WorldWideScience

Sample records for network based high

  1. Network Based High Speed Product Innovation

    DEFF Research Database (Denmark)

    Lindgren, Peter

    In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...

  2. Tongue Images Classification Based on Constrained High Dispersal Network

    Directory of Open Access Journals (Sweden)

    Dan Meng

    2017-01-01

    Full Text Available Computer aided tongue diagnosis has a great potential to play important roles in traditional Chinese medicine (TCM. However, the majority of the existing tongue image analyses and classification methods are based on the low-level features, which may not provide a holistic view of the tongue. Inspired by deep convolutional neural network (CNN, we propose a novel feature extraction framework called constrained high dispersal neural networks (CHDNet to extract unbiased features and reduce human labor for tongue diagnosis in TCM. Previous CNN models have mostly focused on learning convolutional filters and adapting weights between them, but these models have two major issues: redundancy and insufficient capability in handling unbalanced sample distribution. We introduce high dispersal and local response normalization operation to address the issue of redundancy. We also add multiscale feature analysis to avoid the problem of sensitivity to deformation. Our proposed CHDNet learns high-level features and provides more classification information during training time, which may result in higher accuracy when predicting testing samples. We tested the proposed method on a set of 267 gastritis patients and a control group of 48 healthy volunteers. Test results show that CHDNet is a promising method in tongue image classification for the TCM study.

  3. Interaction Networks: Generating High Level Hints Based on Network Community Clustering

    Science.gov (United States)

    Eagle, Michael; Johnson, Matthew; Barnes, Tiffany

    2012-01-01

    We introduce a novel data structure, the Interaction Network, for representing interaction-data from open problem solving environment tutors. We show how using network community detecting techniques are used to identify sub-goals in problems in a logic tutor. We then use those community structures to generate high level hints between sub-goals.…

  4. Interpenetrated polymer networks based on commercial silicone elastomers and ionic networks with high dielectric permittivity and self-healing properties

    DEFF Research Database (Denmark)

    Ogliani, Elisa; Yu, Liyun; Skov, Anne Ladegaard

    the applicability. One method used to avoid this limitation is to increase the dielectric permittivity of the material in order to improve the actuation response at a given field. Recently, interpenetrating polymer networks (IPNs) based on covalently cross-linked commercial silicone elastomers and ionic networks...... from amino- and carboxylic acid- functional silicones have been designed[2] (Figure 1). This novel system provides both the mechanical stability and the high breakdown strength given by the silicone part of the IPNs and the high permittivity and the softening effect of the ionic network. Thus......,1 Hz), and the commercial elastomers RT625 and LR3043/30 provide thebest viscoelastic properties to the systems, since they maintain low viscous losses upon addition of ionic network. The values ofthe breakdown strength in all cases remain higher than that of the reference pure PDMS network (ranging...

  5. High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    When operating in a micro or weak grid which has a relatively large network impedance, the Doubly Fed Induction Generator (DFIG) based wind power generation system is prone to suffer high frequency resonance due to the impedance interaction between DFIG system and the parallel compensated network...

  6. High Speed PAM -8 Optical Interconnects with Digital Equalization based on Neural Network

    DEFF Research Database (Denmark)

    Gaiarin, Simone; Pang, Xiaodan; Ozolins, Oskars

    2016-01-01

    We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission.......We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission....

  7. Impact of Loss Synchronization on Reliable High Speed Networks: A Model Based Simulation

    Directory of Open Access Journals (Sweden)

    Suman Kumar

    2014-01-01

    Full Text Available Contemporary nature of network evolution demands for simulation models which are flexible, scalable, and easily implementable. In this paper, we propose a fluid based model for performance analysis of reliable high speed networks. In particular, this paper aims to study the dynamic relationship between congestion control algorithms and queue management schemes, in order to develop a better understanding of the causal linkages between the two. We propose a loss synchronization module which is user configurable. We validate our model through simulations under controlled settings. Also, we present a performance analysis to provide insights into two important issues concerning 10 Gbps high speed networks: (i impact of bottleneck buffer size on the performance of 10 Gbps high speed network and (ii impact of level of loss synchronization on link utilization-fairness tradeoffs. The practical impact of the proposed work is to provide design guidelines along with a powerful simulation tool to protocol designers and network developers.

  8. Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    permittivity and the Young's modulus of the elastomer. One system that potentially achieves this involves interpenetrating polymer networks (IPNs), based on commercial silicone elastomers and ionic networks from amino- and carboxylic acid-functional silicones. The applicability of these materials as DEs...... are obtained while dielectric breakdown strength and Young's modulus are not compromised. These good overall properties stem from the softening effect and very high permittivity of ionic networks – as high as ε′ = 7500 at 0.1 Hz – while the silicone elastomer part of the IPN provides mechanical integrity...

  9. Hierarchy Bayesian model based services awareness of high-speed optical access networks

    Science.gov (United States)

    Bai, Hui-feng

    2018-03-01

    As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit (ONU) and to perform complex services awareness from the whole view of system in optical line terminal (OLT). Simulation results show that the proposed scheme is able to achieve better quality of services (QoS), in terms of packet loss rate and time delay.

  10. A High-Efficiency Uneven Cluster Deployment Algorithm Based on Network Layered for Event Coverage in UWSNs

    Directory of Open Access Journals (Sweden)

    Shanen Yu

    2016-12-01

    Full Text Available Most existing deployment algorithms for event coverage in underwater wireless sensor networks (UWSNs usually do not consider that network communication has non-uniform characteristics on three-dimensional underwater environments. Such deployment algorithms ignore that the nodes are distributed at different depths and have different probabilities for data acquisition, thereby leading to imbalances in the overall network energy consumption, decreasing the network performance, and resulting in poor and unreliable late network operation. Therefore, in this study, we proposed an uneven cluster deployment algorithm based network layered for event coverage. First, according to the energy consumption requirement of the communication load at different depths of the underwater network, we obtained the expected value of deployment nodes and the distribution density of each layer network after theoretical analysis and deduction. Afterward, the network is divided into multilayers based on uneven clusters, and the heterogeneous communication radius of nodes can improve the network connectivity rate. The recovery strategy is used to balance the energy consumption of nodes in the cluster and can efficiently reconstruct the network topology, which ensures that the network has a high network coverage and connectivity rate in a long period of data acquisition. Simulation results show that the proposed algorithm improves network reliability and prolongs network lifetime by significantly reducing the blind movement of overall network nodes while maintaining a high network coverage and connectivity rate.

  11. HIGH QUALITY FACADE SEGMENTATION BASED ON STRUCTURED RANDOM FOREST, REGION PROPOSAL NETWORK AND RECTANGULAR FITTING

    Directory of Open Access Journals (Sweden)

    K. Rahmani

    2018-05-01

    Full Text Available In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF, Region Proposal Network (RPN based on a Convolutional Neural Network (CNN as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.

  12. Fault diagnosis and performance evaluation for high current LIA based on radial basis function neural network

    International Nuclear Information System (INIS)

    Yang Xinglin; Wang Huacen; Chen Nan; Dai Wenhua; Li Jin

    2006-01-01

    High current linear induction accelerator (LIA) is a complicated experimental physics device. It is difficult to evaluate and predict its performance. this paper presents a method which combines wavelet packet transform and radial basis function (RBF) neural network to build fault diagnosis and performance evaluation in order to improve reliability of high current LIA. The signal characteristics vectors which are extracted based on energy parameters of wavelet packet transform can well present the temporal and steady features of pulsed power signal, and reduce data dimensions effectively. The fault diagnosis system for accelerating cell and the trend classification system for the beam current based on RBF networks can perform fault diagnosis and evaluation, and provide predictive information for precise maintenance of high current LIA. (authors)

  13. Hourglass-ShapeNetwork Based Semantic Segmentation for High Resolution Aerial Imagery

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2017-05-01

    Full Text Available A new convolution neural network (CNN architecture for semantic segmentation of high resolution aerial imagery is proposed in this paper. The proposed architecture follows an hourglass-shaped network (HSN design being structured into encoding and decoding stages. By taking advantage of recent advances in CNN designs, we use the composed inception module to replace common convolutional layers, providing the network with multi-scale receptive areas with rich context. Additionally, in order to reduce spatial ambiguities in the up-sampling stage, skip connections with residual units are also employed to feed forward encoding-stage information directly to the decoder. Moreover, overlap inference is employed to alleviate boundary effects occurring when high resolution images are inferred from small-sized patches. Finally, we also propose a post-processing method based on weighted belief propagation to visually enhance the classification results. Extensive experiments based on the Vaihingen and Potsdam datasets demonstrate that the proposed architectures outperform three reference state-of-the-art network designs both numerically and visually.

  14. Planning Optimization of the Distributed Antenna System in High-Speed Railway Communication Network Based on Improved Cuckoo Search

    Directory of Open Access Journals (Sweden)

    Zhaoyu Chen

    2018-01-01

    Full Text Available The network planning is a key factor that directly affects the performance of the wireless networks. Distributed antenna system (DAS is an effective strategy for the network planning. This paper investigates the antenna deployment in a DAS for the high-speed railway communication networks and formulates an optimization problem which is NP-hard for achieving the optimal deployment of the antennas in the DAS. To solve this problem, a scheme based on an improved cuckoo search based on dimension cells (ICSDC algorithm is proposed. ICSDC introduces the dimension cell mechanism to avoid the internal dimension interferences in order to improve the performance of the algorithm. Simulation results show that the proposed ICSDC-based scheme obtains a lower network cost compared with the uniform network planning method. Moreover, ICSDC algorithm has better performance in terms of the convergence rate and accuracy compared with the conventional cuckoo search algorithm, the particle swarm optimization, and the firefly algorithm.

  15. High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks.

    Science.gov (United States)

    Purkait, Taniya; Singh, Guneet; Kumar, Dinesh; Singh, Mandeep; Dey, Ramendra Sundar

    2018-01-12

    A simple approach for growing porous electrochemically reduced graphene oxide (pErGO) networks on copper wire, modified with galvanostatically deposited copper foam is demonstrated. The as-prepared pErGO networks on the copper wire are directly used to fabricate solid-state supercapacitor. The pErGO-based supercapacitor can deliver a specific capacitance (C sp ) as high as 81±3 F g -1 at 0.5 A g -1 with polyvinyl alcohol/H 3 PO 4 gel electrolyte. The C sp per unit length and area are calculated as 40.5 mF cm -1 and 283.5 mF cm -2 , respectively. The shape of the voltammogram retained up to high scan rate of 100 V s -1 . The pErGO-based supercapacitor device exhibits noticeably high charge-discharge cycling stability, with 94.5% C sp retained even after 5000 cycles at 5 A g -1 . Nominal change in the specific capacitance, as well as the shape of the voltammogram, is observed at different bending angles of the device even after 5000 cycles. The highest energy density of 11.25 W h kg -1 and the highest power density of 5 kW kg -1 are also achieved with this device. The wire-based supercapacitor is scalable and highly flexible, which can be assembled with/without a flexible substrate in different geometries and bending angles for illustrating promising use in smart textile and wearable device.

  16. HIGH: A Hexagon-based Intelligent Grouping Approach in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    FAN, C.-S.

    2016-02-01

    Full Text Available In a random deployment or uniform deployment strategy, sensor nodes are scattered randomly or uniformly in the sensing field, respectively. Hence, the coverage ratio cannot be guaranteed. The coverage ratio of uniform deployment, in general, is larger than that of the random deployment strategy. However, a random deployment or uniform deployment strategy may cause unbalanced traffic pattern in wireless sensor networks (WSNs. Therefore, cluster heads (CHs around the sink have larger loads than those farther away from the sink. That is, CHs close to the sink exhaust their energy earlier. In order to overcome the above problem, we propose a Hexagon-based Intelligent Grouping approacH in WSNs (called HIGH. The coverage, energy consumption and data routing issues are well investigated and taken into consideration in the proposed HIGH scheme. The simulation results validate our theoretical analysis and show that the proposed HIGH scheme achieves a satisfactory coverage ratio, balances the energy consumption among sensor nodes, and extends network lifetime significantly.

  17. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images

    Science.gov (United States)

    Alshehhi, Rasha; Marpu, Prashanth Reddy

    2017-04-01

    Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.

  18. 3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture

    Science.gov (United States)

    Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben

    2016-12-01

    This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.

  19. Fracture Simulation of Highly Crosslinked Polymer Networks: Triglyceride-Based Adhesives

    Science.gov (United States)

    Lorenz, Christian; Stevens, Mark; Wool, Richard

    2003-03-01

    The ACRES program at the U. of Delaware has shown that triglyceride oils derived from plants are a favorable alternative to the traditional adhesives. The triglyceride networks are formed from an initial mixture of styrene monomers, free-radical initiators and triglycerides. We have performed simulations to study the effect of physical composition and physical characteristics of the triglyceride network on the strength of triglyceride network. A coarse-grained, bead-spring model of the triglyceride system is used. The average triglyceride consists of 6 beads per chain, the styrenes are represented as a single bead and the initiators are two bead chains. The polymer network is formed using an off-lattice 3D Monte Carlo simulation, in which the initiators activate the styrene and triglyceride reactive sites and then bonds are randomly formed between the styrene and active triglyceride monomers producing a highly crosslinked polymer network. Molecular dynamics simulations of the network under tensile and shear strains were performed to determine the strength as a function of the network composition. The relationship between the network structure and its strength will also be discussed.

  20. High-Performance Networking

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  1. High-speed railway real-time localization auxiliary method based on deep neural network

    Science.gov (United States)

    Chen, Dongjie; Zhang, Wensheng; Yang, Yang

    2017-11-01

    High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.

  2. Big Data Analytics for Flow-based Anomaly Detection in High-Speed Networks

    OpenAIRE

    Garofalo, Mauro

    2017-01-01

    The Cisco VNI Complete Forecast Highlights clearly states that the Internet traffic is growing in three different directions, Volume, Velocity, and Variety, bringing computer network into the big data era. At the same time, sophisticated network attacks are growing exponentially. Such growth making the existing signature-based security tools, like firewall and traditional intrusion detection systems, ineffective against new kind of attacks or variations of known attacks. In this dissertati...

  3. Dynamic neural networks based on-line identification and control of high performance motor drives

    Science.gov (United States)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  4. Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors

    Science.gov (United States)

    Cui, Yi; Cheng, Qian-Yi; Wu, Haiping; Wei, Zhixiang; Han, Bao-Hang

    2013-08-01

    The synthesis of graphene oxide (GO)-based benzimidazole-crosslinked network (GOBIN) materials is presented. These materials are prepared by the covalent crosslinking of GO sheets using a condensation reaction between the carboxylic acid moieties on the GO surface and the o-aminophenyl end groups of 3,3'-diaminobenzidine (or 1,2,4,5-benzenetetraamine tetrahydrochloride). An efficient one-pot catalyst- and template-free synthesis was performed. The obtained porous GO-based materials possess a Brunauer-Emmett-Teller specific surface area ranging from 260 to 920 m2 g-1. Electrochemical testing indicates that the GOBIN materials display a specific capacitance up to 370 F g-1 at a current density of 0.1 A g-1 and about 90% of the original capacitance is retained after 5000 cycles at a current density of 3 A g-1. Therefore, GOBIN materials can be employed as promising electrode materials for high-performance supercapacitors with outstanding cycling stability. Furthermore, owing to their significantly high specific surface area, these materials also show hydrogen uptake (up to 1.24 wt%, at 77 K and 1.0 bar) and carbon dioxide capture (up to 14.2 wt%, at 273 K and 1.0 bar) properties. As a result, these GO-based porous materials improve both the supercapacitor performance and gas sorption property, which demonstrate an excellent performance in the practical application of energy storage.The synthesis of graphene oxide (GO)-based benzimidazole-crosslinked network (GOBIN) materials is presented. These materials are prepared by the covalent crosslinking of GO sheets using a condensation reaction between the carboxylic acid moieties on the GO surface and the o-aminophenyl end groups of 3,3'-diaminobenzidine (or 1,2,4,5-benzenetetraamine tetrahydrochloride). An efficient one-pot catalyst- and template-free synthesis was performed. The obtained porous GO-based materials possess a Brunauer-Emmett-Teller specific surface area ranging from 260 to 920 m2 g-1. Electrochemical testing

  5. Network Neurodegeneration in Alzheimer’s Disease via MRI based Shape Diffeomorphometry and High Field Atlasing

    Directory of Open Access Journals (Sweden)

    Michael I Miller

    2015-05-01

    Full Text Available This paper examines MRI analysis of neurodegeneration in Alzheimer’s Disease (AD in a network of structures within the medial temporal lobe using diffeomorphometry methods coupled with high-field atlasing in which the entorhinal cortex is partitioned into nine subareas. The morphometry markers for three groups of subjects (controls, preclinical AD and symptomatic AD are indexed to template coordinates measured with respect to these nine subareas. The location and timing of changes are examined within the subareas as it pertains to the classic Braak and Braak staging by comparing the three groups. We demonstrate that the earliest preclinical changes in the population occur in the lateral most sulcal extent in the entorhinal cortex (alluded to as trans entorhinal cortex by Braak and Braak, and then proceeds medially which is consistent with the Braak and Braak staging. We use high field 11T atlasing to demonstrate that the network changes are occurring at the junctures of the substructures in this medial temporal lobe network. Temporal progression of the disease through the network is also examined via changepoint analysis demonstrating earliest changes in entorhinal cortex. The differential expression of rate of atrophy with progression signaling the changepoint time across the network is demonstrated to be signaling in the intermediate caudal subarea of the entorhinal cortex, which has been noted to be proximal to the hippocampus. This coupled to the findings of the nearby basolateral involvement in amygdala demonstrates the selectivity of neurodegeneration in early AD.

  6. Experimental high-speed network

    Science.gov (United States)

    McNeill, Kevin M.; Klein, William P.; Vercillo, Richard; Alsafadi, Yasser H.; Parra, Miguel V.; Dallas, William J.

    1993-09-01

    Many existing local area networking protocols currently applied in medical imaging were originally designed for relatively low-speed, low-volume networking. These protocols utilize small packet sizes appropriate for text based communication. Local area networks of this type typically provide raw bandwidth under 125 MHz. These older network technologies are not optimized for the low delay, high data traffic environment of a totally digital radiology department. Some current implementations use point-to-point links when greater bandwidth is required. However, the use of point-to-point communications for a total digital radiology department network presents many disadvantages. This paper describes work on an experimental multi-access local area network called XFT. The work includes the protocol specification, and the design and implementation of network interface hardware and software. The protocol specifies the Physical and Data Link layers (OSI layers 1 & 2) for a fiber-optic based token ring providing a raw bandwidth of 500 MHz. The protocol design and implementation of the XFT interface hardware includes many features to optimize image transfer and provide flexibility for additional future enhancements which include: a modular hardware design supporting easy portability to a variety of host system buses, a versatile message buffer design providing 16 MB of memory, and the capability to extend the raw bandwidth of the network to 3.0 GHz.

  7. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ...) to increase competitive advantage, innovation, and mission effectiveness. Network-based effectiveness occurs due to the influence of various factors such as people, procedures, technology, and organizations...

  8. GIS Data Based Automatic High-Fidelity 3D Road Network Modeling

    Science.gov (United States)

    Wang, Jie; Shen, Yuzhong

    2011-01-01

    3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks

  9. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network.

    Science.gov (United States)

    Qi, Jun; Liu, Guo-Ping

    2017-11-06

    This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μ s. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal.

  10. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jun Qi

    2017-11-01

    Full Text Available This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS. The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF module, which is only used for time synchronization between different nodes, with accuracy up to 1 μs. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM. The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS signal.

  11. Feature selection for neural network based defect classification of ceramic components using high frequency ultrasound.

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2015-09-01

    The motivation for this research stems from a need for providing a non-destructive testing method capable of detecting and locating any defects and microstructural variations within armour ceramic components before issuing them to the soldiers who rely on them for their survival. The development of an automated ultrasonic inspection based classification system would make possible the checking of each ceramic component and immediately alert the operator about the presence of defects. Generally, in many classification problems a choice of features or dimensionality reduction is significant and simultaneously very difficult, as a substantial computational effort is required to evaluate possible feature subsets. In this research, a combination of artificial neural networks and genetic algorithms are used to optimize the feature subset used in classification of various defects in reaction-sintered silicon carbide ceramic components. Initially wavelet based feature extraction is implemented from the region of interest. An Artificial Neural Network classifier is employed to evaluate the performance of these features. Genetic Algorithm based feature selection is performed. Principal Component Analysis is a popular technique used for feature selection and is compared with the genetic algorithm based technique in terms of classification accuracy and selection of optimal number of features. The experimental results confirm that features identified by Principal Component Analysis lead to improved performance in terms of classification percentage with 96% than Genetic algorithm with 94%. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Practical End-to-End Performance Testing Tool for High Speed 3G-Based Networks

    Science.gov (United States)

    Shinbo, Hiroyuki; Tagami, Atsushi; Ano, Shigehiro; Hasegawa, Toru; Suzuki, Kenji

    High speed IP communication is a killer application for 3rd generation (3G) mobile systems. Thus 3G network operators should perform extensive tests to check whether expected end-to-end performances are provided to customers under various environments. An important objective of such tests is to check whether network nodes fulfill requirements to durations of processing packets because a long duration of such processing causes performance degradation. This requires testers (persons who do tests) to precisely know how long a packet is hold by various network nodes. Without any tool's help, this task is time-consuming and error prone. Thus we propose a multi-point packet header analysis tool which extracts and records packet headers with synchronized timestamps at multiple observation points. Such recorded packet headers enable testers to calculate such holding durations. The notable feature of this tool is that it is implemented on off-the shelf hardware platforms, i.e., lap-top personal computers. The key challenges of the implementation are precise clock synchronization without any special hardware and a sophisticated header extraction algorithm without any drop.

  13. High speed network sampling

    OpenAIRE

    Rindalsholt, Ole Arild

    2005-01-01

    Master i nettverks- og systemadministrasjon Classical Sampling methods play an important role in the current practice of Internet measurement. With today’s high speed networks, routers cannot manage to generate complete Netflow data for every packet. They have to perform restricted sampling. This thesis summarizes some of the most important sampling schemes and their applications before diving into an analysis on the effect of sampling Netflow records.

  14. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yasaman Samei

    2008-08-01

    Full Text Available Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN. With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture. This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  15. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks.

    Science.gov (United States)

    Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-08-04

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  16. Ultra-low power high precision magnetotelluric receiver array based customized computer and wireless sensor network

    Science.gov (United States)

    Chen, R.; Xi, X.; Zhao, X.; He, L.; Yao, H.; Shen, R.

    2016-12-01

    Dense 3D magnetotelluric (MT) data acquisition owns the benefit of suppressing the static shift and topography effect, can achieve high precision and high resolution inversion for underground structure. This method may play an important role in mineral exploration, geothermal resources exploration, and hydrocarbon exploration. It's necessary to reduce the power consumption greatly of a MT signal receiver for large-scale 3D MT data acquisition while using sensor network to monitor data quality of deployed MT receivers. We adopted a series of technologies to realized above goal. At first, we designed an low-power embedded computer which can couple with other parts of MT receiver tightly and support wireless sensor network. The power consumption of our embedded computer is less than 1 watt. Then we designed 4-channel data acquisition subsystem which supports 24-bit analog-digital conversion, GPS synchronization, and real-time digital signal processing. Furthermore, we developed the power supply and power management subsystem for MT receiver. At last, a series of software, which support data acquisition, calibration, wireless sensor network, and testing, were developed. The software which runs on personal computer can monitor and control over 100 MT receivers on the field for data acquisition and quality control. The total power consumption of the receiver is about 2 watts at full operation. The standby power consumption is less than 0.1 watt. Our testing showed that the MT receiver can acquire good quality data at ground with electrical dipole length as 3 m. Over 100 MT receivers were made and used for large-scale geothermal exploration in China with great success.

  17. Cascade Convolutional Neural Network Based on Transfer-Learning for Aircraft Detection on High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2017-01-01

    Full Text Available Aircraft detection from high-resolution remote sensing images is important for civil and military applications. Recently, detection methods based on deep learning have rapidly advanced. However, they require numerous samples to train the detection model and cannot be directly used to efficiently handle large-area remote sensing images. A weakly supervised learning method (WSLM can detect a target with few samples. However, it cannot extract an adequate number of features, and the detection accuracy requires improvement. We propose a cascade convolutional neural network (CCNN framework based on transfer-learning and geometric feature constraints (GFC for aircraft detection. It achieves high accuracy and efficient detection with relatively few samples. A high-accuracy detection model is first obtained using transfer-learning to fine-tune pretrained models with few samples. Then, a GFC region proposal filtering method improves detection efficiency. The CCNN framework completes the aircraft detection for large-area remote sensing images. The framework first-level network is an image classifier, which filters the entire image, excluding most areas with no aircraft. The second-level network is an object detector, which rapidly detects aircraft from the first-level network output. Compared with WSLM, detection accuracy increased by 3.66%, false detection decreased by 64%, and missed detection decreased by 23.1%.

  18. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ... (extended from Leavitt, 1965). This text identifies aspects of network-based effectiveness that can benefit from a better understanding of leadership and management development of people, procedures, technology, and organizations...

  19. ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    Science.gov (United States)

    Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.

    2016-03-01

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  20. SAMNet: a network-based approach to integrate multi-dimensional high throughput datasets.

    Science.gov (United States)

    Gosline, Sara J C; Spencer, Sarah J; Ursu, Oana; Fraenkel, Ernest

    2012-11-01

    The rapid development of high throughput biotechnologies has led to an onslaught of data describing genetic perturbations and changes in mRNA and protein levels in the cell. Because each assay provides a one-dimensional snapshot of active signaling pathways, it has become desirable to perform multiple assays (e.g. mRNA expression and phospho-proteomics) to measure a single condition. However, as experiments expand to accommodate various cellular conditions, proper analysis and interpretation of these data have become more challenging. Here we introduce a novel approach called SAMNet, for Simultaneous Analysis of Multiple Networks, that is able to interpret diverse assays over multiple perturbations. The algorithm uses a constrained optimization approach to integrate mRNA expression data with upstream genes, selecting edges in the protein-protein interaction network that best explain the changes across all perturbations. The result is a putative set of protein interactions that succinctly summarizes the results from all experiments, highlighting the network elements unique to each perturbation. We evaluated SAMNet in both yeast and human datasets. The yeast dataset measured the cellular response to seven different transition metals, and the human dataset measured cellular changes in four different lung cancer models of Epithelial-Mesenchymal Transition (EMT), a crucial process in tumor metastasis. SAMNet was able to identify canonical yeast metal-processing genes unique to each commodity in the yeast dataset, as well as human genes such as β-catenin and TCF7L2/TCF4 that are required for EMT signaling but escaped detection in the mRNA and phospho-proteomic data. Moreover, SAMNet also highlighted drugs likely to modulate EMT, identifying a series of less canonical genes known to be affected by the BCR-ABL inhibitor imatinib (Gleevec), suggesting a possible influence of this drug on EMT.

  1. High speed all optical networks

    Science.gov (United States)

    Chlamtac, Imrich; Ganz, Aura

    1990-01-01

    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail.

  2. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  3. Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules

    Science.gov (United States)

    Bersanelli, Matteo; Mosca, Ettore; Remondini, Daniel; Castellani, Gastone; Milanesi, Luciano

    2016-01-01

    A relation exists between network proximity of molecular entities in interaction networks, functional similarity and association with diseases. The identification of network regions associated with biological functions and pathologies is a major goal in systems biology. We describe a network diffusion-based pipeline for the interpretation of different types of omics in the context of molecular interaction networks. We introduce the network smoothing index, a network-based quantity that allows to jointly quantify the amount of omics information in genes and in their network neighbourhood, using network diffusion to define network proximity. The approach is applicable to both descriptive and inferential statistics calculated on omics data. We also show that network resampling, applied to gene lists ranked by quantities derived from the network smoothing index, indicates the presence of significantly connected genes. As a proof of principle, we identified gene modules enriched in somatic mutations and transcriptional variations observed in samples of prostate adenocarcinoma (PRAD). In line with the local hypothesis, network smoothing index and network resampling underlined the existence of a connected component of genes harbouring molecular alterations in PRAD. PMID:27731320

  4. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure

    Science.gov (United States)

    Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling

    2017-03-01

    In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.

  5. Network-based functional enrichment

    Directory of Open Access Journals (Sweden)

    Poirel Christopher L

    2011-11-01

    Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are

  6. Social network-based recruitment successfully reveals HIV-1 transmission networks among high-risk individuals in El Salvador.

    Science.gov (United States)

    Dennis, Ann M; Murillo, Wendy; de Maria Hernandez, Flor; Guardado, Maria Elena; Nieto, Ana Isabel; Lorenzana de Rivera, Ivette; Eron, Joseph J; Paz-Bailey, Gabriela

    2013-05-01

    HIV in Central America is concentrated among certain groups such as men who have sex with men (MSM) and female sex workers (FSWs). We compared social recruitment chains and HIV transmission clusters from 699 MSM and 787 FSWs to better understand factors contributing to ongoing HIV transmission in El Salvador. Phylogenies were reconstructed using pol sequences from 119 HIV-positive individuals recruited by respondent-driven sampling (RDS) and compared with RDS chains in 3 cities in El Salvador. Transmission clusters with a mean pairwise genetic distance ≤ 0.015 and Bayesian posterior probabilities =1 were identified. Factors associated with cluster membership were evaluated among MSM. Sequences from 34 (43%) MSM and 4 (10%) FSW grouped in 14 transmission clusters. Clusters were defined by risk group (12 MSM clusters) and geographic residence (only 1 spanned separate cities). In 4 MSM clusters (all n = 2), individuals were also members of the same RDS chain, but only 2 had members directly linked through recruitment. All large clusters (n ≥ 3) spanned >1 RDS chain. Among MSM, factors independently associated with cluster membership included recent infection by BED assay (P = 0.02), sex with stable male partners (P = 0.02), and sex with ≥ 3 male partners in the past year (P = 0.04). We found few HIV transmissions corresponding directly with the social recruitment. However, we identified clustering in nearly one-half of MSM suggesting that RDS recruitment was indirectly but successfully uncovering transmission networks, particularly among recent infections. Interrogating RDS chains with phylogenetic analyses may help refine methods for identifying transmission clusters.

  7. Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs.

    Science.gov (United States)

    Zhang, Hui; Liu, Nishuang; Shi, Yuling; Liu, Weijie; Yue, Yang; Wang, Siliang; Ma, Yanan; Wen, Li; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua

    2016-08-31

    Pressure sensors with high elasticity are in great demand for the realization of intelligent sensing, but there is a need to develope a simple, inexpensive, and scalable method for the manufacture of the sensors. Here, we reported an efficient, simple, facile, and repeatable "dipping and coating" process to manufacture a piezoresistive sensor with high elasticity, based on homogeneous 3D hybrid network of carbon nanotubes@silver nanoparticles (CNTs@Ag NPs) anchored on a skeleton sponge. Highly elastic, sensitive, and wearable sensors are obtained using the porous structure of sponge and the synergy effect of CNTs/Ag NPs. Our sensor was also tested for over 2000 compression-release cycles, exhibiting excellent elasticity and cycling stability. Sensors with high performance and a simple fabrication process are promising devices for commercial production in various electronic devices, for example, sport performance monitoring and man-machine interfaces.

  8. High Performance All-solid Supercapacitors Based on the Network of Ultralong Manganese dioxide/Polyaniline Coaxial Nanowires

    Science.gov (United States)

    Zhou, Junli; Yu, Lin; Liu, Wei; Zhang, Xiaodan; Mu, Wei; Du, Xu; Zhang, Zhe; Deng, Yulin

    2015-12-01

    In recent years, thin, lightweight and flexible solid supercapacitors are of considerable interest as energy storage devices. Here we demonstrated all-solid supercapacitors (SSCs) with high electrochemical properties, low self-discharge characteristics based on manganese dioxide/polyaniline (MNW/PANI) coaxial nanowire networks. The synergistic effect of MnO2/PANI plus the unique coaxial nanostructure of the ultralong nanowires with a highly interconnected network effectively enhance the conductivity and capacitive performance of the SSCs device. The MNW/PANI composite with 62.5% MnO2 exhibits an outstanding areal specific capacitance reaching 346 mF/cm2 at 5 mV s-1 which is significant higher than most previously reported solid supercapacitors (15.3 mF/cm2-109 mF/cm2) and is close to the that of the best graphene films solid state supercapacitors (372 mF/cm2). In contrast, only 190 mF/cm2 of areal specific capacitance was obtained for the pure MnO2 NW network. The supercapacitors also exhibited low leakage current as small as 20.1 μA, which demonstrated that the MNW/PANI SSCs have great potential for practical applications.

  9. High Performance All-solid Supercapacitors Based on the Network of Ultralong Manganese dioxide/Polyaniline Coaxial Nanowires.

    Science.gov (United States)

    Zhou, Junli; Yu, Lin; Liu, Wei; Zhang, Xiaodan; Mu, Wei; Du, Xu; Zhang, Zhe; Deng, Yulin

    2015-12-08

    In recent years, thin, lightweight and flexible solid supercapacitors are of considerable interest as energy storage devices. Here we demonstrated all-solid supercapacitors (SSCs) with high electrochemical properties, low self-discharge characteristics based on manganese dioxide/polyaniline (MNW/PANI) coaxial nanowire networks. The synergistic effect of MnO2/PANI plus the unique coaxial nanostructure of the ultralong nanowires with a highly interconnected network effectively enhance the conductivity and capacitive performance of the SSCs device. The MNW/PANI composite with 62.5% MnO2 exhibits an outstanding areal specific capacitance reaching 346 mF/cm(2) at 5 mV s(-1) which is significant higher than most previously reported solid supercapacitors (15.3 mF/cm(2)-109 mF/cm(2)) and is close to the that of the best graphene films solid state supercapacitors (372 mF/cm(2)). In contrast, only 190 mF/cm(2) of areal specific capacitance was obtained for the pure MnO2 NW network. The supercapacitors also exhibited low leakage current as small as 20.1 μA, which demonstrated that the MNW/PANI SSCs have great potential for practical applications.

  10. Optical burst switching based satellite backbone network

    Science.gov (United States)

    Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian

    2018-02-01

    We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.

  11. A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network.

    Directory of Open Access Journals (Sweden)

    Hongjun Guan

    Full Text Available In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBPNeural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS. On this basis, the FTTS blur into fuzzy time series (FFTS based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.

  12. A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network.

    Science.gov (United States)

    Guan, Hongjun; Dai, Zongli; Zhao, Aiwu; He, Jie

    2018-01-01

    In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.

  13. Network-based regularization for high dimensional SNP data in the case-control study of Type 2 diabetes.

    Science.gov (United States)

    Ren, Jie; He, Tao; Li, Ye; Liu, Sai; Du, Yinhao; Jiang, Yu; Wu, Cen

    2017-05-16

    Over the past decades, the prevalence of type 2 diabetes mellitus (T2D) has been steadily increasing around the world. Despite large efforts devoted to better understand the genetic basis of the disease, the identified susceptibility loci can only account for a small portion of the T2D heritability. Some of the existing approaches proposed for the high dimensional genetic data from the T2D case-control study are limited by analyzing a few number of SNPs at a time from a large pool of SNPs, by ignoring the correlations among SNPs and by adopting inefficient selection techniques. We propose a network constrained regularization method to select important SNPs by taking the linkage disequilibrium into account. To accomodate the case control study, an iteratively reweighted least square algorithm has been developed within the coordinate descent framework where optimization of the regularized logistic loss function is performed with respect to one parameter at a time and iteratively cycle through all the parameters until convergence. In this article, a novel approach is developed to identify important SNPs more effectively through incorporating the interconnections among them in the regularized selection. A coordinate descent based iteratively reweighed least squares (IRLS) algorithm has been proposed. Both the simulation study and the analysis of the Nurses's Health Study, a case-control study of type 2 diabetes data with high dimensional SNP measurements, demonstrate the advantage of the network based approach over the competing alternatives.

  14. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  15. Assessment of High and Low Rate Protocol-based Attacks on Ethernet Networks

    OpenAIRE

    Mina Malekzadeh; M.A. Beiruti; M.H. Shahrokh Abadi

    2015-01-01

    The Internet and Web have significantly transformed the world’s communication system. The capability of the Internet to instantly access information at anytime from anywhere has brought benefit for a wide variety of areas including business, government, education, institutions, medical, and entertainment services. However, the Internet has also opened up the possibilities for hackers to exploit flaws and limitations in the target networks to attack and break in without gaining physical access...

  16. MATIN: a random network coding based framework for high quality peer-to-peer live video streaming.

    Science.gov (United States)

    Barekatain, Behrang; Khezrimotlagh, Dariush; Aizaini Maarof, Mohd; Ghaeini, Hamid Reza; Salleh, Shaharuddin; Quintana, Alfonso Ariza; Akbari, Behzad; Cabrera, Alicia Triviño

    2013-01-01

    In recent years, Random Network Coding (RNC) has emerged as a promising solution for efficient Peer-to-Peer (P2P) video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay.

  17. MATIN: a random network coding based framework for high quality peer-to-peer live video streaming.

    Directory of Open Access Journals (Sweden)

    Behrang Barekatain

    Full Text Available In recent years, Random Network Coding (RNC has emerged as a promising solution for efficient Peer-to-Peer (P2P video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay.

  18. Polling-Based High-Bit-Rate Packet Transfer in a Microcellular Network to Allow Fast Terminals

    Science.gov (United States)

    Hoa, Phan Thanh; Lambertsen, Gaute; Yamada, Takahiko

    A microcellular network will be a good candidate for the future broadband mobile network. It is expected to support high-bit-rate connection for many fast mobile users if the handover is processed fast enough to lessen its impact on QoS requirements. One of the promising techniques is believed to use for the wireless interface in such a microcellular network is the WLAN (Wireless LAN) technique due to its very high wireless channel rate. However, the less capability of mobility support of this technique must be improved to be able to expand its utilization for the microcellular environment. The reason of its less support mobility is large handover latency delay caused by contention-based handover to the new BS (base station) and delay of re-forwarding data from the old to new BS. This paper presents a proposal of multi-polling and dynamic LMC (Logical Macro Cell) to reduce mentioned above delays. Polling frame for an MT (Mobile Terminal) is sent from every BS belonging to the same LMC — a virtual single macro cell that is a multicast group of several adjacent micro-cells in which an MT is communicating. Instead of contending for the medium of a new BS during handover, the MT responds to the polling sent from that new BS to enable the transition. Because only one BS of the LMC receives the polling ACK (acknowledgement) directly from the MT, this ACK frame has to be multicast to all BSs of the same LMC through the terrestrial network to continue sending the next polling cycle at each BS. Moreover, when an MT hands over to a new cell, its current LMC is switched over to a newly corresponding LMC to prevent the future contending for a new LMC. By this way, an MT can do handover between micro-cells of an LMC smoothly because the redundant resource is reserved for it at neighboring cells, no need to contend with others. Our simulation results using the OMNeT++ simulator illustrate the performance achievements of the multi-polling and dynamic LMC scheme in eliminating

  19. Novel model of a AlGaN/GaN high electron mobility transistor based on an artificial neural network

    Science.gov (United States)

    Cheng, Zhi-Qun; Hu, Sha; Liu, Jun; Zhang, Qi-Jun

    2011-03-01

    In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are described. The circuit-based Neuro-space mapping (neuro-SM) technique is studied in detail. The EEHEMT model is implemented according to the measurement results of the designed device, which serves as a coarse model. An ANN is proposed to model AlGaN/GaN HEMT based on the coarse model. Its optimization is performed. The simulation results from the model are compared with the measurement results. It is shown that the simulation results obtained from the ANN model of AlGaN/GaN HEMT are more accurate than those obtained from the EEHEMT model. Project supported by the National Natural Science Foundation of China (Grant No. 60776052).

  20. Novel model of a AlGaN/GaN high electron mobility transistor based on an artificial neural network

    International Nuclear Information System (INIS)

    Cheng Zhi-Qun; Hu Sha; Liu Jun; Zhang Qi-Jun

    2011-01-01

    In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are described. The circuit-based Neuro-space mapping (neuro-SM) technique is studied in detail. The EEHEMT model is implemented according to the measurement results of the designed device, which serves as a coarse model. An ANN is proposed to model AlGaN/GaN HEMT based on the coarse model. Its optimization is performed. The simulation results from the model are compared with the measurement results. It is shown that the simulation results obtained from the ANN model of AlGaN/GaN HEMT are more accurate than those obtained from the EEHEMT model. (condensed matter: structural, mechanical, and thermal properties)

  1. High sensitivity, fast speed and self-powered ultraviolet photodetectors based on ZnO micro/nanowire networks

    Directory of Open Access Journals (Sweden)

    Zhiming Bai

    2014-02-01

    Full Text Available Ultraviolet (UV photodetectors (PDs based on ZnO micro/nanowire (MNW networks with Pt contacts have been fabricated on glass substrates. The PDs exhibited a high photosensitivity (5×103 for 365 nm UV light with a fast recovery time (0.2 s at a reverse bias voltage of 2 V. The light induced modulation of Schottky barrier and MNW–MNW junction barrier was employed to account for the results. It was also observed that the PD had a high on–off ratio of 800 without external bias. The photovoltaic effect was proposed to explain the self-powered phenomenon.

  2. An Efficient Method for Mapping High-Resolution Global River Discharge Based on the Algorithms of Drainage Network Extraction

    Directory of Open Access Journals (Sweden)

    Jiaye Li

    2018-04-01

    Full Text Available River discharge, which represents the accumulation of surface water flowing into rivers and ultimately into the ocean or other water bodies, may have great impacts on water quality and the living organisms in rivers. However, the global knowledge of river discharge is still poor and worth exploring. This study proposes an efficient method for mapping high-resolution global river discharge based on the algorithms of drainage network extraction. Using the existing global runoff map and digital elevation model (DEM data as inputs, this method consists of three steps. First, the pixels of the runoff map and the DEM data are resampled into the same resolution (i.e., 0.01-degree. Second, the flow direction of each pixel of the DEM data (identified by the optimal flow path method used in drainage network extraction is determined and then applied to the corresponding pixel of the runoff map. Third, the river discharge of each pixel of the runoff map is calculated by summing the runoffs of all the pixels in the upstream of this pixel, similar to the upslope area accumulation step in drainage network extraction. Finally, a 0.01-degree global map of the mean annual river discharge is obtained. Moreover, a 0.5-degree global map of the mean annual river discharge is produced to display the results with a more intuitive perception. Compared against the existing global river discharge databases, the 0.01-degree map is of a generally high accuracy for the selected river basins, especially for the Amazon River basin with the lowest relative error (RE of 0.3% and the Yangtze River basin within the RE range of ±6.0%. However, it is noted that the results of the Congo and Zambezi River basins are not satisfactory, with RE values over 90%, and it is inferred that there may be some accuracy problems with the runoff map in these river basins.

  3. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    Science.gov (United States)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  4. Wood Modification at High Temperature and Pressurized Steam: a Relational Model of Mechanical Properties Based on a Neural Network

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2015-07-01

    Full Text Available Thermally modified wood has high dimensional stability and biological durability.But if the process parameters of thermal modification are not appropriate, then there will be a decline in the physical properties of wood.A neural network algorithm was employed in this study to establish the relationship between the process parameters of high-temperature and high-pressure thermal modification and the mechanical properties of the wood. Three important parameters: temperature, relative humidity, and treatment time, were considered as the inputs to the neural network. Back propagation (BP neural network and radial basis function (RBF neural network models for prediction were built and compared. The comparison showed that the RBF neural network model had advantages in network structure, convergence speed, and generalization capacity. On this basis, the inverse model, reflecting the relationship between the process parameters and the mechanical properties of wood, was established. Given the desired mechanical properties of the wood, the thermal modification process parameters could be inversely optimized and predicted. The results indicated that the model has good learning ability and generalization capacity. This is of great importance for the theoretical and applicational studies of the thermal modification of wood.

  5. Adaptive control strategy for ECRH negative high-voltage power supply based on CMAC neural network

    International Nuclear Information System (INIS)

    Luo Xiaoping; Du Pengying; Du Shaowu

    2011-01-01

    In order to solve the problem that the negative high-voltage power supply in an electron cyclotron resonance heating (ECRH) system can not satisfy the requirements because of the nonlinearity and sensitivity, the direct inverse model control strategy was proposed by using cerebellar model articulation controller(CMAC) for better control, and experiments were carried out to study the system performances with CMAC tracing dynamic signals. The results show that this strategy is strong in self-learning and self-adaptation and easy to be realized. (authors)

  6. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-01-28

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  7. Synthesis of highly integrated optical network based on microdisk-resonator add-drop filters in silicon-on-insulator technology

    Science.gov (United States)

    Kaźmierczak, Andrzej; Dortu, Fabian; Giannone, Domenico; Bogaerts, Wim; Drouard, Emmanuel; Rojo-Romeo, Pedro; Gaffiot, Frederic

    2009-10-01

    We analyze a highly compact optical add-drop filter topology based on a pair of microdisk resonators and a bus waveguide intersection. The filter is further assessed on an integrated optical 4×4 network for optical on-chip communication. The proposed network structure, as compact as 50×50 μm, is fabricated in a CMOS-compatible process on a silicon-on-insulator (SOI) substrate. Finally, the experimental results demonstrate the proper operation of the fabricated devices.

  8. Network based on statistical multiplexing for event selection and event builder systems in high energy physics experiments

    International Nuclear Information System (INIS)

    Calvet, D.

    2000-03-01

    Systems for on-line event selection in future high energy physics experiments will use advanced distributed computing techniques and will need high speed networks. After a brief description of projects at the Large Hadron Collider, the architectures initially proposed for the Trigger and Data AcQuisition (TD/DAQ) systems of ATLAS and CMS experiments are presented and analyzed. A new architecture for the ATLAS T/DAQ is introduced. Candidate network technologies for this system are described. This thesis focuses on ATM. A variety of network structures and topologies suited to partial and full event building are investigated. The need for efficient networking is shown. Optimization techniques for high speed messaging and their implementation on ATM components are described. Small scale demonstrator systems consisting of up to 48 computers (∼1:20 of the final level 2 trigger) connected via ATM are described. Performance results are presented. Extrapolation of measurements and evaluation of needs lead to a proposal of implementation for the main network of the ATLAS T/DAQ system. (author)

  9. Network-based integration of molecular and physiological data elucidates regulatory mechanisms underlying adaptation to high-fat diet

    NARCIS (Netherlands)

    Derous, D.; Kelder, T.; Schothorst, E.M. van; Erk, M. van; Voigt, A.; Klaus, S.; Keijer, J.; Radonjic, M.

    2015-01-01

    Health is influenced by interplay of molecular, physiological and environmental factors. To effectively maintain health and prevent disease, health-relevant relations need to be understood at multiple levels of biological complexity. Network-based methods provide a powerful platform for integration

  10. Future High Capacity Backbone Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan

    are proposed. The work focuses on energy efficient routing algorithms in a dynamic optical core network environment, with Generalized MultiProtocol Label Switching (GMPLS) as the control plane. Energy ef- ficient routing algorithms for energy savings and CO2 savings are proposed, and their performance...... aiming for reducing the dynamic part of the energy consumption of the network may increase the fixed part of the energy consumption meanwhile. In the second half of the thesis, the conflict between energy efficiency and Quality of Service (QoS) is addressed by introducing a novel software defined......This thesis - Future High Capacity Backbone Networks - deals with the energy efficiency problems associated with the development of future optical networks. In the first half of the thesis, novel approaches for using multiple/single alternative energy sources for improving energy efficiency...

  11. High intensity proton accelerator controls network upgrade

    International Nuclear Information System (INIS)

    Krempaska, R.; Bertrand, A.; Lendzian, F.; Lutz, H.

    2012-01-01

    The High Intensity Proton Accelerator (HIPA) control system network is spread through a vast area in PSI and it was grown historically in an unorganized way. The miscellaneous network hardware infrastructure and the lack of the documentation and components overview could no longer guarantee the reliability of the control system and the facility operation. Therefore, a new network, based on modern network topology, PSI standard hardware with monitoring and detailed documentation and overview was needed. The number of active components has been reduced from 25 to 9 Cisco Catalyst 24- or 48-port switches. They are the same type as other PSI switches, thus a replacement emergency stock is not an issue anymore. We would like to present how we successfully achieved this goal and the advantages of the clean and well documented network infrastructure. (authors)

  12. High voltage power network construction

    CERN Document Server

    Harker, Keith

    2018-01-01

    This book examines the key requirements, considerations, complexities and constraints relevant to the task of high voltage power network construction, from design, finance, contracts and project management to installation and commissioning, with the aim of providing an overview of the holistic end to end construction task in a single volume.

  13. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    selection in Wi-Fi networks and predictive handover optimization in heterogeneous wireless networks. The investigations in this work have indicated that location based network optimizations are beneficial compared to typical link measurement based approaches. Especially the knowledge of geographical...

  14. Cut Based Method for Comparing Complex Networks.

    Science.gov (United States)

    Liu, Qun; Dong, Zhishan; Wang, En

    2018-03-23

    Revealing the underlying similarity of various complex networks has become both a popular and interdisciplinary topic, with a plethora of relevant application domains. The essence of the similarity here is that network features of the same network type are highly similar, while the features of different kinds of networks present low similarity. In this paper, we introduce and explore a new method for comparing various complex networks based on the cut distance. We show correspondence between the cut distance and the similarity of two networks. This correspondence allows us to consider a broad range of complex networks and explicitly compare various networks with high accuracy. Various machine learning technologies such as genetic algorithms, nearest neighbor classification, and model selection are employed during the comparison process. Our cut method is shown to be suited for comparisons of undirected networks and directed networks, as well as weighted networks. In the model selection process, the results demonstrate that our approach outperforms other state-of-the-art methods with respect to accuracy.

  15. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  16. Towards green high capacity optical networks

    Science.gov (United States)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2011-09-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  17. High Availability in Optical Networks

    Science.gov (United States)

    Grover, Wayne D.; Wosinska, Lena; Fumagalli, Andrea

    2005-09-01

    Call for Papers: High Availability in Optical Networks Submission Deadline: 1 January 2006 The Journal of Optical Networking (JON) is soliciting papers for a feature Issue pertaining to all aspects of reliable components and systems for optical networks and concepts, techniques, and experience leading to high availability of services provided by optical networks. Most nations now recognize that telecommunications in all its forms -- including voice, Internet, video, and so on -- are "critical infrastructure" for the society, commerce, government, and education. Yet all these services and applications are almost completely dependent on optical networks for their realization. "Always on" or apparently unbreakable communications connectivity is the expectation from most users and for some services is the actual requirement as well. Achieving the desired level of availability of services, and doing so with some elegance and efficiency, is a meritorious goal for current researchers. This requires development and use of high-reliability components and subsystems, but also concepts for active reconfiguration and capacity planning leading to high availability of service through unseen fast-acting survivability mechanisms. The feature issue is also intended to reflect some of the most important current directions and objectives in optical networking research, which include the aspects of integrated design and operation of multilevel survivability and realization of multiple Quality-of-Protection service classes. Dynamic survivable service provisioning, or batch re-provisioning is an important current theme, as well as methods that achieve high availability at far less investment in spare capacity than required by brute force service path duplication or 100% redundant rings, which is still the surprisingly prevalent practice. Papers of several types are envisioned in the feature issue, including outlook and forecasting types of treatments, optimization and analysis, new

  18. High-speed all-optical DNA local sequence alignment based on a three-dimensional artificial neural network.

    Science.gov (United States)

    Maleki, Ehsan; Babashah, Hossein; Koohi, Somayyeh; Kavehvash, Zahra

    2017-07-01

    This paper presents an optical processing approach for exploring a large number of genome sequences. Specifically, we propose an optical correlator for global alignment and an extended moiré matching technique for local analysis of spatially coded DNA, whose output is fed to a novel three-dimensional artificial neural network for local DNA alignment. All-optical implementation of the proposed 3D artificial neural network is developed and its accuracy is verified in Zemax. Thanks to its parallel processing capability, the proposed structure performs local alignment of 4 million sequences of 150 base pairs in a few seconds, which is much faster than its electrical counterparts, such as the basic local alignment search tool.

  19. Resume: networking in high energy physics

    International Nuclear Information System (INIS)

    Hutton, J.S.

    1985-11-01

    Networking in High Energy Physics covers communications inside the experiment and internationally. Inside the experiment the need for agreed 'codes of practice' is now accepted. Within Europe it is accepted that a common infrastructure based on the use of the ISO OSI protocols should be used. In the USA a community initiative has been proposed. The background to these approaches is discussed. (author)

  20. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1998-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  1. Advanced Functionalities for Highly Reliable Optical Networks

    DEFF Research Database (Denmark)

    An, Yi

    This thesis covers two research topics concerning optical solutions for networks e.g. avionic systems. One is to identify the applications for silicon photonic devices for cost-effective solutions in short-range optical networks. The other one is to realise advanced functionalities in order...... to increase the availability of highly reliable optical networks. A cost-effective transmitter based on a directly modulated laser (DML) using a silicon micro-ring resonator (MRR) to enhance its modulation speed is proposed, analysed and experimentally demonstrated. A modulation speed enhancement from 10 Gbit...... interconnects and network-on-chips. A novel concept of all-optical protection switching scheme is proposed, where fault detection and protection trigger are all implemented in the optical domain. This scheme can provide ultra-fast establishment of the protection path resulting in a minimum loss of data...

  2. Toward Bulk Synchronous Parallel-Based Machine Learning Techniques for Anomaly Detection in High-Speed Big Data Networks

    Directory of Open Access Journals (Sweden)

    Kamran Siddique

    2017-09-01

    Full Text Available Anomaly detection systems, also known as intrusion detection systems (IDSs, continuously monitor network traffic aiming to identify malicious actions. Extensive research has been conducted to build efficient IDSs emphasizing two essential characteristics. The first is concerned with finding optimal feature selection, while another deals with employing robust classification schemes. However, the advent of big data concepts in anomaly detection domain and the appearance of sophisticated network attacks in the modern era require some fundamental methodological revisions to develop IDSs. Therefore, we first identify two more significant characteristics in addition to the ones mentioned above. These refer to the need for employing specialized big data processing frameworks and utilizing appropriate datasets for validating system’s performance, which is largely overlooked in existing studies. Afterwards, we set out to develop an anomaly detection system that comprehensively follows these four identified characteristics, i.e., the proposed system (i performs feature ranking and selection using information gain and automated branch-and-bound algorithms respectively; (ii employs logistic regression and extreme gradient boosting techniques for classification; (iii introduces bulk synchronous parallel processing to cater computational requirements of high-speed big data networks; and; (iv uses the Infromation Security Centre of Excellence, of the University of Brunswick real-time contemporary dataset for performance evaluation. We present experimental results that verify the efficacy of the proposed system.

  3. Cloud-based Networked Visual Servo Control

    OpenAIRE

    Wu, Haiyan; Lu, Lei; Chen, Chih-Chung; Hirche, Sandra; Kühnlenz, Kolja

    2013-01-01

    The performance of vision-based control systems, in particular of highly dynamic vision-based motion control systems, is often limited by the low sampling rate of the visual feedback caused by the long image processing time. In order to overcome this problem, the networked visual servo control, which integrates networked computational resources for cloud image processing, is considered in this article. The main contributions of this article are i) a real-time transport protocol for transmitti...

  4. Distribution network topology identification based on synchrophasor

    Directory of Open Access Journals (Sweden)

    Stefania Conti

    2018-03-01

    Full Text Available A distribution system upgrade moving towards Smart Grid implementation is necessary to face the proliferation of distributed generators and electric vehicles, in order to satisfy the increasing demand for high quality, efficient, secure, reliable energy supply. This perspective requires taking into account system vulnerability to cyber attacks. An effective attack could destroy stored information about network structure, historical data and so on. Countermeasures and network applications could be made impracticable since most of them are based on the knowledge of network topology. Usually, the location of each link between nodes in a network is known. Therefore, the methods used for topology identification determine if a link is open or closed. When no information on the location of the network links is available, these methods become totally unfeasible. This paper presents a method to identify the network topology using only nodal measures obtained by means of phasor measurement units.

  5. Multicast Performance Analysis for High-Speed Torus Networks

    National Research Council Canada - National Science Library

    Oral, S; George, A

    2002-01-01

    ... for unicast-based and path-based multicast communication on high-speed torus networks. Software-based multicast performance results of selected algorithms on a 16-node Scalable Coherent Interface (SCI) torus are given...

  6. High performance SDN enabled flat data center network architecture based on scalable and flow-controlled optical switching system

    NARCIS (Netherlands)

    Calabretta, N.; Miao, W.; Dorren, H.J.S.

    2015-01-01

    We demonstrate a reconfigurable virtual datacenter network by utilizing statistical multiplexing offered by scalable and flow-controlled optical switching system. Results show QoS guarantees by the priority assignment and load balancing for applications in virtual networks.

  7. Machine-Learning Classifier for Patients with Major Depressive Disorder: Multifeature Approach Based on a High-Order Minimum Spanning Tree Functional Brain Network.

    Science.gov (United States)

    Guo, Hao; Qin, Mengna; Chen, Junjie; Xu, Yong; Xiang, Jie

    2017-01-01

    High-order functional connectivity networks are rich in time information that can reflect dynamic changes in functional connectivity between brain regions. Accordingly, such networks are widely used to classify brain diseases. However, traditional methods for processing high-order functional connectivity networks generally include the clustering method, which reduces data dimensionality. As a result, such networks cannot be effectively interpreted in the context of neurology. Additionally, due to the large scale of high-order functional connectivity networks, it can be computationally very expensive to use complex network or graph theory to calculate certain topological properties. Here, we propose a novel method of generating a high-order minimum spanning tree functional connectivity network. This method increases the neurological significance of the high-order functional connectivity network, reduces network computing consumption, and produces a network scale that is conducive to subsequent network analysis. To ensure the quality of the topological information in the network structure, we used frequent subgraph mining technology to capture the discriminative subnetworks as features and combined this with quantifiable local network features. Then we applied a multikernel learning technique to the corresponding selected features to obtain the final classification results. We evaluated our proposed method using a data set containing 38 patients with major depressive disorder and 28 healthy controls. The experimental results showed a classification accuracy of up to 97.54%.

  8. Throughput, latency and cost comparisons of microcontroller-based implementations of wireless sensor network (WSN) in high jump sports

    Science.gov (United States)

    Ahmad, Afandi; Roslan, Muhammad Faris; Amira, Abbes

    2017-09-01

    In high jump sports, approach take-off speed and force during the take-off are two (2) main important parts to gain maximum jump. To measure both parameters, wireless sensor network (WSN) that contains microcontroller and sensor are needed to describe the results of speed and force for jumpers. Most of the microcontroller exhibit transmission issues in terms of throughput, latency and cost. Thus, this study presents the comparison of wireless microcontrollers in terms of throughput, latency and cost, and the microcontroller that have best performances and cost will be implemented in high jump wearable device. In the experiments, three (3) parts have been integrated - input, process and output. Force (for ankle) and global positioning system (GPS) sensor (for body waist) acts as an input for data transmission. These data were then being processed by both microcontrollers, ESP8266 and Arduino Yun Mini to transmit the data from sensors to the server (host-PC) via message queuing telemetry transport (MQTT) protocol. The server acts as receiver and the results was calculated from the MQTT log files. At the end, results obtained have shown ESP8266 microcontroller had been chosen since it achieved high throughput, low latency and 11 times cheaper in term of prices compared to Arduino Yun Mini microcontroller.

  9. Apriori-based network intrusion detection system

    International Nuclear Information System (INIS)

    Wang Wenjin; Liu Junrong; Liu Baoxu

    2012-01-01

    With the development of network communication technology, more and more social activities run by Internet. In the meantime, the network information security is getting increasingly serious. Intrusion Detection System (IDS) has greatly improved the general security level of whole network. But there are still many problem exists in current IDS, e.g. high leak rate detection/false alarm rates and feature library need frequently upgrade. This paper presents an association-rule based IDS. This system can detect unknown attack by generate rules from training data. Experiment in last chapter proved the system has great accuracy on unknown attack detection. (authors)

  10. High-precision approach to localization scheme of visible light communication based on artificial neural networks and modified genetic algorithms

    Science.gov (United States)

    Guan, Weipeng; Wu, Yuxiang; Xie, Canyu; Chen, Hao; Cai, Ye; Chen, Yingcong

    2017-10-01

    An indoor positioning algorithm based on visible light communication (VLC) is presented. This algorithm is used to calculate a three-dimensional (3-D) coordinate of an indoor optical wireless environment, which includes sufficient orders of multipath reflections from reflecting surfaces of the room. Leveraging the global optimization ability of the genetic algorithm (GA), an innovative framework for 3-D position estimation based on a modified genetic algorithm is proposed. Unlike other techniques using VLC for positioning, the proposed system can achieve indoor 3-D localization without making assumptions about the height or acquiring the orientation angle of the mobile terminal. Simulation results show that an average localization error of less than 1.02 cm can be achieved. In addition, in most VLC-positioning systems, the effect of reflection is always neglected and its performance is limited by reflection, which makes the results not so accurate for a real scenario and the positioning errors at the corners are relatively larger than other places. So, we take the first-order reflection into consideration and use artificial neural network to match the model of a nonlinear channel. The studies show that under the nonlinear matching of direct and reflected channels the average positioning errors of four corners decrease from 11.94 to 0.95 cm. The employed algorithm is emerged as an effective and practical method for indoor localization and outperform other existing indoor wireless localization approaches.

  11. Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-Performance Gas Sensing.

    Science.gov (United States)

    Wan, Pengbo; Wen, Xuemei; Sun, Chaozheng; Chandran, Bevita K; Zhang, Han; Sun, Xiaoming; Chen, Xiaodong

    2015-10-28

    A flexible, transparent, chemical gas sensor is assembled from a transparent conducting film of carbon nanotube (CNT) networks that are coated with hierarchically nanostructured polyaniline (PANI) nanorods. The nanocomposite film is synthesized by in-situ, chemical oxidative polymerization of aniline in a functional multiwalled CNT (FMWCNT) suspension and is simultaneously deposited onto a flexible polyethylene terephthalate (PET) substrate. An as-prepared flexible transparent chemical gas sensor exhibits excellent transparency of 85.0% at 550 nm using the PANI/FMWCNT nanocomposite film prepared over a reaction time of 8 h. The sensor also shows good flexibility, without any obvious decrease in performance after 500 bending/extending cycles, demonstrating high-performance, portable gas sensing at room temperature. This superior performance could be attributed to the improved electron transport and collection due to the CNTs, resulting in reliable and efficient sensing, as well as the high surface-to-volume ratio of the hierarchically nanostructured composites. The excellent transparency, improved sensing performance, and superior flexibility of the device, may enable the integration of this simple, low-cost, gas sensor into handheld flexible transparent electronic circuitry and optoelectronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Modeling the interdependent network based on two-mode networks

    Science.gov (United States)

    An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian

    2017-10-01

    Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.

  13. Driver-centred vehicle automation: using network analysis for agent-based modelling of the driver in highly automated driving systems.

    Science.gov (United States)

    Banks, Victoria A; Stanton, Neville A

    2016-11-01

    To the average driver, the concept of automation in driving infers that they can become completely 'hands and feet free'. This is a common misconception, however, one that has been shown through the application of Network Analysis to new Cruise Assist technologies that may feature on our roads by 2020. Through the adoption of a Systems Theoretic approach, this paper introduces the concept of driver-initiated automation which reflects the role of the driver in highly automated driving systems. Using a combination of traditional task analysis and the application of quantitative network metrics, this agent-based modelling paper shows how the role of the driver remains an integral part of the driving system implicating the need for designers to ensure they are provided with the tools necessary to remain actively in-the-loop despite giving increasing opportunities to delegate their control to the automated subsystems. Practitioner Summary: This paper describes and analyses a driver-initiated command and control system of automation using representations afforded by task and social networks to understand how drivers remain actively involved in the task. A network analysis of different driver commands suggests that such a strategy does maintain the driver in the control loop.

  14. NEBULAS A High Performance Data-Driven Event-Building Architecture based on an Asynchronous Self-Routing Packet-Switching Network

    CERN Multimedia

    Costa, M; Letheren, M; Djidi, K; Gustafsson, L; Lazraq, T; Minerskjold, M; Tenhunen, H; Manabe, A; Nomachi, M; Watase, Y

    2002-01-01

    RD31 : The project is evaluating a new approach to event building for level-two and level-three processor farms at high rate experiments. It is based on the use of commercial switching fabrics to replace the traditional bus-based architectures used in most previous data acquisition sytems. Switching fabrics permit the construction of parallel, expandable, hardware-driven event builders that can deliver higher aggregate throughput than the bus-based architectures. A standard industrial switching fabric technology is being evaluated. It is based on Asynchronous Transfer Mode (ATM) packet-switching network technology. Commercial, expandable ATM switching fabrics and processor interfaces, now being developed for the future Broadband ISDN infrastructure, could form the basis of an implementation. The goals of the project are to demonstrate the viability of this approach, to evaluate the trade-offs involved in make versus buy options, to study the interfacing of the physics frontend data buffers to such a fabric, a...

  15. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  16. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  17. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  18. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  19. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    NARCIS (Netherlands)

    Calabretta, N.; Miao, W.; Dorren, H.J.S.; Schroder, H.; Chen, R.T.

    2016-01-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and

  20. On Tree-Based Phylogenetic Networks.

    Science.gov (United States)

    Zhang, Louxin

    2016-07-01

    A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.

  1. Nonbinary Tree-Based Phylogenetic Networks.

    Science.gov (United States)

    Jetten, Laura; van Iersel, Leo

    2018-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can, for example, represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and strictly-tree-based nonbinary phylogenetic networks. We give simple graph-theoretic characterizations of tree-based and strictly-tree-based nonbinary phylogenetic networks. Moreover, we show for each of these two classes that it can be decided in polynomial time whether a given network is contained in the class. Our approach also provides a new view on tree-based binary phylogenetic networks. Finally, we discuss two examples of nonbinary phylogenetic networks in biology and show how our results can be applied to them.

  2. A soft biomolecule actuator based on a highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups.

    Science.gov (United States)

    Wang, Fan; Jeon, Jin-Han; Park, Sukho; Kee, Chang-Doo; Kim, Seong-Jun; Oh, Il-Kwon

    2016-01-07

    Upcoming human-related applications such as soft wearable electronics, flexible haptic systems, and active bio-medical devices will require bio-friendly actuating materials. Here, we report a soft biomolecule actuator based on carboxylated bacterial cellulose (CBC), ionic liquid (IL), and poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) electrodes. Soft and biocompatible polymer-IL composites were prepared via doping of CBC with ILs. The highly conductive PSS layers were deposited on both sides of the CBC-IL membranes by a dip-coating technique to yield a sandwiched actuator system. Ionic conductivity and ionic exchange capacity of the CBC membrane can be increased up to 22.8 times and 1.5 times compared with pristine bacterial cellulose (BC), respectively, resulting in 8 times large bending deformation than the pure BC actuators with metallic electrodes in an open air environment. The developed CBC-IL actuators show significant progress in the development of biocompatible and soft actuating materials with quick response, low operating voltage and comparatively large bending deformation.

  3. Applications of neural networks in high energy physics

    International Nuclear Information System (INIS)

    Cutts, D.; Hoftun, J.S.; Nesic, D.; Sornborger, A.; Johnson, C.R.; Zeller, R.T.

    1990-01-01

    Neural network techniques provide promising solutions to pattern recognition problems in high energy physics. We discuss several applications of back propagation networks, and in particular describe the operation of an electron algorithm based on calorimeter energies. 5 refs., 5 figs., 1 tab

  4. Study on high-speed cutting parameters optimization of AlMn1Cu based on neural network and genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhenhua Wang

    2016-04-01

    Full Text Available In this article, the cutting parameters optimization method for aluminum alloy AlMn1Cu in high-speed milling was studied in order to properly select the high-speed cutting parameters. First, a back propagation neural network model for predicting surface roughness of AlMn1Cu was proposed. The prediction model can improve the prediction accuracy and well work out the higher-order nonlinear relationship between surface roughness and cutting parameters. Second, considering the constraints of technical requirements on surface roughness, a mathematical model for optimizing cutting parameters based on the Bayesian neural network prediction model of surface roughness was established so as to obtain the maximum machining efficiency. The genetic algorithm adopting the homogeneous design to initialize population as well as steady-state reproduction without duplicates was also presented. The application indicates that the algorithm can effectively avoid precocity, strengthen global optimization, and increase the calculation efficiency. Finally, a case was presented on the application of the proposed cutting parameters optimization algorithm to optimize the cutting parameters.

  5. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-09-01

    Vanadium redox flow batteries (VRFBs) with their high flexibility in configuration and operation, as well as long cycle life are competent for the requirement of future energy storage systems. Nevertheless, due to the application of perfluorinated membranes, VRFBs are plagued by not only the severe migration issue of vanadium ions, but also their high cost. Herein, we fabricate semi-interpenetrating polymer networks (SIPNs), consisting of cross-linked polyvinylpyrrolidone (PVP) and polysulfone (PSF), as alternative membranes for VRFBs. It is demonstrated that the PVP-based SIPNs exhibit extremely low vanadium permeabilities, which contribute to the well-established hydrophilic/hydrophobic microstructures and the Donnan exclusion effect. As a result, the coulombic efficiencies of VRFBs with PVP-based SIPNs reach almost 100% at 40 mA cm-2 to 100 mA cm-2; the energy efficiencies are more than 3% higher than those of VRFBs with Nafion 212. More importantly, the PVP-based SIPNs exhibit a superior chemical stability, as demonstrated both by an ex situ immersion test and continuously cycling test. Hence, all the characterizations and performance tests reported here suggest that PVP-based SIPNs are a promising alternative membrane for redox flow batteries to achieve superior cell performance and excellent cycling stability at the fraction of the cost of perfluorinated membranes.

  6. High-Speed Rail Train Timetabling Problem: A Time-Space Network Based Method with an Improved Branch-and-Price Algorithm

    Directory of Open Access Journals (Sweden)

    Bisheng He

    2014-01-01

    Full Text Available A time-space network based optimization method is designed for high-speed rail train timetabling problem to improve the service level of the high-speed rail. The general time-space path cost is presented which considers both the train travel time and the high-speed rail operation requirements: (1 service frequency requirement; (2 stopping plan adjustment; and (3 priority of train types. Train timetabling problem based on time-space path aims to minimize the total general time-space path cost of all trains. An improved branch-and-price algorithm is applied to solve the large scale integer programming problem. When dealing with the algorithm, a rapid branching and node selection for branch-and-price tree and a heuristic train time-space path generation for column generation are adopted to speed up the algorithm computation time. The computational results of a set of experiments on China’s high-speed rail system are presented with the discussions about the model validation, the effectiveness of the general time-space path cost, and the improved branch-and-price algorithm.

  7. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  8. NM-Net Gigabit-based Implementation on Core Network Facilities and Network Design Hierarchy

    International Nuclear Information System (INIS)

    Raja Murzaferi Raja Moktar; Mohd Fauzi Haris; Siti Nurbahyah Hamdan

    2011-01-01

    Nuclear Malaysia computing network or NM the main backbone of internet working on operational staffs. Main network operating center or NOC is situated in Block 15 and linkup via fiber cabling to adjacent main network blocks (18, 29, 11 connections. Pre 2009 infrastructure; together to form the core networking switch. of the core network infrastructure were limited by the up link between core switches that is the Pair (UTP) Category 6 Cable. Furthermore, majority of the networking infrastructure throughout the agency were mainly built with Fast Ethernet Based specifications to date. With current research and operational tasks highly dependent on IT infrastructure that is being enabled through NM-Net, the performance NM-Net implementing gigabit-based networking system achieve optimal performance of internet networking services in the agency thus catalyze initiative. (author)

  9. Resource Discovery in Activity-Based Sensor Networks

    DEFF Research Database (Denmark)

    Bucur, Doina; Bardram, Jakob

    This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networks...... (ABSNs) knowledge about their usage even at the network layer. ABSN redesigns classical network-level service discovery protocols to include and use this logical structuring of the network for a more practically applicable service discovery scheme. Noting that in practical settings activity-based sensor...

  10. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when

  11. Pressure prediction model based on artificial neural network optimized by genetic algorithm and its application in quasi-static calibration of piezoelectric high-pressure sensor.

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Jiang, Jian; Shang, Fei; Chen, Jing

    2016-12-01

    This paper applies back propagation neural network (BPNN) optimized by genetic algorithm (GA) for the prediction of pressure generated by a drop-weight device and the quasi-static calibration of piezoelectric high-pressure sensors for the measurement of propellant powder gas pressure. The method can effectively overcome the slow convergence and local minimum problems of BPNN. Based on test data of quasi-static comparison calibration method, a mathematical model between each parameter of drop-weight device and peak pressure and pulse width was established, through which the practical quasi-static calibration without continuously using expensive reference sensors could be realized. Compared with multiple linear regression method, the GA-BPNN model has higher prediction accuracy and stability. The percentages of prediction error of peak pressure and pulse width are less than 0.7% and 0.3%, respectively.

  12. A Quantum Cryptography Communication Network Based on Software Defined Network

    Directory of Open Access Journals (Sweden)

    Zhang Hongliang

    2018-01-01

    Full Text Available With the development of the Internet, information security has attracted great attention in today’s society, and quantum cryptography communication network based on quantum key distribution (QKD is a very important part of this field, since the quantum key distribution combined with one-time-pad encryption scheme can guarantee the unconditional security of the information. The secret key generated by quantum key distribution protocols is a very valuable resource, so making full use of key resources is particularly important. Software definition network (SDN is a new type of network architecture, and it separates the control plane and the data plane of network devices through OpenFlow technology, thus it realizes the flexible control of the network resources. In this paper, a quantum cryptography communication network model based on SDN is proposed to realize the flexible control of quantum key resources in the whole cryptography communication network. Moreover, we propose a routing algorithm which takes into account both the hops and the end-to-end availible keys, so that the secret key generated by QKD can be used effectively. We also simulate this quantum cryptography communication network, and the result shows that based on SDN and the proposed routing algorithm the performance of this network is improved since the effective use of the quantum key resources.

  13. Design of AN Intelligent Individual Evacuation Model for High Rise Building Fires Based on Neural Network Within the Scope of 3d GIS

    Science.gov (United States)

    Atila, U.; Karas, I. R.; Turan, M. K.; Rahman, A. A.

    2013-09-01

    One of the most dangerous disaster threatening the high rise and complex buildings of today's world including thousands of occupants inside is fire with no doubt. When we consider high population and the complexity of such buildings it is clear to see that performing a rapid and safe evacuation seems hard and human being does not have good memories in case of such disasters like world trade center 9/11. Therefore, it is very important to design knowledge based realtime interactive evacuation methods instead of classical strategies which lack of flexibility. This paper presents a 3D-GIS implementation which simulates the behaviour of an intelligent indoor pedestrian navigation model proposed for a self -evacuation of a person in case of fire. The model is based on Multilayer Perceptron (MLP) which is one of the most preferred artificial neural network architecture in classification and prediction problems. A sample fire scenario following through predefined instructions has been performed on 3D model of the Corporation Complex in Putrajaya (Malaysia) and the intelligent evacuation process has been realized within a proposed 3D-GIS based simulation.

  14. Back-propagation neural network-based approximate analysis of true stress-strain behaviors of high-strength metallic material

    International Nuclear Information System (INIS)

    Doh, Jaeh Yeok; Lee, Jong Soo; Lee, Seung Uk

    2016-01-01

    In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material's behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity's effect on the material property through a first-order sensitivity analysis.

  15. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Chaudhari

    2011-06-01

    Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.

  16. A Secure Network Coding-based Data Gathering Model and Its Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qian Xiao

    2012-09-01

    Full Text Available To provide security for data gathering based on network coding in wireless sensor networks (WSNs, a secure network coding-based data gathering model is proposed, and a data-privacy preserving and pollution preventing (DPPaamp;PP protocol using network coding is designed. DPPaamp;PP makes use of a new proposed pollution symbol selection and pollution (PSSP scheme based on a new obfuscation idea to pollute existing symbols. Analyses of DPPaamp;PP show that it not only requires low overhead on computation and communication, but also provides high security on resisting brute-force attacks.

  17. Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons.

    Science.gov (United States)

    Passi, Vikram; Gahoi, Amit; Senkovskiy, Boris V; Haberer, Danny; Fischer, Felix R; Grüneis, Alexander; Lemme, Max C

    2018-03-28

    We report on the experimental demonstration and electrical characterization of N = 7 armchair graphene nanoribbon (7-AGNR) field effect transistors. The back-gated transistors are fabricated from atomically precise and highly aligned 7-AGNRs, synthesized with a bottom-up approach. The large area transfer process holds the promise of scalable device fabrication with atomically precise nanoribbons. The channels of the FETs are approximately 30 times longer than the average nanoribbon length of 30 nm to 40 nm. The density of the GNRs is high, so that transport can be assumed well-above the percolation threshold. The long channel transistors exhibit a maximum I ON / I OFF current ratio of 87.5.

  18. Network Traffic Prediction Based on Deep Belief Network and Spatiotemporal Compressive Sensing in Wireless Mesh Backbone Networks

    Directory of Open Access Journals (Sweden)

    Laisen Nie

    2018-01-01

    Full Text Available Wireless mesh network is prevalent for providing a decentralized access for users and other intelligent devices. Meanwhile, it can be employed as the infrastructure of the last few miles connectivity for various network applications, for example, Internet of Things (IoT and mobile networks. For a wireless mesh backbone network, it has obtained extensive attention because of its large capacity and low cost. Network traffic prediction is important for network planning and routing configurations that are implemented to improve the quality of service for users. This paper proposes a network traffic prediction method based on a deep learning architecture and the Spatiotemporal Compressive Sensing method. The proposed method first adopts discrete wavelet transform to extract the low-pass component of network traffic that describes the long-range dependence of itself. Then, a prediction model is built by learning a deep architecture based on the deep belief network from the extracted low-pass component. Otherwise, for the remaining high-pass component that expresses the gusty and irregular fluctuations of network traffic, the Spatiotemporal Compressive Sensing method is adopted to predict it. Based on the predictors of two components, we can obtain a predictor of network traffic. From the simulation, the proposed prediction method outperforms three existing methods.

  19. Modeling acquaintance networks based on balance theory

    Directory of Open Access Journals (Sweden)

    Vukašinović Vida

    2014-09-01

    Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models

  20. Nonbinary tree-based phylogenetic networks

    OpenAIRE

    Jetten, Laura; van Iersel, Leo

    2016-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can for example represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and st...

  1. Directory Enabled Policy Based Networking; TOPICAL

    International Nuclear Information System (INIS)

    KELIIAA, CURTIS M.

    2001-01-01

    This report presents a discussion of directory-enabled policy-based networking with an emphasis on its role as the foundation for securely scalable enterprise networks. A directory service provides the object-oriented logical environment for interactive cyber-policy implementation. Cyber-policy implementation includes security, network management, operational process and quality of service policies. The leading network-technology vendors have invested in these technologies for secure universal connectivity that transverses Internet, extranet and intranet boundaries. Industry standards are established that provide the fundamental guidelines for directory deployment scalable to global networks. The integration of policy-based networking with directory-service technologies provides for intelligent management of the enterprise network environment as an end-to-end system of related clients, services and resources. This architecture allows logical policies to protect data, manage security and provision critical network services permitting a proactive defense-in-depth cyber-security posture. Enterprise networking imposes the consideration of supporting multiple computing platforms, sites and business-operation models. An industry-standards based approach combined with principled systems engineering in the deployment of these technologies allows these issues to be successfully addressed. This discussion is focused on a directory-based policy architecture for the heterogeneous enterprise network-computing environment and does not propose specific vendor solutions. This document is written to present practical design methodology and provide an understanding of the risks, complexities and most important, the benefits of directory-enabled policy-based networking

  2. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  3. Sampling from complex networks with high community structures.

    Science.gov (United States)

    Salehi, Mostafa; Rabiee, Hamid R; Rajabi, Arezo

    2012-06-01

    In this paper, we propose a novel link-tracing sampling algorithm, based on the concepts from PageRank vectors, to sample from networks with high community structures. Our method has two phases; (1) Sampling the closest nodes to the initial nodes by approximating personalized PageRank vectors and (2) Jumping to a new community by using PageRank vectors and unknown neighbors. Empirical studies on several synthetic and real-world networks show that the proposed method improves the performance of network sampling compared to the popular link-based sampling methods in terms of accuracy and visited communities.

  4. High-speed quantum networking by ship

    Science.gov (United States)

    Devitt, Simon J.; Greentree, Andrew D.; Stephens, Ashley M.; van Meter, Rodney

    2016-11-01

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

  5. Simultaneous 10 Gbps data and polarization-based pulse-per-second clock transmission using a single VCSEL for high-speed optical fibre access networks

    Science.gov (United States)

    Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    Access networks based on vertical cavity surface emitting laser (VCSEL) transmitters offer alternative solution in delivering different high bandwidth, cost effective services to the customer premises. Clock and reference frequency distribution is critical for applications such as Coordinated Universal Time (UTC), GPS, banking and big data science projects. Simultaneous distribution of both data and timing signals over shared infrastructure is thus desirable. In this paper, we propose and experimentally demonstrate a novel, cost-effective technique for multi-signal modulation on a single VCSEL transmitter. Two signal types, an intensity modulated 10 Gbps data signal and a polarization-based pulse per second (PPS) clock signal are directly modulated onto a single VCSEL carrier at 1310 nm. Spectral efficiency is maximized by exploiting inherent orthogonal polarization switching of the VCSEL with changing bias in transmission of the PPS signal. A 10 Gbps VCSEL transmission with PPS over 11 km of G.652 fibre introduced a transmission penalty of 0.52 dB. The contribution of PPS to this penalty was found to be 0.08 dB.

  6. A random network based, node attraction facilitated network evolution method

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2016-03-01

    Full Text Available In present study, I present a method of network evolution that based on random network, and facilitated by node attraction. In this method, I assume that the initial network is a random network, or a given initial network. When a node is ready to connect, it tends to link to the node already owning the most connections, which coincides with the general rule (Barabasi and Albert, 1999 of node connecting. In addition, a node may randomly disconnect a connection i.e., the addition of connections in the network is accompanied by the pruning of some connections. The dynamics of network evolution is determined of the attraction factor Lamda of nodes, the probability of node connection, the probability of node disconnection, and the expected initial connectance. The attraction factor of nodes, the probability of node connection, and the probability of node disconnection are time and node varying. Various dynamics can be achieved by adjusting these parameters. Effects of simplified parameters on network evolution are analyzed. The changes of attraction factor Lamda can reflect various effects of the node degree on connection mechanism. Even the changes of Lamda only will generate various networks from the random to the complex. Therefore, the present algorithm can be treated as a general model for network evolution. Modeling results show that to generate a power-law type of network, the likelihood of a node attracting connections is dependent upon the power function of the node's degree with a higher-order power. Matlab codes for simplified version of the method are provided.

  7. Ground-based eye-safe networkable micro-pulse differential absorption and high spectral resolution lidar for water vapor and aerosol profiling in the lower troposphere

    Science.gov (United States)

    Repasky, K. S.; Spuler, S.; Hayman, M. M.; Bunn, C. E.

    2017-12-01

    Atmospheric water vapor is a greenhouse gas that is known to be a significant driver of weather and climate. Several National Research Council (NRC) reports have highlighted the need for improved water vapor measurements that can capture its spatial and temporal variability as a means to improve weather predictions. Researchers at Montana State University (MSU) and the National Center for Atmospheric Research (NCAR) have developed an eye-safe diode laser based micro-pulse differential absorption lidar (MP-DIAL) for water vapor profiling in the lower troposphere. The MP-DIAL is capable of long term unattended operation and is capable of monitoring water vapor in the lower troposphere in most weather conditions. Two MP-DIAL instruments are currently operational and have been deployed at the Front Range Air Pollution and Photochemistry Experiment (FRAPPE), the Plains elevated Convection at Night (PECAN) experiment, the Perdigão experiment, and the Land Atmosphere Feedback Experiment (LAFE). For each of these field experiments, the MP-DIAL was run unattended and provided near-continuous water vapor profiles, including periods of bright daytime clouds, from 300 m above the ground level to 4 km (or the cloud base) with 150 m vertical resolution and 5 minute temporal resolution. Three additional MP-DIAL instruments are currently under construction and will result in a network of five eye-safe MP-DIAL instruments for ground based weather and climate research experiments. Taking advantage of the broad spectral coverage and modularity or the diode based architecture, a high spectral resolution lidar (HSRL) measurement capabilities was added to the second MP-DIAL instrument. The HSRL capabilities will be operational during the deployment at the LAFE field experiment. The instrument architecture will be presented along with examples of data collected during recent field experiments.

  8. Flexible optical network components based on densely integrated microring resonators

    NARCIS (Netherlands)

    Geuzebroek, D.H.

    2005-01-01

    This thesis addresses the design, realization and characterization of reconfigurable optical network components based on multiple microring resonators. Since thermally tunable microring resonators can be used as wavelength selective space switches, very compact devices with high complexity and

  9. Bluetooth-based wireless sensor networks

    Science.gov (United States)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  10. Memristor-based neural networks

    International Nuclear Information System (INIS)

    Thomas, Andy

    2013-01-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them. (topical review)

  11. Community Based Networks and 5G

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2016-01-01

    The deployment of previous wireless standards has provided more benefits for urban dwellers than rural dwellers. 5G deployment may not be different. This paper identifies that Community Based Networks as carriers that deserve recognition as potential 5G providers may change this. The argument....... The findings indicate that 5G connectivity can be extended to rural areas by these networks, via heterogenous networks. Hence the delivery of 5G data rates delivery via Wireless WAN in rural areas can be achieved by utilizing the causal factors of the identified models for Community Based Networks....

  12. Displacement back analysis for a high slope of the Dagangshan Hydroelectric Power Station based on BP neural network and particle swarm optimization.

    Science.gov (United States)

    Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui

    2014-01-01

    The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes.

  13. Displacement Back Analysis for a High Slope of the Dagangshan Hydroelectric Power Station Based on BP Neural Network and Particle Swarm Optimization

    Science.gov (United States)

    Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui

    2014-01-01

    The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes. PMID:25140345

  14. A High-Precision RF Time-of-Flight Measurement Method based on Vernier Effect for Localization of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sang-il KO

    2011-12-01

    Full Text Available This paper presents the fundamental principles of a high-precision RF time-of-flight (ToF measurement method based on the vernier effect, which enables the improvement of time measurement resolution, for accurate distance measurement between sensor nodes in wireless sensor networks. Similar to the two scales of the vernier caliper, two heterogeneous clocks are employed to induce a new virtual time resolution that is much finer than clocks’ intrinsic time resolution. Consecutive RF signal transmission and sensing using two heterogeneous clocks generates a unique sensing pattern for the RF ToF, so that the size of the RF ToF can be estimated by comparing the measured sensing pattern with the predetermined sensing patterns for the RF ToF. RF ToF measurement experiments using this heterogeneous clock system, which has low operating frequencies of several megahertz, certify the proposed RF ToF measurement method through the evaluation of the measured sensing patterns with respect to an RF round-trip time of several nanoseconds.

  15. Network-based analysis of proteomic profiles

    KAUST Repository

    Wong, Limsoon

    2016-01-26

    Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.

  16. Dynamics of High-Resolution Networks

    DEFF Research Database (Denmark)

    Sekara, Vedran

    the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...... are we all affected by an ever changing network structure? Answering these questions will enrich our understanding of ourselves, our organizations, and our societies. Yet, mapping the dynamics of social networks has traditionally been an arduous undertaking. Today, however, it is possible to use...... of such dynamic maps allows us to probe the underlying social network and understand how individuals interact and form lasting friendships. More importantly, these highly detailed dynamic maps provide us new perspectives at traditional problems and allow us to quantify and predict human life....

  17. Compact Interconnection Networks Based on Quantum Dots

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

    2003-01-01

    Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary

  18. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra...

  19. Status of (US) High Energy Physics Networking

    International Nuclear Information System (INIS)

    Montgomery, H.E.

    1987-02-01

    The current status of Networking to and between computers used by the High Energy Physics community is discussed. Particular attention is given to developments over the last year and to future prospects. Comparison between the current status and that of two years ago indicates that considerable strides have been made but that much remains to be done to achieve an acceptable level of functionality

  20. High speed all-optical networks

    Science.gov (United States)

    Chlamtac, Imrich

    1993-01-01

    An inherent problem of conventional point-to-point WAN architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. This report presents the first solution to WDM based WAN networks that overcomes this limitation. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs.

  1. Network-based Approaches in Pharmacology.

    Science.gov (United States)

    Boezio, Baptiste; Audouze, Karine; Ducrot, Pierre; Taboureau, Olivier

    2017-10-01

    In drug discovery, network-based approaches are expected to spotlight our understanding of drug action across multiple layers of information. On one hand, network pharmacology considers the drug response in the context of a cellular or phenotypic network. On the other hand, a chemical-based network is a promising alternative for characterizing the chemical space. Both can provide complementary support for the development of rational drug design and better knowledge of the mechanisms underlying the multiple actions of drugs. Recent progress in both concepts is discussed here. In addition, a network-based approach using drug-target-therapy data is introduced as an example. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optical-Correlator Neural Network Based On Neocognitron

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  3. Cognitive Radio-based Home Area Networks

    NARCIS (Netherlands)

    Sarijari, M.A.B.

    2016-01-01

    A future home area network (HAN) is envisaged to consist of a large number of devices that support various applications such as smart grid, security and safety systems, voice call, and video streaming. Most of these home devices are communicating based on various wireless networking technologies

  4. VLSI Based Multiprocessor Communications Networks.

    Science.gov (United States)

    1982-09-01

    Networks". The contract began on September 1,1980 and was approved on scientific /technical grounds for a duration of three years. Incremental funding was...values for the individual delays will vary from comunicating modules (ij) are shown in Figure 4 module to module due to processing and fabrication

  5. The EarthScope Array Network Facility: application-driven low-latency web-based tools for accessing high-resolution multi-channel waveform data

    Science.gov (United States)

    Newman, R. L.; Lindquist, K. G.; Clemesha, A.; Vernon, F. L.

    2008-12-01

    Since April 2004 the EarthScope USArray seismic network has grown to over 400 broadband stations that stream multi-channel data in near real-time to the Array Network Facility in San Diego. Providing secure, yet open, access to real-time and archived data for a broad range of audiences is best served by a series of platform agnostic low-latency web-based applications. We present a framework of tools that interface between the world wide web and Boulder Real Time Technologies Antelope Environmental Monitoring System data acquisition and archival software. These tools provide audiences ranging from network operators and geoscience researchers, to funding agencies and the general public, with comprehensive information about the experiment. This ranges from network-wide to station-specific metadata, state-of-health metrics, event detection rates, archival data and dynamic report generation over a stations two year life span. Leveraging open source web-site development frameworks for both the server side (Perl, Python and PHP) and client-side (Flickr, Google Maps/Earth and jQuery) facilitates the development of a robust extensible architecture that can be tailored on a per-user basis, with rapid prototyping and development that adheres to web-standards.

  6. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    Science.gov (United States)

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  7. Cascade-based attacks on complex networks

    Science.gov (United States)

    Motter, Adilson E.; Lai, Ying-Cheng

    2002-12-01

    We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes, intentional attacks can lead to a cascade of overload failures, which can in turn cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that possess a highly heterogeneous distribution of loads, such as the Internet and power grids. We demonstrate that the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade may be triggered by disabling a single key node. This brings obvious concerns on the security of such systems.

  8. Cloud-Centric and Logically Isolated Virtual Network Environment Based on Software-Defined Wide Area Network

    Directory of Open Access Journals (Sweden)

    Dongkyun Kim

    2017-12-01

    Full Text Available Recent development of distributed cloud environments requires advanced network infrastructure in order to facilitate network automation, virtualization, high performance data transfer, and secured access of end-to-end resources across regional boundaries. In order to meet these innovative cloud networking requirements, software-defined wide area network (SD-WAN is primarily demanded to converge distributed cloud resources (e.g., virtual machines (VMs in a programmable and intelligent manner over distant networks. Therefore, this paper proposes a logically isolated networking scheme designed to integrate distributed cloud resources to dynamic and on-demand virtual networking over SD-WAN. The performance evaluation and experimental results of the proposed scheme indicate that virtual network convergence time is minimized in two different network models such as: (1 an operating OpenFlow-oriented SD-WAN infrastructure (KREONET-S which is deployed on the advanced national research network in Korea, and (2 Mininet-based experimental and emulated networks.

  9. Protecting infrastructure networks from cost-based attacks

    International Nuclear Information System (INIS)

    Wang Xingang; Guan Shuguang; Lai, Choy Heng

    2009-01-01

    It is well known that heterogeneous networks are vulnerable to the intentional removal of a small fraction of highly connected or loaded nodes, implying that to protect the network effectively, the important nodes should be allocated more defense resource than the others. However, if too much resource is allocated to the few important nodes, the numerous less-important nodes will be less protected, which if attacked together can still lead to devastating damage. A natural question is therefore how to efficiently distribute the limited defense resource among the network nodes such that the network damage is minimized against any attack strategy. In this paper, taking into account the factor of attack cost, the problem of network security is reconsidered in terms of efficient network defense against cost-based attacks. The results show that, for a general complex network, there exists an optimal distribution of the defense resource with which the network is best protected from cost-based attacks. Furthermore, it is found that the configuration of the optimal defense is dependent on the network parameters. Specifically, networks of larger size, sparser connection and more heterogeneous structure will more likely benefit from the defense optimization.

  10. Friend suggestion in social network based on user log

    Science.gov (United States)

    Kaviya, R.; Vanitha, M.; Sumaiya Thaseen, I.; Mangaiyarkarasi, R.

    2017-11-01

    Simple friend recommendation algorithms such as similarity, popularity and social aspects is the basic requirement to be explored to methodically form high-performance social friend recommendation. Suggestion of friends is followed. No tags of character were followed. In the proposed system, we use an algorithm for network correlation-based social friend recommendation (NC-based SFR).It includes user activities like where one lives and works. A new friend recommendation method, based on network correlation, by considering the effect of different social roles. To model the correlation between different networks, we develop a method that aligns these networks through important feature selection. We consider by preserving the network structure for a more better recommendations so that it significantly improves the accuracy for better friend-recommendation.

  11. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  12. Dynamics-based centrality for directed networks.

    Science.gov (United States)

    Masuda, Naoki; Kori, Hiroshi

    2010-11-01

    Determining the relative importance of nodes in directed networks is important in, for example, ranking websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied to strongly connected networks, to the case of general directed networks such that we can quantitatively compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality defined as the stationary density of the continuous-time random walk with random jumps is shown to be equivalent to the absorption probability of the random walk with sinks at each node but without random jumps. Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network supplied with sinks but not with random jumps.

  13. Efficient Vector-Based Forwarding for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2010-01-01

    Full Text Available Underwater Sensor Networks (UWSNs are significantly different from terrestrial sensor networks in the following aspects: low bandwidth, high latency, node mobility, high error probability, and 3-dimensional space. These new features bring many challenges to the network protocol design of UWSNs. In this paper, we tackle one fundamental problem in UWSNs: robust, scalable, and energy efficient routing. We propose vector-based forwarding (VBF, a geographic routing protocol. In VBF, the forwarding path is guided by a vector from the source to the target, no state information is required on the sensor nodes, and only a small fraction of the nodes is involved in routing. To improve the robustness, packets are forwarded in redundant and interleaved paths. Further, a localized and distributed self-adaptation algorithm allows the nodes to reduce energy consumption by discarding redundant packets. VBF performs well in dense networks. For sparse networks, we propose a hop-by-hop vector-based forwarding (HH-VBF protocol, which adapts the vector-based approach at every hop. We evaluate the performance of VBF and HH-VBF through extensive simulations. The simulation results show that VBF achieves high packet delivery ratio and energy efficiency in dense networks and HH-VBF has high packet delivery ratio even in sparse networks.

  14. Networking for High Energy and Nuclear Physics

    Science.gov (United States)

    Newman, Harvey B.

    2007-07-01

    This report gives an overview of the status and outlook for the world's research networks and major international links used by the high energy physics and other scientific communities, network technology advances on which our community depends and in which we have an increasingly important role, and the problem of the Digital Divide, which is a primary focus of ICFA's Standing Committee on Inter-regional Connectivity (SCIC). Wide area networks of sufficient, and rapidly increasing end-to-end capability are vital for every phase of high energy physicists' work. Our bandwidth usage, and the typical capacity of the major national backbones and intercontinental links used by our field have progressed by a factor of more than 1000 over the past decade, and the outlook is for a similar increase over the next decade. This striking exponential growth trend, outstripping the growth rates in other areas of information technology, has continued in the past year, with many of the major national, continental and transoceanic networks supporting research and education progressing from a 10 Gigabits/sec (Gbps) backbone to multiple 10 Gbps links in their core. This is complemented by the use of point-to-point "light paths" to support the most demanding applications, including high energy physics, in a growing list of cases. As we approach the era of LHC physics, the growing need to access and transport Terabyte-scale and later 10 to 100 Terabyte datasets among more than 100 "Tier1" and "Tier2" centers at universities and laboratories spread throughout the world has brought the key role of networks, and the ongoing need for their development, sharply into focus. Bandwidth itself on an increasing scale is not enough. Realizing the scientific wealth of the LHC and our other major scientific programs depends crucially on our ability to use the bandwidth efficiently and reliably, with reliable high rates of data throughput, and effectively, where many parallel large-scale data

  15. Investigation of True High Frequency Electrical Substrates of fMRI-Based Resting State Networks Using Parallel Independent Component Analysis of Simultaneous EEG/fMRI Data.

    Science.gov (United States)

    Kyathanahally, Sreenath P; Wang, Yun; Calhoun, Vince D; Deshpande, Gopikrishna

    2017-01-01

    Previous work using simultaneously acquired electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data has shown that the slow temporal dynamics of resting state brain networks (RSNs), e.g., default mode network (DMN), visual network (VN), obtained from fMRI are correlated with smoothed and down sampled versions of various EEG features such as microstates and band-limited power envelopes. Therefore, even though the down sampled and smoothed envelope of EEG gamma band power is correlated with fMRI fluctuations in the RSNs, it does not mean that the electrical substrates of the RSNs fluctuate with periods state fMRI fluctuations in the RSNs, researchers have speculated that truly high frequency electrical substrates may exist for the RSNs, which would make resting fluctuations obtained from fMRI more meaningful to typically occurring fast neuronal processes in the sub-100 ms time scale. In this study, we test this critical hypothesis using an integrated framework involving simultaneous EEG/fMRI acquisition, fast fMRI sampling ( TR = 200 ms) using multiband EPI (MB EPI), and EEG/fMRI fusion using parallel independent component analysis (pICA) which does not require the down sampling of EEG to fMRI temporal resolution . Our results demonstrate that with faster sampling, high frequency electrical substrates (fluctuating with periods <100 ms time scale) of the RSNs can be observed. This provides a sounder neurophysiological basis for the RSNs.

  16. Temporary over voltages in the high voltage networks

    International Nuclear Information System (INIS)

    Vukelja, Petar; Naumov, Radomir; Mrvic, Jovan; Minovski, Risto

    2001-01-01

    The paper treats the temporary over voltages that may arise in the high voltage networks as a result of: ground faults, loss of load, loss of one or two phases and switching operation. Based on the analysis, the measures for their limitation are proposed. (Original)

  17. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  18. Soft silicone based interpenetrating networks as materials for actuators

    DEFF Research Database (Denmark)

    Yu, Liyun; Gonzalez, Lidia; Hvilsted, Søren

    2014-01-01

    A new approach based on silicone interpenetrating networks with orthogonal chemistries has been investigated with focus on developing soft and flexible elastomers with high energy densities and small viscous losses. The interpenetrating networks are made as simple two pot mixtures...... as for the commercial available silylation based elastomers such as Elastosil RT625. The resulting interpenetrating networks are formulated to be softer than RT625 to increase the actuation caused when applying a voltage due to their softness combined with the significantly higher permittivity than the pure silicone...

  19. Network-based Database Course

    DEFF Research Database (Denmark)

    Nielsen, J.N.; Knudsen, Morten; Nielsen, Jens Frederik Dalsgaard

    A course in database design and implementation has been de- signed, utilizing existing network facilities. The course is an elementary course for students of computer engineering. Its purpose is to give the students a theoretical database knowledge as well as practical experience with design...... and implementation. A tutorial relational database and the students self-designed databases are implemented on the UNIX system of Aalborg University, thus giving the teacher the possibility of live demonstrations in the lecture room, and the students the possibility of interactive learning in their working rooms...

  20. Silicon-embedded copper nanostructure network for high energy storage

    Science.gov (United States)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  1. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2018-01-23

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  2. Dynamic Evolution Model Based on Social Network Services

    Science.gov (United States)

    Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen

    2013-11-01

    Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.

  3. High speed VLSI neural network for high energy physics

    NARCIS (Netherlands)

    Masa, P.; Masa, P.; Hoen, K.; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    A CMOS neural network IC is discussed which was designed for very high speed applications. The parallel architecture, analog computing and digital weight storage provides unprecedented computing speed combined with ease of use. The circuit classifies up to 70 dimensional vectors within 20

  4. NASDA knowledge-based network planning system

    Science.gov (United States)

    Yamaya, K.; Fujiwara, M.; Kosugi, S.; Yambe, M.; Ohmori, M.

    1993-01-01

    One of the SODS (space operation and data system) sub-systems, NP (network planning) was the first expert system used by NASDA (national space development agency of Japan) for tracking and control of satellite. The major responsibilities of the NP system are: first, the allocation of network and satellite control resources and, second, the generation of the network operation plan data (NOP) used in automated control of the stations and control center facilities. Up to now, the first task of network resource scheduling was done by network operators. NP system automatically generates schedules using its knowledge base, which contains information on satellite orbits, station availability, which computer is dedicated to which satellite, and how many stations must be available for a particular satellite pass or a certain time period. The NP system is introduced.

  5. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  6. Network Anomaly Detection Based on Wavelet Analysis

    Science.gov (United States)

    Lu, Wei; Ghorbani, Ali A.

    2008-12-01

    Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  7. Body-Sensor-Network-Based Spasticity Detection.

    Science.gov (United States)

    Misgeld, Berno J E; Luken, Markus; Heitzmann, Daniel; Wolf, Sebastian I; Leonhardt, Steffen

    2016-05-01

    Spasticity is a common disorder of the skeletal muscle with a high incidence in industrialised countries. A quantitative measure of spasticity using body-worn sensors is important in order to assess rehabilitative motor training and to adjust the rehabilitative therapy accordingly. We present a new approach to spasticity detection using the Integrated Posture and Activity Network by Medit Aachen body sensor network (BSN). For this, a new electromyography (EMG) sensor node was developed and employed in human locomotion. Following an analysis of the clinical gait data of patients with unilateral cerebral palsy, a novel algorithm was developed based on the idea to detect coactivation of antagonistic muscle groups as observed in the exaggerated stretch reflex with associated joint rigidity. The algorithm applies a cross-correlation function to the EMG signals of two antagonistically working muscles and subsequent weighting using a Blackman window. The result is a coactivation index which is also weighted by the signal equivalent energy to exclude positive detection of inactive muscles. Our experimental study indicates good performance in the detection of coactive muscles associated with spasticity from clinical data as well as measurements from a BSN in qualitative comparison with the Modified Ashworth Scale as classified by clinical experts. Possible applications of the new algorithm include (but are not limited to) use in robotic sensorimotor therapy to reduce the effect of spasticity.

  8. Networking for high energy physics in Japan

    International Nuclear Information System (INIS)

    Karita, Yukio; Abe, Fumio; Hirose, Hitoshi; Goto, Hiroyuki; Ogasawara, Ryusuke; Yuasa, Fukuko; Banno, Yoshiaki; Yasu, Yoshiji

    1989-01-01

    The computer network for high energy physics in Japan has grown over the last five or six years and is still expanding. Its original purpose was to provide the collaborators in universities access to the computing resources in KEK. Adding to the remote login from terminals, VAXs or Fujitsu computers located in universities have been connected to KEK's computers by DECnet or FNA (Fujitsu's SNA) and have formed the ''Japanese HEPnet''. Since the link between LBL and KEK was established in June 1987, the Japanese HEPnet is combined with the American HEPnet and is an indispensable tool for international collaboration. The current communication media for Japanese HEPnet, leased lines and public X.25, are being replaced by Gakujo-net (Monbusho's inter-university private X.25 network). DECnet, FNA, IP and Ethernet-bridge will run on Gakujo-net for the Japanese HEPnet. (orig.)

  9. The promise of downlink MU-MIMO for high-capacity next generation mobile broadband networks based on IEEE 802.16 m

    Directory of Open Access Journals (Sweden)

    Papathanassiou Apostolos

    2011-01-01

    Full Text Available Abstract The dramatic increase of the demand for mobile broadband services poses stringent requirements on the performance evolution of currently deployed mobile broadband networks, such as Mobile WiMAX Release 1 and 3GPP LTE Release 8. Although the combination of single-user multiple-input multiple-output (SU-MIMO and orthogonal frequency division multiple access (OFDMA provide the appropriate technologies for improving the downlink performance of third generation (3G code division multiple access (CDMA-based mobile radio systems and, thus, address the current mobile internet requirements, a fundamental paradigm shift is required to cope with the constantly increasing mobile broadband data rate and spectral efficiency requirements. Among the different technologies available for making the paradigm shift from current to next-generation mobile broadband networks, multiuser MIMO (MU-MIMO constitutes the most promising technology because of its significant performance improvement advantages. In this article, we analyze the performance of MU-MIMO under a multitude of deployment scenarios and system parameters through extensive system-level simulations which are based on widely used system-level evaluation methodologies. The target mobile broadband system used in the simulations is IEEE 802.16 m which was recently adopted by ITU-R as an IMT-Advanced technology along with 3GPP LTE-Advanced. The results provide insights into different aspects of MU-MIMO with respect to system-level performance, parameter sensitivity, and deployment scenarios, and they can be used by the mobile broadband network designer for maximizing the benefits of MU-MIMO in a scenario with specific deployment requirements and goals.

  10. Toward Measuring Network Aesthetics Based on Symmetry

    Directory of Open Access Journals (Sweden)

    Zengqiang Chen

    2017-05-01

    Full Text Available In this exploratory paper, we discuss quantitative graph-theoretical measures of network aesthetics. Related work in this area has typically focused on geometrical features (e.g., line crossings or edge bendiness of drawings or visual representations of graphs which purportedly affect an observer’s perception. Here we take a very different approach, abandoning reliance on geometrical properties, and apply information-theoretic measures to abstract graphs and networks directly (rather than to their visual representaions as a means of capturing classical appreciation of structural symmetry. Examples are used solely to motivate the approach to measurement, and to elucidate our symmetry-based mathematical theory of network aesthetics.

  11. Cryptography based on neural networks - analytical results

    International Nuclear Information System (INIS)

    Rosen-Zvi, Michal; Kanter, Ido; Kinzel, Wolfgang

    2002-01-01

    The mutual learning process between two parity feed-forward networks with discrete and continuous weights is studied analytically, and we find that the number of steps required to achieve full synchronization between the two networks in the case of discrete weights is finite. The synchronization process is shown to be non-self-averaging and the analytical solution is based on random auxiliary variables. The learning time of an attacker that is trying to imitate one of the networks is examined analytically and is found to be much longer than the synchronization time. Analytical results are found to be in agreement with simulations. (letter to the editor)

  12. Brain Network Analysis from High-Resolution EEG Signals

    Science.gov (United States)

    de Vico Fallani, Fabrizio; Babiloni, Fabio

    lattice and a random structure. Such a model has been designated as "small-world" network in analogy with the concept of the small-world phenomenon observed more than 30 years ago in social systems. In a similar way, many types of functional brain networks have been analyzed according to this mathematical approach. In particular, several studies based on different imaging techniques (fMRI, MEG and EEG) have found that the estimated functional networks showed small-world characteristics. In the functional brain connectivity context, these properties have been demonstrated to reflect an optimal architecture for the information processing and propagation among the involved cerebral structures. However, the performance of cognitive and motor tasks as well as the presence of neural diseases has been demonstrated to affect such a small-world topology, as revealed by the significant changes of L and C. Moreover, some functional brain networks have been mostly found to be very unlike the random graphs in their degree-distribution, which gives information about the allocation of the functional links within the connectivity pattern. It was demonstrated that the degree distributions of these networks follow a power-law trend. For this reason those networks are called "scale-free". They still exhibit the small-world phenomenon but tend to contain few nodes that act as highly connected "hubs". Scale-free networks are known to show resistance to failure, facility of synchronization and fast signal processing. Hence, it would be important to see whether the scaling properties of the functional brain networks are altered under various pathologies or experimental tasks. The present Chapter proposes a theoretical graph approach in order to evaluate the functional connectivity patterns obtained from high-resolution EEG signals. In this way, the "Brain Network Analysis" (in analogy with the Social Network Analysis that has emerged as a key technique in modern sociology) represents an

  13. Evaluating conducting network based transparent electrodes from geometrical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ankush [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560064 Bangalore (India); Kulkarni, G. U., E-mail: guk@cens.res.in [Centre for Nano and Soft Matter Sciences, 560013 Bangalore (India)

    2016-01-07

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  14. Evaluating conducting network based transparent electrodes from geometrical considerations

    International Nuclear Information System (INIS)

    Kumar, Ankush; Kulkarni, G. U.

    2016-01-01

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  15. Data Dissemination Based on Fuzzy Logic and Network Coding in Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Xiaolan Tang

    2017-01-01

    Full Text Available Vehicular networks, as a significant technology in intelligent transportation systems, improve the convenience, efficiency, and safety of driving in smart cities. However, because of the high velocity, the frequent topology change, and the limited bandwidth, it is difficult to efficiently propagate data in vehicular networks. This paper proposes a data dissemination scheme based on fuzzy logic and network coding for vehicular networks, named SFN. It uses fuzzy logic to compute a transmission ability for each vehicle by comprehensively considering the effects of three factors: the velocity change rate, the velocity optimization degree, and the channel quality. Then, two nodes with high abilities are selected as primary backbone and slave backbone in every road segment, which propagate data to other vehicles in this segment and forward them to the backbones in the next segment. The backbone network helps to increase the delivery ratio and avoid invalid transmissions. Additionally, network coding is utilized to reduce transmission overhead and accelerate data retransmission in interbackbone forwarding and intrasegment broadcasting. Experiments show that, compared with existing schemes, SFN has a high delivery ratio and a short dissemination delay, while the backbone network keeps high reliability.

  16. Resource Discovery in Activity-Based Sensor Networks

    DEFF Research Database (Denmark)

    Bucur, Doina; Bardram, Jakob

    This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networ....... ABSN enhances the generic Extended Zone Routing Protocol with logical sensor grouping and greatly lowers network overhead during the process of discovery, while keeping discovery latency close to optimal.......This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networks...... (ABSNs) knowledge about their usage even at the network layer. ABSN redesigns classical network-level service discovery protocols to include and use this logical structuring of the network for a more practically applicable service discovery scheme. Noting that in practical settings activity-based sensor...

  17. Leo satellite-based telecommunication network concepts

    Science.gov (United States)

    Aiken, John G.; Swan, Peter A.; Leopold, Ray J.

    1991-01-01

    Design considerations are discussed for Low Earth Orbit (LEO) satellite based telecommunications networks. The satellites are assumed to be connected to each other via intersatellite links. They are connected to the end user either directly or through gateways to other networks. Frequency reuse, circuit switching, packet switching, call handoff, and routing for these systems are discussed by analogy with terrestrial cellular (mobile radio) telecommunication systems.

  18. Distribution Network Design--literature study based

    OpenAIRE

    LI, ANG

    2012-01-01

    The focus of this research is companies' outbound distribution network design in supply chain management. Within the present competitive market, it is a fundamental importance for companies to achieve high level business performance with an effective supply chain. Outbound distribution network design as an important part in supply chain management, to a large extent decides whether companies can fulfill customers' requirement or not. Therefore, such a study is important for manufacturers and ...

  19. IPTV inter-destination synchronization: A network-based approach

    NARCIS (Netherlands)

    Stokking, H.M.; Deventer, M.O. van; Niamut, O.A.; Walraven, F.A.; Mekuria, R.N.

    2010-01-01

    This paper introduces a novel network-based approach to inter-destination media synchronization. The approach meets the need for synchronization in advanced TV concepts like social TV and offers high scalability, unlike conventional end-point based approaches. The solution for interdestination media

  20. High-Throughput Network Communication with NetIO

    CERN Document Server

    Schumacher, J\\"orn; The ATLAS collaboration; Vandelli, Wainer

    2016-01-01

    HPC network technologies like Infiniband, TrueScale or OmniPath provide low-latency and high-throughput communication between hosts, which makes them attractive options for data-acquisition systems in large-scale high-energy physics experiments. Like HPC networks, DAQ networks are local and include a well specified number of systems. Unfortunately traditional network communication APIs for HPC clusters like MPI or PGAS target exclusively the HPC community and are not suited well for DAQ applications. It is possible to build distributed DAQ applications using low-level system APIs like Infiniband Verbs (and this has been done), but it requires a non negligible effort and expert knowledge. On the other hand, message services like 0MQ have gained popularity in the HEP community. Such APIs allow to build distributed applications with a high-level approach and provide good performance. Unfortunately their usage usually limits developers to TCP/IP-based networks. While it is possible to operate a TCP/IP stack on to...

  1. Control of GMA Butt Joint Welding Based on Neural Networks

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2004-01-01

    This paper presents results from an experimentally based research on Gas Metal Arc Welding (GMAW), controlled by the artificial neural network (ANN) technology. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a high degree of quality......-linear least square error minimization, has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training....

  2. Elements of Network-Based Assessment

    Science.gov (United States)

    Gibson, David

    2007-01-01

    Elements of network-based assessment systems are envisioned based on recent advances in knowledge and practice in learning theory, assessment design and delivery, and semantic web interoperability. The architecture takes advantage of the meditating role of technology as well as recent models of assessment systems. This overview of the elements…

  3. SynUTC - high precision time synchronization over ethernet networks

    CERN Document Server

    Höller, R; Horauer, M; Kerö, N; Schmid, U; Schossmaier, K

    2002-01-01

    This article describes our SynUTC (Synchronized Universal Time Coordinated) technology, which enables high-accuracy distribution of GPS time and time synchronization of network nodes connected via standard Ethernet LANs. By means of exchanging data packets in conjunction with moderate hardware support at nodes and switches, an overall worst-case accuracy in the range of some 100 ns can be achieved, with negligible communication overhead. Our technology thus improves the 1 ms-range accuracy achievable by conventional, software-based approaches like NTP by 4 orders of magnitude. Applications can use the high-accuracy global time provided by SynUTC for event timestamping and event generation both at hardware and software level. SynUTC is based upon inserting highly accurate time information into dedicated data packets at the media-independent interface (MII) between the physical layer transceiver and the network controller upon packet transmission and reception, respectively. As a consequence, every node has acc...

  4. Based on BP Neural Network Stock Prediction

    Science.gov (United States)

    Liu, Xiangwei; Ma, Xin

    2012-01-01

    The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…

  5. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2016-07-01

    Full Text Available With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC. The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.

  6. High-throughput profiling of signaling networks identifies mechanism-based combination therapy to eliminate microenvironmental resistance in acute myeloid leukemia.

    Science.gov (United States)

    Zeng, Zhihong; Liu, Wenbin; Tsao, Twee; Qiu, YiHua; Zhao, Yang; Samudio, Ismael; Sarbassov, Dos D; Kornblau, Steven M; Baggerly, Keith A; Kantarjian, Hagop M; Konopleva, Marina; Andreeff, Michael

    2017-09-01

    The bone marrow microenvironment is known to provide a survival advantage to residual acute myeloid leukemia cells, possibly contributing to disease recurrence. The mechanisms by which stroma in the microenvironment regulates leukemia survival remain largely unknown. Using reverse-phase protein array technology, we profiled 53 key protein molecules in 11 signaling pathways in 20 primary acute myeloid leukemia samples and two cell lines, aiming to understand stroma-mediated signaling modulation in response to the targeted agents temsirolimus (MTOR), ABT737 (BCL2/BCL-XL), and Nutlin-3a (MDM2), and to identify the effective combination therapy targeting acute myeloid leukemia in the context of the leukemia microenvironment. Stroma reprogrammed signaling networks and modified the sensitivity of acute myeloid leukemia samples to all three targeted inhibitors. Stroma activated AKT at Ser473 in the majority of samples treated with single-agent ABT737 or Nutlin-3a. This survival mechanism was partially abrogated by concomitant treatment with temsirolimus plus ABT737 or Nutlin-3a. Mapping the signaling networks revealed that combinations of two inhibitors increased the number of affected proteins in the targeted pathways and in multiple parallel signaling, translating into facilitated cell death. These results demonstrated that a mechanism-based selection of combined inhibitors can be used to guide clinical drug selection and tailor treatment regimens to eliminate microenvironment-mediated resistance in acute myeloid leukemia. Copyright© 2017 Ferrata Storti Foundation.

  7. Designing Network-based Business Model Ontology

    DEFF Research Database (Denmark)

    Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz

    2015-01-01

    Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....

  8. Physical properties of a high molecular weight hydroxyl-terminated polydimethylsiloxane modified castor oil based polyurethane/epoxy interpenetrating polymer network composites

    Science.gov (United States)

    Chen, Shoubing; Wang, Qihua; Wang, Tingmei

    2011-06-01

    A series of polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer network (IPN) composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The effects of HTPDMS content on the phase structure, damping properties and the glass transition temperature ( Tg) of the HTPDMS-modified PU/EP IPN composites were studied by scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). Thermogravimetric analysis (TGA) showed that the thermal decomposition temperature of the composites increased with the increase of HTPDMS content. The tensile strength and impact strength of the IPN composites were also significantly improved, especially when the HTPDMS content was 10%. The modified IPN composites were expected to be used as structural damping materials in the future.

  9. Cooperative and Adaptive Network Coding for Gradient Based Routing in Wireless Sensor Networks with Multiple Sinks

    Directory of Open Access Journals (Sweden)

    M. E. Migabo

    2017-01-01

    Full Text Available Despite its low computational cost, the Gradient Based Routing (GBR broadcast of interest messages in Wireless Sensor Networks (WSNs causes significant packets duplications and unnecessary packets transmissions. This results in energy wastage, traffic load imbalance, high network traffic, and low throughput. Thanks to the emergence of fast and powerful processors, the development of efficient network coding strategies is expected to enable efficient packets aggregations and reduce packets retransmissions. For multiple sinks WSNs, the challenge consists of efficiently selecting a suitable network coding scheme. This article proposes a Cooperative and Adaptive Network Coding for GBR (CoAdNC-GBR technique which considers the network density as dynamically defined by the average number of neighbouring nodes, to efficiently aggregate interest messages. The aggregation is performed by means of linear combinations of random coefficients of a finite Galois Field of variable size GF(2S at each node and the decoding is performed by means of Gaussian elimination. The obtained results reveal that, by exploiting the cooperation of the multiple sinks, the CoAdNC-GBR not only improves the transmission reliability of links and lowers the number of transmissions and the propagation latency, but also enhances the energy efficiency of the network when compared to the GBR-network coding (GBR-NC techniques.

  10. Greening radio access networks using distributed base station architectures

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Soler, José; Dittmann, Lars

    2010-01-01

    Several actions for developing environmentally friendly technologies have been taken in most industrial fields. Significant resources have also been devoted in mobile communications industry. Moving towards eco-friendly alternatives is primarily a social responsibility for network operators....... However besides this, increasing energy efficiency represents a key factor for reducing operating expenses and deploying cost effective mobile networks. This paper presents how distributed base station architectures can contribute in greening radio access networks. More specifically, the advantages...... energy saving. Different subsystems have to be coordinated real-time and intelligent network nodes supporting complicated functionalities are necessary. Distributed base station architectures are ideal for this purpose mainly because of their high degree of configurability and self...

  11. Real time network traffic monitoring for wireless local area networks based on compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza

    2017-05-01

    A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.

  12. Back Analysis of the Permeability Coefficient of a High Core Rockfill Dam Based on a RBF Neural Network Optimized Using the PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Shichun Chi

    2015-01-01

    Full Text Available It is important to determine the seepage field parameters of a high core rockfill dam using the seepage data obtained during operation. For the Nuozhadu high core rockfill dam, a back analysis model is proposed using the radial basis function neural network optimized using a particle swarm optimization algorithm (PSO-RBFNN and the technology of finite element analysis for solving the saturated-unsaturated seepage field. The recorded osmotic pressure curves of osmometers, which are distributed in the maximum cross section, are applied to this back analysis. The permeability coefficients of the dam materials are retrieved using the measured seepage pressure values while the steady state seepage condition exists; that is, the water lever remains unchanged. Meanwhile, the parameters are tested using the unstable saturated-unsaturated seepage field while the water level rises. The results show that the permeability coefficients are reasonable and can be used to study the real behavior of a seepage field of a high core rockfill dam during its operation period.

  13. VoIP attacks detection engine based on neural network

    Science.gov (United States)

    Safarik, Jakub; Slachta, Jiri

    2015-05-01

    The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.

  14. Nonbinary Tree-Based Phylogenetic Networks

    NARCIS (Netherlands)

    Jetten, L.; van Iersel, L.J.J.

    2018-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can for example

  15. Location-based Forwarding in Vehicular Networks

    NARCIS (Netherlands)

    Klein Wolterink, W.

    2013-01-01

    In this thesis we focus on location-based message forwarding in vehicular networks to support intelligent transportation systems (ITSs). ITSs are transport systems that utilise information and communication technologies to increase their level of automation, in this way levering the performance of

  16. Design and implementation of a high performance network security processor

    Science.gov (United States)

    Wang, Haixin; Bai, Guoqiang; Chen, Hongyi

    2010-03-01

    The last few years have seen many significant progresses in the field of application-specific processors. One example is network security processors (NSPs) that perform various cryptographic operations specified by network security protocols and help to offload the computation intensive burdens from network processors (NPs). This article presents a high performance NSP system architecture implementation intended for both internet protocol security (IPSec) and secure socket layer (SSL) protocol acceleration, which are widely employed in virtual private network (VPN) and e-commerce applications. The efficient dual one-way pipelined data transfer skeleton and optimised integration scheme of the heterogenous parallel crypto engine arrays lead to a Gbps rate NSP, which is programmable with domain specific descriptor-based instructions. The descriptor-based control flow fragments large data packets and distributes them to the crypto engine arrays, which fully utilises the parallel computation resources and improves the overall system data throughput. A prototyping platform for this NSP design is implemented with a Xilinx XC3S5000 based FPGA chip set. Results show that the design gives a peak throughput for the IPSec ESP tunnel mode of 2.85 Gbps with over 2100 full SSL handshakes per second at a clock rate of 95 MHz.

  17. Cloud-based Networked Visual Servo Control

    DEFF Research Database (Denmark)

    Wu, Haiyan; Lu, Lei; Chen, Chih-Chung

    2013-01-01

    , which integrates networked computational resources for cloud image processing, is considered in this article. The main contributions of this article are i) a real-time transport protocol for transmitting large volume image data on a cloud computing platform, which enables high sampling rate visual...

  18. Cross-layer restoration with software defined networking based on IP over optical transport networks

    Science.gov (United States)

    Yang, Hui; Cheng, Lei; Deng, Junni; Zhao, Yongli; Zhang, Jie; Lee, Young

    2015-10-01

    The IP over optical transport network is a very promising networking architecture applied to the interconnection of geographically distributed data centers due to the performance guarantee of low delay, huge bandwidth and high reliability at a low cost. It can enable efficient resource utilization and support heterogeneous bandwidth demands in highly-available, cost-effective and energy-effective manner. In case of cross-layer link failure, to ensure a high-level quality of service (QoS) for user request after the failure becomes a research focus. In this paper, we propose a novel cross-layer restoration scheme for data center services with software defined networking based on IP over optical network. The cross-layer restoration scheme can enable joint optimization of IP network and optical network resources, and enhance the data center service restoration responsiveness to the dynamic end-to-end service demands. We quantitatively evaluate the feasibility and performances through the simulation under heavy traffic load scenario in terms of path blocking probability and path restoration latency. Numeric results show that the cross-layer restoration scheme improves the recovery success rate and minimizes the overall recovery time.

  19. Neural Network Based Load Frequency Control for Restructuring ...

    African Journals Online (AJOL)

    Neural Network Based Load Frequency Control for Restructuring Power Industry. ... an artificial neural network (ANN) application of load frequency control (LFC) of a Multi-Area power system by using a neural network controller is presented.

  20. Inferring Trust Relationships in Web-Based Social Networks

    National Research Council Canada - National Science Library

    Golbeck, Jennifer; Hendler, James

    2006-01-01

    The growth of web-based social networking and the properties of those networks have created great potential for producing intelligent software that integrates a user's social network and preferences...

  1. Hardware demonstration of high-speed networks for satellite applications.

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, Jonathon W.; Lee, David S.

    2008-09-01

    This report documents the implementation results of a hardware demonstration utilizing the Serial RapidIO{trademark} and SpaceWire protocols that was funded by Sandia National Laboratories (SNL's) Laboratory Directed Research and Development (LDRD) office. This demonstration was one of the activities in the Modeling and Design of High-Speed Networks for Satellite Applications LDRD. This effort has demonstrated the transport of application layer packets across both RapidIO and SpaceWire networks to a common downlink destination using small topologies comprised of commercial-off-the-shelf and custom devices. The RapidFET and NEX-SRIO debug and verification tools were instrumental in the successful implementation of the RapidIO hardware demonstration. The SpaceWire hardware demonstration successfully demonstrated the transfer and routing of application data packets between multiple nodes and also was able reprogram remote nodes using configuration bitfiles transmitted over the network, a key feature proposed in node-based architectures (NBAs). Although a much larger network (at least 18 to 27 nodes) would be required to fully verify the design for use in a real-world application, this demonstration has shown that both RapidIO and SpaceWire are capable of routing application packets across a network to a common downlink node, illustrating their potential use in real-world NBAs.

  2. Target recognition based on convolutional neural network

    Science.gov (United States)

    Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian

    2017-11-01

    One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.

  3. Optimising TCP for cloud-based mobile networks

    DEFF Research Database (Denmark)

    Artuso, Matteo; Christiansen, Henrik Lehrmann

    2016-01-01

    Cloud-based mobile networks are foreseen to be a technological enabler for the next generation of mobile networks. Their design requires substantial research as they pose unique challenges, especially from the point of view of additional delays in the fronthaul network. Commonly used network...... implementations of 3 popular operating systems are investigated in our network model. The results on the most influential parameters are used to design an optimized TCP for cloud-based mobile networks....

  4. Quantum networks based on cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Stephan; Bochmann, Joerg; Figueroa, Eden; Hahn, Carolin; Kalb, Norbert; Muecke, Martin; Neuzner, Andreas; Noelleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Rempe, Gerhard [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)

    2014-07-01

    Quantum repeaters require an efficient interface between stationary quantum memories and flying photons. Single atoms in optical cavities are ideally suited as universal quantum network nodes that are capable of sending, storing, retrieving, and even processing quantum information. We demonstrate this by presenting an elementary version of a quantum network based on two identical nodes in remote, independent laboratories. The reversible exchange of quantum information and the creation of remote entanglement are achieved by exchange of a single photon. Quantum teleportation is implemented using a time-resolved photonic Bell-state measurement. Quantum control over all degrees of freedom of the single atom also allows for the nondestructive detection of flying photons and the implementation of a quantum gate between the spin state of the atom and the polarization of a photon upon its reflection from the cavity. Our approach to quantum networking offers a clear perspective for scalability and provides the essential components for the realization of a quantum repeater.

  5. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  6. Tree-Based Unrooted Phylogenetic Networks.

    Science.gov (United States)

    Francis, A; Huber, K T; Moulton, V

    2018-02-01

    Phylogenetic networks are a generalization of phylogenetic trees that are used to represent non-tree-like evolutionary histories that arise in organisms such as plants and bacteria, or uncertainty in evolutionary histories. An unrooted phylogenetic network on a non-empty, finite set X of taxa, or network, is a connected, simple graph in which every vertex has degree 1 or 3 and whose leaf set is X. It is called a phylogenetic tree if the underlying graph is a tree. In this paper we consider properties of tree-based networks, that is, networks that can be constructed by adding edges into a phylogenetic tree. We show that although they have some properties in common with their rooted analogues which have recently drawn much attention in the literature, they have some striking differences in terms of both their structural and computational properties. We expect that our results could eventually have applications to, for example, detecting horizontal gene transfer or hybridization which are important factors in the evolution of many organisms.

  7. Dynamic social networks based on movement

    Science.gov (United States)

    Scharf, Henry; Hooten, Mevin B.; Fosdick, Bailey K.; Johnson, Devin S.; London, Joshua M.; Durban, John W.

    2016-01-01

    Network modeling techniques provide a means for quantifying social structure in populations of individuals. Data used to define social connectivity are often expensive to collect and based on case-specific, ad hoc criteria. Moreover, in applications involving animal social networks, collection of these data is often opportunistic and can be invasive. Frequently, the social network of interest for a given population is closely related to the way individuals move. Thus, telemetry data, which are minimally invasive and relatively inexpensive to collect, present an alternative source of information. We develop a framework for using telemetry data to infer social relationships among animals. To achieve this, we propose a Bayesian hierarchical model with an underlying dynamic social network controlling movement of individuals via two mechanisms: an attractive effect and an aligning effect. We demonstrate the model and its ability to accurately identify complex social behavior in simulation, and apply our model to telemetry data arising from killer whales. Using auxiliary information about the study population, we investigate model validity and find the inferred dynamic social network is consistent with killer whale ecology and expert knowledge.

  8. Numeral eddy current sensor modelling based on genetic neural network

    International Nuclear Information System (INIS)

    Yu Along

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method

  9. A highly sensitive immunoassay for atrazine based on covalently linking the small molecule hapten to a urea-glutaraldehyde network on a polystyrene surface.

    Science.gov (United States)

    Sai, Na; Sun, Wenjing; Wu, Yuntang; Sun, Zhong; Yu, Guanggui; Huang, Guowei

    2016-11-01

    A new enzyme-linked immunosorbent assay (ELISA) for atrazine was developed based on covalent bonding of the small molecule hapten, 2-mercaptopropionic acid-4-ethylamino-6-isopropylamino-1,3,5-triazine (MPA-atrazine), to urea-glutaraldehyde (UGA)-treated microtiter plates. In this assay, the microtiter plate surface was treated with the UGA network to both introduce amino groups, which were used to cross-link with the hapten carboxylate groups, and efficiently prevent non-specific adsorption of antibodies, which successfully eliminated the time-consuming routine blocking step. Compared with HNO 3 -H 2 SO 4 -APTES-hapten coated ELISA (modified with a HNO 3 -H 2 SO 4 -APTES mixture and covalent-linked hapten) and conventional ELISA (coated with hapten-carrier protein conjugates), the novel ELISA format increased the sensitivity by approximately 3.5-fold and 7.5-fold, respectively, and saved 2.5h and 34h of coating hapten time, respectively. The method's 50% inhibition concentration for atrazine was 5.54ngmL -1 , and the limit of detection was 0.16ngmL -1 after optimization of reaction conditions. Furthermore, the ELISA was adapted for analysis of atrazine in corn, rice, and water samples, demonstrating recoveries of 90%-108%. Thus, the assay provides a convenient alternative to conventional, laborious immunoassays for routine supervision of residue detection in food and the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

    Science.gov (United States)

    Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

    2017-12-01

    Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

  11. High Performance Data mining by Genetic Neural Network

    Directory of Open Access Journals (Sweden)

    Dadmehr Rahbari

    2013-10-01

    Full Text Available Data mining in computer science is the process of discovering interesting and useful patterns and relationships in large volumes of data. Most methods for mining problems is based on artificial intelligence algorithms. Neural network optimization based on three basic parameters topology, weights and the learning rate is a powerful method. We introduce optimal method for solving this problem. In this paper genetic algorithm with mutation and crossover operators change the network structure and optimized that. Dataset used for our work is stroke disease with twenty features that optimized number of that achieved by new hybrid algorithm. Result of this work is very well incomparison with other similar method. Low present of error show that our method is our new approach to efficient, high-performance data mining problems is introduced.

  12. Autocorrel I: A Neural Network Based Network Event Correlation Approach

    National Research Council Canada - National Science Library

    Japkowicz, Nathalie; Smith, Reuben

    2005-01-01

    .... We use the autoassociator to build prototype software to cluster network alerts generated by a Snort intrusion detection system, and discuss how the results are significant, and how they can be applied to other types of network events.

  13. Quantitative learning strategies based on word networks

    Science.gov (United States)

    Zhao, Yue-Tian-Yi; Jia, Zi-Yang; Tang, Yong; Xiong, Jason Jie; Zhang, Yi-Cheng

    2018-02-01

    Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network.

  14. Comparison analysis on vulnerability of metro networks based on complex network

    Science.gov (United States)

    Zhang, Jianhua; Wang, Shuliang; Wang, Xiaoyuan

    2018-04-01

    This paper analyzes the networked characteristics of three metro networks, and two malicious attacks are employed to investigate the vulnerability of metro networks based on connectivity vulnerability and functionality vulnerability. Meanwhile, the networked characteristics and vulnerability of three metro networks are compared with each other. The results show that Shanghai metro network has the largest transport capacity, Beijing metro network has the best local connectivity and Guangzhou metro network has the best global connectivity, moreover Beijing metro network has the best homogeneous degree distribution. Furthermore, we find that metro networks are very vulnerable subjected to malicious attacks, and Guangzhou metro network has the best topological structure and reliability among three metro networks. The results indicate that the proposed methodology is feasible and effective to investigate the vulnerability and to explore better topological structure of metro networks.

  15. Traffic sign recognition based on deep convolutional neural network

    Science.gov (United States)

    Yin, Shi-hao; Deng, Ji-cai; Zhang, Da-wei; Du, Jing-yuan

    2017-11-01

    Traffic sign recognition (TSR) is an important component of automated driving systems. It is a rather challenging task to design a high-performance classifier for the TSR system. In this paper, we propose a new method for TSR system based on deep convolutional neural network. In order to enhance the expression of the network, a novel structure (dubbed block-layer below) which combines network-in-network and residual connection is designed. Our network has 10 layers with parameters (block-layer seen as a single layer): the first seven are alternate convolutional layers and block-layers, and the remaining three are fully-connected layers. We train our TSR network on the German traffic sign recognition benchmark (GTSRB) dataset. To reduce overfitting, we perform data augmentation on the training images and employ a regularization method named "dropout". The activation function we employ in our network adopts scaled exponential linear units (SELUs), which can induce self-normalizing properties. To speed up the training, we use an efficient GPU to accelerate the convolutional operation. On the test dataset of GTSRB, we achieve the accuracy rate of 99.67%, exceeding the state-of-the-art results.

  16. Investigation of the network delay on Profibus-DP based network

    OpenAIRE

    Yılmaz, C.; Gürdal, O.; Sayan, H.H.

    2008-01-01

    The mathematical model of the network-induced delay control systems (NDCS) is given. Also the role of the NDCS’s components such as controller, sensor and network environment on the network-induced delay are included in the mathematical model of the system. The network delay is investigated on Profibus-DP based network application and experimental results obtained are presented graphically. The experimental results obtained show that the network induced delay is randomly changed according to ...

  17. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  18. Utilizing HPC Network Technologies in High Energy Physics Experiments

    CERN Document Server

    AUTHOR|(CDS)2088631; The ATLAS collaboration

    2017-01-01

    Because of their performance characteristics high-performance fabrics like Infiniband or OmniPath are interesting technologies for many local area network applications, including data acquisition systems for high-energy physics experiments like the ATLAS experiment at CERN. This paper analyzes existing APIs for high-performance fabrics and evaluates their suitability for data acquisition systems in terms of performance and domain applicability. The study finds that existing software APIs for high-performance interconnects are focused on applications in high-performance computing with specific workloads and are not compatible with the requirements of data acquisition systems. To evaluate the use of high-performance interconnects in data acquisition systems a custom library, NetIO, is presented and compared against existing technologies. NetIO has a message queue-like interface which matches the ATLAS use case better than traditional HPC APIs like MPI. The architecture of NetIO is based on a interchangeable bac...

  19. Research in high speed fiber optics local area networks

    Science.gov (United States)

    Tobagi, F. A.

    1986-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: the network medium and its topology, the medium access control, and the network interface. Considerable progress was already made in the first two areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given.

  20. Networks and their use in high energy physics

    International Nuclear Information System (INIS)

    Poutissou, R.

    1990-01-01

    Networks of all kinds have taken an ever increasing importance in many facets of the work of high energy physicists. With the rapid progress experienced in bandwidth and connectivity, wide area and local area networking have vastly improved communications and made distributed processing a reality. In this paper, the characteristics and possible applications of various networks and protocols are reviewed

  1. Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data.

    Science.gov (United States)

    Ye, Fei

    2017-01-01

    In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks.

  2. Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data

    Science.gov (United States)

    2017-01-01

    In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks. PMID:29236718

  3. Network-based recommendation algorithms: A review

    Science.gov (United States)

    Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš

    2016-06-01

    Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.

  4. High-performance, scalable optical network-on-chip architectures

    Science.gov (United States)

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of

  5. Research on High-Precision, Low Cost Piezoresistive MEMS-Array Pressure Transmitters Based on Genetic Wavelet Neural Networks for Meteorological Measurements

    Directory of Open Access Journals (Sweden)

    Jiahong Zhang

    2015-05-01

    Full Text Available This paper provides a novel and effective compensation method by improving the hardware design and software algorithm to achieve optimization of piezoresistive pressure sensors and corresponding measurement systems in order to measure pressure more accurately and stably, as well as to meet the application requirements of the meteorological industry. Specifically, GE NovaSensor MEMS piezoresistive pressure sensors within a thousandth of accuracy are selected to constitute an array. In the versatile compensation method, the hardware utilizes the array of MEMS pressure sensors to reduce random error caused by sensor creep, and the software adopts the data fusion technique based on the wavelet neural network (WNN which is improved by genetic algorithm (GA to analyze the data of sensors for the sake of obtaining accurate and complete information over the wide temperature and pressure ranges. The GA-WNN model is implemented in hardware by using the 32-bit STMicroelectronics (STM32 microcontroller combined with an embedded real-time operating system µC/OS-II to make the output of the array of MEMS sensors be a direct digital readout. The results of calibration and test experiments clearly show that the GA-WNN technique can be effectively applied to minimize the sensor errors due to the temperature drift, the hysteresis effect and the long-term drift because of aging and environmental changes. The maximum error of the low cost piezoresistive MEMS-array pressure transmitter proposed by us is within 0.04% of its full-scale value, and it can satisfy the meteorological pressure measurement.

  6. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  7. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  8. Copercolating Networks: An Approach for Realizing High-Performance Transparent Conductors using Multicomponent Nanostructured Networks

    Directory of Open Access Journals (Sweden)

    Das Suprem R.

    2016-06-01

    Full Text Available Although transparent conductive oxides such as indium tin oxide (ITO are widely employed as transparent conducting electrodes (TCEs for applications such as touch screens and displays, new nanostructured TCEs are of interest for future applications, including emerging transparent and flexible electronics. A number of twodimensional networks of nanostructured elements have been reported, including metallic nanowire networks consisting of silver nanowires, metallic carbon nanotubes (m-CNTs, copper nanowires or gold nanowires, and metallic mesh structures. In these single-component systems, it has generally been difficult to achieve sheet resistances that are comparable to ITO at a given broadband optical transparency. A relatively new third category of TCEs consisting of networks of 1D-1D and 1D-2D nanocomposites (such as silver nanowires and CNTs, silver nanowires and polycrystalline graphene, silver nanowires and reduced graphene oxide have demonstrated TCE performance comparable to, or better than, ITO. In such hybrid networks, copercolation between the two components can lead to relatively low sheet resistances at nanowire densities corresponding to high optical transmittance. This review provides an overview of reported hybrid networks, including a comparison of the performance regimes achievable with those of ITO and single-component nanostructured networks. The performance is compared to that expected from bulk thin films and analyzed in terms of the copercolation model. In addition, performance characteristics relevant for flexible and transparent applications are discussed. The new TCEs are promising, but significant work must be done to ensure earth abundance, stability, and reliability so that they can eventually replace traditional ITO-based transparent conductors.

  9. Arrester Resistive Current Measuring System Based on Heterogeneous Network

    Science.gov (United States)

    Zhang, Yun Hua; Li, Zai Lin; Yuan, Feng; Hou Pan, Feng; Guo, Zhan Nan; Han, Yue

    2018-03-01

    Metal Oxide Arrester (MOA) suffers from aging and poor insulation due to long-term impulse voltage and environmental impact, and the value and variation tendency of resistive current can reflect the health conditions of MOA. The common wired MOA detection need to use long cables, which is complicated to operate, and that wireless measurement methods are facing the problems of poor data synchronization and instability. Therefore a novel synchronous measurement system of arrester current resistive based on heterogeneous network is proposed, which simplifies the calculation process and improves synchronization, accuracy and stability and of the measuring system. This system combines LoRa wireless network, high speed wireless personal area network and the process layer communication, and realizes the detection of arrester working condition. Field test data shows that the system has the characteristics of high accuracy, strong anti-interference ability and good synchronization, which plays an important role in ensuring the stable operation of the power grid.

  10. Cloudification of mmwave-based and packet-based fronthaul for future heterogeneous mobile networks

    DEFF Research Database (Denmark)

    Artuso, Matteo; Marcano, Andrea; Christiansen, Henrik Lehrmann

    2015-01-01

    is seen as an enabler for next-generation heterogeneous mobile networks. This allows for simpler base stations and savings in deployment costs, but introduces challenges in the fronthaul network connecting the sites to the processing pool. The fronthaul needs to have very low latency and high capacity......, but the traditional architecture of this network uses point-to-point links between each site and the pool, thus making it impossible to share capacity as the demands change. To address these challenges, a flexible network architecture for the fronthaul is presented that is based on Ethernet to carry the baseband......Current deployments of mobile networks are seriously challenged by increasing capacity demands, and traditional solutions are no longer practical. The use of small cells is considered as a viable technique to meet these demands. In this context, the use of centralized signal processing in a pool...

  11. Agent based modeling of energy networks

    International Nuclear Information System (INIS)

    Gonzalez de Durana, José María; Barambones, Oscar; Kremers, Enrique; Varga, Liz

    2014-01-01

    Highlights: • A new approach for energy network modeling is designed and tested. • The agent-based approach is general and no technology dependent. • The models can be easily extended. • The range of applications encompasses from small to large energy infrastructures. - Abstract: Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed

  12. Modelisation et simulation d'un PON (Passive Optical Network) base ...

    African Journals Online (AJOL)

    English Title: Modeling and simulation of a PON (Passive Optical Network) Based on hybrid technology WDM/TDM. English Abstract. This development is part of dynamism of design for a model combining WDM and TDM multiplexing in the optical network of PON (Passive Optical Network) type, in order to satisfy the high bit ...

  13. A High-Resolution Sensor Network for Monitoring Glacier Dynamics

    Science.gov (United States)

    Edwards, S.; Murray, T.; O'Farrell, T.; Rutt, I. C.; Loskot, P.; Martin, I.; Selmes, N.; Aspey, R.; James, T.; Bevan, S. L.; Baugé, T.

    2013-12-01

    Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four ';collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to ';floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the

  14. Functional networks inference from rule-based machine learning models.

    Science.gov (United States)

    Lazzarini, Nicola; Widera, Paweł; Williamson, Stuart; Heer, Rakesh; Krasnogor, Natalio; Bacardit, Jaume

    2016-01-01

    Functional networks play an important role in the analysis of biological processes and systems. The inference of these networks from high-throughput (-omics) data is an area of intense research. So far, the similarity-based inference paradigm (e.g. gene co-expression) has been the most popular approach. It assumes a functional relationship between genes which are expressed at similar levels across different samples. An alternative to this paradigm is the inference of relationships from the structure of machine learning models. These models are able to capture complex relationships between variables, that often are different/complementary to the similarity-based methods. We propose a protocol to infer functional networks from machine learning models, called FuNeL. It assumes, that genes used together within a rule-based machine learning model to classify the samples, might also be functionally related at a biological level. The protocol is first tested on synthetic datasets and then evaluated on a test suite of 8 real-world datasets related to human cancer. The networks inferred from the real-world data are compared against gene co-expression networks of equal size, generated with 3 different methods. The comparison is performed from two different points of view. We analyse the enriched biological terms in the set of network nodes and the relationships between known disease-associated genes in a context of the network topology. The comparison confirms both the biological relevance and the complementary character of the knowledge captured by the FuNeL networks in relation to similarity-based methods and demonstrates its potential to identify known disease associations as core elements of the network. Finally, using a prostate cancer dataset as a case study, we confirm that the biological knowledge captured by our method is relevant to the disease and consistent with the specialised literature and with an independent dataset not used in the inference process. The

  15. A Cluster- Based Secure Active Network Environment

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-lin; ZHOU Jing-yang; DAI Han; LU Sang-lu; CHEN Gui-hai

    2005-01-01

    We introduce a cluster-based secure active network environment (CSANE) which separates the processing of IP packets from that of active packets in active routers. In this environment, the active code authorized or trusted by privileged users is executed in the secure execution environment (EE) of the active router, while others are executed in the secure EE of the nodes in the distributed shared memory (DSM) cluster. With the supports of a multi-process Java virtual machine and KeyNote, untrusted active packets are controlled to securely consume resource. The DSM consistency management makes that active packets can be parallelly processed in the DSM cluster as if they were processed one by one in ANTS (Active Network Transport System). We demonstrate that CSANE has good security and scalability, but imposing little changes on traditional routers.

  16. Space Link Extension Protocol Emulation for High-Throughput, High-Latency Network Connections

    Science.gov (United States)

    Tchorowski, Nicole; Murawski, Robert

    2014-01-01

    New space missions require higher data rates and new protocols to meet these requirements. These high data rate space communication links push the limitations of not only the space communication links, but of the ground communication networks and protocols which forward user data to remote ground stations (GS) for transmission. The Consultative Committee for Space Data Systems, (CCSDS) Space Link Extension (SLE) standard protocol is one protocol that has been proposed for use by the NASA Space Network (SN) Ground Segment Sustainment (SGSS) program. New protocol implementations must be carefully tested to ensure that they provide the required functionality, especially because of the remote nature of spacecraft. The SLE protocol standard has been tested in the NASA Glenn Research Center's SCENIC Emulation Lab in order to observe its operation under realistic network delay conditions. More specifically, the delay between then NASA Integrated Services Network (NISN) and spacecraft has been emulated. The round trip time (RTT) delay for the continental NISN network has been shown to be up to 120ms; as such the SLE protocol was tested with network delays ranging from 0ms to 200ms. Both a base network condition and an SLE connection were tested with these RTT delays, and the reaction of both network tests to the delay conditions were recorded. Throughput for both of these links was set at 1.2Gbps. The results will show that, in the presence of realistic network delay, the SLE link throughput is significantly reduced while the base network throughput however remained at the 1.2Gbps specification. The decrease in SLE throughput has been attributed to the implementation's use of blocking calls. The decrease in throughput is not acceptable for high data rate links, as the link requires constant data a flow in order for spacecraft and ground radios to stay synchronized, unless significant data is queued a the ground station. In cases where queuing the data is not an option

  17. Virtualized Network Function Orchestration System and Experimental Network Based QR Recognition for a 5G Mobile Access Network

    Directory of Open Access Journals (Sweden)

    Misun Ahn

    2017-12-01

    Full Text Available This paper proposes a virtualized network function orchestration system based on Network Function Virtualization (NFV, one of the main technologies in 5G mobile networks. This system should provide connectivity between network devices and be able to create flexible network function and distribution. This system focuses more on access networks. By experimenting with various scenarios of user service established and activated in a network, we examine whether rapid adoption of new service is possible and whether network resources can be managed efficiently. The proposed method is based on Bluetooth transfer technology and mesh networking to provide automatic connections between network machines and on a Docker flat form, which is a container virtualization technology for setting and managing key functions. Additionally, the system includes a clustering and recovery measure regarding network function based on the Docker platform. We will briefly introduce the QR code perceived service as a user service to examine the proposal and based on this given service, we evaluate the function of the proposal and present analysis. Through the proposed approach, container relocation has been implemented according to a network device’s CPU usage and we confirm successful service through function evaluation on a real test bed. We estimate QR code recognition speed as the amount of network equipment is gradually increased, improving user service and confirm that the speed of recognition is increased as the assigned number of network devices is increased by the user service.

  18. How does language change as a lexical network? An investigation based on written Chinese word co-occurrence networks

    Science.gov (United States)

    Chen, Heng; Chen, Xinying

    2018-01-01

    Language is a complex adaptive system, but how does it change? For investigating this process, four diachronic Chinese word co-occurrence networks have been built based on texts that were written during the last 2,000 years. By comparing the network indicators that are associated with the hierarchical features in language networks, we learn that the hierarchy of Chinese lexical networks has indeed evolved over time at three different levels. The connections of words at the micro level are continually weakening; the number of words in the meso-level communities has increased significantly; and the network is expanding at the macro level. This means that more and more words tend to be connected to medium-central words and form different communities. Meanwhile, fewer high-central words link these communities into a highly efficient small-world network. Understanding this process may be crucial for understanding the increasing structural complexity of the language system. PMID:29489837

  19. Highly dynamic animal contact network and implications on disease transmission

    OpenAIRE

    Shi Chen; Brad J. White; Michael W. Sanderson; David E. Amrine; Amiyaal Ilany; Cristina Lanzas

    2014-01-01

    Contact patterns among hosts are considered as one of the most critical factors contributing to unequal pathogen transmission. Consequently, networks have been widely applied in infectious disease modeling. However most studies assume static network structure due to lack of accurate observation and appropriate analytic tools. In this study we used high temporal and spatial resolution animal position data to construct a high-resolution contact network relevant to infectious disease transmissio...

  20. High Resolution Sensing and Control of Urban Water Networks

    Science.gov (United States)

    Bartos, M. D.; Wong, B. P.; Kerkez, B.

    2016-12-01

    We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.

  1. Opportunities and Challenges of AC/DC Transmission Network Planning Considering High Proportion Renewable Energy

    Directory of Open Access Journals (Sweden)

    Arslan Habib

    2018-03-01

    Full Text Available The time and space distribution characteristics of future high proportion of renewable energy sources will bring unprecedented challenges to the electric power system’s processing and planning, the basic form of electric power system and operating characteristics will have fundamental changes. Based on the research status quo at home and abroad, this paper expounds the four scientific problems of the transmission network planning with high proportion of renewable energy. Respectively, from the network source collaborative planning, transmission network flexible planning. With the distribution network in conjunction with the transmission network planning, transmission planning program comprehensive evaluation and decision-making methods. This paper puts forward the research ideas and framework of transmission network planning considering the high proportion of renewable energy. At the end, the future high proportion of (renewable energy grid-connected transmission network’s opportunities and challenges are presented.

  2. Design and Application of Nanogel-Based Polymer Networks

    Science.gov (United States)

    Dailing, Eric Alan

    Crosslinked polymer networks have wide application in biomaterials, from soft hydrogel scaffolds for cell culture and tissue engineering to glassy, high modulus dental restoratives. Composite materials formed with nanogels as a means for tuning network structure on the nanoscale have been reported, but no investigation into nanogels as the primary network component has been explored to this point. This thesis was dedicated to studying network formation from the direct polymerization of nanogels and investigating applications for these unique materials. Covalently crosslinked polymer networks were synthesized from polymerizable nanogels without the use of reactive small monomers or oligomers. Network properties were controlled by the chemical and physical properties of the nanogel, allowing for materials to be designed from nanostructured macromolecular precursors. Nanogels were synthesized from a thermally initiated solution free radical polymerization of a monomethacrylate, a dimethacrylate, and a thiol-based chain transfer agent. Monomers with a range of hydrophilic and hydrophobic character were copolymerized, and polymerizable groups were introduced through an alcohol-isocyanate click reaction. Nanogels were dispersible in water up to 75 wt%, including nanogels that contained a relatively high fraction of a conventionally water-insoluble component. Nanogels with molecular weights that ranged from 10's to 100's of kDa and hydrodynamic radii between 4 and 10 nm were obtained. Macroscopic crosslinked polymer networks were synthesized from the photopolymerization of methacrylate-functionalized nanogels in inert solvent, which was typically water. The nanogel composition and internal branching density affected both covalent and non-covalent interparticle interactions, which dictated the final mechanical properties of the networks. Nanogels with progressively disparate hydrophilic and hydrophobic character were synthesized to explore the potential for creating

  3. Ethernet-based test stand for a CAN network

    Science.gov (United States)

    Ziebinski, Adam; Cupek, Rafal; Drewniak, Marek

    2017-11-01

    This paper presents a test stand for the CAN-based systems that are used in automotive systems. The authors propose applying an Ethernet-based test system that supports the virtualisation of a CAN network. The proposed solution has many advantages compared to classical test beds that are based on dedicated CAN-PC interfaces: it allows the physical constraints associated with the number of interfaces that can be simultaneously connected to a tested system to be avoided, which enables the test time for parallel tests to be shortened; the high speed of Ethernet transmission allows for more frequent sampling of the messages that are transmitted by a CAN network (as the authors show in the experiment results section) and the cost of the proposed solution is much lower than the traditional lab-based dedicated CAN interfaces for PCs.

  4. A Scalable Policy and SNMP Based Network Management Framework

    Institute of Scientific and Technical Information of China (English)

    LIU Su-ping; DING Yong-sheng

    2009-01-01

    Traditional SNMP-based network management can not deal with the task of managing large-scaled distributed network,while policy-based management is one of the effective solutions in network and distributed systems management. However,cross-vendor hardware compatibility is one of the limitations in policy-based management. Devices existing in current network mostly support SNMP rather than Common Open Policy Service (COPS) protocol. By analyzing traditional network management and policy-based network management, a scalable network management framework is proposed. It is combined with Internet Engineering Task Force (IETF) framework for policybased management and SNMP-based network management. By interpreting and translating policy decision to SNMP message,policy can be executed in traditional SNMP-based device.

  5. Energy-Efficient Cluster Based Routing Protocol in Mobile Ad Hoc Networks Using Network Coding

    OpenAIRE

    Srinivas Kanakala; Venugopal Reddy Ananthula; Prashanthi Vempaty

    2014-01-01

    In mobile ad hoc networks, all nodes are energy constrained. In such situations, it is important to reduce energy consumption. In this paper, we consider the issues of energy efficient communication in MANETs using network coding. Network coding is an effective method to improve the performance of wireless networks. COPE protocol implements network coding concept to reduce number of transmissions by mixing the packets at intermediate nodes. We incorporate COPE into cluster based routing proto...

  6. The promise of downlink MU-MIMO for high-capacity next generation mobile broadband networks based on IEEE 802.16 m

    OpenAIRE

    Papathanassiou Apostolos; Davydov Alexei

    2011-01-01

    Abstract The dramatic increase of the demand for mobile broadband services poses stringent requirements on the performance evolution of currently deployed mobile broadband networks, such as Mobile WiMAX Release 1 and 3GPP LTE Release 8. Although the combination of single-user multiple-input multiple-output (SU-MIMO) and orthogonal frequency division multiple access (OFDMA) provide the appropriate technologies for improving the downlink performance of third generation (3G) code division multip...

  7. Curation-Based Network Marketing: Strategies for Network Growth and Electronic Word-of-Mouth Diffusion

    Science.gov (United States)

    Church, Earnie Mitchell, Jr.

    2013-01-01

    In the last couple of years, a new aspect of online social networking has emerged, in which the strength of social network connections is based not on social ties but mutually shared interests. This dissertation studies these "curation-based" online social networks (CBN) and their suitability for the diffusion of electronic word-of-mouth…

  8. A Bayes Theory-Based Modeling Algorithm to End-to-end Network Traffic

    OpenAIRE

    Zhao Hong-hao; Meng Fan-bo; Zhao Si-wen; Zhao Si-hang; Lu Yi

    2016-01-01

    Recently, network traffic has exponentially increasing due to all kind of applications, such as mobile Internet, smart cities, smart transportations, Internet of things, and so on. the end-to-end network traffic becomes more important for traffic engineering. Usually end-to-end traffic estimation is highly difficult. This paper proposes a Bayes theory-based method to model the end-to-end network traffic. Firstly, the end-to-end network traffic is described as a independent identically distrib...

  9. CUFID-query: accurate network querying through random walk based network flow estimation.

    Science.gov (United States)

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive

  10. Network-based Fingerprint Authentication System Using a Mobile Device

    OpenAIRE

    Zhang, Qihu

    2016-01-01

    Abstract— Fingerprint-based user authentication is highly effective in networked services such as electronic payment, but conventional authentication solutions have problems in cost, usability and security. To resolve these problems, we propose a touch-less fingerprint authentication solution, in which a mobile device's built-in camera is used to capture fingerprint image, and then it is sent to the server to determine the identity of the user. We designed and implemented a prototype as an a...

  11. Review of Congestion Management Methods for Distribution Networks with High Penetration of Distributed Energy Resources

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Liu, Zhaoxi

    2014-01-01

    This paper reviews the existing congestion management methods for distribution networks with high penetration of DERs documented in the recent research literatures. The congestion management methods for distribution networks reviewed can be grouped into two categories – market methods and direct...... control methods. The market methods consist of dynamic tariff, distribution capacity market, shadow price and flexible service market. The direct control methods are comprised of network reconfiguration, reactive power control and active power control. Based on the review of the existing methods...

  12. Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks.

    Science.gov (United States)

    Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo

    2014-04-21

    Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.

  13. Modeling online social networks based on preferential linking

    International Nuclear Information System (INIS)

    Hu Hai-Bo; Chen Jun; Guo Jin-Li

    2012-01-01

    We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro-mechanisms of network growth and the macrostructures of online social networks

  14. Networking activities in technology-based entrepreneurial teams

    DEFF Research Database (Denmark)

    Neergaard, Helle

    2005-01-01

    Based on social network theoy, this article investigates the distribution of networking roles and responsibilities in entrepreneurial founding teams. Its focus is on the team as a collection of individuals, thus allowing the research to address differences in networking patterns. It identifies six...... central networking activities and shows that not all founding team members are equally active 'networkers'. The analyses show that team members prioritize different networking activities and that one member in particular has extensive networking activities whereas other memebrs of the team are more...

  15. Shared protection based virtual network mapping in space division multiplexing optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie

    2018-05-01

    Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.

  16. Paper-based synthetic gene networks.

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A; Ferrante, Tom; Cameron, D Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J

    2014-11-06

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides an alternate, versatile venue for synthetic biologists to operate and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze dried onto paper, enabling the inexpensive, sterile, and abiotic distribution of synthetic-biology-based technologies for the clinic, global health, industry, research, and education. For field use, we create circuits with colorimetric outputs for detection by eye and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small-molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors.

  17. Paper-based Synthetic Gene Networks

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.

    2014-01-01

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167

  18. Building and measuring a high performance network architecture

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck; Dugan, Jon; Wheeler, David; Wing, William R; Nickless, William; Goddard, Gregory; Corbato, Steven; Love, E. Paul; Daspit, Paul; Edwards, Hal; Mercer, Linden; Koester, David; Decina, Basil; Dart, Eli; Paul Reisinger, Paul; Kurihara, Riki; Zekauskas, Matthew J; Plesset, Eric; Wulf, Julie; Luce, Douglas; Rogers, James; Duncan, Rex; Mauth, Jeffery

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning. The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.

  19. Application of Student Book Based On Integrated Learning Model Of Networked Type With Heart Electrical Activity Theme For Junior High School

    Science.gov (United States)

    Gusnedi, G.; Ratnawulan, R.; Triana, L.

    2018-04-01

    The purpose of this study is to determine the effect of the use of Integrated Science IPA books Using Networked Learning Model of knowledge competence through improved learning outcomes obtained. The experimental design used is one group pre test post test design to know the results before and after being treated. The number of samples used is one class that is divided into two categories of initial ability to see the improvement of knowledge competence. The sample used was taken from the students of grade VIII SMPN 2 Sawahlunto, Indonesia. The results of this study indicate that most students have increased knowledge competence.

  20. A Gossip-based Energy Efficient Protocol for Robust In-network Aggregation in Wireless Sensor Networks

    Science.gov (United States)

    Fauji, Shantanu

    We consider the problem of energy efficient and fault tolerant in--network aggregation for wireless sensor networks (WSNs). In-network aggregation is the process of aggregation while collecting data from sensors to the base station. This process should be energy efficient due to the limited energy at the sensors and tolerant to the high failure rates common in sensor networks. Tree based in--network aggregation protocols, although energy efficient, are not robust to network failures. Multipath routing protocols are robust to failures to a certain degree but are not energy efficient due to the overhead in the maintenance of multiple paths. We propose a new protocol for in-network aggregation in WSNs, which is energy efficient, achieves high lifetime, and is robust to the changes in the network topology. Our protocol, gossip--based protocol for in-network aggregation (GPIA) is based on the spreading of information via gossip. GPIA is not only adaptive to failures and changes in the network topology, but is also energy efficient. Energy efficiency of GPIA comes from all the nodes being capable of selective message reception and detecting convergence of the aggregation early. We experimentally show that GPIA provides significant improvement over some other competitors like the Ridesharing, Synopsis Diffusion and the pure version of gossip. GPIA shows ten fold, five fold and two fold improvement over the pure gossip, the synopsis diffusion and Ridesharing protocols in terms of network lifetime, respectively. Further, GPIA retains gossip's robustness to failures and improves upon the accuracy of synopsis diffusion and Ridesharing.

  1. Resilient Disaster Network Based on Software Defined Cognitive Wireless Network Technology

    Directory of Open Access Journals (Sweden)

    Goshi Sato

    2015-01-01

    Full Text Available In order to temporally recover the information network infrastructure in disaster areas from the Great East Japan Earthquake in 2011, various wireless network technologies such as satellite IP network, 3G, and Wi-Fi were effectively used. However, since those wireless networks are individually introduced and installed but not totally integrated, some of networks were congested due to the sudden network traffic generation and unbalanced traffic distribution, and eventually the total network could not effectively function. In this paper, we propose a disaster resilient network which integrates various wireless networks into a cognitive wireless network that users can use as an access network to the Internet at the serious disaster occurrence. We designed and developed the disaster resilient network based on software defined network (SDN technology to automatically select the best network link and route among the possible access networks to the Internet by periodically monitoring their network states and evaluate those using extended AHP method. In order to verify the usefulness of our proposed system, a prototype system is constructed and its performance is evaluated.

  2. High Performance Networks From Supercomputing to Cloud Computing

    CERN Document Server

    Abts, Dennis

    2011-01-01

    Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applicati

  3. Internet-Based Mobile Ad Hoc Networking (Preprint)

    National Research Council Canada - National Science Library

    Corson, M. S; Macker, Joseph P; Cirincione, Gregory H

    1999-01-01

    Internet-based Mobile Ad Hoc Networking is an emerging technology that supports self-organizing, mobile networking infrastructures, and is one which appears well-suited for use in future commercial...

  4. An RSS based location estimation technique for cognitive relay networks

    KAUST Repository

    Qaraqe, Khalid A.; Hussain, Syed Imtiaz; Ç elebi, Hasari Burak; Abdallah, Mohamed M.; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, a received signal strength (RSS) based location estimation method is proposed for a cooperative wireless relay network where the relay is a cognitive radio. We propose a method for the considered cognitive relay network to determine

  5. Discrete opinion dynamics on networks based on social influence

    International Nuclear Information System (INIS)

    Hu Haibo; Wang Xiaofan

    2009-01-01

    A model of opinion dynamics based on social influence on networks was studied. The opinion of each agent can have integer values i = 1, 2, ..., I and opinion exchanges are restricted to connected agents. It was found that for any I ≥ 2 and self-confidence parameter 0 ≤ u i ) of the population that hold a given opinion i is a martingale, and the fraction q i of opinion i will gradually converge to (q i ). The tendency can slow down with the increase of degree assortativity of networks. When u is degree dependent, (q i ) does not possess the martingale property, however q i still converges to it. In both cases for a finite network the states of all agents will finally reach consensus. Further if there exist stubborn persons in the population whose opinions do not change over time, it was found that for degree-independent constant u, both q i and (q i ) will converge to fixed proportions which only depend on the distribution of initial obstinate persons, and naturally the final equilibrium state will be the coexistence of diverse opinions held by the stubborn people. The analytical results were verified by numerical simulations on Barabasi-Albert (BA) networks. The model highlights the influence of high-degree agents on the final consensus or coexistence state and captures some realistic features of the diffusion of opinions in social networks

  6. Artificial organic networks artificial intelligence based on carbon networks

    CERN Document Server

    Ponce-Espinosa, Hiram; Molina, Arturo

    2014-01-01

    This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: ·        approximation; ·        inference; ·        clustering; ·        control; ·        class...

  7. Output power distributions of mobile radio base stations based on network measurements

    International Nuclear Information System (INIS)

    Colombi, D; Thors, B; Persson, T; Törnevik, C; Wirén, N; Larsson, L-E

    2013-01-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  8. Output power distributions of mobile radio base stations based on network measurements

    Science.gov (United States)

    Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.

    2013-04-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  9. EAP-Based Authentication for Ad Hoc Network

    OpenAIRE

    Bhakti, Muhammad Agni Catur; Abdullah, Azween; Jung, Low Tan

    2007-01-01

    Wireless network has been deployed worldwide, but some security issues in wireless network might haveprevented its further acceptance. One of the solutions to overcome the limitation of wireless network security isthe IEEE 802.1X specification, a mechanism for port-based network access control, which is based onExtensible Authentication Protocol (EAP). It is an authentication framework that can support multipleauthentication methods. EAP can run over many types of data-link layer and it is fl...

  10. Network-based analysis of proteomic profiles

    KAUST Repository

    Wong, Limsoon

    2016-01-01

    -based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other

  11. Network Information Management: The Key To Providing High WAN Availability.

    Science.gov (United States)

    Tysdal, Craig

    1996-01-01

    Discusses problems associated with increasing corporate network complexity as a result of the proliferation of client/server applications at remote locations, and suggests the key to providing high WAN (wide area network) availability is relational databases used in an integrated management approach. (LRW)

  12. High-Speed Railways and Urban Networks in China

    NARCIS (Netherlands)

    Yang, Haoran

    2018-01-01

    Worldwide, High-Speed Railway (HSR) networks have been developed intensely over the last few decades, such as Tokyo-Osaka, the first HSR corridor in Japan, the TGV in France and the ICE in Germany. HSR has also experienced exponential growth in China so that currently China’s HSR networks are the

  13. A Space Operations Network Alternative: Using Globally Connected Research and Education Networks for Space-Based Science Operations

    Science.gov (United States)

    Bradford, Robert N.

    2006-01-01

    Earth based networking in support of various space agency projects has been based on leased service/circuits which has a high associated cost. This cost is almost always taken from the science side resulting in less science. This is a proposal to use Research and Education Networks (RENs) worldwide to support space flight operations in general and space-based science operations in particular. The RENs were developed to support scientific and educational endeavors. They do not provide support for general Internet traffic. The connectivity and performance of the research and education networks is superb. The connectivity at Layer 3 (IP) virtually encompasses the globe. Most third world countries and all developed countries have their own research and education networks, which are connected globally. Performance of the RENs especially in the developed countries is exceptional. Bandwidth capacity currently exists and future expansion promises that this capacity will continue. REN performance statistics has always exceeded minimum requirements for spaceflight support. Research and Education networks are more loosely managed than a corporate network but are highly managed when compared to the commodity Internet. Management of RENs on an international level is accomplished by the International Network Operations Center at Indiana University at Indianapolis. With few exceptions, each regional and national REN has its own network ops center. The acceptable use policies (AUP), although differing by country, allows any scientific program or project the use of their networks. Once in compliance with the first RENs AUP, all others will accept that specific traffic including regional and transoceanic networks. RENs can support spaceflight related scientific programs and projects. Getting the science to the researcher is obviously key to any scientific project. RENs provide a pathway to virtually any college or university in the world, as well as many governmental institutes and

  14. Communication Network Architectures Based on Ethernet Passive Optical Network for Offshore Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed

    2016-03-01

    Full Text Available Nowadays, with large-scale offshore wind power farms (WPFs becoming a reality, more efforts are needed to maintain a reliable communication network for WPF monitoring. Deployment topologies, redundancy, and network availability are the main items to enhance the communication reliability between wind turbines (WTs and control centers. Traditional communication networks for monitoring and control (i.e., supervisory control and data acquisition (SCADA systems using switched gigabit Ethernet will not be sufficient for the huge amount of data passing through the network. In this paper, the optical power budget, optical path loss, reliability, and network cost of the proposed Ethernet Passive Optical Network (EPON-based communication network for small-size offshore WPFs have been evaluated for five different network architectures. The proposed network model consists of an optical network unit device (ONU deployed on the WT side for collecting data from different internal networks. All ONUs from different WTs are connected to a central optical line terminal (OLT, placed in the control center. There are no active electronic elements used between the ONUs and the OLT, which reduces the costs and complexity of maintenance and deployment. As fiber access networks without any protection are characterized by poor reliability, three different protection schemes have been configured, explained, and discussed. Considering the cost of network components, the total implementation expense of different architectures with, or without, protection have been calculated and compared. The proposed network model can significantly contribute to the communication network architecture for next generation WPFs.

  15. Network-Aware DHT-Based P2P Systems

    Science.gov (United States)

    Fayçal, Marguerite; Serhrouchni, Ahmed

    P2P networks lay over existing IP networks and infrastructure. This chapter investigates the relation between both layers, details the motivations for network awareness in P2P systems, and elucidates the requirements P2P systems have to meet for efficient network awareness. Since new P2P systems are mostly based on DHTs, we also present and analyse DHT-based architectures. And after a brief presentation of different existing network-awareness solutions, the chapter goes on effective cooperation between P2P traffic and network providers' business agreements, and introduces emerging DHT-based P2P systems that are network aware through a semantic defined for resource sharing. These new systems ensure also a certain context-awareness. So, they are analyzed and compared before an open end on prospects of network awareness in P2P systems.

  16. A flood-based information flow analysis and network minimization method for gene regulatory networks.

    Science.gov (United States)

    Pavlogiannis, Andreas; Mozhayskiy, Vadim; Tagkopoulos, Ilias

    2013-04-24

    Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition- specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context. This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data. The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various "omics" levels.

  17. The image recognition based on neural network and Bayesian decision

    Science.gov (United States)

    Wang, Chugege

    2018-04-01

    The artificial neural network began in 1940, which is an important part of artificial intelligence. At present, it has become a hot topic in the fields of neuroscience, computer science, brain science, mathematics, and psychology. Thomas Bayes firstly reported the Bayesian theory in 1763. After the development in the twentieth century, it has been widespread in all areas of statistics. In recent years, due to the solution of the problem of high-dimensional integral calculation, Bayesian Statistics has been improved theoretically, which solved many problems that cannot be solved by classical statistics and is also applied to the interdisciplinary fields. In this paper, the related concepts and principles of the artificial neural network are introduced. It also summarizes the basic content and principle of Bayesian Statistics, and combines the artificial neural network technology and Bayesian decision theory and implement them in all aspects of image recognition, such as enhanced face detection method based on neural network and Bayesian decision, as well as the image classification based on the Bayesian decision. It can be seen that the combination of artificial intelligence and statistical algorithms has always been the hot research topic.

  18. Meta-path based heterogeneous combat network link prediction

    Science.gov (United States)

    Li, Jichao; Ge, Bingfeng; Yang, Kewei; Chen, Yingwu; Tan, Yuejin

    2017-09-01

    The combat system-of-systems in high-tech informative warfare, composed of many interconnected combat systems of different types, can be regarded as a type of complex heterogeneous network. Link prediction for heterogeneous combat networks (HCNs) is of significant military value, as it facilitates reconfiguring combat networks to represent the complex real-world network topology as appropriate with observed information. This paper proposes a novel integrated methodology framework called HCNMP (HCN link prediction based on meta-path) to predict multiple types of links simultaneously for an HCN. More specifically, the concept of HCN meta-paths is introduced, through which the HCNMP can accumulate information by extracting different features of HCN links for all the six defined types. Next, an HCN link prediction model, based on meta-path features, is built to predict all types of links of the HCN simultaneously. Then, the solution algorithm for the HCN link prediction model is proposed, in which the prediction results are obtained by iteratively updating with the newly predicted results until the results in the HCN converge or reach a certain maximum iteration number. Finally, numerical experiments on the dataset of a real HCN are conducted to demonstrate the feasibility and effectiveness of the proposed HCNMP, in comparison with 30 baseline methods. The results show that the performance of the HCNMP is superior to those of the baseline methods.

  19. Cognitive radio networks efficient resource allocation in cooperative sensing, cellular communications, high-speed vehicles, and smart grid

    CERN Document Server

    Jiang, Tao; Cao, Yang

    2015-01-01

    PrefaceAcknowledgmentsAbout the AuthorsIntroductionCognitive Radio-Based NetworksOpportunistic Spectrum Access NetworksCognitive Radio Networks with Cooperative SensingCognitive Radio Networks for Cellular CommunicationsCognitive Radio Networks for High-Speed VehiclesCognitive Radio Networks for a Smart GridContent and OrganizationTransmission Slot Allocation in an Opportunistic Spectrum Access NetworkSingle-User Single-Channel System ModelProbabilistic Slot Allocation SchemeOptimal Probabilistic Slot AllocationBaseline PerformanceExponential DistributionHyper-Erlang DistributionPerformance An

  20. Distance learning, problem based learning and dynamic knowledge networks.

    Science.gov (United States)

    Giani, U; Martone, P

    1998-06-01

    This paper is an attempt to develop a distance learning model grounded upon a strict integration of problem based learning (PBL), dynamic knowledge networks (DKN) and web tools, such as hypermedia documents, synchronous and asynchronous communication facilities, etc. The main objective is to develop a theory of distance learning based upon the idea that learning is a highly dynamic cognitive process aimed at connecting different concepts in a network of mutually supporting concepts. Moreover, this process is supposed to be the result of a social interaction that has to be facilitated by the web. The model was tested by creating a virtual classroom of medical and nursing students and activating a learning session on the concept of knowledge representation in health sciences.

  1. Analysis of neural networks through base functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  2. Computer Networks as a New Data Base.

    Science.gov (United States)

    Beals, Diane E.

    1992-01-01

    Discusses the use of communication on computer networks as a data source for psychological, social, and linguistic research. Differences between computer-mediated communication and face-to-face communication are described, the Beginning Teacher Computer Network is discussed, and examples of network conversations are appended. (28 references) (LRW)

  3. Personalized Network-Based Treatments in Oncology

    DEFF Research Database (Denmark)

    Robin, Xavier; Creixell, Pau; Radetskaya, Oxana

    2013-01-01

    Network medicine aims at unraveling cell signaling networks to propose personalized treatments for patients suffering from complex diseases. In this short review, we show the relevance of network medicine to cancer treatment by outlining the potential convergence points of the most recent technol...

  4. Next generation network based carrier ethernet test bed for IPTV traffic

    DEFF Research Database (Denmark)

    Fu, Rong; Berger, Michael Stübert; Zheng, Yu

    2009-01-01

    This paper presents a Carrier Ethernet (CE) test bed based on the Next Generation Network (NGN) framework. After the concept of CE carried out by Metro Ethernet Forum (MEF), the carrier-grade Ethernet are obtaining more and more interests and being investigated as the low cost and high performanc...... services of transport network to carry the IPTV traffic. This test bed is approaching to support the research on providing a high performance carrier-grade Ethernet transport network for IPTV traffic....

  5. Network-based automation for SMEs

    DEFF Research Database (Denmark)

    Parizi, Mohammad Shahabeddini; Radziwon, Agnieszka

    2017-01-01

    The implementation of appropriate automation concepts which increase productivity in Small and Medium Sized Enterprises (SMEs) requires a lot of effort, due to their limited resources. Therefore, it is strongly recommended for small firms to open up for the external sources of knowledge, which...... could be obtained through network interaction. Based on two extreme cases of SMEs representing low-tech industry and an in-depth analysis of their manufacturing facilities this paper presents how collaboration between firms embedded in a regional ecosystem could result in implementation of new...... with other members of the same regional ecosystem. The findings highlight two main automation related areas where manufacturing SMEs could leverage on external sources on knowledge – these are assistance in defining automation problem as well as appropriate solution and provider selection. Consequently...

  6. A super base station based centralized network architecture for 5G mobile communication systems

    Directory of Open Access Journals (Sweden)

    Manli Qian

    2015-04-01

    Full Text Available To meet the ever increasing mobile data traffic demand, the mobile operators are deploying a heterogeneous network with multiple access technologies and more and more base stations to increase the network coverage and capacity. However, the base stations are isolated from each other, so different types of radio resources and hardware resources cannot be shared and allocated within the overall network in a cooperative way. The mobile operators are thus facing increasing network operational expenses and a high system power consumption. In this paper, a centralized radio access network architecture, referred to as the super base station (super BS, is proposed, as a possible solution for an energy-efficient fifth-generation (5G mobile system. The super base station decouples the logical functions and physical entities of traditional base stations, so different types of system resources can be horizontally shared and statistically multiplexed among all the virtual base stations throughout the entire system. The system framework and main functionalities of the super BS are described. Some key technologies for system implementation, i.e., the resource pooling, real-time virtualization, adaptive hardware resource allocation are also highlighted.

  7. A NEURAL NETWORK BASED TRAFFIC-AWARE FORWARDING STRATEGY IN NAMED DATA NETWORKING

    OpenAIRE

    Parisa Bazmi; Manijeh Keshtgary

    2016-01-01

    Named Data Networking (NDN) is a new Internet architecture which has been proposed to eliminate TCP/IP Internet architecture restrictions. This architecture is abstracting away the notion of host and working based on naming datagrams. However, one of the major challenges of NDN is supporting QoS-aware forwarding strategy so as to forward Interest packets intelligently over multiple paths based on the current network condition. In this paper, Neural Network (NN) Based Traffic-aware Forwarding ...

  8. High-speed and high-fidelity system and method for collecting network traffic

    Science.gov (United States)

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  9. Improving Network Performance with Affinity based Mobility Model in Opportunistic Network

    OpenAIRE

    Suvadip Batabyal; Parama Bhaumik

    2012-01-01

    Opportunistic network is a type of Delay Tolerant Network which is characterized by intermittent connectivity amongst the nodes and communication largely depends upon the mobility of the participating nodes. The network being highly dynamic, traditional MANET protocols cannot be applied and the nodes must adhere to store-carry-forward mechanism. Nodes do not have the information about the network topology, number of participating nodes and the location of the destination node. Hence, message ...

  10. Analyzing the factors affecting network lifetime cluster-based wireless sensor network

    International Nuclear Information System (INIS)

    Malik, A.S.; Qureshi, A.

    2010-01-01

    Cluster-based wireless sensor networks enable the efficient utilization of the limited energy resources of the deployed sensor nodes and hence prolong the node as well as network lifetime. Low Energy Adaptive Clustering Hierarchy (Leach) is one of the most promising clustering protocol proposed for wireless sensor networks. This paper provides the energy utilization and lifetime analysis for cluster-based wireless sensor networks based upon LEACH protocol. Simulation results identify some important factors that induce unbalanced energy utilization between the sensor nodes and hence affect the network lifetime in these types of networks. These results highlight the need for a standardized, adaptive and distributed clustering technique that can increase the network lifetime by further balancing the energy utilization among sensor nodes. (author)

  11. Scaling architecture-on-demand based optical networks

    NARCIS (Netherlands)

    Meyer, Hugo; Sancho, Jose Carlos; Mrdakovic, Milica; Peng, Shuping; Simeonidou, Dimitra; Miao, Wang; Calabretta, Nicola

    2016-01-01

    This paper analyzes methodologies that allow scaling properly Architecture-On-Demand (AoD) based optical networks. As Data Centers and HPC systems are growing in size and complexity, optical networks seem to be the way to scale the bandwidth of current network infrastructures. To scale the number of

  12. Prediction based chaos control via a new neural network

    International Nuclear Information System (INIS)

    Shen Liqun; Wang Mao; Liu Wanyu; Sun Guanghui

    2008-01-01

    In this Letter, a new chaos control scheme based on chaos prediction is proposed. To perform chaos prediction, a new neural network architecture for complex nonlinear approximation is proposed. And the difficulty in building and training the neural network is also reduced. Simulation results of Logistic map and Lorenz system show the effectiveness of the proposed chaos control scheme and the proposed neural network

  13. Analysis of Computer Network Information Based on "Big Data"

    Science.gov (United States)

    Li, Tianli

    2017-11-01

    With the development of the current era, computer network and large data gradually become part of the people's life, people use the computer to provide convenience for their own life, but at the same time there are many network information problems has to pay attention. This paper analyzes the information security of computer network based on "big data" analysis, and puts forward some solutions.

  14. On Emulation-Based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Abbasi, Ali; Wetzel, Jos; Bokslag, Wouter; Zambon, Emmanuele; Etalle, Sandro

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an in- strumented environment and checking the execution traces for signs of shellcode activity.

  15. On emulation-based network intrusion detection systems

    NARCIS (Netherlands)

    Abbasi, A.; Wetzels, J.; Bokslag, W.; Zambon, E.; Etalle, S.; Stavrou, A.; Bos, H.; Portokalidis, G.

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an instrumented environment and checking the execution traces for signs of shellcode activity.

  16. Novel Ethernet Based Optical Local Area Networks for Computer Interconnection

    NARCIS (Netherlands)

    Radovanovic, Igor; van Etten, Wim; Taniman, R.O.; Kleinkiskamp, Ronny

    2003-01-01

    In this paper we present new optical local area networks for fiber-to-the-desk application. Presented networks are expected to bring a solution for having optical fibers all the way to computers. To bring the overall implementation costs down we have based our networks on short-wavelength optical

  17. ORGANIZATION OF CLOUD COMPUTING INFRASTRUCTURE BASED ON SDN NETWORK

    Directory of Open Access Journals (Sweden)

    Alexey A. Efimenko

    2013-01-01

    Full Text Available The article presents the main approaches to cloud computing infrastructure based on the SDN network in present data processing centers (DPC. The main indexes of management effectiveness of network infrastructure of DPC are determined. The examples of solutions for the creation of virtual network devices are provided.

  18. A fusion networking model for smart grid power distribution backbone communication network based on PTN

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2016-01-01

    Full Text Available In current communication network for distribution in Chinese power grid systems, the fiber communication backbone network for distribution and TD-LTE power private wireless backhaul network of power grid are both bearing by the SDH optical transmission network, which also carries the communication network of transformer substation and main electric. As the data traffic of the distribution communication and TD-LTE power private wireless network grow rapidly in recent years, it will have a big impact with the SDH network’s bearing capacity which is mainly used for main electric communication in high security level. This paper presents a fusion networking model which use a multiple-layer PTN network as the unified bearing of the TD-LTE power private wireless backhaul network and fiber communication backbone network for distribution. Network dataflow analysis shows that this model can greatly reduce the capacity pressure of the traditional SDH network as well as ensure the reliability of the transmission of the communication network for distribution and TD-LTE power private wireless network.

  19. Development of IT-based data communication network technology

    International Nuclear Information System (INIS)

    Hong, Seok Boong; Jeong, K. I.; Yoo, Y. R.

    2010-10-01

    - Developing broadband high-reliability real-time communications technology for NPP - Developing reliability and performance validation technology for communications network - Developing security technology for NPP communications network - Developing field communications network for harsh environment of NPP - International standard registration(Oct. 28, 2009, IEC 61500

  20. Integrated computer network high-speed parallel interface

    International Nuclear Information System (INIS)

    Frank, R.B.

    1979-03-01

    As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures

  1. Compressive sensing of high betweenness centrality nodes in networks

    Science.gov (United States)

    Mahyar, Hamidreza; Hasheminezhad, Rouzbeh; Ghalebi K., Elahe; Nazemian, Ali; Grosu, Radu; Movaghar, Ali; Rabiee, Hamid R.

    2018-05-01

    Betweenness centrality is a prominent centrality measure expressing importance of a node within a network, in terms of the fraction of shortest paths passing through that node. Nodes with high betweenness centrality have significant impacts on the spread of influence and idea in social networks, the user activity in mobile phone networks, the contagion process in biological networks, and the bottlenecks in communication networks. Thus, identifying k-highest betweenness centrality nodes in networks will be of great interest in many applications. In this paper, we introduce CS-HiBet, a new method to efficiently detect top- k betweenness centrality nodes in networks, using compressive sensing. CS-HiBet can perform as a distributed algorithm by using only the local information at each node. Hence, it is applicable to large real-world and unknown networks in which the global approaches are usually unrealizable. The performance of the proposed method is evaluated by extensive simulations on several synthetic and real-world networks. The experimental results demonstrate that CS-HiBet outperforms the best existing methods with notable improvements.

  2. Arresting Strategy Based on Dynamic Criminal Networks Changing over Time

    Directory of Open Access Journals (Sweden)

    Junqing Yuan

    2013-01-01

    Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.

  3. Next Generation Campus Network Deployment Project Based on Softswitch

    OpenAIRE

    HU Feng; LIU Ziyan

    2011-01-01

    After analyzing the current networks of Guizhou University,we brought forward a scheme of next generation campus networks based on softswitch technology by choosing SoftX3000 switching system of HuaWei and provided the specific solution of accessing campus networks in this paper. It is proved that this scheme is feasible by using OPNET, which not only accomplished the integration of the PSTN and IP networks but also achieved the combining of voice services and data services.

  4. Energy efficient mechanisms for high-performance Wireless Sensor Networks

    Science.gov (United States)

    Alsaify, Baha'adnan

    2009-12-01

    Due to recent advances in microelectronics, the development of low cost, small, and energy efficient devices became possible. Those advances led to the birth of the Wireless Sensor Networks (WSNs). WSNs consist of a large set of sensor nodes equipped with communication capabilities, scattered in the area to monitor. Researchers focus on several aspects of WSNs. Such aspects include the quality of service the WSNs provide (data delivery delay, accuracy of data, etc...), the scalability of the network to contain thousands of sensor nodes (the terms node and sensor node are being used interchangeably), the robustness of the network (allowing the network to work even if a certain percentage of nodes fails), and making the energy consumption in the network as low as possible to prolong the network's lifetime. In this thesis, we present an approach that can be applied to the sensing devices that are scattered in an area for Sensor Networks. This work will use the well-known approach of using a awaking scheduling to extend the network's lifespan. We designed a scheduling algorithm that will reduce the delay's upper bound the reported data will experience, while at the same time keeps the advantages that are offered by the use of the awaking scheduling -- the energy consumption reduction which will lead to the increase in the network's lifetime. The wakeup scheduling is based on the location of the node relative to its neighbors and its distance from the Base Station (the terms Base Station and sink are being used interchangeably). We apply the proposed method to a set of simulated nodes using the "ONE Simulator". We test the performance of this approach with three other approaches -- Direct Routing technique, the well known LEACH algorithm, and a multi-parent scheduling algorithm. We demonstrate a good improvement on the network's quality of service and a reduction of the consumed energy.

  5. Community Based Networks and 5G Wi-Fi

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2018-01-01

    This paper argues on why Community Based Networks should be recognized as potential 5G providers using 5G Wi-Fi. The argument is hinged on findings in a research to understand why Community Based Networks deploy telecom and Broadband infrastructure. The study was a qualitative study carried out...... inductively using Grounded Theory. Six cases were investigated. Two Community Based Network Mobilization Models were identified. The findings indicate that 5G Wi-Fi deployment by Community Based Networks is possible if policy initiatives and the 5G Wi-Fi standards are developed to facilitate the causal...

  6. An Improved Car-Following Model in Vehicle Networking Based on Network Control

    Directory of Open Access Journals (Sweden)

    D. Y. Kong

    2014-01-01

    Full Text Available Vehicle networking is a system to realize information interoperability between vehicles and people, vehicles and roads, vehicles and vehicles, and cars and transport facilities, through the network information exchange, in order to achieve the effective monitoring of the vehicle and traffic flow. Realizing information interoperability between vehicles and vehicles, which can affect the traffic flow, is an important application of network control system (NCS. In this paper, a car-following model using vehicle networking theory is established, based on network control principle. The car-following model, which is an improvement of the traditional traffic model, describes the traffic in vehicle networking condition. The impact that vehicle networking has on the traffic flow is quantitatively assessed in a particular scene of one-way, no lane changing highway. The examples show that the capacity of the road is effectively enhanced by using vehicle networking.

  7. Virtual network embedding in cross-domain network based on topology and resource attributes

    Science.gov (United States)

    Zhu, Lei; Zhang, Zhizhong; Feng, Linlin; Liu, Lilan

    2018-03-01

    Aiming at the network architecture ossification and the diversity of access technologies issues, this paper researches the cross-domain virtual network embedding algorithm. By analysing the topological attribute from the local and global perspective of nodes in the virtual network and the physical network, combined with the local network resource property, we rank the embedding priority of the nodes with PCA and TOPSIS methods. Besides, the link load distribution is considered. Above all, We proposed an cross-domain virtual network embedding algorithm based on topology and resource attributes. The simulation results depicts that our algorithm increases the acceptance rate of multi-domain virtual network requests, compared with the existing virtual network embedding algorithm.

  8. An Analysis for the Use of Research and Education Networks and Commercial Network Vendors in Support of Space Based Mission Critical and Non-Critical Networking

    Science.gov (United States)

    Bradford, Robert N.

    2002-01-01

    Currently, and in the past, dedicated communication circuits and "network services" with very stringent performance requirements are being used to support manned and unmanned mission critical ground operations at GSFC, JSC, MSFC, KSC and other NASA facilities. Because of the evolution of network technology, it is time to investigate using other approaches to providing mission services for space ground operations. The current NASA approach is not in keeping with the evolution of network technologies. In the past decade various research and education networks dedicated to scientific and educational endeavors have emerged, as well as commercial networking providers, that employ advanced networking technologies. These technologies have significantly changed networking in recent years. Significant advances in network routing techniques, various topologies and equipment have made commercial networks very stable and virtually error free. Advances in Dense Wave Division Multiplexing will provide tremendous amounts of bandwidth for the future. The question is: Do these networks, which are controlled and managed centrally, provide a level of service that equals the stringent NASA performance requirements. If they do, what are the implication(s) of using them for critical space based ground operations as they are, without adding high cost contractual performance requirements? A second question is the feasibility of applying the emerging grid technology in space operations. Is it feasible to develop a Space Operations Grid and/or a Space Science Grid? Since these network's connectivity is substantial, both nationally and internationally, development of these sorts of grids may be feasible. The concept of research and education networks has evolved to the international community as well. Currently there are international RENs connecting the US in Chicago to and from Europe, South America, Asia and the Pacific rim, Russia and Canada. And most countries in these areas have their

  9. Network-based production quality control

    Science.gov (United States)

    Kwon, Yongjin; Tseng, Bill; Chiou, Richard

    2007-09-01

    This study investigates the feasibility of remote quality control using a host of advanced automation equipment with Internet accessibility. Recent emphasis on product quality and reduction of waste stems from the dynamic, globalized and customer-driven market, which brings opportunities and threats to companies, depending on the response speed and production strategies. The current trends in industry also include a wide spread of distributed manufacturing systems, where design, production, and management facilities are geographically dispersed. This situation mandates not only the accessibility to remotely located production equipment for monitoring and control, but efficient means of responding to changing environment to counter process variations and diverse customer demands. To compete under such an environment, companies are striving to achieve 100%, sensor-based, automated inspection for zero-defect manufacturing. In this study, the Internet-based quality control scheme is referred to as "E-Quality for Manufacturing" or "EQM" for short. By its definition, EQM refers to a holistic approach to design and to embed efficient quality control functions in the context of network integrated manufacturing systems. Such system let designers located far away from the production facility to monitor, control and adjust the quality inspection processes as production design evolves.

  10. Connecting Land-Based Networks to Ships

    Science.gov (United States)

    2013-06-01

    multipoint wireless broadband systems, and WiMAX networks were initially deployed for fixed and nomadic (portable) applications. These standards...CAPABILITIES OF SHIP-TO-SHORE COMMUNICATIONS A. US Navy Automated Digital Network System (ADNS) The U.S. Navy’s Automated Digital Network System (ADNS...submit digitally any necessary documents to the terminal operators, contact their logistics providers, access tidal information and receive

  11. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    Science.gov (United States)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  12. Carrier ethernet network control plane based on the Next Generation Network

    DEFF Research Database (Denmark)

    Fu, Rong; Wang, Yanmeng; Berger, Michael Stubert

    2008-01-01

    This paper contributes on presenting a step towards the realization of Carrier Ethernet control plane based on the next generation network (NGN). Specifically, transport MPLS (T-MPLS) is taken as the transport technology in Carrier Ethernet. It begins with providing an overview of the evolving...... architecture of the next generation network (NGN). As an essential candidate among the NGN transport technologies, the definition of Carrier Ethernet (CE) is also introduced here. The second part of this paper depicts the contribution on the T-MPLS based Carrier Ethernet network with control plane based on NGN...... at illustrating the improvement of the Carrier Ethernet network with the NGN control plane....

  13. Policy-based Network Management in Home Area Networks: Interim Test Results

    OpenAIRE

    Ibrahim Rana, Annie; Ó Foghlú, Mícheál

    2009-01-01

    This paper argues that Home Area Networks (HANs) are a good candidate for advanced network management automation techniques, such as Policy-Based Network Management (PBNM). What is proposed is a simple use of policy based network management to introduce some level of Quality of Service (QoS) and Security management in the HAN, whilst hiding this complexity from the home user. In this paper we have presented the interim test results of our research experiments (based on a scenario) using the H...

  14. A network-based biomarker approach for molecular investigation and diagnosis of lung cancer

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2011-01-01

    Full Text Available Abstract Background Lung cancer is the leading cause of cancer deaths worldwide. Many studies have investigated the carcinogenic process and identified the biomarkers for signature classification. However, based on the research dedicated to this field, there is no highly sensitive network-based method for carcinogenesis characterization and diagnosis from the systems perspective. Methods In this study, a systems biology approach integrating microarray gene expression profiles and protein-protein interaction information was proposed to develop a network-based biomarker for molecular investigation into the network mechanism of lung carcinogenesis and diagnosis of lung cancer. The network-based biomarker consists of two protein association networks constructed for cancer samples and non-cancer samples. Results Based on the network-based biomarker, a total of 40 significant proteins in lung carcinogenesis were identified with carcinogenesis relevance values (CRVs. In addition, the network-based biomarker, acting as the screening test, proved to be effective in diagnosing smokers with signs of lung cancer. Conclusions A network-based biomarker using constructed protein association networks is a useful tool to highlight the pathways and mechanisms of the lung carcinogenic process and, more importantly, provides potential therapeutic targets to combat cancer.

  15. Complex networks-based energy-efficient evolution model for wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)

    2009-08-30

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  16. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun

    2009-01-01

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  17. The guitar chord-generating algorithm based on complex network

    Science.gov (United States)

    Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais

    2016-02-01

    This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.

  18. Dynamics of subway networks based on vehicles operation timetable

    Science.gov (United States)

    Xiao, Xue-mei; Jia, Li-min; Wang, Yan-hui

    2017-05-01

    In this paper, a subway network is represented as a dynamic, directed and weighted graph, in which vertices represent subway stations and weights of edges represent the number of vehicles passing through the edges by considering vehicles operation timetable. Meanwhile the definitions of static and dynamic metrics which can represent vertices' and edges' local and global attributes are proposed. Based on the model and metrics, standard deviation is further introduced to study the dynamic properties (heterogeneity and vulnerability) of subway networks. Through a detailed analysis of the Beijing subway network, we conclude that with the existing network structure, the heterogeneity and vulnerability of the Beijing subway network varies over time when the vehicle operation timetable is taken into consideration, and the distribution of edge weights affects the performance of the network. In other words, although the vehicles operation timetable is restrained by the physical structure of the network, it determines the performances and properties of the Beijing subway network.

  19. Network-Based Community Brings forth Sustainable Society

    Science.gov (United States)

    Kikuchi, Toshiko

    It has already been shown that an artificial society based on the three relations of social configuration (market, communal, and obligatory relations) functioning in balance with each other formed a sustainable society which the social reproduction is possible. In this artificial society model, communal relations exist in a network-based community with alternating members rather than a conventional community with cooperative mutual assistance practiced in some agricultural communities. In this paper, using the comparison between network-based communities with alternating members and conventional communities with fixed members, the significance of a network-based community is considered. In concrete terms, the difference in appearance rate for sustainable society, economic activity and asset inequality between network-based communities and conventional communities is analyzed. The appearance rate for a sustainable society of network-based community is higher than that of conventional community. Moreover, most of network-based communities had a larger total number of trade volume than conventional communities. But, the value of Gini coefficient in conventional community is smaller than that of network-based community. These results show that communal relations based on a network-based community is significant for the social reproduction and economic efficiency. However, in such an artificial society, the inequality is sacrificed.

  20. Experimental demonstration of OpenFlow-enabled media ecosystem architecture for high-end applications over metro and core networks.

    Science.gov (United States)

    Ntofon, Okung-Dike; Channegowda, Mayur P; Efstathiou, Nikolaos; Rashidi Fard, Mehdi; Nejabati, Reza; Hunter, David K; Simeonidou, Dimitra

    2013-02-25

    In this paper, a novel Software-Defined Networking (SDN) architecture is proposed for high-end Ultra High Definition (UHD) media applications. UHD media applications require huge amounts of bandwidth that can only be met with high-capacity optical networks. In addition, there are requirements for control frameworks capable of delivering effective application performance with efficient network utilization. A novel SDN-based Controller that tightly integrates application-awareness with network control and management is proposed for such applications. An OpenFlow-enabled test-bed demonstrator is reported with performance evaluations of advanced online and offline media- and network-aware schedulers.

  1. Understanding Event-based Business Networks

    OpenAIRE

    2008-01-01

    Abstract This article deals with the temporality in business networks. Marketing as networks approach stresses interaction processes and interdependence among actors noting that business markets are mainly socially constructed. The approach has increased our understanding of business marketing but further attention for theory development and empirical validation is needed. Theoretical foundations of the approach are conceptually analysed here, taking time and timing into particular...

  2. Quantum networks based on spins in diamond

    International Nuclear Information System (INIS)

    Ronald Hanson

    2014-01-01

    Entanglement of spatially separated objects is one of the most intriguing phenomena that can occur in physics. Besides being of fundamental interest, entanglement is also a valuable resource in quantum information technology enabling secure quantum communication networks and distributed quantum computing. Here we present our most recent results towards the realization of scalable quantum networks with solid-state qubits. (author)

  3. Neural Network Classifier Based on Growing Hyperspheres

    Czech Academy of Sciences Publication Activity Database

    Jiřina Jr., Marcel; Jiřina, Marcel

    2000-01-01

    Roč. 10, č. 3 (2000), s. 417-428 ISSN 1210-0552. [Neural Network World 2000. Prague, 09.07.2000-12.07.2000] Grant - others:MŠMT ČR(CZ) VS96047; MPO(CZ) RP-4210 Institutional research plan: AV0Z1030915 Keywords : neural network * classifier * hyperspheres * big -dimensional data Subject RIV: BA - General Mathematics

  4. Building Trust-Based Sustainable Networks

    Science.gov (United States)

    2013-06-05

    entities to build sustainable networks with limited resources or misbehaving entities by learning from the lessons in the social sciences. We discuss...their individuality); and ■ Misbehaving nodes in terms of environmental, economic, and social perspectives. The sustainable network concerns...equitable access to particular services which are otherwise abused by misbehaving or malicious users. Such approaches provide a fair and

  5. Optical interconnection networks for high-performance computing systems

    International Nuclear Information System (INIS)

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  6. Optimization-based topology identification of complex networks

    International Nuclear Information System (INIS)

    Tang Sheng-Xue; Chen Li; He Yi-Gang

    2011-01-01

    In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method. (general)

  7. Evidence That Calls-Based and Mobility Networks Are Isomorphic.

    Directory of Open Access Journals (Sweden)

    Michele Coscia

    Full Text Available Social relations involve both face-to-face interaction as well as telecommunications. We can observe the geography of phone calls and of the mobility of cell phones in space. These two phenomena can be described as networks of connections between different points in space. We use a dataset that includes billions of phone calls made in Colombia during a six-month period. We draw the two networks and find that the call-based network resembles a higher order aggregation of the mobility network and that both are isomorphic except for a higher spatial decay coefficient of the mobility network relative to the call-based network: when we discount distance effects on the call connections with the same decay observed for mobility connections, the two networks are virtually indistinguishable.

  8. On Determining if Tree-based Networks Contain Fixed Trees.

    Science.gov (United States)

    Anaya, Maria; Anipchenko-Ulaj, Olga; Ashfaq, Aisha; Chiu, Joyce; Kaiser, Mahedi; Ohsawa, Max Shoji; Owen, Megan; Pavlechko, Ella; St John, Katherine; Suleria, Shivam; Thompson, Keith; Yap, Corrine

    2016-05-01

    We address an open question of Francis and Steel about phylogenetic networks and trees. They give a polynomial time algorithm to decide if a phylogenetic network, N, is tree-based and pose the problem: given a fixed tree T and network N, is N based on T? We show that it is [Formula: see text]-hard to decide, by reduction from 3-Dimensional Matching (3DM) and further that the problem is fixed-parameter tractable.

  9. High speed fiber optics local area networks: Design and implementation

    Science.gov (United States)

    Tobagi, Fouad A.

    1988-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: (1) the network medium and its topology; (2) the medium access control; and (3) the network interface. Considerable progress has been made in all areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given in Section 2, including references to papers which appeared in the literature, as well as to Ph.D. dissertations and technical reports published at Stanford University.

  10. CERNET - A high-speed packet-switching network

    International Nuclear Information System (INIS)

    Gerard, J.M.

    1981-01-01

    A general mesh-structured high-speed computer network has been designed and built. This network provides communication between any pair of connected user computers over distances of upto 6 km and at line speeds of 1 to 5 Mbit/second. The network is composed of a communication subnet providing a datagram service, complemented by tasks in the connected machines to implement an end-to-end logical link protocol. Details are given of the overall structure as well as the specific modules of which the system is composed. (orig.)

  11. High-precision multi-node clock network distribution.

    Science.gov (United States)

    Chen, Xing; Cui, Yifan; Lu, Xing; Ci, Cheng; Zhang, Xuesong; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2017-10-01

    A high precision multi-node clock network for multiple users was built following the precise frequency transmission and time synchronization of 120 km fiber. The network topology adopts a simple star-shaped network structure. The clock signal of a hydrogen maser (synchronized with UTC) was recovered from a 120 km telecommunication fiber link and then was distributed to 4 sub-stations. The fractional frequency instability of all substations is in the level of 10 -15 in a second and the clock offset instability is in sub-ps in root-mean-square average.

  12. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics

    Directory of Open Access Journals (Sweden)

    Fikret Emre eKapucu

    2012-06-01

    Full Text Available In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESC, exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI histograms. Moreover, the algorithm calculates interspike interval thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

  13. High-resolution method for evolving complex interface networks

    Science.gov (United States)

    Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2018-04-01

    In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.

  14. High Dimensional Modulation and MIMO Techniques for Access Networks

    DEFF Research Database (Denmark)

    Binti Othman, Maisara

    Exploration of advanced modulation formats and multiplexing techniques for next generation optical access networks are of interest as promising solutions for delivering multiple services to end-users. This thesis addresses this from two different angles: high dimensionality carrierless...... the capacity per wavelength of the femto-cell network. Bit rate up to 1.59 Gbps with fiber-wireless transmission over 1 m air distance is demonstrated. The results presented in this thesis demonstrate the feasibility of high dimensionality CAP in increasing the number of dimensions and their potentially......) optical access network. 2 X 2 MIMO RoF employing orthogonal frequency division multiplexing (OFDM) with 5.6 GHz RoF signaling over all-vertical cavity surface emitting lasers (VCSEL) WDM passive optical networks (PONs). We have employed polarization division multiplexing (PDM) to further increase...

  15. Introduction to neural networks in high energy physics

    International Nuclear Information System (INIS)

    Therhaag, J.

    2013-01-01

    Artificial neural networks are a well established tool in high energy physics, playing an important role in both online and offline data analysis. Nevertheless they are often perceived as black boxes which perform obscure operations beyond the control of the user, resulting in a skepticism against any results that may be obtained using them. The situation is not helped by common explanations which try to draw analogies between artificial neural networks and the human brain, for the brain is an even more complex black box itself. In this introductory text, I will take a problem-oriented approach to neural network techniques, showing how the fundamental concepts arise naturally from the demand to solve classification tasks which are frequently encountered in high energy physics. Particular attention is devoted to the question how probability theory can be used to control the complexity of neural networks. (authors)

  16. Smart Home System Based on GSM Network

    Directory of Open Access Journals (Sweden)

    Bakhtiar Ali Karim

    2018-04-01

    Full Text Available Due to increasing robbery and intrusion, establishing home-security system has become a correlated part of the modern houses, buildings, and offices. As the family members are not at home all the time, the traditional home security system, which makes alarm sound only, may not be efficient enough. Alternatively, Global System for Mobile communications (GSM based security system can provide higher level of security and convenience compared to the traditionally used systems. The main objective of the current paper is to design and implement cost-efficient and reliable security, safety and home automation system for protection and occupants’ convenience. If any undesired events, such as intrusion, gas leakage and fire occurs in the house, our system warns the homeowner in real-time using Short Message Service (SMS. With the proposed system home appliances can also be controlled in three ways, namely sending SMS from the authorized numbers to the system through GSM network, smartphone app using Bluetooth module and infrared (IR control using IR module

  17. Node-based measures of connectivity in genetic networks.

    Science.gov (United States)

    Koen, Erin L; Bowman, Jeff; Wilson, Paul J

    2016-01-01

    At-site environmental conditions can have strong influences on genetic connectivity, and in particular on the immigration and settlement phases of dispersal. However, at-site processes are rarely explored in landscape genetic analyses. Networks can facilitate the study of at-site processes, where network nodes are used to model site-level effects. We used simulated genetic networks to compare and contrast the performance of 7 node-based (as opposed to edge-based) genetic connectivity metrics. We simulated increasing node connectivity by varying migration in two ways: we increased the number of migrants moving between a focal node and a set number of recipient nodes, and we increased the number of recipient nodes receiving a set number of migrants. We found that two metrics in particular, the average edge weight and the average inverse edge weight, varied linearly with simulated connectivity. Conversely, node degree was not a good measure of connectivity. We demonstrated the use of average inverse edge weight to describe the influence of at-site habitat characteristics on genetic connectivity of 653 American martens (Martes americana) in Ontario, Canada. We found that highly connected nodes had high habitat quality for marten (deep snow and high proportions of coniferous and mature forest) and were farther from the range edge. We recommend the use of node-based genetic connectivity metrics, in particular, average edge weight or average inverse edge weight, to model the influences of at-site habitat conditions on the immigration and settlement phases of dispersal. © 2015 John Wiley & Sons Ltd.

  18. High level cognitive information processing in neural networks

    Science.gov (United States)

    Barnden, John A.; Fields, Christopher A.

    1992-01-01

    Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field.

  19. Resource management for multimedia services in high data rate wireless networks

    CERN Document Server

    Zhang, Ruonan; Pan, Jianping

    2017-01-01

    This brief offers a valuable resource on principles of quality-of-service (QoS) provisioning and the related link-layer resource management techniques for high data-rate wireless networks. The primary emphasis is on protocol modeling and analysis. It introduces media access control (MAC) protocols, standards of wireless local area networks (WLANs), wireless personal area networks (WPANs), and wireless body area networks (WBANs), discussing their key technologies, applications, and deployment scenarios. The main analytical approaches and models for performance analysis of the fundamental resource scheduling mechanisms, including the contention-based, reservation-based, and hybrid MAC, are presented. To help readers understand and evaluate system performance, the brief contains a range of simulation results. In addition, a thorough bibliography provides an additional tool. This brief is an essential resource for engineers, researchers, students, and users of wireless networks.

  20. Feature Extraction Method for High Impedance Ground Fault Localization in Radial Power Distribution Networks

    DEFF Research Database (Denmark)

    Jensen, Kåre Jean; Munk, Steen M.; Sørensen, John Aasted

    1998-01-01

    A new approach to the localization of high impedance ground faults in compensated radial power distribution networks is presented. The total size of such networks is often very large and a major part of the monitoring of these is carried out manually. The increasing complexity of industrial...... of three phase voltages and currents. The method consists of a feature extractor, based on a grid description of the feeder by impulse responses, and a neural network for ground fault localization. The emphasis of this paper is the feature extractor, and the detection of the time instance of a ground fault...... processes and communication systems lead to demands for improved monitoring of power distribution networks so that the quality of power delivery can be kept at a controlled level. The ground fault localization method for each feeder in a network is based on the centralized frequency broadband measurement...

  1. An SDN based approach for the ATLAS data acquisition network

    CERN Document Server

    Blikra, Espen; The ATLAS collaboration

    2016-01-01

    ATLAS is a high energy physics experiment in the Large Hadron Collider located at CERN. During the so called Long Shutdown 2 period scheduled for late 2019, ATLAS will undergo several modifications and upgrades on its data acquisition system in order to cope with the higher luminosity requirements. As part of these activities, a new read-out chain will be built for the New Small Wheel muon detector and the one of the Liquid Argon calorimeter will be upgraded. The subdetector specific electronic boards will be replaced with new commodity-server-based systems and instead of the custom serial-link-based communication, the new system will make use of a yet to be chosen commercial network technology. The new network will be used as a data acquisition network and at the same time it is intended to allow communication for the control, calibration and monitoring of the subdetectors. Therefore several types of traffic with different bandwidth requirements and different criticality will be competing for the same underl...

  2. Chinese Sentence Classification Based on Convolutional Neural Network

    Science.gov (United States)

    Gu, Chengwei; Wu, Ming; Zhang, Chuang

    2017-10-01

    Sentence classification is one of the significant issues in Natural Language Processing (NLP). Feature extraction is often regarded as the key point for natural language processing. Traditional ways based on machine learning can not take high level features into consideration, such as Naive Bayesian Model. The neural network for sentence classification can make use of contextual information to achieve greater results in sentence classification tasks. In this paper, we focus on classifying Chinese sentences. And the most important is that we post a novel architecture of Convolutional Neural Network (CNN) to apply on Chinese sentence classification. In particular, most of the previous methods often use softmax classifier for prediction, we embed a linear support vector machine to substitute softmax in the deep neural network model, minimizing a margin-based loss to get a better result. And we use tanh as an activation function, instead of ReLU. The CNN model improve the result of Chinese sentence classification tasks. Experimental results on the Chinese news title database validate the effectiveness of our model.

  3. The method in γ spectrum analysis with artificial neural network based on MATLAB

    International Nuclear Information System (INIS)

    Bai Lixin; Zhang Yiyun; Xu Jiayun; Wu Liping

    2003-01-01

    Analyzing γ spectrum with artificial neural network have the advantage of using the information of whole spectrum and having high analyzing precision. A convenient realization based on MATLAB was present in this

  4. Stabilization of model-based networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Francisco [CIDMA, Universidade de Aveiro, Aveiro (Portugal); Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); Abreu, Carlos [Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); CMEMS-UMINHO, Universidade do Minho, Braga (Portugal); Mendes, Paulo M. [CMEMS-UMINHO, Universidade do Minho, Braga (Portugal)

    2016-06-08

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.

  5. HPNAIDM: The High-Performance Network Anomaly/Intrusion Detection and Mitigation System

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan [Northwesten University

    2013-12-05

    Identifying traffic anomalies and attacks rapidly and accurately is critical for large network operators. With the rapid growth of network bandwidth, such as the next generation DOE UltraScience Network, and fast emergence of new attacks/virus/worms, existing network intrusion detection systems (IDS) are insufficient because they: • Are mostly host-based and not scalable to high-performance networks; • Are mostly signature-based and unable to adaptively recognize flow-level unknown attacks; • Cannot differentiate malicious events from the unintentional anomalies. To address these challenges, we proposed and developed a new paradigm called high-performance network anomaly/intrustion detection and mitigation (HPNAIDM) system. The new paradigm is significantly different from existing IDSes with the following features (research thrusts). • Online traffic recording and analysis on high-speed networks; • Online adaptive flow-level anomaly/intrusion detection and mitigation; • Integrated approach for false positive reduction. Our research prototype and evaluation demonstrate that the HPNAIDM system is highly effective and economically feasible. Beyond satisfying the pre-set goals, we even exceed that significantly (see more details in the next section). Overall, our project harvested 23 publications (2 book chapters, 6 journal papers and 15 peer-reviewed conference/workshop papers). Besides, we built a website for technique dissemination, which hosts two system prototype release to the research community. We also filed a patent application and developed strong international and domestic collaborations which span both academia and industry.

  6. A Spectrum Handoff Scheme for Optimal Network Selection in NEMO Based Cognitive Radio Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2017-01-01

    Full Text Available When a mobile network changes its point of attachments in Cognitive Radio (CR vehicular networks, the Mobile Router (MR requires spectrum handoff. Network Mobility (NEMO in CR vehicular networks is concerned with the management of this movement. In future NEMO based CR vehicular networks deployment, multiple radio access networks may coexist in the overlapping areas having different characteristics in terms of multiple attributes. The CR vehicular node may have the capability to make call for two or more types of nonsafety services such as voice, video, and best effort simultaneously. Hence, it becomes difficult for MR to select optimal network for the spectrum handoff. This can be done by performing spectrum handoff using Multiple Attributes Decision Making (MADM methods which is the objective of the paper. The MADM methods such as grey relational analysis and cost based methods are used. The application of MADM methods provides wider and optimum choice among the available networks with quality of service. Numerical results reveal that the proposed scheme is effective for spectrum handoff decision for optimal network selection with reduced complexity in NEMO based CR vehicular networks.

  7. Space Based Infrared System High (SBIRS High)

    Science.gov (United States)

    2015-12-01

    elements (five SMGTs) for the S2E2 Mobile Ground System. ​ SBIRS Block Buy (GEO 5-6) The GEO 5-6 Tech Refresh (TR) Engineering Change Proposal was...Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-210 Space Based Infrared System High ( SBIRS High) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 23, 2016 11:24:26 UNCLASSIFIED SBIRS High December 2015 SAR March 23, 2016 11:24:26

  8. Discrete opinion dynamics on networks based on social influence

    Energy Technology Data Exchange (ETDEWEB)

    Hu Haibo; Wang Xiaofan [Complex Networks and Control Lab, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2009-06-05

    A model of opinion dynamics based on social influence on networks was studied. The opinion of each agent can have integer values i = 1, 2, ..., I and opinion exchanges are restricted to connected agents. It was found that for any I {>=} 2 and self-confidence parameter 0 {<=} u < 1, when u is a degree-independent constant, the weighted proportion (q{sub i}) of the population that hold a given opinion i is a martingale, and the fraction q{sub i} of opinion i will gradually converge to (q{sub i}). The tendency can slow down with the increase of degree assortativity of networks. When u is degree dependent, (q{sub i}) does not possess the martingale property, however q{sub i} still converges to it. In both cases for a finite network the states of all agents will finally reach consensus. Further if there exist stubborn persons in the population whose opinions do not change over time, it was found that for degree-independent constant u, both q{sub i} and (q{sub i}) will converge to fixed proportions which only depend on the distribution of initial obstinate persons, and naturally the final equilibrium state will be the coexistence of diverse opinions held by the stubborn people. The analytical results were verified by numerical simulations on Barabasi-Albert (BA) networks. The model highlights the influence of high-degree agents on the final consensus or coexistence state and captures some realistic features of the diffusion of opinions in social networks.

  9. Technologies for highly miniaturized autonomous sensor networks

    NARCIS (Netherlands)

    Baert, K.; Gyselinckx, B.; Torfs, T.; Leonov, V.; Yazicioglu, F.; Brebels, S.; Donnay, S.; Vanfleteren, J.; Beyne, E.; Hoof, C. van

    2006-01-01

    Recent results of the autonomous sensor research program HUMAN++ will be summarized in this paper. The research program aims to achieve highly miniaturized and (nearly) autonomous sensor systems that assist our health and comfort. Although the application examples are dedicated to human

  10. LambdaStation: Exploiting Advance Networks In Data Intensive High Energy Physics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Harvey B. Newman

    2009-09-11

    Lambda Station software implements selective, dynamic, secure path control between local storage & analysis facilities, and high bandwidth, wide-area networks (WANs). It is intended to facilitate use of desirable, alternate wide area network paths which may only be intermittently available, or subject to policies that restrict usage to specified traffic. Lambda Station clients gain awareness of potential alternate network paths via Clarens-based web services, including path characteristics such as bandwidth and availability. If alternate path setup is requested and granted, Lambda Station will configure the local network infrastructure to properly forward designated data flows via the alternate path. A fully functional implementation of Lambda Station, capable of dynamic alternate WAN path setup and teardown, has been successfully developed. A limited Lambda Station-awareness capability within the Storage Resource Manager (SRM) product has been developed. Lambda Station has been successfully tested in a number of venues, including Super Computing 2008. LambdaStation software, developed by the Fermilab team, enables dynamic allocation of alternate network paths for high impact traffic and to forward designated flows across LAN. It negotiates with reservation and provisioning systems of WAN control planes, be it based on SONET channels, demand tunnels, or dynamic circuit networks. It creates End-To-End circuit between single hosts, computer farms or networks with predictable performance characteristics, preserving QoS if supported in LAN and WAN and tied security policy allowing only specific traffic to be forwarded or received through created path. Lambda Station project also explores Network Awareness capabilities.

  11. Named data networking-based smart home

    OpenAIRE

    Syed Hassan Ahmed; Dongkyun Kim

    2016-01-01

    Named data networking (NDN) treats content/data as a “first class citizen” of the network by giving it a “name”. This content “name” is used to retrieve any information, unlike in device-centric networks (i.e., the current Internet), which depend on physical IP addresses. Meanwhile, the smart home concept has been gaining attention in academia and industries; various low-cost embedded devices are considered that can sense, process, store, and communicate data autonomously. In this paper, we s...

  12. Network based on statistical multiplexing for event selection and event builder systems in high energy physics experiments; Reseau a multiplexage statistique pour les systemes de selection et de reconstruction d'evenements dans les experiences de physique des hautes energies

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, D

    2000-03-01

    Systems for on-line event selection in future high energy physics experiments will use advanced distributed computing techniques and will need high speed networks. After a brief description of projects at the Large Hadron Collider, the architectures initially proposed for the Trigger and Data AcQuisition (TD/DAQ) systems of ATLAS and CMS experiments are presented and analyzed. A new architecture for the ATLAS T/DAQ is introduced. Candidate network technologies for this system are described. This thesis focuses on ATM. A variety of network structures and topologies suited to partial and full event building are investigated. The need for efficient networking is shown. Optimization techniques for high speed messaging and their implementation on ATM components are described. Small scale demonstrator systems consisting of up to 48 computers ({approx}1:20 of the final level 2 trigger) connected via ATM are described. Performance results are presented. Extrapolation of measurements and evaluation of needs lead to a proposal of implementation for the main network of the ATLAS T/DAQ system. (author)

  13. Efficient Online Learning Algorithms Based on LSTM Neural Networks.

    Science.gov (United States)

    Ergen, Tolga; Kozat, Suleyman Serdar

    2017-09-13

    We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.

  14. Large scale network management. Condition indicators for network stations, high voltage power conductions and cables

    International Nuclear Information System (INIS)

    Eggen, Arnt Ove; Rolfseng, Lars; Langdal, Bjoern Inge

    2006-02-01

    In the Strategic Institute Programme (SIP) 'Electricity Business enters e-business (eBee)' SINTEF Energy research has developed competency that can help the energy business employ ICT systems and computer technology in an improved way. Large scale network management is now a reality, and it is characterized by large entities with increasing demands on efficiency and quality. These are goals that can only be reached by using ICT systems and computer technology in a more clever way than what is the case today. At the same time it is important that knowledge held by experienced co-workers is consulted when formal rules for evaluations and decisions in ICT systems are developed. In this project an analytical concept for evaluation of networks based information in different ICT systems has been developed. The method estimating the indicators to describe different conditions in a network is general, and indicators can be made to fit different levels of decision and network levels, for example network station, transformer circuit, distribution network and regional network. Moreover, the indicators can contain information about technical aspects, economy and HSE. An indicator consists of an indicator name, an indicator value, and an indicator colour based on a traffic-light analogy to indicate a condition or a quality for the indicator. Values on one or more indicators give an impression of important conditions in the network, and make up the basis for knowing where more detailed evaluations have to be conducted before a final decision on for example maintenance or renewal is made. A prototype has been developed for testing the new method. The prototype has been developed in Excel, and especially designed for analysing transformer circuits in a distribution network. However, the method is a general one, and well suited for implementation in a commercial computer system (ml)

  15. Distributed Ship Navigation Control System Based on Dual Network

    Science.gov (United States)

    Yao, Ying; Lv, Wu

    2017-10-01

    Navigation system is very important for ship’s normal running. There are a lot of devices and sensors in the navigation system to guarantee ship’s regular work. In the past, these devices and sensors were usually connected via CAN bus for high performance and reliability. However, as the development of related devices and sensors, the navigation system also needs the ability of high information throughput and remote data sharing. To meet these new requirements, we propose the communication method based on dual network which contains CAN bus and industrial Ethernet. Also, we import multiple distributed control terminals with cooperative strategy based on the idea of synchronizing the status by multicasting UDP message contained operation timestamp to make the system more efficient and reliable.

  16. Unveiling network-based functional features through integration of gene expression into protein networks.

    Science.gov (United States)

    Jalili, Mahdi; Gebhardt, Tom; Wolkenhauer, Olaf; Salehzadeh-Yazdi, Ali

    2018-06-01

    Decoding health and disease phenotypes is one of the fundamental objectives in biomedicine. Whereas high-throughput omics approaches are available, it is evident that any single omics approach might not be adequate to capture the complexity of phenotypes. Therefore, integrated multi-omics approaches have been used to unravel genotype-phenotype relationships such as global regulatory mechanisms and complex metabolic networks in different eukaryotic organisms. Some of the progress and challenges associated with integrated omics studies have been reviewed previously in comprehensive studies. In this work, we highlight and review the progress, challenges and advantages associated with emerging approaches, integrating gene expression and protein-protein interaction networks to unravel network-based functional features. This includes identifying disease related genes, gene prioritization, clustering protein interactions, developing the modules, extract active subnetworks and static protein complexes or dynamic/temporal protein complexes. We also discuss how these approaches contribute to our understanding of the biology of complex traits and diseases. This article is part of a Special Issue entitled: Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.

    Science.gov (United States)

    Amanowicz, Marek; Krygier, Jaroslaw

    2018-05-26

    In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.

  18. Internet-Based Approaches to Building Stakeholder Networks for Conservation and Natural Resource Management

    Science.gov (United States)

    Kreakie, B. J.; Hychka, K. C.; Belaire, J. A.; Minor, E.; Walker, H. A.

    2016-02-01

    Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing internet-based social networks, and use an existing traditional (survey-based) case study to illustrate in a familiar context the deviations in methods and results. Internet-based approaches to SNA offer a means to overcome institutional hurdles to conducting survey-based SNA, provide unique insight into an institution's web presences, allow for easy snowballing (iterative process that incorporates new nodes in the network), and afford monitoring of social networks through time. The internet-based approaches differ in link definition: hyperlink is based on links on a website that redirect to a different website and relatedness links are based on a Google's "relatedness" operator that identifies pages "similar" to a URL. All networks were initiated with the same start nodes [members of a conservation alliance for the Calumet region around Chicago ( n = 130)], but the resulting networks vary drastically from one another. Interpretation of the resulting networks is highly contingent upon how the links were defined.

  19. Mining human mobility in location-based social networks

    CERN Document Server

    Gao, Huiji

    2015-01-01

    In recent years, there has been a rapid growth of location-based social networking services, such as Foursquare and Facebook Places, which have attracted an increasing number of users and greatly enriched their urban experience. Typical location-based social networking sites allow a user to ""check in"" at a real-world POI (point of interest, e.g., a hotel, restaurant, theater, etc.), leave tips toward the POI, and share the check-in with their online friends. The check-in action bridges the gap between real world and online social networks, resulting in a new type of social networks, namely l

  20. A link prediction method for heterogeneous networks based on BP neural network

    Science.gov (United States)

    Li, Ji-chao; Zhao, Dan-ling; Ge, Bing-Feng; Yang, Ke-Wei; Chen, Ying-Wu

    2018-04-01

    Most real-world systems, composed of different types of objects connected via many interconnections, can be abstracted as various complex heterogeneous networks. Link prediction for heterogeneous networks is of great significance for mining missing links and reconfiguring networks according to observed information, with considerable applications in, for example, friend and location recommendations and disease-gene candidate detection. In this paper, we put forward a novel integrated framework, called MPBP (Meta-Path feature-based BP neural network model), to predict multiple types of links for heterogeneous networks. More specifically, the concept of meta-path is introduced, followed by the extraction of meta-path features for heterogeneous networks. Next, based on the extracted meta-path features, a supervised link prediction model is built with a three-layer BP neural network. Then, the solution algorithm of the proposed link prediction model is put forward to obtain predicted results by iteratively training the network. Last, numerical experiments on the dataset of examples of a gene-disease network and a combat network are conducted to verify the effectiveness and feasibility of the proposed MPBP. It shows that the MPBP with very good performance is superior to the baseline methods.

  1. Nearest Neighbor Networks: clustering expression data based on gene neighborhoods

    Directory of Open Access Journals (Sweden)

    Olszewski Kellen L

    2007-07-01

    Full Text Available Abstract Background The availability of microarrays measuring thousands of genes simultaneously across hundreds of biological conditions represents an opportunity to understand both individual biological pathways and the integrated workings of the cell. However, translating this amount of data into biological insight remains a daunting task. An important initial step in the analysis of microarray data is clustering of genes with similar behavior. A number of classical techniques are commonly used to perform this task, particularly hierarchical and K-means clustering, and many novel approaches have been suggested recently. While these approaches are useful, they are not without drawbacks; these methods can find clusters in purely random data, and even clusters enriched for biological functions can be skewed towards a small number of processes (e.g. ribosomes. Results We developed Nearest Neighbor Networks (NNN, a graph-based algorithm to generate clusters of genes with similar expression profiles. This method produces clusters based on overlapping cliques within an interaction network generated from mutual nearest neighborhoods. This focus on nearest neighbors rather than on absolute distance measures allows us to capture clusters with high connectivity even when they are spatially separated, and requiring mutual nearest neighbors allows genes with no sufficiently similar partners to remain unclustered. We compared the clusters generated by NNN with those generated by eight other clustering methods. NNN was particularly successful at generating functionally coherent clusters with high precision, and these clusters generally represented a much broader selection of biological processes than those recovered by other methods. Conclusion The Nearest Neighbor Networks algorithm is a valuable clustering method that effectively groups genes that are likely to be functionally related. It is particularly attractive due to its simplicity, its success in the

  2. Cointegration-based financial networks study in Chinese stock market

    Science.gov (United States)

    Tu, Chengyi

    2014-05-01

    We propose a method based on cointegration instead of correlation to construct financial complex network in Chinese stock market. The network is obtained starting from the matrix of p-value calculated by Engle-Granger cointegration test between all pairs of stocks. Then some tools for filtering information in complex network are implemented to prune the complete graph described by the above matrix, such as setting a level of statistical significance as a threshold and Planar Maximally Filtered Graph. We also calculate Partial Correlation Planar Graph of these stocks to compare the above networks. Last, we analyze these directed, weighted and non-symmetric networks by using standard methods of network analysis, including degree centrality, PageRank, HITS, local clustering coefficient, K-shell and strongly and weakly connected components. The results shed a new light on the underlying mechanisms and driving forces in a financial market and deepen our understanding of financial complex network.

  3. Multiagent Based Information Dissemination in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    S.S. Manvi

    2009-01-01

    Full Text Available Vehicular Ad hoc Networks (VANETs are a compelling application of ad hoc networks, because of the potential to access specific context information (e.g. traffic conditions, service updates, route planning and deliver multimedia services (Voice over IP, in-car entertainment, instant messaging, etc.. This paper proposes an agent based information dissemination model for VANETs. A two-tier agent architecture is employed comprising of the following: 1 'lightweight', network-facing, mobile agents; 2 'heavyweight', application-facing, norm-aware agents. The limitations of VANETs lead us to consider a hybrid wireless network architecture that includes Wireless LAN/Cellular and ad hoc networking for analyzing the proposed model. The proposed model provides flexibility, adaptability and maintainability for traffic information dissemination in VANETs as well as supports robust and agile network management. The proposed model has been simulated in various network scenarios to evaluate the effectiveness of the approach.

  4. Road Network Vulnerability Analysis Based on Improved Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2014-01-01

    Full Text Available We present an improved ant colony algorithm-based approach to assess the vulnerability of a road network and identify the critical infrastructures. This approach improves computational efficiency and allows for its applications in large-scale road networks. This research involves defining the vulnerability conception, modeling the traffic utility index and the vulnerability of the road network, and identifying the critical infrastructures of the road network. We apply the approach to a simple test road network and a real road network to verify the methodology. The results show that vulnerability is directly related to traffic demand and increases significantly when the demand approaches capacity. The proposed approach reduces the computational burden and may be applied in large-scale road network analysis. It can be used as a decision-supporting tool for identifying critical infrastructures in transportation planning and management.

  5. Service for fault tolerance in the Ad Hoc Networks based on Multi Agent Systems

    Directory of Open Access Journals (Sweden)

    Ghalem Belalem

    2011-02-01

    Full Text Available The Ad hoc networks are distributed networks, self-organized and does not require infrastructure. In such network, mobile infrastructures are subject of disconnections. This situation may concern a voluntary or involuntary disconnection of nodes caused by the high mobility in the Ad hoc network. In these problems we are trying through this work to contribute to solving these problems in order to ensure continuous service by proposing our service for faults tolerance based on Multi Agent Systems (MAS, which predict a problem and decision making in relation to critical nodes. Our work contributes to study the prediction of voluntary and involuntary disconnections in the Ad hoc network; therefore we propose our service for faults tolerance that allows for effective distribution of information in the Network by selecting some objects of the network to be duplicates of information.

  6. Vision-Based Fall Detection with Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Adrián Núñez-Marcos

    2017-01-01

    Full Text Available One of the biggest challenges in modern societies is the improvement of healthy aging and the support to older persons in their daily activities. In particular, given its social and economic impact, the automatic detection of falls has attracted considerable attention in the computer vision and pattern recognition communities. Although the approaches based on wearable sensors have provided high detection rates, some of the potential users are reluctant to wear them and thus their use is not yet normalized. As a consequence, alternative approaches such as vision-based methods have emerged. We firmly believe that the irruption of the Smart Environments and the Internet of Things paradigms, together with the increasing number of cameras in our daily environment, forms an optimal context for vision-based systems. Consequently, here we propose a vision-based solution using Convolutional Neural Networks to decide if a sequence of frames contains a person falling. To model the video motion and make the system scenario independent, we use optical flow images as input to the networks followed by a novel three-step training phase. Furthermore, our method is evaluated in three public datasets achieving the state-of-the-art results in all three of them.

  7. High-Dimensional Function Approximation With Neural Networks for Large Volumes of Data.

    Science.gov (United States)

    Andras, Peter

    2018-02-01

    Approximation of high-dimensional functions is a challenge for neural networks due to the curse of dimensionality. Often the data for which the approximated function is defined resides on a low-dimensional manifold and in principle the approximation of the function over this manifold should improve the approximation performance. It has been show that projecting the data manifold into a lower dimensional space, followed by the neural network approximation of the function over this space, provides a more precise approximation of the function than the approximation of the function with neural networks in the original data space. However, if the data volume is very large, the projection into the low-dimensional space has to be based on a limited sample of the data. Here, we investigate the nature of the approximation error of neural networks trained over the projection space. We show that such neural networks should have better approximation performance than neural networks trained on high-dimensional data even if the projection is based on a relatively sparse sample of the data manifold. We also find that it is preferable to use a uniformly distributed sparse sample of the data for the purpose of the generation of the low-dimensional projection. We illustrate these results considering the practical neural network approximation of a set of functions defined on high-dimensional data including real world data as well.

  8. Fibre and components induced limitations in high capacity optical networks

    DEFF Research Database (Denmark)

    Peucheret, Christophe

    2003-01-01

    The design of future all-optical networks relies on the knowledge of the physical layer transport properties. In this thesis, we focus on two types of system impairments: those induced by the non-ideal transfer functions of optical filters to be found in network elements such as optical add...... design in order to maximise the spectral efficiency in a four add-drop node ring network. The concept of "normalised transmission sections" is introduced in order to ease the dimensioning of transparent domains in future all-optical networks. Normalised sections based on standard single mode fibre (SMF......-drop multiplexers (OADM) and optical cross-connects (OXC), as well as those due to the interaction of group-velocity dispersion, optical fibre non-linearities and accumulation of amplifier noise in the transmission path. The dispersion of fibre optics components is shown to limit their cascadability. Dispersion...

  9. Performance of highly connected photonic switching lossless metro-access optical networks

    Science.gov (United States)

    Martins, Indayara Bertoldi; Martins, Yara; Barbosa, Felipe Rudge

    2018-03-01

    The present work analyzes the performance of photonic switching networks, optical packet switching (OPS) and optical burst switching (OBS), in mesh topology of different sizes and configurations. The "lossless" photonic switching node is based on a semiconductor optical amplifier, demonstrated and validated with experimental results on optical power gain, noise figure, and spectral range. The network performance was evaluated through computer simulations based on parameters such as average number of hops, optical packet loss fraction, and optical transport delay (Am). The combination of these elements leads to a consistent account of performance, in terms of network traffic and packet delivery for OPS and OBS metropolitan networks. Results show that a combination of highly connected mesh topologies having an ingress e-buffer present high efficiency and throughput, with very low packet loss and low latency, ensuring fast data delivery to the final receiver.

  10. Neural networks and cellular automata in experimental high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B

    1988-06-01

    Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature. Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition and high combinatorial complexity since many combinations of hits or cells must be considered in order to arrive at the final tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of experimental high energy physics. It is found that such problems as track and cluster finding adapt naturally to these approaches. When large scale hard-wired connective networks become available, it will be possible to realize solutions to such problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast trigger decisions.

  11. Neural networks and cellular automata in experimental high energy physics

    International Nuclear Information System (INIS)

    Denby, B.

    1987-11-01

    Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature. Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition and high combinatorial complexity since many combinations of hits or cells must be considered in order to arrive at the final tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of experimental high physics. It is found that such problems as track and cluster finding adapt naturally to these approaches. When large scale hardwired connective networks become available, it will be possible to realize solutions to such problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast trigger decisions

  12. Neural networks and cellular automata in experimental high energy physics

    International Nuclear Information System (INIS)

    Denby, B.

    1988-01-01

    Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature. Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition and high combinatorial complexity since many combinations of hits or cells must be considered in order to arrive at the final tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of experimental high energy physics. It is found that such problems as track and cluster finding adapt naturally to these approaches. When large scale hard-wired connective networks become available, it will be possible to realize solutions to such problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast trigger decisions. (orig.)

  13. Achieving high data throughput in research networks

    International Nuclear Information System (INIS)

    Matthews, W.; Cottrell, L.

    2001-01-01

    After less than a year of operation, the BaBar experiment at SLAC has collected almost 100 million particle collision events in a database approaching 165TB. Around 20 TB of data has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, and around 40TB of simulated data has been imported from the Lawrence Livermore National Laboratory (LLNL). BaBar collaborators plan to double data collection each year and export a third of the data to IN2P3. So within a few years the SLAC OC3 (155 Mbps) connection will be fully utilized by file transfer to France alone. Upgrades to infrastructure is essential and detailed understanding of performance issues and the requirements for reliable high throughput transfers is critical. In this talk results from active and passive monitoring and direct measurements of throughput will be reviewed. Methods for achieving the ambitious requirements will be discussed

  14. Achieving High Data Throughput in Research Networks

    International Nuclear Information System (INIS)

    Matthews, W

    2004-01-01

    After less than a year of operation, the BaBar experiment at SLAC has collected almost 100 million particle collision events in a database approaching 165TB. Around 20 TB of data has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, and around 40TB of simulated data has been imported from the Lawrence Livermore National Laboratory (LLNL). BaBar collaborators plan to double data collection each year and export a third of the data to IN2P3. So within a few years the SLAC OC3 (155Mbps) connection will be fully utilized by file transfer to France alone. Upgrades to infrastructure is essential and detailed understanding of performance issues and the requirements for reliable high throughput transfers is critical. In this talk results from active and passive monitoring and direct measurements of throughput will be reviewed. Methods for achieving the ambitious requirements will be discussed

  15. NM-Net Gigabit-based Implementation on Core Network Facilities and Performance Design Hierarchy

    International Nuclear Information System (INIS)

    Raja Murzaferi Raja Moktar; Mohd Fauzi Haris; Siti Nurbahyah Hamdan

    2013-01-01

    Nuclear Malaysia computing network or NM-net has been gradually developed since 1990s. Since then it has been the main backbone of inter networking on agency's IT infrastructure, serving users ranging from researchers to operational staffs. Main network operating center or NOC is situated in Block 15 and linkup via fiber or UTP cabling to adjacent main network blocks (18, 29, 11 and 44-Dengkil) and later to other blocks enabling network connections. In 2009 the main core network has been built up form several switches up link to form the main networking switch, while on the adjacent main block networks are mainly based on fast Ethernet technology . With current research and operational tasks highly dependent on IT infrastructure that is being enabled through NM-Net, the performance of the infrastructure are most critical. This paper will discuss NM-Net implementing gigabit-based networking system and performance network design hierarchy in order to achieve highest availability of inter networking services in the agency thus catalyzing Nuclear Malaysia future research initiative. (author)

  16. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Hong, Seunghun [Department of Physics and Astronomy, Seoul National University, Shilim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Park, June; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Jhon, Young Min, E-mail: mseong@cau.ac.kr, E-mail: shong@phya.snu.ac.kr [Korea Institute of Science and Technology, Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791 (Korea, Republic of)

    2010-02-05

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of {approx}1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  17. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    International Nuclear Information System (INIS)

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Hong, Seunghun; Park, June; Seong, Maeng-Je; Jhon, Young Min

    2010-01-01

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of ∼1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  18. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    Science.gov (United States)

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Park, June; Jhon, Young Min; Seong, Maeng-Je; Hong, Seunghun

    2010-02-01

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of ~1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  19. Fair and efficient network congestion control based on minority game

    Science.gov (United States)

    Wang, Zuxi; Wang, Wen; Hu, Hanping; Deng, Zhaozhang

    2011-12-01

    Low link utility, RTT unfairness and unfairness of Multi-Bottleneck network are the existing problems in the present network congestion control algorithms at large. Through the analogy of network congestion control with the "El Farol Bar" problem, we establish a congestion control model based on minority game(MG), and then present a novel network congestion control algorithm based on the model. The result of simulations indicates that the proposed algorithm can make the achievements of link utility closing to 100%, zero packet lose rate, and small of queue size. Besides, the RTT unfairness and the unfairness of Multi-Bottleneck network can be solved, to achieve the max-min fairness in Multi-Bottleneck network, while efficiently weaken the "ping-pong" oscillation caused by the overall synchronization.

  20. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  1. Reconstruction of biological networks based on life science data integration.

    Science.gov (United States)

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-10-27

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH--an integration toolkit for building life science data warehouses, CardioVINEdb--a information system for biological data in cardiovascular-disease and VANESA--a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  2. On global exponential stability of high-order neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Zhang Baoyong; Xu Shengyuan; Li Yongmin; Chu Yuming

    2007-01-01

    This Letter investigates the problem of stability analysis for a class of high-order neural networks with time-varying delays. The delays are bounded but not necessarily differentiable. Based on the Lyapunov stability theory together with the linear matrix inequality (LMI) approach and the use of Halanay inequality, sufficient conditions guaranteeing the global exponential stability of the equilibrium point of the considered neural networks are presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed stability criteria

  3. On global exponential stability of high-order neural networks with time-varying delays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Baoyong [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China)]. E-mail: baoyongzhang@yahoo.com.cn; Xu Shengyuan [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China)]. E-mail: syxu02@yahoo.com.cn; Li Yongmin [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China) and Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)]. E-mail: ymlwww@163.com; Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)

    2007-06-18

    This Letter investigates the problem of stability analysis for a class of high-order neural networks with time-varying delays. The delays are bounded but not necessarily differentiable. Based on the Lyapunov stability theory together with the linear matrix inequality (LMI) approach and the use of Halanay inequality, sufficient conditions guaranteeing the global exponential stability of the equilibrium point of the considered neural networks are presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed stability criteria.

  4. Optical supervised filtering technique based on Hopfield neural network

    Science.gov (United States)

    Bal, Abdullah

    2004-11-01

    Hopfield neural network is commonly preferred for optimization problems. In image segmentation, conventional Hopfield neural networks (HNN) are formulated as a cost-function-minimization problem to perform gray level thresholding on the image histogram or the pixels' gray levels arranged in a one-dimensional array [R. Sammouda, N. Niki, H. Nishitani, Pattern Rec. 30 (1997) 921-927; K.S. Cheng, J.S. Lin, C.W. Mao, IEEE Trans. Med. Imag. 15 (1996) 560-567; C. Chang, P. Chung, Image and Vision comp. 19 (2001) 669-678]. In this paper, a new high speed supervised filtering technique is proposed for image feature extraction and enhancement problems by modifying the conventional HNN. The essential improvement in this technique is to use 2D convolution operation instead of weight-matrix multiplication. Thereby, neural network based a new filtering technique has been obtained that is required just 3 × 3 sized filter mask matrix instead of large size weight coefficient matrix. Optical implementation of the proposed filtering technique is executed easily using the joint transform correlator. The requirement of non-negative data for optical implementation is provided by bias technique to convert the bipolar data to non-negative data. Simulation results of the proposed optical supervised filtering technique are reported for various feature extraction problems such as edge detection, corner detection, horizontal and vertical line extraction, and fingerprint enhancement.

  5. Scalable, ultra-resistant structural colors based on network metamaterials

    KAUST Repository

    Galinski, Henning

    2017-05-05

    Structural colors have drawn wide attention for their potential as a future printing technology for various applications, ranging from biomimetic tissues to adaptive camouflage materials. However, an efficient approach to realize robust colors with a scalable fabrication technique is still lacking, hampering the realization of practical applications with this platform. Here, we develop a new approach based on large-scale network metamaterials that combine dealloyed subwavelength structures at the nanoscale with lossless, ultra-thin dielectric coatings. By using theory and experiments, we show how subwavelength dielectric coatings control a mechanism of resonant light coupling with epsilon-near-zero regions generated in the metallic network, generating the formation of saturated structural colors that cover a wide portion of the spectrum. Ellipsometry measurements support the efficient observation of these colors, even at angles of 70°. The network-like architecture of these nanomaterials allows for high mechanical resistance, which is quantified in a series of nano-scratch tests. With such remarkable properties, these metastructures represent a robust design technology for real-world, large-scale commercial applications.

  6. A random spatial network model based on elementary postulates

    Science.gov (United States)

    Karlinger, Michael R.; Troutman, Brent M.

    1989-01-01

    A model for generating random spatial networks that is based on elementary postulates comparable to those of the random topology model is proposed. In contrast to the random topology model, this model ascribes a unique spatial specification to generated drainage networks, a distinguishing property of some network growth models. The simplicity of the postulates creates an opportunity for potential analytic investigations of the probabilistic structure of the drainage networks, while the spatial specification enables analyses of spatially dependent network properties. In the random topology model all drainage networks, conditioned on magnitude (number of first-order streams), are equally likely, whereas in this model all spanning trees of a grid, conditioned on area and drainage density, are equally likely. As a result, link lengths in the generated networks are not independent, as usually assumed in the random topology model. For a preliminary model evaluation, scale-dependent network characteristics, such as geometric diameter and link length properties, and topologic characteristics, such as bifurcation ratio, are computed for sets of drainage networks generated on square and rectangular grids. Statistics of the bifurcation and length ratios fall within the range of values reported for natural drainage networks, but geometric diameters tend to be relatively longer than those for natural networks.

  7. The Energy Coding of a Structural Neural Network Based on the Hodgkin-Huxley Model.

    Science.gov (United States)

    Zhu, Zhenyu; Wang, Rubin; Zhu, Fengyun

    2018-01-01

    Based on the Hodgkin-Huxley model, the present study established a fully connected structural neural network to simulate the neural activity and energy consumption of the network by neural energy coding theory. The numerical simulation result showed that the periodicity of the network energy distribution was positively correlated to the number of neurons and coupling strength, but negatively correlated to signal transmitting delay. Moreover, a relationship was established between the energy distribution feature and the synchronous oscillation of the neural network, which showed that when the proportion of negative energy in power consumption curve was high, the synchronous oscillation of the neural network was apparent. In addition, comparison with the simulation result of structural neural network based on the Wang-Zhang biophysical model of neurons showed that both models were essentially consistent.

  8. A Neural Network-Based Interval Pattern Matcher

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-07-01

    Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.

  9. Interconnection network architectures based on integrated orbital angular momentum emitters

    Science.gov (United States)

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  10. A simple network agreement-based approach for combining evidences in a heterogeneous sensor network

    Directory of Open Access Journals (Sweden)

    Raúl Eusebio-Grande

    2015-12-01

    Full Text Available In this research we investigate how the evidences provided by both static and mobile nodes that are part of a heterogenous sensor network can be combined to have trustworthy results. A solution relying on a network agreement-based approach was implemented and tested.

  11. Anomaly-based Network Intrusion Detection Methods

    Directory of Open Access Journals (Sweden)

    Pavel Nevlud

    2013-01-01

    Full Text Available The article deals with detection of network anomalies. Network anomalies include everything that is quite different from the normal operation. For detection of anomalies were used machine learning systems. Machine learning can be considered as a support or a limited type of artificial intelligence. A machine learning system usually starts with some knowledge and a corresponding knowledge organization so that it can interpret, analyse, and test the knowledge acquired. There are several machine learning techniques available. We tested Decision tree learning and Bayesian networks. The open source data-mining framework WEKA was the tool we used for testing the classify, cluster, association algorithms and for visualization of our results. The WEKA is a collection of machine learning algorithms for data mining tasks.

  12. Named data networking-based smart home

    Directory of Open Access Journals (Sweden)

    Syed Hassan Ahmed

    2016-09-01

    Full Text Available Named data networking (NDN treats content/data as a “first class citizen” of the network by giving it a “name”. This content “name” is used to retrieve any information, unlike in device-centric networks (i.e., the current Internet, which depend on physical IP addresses. Meanwhile, the smart home concept has been gaining attention in academia and industries; various low-cost embedded devices are considered that can sense, process, store, and communicate data autonomously. In this paper, we study NDN in the context of smart-home communications, discuss the preliminary evaluations, and describe the future challenges of applying NDN in smart-home applications.

  13. Design and implementation of interface units for high speed fiber optics local area networks and broadband integrated services digital networks

    Science.gov (United States)

    Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph

    1990-01-01

    The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.

  14. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  15. SNMS: an intelligent transportation system network architecture based on WSN and P2P network

    Institute of Scientific and Technical Information of China (English)

    LI Li; LIU Yuan-an; TANG Bi-hua

    2007-01-01

    With the development of city road networks, the question of how to obtain information about the roads is becoming more and more important. In this article, sensor network with mobile station (SNMS), a novel two-tiered intelligent transportation system (ITS) network architecture based on wireless sensor network (WSN) and peer-to-peer (P2P) network, is proposed to provide significant traffic information about the road and thereby, assist travelers to take optimum decisions when they are driving. A detailed explanation with regard to the strategy of each level as well as the design of two main components in the network, sensor unit (SU) and mobile station (MS), is presented. Finally, a representative scenario is described to display the operation of the system.

  16. APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    International Nuclear Information System (INIS)

    Ammendola, R; Salamon, A; Salina, G; Biagioni, A; Prezza, O; Cicero, F Lo; Lonardo, A; Paolucci, P S; Rossetti, D; Tosoratto, L; Vicini, P; Simula, F

    2011-01-01

    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera ® FPGA, are provided.

  17. APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R; Salamon, A; Salina, G [INFN Tor Vergata, Roma (Italy); Biagioni, A; Prezza, O; Cicero, F Lo; Lonardo, A; Paolucci, P S; Rossetti, D; Tosoratto, L; Vicini, P [INFN Roma, Roma (Italy); Simula, F [Sapienza Universita di Roma, Roma (Italy)

    2011-12-23

    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera{sup Registered-Sign} FPGA, are provided.

  18. Management of synchronized network activity by highly active neurons

    International Nuclear Information System (INIS)

    Shein, Mark; Raichman, Nadav; Ben-Jacob, Eshel; Volman, Vladislav; Hanein, Yael

    2008-01-01

    Increasing evidence supports the idea that spontaneous brain activity may have an important functional role. Cultured neuronal networks provide a suitable model system to search for the mechanisms by which neuronal spontaneous activity is maintained and regulated. This activity is marked by synchronized bursting events (SBEs)—short time windows (hundreds of milliseconds) of rapid neuronal firing separated by long quiescent periods (seconds). However, there exists a special subset of rapidly firing neurons whose activity also persists between SBEs. It has been proposed that these highly active (HA) neurons play an important role in the management (i.e. establishment, maintenance and regulation) of the synchronized network activity. Here, we studied the dynamical properties and the functional role of HA neurons in homogeneous and engineered networks, during early network development, upon recovery from chemical inhibition and in response to electrical stimulations. We found that their sequences of inter-spike intervals (ISI) exhibit long time correlations and a unimodal distribution. During the network's development and under intense inhibition, the observed activity follows a transition period during which mostly HA neurons are active. Studying networks with engineered geometry, we found that HA neurons are precursors (the first to fire) of the spontaneous SBEs and are more responsive to electrical stimulations

  19. Self-organized topology of recurrence-based complex networks

    International Nuclear Information System (INIS)

    Yang, Hui; Liu, Gang

    2013-01-01

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks

  20. Adaptive PID control based on orthogonal endocrine neural networks.

    Science.gov (United States)

    Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D

    2016-12-01

    A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    Science.gov (United States)

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  2. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  3. Identifying key nodes in multilayer networks based on tensor decomposition.

    Science.gov (United States)

    Wang, Dingjie; Wang, Haitao; Zou, Xiufen

    2017-06-01

    The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.

  4. Effectiveness of firefly algorithm based neural network in time series ...

    African Journals Online (AJOL)

    Effectiveness of firefly algorithm based neural network in time series forecasting. ... In the experiments, three well known time series were used to evaluate the performance. Results obtained were compared with ... Keywords: Time series, Artificial Neural Network, Firefly Algorithm, Particle Swarm Optimization, Overfitting ...

  5. Distributed network generation based on preferential attachment in ABS

    NARCIS (Netherlands)

    K. Azadbakht (Keyvan); N. Bezirgiannis (Nikolaos); F.S. de Boer (Frank)

    2017-01-01

    textabstractGeneration of social networks using Preferential Attachment (PA) mechanism is proposed in the Barabasi-Albert model. In this mechanism, new nodes are introduced to the network sequentially and they attach to the existing nodes preferentially where the preference can be based on the

  6. Optimization-based Method for Automated Road Network Extraction

    International Nuclear Information System (INIS)

    Xiong, D

    2001-01-01

    Automated road information extraction has significant applicability in transportation. It provides a means for creating, maintaining, and updating transportation network databases that are needed for purposes ranging from traffic management to automated vehicle navigation and guidance. This paper is to review literature on the subject of road extraction and to describe a study of an optimization-based method for automated road network extraction

  7. Energy-Efficient Cluster Based Routing Protocol in Mobile Ad Hoc Networks Using Network Coding

    Directory of Open Access Journals (Sweden)

    Srinivas Kanakala

    2014-01-01

    Full Text Available In mobile ad hoc networks, all nodes are energy constrained. In such situations, it is important to reduce energy consumption. In this paper, we consider the issues of energy efficient communication in MANETs using network coding. Network coding is an effective method to improve the performance of wireless networks. COPE protocol implements network coding concept to reduce number of transmissions by mixing the packets at intermediate nodes. We incorporate COPE into cluster based routing protocol to further reduce the energy consumption. The proposed energy-efficient coding-aware cluster based routing protocol (ECCRP scheme applies network coding at cluster heads to reduce number of transmissions. We also modify the queue management procedure of COPE protocol to further improve coding opportunities. We also use an energy efficient scheme while selecting the cluster head. It helps to increase the life time of the network. We evaluate the performance of proposed energy efficient cluster based protocol using simulation. Simulation results show that the proposed ECCRP algorithm reduces energy consumption and increases life time of the network.

  8. Social networking for web-based communities

    NARCIS (Netherlands)

    Issa, T.; Kommers, Petrus A.M.

    2013-01-01

    In the 21st century, a new technology was introduced to facilitate communication, collaboration, and interaction between individuals and businesses. This technology is called social networking; this technology is now part of Internet commodities like email, browsing and blogging. From the 20th

  9. Ontology-Based Peer Exchange Network (OPEN)

    Science.gov (United States)

    Dong, Hui

    2010-01-01

    In current Peer-to-Peer networks, distributed and semantic free indexing is widely used by systems adopting "Distributed Hash Table" ("DHT") mechanisms. Although such systems typically solve a. user query rather fast in a deterministic way, they only support a very narrow search scheme, namely the exact hash key match. Furthermore, DHT systems put…

  10. Two port network analysis for three impedance based oscillators

    KAUST Repository

    Said, Lobna A.

    2011-12-01

    Two-port network representations are applied to analyze complex networks which can be dissolved into sub-networks connected in series, parallel or cascade. In this paper, the concept of two-port network has been studied for oscillators. Three impedance oscillator based on two port concept has been analyzed using different impedance structures. The effect of each structure on the oscillation condition and the frequency of oscillation have been introduced. Two different implementations using MOS and BJT have been introduced. © 2011 IEEE.

  11. Choosing a heuristic and root node for edge ordering in BDD-based network reliability analysis

    International Nuclear Information System (INIS)

    Mo, Yuchang; Xing, Liudong; Zhong, Farong; Pan, Zhusheng; Chen, Zhongyu

    2014-01-01

    In the Binary Decision Diagram (BDD)-based network reliability analysis, heuristics have been widely used to obtain a reasonably good ordering of edge variables. Orderings generated using different heuristics can lead to dramatically different sizes of BDDs, and thus dramatically different running times and memory usages for the analysis of the same network. Unfortunately, due to the nature of the ordering problem (i.e., being an NP-complete problem) no formal guidelines or rules are available for choosing a good heuristic or for choosing a high-performance root node to perform edge searching using a particular heuristic. In this work, we make novel contributions by proposing heuristic and root node selection methods based on the concept of boundary sets for the BDD-based network reliability analysis. Empirical studies show that the proposed selection methods can help to generate high-performance edge ordering for most of studied cases, enabling the efficient BDD-based reliability analysis of large-scale networks. The proposed methods are demonstrated on different types of networks, including square lattice networks, torus lattice networks and de Bruijn networks

  12. Evaluation of High-Performance Network Technologies for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, K.; Kolaric, P.; Sabjan, R.; Zagar, A. [Cosylab d.d., Ljubljana (Slovenia); Hunt, S. [Alceli Hunt Beratung, Meisterschwanden (Switzerland)

    2009-07-01

    To facilitate fast feedback control of plasma, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, four types of high-performance communication have been identified. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024*1024) and frame rate (30 Hz). In this article, we present some combinations of common off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time LINUS operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming. This document is composed of an abstract followed by the presentation transparencies. (authors)

  13. Evaluation of high-performance network technologies for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, K., E-mail: klemen.zagar@cosylab.co [Cosylab d.d., 1000 Ljubljana (Slovenia); Hunt, S. [Alceli Hunt Beratung, 5616 Meisterschwanden (Switzerland); Kolaric, P.; Sabjan, R.; Zagar, A.; Dedic, J. [Cosylab d.d., 1000 Ljubljana (Slovenia)

    2010-07-15

    For the fast feedback plasma controllers, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, the ITER CODAC team identified four types of high-performance communication applications. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio-Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024 x 1024) and frame rate (30 Hz). In this article, we present some combinations of common-off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time Linux operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming.

  14. Evaluation of high-performance network technologies for ITER

    International Nuclear Information System (INIS)

    Zagar, K.; Hunt, S.; Kolaric, P.; Sabjan, R.; Zagar, A.; Dedic, J.

    2010-01-01

    For the fast feedback plasma controllers, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, the ITER CODAC team identified four types of high-performance communication applications. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio-Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024 x 1024) and frame rate (30 Hz). In this article, we present some combinations of common-off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time Linux operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming.

  15. Hybrid network defense model based on fuzzy evaluation.

    Science.gov (United States)

    Cho, Ying-Chiang; Pan, Jen-Yi

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  16. Face recognition based on improved BP neural network

    Directory of Open Access Journals (Sweden)

    Yue Gaili

    2017-01-01

    Full Text Available In order to improve the recognition rate of face recognition, face recognition algorithm based on histogram equalization, PCA and BP neural network is proposed. First, the face image is preprocessed by histogram equalization. Then, the classical PCA algorithm is used to extract the features of the histogram equalization image, and extract the principal component of the image. And then train the BP neural network using the trained training samples. This improved BP neural network weight adjustment method is used to train the network because the conventional BP algorithm has the disadvantages of slow convergence, easy to fall into local minima and training process. Finally, the BP neural network with the test sample input is trained to classify and identify the face images, and the recognition rate is obtained. Through the use of ORL database face image simulation experiment, the analysis results show that the improved BP neural network face recognition method can effectively improve the recognition rate of face recognition.

  17. Web-based networking within the framework of ANENT

    International Nuclear Information System (INIS)

    Han, K.W.; Lee, E.J.; Kim, Y.T.; Nam, Y.M.; Kim, H.K.

    2004-01-01

    The Korea Atomic Energy Research Institute (KAERI) is actively participating in the Asian Network for Education in Nuclear Technology (ANENT), which is an IAEA activity to promote nuclear knowledge management. This has led KAERI to conduct a web-based networking for nuclear education and training in Asia. The networking encompasses the establishment of a relevant website and a system for a sustainable operation of the website. The established ANENT website features function as a database providing collected information, a link facilitating a systematic worldwide access to relevant websites, and an activity implementation for supporting the individual tasks of ANENT. The required information is being collected and loaded onto the database, and the website will be improved step by step. Consequently, networking is expected to play an important role, through cooperating with other networks, and thus contributing to a future global network for a sustainable development of nuclear technology. (author)

  18. Physical parameters collection based on wireless senor network

    Science.gov (United States)

    Chen, Xin; Wu, Hong; Ji, Lei

    2013-12-01

    With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.

  19. Rumor Diffusion in an Interests-Based Dynamic Social Network

    Directory of Open Access Journals (Sweden)

    Mingsheng Tang

    2013-01-01

    Full Text Available To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1 positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2 with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3 a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4 a network with a smaller clustering coefficient has a larger efficiency.

  20. The Influence of Social Networks on High School Students' Performance

    Science.gov (United States)

    Abu-Shanab, Emad; Al-Tarawneh, Heyam

    2015-01-01

    Social networks are becoming an integral part of people's lives. Students are spending much time on social media and are considered the largest category that uses such application. This study tries to explore the influence of social media use, and especially Facebook, on high school students' performance. The study used the GPA of students in four…

  1. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  2. Copula-based modeling of degree-correlated networks

    International Nuclear Information System (INIS)

    Raschke, Mathias; Schläpfer, Markus; Trantopoulos, Konstantinos

    2014-01-01

    Dynamical processes on complex networks such as information exchange, innovation diffusion, cascades in financial networks or epidemic spreading are highly affected by their underlying topologies as characterized by, for instance, degree–degree correlations. Here, we introduce the concept of copulas in order to generate random networks with an arbitrary degree distribution and a rich a priori degree–degree correlation (or ‘association’) structure. The accuracy of the proposed formalism and corresponding algorithm is numerically confirmed, while the method is tested on a real-world network of yeast protein–protein interactions. The derived network ensembles can be systematically deployed as proper null models, in order to unfold the complex interplay between the topology of real-world networks and the dynamics on top of them. (paper)

  3. Predicting commuter flows in spatial networks using a radiation model based on temporal ranges

    Science.gov (United States)

    Ren, Yihui; Ercsey-Ravasz, Mária; Wang, Pu; González, Marta C.; Toroczkai, Zoltán

    2014-11-01

    Understanding network flows such as commuter traffic in large transportation networks is an ongoing challenge due to the complex nature of the transportation infrastructure and human mobility. Here we show a first-principles based method for traffic prediction using a cost-based generalization of the radiation model for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events.

  4. Smoking-based selection and influence in gender-segregated friendship networks: a social network analysis of adolescent smoking.

    Science.gov (United States)

    Mercken, Liesbeth; Snijders, Tom A B; Steglich, Christian; Vertiainen, Erkki; de Vries, Hein

    2010-07-01

    The main goal of this study was to examine differences between adolescent male and female friendship networks regarding smoking-based selection and influence processes using newly developed social network analysis methods that allow the current state of continuously changing friendship networks to act as a dynamic constraint for changes in smoking behaviour, while allowing current smoking behaviour to be simultaneously a dynamic constraint for changes in friendship networks. Longitudinal design with four measurements. Nine junior high schools in Finland. A total of 1163 adolescents (mean age = 13.6 years) who participated in the control group of the ESFA (European Smoking prevention Framework Approach) study, including 605 males and 558 females. Smoking behaviour of adolescents, parents, siblings and friendship ties. Smoking-based selection of friends was found in male as well as female networks. However, support for influence among friends was found only in female networks. Furthermore, females and males were both influenced by parental smoking behaviour. In Finnish adolescents, both male and female smokers tend to select other smokers as friends but it appears that only females are influenced to smoke by their peer group. This suggests that prevention campaigns targeting resisting peer pressure may be more effective in adolescent girls than boys.

  5. System, apparatus and methods to implement high-speed network analyzers

    Science.gov (United States)

    Ezick, James; Lethin, Richard; Ros-Giralt, Jordi; Szilagyi, Peter; Wohlford, David E

    2015-11-10

    Systems, apparatus and methods for the implementation of high-speed network analyzers are provided. A set of high-level specifications is used to define the behavior of the network analyzer emitted by a compiler. An optimized inline workflow to process regular expressions is presented without sacrificing the semantic capabilities of the processing engine. An optimized packet dispatcher implements a subset of the functions implemented by the network analyzer, providing a fast and slow path workflow used to accelerate specific processing units. Such dispatcher facility can also be used as a cache of policies, wherein if a policy is found, then packet manipulations associated with the policy can be quickly performed. An optimized method of generating DFA specifications for network signatures is also presented. The method accepts several optimization criteria, such as min-max allocations or optimal allocations based on the probability of occurrence of each signature input bit.

  6. Distribution Networks Management with High Penetration of Photovoltaic Panels

    DEFF Research Database (Denmark)

    Morais, Hugo

    2013-01-01

    The photovoltaic solar panels penetration increases significantly in recent years in several European countries, mainly in the low voltage and medium voltage networks supported by governmental policies and incentives. Consequently, the acquisition and installation costs of PV panels decrease...... and the know–how increase significantly. Presently is important the use of new management methodologies in distribution networks to support the growing penetration of PV panels. In some countries, like in Germany and in Italy, the solar generation based in photovoltaic panels supply 40% of the demand in some...

  7. Hemispheric asymmetry of electroencephalography-based functional brain networks.

    Science.gov (United States)

    Jalili, Mahdi

    2014-11-12

    Electroencephalography (EEG)-based functional brain networks have been investigated frequently in health and disease. It has been shown that a number of graph theory metrics are disrupted in brain disorders. EEG-based brain networks are often studied in the whole-brain framework, where all the nodes are grouped into a single network. In this study, we studied the brain networks in two hemispheres and assessed whether there are any hemispheric-specific patterns in the properties of the networks. To this end, resting state closed-eyes EEGs from 44 healthy individuals were processed and the network structures were extracted separately for each hemisphere. We examined neurophysiologically meaningful graph theory metrics: global and local efficiency measures. The global efficiency did not show any hemispheric asymmetry, whereas the local connectivity showed rightward asymmetry for a range of intermediate density values for the constructed networks. Furthermore, the age of the participants showed significant direct correlations with the global efficiency of the left hemisphere, but only in the right hemisphere, with local connectivity. These results suggest that only local connectivity of EEG-based functional networks is associated with brain hemispheres.

  8. A highly crystalline single Au wire network as a high temperature transparent heater

    Science.gov (United States)

    Rao, K. D. M.; Kulkarni, Giridhar U.

    2014-05-01

    A transparent conductor which can generate high temperatures finds important applications in optoelectronics. In this article, a wire network made of Au on quartz is shown to serve as an effective high temperature transparent heater. The heater has been fabricated by depositing Au onto a cracked sacrificial template. The highly interconnected Au wire network thus formed exhibited a transmittance of ~87% in a wide spectral range with a sheet resistance of 5.4 Ω □-1. By passing current through the network, it could be joule heated to ~600 °C within a few seconds. The extraordinary thermal performance and stability owe much to the seamless junctions present in the wire network. Furthermore, the wire network gets self-annealed through joule heating as seen from its increased crystallinity. Interestingly, both transmittance and sheet resistance improved following annealing to 92% and 3.2 Ω □-1, respectively. A transparent conductor which can generate high temperatures finds important applications in optoelectronics. In this article, a wire network made of Au on quartz is shown to serve as an effective high temperature transparent heater. The heater has been fabricated by depositing Au onto a cracked sacrificial template. The highly interconnected Au wire network thus formed exhibited a transmittance of ~87% in a wide spectral range with a sheet resistance of 5.4 Ω □-1. By passing current through the network, it could be joule heated to ~600 °C within a few seconds. The extraordinary thermal performance and stability owe much to the seamless junctions present in the wire network. Furthermore, the wire network gets self-annealed through joule heating as seen from its increased crystallinity. Interestingly, both transmittance and sheet resistance improved following annealing to 92% and 3.2 Ω □-1, respectively. Electronic supplementary information (ESI) available: Optical micrographs, EDAX, XRD, SEM and TEM images of Au metal wires. See DOI: 10.1039/c4nr00869c

  9. Adaptive Learning Rule for Hardware-based Deep Neural Networks Using Electronic Synapse Devices

    OpenAIRE

    Lim, Suhwan; Bae, Jong-Ho; Eum, Jai-Ho; Lee, Sungtae; Kim, Chul-Heung; Kwon, Dongseok; Park, Byung-Gook; Lee, Jong-Ho

    2017-01-01

    In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network (HW-DNN) using electronic devices that exhibit discrete and limited conductance characteristics. This adaptive learning rule, which enables forward, backward propagation, as well as weight updates in hardware, is helpful during the implementation of power-efficient and high-speed deep neural networks. In simulations using a three-layer perceptron net...

  10. Novel anti-jamming technique for OCDMA network through FWM in SOA based wavelength converter

    Science.gov (United States)

    Jyoti, Vishav; Kaler, R. S.

    2013-06-01

    In this paper, we propose a novel anti-jamming technique for optical code division multiple access (OCDMA) network through four wave mixing (FWM) in semiconductor optical amplifier (SOA) based wavelength converter. OCDMA signal can be easily jammed with high power jamming signal. It is shown that wavelength conversion through four wave mixing in SOA has improved capability of jamming resistance. It is observed that jammer has no effect on OCDMA network even at high jamming powers by using the proposed technique.

  11. A network-based dynamical ranking system for competitive sports

    Science.gov (United States)

    Motegi, Shun; Masuda, Naoki

    2012-12-01

    From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking system predicts the outcome of the future games with a higher accuracy than the static counterparts.

  12. An FPGA-based torus communication network

    Energy Technology Data Exchange (ETDEWEB)

    Pivanti, Marcello; Schifano, Sebastiano Fabio [INFN, Ferrara (Italy); Ferrara Univ. (Italy); Simma, Hubert [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC

    2011-02-15

    We describe the design and FPGA implementation of a 3D torus network (TNW) to provide nearest-neighbor communications between commodity multi-core processors. The aim of this project is to build up tightly interconnected and scalable parallel systems for scientific computing. The design includes the VHDL code to implement on latest FPGA devices a network processor, which can be accessed by the CPU through a PCIe interface and which controls the external PHYs of the physical links. Moreover, a Linux driver and a library implementing custom communication APIs are provided. The TNW has been successfully integrated in two recent parallel machine projects, QPACE and AuroraScience. We describe some details of the porting of the TNW for the AuroraScience system and report performance results. (orig.)

  13. An FPGA-based torus communication network

    International Nuclear Information System (INIS)

    Pivanti, Marcello; Schifano, Sebastiano Fabio; Simma, Hubert

    2011-02-01

    We describe the design and FPGA implementation of a 3D torus network (TNW) to provide nearest-neighbor communications between commodity multi-core processors. The aim of this project is to build up tightly interconnected and scalable parallel systems for scientific computing. The design includes the VHDL code to implement on latest FPGA devices a network processor, which can be accessed by the CPU through a PCIe interface and which controls the external PHYs of the physical links. Moreover, a Linux driver and a library implementing custom communication APIs are provided. The TNW has been successfully integrated in two recent parallel machine projects, QPACE and AuroraScience. We describe some details of the porting of the TNW for the AuroraScience system and report performance results. (orig.)

  14. COAP BASED ACUTE PARKING LOT MONITORING SYSTEM USING SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    R. Aarthi

    2014-06-01

    Full Text Available Vehicle parking is the act of temporarily maneuvering a vehicle in to a certain location. To deal with parking monitoring system issue such as traffic, this paper proposes a vision of improvements in monitoring the vehicles in parking lots based on sensor networks. Most of the existing paper deals with that of the automated parking which is of cluster based and each has its own overheads like high power, less energy efficiency, incompatible size of lots, space. The novel idea in this work is usage of CoAP (Constrained Application Protocol which is recently created by IETF (draft-ietf-core-coap-18, June 28, 2013, CoRE group to develop RESTful application layer protocol for communications within embedded wireless networks. This paper deals with the enhanced CoAP protocol using multi hop flat topology, which makes the acuters feel soothe towards parking vehicles. We aim to minimize the time consumed for finding free parking lot as well as increase the energy efficiency

  15. AdaBoost-based algorithm for network intrusion detection.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  16. Social Networking as a Strategic Tool in the Management of School-Based Violence

    Science.gov (United States)

    Eke, Chidi Idi; Singh, Shakila

    2018-01-01

    School-based violence is serious, and on the rise in South African schools. The violence affects learners, teachers, communities and the management of schools. Towards finding possible ways to manage school violence, this article presents social networking as a strategic tool in the management of school-based violence in high schools, based on the…

  17. A precise clock distribution network for MRPC-based experiments

    International Nuclear Information System (INIS)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-01-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  18. Receiver-Assisted Congestion Control to Achieve High Throughput in Lossy Wireless Networks

    Science.gov (United States)

    Shi, Kai; Shu, Yantai; Yang, Oliver; Luo, Jiarong

    2010-04-01

    Many applications would require fast data transfer in high-speed wireless networks nowadays. However, due to its conservative congestion control algorithm, Transmission Control Protocol (TCP) cannot effectively utilize the network capacity in lossy wireless networks. In this paper, we propose a receiver-assisted congestion control mechanism (RACC) in which the sender performs loss-based control, while the receiver is performing delay-based control. The receiver measures the network bandwidth based on the packet interarrival interval and uses it to compute a congestion window size deemed appropriate for the sender. After receiving the advertised value feedback from the receiver, the sender then uses the additive increase and multiplicative decrease (AIMD) mechanism to compute the correct congestion window size to be used. By integrating the loss-based and the delay-based congestion controls, our mechanism can mitigate the effect of wireless losses, alleviate the timeout effect, and therefore make better use of network bandwidth. Simulation and experiment results in various scenarios show that our mechanism can outperform conventional TCP in high-speed and lossy wireless environments.

  19. On cooperative and efficient overlay network evolution based on a group selection pattern.

    Science.gov (United States)

    Nakao, Akihiro; Wang, Yufeng

    2010-04-01

    In overlay networks, the interplay between network structure and dynamics remains largely unexplored. In this paper, we study dynamic coevolution between individual rational strategies (cooperative or defect) and the overlay network structure, that is, the interaction between peer's local rational behaviors and the emergence of the whole network structure. We propose an evolutionary game theory (EGT)-based overlay topology evolution scheme to drive a given overlay into the small-world structure (high global network efficiency and average clustering coefficient). Our contributions are the following threefold: From the viewpoint of peers' local interactions, we explicitly consider the peer's rational behavior and introduce a link-formation game to characterize the social dilemma of forming links in an overlay network. Furthermore, in the evolutionary link-formation phase, we adopt a simple economic process: Each peer keeps one link to a cooperative neighbor in its neighborhood, which can slightly speed up the convergence of cooperation and increase network efficiency; from the viewpoint of the whole network structure, our simulation results show that the EGT-based scheme can drive an arbitrary overlay network into a fully cooperative and efficient small-world structure. Moreover, we compare our scheme with a search-based economic model of network formation and illustrate that our scheme can achieve the experimental and analytical results in the latter model. In addition, we also graphically illustrate the final overlay network structure; finally, based on the group selection model and evolutionary set theory, we theoretically obtain the approximate threshold of cost and draw the conclusion that the small value of the average degree and the large number of the total peers in an overlay network facilitate the evolution of cooperation.

  20. UCLA High Speed, High Volume Laboratory Network for Infectious Diseases

    Science.gov (United States)

    2008-04-01

    of Human Influenza A( H1N2 ) Reassortant Viruses during the 2001–2002 Influenza Season. Journal Infectious Diseases 2002;186:1490–1493...X, Smith CB, Mungall BA, Lindstrom SE, Hall HE, Subbarao K, et al. Intercontinental circulation of human influenza A( H1N2 ) reas- sortant viruses...numerous samples containing highly pathologic avian influenza and other select agents (dual-use). With FY07 (available), FY08 (available) and FY 09

  1. Ensemble of classifiers based network intrusion detection system performance bound

    CSIR Research Space (South Africa)

    Mkuzangwe, Nenekazi NP

    2017-11-01

    Full Text Available This paper provides a performance bound of a network intrusion detection system (NIDS) that uses an ensemble of classifiers. Currently researchers rely on implementing the ensemble of classifiers based NIDS before they can determine the performance...

  2. Text mining and network analysis to find functional associations of genes in high altitude diseases.

    Science.gov (United States)

    Bhasuran, Balu; Subramanian, Devika; Natarajan, Jeyakumar

    2018-05-02

    Travel to elevations above 2500 m is associated with the risk of developing one or more forms of acute altitude illness such as acute mountain sickness (AMS), high altitude cerebral edema (HACE) or high altitude pulmonary edema (HAPE). Our work aims to identify the functional association of genes involved in high altitude diseases. In this work we identified the gene networks responsible for high altitude diseases by using the principle of gene co-occurrence statistics from literature and network analysis. First, we mined the literature data from PubMed on high-altitude diseases, and extracted the co-occurring gene pairs. Next, based on their co-occurrence frequency, gene pairs were ranked. Finally, a gene association network was created using statistical measures to explore potential relationships. Network analysis results revealed that EPO, ACE, IL6 and TNF are the top five genes that were found to co-occur with 20 or more genes, while the association between EPAS1 and EGLN1 genes is strongly substantiated. The network constructed from this study proposes a large number of genes that work in-toto in high altitude conditions. Overall, the result provides a good reference for further study of the genetic relationships in high altitude diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Artificial neural networks based predictive model for worker ...

    African Journals Online (AJOL)

    ... meet highly dynamic production conditions in terms of demand, processing times, ... network has been formulated on worker assignment for VCMS under dual ... to generate simulated datasets that drive the training process of proposed ANN ...

  4. Supply Networks and Value Creation in High Innovation and Strong Network Externalities Industry

    Directory of Open Access Journals (Sweden)

    Fernando Claro Tomaselli

    2013-12-01

    Full Text Available The rapid developing product and service markets and developments in information technologies have accelerated growth in outsourcing of peripheral activities and critical business as well, enhancing the importance of network supply chain management. This paper analyzes the dynamics of supply chain management and the creation of value in an industry with strong network effects and constantly introduction of disruptive technologies, the videogame industry. This industry evolves at a high velocity, with a lifecycle of five to six years for consoles, which features a new generation of consoles, where new companies and technologies appear and disappear at each generation.

  5. Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks

    Directory of Open Access Journals (Sweden)

    Martin Florian

    2012-05-01

    Full Text Available Abstract Background High-throughput measurement technologies produce data sets that have the potential to elucidate the biological impact of disease, drug treatment, and environmental agents on humans. The scientific community faces an ongoing challenge in the analysis of these rich data sources to more accurately characterize biological processes that have been perturbed at the mechanistic level. Here, a new approach is built on previous methodologies in which high-throughput data was interpreted using prior biological knowledge of cause and effect relationships. These relationships are structured into network models that describe specific biological processes, such as inflammatory signaling or cell cycle progression. This enables quantitative assessment of network perturbation in response to a given stimulus. Results Four complementary methods were devised to quantify treatment-induced activity changes in processes described by network models. In addition, companion statistics were developed to qualify significance and specificity of the results. This approach is called Network Perturbation Amplitude (NPA scoring because the amplitudes of treatment-induced perturbations are computed for biological network models. The NPA methods were tested on two transcriptomic data sets: normal human bronchial epithelial (NHBE cells treated with the pro-inflammatory signaling mediator TNFα, and HCT116 colon cancer cells treated with the CDK cell cycle inhibitor R547. Each data set was scored against network models representing different aspects of inflammatory signaling and cell cycle progression, and these scores were compared with independent measures of pathway activity in NHBE cells to verify the approach. The NPA scoring method successfully quantified the amplitude of TNFα-induced perturbation for each network model when compared against NF-κB nuclear localization and cell number. In addition, the degree and specificity to which CDK

  6. Highball: A high speed, reserved-access, wide area network

    Science.gov (United States)

    Mills, David L.; Boncelet, Charles G.; Elias, John G.; Schragger, Paul A.; Jackson, Alden W.

    1990-01-01

    A network architecture called Highball and a preliminary design for a prototype, wide-area data network designed to operate at speeds of 1 Gbps and beyond are described. It is intended for applications requiring high speed burst transmissions where some latency between requesting a transmission and granting the request can be anticipated and tolerated. Examples include real-time video and disk-disk transfers, national filestore access, remote sensing, and similar applications. The network nodes include an intelligent crossbar switch, but have no buffering capabilities; thus, data must be queued at the end nodes. There are no restrictions on the network topology, link speeds, or end-end protocols. The end system, nodes, and links can operate at any speed up to the limits imposed by the physical facilities. An overview of an initial design approach is presented and is intended as a benchmark upon which a detailed design can be developed. It describes the network architecture and proposed access protocols, as well as functional descriptions of the hardware and software components that could be used in a prototype implementation. It concludes with a discussion of additional issues to be resolved in continuing stages of this project.

  7. Trojan detection model based on network behavior analysis

    International Nuclear Information System (INIS)

    Liu Junrong; Liu Baoxu; Wang Wenjin

    2012-01-01

    Based on the analysis of existing Trojan detection technology, this paper presents a Trojan detection model based on network behavior analysis. First of all, we abstract description of the Trojan network behavior, then according to certain rules to establish the characteristic behavior library, and then use the support vector machine algorithm to determine whether a Trojan invasion. Finally, through the intrusion detection experiments, shows that this model can effectively detect Trojans. (authors)

  8. Passive and Active Monitoring on a High Performance Research Network

    International Nuclear Information System (INIS)

    Matthews, Warren

    2001-01-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10 12 ). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data

  9. Passive and Active Monitoring on a High Performance Research Network.

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Warren

    2001-05-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.

  10. Theory of fractional order elements based impedance matching networks

    KAUST Repository

    Radwan, Ahmed G.

    2011-03-01

    Fractional order circuit elements (inductors and capacitors) based impedance matching networks are introduced for the first time. In comparison to the conventional integer based L-type matching networks, fractional matching networks are much simpler and versatile. Any complex load can be matched utilizing a single series fractional element, which generally requires two elements for matching in the conventional approach. It is shown that all the Smith chart circles (resistance and reactance) are actually pairs of completely identical circles. They appear to be single for the conventional integer order case, where the identical circles completely overlap each other. The concept is supported by design equations and impedance matching examples. © 2010 IEEE.

  11. Supervised Learning Based on Temporal Coding in Spiking Neural Networks.

    Science.gov (United States)

    Mostafa, Hesham

    2017-08-01

    Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.

  12. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  13. Reliability analysis of cluster-based ad-hoc networks

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2008-01-01

    The mobile ad-hoc wireless network (MAWN) is a new and emerging network scheme that is being employed in a variety of applications. The MAWN varies from traditional networks because it is a self-forming and dynamic network. The MAWN is free of infrastructure and, as such, only the mobile nodes comprise the network. Pairs of nodes communicate either directly or through other nodes. To do so, each node acts, in turn, as a source, destination, and relay of messages. The virtue of a MAWN is the flexibility this provides; however, the challenge for reliability analyses is also brought about by this unique feature. The variability and volatility of the MAWN configuration makes typical reliability methods (e.g. reliability block diagram) inappropriate because no single structure or configuration represents all manifestations of a MAWN. For this reason, new methods are being developed to analyze the reliability of this new networking technology. New published methods adapt to this feature by treating the configuration probabilistically or by inclusion of embedded mobility models. This paper joins both methods together and expands upon these works by modifying the problem formulation to address the reliability analysis of a cluster-based MAWN. The cluster-based MAWN is deployed in applications with constraints on networking resources such as bandwidth and energy. This paper presents the problem's formulation, a discussion of applicable reliability metrics for the MAWN, and illustration of a Monte Carlo simulation method through the analysis of several example networks

  14. Mutual information-based LPI optimisation for radar network

    Science.gov (United States)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  15. Topological Embedding Feature Based Resource Allocation in Network Virtualization

    Directory of Open Access Journals (Sweden)

    Hongyan Cui

    2014-01-01

    Full Text Available Virtualization provides a powerful way to run multiple virtual networks on a shared substrate network, which needs accurate and efficient mathematical models. Virtual network embedding is a challenge in network virtualization. In this paper, considering the degree of convergence when mapping a virtual network onto substrate network, we propose a new embedding algorithm based on topology mapping convergence-degree. Convergence-degree means the adjacent degree of virtual network’s nodes when they are mapped onto a substrate network. The contributions of our method are as below. Firstly, we map virtual nodes onto the substrate nodes with the maximum convergence-degree. The simulation results show that our proposed algorithm largely enhances the network utilization efficiency and decreases the complexity of the embedding problem. Secondly, we define the load balance rate to reflect the load balance of substrate links. The simulation results show our proposed algorithm achieves better load balance. Finally, based on the feature of star topology, we further improve our embedding algorithm and make it suitable for application in the star topology. The test result shows it gets better performance than previous works.

  16. Achieving high aspect ratio wrinkles by modifying material network stress.

    Science.gov (United States)

    Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J

    2017-06-07

    Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.

  17. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.

    Science.gov (United States)

    Gu, Weiwei; Gong, Li; Lou, Xiaodan; Zhang, Jiang

    2017-10-13

    Network embedding which encodes all vertices in a network as a set of numerical vectors in accordance with it's local and global structures, has drawn widespread attention. Network embedding not only learns significant features of a network, such as the clustering and linking prediction but also learns the latent vector representation of the nodes which provides theoretical support for a variety of applications, such as visualization, link prediction, node classification, and recommendation. As the latest progress of the research, several algorithms based on random walks have been devised. Although those algorithms have drawn much attention for their high scores in learning efficiency and accuracy, there is still a lack of theoretical explanation, and the transparency of those algorithms has been doubted. Here, we propose an approach based on the open-flow network model to reveal the underlying flow structure and its hidden metric space of different random walk strategies on networks. We show that the essence of embedding based on random walks is the latent metric structure defined on the open-flow network. This not only deepens our understanding of random- walk-based embedding algorithms but also helps in finding new potential applications in network embedding.

  18. Combining Host-based and network-based intrusion detection system

    African Journals Online (AJOL)

    These attacks were simulated using hping. The proposed system is implemented in Java. The results show that the proposed system is able to detect attacks both from within (host-based) and outside sources (network-based). Key Words: Intrusion Detection System (IDS), Host-based, Network-based, Signature, Security log.

  19. EpSoc: Social-Based Epidemic-Based Routing Protocol in Opportunistic Mobile Social Network

    Directory of Open Access Journals (Sweden)

    Halikul Lenando

    2018-01-01

    Full Text Available In opportunistic networks, the nature of intermittent and disruptive connections degrades the efficiency of routing. Epidemic routing protocol is used as a benchmark for most of routing protocols in opportunistic mobile social networks (OMSNs due to its high message delivery and latency. However, Epidemic incurs high cost in terms of overhead and hop count. In this paper, we propose a hybrid routing protocol called EpSoc which utilizes the Epidemic routing forwarding strategy and exploits an important social feature, that is, degree centrality. Two techniques are used in EpSoc. Messages’ TTL is adjusted based on the degree centrality of nodes, and the message blocking mechanism is used to control replication. Simulation results show that EpSoc increases the delivery ratio and decreases the overhead ratio, the average latency, and the hop counts as compared to Epidemic and Bubble Rap.

  20. Efficient File Sharing by Multicast - P2P Protocol Using Network Coding and Rank Based Peer Selection

    Science.gov (United States)

    Stoenescu, Tudor M.; Woo, Simon S.

    2009-01-01

    In this work, we consider information dissemination and sharing in a distributed peer-to-peer (P2P highly dynamic communication network. In particular, we explore a network coding technique for transmission and a rank based peer selection method for network formation. The combined approach has been shown to improve information sharing and delivery to all users when considering the challenges imposed by the space network environments.

  1. Software Switching for High Throughput Data Acquisition Networks

    CERN Document Server

    AUTHOR|(CDS)2089787; Lehmann Miotto, Giovanna

    The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. The problem arising from this pattern is widely known in the literature as \\emph{incast} and can be observed as TCP throughput collapse. It is a result of overloading the switch buffers, when a specific node in a network requests data from multiple sources. This will become even more demanding for future upgrades of the experiments at the Large Hadron Collider at CERN. It is questionable whether commodity TCP/IP and Ethernet technologies in their current form will be still able to effectively adapt to bursty traffic without losing packets due to the scarcity of buffers in the networking hardware. This thesis provides an analysis of TCP/IP performance in data acquisition networks and presents a novel approach to incast congestion in these networks based on software-based packet forwarding. Our first contribution lies in confirming the strong analogies bet...

  2. Organizing NPD networks for high innovation performance: the case of Dutch medical devices SMEs

    NARCIS (Netherlands)

    Pullen, A.J.J.; Groen, Arend J.; de Weerd-Nederhof, Petronella C.; Fisscher, O.A.M.

    2010-01-01

    This research examines which combination of network characteristics (the network configuration) leads to high innovation performance for small and medium sized companies (SMEs). Even though research has paid significant attention to the relation between the external network and the innovation

  3. Single Frequency Network Based Distributed Passive Radar Technology

    Directory of Open Access Journals (Sweden)

    Wan Xian-rong

    2015-01-01

    Full Text Available The research and application of passive radar are heading from single transmitter-receiver pair to multiple transmitter-receiver pairs. As an important class of the illuminators of opportunity, most of modern digital broadcasting and television systems work on Single Frequency Network (SFN, which intrinsically determines that the passive radar based on such illuminators must be distributed and networked. In consideration of the remarkable working and processing mode of passive radar under SFN configuration, this paper proposes the concept of SFN-based Distributed Passive Radar (SDPR. The main characteristics and key problems of SDPR are first described. Then several potential solutions are discussed for part of the key technologies. The feasibility of SDPR is demonstrated by preliminary experimental results. Finally, the concept of four network convergence that includes the broadcast based passive radar network is conceived, and its application prospects are discussed.

  4. Passivity-based control and estimation in networked robotics

    CERN Document Server

    Hatanaka, Takeshi; Fujita, Masayuki; Spong, Mark W

    2015-01-01

    Highlighting the control of networked robotic systems, this book synthesizes a unified passivity-based approach to an emerging cross-disciplinary subject. Thanks to this unified approach, readers can access various state-of-the-art research fields by studying only the background foundations associated with passivity. In addition to the theoretical results and techniques,  the authors provide experimental case studies on testbeds of robotic systems  including networked haptic devices, visual robotic systems,  robotic network systems and visual sensor network systems. The text begins with an introduction to passivity and passivity-based control together with the other foundations needed in this book. The main body of the book consists of three parts. The first examines how passivity can be utilized for bilateral teleoperation and demonstrates the inherent robustness of the passivity-based controller against communication delays. The second part emphasizes passivity’s usefulness for visual feedback control ...

  5. High Performance Implementation of 3D Convolutional Neural Networks on a GPU

    Science.gov (United States)

    Wang, Zelong; Wen, Mei; Zhang, Chunyuan; Wang, Yijie

    2017-01-01

    Convolutional neural networks have proven to be highly successful in applications such as image classification, object tracking, and many other tasks based on 2D inputs. Recently, researchers have started to apply convolutional neural networks to video classification, which constitutes a 3D input and requires far larger amounts of memory and much more computation. FFT based methods can reduce the amount of computation, but this generally comes at the cost of an increased memory requirement. On the other hand, the Winograd Minimal Filtering Algorithm (WMFA) can reduce the number of operations required and thus can speed up the computation, without increasing the required memory. This strategy was shown to be successful for 2D neural networks. We implement the algorithm for 3D convolutional neural networks and apply it to a popular 3D convolutional neural network which is used to classify videos and compare it to cuDNN. For our highly optimized implementation of the algorithm, we observe a twofold speedup for most of the 3D convolution layers of our test network compared to the cuDNN version. PMID:29250109

  6. High Performance Implementation of 3D Convolutional Neural Networks on a GPU.

    Science.gov (United States)

    Lan, Qiang; Wang, Zelong; Wen, Mei; Zhang, Chunyuan; Wang, Yijie

    2017-01-01

    Convolutional neural networks have proven to be highly successful in applications such as image classification, object tracking, and many other tasks based on 2D inputs. Recently, researchers have started to apply convolutional neural networks to video classification, which constitutes a 3D input and requires far larger amounts of memory and much more computation. FFT based methods can reduce the amount of computation, but this generally comes at the cost of an increased memory requirement. On the other hand, the Winograd Minimal Filtering Algorithm (WMFA) can reduce the number of operations required and thus can speed up the computation, without increasing the required memory. This strategy was shown to be successful for 2D neural networks. We implement the algorithm for 3D convolutional neural networks and apply it to a popular 3D convolutional neural network which is used to classify videos and compare it to cuDNN. For our highly optimized implementation of the algorithm, we observe a twofold speedup for most of the 3D convolution layers of our test network compared to the cuDNN version.

  7. Caries treatment in a dental practice-based research network

    DEFF Research Database (Denmark)

    Gilbert, Gregg H; Gordan, Valeria V; Funkhouser, Ellen M

    2012-01-01

    OBJECTIVES: Practice-based research networks (PBRNs) provide a venue to foster evidence-based care. We tested the hypothesis that a higher level of participation in a dental PBRN is associated with greater stated change toward evidence-based practice. METHODS: A total of 565 dental PBRN practitio......OBJECTIVES: Practice-based research networks (PBRNs) provide a venue to foster evidence-based care. We tested the hypothesis that a higher level of participation in a dental PBRN is associated with greater stated change toward evidence-based practice. METHODS: A total of 565 dental PBRN......) of 36.0 (3.8) months later. A total of 224 were 'full participants' (enrolled in clinical studies and attended at least one network meeting); 181 were 'partial participants' (did not meet 'full' criteria). RESULTS: From 10% to 62% of practitioners were 'surgically invasive' at baseline, depending...

  8. FUZZY LOGIC BASED ENERGY EFFICIENT PROTOCOL IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Zhan Wei Siew

    2012-12-01

    Full Text Available Wireless sensor networks (WSNs have been vastly developed due to the advances in microelectromechanical systems (MEMS using WSN to study and monitor the environments towards climates changes. In environmental monitoring, sensors are randomly deployed over the interest area to periodically sense the physical environments for a few months or even a year. Therefore, to prolong the network lifetime with limited battery capacity becomes a challenging issue. Low energy adaptive cluster hierarchical (LEACH is the common clustering protocol that aim to reduce the energy consumption by rotating the heavy workload cluster heads (CHs. The CHs election in LEACH is based on probability model which will lead to inefficient in energy consumption due to least desired CHs location in the network. In WSNs, the CHs location can directly influence the network energy consumption and further affect the network lifetime. In this paper, factors which will affect the network lifetime will be presented and the demonstration of fuzzy logic based CH selection conducted in base station (BS will also be carried out. To select suitable CHs that will prolong the network first node dies (FND round and consistent throughput to the BS, energy level and distance to the BS are selected as fuzzy inputs.

  9. Prediction based Greedy Perimeter Stateless Routing Protocol for Vehicular Self-organizing Network

    Science.gov (United States)

    Wang, Chunlin; Fan, Quanrun; Chen, Xiaolin; Xu, Wanjin

    2018-03-01

    PGPSR (Prediction based Greedy Perimeter Stateless Routing) is based on and extended the GPSR protocol to adapt to the high speed mobility of the vehicle auto organization network (VANET) and the changes in the network topology. GPSR is used in the VANET network environment, the network loss rate and throughput are not ideal, even cannot work. Aiming at the problems of the GPSR, the proposed PGPSR routing protocol, it redefines the hello and query packet structure, in the structure of the new node speed and direction information, which received the next update before you can take advantage of its speed and direction to predict the position of node and new network topology, select the right the next hop routing and path. Secondly, the update of the outdated node information of the neighbor’s table is deleted in time. The simulation experiment shows the performance of PGPSR is better than that of GPSR.

  10. A Bayes Theory-Based Modeling Algorithm to End-to-end Network Traffic

    Directory of Open Access Journals (Sweden)

    Zhao Hong-hao

    2016-01-01

    Full Text Available Recently, network traffic has exponentially increasing due to all kind of applications, such as mobile Internet, smart cities, smart transportations, Internet of things, and so on. the end-to-end network traffic becomes more important for traffic engineering. Usually end-to-end traffic estimation is highly difficult. This paper proposes a Bayes theory-based method to model the end-to-end network traffic. Firstly, the end-to-end network traffic is described as a independent identically distributed normal process. Then the Bases theory is used to characterize the end-to-end network traffic. By calculating the parameters, the model is determined correctly. Simulation results show that our approach is feasible and effective.

  11. High Energy Physics and Nuclear Physics Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  12. Application of SNODAS and hydrologic models to enhance entropy-based snow monitoring network design

    Science.gov (United States)

    Keum, Jongho; Coulibaly, Paulin; Razavi, Tara; Tapsoba, Dominique; Gobena, Adam; Weber, Frank; Pietroniro, Alain

    2018-06-01

    Snow has a unique characteristic in the water cycle, that is, snow falls during the entire winter season, but the discharge from snowmelt is typically delayed until the melting period and occurs in a relatively short period. Therefore, reliable observations from an optimal snow monitoring network are necessary for an efficient management of snowmelt water for flood prevention and hydropower generation. The Dual Entropy and Multiobjective Optimization is applied to design snow monitoring networks in La Grande River Basin in Québec and Columbia River Basin in British Columbia. While the networks are optimized to have the maximum amount of information with minimum redundancy based on entropy concepts, this study extends the traditional entropy applications to the hydrometric network design by introducing several improvements. First, several data quantization cases and their effects on the snow network design problems were explored. Second, the applicability the Snow Data Assimilation System (SNODAS) products as synthetic datasets of potential stations was demonstrated in the design of the snow monitoring network of the Columbia River Basin. Third, beyond finding the Pareto-optimal networks from the entropy with multi-objective optimization, the networks obtained for La Grande River Basin were further evaluated by applying three hydrologic models. The calibrated hydrologic models simulated discharges using the updated snow water equivalent data from the Pareto-optimal networks. Then, the model performances for high flows were compared to determine the best optimal network for enhanced spring runoff forecasting.

  13. The Role of Social Networks in Financing High Technology New Ventures: An Empirical Exploration

    NARCIS (Netherlands)

    Heuven, J.M.J.

    2006-01-01

    This paper focuses on the role of networks in financing high technology start-ups. We claim that the role of networks is twofold. On the one hand networks are important because network contacts can give direct access to resources. On the other hand, networks are important because being affiliated

  14. Network reliability analysis of complex systems using a non-simulation-based method

    International Nuclear Information System (INIS)

    Kim, Youngsuk; Kang, Won-Hee

    2013-01-01

    Civil infrastructures such as transportation, water supply, sewers, telecommunications, and electrical and gas networks often establish highly complex networks, due to their multiple source and distribution nodes, complex topology, and functional interdependence between network components. To understand the reliability of such complex network system under catastrophic events such as earthquakes and to provide proper emergency management actions under such situation, efficient and accurate reliability analysis methods are necessary. In this paper, a non-simulation-based network reliability analysis method is developed based on the Recursive Decomposition Algorithm (RDA) for risk assessment of generic networks whose operation is defined by the connections of multiple initial and terminal node pairs. The proposed method has two separate decomposition processes for two logical functions, intersection and union, and combinations of these processes are used for the decomposition of any general system event with multiple node pairs. The proposed method is illustrated through numerical network examples with a variety of system definitions, and is applied to a benchmark gas transmission pipe network in Memphis TN to estimate the seismic performance and functional degradation of the network under a set of earthquake scenarios.

  15. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  16. Incentive-Based Voltage Regulation in Distribution Networks

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baker, Kyri A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhou, Xinyang [University of Colorado; Chen, Lijun [University of Colorado

    2017-07-03

    This paper considers distribution networks fea- turing distributed energy resources, and designs incentive-based mechanisms that allow the network operator and end-customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Two different network-customer coordination mechanisms that require different amounts of information shared between the network operator and end-customers are developed to identify a solution of a well-defined social-welfare maximization prob- lem. Notably, the signals broadcast by the network operator assume the connotation of prices/incentives that induce the end- customers to adjust the generated/consumed powers in order to avoid the violation of the voltage constraints. Stability of the proposed schemes is analytically established and numerically corroborated.

  17. A complex network-based importance measure for mechatronics systems

    Science.gov (United States)

    Wang, Yanhui; Bi, Lifeng; Lin, Shuai; Li, Man; Shi, Hao

    2017-01-01

    In view of the negative impact of functional dependency, this paper attempts to provide an alternative importance measure called Improved-PageRank (IPR) for measuring the importance of components in mechatronics systems. IPR is a meaningful extension of the centrality measures in complex network, which considers usage reliability of components and functional dependency between components to increase importance measures usefulness. Our work makes two important contributions. First, this paper integrates the literature of mechatronic architecture and complex networks theory to define component network. Second, based on the notion of component network, a meaningful IPR is brought into the identifying of important components. In addition, the IPR component importance measures, and an algorithm to perform stochastic ordering of components due to the time-varying nature of usage reliability of components and functional dependency between components, are illustrated with a component network of bogie system that consists of 27 components.

  18. Incentive-Based Voltage Regulation in Distribution Networks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinyang; Chen, Lijun; Dall' Anese, Emiliano; Baker, Kyri

    2017-03-03

    This paper considers distribution networks fea- turing distributed energy resources, and designs incentive-based mechanisms that allow the network operator and end-customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Two different network-customer coordination mechanisms that require different amounts of information shared between the network operator and end-customers are developed to identify a solution of a well-defined social-welfare maximization prob- lem. Notably, the signals broadcast by the network operator assume the connotation of prices/incentives that induce the end- customers to adjust the generated/consumed powers in order to avoid the violation of the voltage constraints. Stability of the proposed schemes is analytically established and numerically corroborated.

  19. Pixel-Wise Classification Method for High Resolution Remote Sensing Imagery Using Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2018-03-01

    Full Text Available Considering the classification of high spatial resolution remote sensing imagery, this paper presents a novel classification method for such imagery using deep neural networks. Deep learning methods, such as a fully convolutional network (FCN model, achieve state-of-the-art performance in natural image semantic segmentation when provided with large-scale datasets and respective labels. To use data efficiently in the training stage, we first pre-segment training images and their labels into small patches as supplements of training data using graph-based segmentation and the selective search method. Subsequently, FCN with atrous convolution is used to perform pixel-wise classification. In the testing stage, post-processing with fully connected conditional random fields (CRFs is used to refine results. Extensive experiments based on the Vaihingen dataset demonstrate that our method performs better than the reference state-of-the-art networks when applied to high-resolution remote sensing imagery classification.

  20. Artificial neural network based approach to transmission lines protection

    International Nuclear Information System (INIS)

    Joorabian, M.

    1999-05-01

    The aim of this paper is to present and accurate fault detection technique for high speed distance protection using artificial neural networks. The feed-forward multi-layer neural network with the use of supervised learning and the common training rule of error back-propagation is chosen for this study. Information available locally at the relay point is passed to a neural network in order for an assessment of the fault location to be made. However in practice there is a large amount of information available, and a feature extraction process is required to reduce the dimensionality of the pattern vectors, whilst retaining important information that distinguishes the fault point. The choice of features is critical to the performance of the neural networks learning and operation. A significant feature in this paper is that an artificial neural network has been designed and tested to enhance the precision of the adaptive capabilities for distance protection

  1. Waveguide-Based Antenna Arrays for 5G Networks

    Directory of Open Access Journals (Sweden)

    Arismar Cerqueira Sodré

    2018-01-01

    Full Text Available This work reports the development of two high-performance waveguide-based antenna arrays for 5G cellular networks, operating in the underutilized millimetre wave (mm-wave frequency spectrum. Two different scenarios of mm-wave communications are proposed for illustrating the applicability of the proposed arrays, which provide specific radiation patterns, namely, 12 dBi gain omnidirectional coverage in the 28 GHz band and dual-band sectorial coverage using the 28 and 38 GHz bands with gain up to 15.6 dBi. Numerical and experimental results of the array reflection coefficient, radiation pattern, and gain have been shown in an excellent agreement.

  2. Finger vein recognition based on convolutional neural network

    Directory of Open Access Journals (Sweden)

    Meng Gesi

    2017-01-01

    Full Text Available Biometric Authentication Technology has been widely used in this information age. As one of the most important technology of authentication, finger vein recognition attracts our attention because of its high security, reliable accuracy and excellent performance. However, the current finger vein recognition system is difficult to be applied widely because its complicated image pre-processing and not representative feature vectors. To solve this problem, a finger vein recognition method based on the convolution neural network (CNN is proposed in the paper. The image samples are directly input into the CNN model to extract its feature vector so that we can make authentication by comparing the Euclidean distance between these vectors. Finally, the Deep Learning Framework Caffe is adopted to verify this method. The result shows that there are great improvements in both speed and accuracy rate compared to the previous research. And the model has nice robustness in illumination and rotation.

  3. Web-based networking within the framework of ANENT

    International Nuclear Information System (INIS)

    Han, K.W.; Lee, E.J.; Kim, Y.T.; Nam, Y.M.

    2004-01-01

    Recognizing the importance of nuclear knowledge management, KAERI has been actively involved in the establishment of the IAEA Asian Network for Higher Education in Nuclear Technology (ANENT). The institute, on behalf of the Korean government, initiated discussions with the IAEA on the concept of ANENT and hosted an IAEA Consultant Meeting in July 2003, which was intended to prepare a draft report for the establishment of ANENT. From the preparatory stage, the institute volunteered to establish a website to support the ANENT activities. This led the ANENT Coordination Committee, at its first meeting in April 2004, to designate KAERI as the coordinating organization for a work package on the 'Web-based Exchange of Information and Material for Nuclear Education and Training'. The committee also identified four more work packages and the respective coordinators at the same meeting. To implement the task of the web-based exchange, a website (www.anent-tepm.org) was designed with three functional objectives. The first function was to provide the ANENT member websites with a comprehensive connection with each other as well as to other sites relevant to nuclear education and training. The second one was to provide the collected information and materials. The last one was to provide a systematic and sustainable means to add, revise, and share the information and materials of high quality. As a result, the web site has been structured to deal with the overall information about ANENT, group activities (e.g. Coordination Committee meetings and work packages), inter-organization (or network) link, thematic information/materials database (or link), and the management of human resources. The ANENT website has been temporarily operated and is being revised to fulfil the objectives and reach a consensus among the ANENT members. In parallel, a set of information about education and training courses and teaching materials available from the network members is being collected, which

  4. Quality Utilization Aware Based Data Gathering for Vehicular Communication Networks

    Directory of Open Access Journals (Sweden)

    Yingying Ren

    2018-01-01

    Full Text Available The vehicular communication networks, which can employ mobile, intelligent sensing devices with participatory sensing to gather data, could be an efficient and economical way to build various applications based on big data. However, high quality data gathering for vehicular communication networks which is urgently needed faces a lot of challenges. So, in this paper, a fine-grained data collection framework is proposed to cope with these new challenges. Different from classical data gathering which concentrates on how to collect enough data to satisfy the requirements of applications, a Quality Utilization Aware Data Gathering (QUADG scheme is proposed for vehicular communication networks to collect the most appropriate data and to best satisfy the multidimensional requirements (mainly including data gathering quantity, quality, and cost of application. In QUADG scheme, the data sensing is fine-grained in which the data gathering time and data gathering area are divided into very fine granularity. A metric named “Quality Utilization” (QU is to quantify the ratio of quality of the collected sensing data to the cost of the system. Three data collection algorithms are proposed. The first algorithm is to ensure that the application which has obtained the specified quantity of sensing data can minimize the cost and maximize data quality by maximizing QU. The second algorithm is to ensure that the application which has obtained two requests of application (the quantity and quality of data collection, or the quantity and cost of data collection could maximize the QU. The third algorithm is to ensure that the application which aims to satisfy the requirements of quantity, quality, and cost of collected data simultaneously could maximize the QU. Finally, we compare our proposed scheme with the existing schemes via extensive simulations which well justify the effectiveness of our scheme.

  5. Constructing financial network based on PMFG and threshold method

    Science.gov (United States)

    Nie, Chun-Xiao; Song, Fu-Tie

    2018-04-01

    Based on planar maximally filtered graph (PMFG) and threshold method, we introduced a correlation-based network named PMFG-based threshold network (PTN). We studied the community structure of PTN and applied ISOMAP algorithm to represent PTN in low-dimensional Euclidean space. The results show that the community corresponds well to the cluster in the Euclidean space. Further, we studied the dynamics of the community structure and constructed the normalized mutual information (NMI) matrix. Based on the real data in the market, we found that the volatility of the market can lead to dramatic changes in the community structure, and the structure is more stable during the financial crisis.

  6. Village Building Identification Based on Ensemble Convolutional Neural Networks

    Science.gov (United States)

    Guo, Zhiling; Chen, Qi; Xu, Yongwei; Shibasaki, Ryosuke; Shao, Xiaowei

    2017-01-01

    In this study, we present the Ensemble Convolutional Neural Network (ECNN), an elaborate CNN frame formulated based on ensembling state-of-the-art CNN models, to identify village buildings from open high-resolution remote sensing (HRRS) images. First, to optimize and mine the capability of CNN for village mapping and to ensure compatibility with our classification targets, a few state-of-the-art models were carefully optimized and enhanced based on a series of rigorous analyses and evaluations. Second, rather than directly implementing building identification by using these models, we exploited most of their advantages by ensembling their feature extractor parts into a stronger model called ECNN based on the multiscale feature learning method. Finally, the generated ECNN was applied to a pixel-level classification frame to implement object identification. The proposed method can serve as a viable tool for village building identification with high accuracy and efficiency. The experimental results obtained from the test area in Savannakhet province, Laos, prove that the proposed ECNN model significantly outperforms existing methods, improving overall accuracy from 96.64% to 99.26%, and kappa from 0.57 to 0.86. PMID:29084154

  7. Measuring large-scale social networks with high resolution.

    Directory of Open Access Journals (Sweden)

    Arkadiusz Stopczynski

    Full Text Available This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years-the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics for a densely connected population of 1000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.

  8. An evaluation of current high-performance networks

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Christian; Bonachea, Dan; Cote, Yannick; Duell, Jason; Hargrove, Paul; Husbands, Parry; Iancu, Costin; Welcome, Michael; Yelick, Katherine

    2003-01-25

    High-end supercomputers are increasingly built out of commodity components, and lack tight integration between the processor and network. This often results in inefficiencies in the communication subsystem, such as high software overheads and/or message latencies. In this paper we use a set of microbenchmarks to quantify the cost of this commoditization, measuring software overhead, latency, and bandwidth on five contemporary supercomputing networks. We compare the performance of the ubiquitous MPI layer to that of lower-level communication layers, and quantify the advantages of the latter for small message performance. We also provide data on the potential for various communication-related optimizations, such as overlapping communication with computation or other communication. Finally, we determine the minimum size needed for a message to be considered 'large' (i.e., bandwidth-bound) on these platforms, and provide historical data on the software overheads of a number of supercomputers over the past decade.

  9. Network Reconstruction From High-Dimensional Ordinary Differential Equations.

    Science.gov (United States)

    Chen, Shizhe; Shojaie, Ali; Witten, Daniela M

    2017-01-01

    We consider the task of learning a dynamical system from high-dimensional time-course data. For instance, we might wish to estimate a gene regulatory network from gene expression data measured at discrete time points. We model the dynamical system nonparametrically as a system of additive ordinary differential equations. Most existing methods for parameter estimation in ordinary differential equations estimate the derivatives from noisy observations. This is known to be challenging and inefficient. We propose a novel approach that does not involve derivative estimation. We show that the proposed method can consistently recover the true network structure even in high dimensions, and we demonstrate empirical improvement over competing approaches. Supplementary materials for this article are available online.

  10. Feedback Gating Control for Network Based on Macroscopic Fundamental Diagram

    Directory of Open Access Journals (Sweden)

    YangBeibei Ji

    2016-01-01

    Full Text Available Empirical data from Yokohama, Japan, showed that a macroscopic fundamental diagram (MFD of urban traffic provides for different network regions a unimodal low-scatter relationship between network vehicle density and network space-mean flow. This provides new tools for network congestion control. Based on MFD, this paper proposed a feedback gating control policy which can be used to mitigate network congestion by adjusting signal timings of gating intersections. The objective of the feedback gating control model is to maximize the outflow and distribute the allowed inflows properly according to external demand and capacity of each gating intersection. An example network is used to test the performance of proposed feedback gating control model. Two types of background signalization types for the intersections within the test network, fixed-time and actuated control, are considered. The results of extensive simulation validate that the proposed feedback gating control model can get a Pareto improvement since the performance of both gating intersections and the whole network can be improved significantly especially under heavy demand situations. The inflows and outflows can be improved to a higher level, and the delay and queue length at all gating intersections are decreased dramatically.

  11. Software defined network architecture based research on load balancing strategy

    Science.gov (United States)

    You, Xiaoqian; Wu, Yang

    2018-05-01

    As a new type network architecture, software defined network has the key idea of separating the control place of the network from the transmission plane, to manage and control the network in a concentrated way; in addition, the network interface is opened on the control layer and the data layer, so as to achieve programmable control of the network. Considering that only the single shortest route is taken into the calculation of traditional network data flow transmission, and congestion and resource consumption caused by excessive load of link circuits are ignored, a link circuit load based flow media business QoS gurantee system is proposed in this article to divide the flow in the network into ordinary data flow and QoS flow. In this way, it supervises the link circuit load with the controller so as to calculate reasonable route rapidly and issue the flow table to the exchanger, to finish rapid data transmission. In addition, it establishes a simulation platform to acquire optimized result through simulation experiment.

  12. A Concept of Location-Based Social Network Marketing

    DEFF Research Database (Denmark)

    Tussyadiah, Iis

    2012-01-01

    A stimulus-response model of location-based social network marketing is conceptualized based on an exploratory investigation. Location-based social network applications are capable of generating marketing stimuli from merchant, competition-based, and connection-based rewards resulted from relevance...... and connectivity. Depending on consumption situations, consumer characteristics, and social network structure, these rewards lead to actual behavior that manifests in variety behavior (i.e., patronage to new places) and loyalty behavior (i.e., increased frequency of patronage to familiar places). This behavior...... implies changes in patterns of mobility, making this marketing approach particularly relevant for tourism and hospitality businesses. Managerial implications and recommendations for further studies are provided....

  13. Experience and Lessons learnt from running High Availability Databases on Network Attached Storage

    CERN Document Server

    Guijarro, Manuel

    2008-01-01

    The Database and Engineering Services Group of CERN's Information Technology Department supplies the Oracle Central Database services used in many activities at CERN. In order to provide High Availability and ease management for those services, a NAS (Network Attached Storage) based infrastructure has been setup. It runs several instances of the Oracle RAC (Real Application Cluster) using NFS (Network File System) as shared disk space for RAC purposes and Data hosting. It is composed of two private LANs (Local Area Network), one to provide access to the NAS filers and a second to implement the Oracle RAC private interconnect, both using Network Bonding. NAS filers are configured in partnership to prevent having single points of failure and to provide automatic NAS filer fail-over.

  14. Experience and lessons learnt from running high availability databases on network attached storage

    International Nuclear Information System (INIS)

    Guijarro, M; Gaspar, R

    2008-01-01

    The Database and Engineering Services Group of CERN's Information Technology Department supplies the Oracle Central Database services used in many activities at CERN. In order to provide High Availability and ease management for those services, a NAS (Network Attached Storage) based infrastructure has been setup. It runs several instances of the Oracle RAC (Real Application Cluster) using NFS (Network File System) as shared disk space for RAC purposes and Data hosting. It is composed of two private LANs (Local Area Network), one to provide access to the NAS filers and a second to implement the Oracle RAC private interconnect, both using Network Bonding. NAS filers are configured in partnership to prevent having single points of failure and to provide automatic NAS filer fail-over

  15. Neural network-based sensor signal accelerator.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    2000-10-16

    A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.

  16. Highly Accurate Timestamping for Ethernet-Based Clock Synchronization

    OpenAIRE

    Loschmidt, Patrick; Exel, Reinhard; Gaderer, Georg

    2012-01-01

    It is not only for test and measurement of great importance to synchronize clocks of networked devices to timely coordinate data acquisition. In this context the seek for high accuracy in Ethernet-based clock synchronization has been significantly supported by enhancements to the Network Time Protocol (NTP) and the introduction of the Precision Time Protocol (PTP). The latter was even applied to instrumentation and measurement applications through the introduction of LXI....

  17. Cost-Based Vertical Handover Decision Algorithm for WWAN/WLAN Integrated Networks

    Directory of Open Access Journals (Sweden)

    Kim LaeYoung

    2009-01-01

    Full Text Available Abstract Next generation wireless communications are expected to rely on integrated networks consisting of multiple wireless technologies. Heterogeneous networks based on Wireless Local Area Networks (WLANs and Wireless Wide Area Networks (WWANs can combine their respective advantages on coverage and data rates, offering a high Quality of Service (QoS to mobile users. In such environment, multi-interface terminals should seamlessly switch from one network to another in order to obtain improved performance or at least to maintain a continuous wireless connection. Therefore, network selection algorithm is important in providing better performance to the multi-interface terminals in the integrated networks. In this paper, we propose a cost-based vertical handover decision algorithm that triggers the Vertical Handover (VHO based on a cost function for WWAN/WLAN integrated networks. For the cost function, we focus on developing an analytical model of the expected cost of WLAN for the mobile users that enter the double-coverage area while having a connection in the WWAN. Our simulation results show that the proposed scheme achieves better performance in terms of power consumption and throughput than typical approach where WLANs are always preferred whenever the WLAN access is available.

  18. Gene regulatory network inference by point-based Gaussian approximation filters incorporating the prior information.

    Science.gov (United States)

    Jia, Bin; Wang, Xiaodong

    2013-12-17

    : The extended Kalman filter (EKF) has been applied to inferring gene regulatory networks. However, it is well known that the EKF becomes less accurate when the system exhibits high nonlinearity. In addition, certain prior information about the gene regulatory network exists in practice, and no systematic approach has been developed to incorporate such prior information into the Kalman-type filter for inferring the structure of the gene regulatory network. In this paper, an inference framework based on point-based Gaussian approximation filters that can exploit the prior information is developed to solve the gene regulatory network inference problem. Different point-based Gaussian approximation filters, including the unscented Kalman filter (UKF), the third-degree cubature Kalman filter (CKF3), and the fifth-degree cubature Kalman filter (CKF5) are employed. Several types of network prior information, including the existing network structure information, sparsity assumption, and the range constraint of parameters, are considered, and the corresponding filters incorporating the prior information are developed. Experiments on a synthetic network of eight genes and the yeast protein synthesis network of five genes are carried out to demonstrate the performance of the proposed framework. The results show that the proposed methods provide more accurate inference results than existing methods, such as the EKF and the traditional UKF.

  19. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors.

    Science.gov (United States)

    Jiang, Hao; Zhao, Ting; Ma, Jan; Yan, Chaoyi; Li, Chunzhong

    2011-01-28

    Ultrafine MnO(2) nanowires with sub-10 nm diameters have been synthesized by a simple process of hydrothermal treatment with subsequent calcinations to form networks that exhibit an enhanced specific capacitance (279 F g(-1) at 1 A g(-1)), high rate capability (54.5% retention at 20 A g(-1)) and good cycling stability (1.7% loss after 1000 cycles).

  20. Model Complexities of Shallow Networks Representing Highly Varying Functions

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra; Sanguineti, M.

    2016-01-01

    Roč. 171, 1 January (2016), s. 598-604 ISSN 0925-2312 R&D Projects: GA MŠk(CZ) LD13002 Grant - others:grant for Visiting Professors(IT) GNAMPA-INdAM Institutional support: RVO:67985807 Keywords : shallow networks * model complexity * highly varying functions * Chernoff bound * perceptrons * Gaussian kernel units Subject RIV: IN - Informatics, Computer Science Impact factor: 3.317, year: 2016