets and to discuss the mechanism based on three kinds of prediction methods of network pharmacology. Comparison of the prediction result has identified that the three kinds of prediction methods had their own characteristics: targets and pathways predicted were not in accordance with each other. However, the calcium signaling pathway could be predicted in the three kinds of methods, which associated with diabetes and cognitive impairment caused by diabetes by bioinformatics analysis. The above conclusion indicates that the calcium signaling pathway is important in signal pathway regulation of rosiglitazone compound, which provides a clue to further explain the mechanism of the compound and also provides a reference for the selection and application of methods of network pharmacology in the actual research.

  9. Domestic Heat Demand Prediction using Neural Networks

    NARCIS (Netherlands)

    Bakker, Vincent; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2008-01-01

    By combining a cluster of microCHP appliances, a virtual power plant can be formed. To use such a virtual power plant, a good heat demand prediction of individual households is needed since the heat demand determines the production capacity. In this paper we present the results of using neural

  10. Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding

    KAUST Repository

    Cannistraci, Carlo

    2013-06-21

    Motivation: Most functions within the cell emerge thanks to protein-protein interactions (PPIs), yet experimental determination of PPIs is both expensive and time-consuming. PPI networks present significant levels of noise and incompleteness. Predicting interactions using only PPI-network topology (topological prediction) is difficult but essential when prior biological knowledge is absent or unreliable.Methods: Network embedding emphasizes the relations between network proteins embedded in a low-dimensional space, in which protein pairs that are closer to each other represent good candidate interactions. To achieve network denoising, which boosts prediction performance, we first applied minimum curvilinear embedding (MCE), and then adopted shortest path (SP) in the reduced space to assign likelihood scores to candidate interactions. Furthermore, we introduce (i) a new valid variation of MCE, named non-centred MCE (ncMCE); (ii) two automatic strategies for selecting the appropriate embedding dimension; and (iii) two new randomized procedures for evaluating predictions.Results: We compared our method against several unsupervised and supervisedly tuned embedding approaches and node neighbourhood techniques. Despite its computational simplicity, ncMCE-SP was the overall leader, outperforming the current methods in topological link prediction.Conclusion: Minimum curvilinearity is a valuable non-linear framework that we successfully applied to the embedding of protein networks for the unsupervised prediction of novel PPIs. The rationale for our approach is that biological and evolutionary information is imprinted in the non-linear patterns hidden behind the protein network topology, and can be exploited for predicting new protein links. The predicted PPIs represent good candidates for testing in high-throughput experiments or for exploitation in systems biology tools such as those used for network-based inference and prediction of disease-related functional modules. The

  11. Pain tolerance predicts human social network size.

    Science.gov (United States)

    Johnson, Katerina V-A; Dunbar, Robin I M

    2016-04-28

    Personal social network size exhibits considerable variation in the human population and is associated with both physical and mental health status. Much of this inter-individual variation in human sociality remains unexplained from a biological perspective. According to the brain opioid theory of social attachment, binding of the neuropeptide β-endorphin to μ-opioid receptors in the central nervous system (CNS) is a key neurochemical mechanism involved in social bonding, particularly amongst primates. We hypothesise that a positive association exists between activity of the μ-opioid system and the number of social relationships that an individual maintains. Given the powerful analgesic properties of β-endorphin, we tested this hypothesis using pain tolerance as an assay for activation of the endogenous μ-opioid system. We show that a simple measure of pain tolerance correlates with social network size in humans. Our results are in line with previous studies suggesting that μ-opioid receptor signalling has been elaborated beyond its basic function of pain modulation to play an important role in managing our social encounters. The neuroplasticity of the μ-opioid system is of future research interest, especially with respect to psychiatric disorders associated with symptoms of social withdrawal and anhedonia, both of which are strongly modulated by endogenous opioids.

  12. Egg hatchability prediction by multiple linear regression and artificial neural networks

    Directory of Open Access Journals (Sweden)

    AC Bolzan

    2008-06-01

    Full Text Available An artificial neural network (ANN was compared with a multiple linear regression statistical method to predict hatchability in an artificial incubation process. A feedforward neural network architecture was applied. Network trainings were made by the backpropagation algorithm based on data obtained from industrial incubations. The ANN model was chosen as it produced data that fit better the experimental data as compared to the multiple linear regression model, which used coefficients determined by minimum square method. The proposed simulation results of these approaches indicate that this ANN can be used for incubation performance prediction.

  13. Location-Based Services in Vehicular Networks

    Science.gov (United States)

    Wu, Di

    2013-01-01

    Location-based services have been identified as a promising communication paradigm in highly mobile and dynamic vehicular networks. However, existing mobile ad hoc networking cannot be directly applied to vehicular networking due to differences in traffic conditions, mobility models and network topologies. On the other hand, hybrid architectures…

  14. A study on predicting network corrections in PPP-RTK processing

    Science.gov (United States)

    Wang, Kan; Khodabandeh, Amir; Teunissen, Peter

    2017-10-01

    In PPP-RTK processing, the network corrections including the satellite clocks, the satellite phase biases and the ionospheric delays are provided to the users to enable fast single-receiver integer ambiguity resolution. To solve the rank deficiencies in the undifferenced observation equations, the estimable parameters are formed to generate full-rank design matrix. In this contribution, we firstly discuss the interpretation of the estimable parameters without and with a dynamic satellite clock model incorporated in a Kalman filter during the network processing. The functionality of the dynamic satellite clock model is tested in the PPP-RTK processing. Due to the latency generated by the network processing and data transfer, the network corrections are delayed for the real-time user processing. To bridge the latencies, we discuss and compare two prediction approaches making use of the network corrections without and with the dynamic satellite clock model, respectively. The first prediction approach is based on the polynomial fitting of the estimated network parameters, while the second approach directly follows the dynamic model in the Kalman filter of the network processing and utilises the satellite clock drifts estimated in the network processing. Using 1 Hz data from two networks in Australia, the influences of the two prediction approaches on the user positioning results are analysed and compared for latencies ranging from 3 to 10 s. The accuracy of the positioning results decreases with the increasing latency of the network products. For a latency of 3 s, the RMS of the horizontal and the vertical coordinates (with respect to the ground truth) do not show large differences applying both prediction approaches. For a latency of 10 s, the prediction approach making use of the satellite clock model has generated slightly better positioning results with the differences of the RMS at mm-level. Further advantages and disadvantages of both prediction approaches are

  15. Hidden information revealed by optimal community structure from a protein-complex bipartite network improves protein function prediction.

    Science.gov (United States)

    Lee, Juyong; Lee, Jooyoung

    2013-01-01

    The task of extracting the maximal amount of information from a biological network has drawn much attention from researchers, for example, predicting the function of a protein from a protein-protein interaction (PPI) network. It is well known that biological networks consist of modules/communities, a set of nodes that are more densely inter-connected among themselves than with the rest of the network. However, practical applications of utilizing the community information have been rather limited. For protein function prediction on a network, it has been shown that none of the existing community-based protein function prediction methods outperform a simple neighbor-based method. Recently, we have shown that proper utilization of a highly optimal modularity community structure for protein function prediction can outperform neighbor-assisted methods. In this study, we propose two function prediction approaches on bipartite networks that consider the community structure information as well as the neighbor information from the network: 1) a simple screening method and 2) a random forest based method. We demonstrate that our community-assisted methods outperform neighbor-assisted methods and the random forest method yields the best performance. In addition, we show that using the optimal community structure information is essential for more accurate function prediction for the protein-complex bipartite network of Saccharomyces cerevisiae. Community detection can be carried out either using a modified modularity for dealing with the original bipartite network or first projecting the network into a single-mode network (i.e., PPI network) and then applying community detection to the reduced network. We find that the projection leads to the loss of information in a significant way. Since our prediction methods rely only on the network topology, they can be applied to various fields where an efficient network-based analysis is required.

  16. Prediction of ferric iron precipitation in bioleaching process using partial least squares and artificial neural network

    Directory of Open Access Journals (Sweden)

    Golmohammadi Hassan

    2013-01-01

    Full Text Available A quantitative structure-property relationship (QSPR study based on partial least squares (PLS and artificial neural network (ANN was developed for the prediction of ferric iron precipitation in bioleaching process. The leaching temperature, initial pH, oxidation/reduction potential (ORP, ferrous concentration and particle size of ore were used as inputs to the network. The output of the model was ferric iron precipitation. The optimal condition of the neural network was obtained by adjusting various parameters by trial-and-error. After optimization and training of the network according to back-propagation algorithm, a 5-5-1 neural network was generated for prediction of ferric iron precipitation. The root mean square error for the neural network calculated ferric iron precipitation for training, prediction and validation set are 32.860, 40.739 and 35.890, respectively, which are smaller than those obtained by PLS model (180.972, 165.047 and 149.950, respectively. Results obtained reveal the reliability and good predictivity of neural network model for the prediction of ferric iron precipitation in bioleaching process.

  17. The Reliability to Predict Threat in Social Networks

    Directory of Open Access Journals (Sweden)

    Aleksandrs Larionovs

    2014-11-01

    Full Text Available During the analysis and study it will be possible to create and describe information damping mechanism for transition of threats from one user group to another (within the parameters of portraits, which is the main cause of the massively spreading threat on social networks. Threat predictability in social networks is associated with an adequate scrutiny of system and user portrait, which has a direct correlation.

  18. Using neural networks for prediction of air pollution index in industrial city

    Science.gov (United States)

    Rahman, P. A.; Panchenko, A. A.; Safarov, A. M.

    2017-10-01

    This scientific paper is dedicated to the use of artificial neural networks for the ecological prediction of state of the atmospheric air of an industrial city for capability of the operative environmental decisions. In the paper, there is also the described development of two types of prediction models for determining of the air pollution index on the basis of neural networks: a temporal (short-term forecast of the pollutants content in the air for the nearest days) and a spatial (forecast of atmospheric pollution index in any point of city). The stages of development of the neural network models are briefly overviewed and description of their parameters is also given. The assessment of the adequacy of the prediction models, based on the calculation of the correlation coefficient between the output and reference data, is also provided. Moreover, due to the complexity of perception of the «neural network code» of the offered models by the ordinary users, the software implementations allowing practical usage of neural network models are also offered. It is established that the obtained neural network models provide sufficient reliable forecast, which means that they are an effective tool for analyzing and predicting the behavior of dynamics of the air pollution in an industrial city. Thus, this scientific work successfully develops the urgent matter of forecasting of the atmospheric air pollution index in industrial cities based on the use of neural network models.

  19. Protein complexes predictions within protein interaction networks using genetic algorithms.

    Science.gov (United States)

    Ramadan, Emad; Naef, Ahmed; Ahmed, Moataz

    2016-07-25

    Protein-protein interaction networks are receiving increased attention due to their importance in understanding life at the cellular level. A major challenge in systems biology is to understand the modular structure of such biological networks. Although clustering techniques have been proposed for clustering protein-protein interaction networks, those techniques suffer from some drawbacks. The application of earlier clustering techniques to protein-protein interaction networks in order to predict protein complexes within the networks does not yield good results due to the small-world and power-law properties of these networks. In this paper, we construct a new clustering algorithm for predicting protein complexes through the use of genetic algorithms. We design an objective function for exclusive clustering and overlapping clustering. We assess the quality of our proposed clustering algorithm using two gold-standard data sets. Our algorithm can identify protein complexes that are significantly enriched in the gold-standard data sets. Furthermore, our method surpasses three competing methods: MCL, ClusterOne, and MCODE in terms of the quality of the predicted complexes. The source code and accompanying examples are freely available at http://faculty.kfupm.edu.sa/ics/eramadan/GACluster.zip .

  20. Gender differences in predicting loneliness from social network characteristics.

    Science.gov (United States)

    Stokes, J; Levin, I

    1986-11-01

    In two studies we examined gender differences in predicting loneliness from measures of social network structure and a measure of perceived social support. The results showed that social network characteristics, especially density, were consistently better predictors of perceived loneliness for men than for women. Study 1 used the traditional measure of network density in which the number of relationships among network members was determined. Study 2 used a newly developed index of density that assessed the extent of closeness of relationships between pairs of network members. Uniformly, male subjects with more highly interconnected, cohesive sets of friends reported themselves to be less lonely, whereas density had little relation to loneliness in female subjects. These results are discussed as possibly indicating that men and women use different standards in evaluating whether they are lonely. It is suggested that men may use more group-oriented criteria in evaluating loneliness, whereas women focus more on the qualities of dyadic relationships.

  1. Prediction of Prospective Mathematics Teachers' Academic Success in Entering Graduate Education by Using Back-Propagation Neural Network

    Science.gov (United States)

    Bahadir, Elif

    2016-01-01

    The purpose of this study is to examine a neural network based approach to predict achievement in graduate education for Elementary Mathematics prospective teachers. With the help of this study, it can be possible to make an effective prediction regarding the students' achievement in graduate education with Artificial Neural Networks (ANN). Two…

  2. Predicting Traffic Flow in Local Area Networks by the Largest Lyapunov Exponent

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2016-01-01

    Full Text Available The dynamics of network traffic are complex and nonlinear, and chaotic behaviors and their prediction, which play an important role in local area networks (LANs, are studied in detail, using the largest Lyapunov exponent. With the introduction of phase space reconstruction based on the time sequence, the high-dimensional traffic is projected onto the low dimension reconstructed phase space, and a reduced dynamic system is obtained from the dynamic system viewpoint. Then, a numerical method for computing the largest Lyapunov exponent of the low-dimensional dynamic system is presented. Further, the longest predictable time, which is related to chaotic behaviors in the system, is studied using the largest Lyapunov exponent, and the Wolf method is used to predict the evolution of the traffic in a local area network by both Dot and Interval predictions, and a reliable result is obtained by the presented method. As the conclusion, the results show that the largest Lyapunov exponent can be used to describe the sensitivity of the trajectory in the reconstructed phase space to the initial values. Moreover, Dot Prediction can effectively predict the flow burst. The numerical simulation also shows that the presented method is feasible and efficient for predicting the complex dynamic behaviors in LAN traffic, especially for congestion and attack in networks, which are the main two complex phenomena behaving as chaos in networks.

  3. Maximum solid concentrations of coal water slurries predicted by neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jun; Li, Yanchang; Zhou, Junhu; Liu, Jianzhong; Cen, Kefa

    2010-12-15

    The nonlinear back-propagation (BP) neural network models were developed to predict the maximum solid concentration of coal water slurry (CWS) which is a substitute for oil fuel, based on physicochemical properties of 37 typical Chinese coals. The Levenberg-Marquardt algorithm was used to train five BP neural network models with different input factors. The data pretreatment method, learning rate and hidden neuron number were optimized by training models. It is found that the Hardgrove grindability index (HGI), moisture and coalification degree of parent coal are 3 indispensable factors for the prediction of CWS maximum solid concentration. Each BP neural network model gives a more accurate prediction result than the traditional polynomial regression equation. The BP neural network model with 3 input factors of HGI, moisture and oxygen/carbon ratio gives the smallest mean absolute error of 0.40%, which is much lower than that of 1.15% given by the traditional polynomial regression equation. (author)

  4. A Traffic Prediction Model for Self-Adapting Routing Overlay Network in Publish/Subscribe System

    Directory of Open Access Journals (Sweden)

    Meng Chi

    2017-01-01

    Full Text Available In large-scale location-based service, an ideal situation is that self-adapting routing strategies use future traffic data as input to generate a topology which could adapt to the changing traffic well. In the paper, we propose a traffic prediction model for the broker in publish/subscribe system, which can predict the traffic of the link in future by neural network. We first introduced our traffic prediction model and then described the model integration. Finally, the experimental results show that our traffic prediction model could predict the traffic of link well.

  5. Speaker Prediction based on Head Orientations

    NARCIS (Netherlands)

    Rienks, R.J.; Poppe, Ronald Walter; van Otterlo, M.; Poel, Mannes; Poel, M.; Nijholt, A.; Nijholt, Antinus

    2005-01-01

    To gain insight into gaze behavior in meetings, this paper compares the results from a Naive Bayes classifier, Neural Networks and humans on speaker prediction in four-person meetings given solely the azimuth head angles. The Naive Bayes classifier scored 69.4% correctly, Neural Networks 62.3% and

  6. Predictive Closed-Loop Power Control for CDMA Cellular Networks

    Science.gov (United States)

    Choe, Sangho; Uysal, Murat

    In this paper, we present and analyze a predictive closedloop power control (CLPC) scheme which employs a comb-type sample arrangement to effectively compensate multiple power control group (PCG) delays over mobile fading channels. We consider both least squares and recursive least squares filters in our CLPC scheme. The effects of channel estimation error, prediction filter error, and power control bit transmission error on the performance of the proposed CLPC method along with competing non-predictive and predictive CLPC schemes are thoroughly investigated. Our results clearly indicate the superiority of the proposed scheme with its improved robustness under non-ideal conditions. Furthermore, we carry out a Monte-Carlo simulation study of a 5×5 square grid cellular network and evaluate the user capacity. Capacity improvements up to 90% are observed for a typical cellular network scenario.

  7. Prediction of breast cancer using artificial neural networks.

    Science.gov (United States)

    Saritas, Ismail

    2012-10-01

    In this study, an artificial neural network (ANN) was developed to determine whether patients have breast cancer or not. Whether patients have cancer or not and if they have its type can be determined by using ANN and BI-RADS evaluation and based on the age of the patient, mass shape, mass border and mass density. Though this system cannot diagnose cancer conclusively, it helps physicians in deciding whether a biopsy is required by providing information about whether the patient has breast cancer or not. Data obtained from 800 patients who were diagnosed with cancer definitively through biopsy. The definitive diagnosis corresponding to each patient and the data from ANN model results were investigated using Confusion matrix and ROC analyses. In the test data of the ANN model that was implemented as a result of these analyses, disease prediction rate was 90.5% and the health ratio was 80.9%. It is seen from these high predictive values that the ANN model is fast, reliable and without any risks and therefore can be of great help to physicians.

  8. DNdisorder: predicting protein disorder using boosting and deep networks.

    Science.gov (United States)

    Eickholt, Jesse; Cheng, Jianlin

    2013-03-06

    A number of proteins contain regions which do not adopt a stable tertiary structure in their native state. Such regions known as disordered regions have been shown to participate in many vital cell functions and are increasingly being examined as drug targets. This work presents a new sequence based approach for the prediction of protein disorder. The method uses boosted ensembles of deep networks to make predictions and participated in the CASP10 experiment. In a 10 fold cross validation procedure on a dataset of 723 proteins, the method achieved an average balanced accuracy of 0.82 and an area under the ROC curve of 0.90. These results are achieved in part by a boosting procedure which is able to steadily increase balanced accuracy and the area under the ROC curve over several rounds. The method also compared competitively when evaluated against a number of state-of-the-art disorder predictors on CASP9 and CASP10 benchmark datasets. DNdisorder is available as a web service at http://iris.rnet.missouri.edu/dndisorder/.

  9. Prediction of Alzheimer's disease using individual structural connectivity networks

    Science.gov (United States)

    Shao, Junming; Myers, Nicholas; Yang, Qinli; Feng, Jing; Plant, Claudia; Böhm, Christian; Förstl, Hans; Kurz, Alexander; Zimmer, Claus; Meng, Chun; Riedl, Valentin; Wohlschläger, Afra; Sorg, Christian

    2012-01-01

    Alzheimer's disease (AD) progressively degrades the brain's gray and white matter. Changes in white matter reflect changes in the brain's structural connectivity pattern. Here, we established individual structural connectivity networks (ISCNs) to distinguish predementia and dementia AD from healthy aging in individual scans. Diffusion tractography was used to construct ISCNs with a fully automated procedure for 21 healthy control subjects (HC), 23 patients with mild cognitive impairment and conversion to AD dementia within 3 years (AD-MCI), and 17 patients with mild AD dementia. Three typical pattern classifiers were used for AD prediction. Patients with AD and AD-MCI were separated from HC with accuracies greater than 95% and 90%, respectively, irrespective of prediction approach and specific fiber properties. Most informative connections involved medial prefrontal, posterior parietal, and insular cortex. Patients with mild AD were separated from those with AD-MCI with an accuracy of approximately 85%. Our finding provides evidence that ISCNs are sensitive to the impact of earliest stages of AD. ISCNs may be useful as a white matter-based imaging biomarker to distinguish healthy aging from AD. PMID:22405045

  10. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  11. Predictive models for pressure ulcers from intensive care unit electronic health records using Bayesian networks.

    Science.gov (United States)

    Kaewprag, Pacharmon; Newton, Cheryl; Vermillion, Brenda; Hyun, Sookyung; Huang, Kun; Machiraju, Raghu

    2017-07-05

    on patients and the high cost for treating pressure ulcers, our Bayesian network based model provides a novel framework for significantly improving the sensitivity of the prediction model. Thus, when the model is deployed in a clinical setting, the caregivers can suitably respond to conditions likely associated with pressure ulcer incidence.

  12. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    The availability of location information in mobile devices, e.g., through built-in GPS receivers in smart phones, has motivated the investigation of the usefulness of location based network optimizations. Since the quality of input information is important for network optimizations, a main focus...... of this work is to evaluate how location based network optimizations are affected by varying quality of input information such as location information and user movements. The first contribution in this thesis concerns cooperative network-based localization systems. The investigations focus on assessing...... the achievable accuracy of future localization system in mobile settings, as well as quantifying the impact of having a realistic model of the required measurement exchanges. Secondly, this work has considered different large scale and small scale location based network optimizations, namely centralized relay...

  13. Prediction Accuracy Optimization of Chaotic Perturbation in the Analysis Model of Network-Oriented Consumption

    Directory of Open Access Journals (Sweden)

    Dakai Li

    2014-10-01

    Full Text Available As the slower rate of convergence and lower study ability in the late period of network-oriented consumption prediction model based on neural network algorithm, this paper proposed a network analysis neural model based on chaotic disturbance optimized particle swarm. Firstly, improve the initialization of particle swarm with chaotic disturbance optimization strategy in order to limit the initial position and the initial speed of limited particle. Then have an optimal operation on each individual in particle swarm with chaotic disturbance variables, so that the particles which do not enter into iteration will jump out of the local optima area. And next, optimize the PSO algorithm inertia weight by adopting adaptive adjustment strategy based on individual particle adaptive value. At last, combine the improved PSO algorithm based on chaotic disturbance with neural network algorithm, thus we will construct the network-oriented consumption analysis model. Simulation results show that the proposed network-oriented consumption analysis neural network model based on chaotic disturbance optimized particle swarm has greatly improved in prediction accuracy and computational speed.

  14. An Artificial Neural Network-Based Ionospheric Model to Predict NmF2 and hmF2 Using Long-Term Data Set of FORMOSAT-3/COSMIC Radio Occultation Observations: Preliminary Results

    Science.gov (United States)

    Sai Gowtam, V.; Tulasi Ram, S.

    2017-11-01

    Artificial Neural Networks (ANNs) are known to be capable of solving linear as well as highly nonlinear problems. Using the long-term and high-quality data set of Formosa Satellite-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC, in short F3/C) from 2006 to 2015, an ANN-based two-dimensional (2-D) Ionospheric Model (ANNIM) is developed to predict the ionospheric peak parameters, such as NmF2 and hmF2. In this pilot study, the ANNIM results are compared with the original F3/C data, GRACE (Gravity Recovery and Climate Experiment) observations as well as International Reference Ionosphere (IRI)-2016 model to assess the learning efficiency of the neural networks used in the model. The ANNIM could well predict the NmF2 (hmF2) values with RMS errors of 1.87 × 105 el/cm3 (27.9 km) with respect to actual F3/C; and 2.98 × 105 el/cm3 (40.18 km) with respect to independent GRACE data. Further, the ANNIM predictions found to be as good as IRI-2016 model with a slightly smaller RMS error when compared to independent GRACE data. The ANNIM has successfully reproduced the local time, latitude, longitude, and seasonal variations with errors ranging 15-25% for NmF2 and 10-15% for hmF2 compared to actual F3/C data, except the postsunset enhancement in hmF2. Further, the ANNIM has also captured the global-scale ionospheric phenomena such as ionospheric annual anomaly, Weddell Sea Anomaly, and the midlatitude summer nighttime anomaly. Compared to IRI-2016 model, the ANNIM is found to have better represented the fine longitudinal structures and the midlatitude summer nighttime enhancements in both the hemispheres.

  15. Artificial Neural Networks in the prediction of insolvency. A paradigm shift to traditional business practices recipes

    Directory of Open Access Journals (Sweden)

    Marcia M. Lastre Valdes

    2014-06-01

    Full Text Available In this paper a review and analysis of the major theories and models that address the prediction of corporate bankruptcy and insolvency is made. Neural networks are a tool of most recent appearance, although in recent years have received considerable attention from the academic and professional world, and have started to be implemented in different models testing organizations insolvency based on neural computation. The purpose of this paper is to yield evidence of the usefulness of Artificial Neural Networks in the problem of bankruptcy prediction insolence or so compare its predictive ability with the methods commonly used in that context. The findings suggest that high predictive capabilities can be achieved  using artificial neural networks, with qualitative and quantitative variables.

  16. Failure prediction using machine learning and time series in optical network.

    Science.gov (United States)

    Wang, Zhilong; Zhang, Min; Wang, Danshi; Song, Chuang; Liu, Min; Li, Jin; Lou, Liqi; Liu, Zhuo

    2017-08-07

    In this paper, we propose a performance monitoring and failure prediction method in optical networks based on machine learning. The primary algorithms of this method are the support vector machine (SVM) and double exponential smoothing (DES). With a focus on risk-aware models in optical networks, the proposed protection plan primarily investigates how to predict the risk of an equipment failure. To the best of our knowledge, this important problem has not yet been fully considered. Experimental results showed that the average prediction accuracy of our method was 95% when predicting the optical equipment failure state. This finding means that our method can forecast an equipment failure risk with high accuracy. Therefore, our proposed DES-SVM method can effectively improve traditional risk-aware models to protect services from possible failures and enhance the optical network stability.

  17. Predicting tipping points in mutualistic networks through dimension reduction.

    Science.gov (United States)

    Jiang, Junjie; Huang, Zi-Gang; Seager, Thomas P; Lin, Wei; Grebogi, Celso; Hastings, Alan; Lai, Ying-Cheng

    2018-01-08

    Complex networked systems ranging from ecosystems and the climate to economic, social, and infrastructure systems can exhibit a tipping point (a "point of no return") at which a total collapse of the system occurs. To understand the dynamical mechanism of a tipping point and to predict its occurrence as a system parameter varies are of uttermost importance, tasks that are hindered by the often extremely high dimensionality of the underlying system. Using complex mutualistic networks in ecology as a prototype class of systems, we carry out a dimension reduction process to arrive at an effective 2D system with the two dynamical variables corresponding to the average pollinator and plant abundances. We show, using 59 empirical mutualistic networks extracted from real data, that our 2D model can accurately predict the occurrence of a tipping point, even in the presence of stochastic disturbances. We also find that, because of the lack of sufficient randomness in the structure of the real networks, weighted averaging is necessary in the dimension reduction process. Our reduced model can serve as a paradigm for understanding and predicting the tipping point dynamics in real world mutualistic networks for safeguarding pollinators, and the general principle can be extended to a broad range of disciplines to address the issues of resilience and sustainability. Copyright © 2018 the Author(s). Published by PNAS.

  18. Using neural networks for prediction of nuclear parameters

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Filho, Leonidas; Souto, Kelling Cabral, E-mail: leonidasmilenium@hotmail.com, E-mail: kcsouto@bol.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ (Brazil); Machado, Marcelo Dornellas, E-mail: dornemd@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (GCN.T/ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear

    2013-07-01

    Dating from 1943, the earliest work on artificial neural networks (ANN), when Warren Mc Cullock and Walter Pitts developed a study on the behavior of the biological neuron, with the goal of creating a mathematical model. Some other work was done until after the 80 witnessed an explosion of interest in ANNs, mainly due to advances in technology, especially microelectronics. Because ANNs are able to solve many problems such as approximation, classification, categorization, prediction and others, they have numerous applications in various areas, including nuclear. Nodal method is adopted as a tool for analyzing core parameters such as boron concentration and pin power peaks for pressurized water reactors. However, this method is extremely slow when it is necessary to perform various core evaluations, for example core reloading optimization. To overcome this difficulty, in this paper a model of Multi-layer Perceptron (MLP) artificial neural network type backpropagation will be trained to predict these values. The main objective of this work is the development of Multi-layer Perceptron (MLP) artificial neural network capable to predict, in very short time, with good accuracy, two important parameters used in the core reloading problem - Boron Concentration and Power Peaking Factor. For the training of the neural networks are provided loading patterns and nuclear data used in cycle 19 of Angra 1 nuclear power plant. Three models of networks are constructed using the same input data and providing the following outputs: 1- Boron Concentration and Power Peaking Factor, 2 - Boron Concentration and 3 - Power Peaking Factor. (author)

  19. A Quantum Cryptography Communication Network Based on Software Defined Network

    Directory of Open Access Journals (Sweden)

    Zhang Hongliang

    2018-01-01

    Full Text Available With the development of the Internet, information security has attracted great attention in today’s society, and quantum cryptography communication network based on quantum key distribution (QKD is a very important part of this field, since the quantum key distribution combined with one-time-pad encryption scheme can guarantee the unconditional security of the information. The secret key generated by quantum key distribution protocols is a very valuable resource, so making full use of key resources is particularly important. Software definition network (SDN is a new type of network architecture, and it separates the control plane and the data plane of network devices through OpenFlow technology, thus it realizes the flexible control of the network resources. In this paper, a quantum cryptography communication network model based on SDN is proposed to realize the flexible control of quantum key resources in the whole cryptography communication network. Moreover, we propose a routing algorithm which takes into account both the hops and the end-to-end availible keys, so that the secret key generated by QKD can be used effectively. We also simulate this quantum cryptography communication network, and the result shows that based on SDN and the proposed routing algorithm the performance of this network is improved since the effective use of the quantum key resources.

  20. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xin Guan

    2012-04-01

    Full Text Available Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs. Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR.We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  1. A network coding based routing protocol for underwater sensor networks.

    Science.gov (United States)

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  2. Prediction of Multiphase Flow Properties from Network Models ...

    African Journals Online (AJOL)

    The prediction of multiphase transport properties of reservoir rocks has been undertaken. This was done by numerical flow simulation of relative permeability and capillary pressure curves from pore network models extracted from Pore Architecture Models (PAMs). These PAMs are three-dimensional images obtained from ...

  3. Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network

    NARCIS (Netherlands)

    Park, Y.S.; Verdonschot, P.F.M.; Chon, T.S.; Lek, S.

    2003-01-01

    A counterpropagation neural network (CPN) was applied to predict species richness (SR) and Shannon diversity index (SH) of benthic macroinvertebrate communities using 34 environmental variables. The data were collected at 664 sites at 23 different water types such as springs, streams, rivers,

  4. Artificial neural networks for prediction of percentage of water ...

    Indian Academy of Sciences (India)

    Mater. Sci., Vol. 35, No. 6, November 2012, pp. 1019–1029. c Indian Academy of Sciences. Artificial neural networks for prediction of percentage of water absorption of geopolymers produced by waste ashes. ALI NAZARI. Department of Materials Science and Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran.

  5. Semi-supervised prediction of gene regulatory networks using ...

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... [Patel N and Wang JTL 2015 Semi-supervised prediction of gene regulatory networks using machine learning algorithms. J. Biosci. 40 731–740]. DOI 10.1007/s12038-015-9558-9. 1. Introduction. 1.1 Background. Using gene expression data to infer gene regulatory net- works (GRNs) is a key approach to ...

  6. Predicting Physical Time Series Using Dynamic Ridge Polynomial Neural Networks

    Science.gov (United States)

    Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir

    2014-01-01

    Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques. PMID:25157950

  7. Inferential ecosystem models, from network data to prediction

    Science.gov (United States)

    James S. Clark; Pankaj Agarwal; David M. Bell; Paul G. Flikkema; Alan Gelfand; Xuanlong Nguyen; Eric Ward; Jun. Yang

    2011-01-01

    Recent developments suggest that predictive modeling could begin to play a larger role not only for data analysis, but also for data collection. We address the example of efficient wireless sensor networks, where inferential ecosystem models can be used to weigh the value of an observation against the cost of data collection. Transmission costs make observations ‘‘...

  8. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens.

    Directory of Open Access Journals (Sweden)

    Deborah Chasman

    2016-07-01

    Full Text Available Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection.

  9. Prediction of body mass index in mice using dense molecular markers and a regularized neural network.

    Science.gov (United States)

    Okut, Hayrettin; Gianola, Daniel; Rosa, Guilherme J M; Weigel, Kent A

    2011-06-01

    Bayesian regularization of artificial neural networks (BRANNs) were used to predict body mass index (BMI) in mice using single nucleotide polymorphism (SNP) markers. Data from 1896 animals with both phenotypic and genotypic (12 320 loci) information were used for the analysis. Missing genotypes were imputed based on estimated allelic frequencies, with no attempt to reconstruct haplotypes based on family information or linkage disequilibrium between markers. A feed-forward multilayer perceptron network consisting of a single output layer and one hidden layer was used. Training of the neural network was done using the Bayesian regularized backpropagation algorithm. When the number of neurons in the hidden layer was increased, the number of effective parameters, γ, increased up to a point and stabilized thereafter. A model with five neurons in the hidden layer produced a value of γ that saturated the data. In terms of predictive ability, a network with five neurons in the hidden layer attained the smallest error and highest correlation in the test data although differences among networks were negligible. Using inherent weight information of BRANN with different number of neurons in the hidden layer, it was observed that 17 SNPs had a larger impact on the network, indicating their possible relevance in prediction of BMI. It is concluded that BRANN may be at least as useful as other methods for high-dimensional genome-enabled prediction, with the advantage of its potential ability of capturing non-linear relationships, which may be useful in the study of quantitative traits under complex gene action.

  10. Prediction of proteasome cleavage motifs by neural networks

    DEFF Research Database (Denmark)

    Kesimir, C.; Nussbaum, A.K.; Schild, H.

    2002-01-01

    physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make...... the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks trained on MHC...... Class I molecules. Here we demonstrate that such an approach produces an accurate prediction of the CTL the epitopes in HIV Nef. The method is available at www.cbs.dtu.dk/services/NetChop/....

  11. Comparison of QSAR models based on combinations of genetic algorithm, stepwise multiple linear regression, and artificial neural network methods to predict Kd of some derivatives of aromatic sulfonamides as carbonic anhydrase II inhibitors.

    Science.gov (United States)

    Maleki, Afshin; Daraei, Hiua; Alaei, Loghman; Faraji, Aram

    2014-01-01

    Four stepwise multiple linear regressions (SMLR) and a genetic algorithm (GA) based multiple linear regressions (MLR), together with artificial neural network (ANN) models, were applied for quantitative structure-activity relationship (QSAR) modeling of dissociation constants (Kd) of 62 arylsulfonamide (ArSA) derivatives as human carbonic anhydrase II (HCA II) inhibitors. The best subsets of molecular descriptors were selected by SMLR and GA-MLR methods. These selected variables were used to generate MLR and ANN models. The predictability power of models was examined by an external test set and cross validation. In addition, some tests were done to examine other aspects of the models. The results show that for certain purposes GA-MLR is better than SMLR and for others, ANN overcomes MLR models.

  12. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    Science.gov (United States)

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  13. High variation subarctic topsoil pollutant concentration prediction using neural network residual kriging

    Science.gov (United States)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Subbotina, I. E.; Shichkin, A. V.; Sergeeva, M. V.; Lvova, O. A.

    2017-06-01

    The work deals with the application of neural networks residual kriging (NNRK) to the spatial prediction of the abnormally distributed soil pollutant (Cr). It is known that combination of geostatistical interpolation approaches (kriging) and neural networks leads to significantly better prediction accuracy and productivity. Generalized regression neural networks and multilayer perceptrons are classes of neural networks widely used for the continuous function mapping. Each network has its own pros and cons; however both demonstrated fast training and good mapping possibilities. In the work, we examined and compared two combined techniques: generalized regression neural network residual kriging (GRNNRK) and multilayer perceptron residual kriging (MLPRK). The case study is based on the real data sets on surface contamination by chromium at a particular location of the subarctic Novy Urengoy, Russia, obtained during the previously conducted screening. The proposed models have been built, implemented and validated using ArcGIS and MATLAB environments. The networks structures have been chosen during a computer simulation based on the minimization of the RMSE. MLRPK showed the best predictive accuracy comparing to the geostatistical approach (kriging) and even to GRNNRK.

  14. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    Science.gov (United States)

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  15. Automatic speech recognition using a predictive echo state network classifier.

    Science.gov (United States)

    Skowronski, Mark D; Harris, John G

    2007-04-01

    We have combined an echo state network (ESN) with a competitive state machine framework to create a classification engine called the predictive ESN classifier. We derive the expressions for training the predictive ESN classifier and show that the model was significantly more noise robust compared to a hidden Markov model in noisy speech classification experiments by 8+/-1 dB signal-to-noise ratio. The simple training algorithm and noise robustness of the predictive ESN classifier make it an attractive classification engine for automatic speech recognition.

  16. Model-based neural networks to predict emissions in a diesel engine operating with biodiesel blends of castor; Modelo basado en redes neuronales para predecir las emisiones en un motor diésel que opera con mezclas de biodiésel de higuerilla

    Directory of Open Access Journals (Sweden)

    Fabio Narváez

    2012-12-01

    Full Text Available Some identification methods of nonlinear systems using artificialneural networks are explained. Also, a model based on Neural Networks“Supervised Feed Forward” is presented, developed to identifyand predict the behavior of volumetric emissions from combustion of astationary diésel engine based on two input variables: the engine load and the mixture of castor biodiésel. The neural network training and model validation was performed by using the NNModel.

  17. System Identification, Prediction, Simulation and Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System...... Identification, Prediction, Simulation and Control of a dynamic, non-linear and noisy process. Further, the difficulties to control a practical non-linear laboratory process in a satisfactory way by using a traditional controller are overcomed by using a trained neural network to perform non-linear System......The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...

  18. Modelling and predicting biogeographical patterns in river networks

    Directory of Open Access Journals (Sweden)

    Sabela Lois

    2016-04-01

    Full Text Available Statistical analysis and interpretation of biogeographical phenomena in rivers is now possible using a spatially explicit modelling framework, which has seen significant developments in the past decade. I used this approach to identify a spatial extent (geostatistical range in which the abundance of the parasitic freshwater pearl mussel (Margaritifera margaritifera L. is spatially autocorrelated in river networks. I show that biomass and abundance of host fish are a likely explanation for the autocorrelation in mussel abundance within a 15-km spatial extent. The application of universal kriging with the empirical model enabled precise prediction of mussel abundance within segments of river networks, something that has the potential to inform conservation biogeography. Although I used a variety of modelling approaches in my thesis, I focus here on the details of this relatively new spatial stream network model, thus advancing the study of biogeographical patterns in river networks.

  19. An Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-ion Batteries

    Science.gov (United States)

    2010-10-01

    application for RUL prediction. We compare its performance with the classical recurrent neural network (RNN) and the recurrent neural fuzzy system ...Jang (1993). ANFIS: adaptive-network-based fuzzy inference system , IEEE Transactions on Systems , Man, and Cybernetics-Part B: Cybernetics, vol. 23...pp. 665-685, 1993. J. Jang, C. T. Sun, and E. Mizutani (1997). Neuro - Fuzzy and Soft Computing: A computational approach to learning and machine

  20. Predicting Subsurface Soil Layering and Landslide Risk with Artificial Neural Networks

    DEFF Research Database (Denmark)

    Farrokhzad, Farzad; Barari, Amin; Ibsen, Lars Bo

    2011-01-01

    the investigation of study area. The quality of the modeling is further improved by the application of some controlling techniques involved in ANN. Based on the obtained results and considering that the test data were not presented to the network in the training process, it can be stated that the trained neural...... networks are capable of predicting variations in the soil profile and assessing the landslide hazard with an acceptable level of confidence....

  1. Experimental Parameter Tuning of Artificial Neural Network in Customer Churn Prediction

    OpenAIRE

    Martin Fridrich

    2017-01-01

    Abstract Purpose of the article: The paper aim is to examine classification models, based on artificial neural networks through experimental parameter tuning, in domain of customer churn prediction in e-commerce retail. Methodology/methods: Key methods used are artificial neural network and conditional inference tree for further meta-analysis of the results. Fundamental logical methods such as deduction are also used. Scientific aim: To present and execute experimental design for per...

  2. Artificial neural networks (ANN): prediction of sensory measurements from instrumental data

    OpenAIRE

    Carvalho,Naiara Barbosa; Minim,Valéria Paula Rodrigues; Silva,Rita de Cássia dos Santos Navarro; Della Lucia,Suzana Maria; Minim,Luis Aantonio

    2013-01-01

    The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combination...

  3. AIR POLLUITON INDEX PREDICTION USING MULTIPLE NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Zainal Ahmad

    2017-05-01

    Full Text Available Air quality monitoring and forecasting tools are necessary for the purpose of taking precautionary measures against air pollution, such as reducing the effect of a predicted air pollution peak on the surrounding population and ecosystem. In this study a single Feed-forward Artificial Neural Network (FANN is shown to be able to predict the Air Pollution Index (API with a Mean Squared Error (MSE and coefficient determination, R2, of 0.1856 and 0.7950 respectively. However, due to the non-robust nature of single FANN, a selective combination of Multiple Neural Networks (MNN is introduced using backward elimination and a forward selection method. The results show that both selective combination methods can improve the robustness and performance of the API prediction with the MSE and R2 of 0.1614 and 0.8210 respectively. This clearly shows that it is possible to reduce the number of networks combined in MNN for API prediction, without losses of any information in terms of the performance of the final API prediction model.

  4. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Chaudhari

    2011-06-01

    Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.

  5. Replacement predictions for drinking water networks through historical data.

    Science.gov (United States)

    Malm, Annika; Ljunggren, Olle; Bergstedt, Olof; Pettersson, Thomas J R; Morrison, Gregory M

    2012-05-01

    Lifetime distribution functions and current network age data can be combined to provide an assessment of the future replacement needs for drinking water distribution networks. Reliable lifetime predictions are limited by a lack of understanding of deterioration processes for different pipe materials under varied conditions. An alternative approach is the use of real historical data for replacement over an extended time series. In this paper, future replacement needs are predicted through historical data representing more than one hundred years of drinking water pipe replacement in Gothenburg, Sweden. The verified data fits well with commonly used lifetime distribution curves. Predictions for the future are discussed in the context of path dependence theory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Two stage neural network modelling for robust model predictive control.

    Science.gov (United States)

    Patan, Krzysztof

    2017-11-02

    The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Prediction of Bladder Cancer Recurrences Using Artificial Neural Networks

    Science.gov (United States)

    Zulueta Guerrero, Ekaitz; Garay, Naiara Telleria; Lopez-Guede, Jose Manuel; Vilches, Borja Ayerdi; Iragorri, Eider Egilegor; Castaños, David Lecumberri; de La Hoz Rastrollo, Ana Belén; Peña, Carlos Pertusa

    Even if considerable advances have been made in the field of early diagnosis, there is no simple, cheap and non-invasive method that can be applied to the clinical monitorisation of bladder cancer patients. Moreover, bladder cancer recurrences or the reappearance of the tumour after its surgical resection cannot be predicted in the current clinical setting. In this study, Artificial Neural Networks (ANN) were used to assess how different combinations of classical clinical parameters (stage-grade and age) and two urinary markers (growth factor and pro-inflammatory mediator) could predict post surgical recurrences in bladder cancer patients. Different ANN methods, input parameter combinations and recurrence related output variables were used and the resulting positive and negative prediction rates compared. MultiLayer Perceptron (MLP) was selected as the most predictive model and urinary markers showed the highest sensitivity, predicting correctly 50% of the patients that would recur in a 2 year follow-up period.

  8. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  9. Going the distance for protein function prediction: a new distance metric for protein interaction networks.

    Science.gov (United States)

    Cao, Mengfei; Zhang, Hao; Park, Jisoo; Daniels, Noah M; Crovella, Mark E; Cowen, Lenore J; Hescott, Benjamin

    2013-01-01

    In protein-protein interaction (PPI) networks, functional similarity is often inferred based on the function of directly interacting proteins, or more generally, some notion of interaction network proximity among proteins in a local neighborhood. Prior methods typically measure proximity as the shortest-path distance in the network, but this has only a limited ability to capture fine-grained neighborhood distinctions, because most proteins are close to each other, and there are many ties in proximity. We introduce diffusion state distance (DSD), a new metric based on a graph diffusion property, designed to capture finer-grained distinctions in proximity for transfer of functional annotation in PPI networks. We present a tool that, when input a PPI network, will output the DSD distances between every pair of proteins. We show that replacing the shortest-path metric by DSD improves the performance of classical function prediction methods across the board.

  10. Arctic Sea ice Predictability and the Sea Ice Prediction Network (SIPN)

    Science.gov (United States)

    Turner-Bogren, E. J.; Wiggins, H. V.

    2015-12-01

    The decline in extent and thickness of Arctic sea ice is an active area of scientific effort with significant implications for ecosystems and communities. Forecasting sea ice extent for seasonal timescales, which is of particular interest to many stakeholders, is challenging due to variable weather and ocean behavior over that timescale as well as the current limits to data and modeling capabilities. The Sea Ice Prediction Network (SIPN) is developing a collaborative network of scientists and stakeholders to advance research on sea ice prediction and to communicate sea ice knowledge and tools. The project objectives are to coordinate and evaluate predictions; integrate, assess, and guide observations; synthesize predictions and observations; and disseminate predictions and engage key stakeholders. These objectives are advanced with projects such as the Sea Ice Outlook (SIO), efforts of the SIPN Action Teams, and a series SIPN webinars on topics relevant to the sea ice research community.

  11. Reliability based rehabilitation of water distribution networks by means of Bayesian networks

    Directory of Open Access Journals (Sweden)

    Lakehal Abdelaziz

    2017-09-01

    Full Text Available Water plays an essential role in the everyday lives of the people. To supply subscribers with good quality of water and to ensure continuity of service, the operators use water distribution networks (WDN. The main elements of water distribution network (WDN are: pipes and valves. The work developed in this paper focuses on a water distribution network rehabilitation in the short and long term. Priorities for rehabilitation actions were defined and the information system consolidated, as well as decision-making. The reliability data were conjugated in decision making tools on water distribution network rehabilitation in a forecasting context. As the pipes are static elements and the valves are dynamic elements, a Bayesian network (static-dynamic has been developed, which can help to predict the failure scenario regarding water distribution. A relationship between reliability and prioritization of rehabilitation actions has been investigated. Modelling based on a Static Bayesian Network (SBN is implemented to analyse qualitatively and quantitatively the availability of water in the different segments of the network. Dynamic Bayesian networks (DBN are then used to assess the valves reliability as function of time, which allows management of water distribution based on water availability assessment in different segments. Before finishing the paper by giving some conclusions, a case study of a network supplying a city was presented. The results show the importance and effectiveness of the proposed Bayesian approach in the anticipatory management and for prioritizing rehabilitation of water distribution networks.

  12. Automated prediction of apnea and hypopnea, using a LAMSTAR artificial neural network.

    Science.gov (United States)

    Waxman, Jonathan A; Graupe, Daniel; Carley, David W

    2010-04-01

    The prediction of individual episodes of apnea and hypopnea in people with obstructive sleep apnea syndrome has not been thoroughly investigated. Accurate prediction of these events could improve clinical management of this prevalent disease. To evaluate the performance of a system developed to predict episodes of obstructive apnea and hypopnea in individuals with obstructive sleep apnea; to determine the most important signals for making accurate and reliable predictions. We employed LArge Memory STorage And Retrieval (LAMSTAR) artificial neural networks to predict apnea and hypopnea. Wavelet transform-based preprocessing was applied to six physiological signals obtained from a set of polysomnography studies and used to train and test the networks. We tested prediction performance during non-REM and REM sleep as a function of data segment duration and prediction lead time. Measurements included average sensitivities, specificities, positive predictive values, and negative predictive values. Prediction performed best during non-REM sleep, using 30-second segments to predict events up to 30 seconds into the future. Most events were correctly predicted up to 60 seconds in the future. Apnea prediction achieved a sensitivity and specificity up to 80.6 +/- 5.6 and 72.8 +/- 6.6%, respectively. Hypopnea prediction achieved a sensitivity and specificity up to 74.4 +/- 5.9 and 68.8 +/- 7.0%., respectively. We report, to our knowledge, the first system to predict individual episodes of apnea and hypopnea. The most important signal for apnea prediction was submental electromyography. The most important signals for hypopnea prediction were submental electromyography and heart rate variability. This prediction system may facilitate improved therapies for obstructive sleep apnea.

  13. Durer-pentagon-based complex network

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2016-04-01

    Full Text Available A novel Durer-pentagon-based complex network was constructed by adding a centre node. The properties of the complex network including the average degree, clustering coefficient, average path length, and fractal dimension were determined. The proposed complex network is small-world and fractal.

  14. Constrained Active Learning for Anchor Link Prediction Across Multiple Heterogeneous Social Networks.

    Science.gov (United States)

    Zhu, Junxing; Zhang, Jiawei; Wu, Quanyuan; Jia, Yan; Zhou, Bin; Wei, Xiaokai; Yu, Philip S

    2017-08-03

    Nowadays, people are usually involved in multiple heterogeneous social networks simultaneously. Discovering the anchor links between the accounts owned by the same users across different social networks is crucial for many important inter-network applications, e.g., cross-network link transfer and cross-network recommendation. Many different supervised models have been proposed to predict anchor links so far, but they are effective only when the labeled anchor links are abundant. However, in real scenarios, such a requirement can hardly be met and most anchor links are unlabeled, since manually labeling the inter-network anchor links is quite costly and tedious. To overcome such a problem and utilize the numerous unlabeled anchor links in model building, in this paper, we introduce the active learning based anchor link prediction problem. Different from the traditional active learning problems, due to the one-to-one constraint on anchor links, if an unlabeled anchor link a = ( u , v ) is identified as positive (i.e., existing), all the other unlabeled anchor links incident to account u or account v will be negative (i.e., non-existing) automatically. Viewed in such a perspective, asking for the labels of potential positive anchor links in the unlabeled set will be rewarding in the active anchor link prediction problem. Various novel anchor link information gain measures are defined in this paper, based on which several constraint active anchor link prediction methods are introduced. Extensive experiments have been done on real-world social network datasets to compare the performance of these methods with state-of-art anchor link prediction methods. The experimental results show that the proposed Mean-entropy-based Constrained Active Learning (MC) method can outperform other methods with significant advantages.

  15. The Use of Artificial Neural Network for Prediction of Dissolution Kinetics

    Directory of Open Access Journals (Sweden)

    H. Elçiçek

    2014-01-01

    Full Text Available Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals.

  16. Network pharmacology-based and clinically relevant prediction of the active ingredients and potential targets of Chinese herbs in metastatic breast cancer patients.

    Science.gov (United States)

    Mao, Yu; Hao, Jian; Jin, Zi-Qi; Niu, Yang-Yang; Yang, Xue; Liu, Dan; Cao, Rui; Wu, Xiong-Zhi

    2017-04-18

    Chinese Herbal Medicine (CHM) plays a significant role in breast cancer treatment. We conduct the study to ascertain the relative molecular targets of effective Chinese herbs in treating stage IV breast cancer.Survival benefit of CHM was verified by Kaplan-Meier method and Cox regression analysis. A bivariate correlation analysis was used to find and establish the effect of herbs in complex CHM formulas. A network pharmacological approach was adopted to explore the potential mechanisms of CHM.Patients in the CHM group had a median survival time of 55 months, which was longer than the 23 months of patients in the non-CHM group. Cox regression analysis indicated that CHM was an independent protective factor. Correlation analysis showed that 10 herbs were strongly correlated with favorable survival outcomes (Pherbs might achieve anti-breast cancer activity primarily through inhibiting HSP90, ERα and TOP-II related pathways.

  17. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  18. Predicting forest insect flight activity: A Bayesian network approach.

    Science.gov (United States)

    Pawson, Stephen M; Marcot, Bruce G; Woodberry, Owen G

    2017-01-01

    Daily flight activity patterns of forest insects are influenced by temporal and meteorological conditions. Temperature and time of day are frequently cited as key drivers of activity; however, complex interactions between multiple contributing factors have also been proposed. Here, we report individual Bayesian network models to assess the probability of flight activity of three exotic insects, Hylurgus ligniperda, Hylastes ater, and Arhopalus ferus in a managed plantation forest context. Models were built from 7,144 individual hours of insect sampling, temperature, wind speed, relative humidity, photon flux density, and temporal data. Discretized meteorological and temporal variables were used to build naïve Bayes tree augmented networks. Calibration results suggested that the H. ater and A. ferus Bayesian network models had the best fit for low Type I and overall errors, and H. ligniperda had the best fit for low Type II errors. Maximum hourly temperature and time since sunrise had the largest influence on H. ligniperda flight activity predictions, whereas time of day and year had the greatest influence on H. ater and A. ferus activity. Type II model errors for the prediction of no flight activity is improved by increasing the model's predictive threshold. Improvements in model performance can be made by further sampling, increasing the sensitivity of the flight intercept traps, and replicating sampling in other regions. Predicting insect flight informs an assessment of the potential phytosanitary risks of wood exports. Quantifying this risk allows mitigation treatments to be targeted to prevent the spread of invasive species via international trade pathways.

  19. Link prediction measures considering different neighbors’ effects and application in social networks

    Science.gov (United States)

    Luo, Peng; Wu, Chong; Li, Yongli

    Link prediction measures have been attracted particular attention in the field of mathematical physics. In this paper, we consider the different effects of neighbors in link prediction and focus on four different situations: only consider the individual’s own effects; consider the effects of individual, neighbors and neighbors’ neighbors; consider the effects of individual, neighbors, neighbors’ neighbors, neighbors’ neighbors’ neighbors and neighbors’ neighbors’ neighbors’ neighbors; consider the whole network participants’ effects. Then, according to the four situations, we present our link prediction models which also take the effects of social characteristics into consideration. An artificial network is adopted to illustrate the parameter estimation based on logistic regression. Furthermore, we compare our methods with the some other link prediction methods (LPMs) to examine the validity of our proposed model in online social networks. The results show the superior of our proposed link prediction methods compared with others. In the application part, our models are applied to study the social network evolution and used to recommend friends and cooperators in social networks.

  20. Improving prediction of neural networks: a study of tow financial prediction tasks

    Directory of Open Access Journals (Sweden)

    Tarun K. Sen

    2004-01-01

    Full Text Available Neural networks are excellent mapping tools for complex financial data. Their mapping capabilities however do not always result in good generalizability for financial prediction models. Increasing the number of nodes and hidden layers in a neural network model produces better mapping of the data since the number of parameters available to the model increases. This is determinal to generalizabilitiy of the model since the model memorizes idiosyncratic patterns in the data. A neural network model can be expected to be more generalizable if the model architecture is made less complex by using fewer input nodes. In this study we simplify the neural network by eliminating input nodes that have the least contribution to the prediction of a desired outcome. We also provide a theoretical relationship of the sensitivity of output variables to the input variables under certain conditions. This research initiates an effort in identifying methods that would improve the generalizability of neural networks in financial prediction tasks by using mergers and bankruptcy models. The result indicates that incorporating more variables that appear relevant in a model does not necessarily improve prediction performance.

  1. Prediction of a model enzymatic acidolysis system using neural networks

    Directory of Open Access Journals (Sweden)

    Güven, Aytaç

    2008-12-01

    Full Text Available A model for the acidolysis of trinolein and palmitic acid under the catalysis of immobilized sn-1,3 specific lipase was presented in this study. A neural networks (NN based model was developed for the prediction of the concentrations of the major reaction products of this reaction (1-palmitoyl-2,3-oleoyl-glycerol (POO 1,3-dipalmitoyl-2-oleoyl-glycerol (POP and triolein (OOO. Substrate ratio (SR, reaction temperature (T and reaction time (t were used as input parameters. The optimal architecture of the proposed NN model, which consists of one input layer with three inputs, one hidden layer with seven neurons and one output layer with three outputs, wass able to predict the reaction products concentration with a mean square error (MSE of less than 1.5 and R2 of 0.999. and explicit formulation of the proposed NN is presented. Considerable good performance is achieved in modeling the acidolysis reaction using neuronal networks.En este estudio se presenta un modelo para la acidólisis de la trilinoleina y el ácido palmítico mediante la catálisis con una lipasa específica sn-1,3 inmovilizada. Un modelo basado en redes neuronales (NN ha sido desarrollado para la predicción de la concentración de los principales productos de esta reacción (1-palmitoil-2,3-oleoil-glicerol (POO, 1,3-dipalmitoil-2-oleoil-glicerol (POP y trioleina (OOO. Se han usado como parámetros de entrada: la proporción del sustrato (SR, la temperatura de reacción (T y el tiempo de reacción (t. La arquitectura óptima del modelo de NN propuesto, que consiste en una capa de entrada con tres entradas, una capa oculta con siete neuronas y una capa de salida con tres salidas, fue capaz de predecir la concentración de los productos de reacción con un error cuadrático medio (MSE de menos de 1.5 y una R2 de 0.999 . Se presenta una formulación explícita del modelo NN propuesto. Se obtienen muy buenos resultados en la predicción de la reacciones de acidólisis mediante el uso de

  2. Artificial neural network accurately predicts hepatitis B surface antigen seroclearance.

    Directory of Open Access Journals (Sweden)

    Ming-Hua Zheng

    Full Text Available BACKGROUND & AIMS: Hepatitis B surface antigen (HBsAg seroclearance and seroconversion are regarded as favorable outcomes of chronic hepatitis B (CHB. This study aimed to develop artificial neural networks (ANNs that could accurately predict HBsAg seroclearance or seroconversion on the basis of available serum variables. METHODS: Data from 203 untreated, HBeAg-negative CHB patients with spontaneous HBsAg seroclearance (63 with HBsAg seroconversion, and 203 age- and sex-matched HBeAg-negative controls were analyzed. ANNs and logistic regression models (LRMs were built and tested according to HBsAg seroclearance and seroconversion. Predictive accuracy was assessed with area under the receiver operating characteristic curve (AUROC. RESULTS: Serum quantitative HBsAg (qHBsAg and HBV DNA levels, qHBsAg and HBV DNA reduction were related to HBsAg seroclearance (P<0.001 and were used for ANN/LRM-HBsAg seroclearance building, whereas, qHBsAg reduction was not associated with ANN-HBsAg seroconversion (P = 0.197 and LRM-HBsAg seroconversion was solely based on qHBsAg (P = 0.01. For HBsAg seroclearance, AUROCs of ANN were 0.96, 0.93 and 0.95 for the training, testing and genotype B subgroups respectively. They were significantly higher than those of LRM, qHBsAg and HBV DNA (all P<0.05. Although the performance of ANN-HBsAg seroconversion (AUROC 0.757 was inferior to that for HBsAg seroclearance, it tended to be better than those of LRM, qHBsAg and HBV DNA. CONCLUSIONS: ANN identifies spontaneous HBsAg seroclearance in HBeAg-negative CHB patients with better accuracy, on the basis of easily available serum data. More useful predictors for HBsAg seroconversion are still needed to be explored in the future.

  3. Artificial neural network: predicted vs observed survival in patients with colonic cancer.

    Science.gov (United States)

    Dolgobrodov, S G; Moore, P; Marshall, R; Bittern, R; Steele, R J C; Cuschieri, A

    2007-02-01

    An Internet-web-based artificial neural network has been developed for practicing clinical oncologists and medical researchers as part of an ongoing program designed for the implementation of advanced neural networks for prognostic estimates and eventually for management/treatment decisions in individual patients with colonic cancer. An interdisciplinary team of academic oncologists and physicists has configured and implemented a Partial Logistic Artificial Neural Network and trained it to predict cancer-related survival in patients with confirmed colorectal cancer by using a database (1,558 patients) made available for the study by the Information & Statistics Division of National Health Service Scotland. The reliability of the trained network was evaluated against Kaplan-Meier observed survival plots of a random sample of 300 patients not used in the training but forming part of the same data set. The predicted survival curves obtained as the output from the artificial neural network showed close agreement with observed actual survival rates of a cohort of 300 patients with four grades of risk of dying from the cancer within five years of diagnosis. The web-based Partial Logistic Artificial Neural Network system accurately predicts survival after staging and treatment of colonic cancer. It can be made web-accessible where it is powerful enough to serve hundreds of users simultaneously.

  4. Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks.

    Science.gov (United States)

    Schlegl, Thomas; Waldstein, Sebastian M; Vogl, Wolf-Dieter; Schmidt-Erfurth, Ursula; Langs, Georg

    2015-01-01

    Learning representative computational models from medical imaging data requires large training data sets. Often, voxel-level annotation is unfeasible for sufficient amounts of data. An alternative to manual annotation, is to use the enormous amount of knowledge encoded in imaging data and corresponding reports generated during clinical routine. Weakly supervised learning approaches can link volume-level labels to image content but suffer from the typical label distributions in medical imaging data where only a small part consists of clinically relevant abnormal structures. In this paper we propose to use a semantic representation of clinical reports as a learning target that is predicted from imaging data by a convolutional neural network. We demonstrate how we can learn accurate voxel-level classifiers based on weak volume-level semantic descriptions on a set of 157 optical coherence tomography (OCT) volumes. We specifically show how semantic information increases classification accuracy for intraretinal cystoid fluid (IRC), subretinal fluid (SRF) and normal retinal tissue, and how the learning algorithm links semantic concepts to image content and geometry.

  5. PREDICTION OF FINANCIAL FAILURE OF BANKS BY ARTIFICAL NEURAL NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    Utku ALTUNÖZ

    2013-12-01

    Full Text Available In this article financial failure prediction models based on artificial neural networkmodel, which is among the multivariable statistical techniques has been tested in a parallelwith literature surveys. As a result of the study, it has been observed that the power ofartificial neural network model in terms of predicting financial failure give a highprobability for both 1 and 2 years before the financial failure.

  6. Event-driven model predictive control of sewage pumping stations for sulfide mitigation in sewer networks.

    Science.gov (United States)

    Liu, Yiqi; Ganigué, Ramon; Sharma, Keshab; Yuan, Zhiguo

    2016-07-01

    Chemicals such as Mg(OH)2 and iron salts are widely dosed to sewage for mitigating sulfide-induced corrosion and odour problems in sewer networks. The chemical dosing rate is usually not automatically controlled but profiled based on experience of operators, often resulting in over- or under-dosing. Even though on-line control algorithms for chemical dosing in single pipes have been developed recently, network-wide control algorithms are currently not available. The key challenge is that a sewer network is typically wide-spread comprising many interconnected sewer pipes and pumping stations, making network-wide sulfide mitigation with a relatively limited number of dosing points challenging. In this paper, we propose and demonstrate an Event-driven Model Predictive Control (EMPC) methodology, which controls the flows of sewage streams containing the dosed chemical to ensure desirable distribution of the dosed chemical throughout the pipe sections of interests. First of all, a network-state model is proposed to predict the chemical concentration in a network. An EMPC algorithm is then designed to coordinate sewage pumping station operations to ensure desirable chemical distribution in the network. The performance of the proposed control methodology is demonstrated by applying the designed algorithm to a real sewer network simulated with the well-established SeweX model using real sewage flow and characteristics data. The EMPC strategy significantly improved the sulfide mitigation performance with the same chemical consumption, compared to the current practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. PREDICTION OF BULLS’ SLAUGHTER VALUE FROM GROWTH DATA USING ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Krzysztof ADAMCZYK

    2006-02-01

    Full Text Available The objective of this research was to investigate the usefulness of artifi cial neural network (ANN in the prediction of slaughter value of young crossbred bulls based on growth data. The studies were carried out on 104 bulls fattened from 120 days of life until the weight of 500 kg. The bulls were group fed using mainly farm feeds. After slaughter the carcasses were dissected and meat was subjected to physico-chemical and organoleptic analyses. The obtained data were used for the development of an artifi cial neural network model of slaughter value prediction. It was found that some slaughter value traits (hot carcass, cold half-carcass, neck and round weights, bone content in dissected elements in half-carcass, meat pH, dry-matter and protein contents in meat and meat tenderness and juiciness can be predicted with a considerably high accuracy using the artifi cial neural network.

  8. A network-based dynamical ranking system for competitive sports

    Science.gov (United States)

    Motegi, Shun; Masuda, Naoki

    2012-12-01

    From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking system predicts the outcome of the future games with a higher accuracy than the static counterparts.

  9. A network-based dynamical ranking system for competitive sports.

    Science.gov (United States)

    Motegi, Shun; Masuda, Naoki

    2012-01-01

    From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking system predicts the outcome of the future games with a higher accuracy than the static counterparts.

  10. Modelling for Understanding AND for Prediction/Classification--The Power of Neural Networks in Research

    Science.gov (United States)

    Cascallar, Eduardo; Musso, Mariel; Kyndt, Eva; Dochy, Filip

    2014-01-01

    Two articles, Edelsbrunner and, Schneider (2013), and Nokelainen and Silander (2014) comment on Musso, Kyndt, Cascallar, and Dochy (2013). Several relevant issues are raised and some important clarifications are made in response to both commentaries. Predictive systems based on artificial neural networks continue to be the focus of current…

  11. Prediction of flow characteristics using multiple regression and neural networks: A case study in Zimbabwe

    NARCIS (Netherlands)

    Mazvimavi, D.; Meijerink, A.M.J.; Savenije, H.H.G.; Stein, A.

    2005-01-01

    The feasibility of predicting flow characteristics from basin descriptors using multiple regression and neural networks has been investigated on 52 basins in Zimbabwe. Flow characteristics considered were average annual runoff, base flow index, flow duration curve, and average monthly runoff . Mean

  12. Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction.

    Science.gov (United States)

    Stojanova, Daniela; Ceci, Michelangelo; Malerba, Donato; Dzeroski, Saso

    2013-09-26

    Ontologies and catalogs of gene functions, such as the Gene Ontology (GO) and MIPS-FUN, assume that functional classes are organized hierarchically, that is, general functions include more specific ones. This has recently motivated the development of several machine learning algorithms for gene function prediction that leverages on this hierarchical organization where instances may belong to multiple classes. In addition, it is possible to exploit relationships among examples, since it is plausible that related genes tend to share functional annotations. Although these relationships have been identified and extensively studied in the area of protein-protein interaction (PPI) networks, they have not received much attention in hierarchical and multi-class gene function prediction. Relations between genes introduce autocorrelation in functional annotations and violate the assumption that instances are independently and identically distributed (i.i.d.), which underlines most machine learning algorithms. Although the explicit consideration of these relations brings additional complexity to the learning process, we expect substantial benefits in predictive accuracy of learned classifiers. This article demonstrates the benefits (in terms of predictive accuracy) of considering autocorrelation in multi-class gene function prediction. We develop a tree-based algorithm for considering network autocorrelation in the setting of Hierarchical Multi-label Classification (HMC). We empirically evaluate the proposed algorithm, called NHMC (Network Hierarchical Multi-label Classification), on 12 yeast datasets using each of the MIPS-FUN and GO annotation schemes and exploiting 2 different PPI networks. The results clearly show that taking autocorrelation into account improves the predictive performance of the learned models for predicting gene function. Our newly developed method for HMC takes into account network information in the learning phase: When used for gene function

  13. Network repair based on community structure

    Science.gov (United States)

    Wang, Tianyu; Zhang, Jun; Sun, Xiaoqian; Wandelt, Sebastian

    2017-06-01

    Real-world complex systems are often fragile under disruptions. Accordingly, research on network repair has been studied intensively. Recently proposed efficient strategies for network disruption, based on collective influence, call for more research on efficient network repair strategies. Existing strategies are often designed to repair networks with local information only. However, the absence of global information impedes the creation of efficient repairs. Motivated by this limitation, we propose a concept of community-level repair, which leverages the community structure of the network during the repair process. Moreover, we devise a general framework of network repair, with in total six instances. Evaluations on real-world and random networks show the effectiveness and efficiency of the community-level repair approaches, compared to local and random repairs. Our study contributes to a better understanding of repair processes, and reveals that exploitation of the community structure improves the repair process on a disrupted network significantly.

  14. Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks

    Science.gov (United States)

    Meller, Laura; Cabeza, Mar; Pironon, Samuel; Barbet-Massin, Morgane; Maiorano, Luigi; Georges, Damien; Thuiller, Wilfried

    2014-01-01

    Aim Conservation planning exercises increasingly rely on species distributions predicted either from one particular statistical model or, more recently, from an ensemble of models (i.e. ensemble forecasting). However, it has not yet been explored how different ways of summarizing ensemble predictions affect conservation planning outcomes. We evaluate these effects and compare commonplace consensus methods, applied before the conservation prioritization phase, to a novel method that applies consensus after reserve selection. Location Europe. Methods We used an ensemble of predicted distributions of 146 Western Palaearctic bird species in alternative ways: four different consensus methods, as well as distributions discounted with variability, were used to produce inputs for spatial conservation prioritization. In addition, we developed and tested a novel method, in which we built 100 datasets by sampling the ensemble of predicted distributions, ran a conservation prioritization analysis on each of them and averaged the resulting priority ranks. We evaluated the conservation outcome against three controls: (i) a null control, based on random ranking of cells; (2) the reference solution, based on an expert-refined dataset; and (3) the independent solution, based on an independent dataset. Results Networks based on predicted distributions were more representative of rare species than randomly selected networks. Alternative methods to summarize ensemble predictions differed in representativeness of resulting reserve networks. Our novel method resulted in better representation of rare species than pre-selection consensus methods. Main conclusions Retaining information about the variation in the predicted distributions throughout the conservation prioritization seems to provide better results than summarizing the predictions before conservation prioritization. Our results highlight the need to understand and consider model-based uncertainty when using predicted

  15. Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units

    Directory of Open Access Journals (Sweden)

    Romero-Méndez Ricardo

    2014-01-01

    Full Text Available Convective heat transfer prediction of evaporative processes is more complicated than the heat transfer prediction of single-phase convective processes. This is due to the fact that physical phenomena involved in evaporative processes are very complex and vary with the vapor quality that increases gradually as more fluid is evaporated. Power-law correlations used for prediction of evaporative convection have proved little accuracy when used in practical cases. In this investigation, neural-network-based models have been used as a tool for prediction of the thermal performance of evaporative units. For this purpose, experimental data were obtained in a facility that includes a counter-flow concentric pipes heat exchanger with R134a refrigerant flowing inside the circular section and temperature controlled warm water moving through the annular section. This work also included the construction of an inverse Rankine refrigeration cycle that was equipped with measurement devices, sensors and a data acquisition system to collect the experimental measurements under different operating conditions. Part of the data were used to train several neural-network configurations. The best neural-network model was then used for prediction purposes and the results obtained were compared with experimental data not used for training purposes. The results obtained in this investigation reveal the convenience of using artificial neural networks as accurate predictive tools for determining convective heat transfer rates of evaporative processes.

  16. Predicting disease-related genes using integrated biomedical networks

    OpenAIRE

    Peng, Jiajie; Bai, Kun; Shang, Xuequn; Wang, Guohua; Xue, Hansheng; Jin, Shuilin; Cheng, Liang; Wang, Yadong; Chen, Jin

    2017-01-01

    Background Identifying the genes associated to human diseases is crucial for disease diagnosis and drug design. Computational approaches, esp. the network-based approaches, have been recently developed to identify disease-related genes effectively from the existing biomedical networks. Meanwhile, the advance in biotechnology enables researchers to produce multi-omics data, enriching our understanding on human diseases, and revealing the complex relationships between genes and diseases. Howeve...

  17. Prediction of Clinical Deterioration in Hospitalized Adult Patients with Hematologic Malignancies Using a Neural Network Model.

    Science.gov (United States)

    Hu, Scott B; Wong, Deborah J L; Correa, Aditi; Li, Ning; Deng, Jane C

    2016-01-01

    Clinical deterioration (ICU transfer and cardiac arrest) occurs during approximately 5-10% of hospital admissions. Existing prediction models have a high false positive rate, leading to multiple false alarms and alarm fatigue. We used routine vital signs and laboratory values obtained from the electronic medical record (EMR) along with a machine learning algorithm called a neural network to develop a prediction model that would increase the predictive accuracy and decrease false alarm rates. Retrospective cohort study. The hematologic malignancy unit in an academic medical center in the United States. Adult patients admitted to the hematologic malignancy unit from 2009 to 2010. None. Vital signs and laboratory values were obtained from the electronic medical record system and then used as predictors (features). A neural network was used to build a model to predict clinical deterioration events (ICU transfer and cardiac arrest). The performance of the neural network model was compared to the VitalPac Early Warning Score (ViEWS). Five hundred sixty five consecutive total admissions were available with 43 admissions resulting in clinical deterioration. Using simulation, the neural network outperformed the ViEWS model with a positive predictive value of 82% compared to 24%, respectively. We developed and tested a neural network-based prediction model for clinical deterioration in patients hospitalized in the hematologic malignancy unit. Our neural network model outperformed an existing model, substantially increasing the positive predictive value, allowing the clinician to be confident in the alarm raised. This system can be readily implemented in a real-time fashion in existing EMR systems.

  18. Prediction horizon effects on stochastic modelling hints for neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Drossu, R.; Obradovic, Z. [Washington State Univ., Pullman, WA (United States)

    1995-12-31

    The objective of this paper is to investigate the relationship between stochastic models and neural network (NN) approaches to time series modelling. Experiments on a complex real life prediction problem (entertainment video traffic) indicate that prior knowledge can be obtained through stochastic analysis both with respect to an appropriate NN architecture as well as to an appropriate sampling rate, in the case of a prediction horizon larger than one. An improvement of the obtained NN predictor is also proposed through a bias removal post-processing, resulting in much better performance than the best stochastic model.

  19. Hand Posture Prediction