Artificial Neural Network Based State Estimators Integrated into Kalmtool
DEFF Research Database (Denmark)
Bayramoglu, Enis; Ravn, Ole; Poulsen, Niels Kjølstad
2012-01-01
In this paper we present a toolbox enabling easy evaluation and comparison of dierent ltering algorithms. The toolbox is called Kalmtool and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox now contains functions for Articial Neural Network Based State Estimation...
Fast, moment-based estimation methods for delay network tomography
Energy Technology Data Exchange (ETDEWEB)
Lawrence, Earl Christophre [Los Alamos National Laboratory; Michailidis, George [U OF MICHIGAN; Nair, Vijayan N [U OF MICHIGAN
2008-01-01
Consider the delay network tomography problem where the goal is to estimate distributions of delays at the link-level using data on end-to-end delays. These measurements are obtained using probes that are injected at nodes located on the periphery of the network and sent to other nodes also located on the periphery. Much of the previous literature deals with discrete delay distributions by discretizing the data into small bins. This paper considers more general models with a focus on computationally efficient estimation. The moment-based schemes presented here are designed to function well for larger networks and for applications like monitoring that require speedy solutions.
Time of arrival based location estimation for cooperative relay networks
Çelebi, Hasari Burak
2010-09-01
In this paper, we investigate the performance of a cooperative relay network performing location estimation through time of arrival (TOA). We derive Cramer-Rao lower bound (CRLB) for the location estimates using the relay network. The analysis is extended to obtain average CRLB considering the signal fluctuations in both relay and direct links. The effects of the channel fading of both relay and direct links and amplification factor and location of the relay node on average CRLB are investigated. Simulation results show that the channel fading of both relay and direct links and amplification factor and location of relay node affect the accuracy of TOA based location estimation. ©2010 IEEE.
Vehicle Sideslip Angle Estimation Based on General Regression Neural Network
Directory of Open Access Journals (Sweden)
Wang Wei
2016-01-01
Full Text Available Aiming at the accuracy of estimation of vehicle’s mass center sideslip angle, an estimation method of slip angle based on general regression neural network (GRNN and driver-vehicle closed-loop system has been proposed: regarding vehicle’s sideslip angle as time series mapping of yaw speed and lateral acceleration; using homogeneous design project to optimize the training samples; building the mapping relationship among sideslip angle, yaw speed, and lateral acceleration; at the same time, using experimental method to measure vehicle’s sideslip angle to verify validity of this method. Estimation results of neural network and real vehicle experiment show the same changing tendency. The mean of error is within 10% of test result’s amplitude. Results show GRNN can estimate vehicle’s sideslip angle correctly. It can offer a reference to the application of vehicle’s stability control system on vehicle’s state estimation.
An RSS based location estimation technique for cognitive relay networks
Qaraqe, Khalid A.
2010-11-01
In this paper, a received signal strength (RSS) based location estimation method is proposed for a cooperative wireless relay network where the relay is a cognitive radio. We propose a method for the considered cognitive relay network to determine the location of the source using the direct and the relayed signal at the destination. We derive the Cramer-Rao lower bound (CRLB) expressions separately for x and y coordinates of the location estimate. We analyze the effects of cognitive behaviour of the relay on the performance of the proposed method. We also discuss and quantify the reliability of the location estimate using the proposed technique if the source is not stationary. The overall performance of the proposed method is presented through simulations. ©2010 IEEE.
Age estimation of facial image based on convolution neural network
Meng, Xiaodong; Wang, Yifeng; Zheng, Haihong
2017-07-01
Age is an inherent biological characteristic of human and is reflected in facial images to a certain extent. A method for estimating age from a facial image by combining CNN (Convolution Neural Network) with SVR (Support Vector Regression) is proposed. First, a deep CNN is trained to automatically extract age features from facial images and classify them into variant age groups. Then different SVRs are trained for each age group to estimate the age of a facial image. The experimental results show that a lower MAE (Mean Absolute Error) of age estimation on MORPH database is obtained.
Distributed estimation based on observations prediction in wireless sensor networks
Bouchoucha, Taha
2015-03-19
We consider wireless sensor networks (WSNs) used for distributed estimation of unknown parameters. Due to the limited bandwidth, sensor nodes quantize their noisy observations before transmission to a fusion center (FC) for the estimation process. In this letter, the correlation between observations is exploited to reduce the mean-square error (MSE) of the distributed estimation. Specifically, sensor nodes generate local predictions of their observations and then transmit the quantized prediction errors (innovations) to the FC rather than the quantized observations. The analytic and numerical results show that transmitting the innovations rather than the observations mitigates the effect of quantization noise and hence reduces the MSE. © 2015 IEEE.
Passivity-based control and estimation in networked robotics
Hatanaka, Takeshi; Fujita, Masayuki; Spong, Mark W
2015-01-01
Highlighting the control of networked robotic systems, this book synthesizes a unified passivity-based approach to an emerging cross-disciplinary subject. Thanks to this unified approach, readers can access various state-of-the-art research fields by studying only the background foundations associated with passivity. In addition to the theoretical results and techniques, the authors provide experimental case studies on testbeds of robotic systems including networked haptic devices, visual robotic systems, robotic network systems and visual sensor network systems. The text begins with an introduction to passivity and passivity-based control together with the other foundations needed in this book. The main body of the book consists of three parts. The first examines how passivity can be utilized for bilateral teleoperation and demonstrates the inherent robustness of the passivity-based controller against communication delays. The second part emphasizes passivity’s usefulness for visual feedback control ...
ARIMA based Value Estimation in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
A. Amidi
2014-10-01
Full Text Available Due to the widespread inaccuracy of wireless sensor networks (WSNs data, it is essential to ensure that the data is as complete, clean and precise as possible. To address data gaps and replace erroneous data, temporal correlation modelling can be applied, which takes advantage of temporal correlation and is also energy efficient. In this research, the suitability of adapting the ARIMA model into a WSN context is scrutinized, as technological requirements demand special considerations. The necessity of applying a smoothing technique is explored and the selection of an appropriate method is determined. Additionally, the available options with regards to ARIMA set-up are discussed, in terms of achieving accurate and energy friendly predictions. The effect of sufficient historical data and the importance of predictions’ life span on the estimation accuracy are additionally investigated. Finally, an adaptive, online and energy efficient system is proposed for maintaining the accuracy of the model that simultaneously detects outliers and events as well as substitutes any missing or erroneous data with estimated values.
ARIMA based Value Estimation in Wireless Sensor Networks
Amidi, A.
2014-10-01
Due to the widespread inaccuracy of wireless sensor networks (WSNs) data, it is essential to ensure that the data is as complete, clean and precise as possible. To address data gaps and replace erroneous data, temporal correlation modelling can be applied, which takes advantage of temporal correlation and is also energy efficient. In this research, the suitability of adapting the ARIMA model into a WSN context is scrutinized, as technological requirements demand special considerations. The necessity of applying a smoothing technique is explored and the selection of an appropriate method is determined. Additionally, the available options with regards to ARIMA set-up are discussed, in terms of achieving accurate and energy friendly predictions. The effect of sufficient historical data and the importance of predictions' life span on the estimation accuracy are additionally investigated. Finally, an adaptive, online and energy efficient system is proposed for maintaining the accuracy of the model that simultaneously detects outliers and events as well as substitutes any missing or erroneous data with estimated values.
CUFID-query: accurate network querying through random walk based network flow estimation.
Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun
2017-12-28
Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive
H∞state estimation of stochastic memristor-based neural networks with time-varying delays.
Bao, Haibo; Cao, Jinde; Kurths, Jürgen; Alsaedi, Ahmed; Ahmad, Bashir
2018-03-01
This paper addresses the problem of H ∞ state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the H ∞ state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed H ∞ performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gross domestic product estimation based on electricity utilization by artificial neural network
Stevanović, Mirjana; Vujičić, Slađana; Gajić, Aleksandar M.
2018-01-01
The main goal of the paper was to estimate gross domestic product (GDP) based on electricity estimation by artificial neural network (ANN). The electricity utilization was analyzed based on different sources like renewable, coal and nuclear sources. The ANN network was trained with two training algorithms namely extreme learning method and back-propagation algorithm in order to produce the best prediction results of the GDP. According to the results it can be concluded that the ANN model with extreme learning method could produce the acceptable prediction of the GDP based on the electricity utilization.
Design of Artificial Neural Network-Based pH Estimator
Directory of Open Access Journals (Sweden)
Shebel A. Alsabbah
2010-10-01
Full Text Available Taking into consideration the cost, size and drawbacks might be found with real hardware instrument for measuring pH values such that the complications of the wiring, installing, calibrating and troubleshooting the system, would make a person look for a cheaper, accurate, and alternative choice to perform the measuring operation, Where’s hereby, a feedforward artificial neural network-based pH estimator has to be proposed. The proposed estimator has been designed with multi- layer perceptrons. One input which is a measured base stream and two outputs represent pH values at strong base and strong/weak acids for a titration process. The created data base has been obtained with consideration of temperature variation. The final numerical results ensure the effectiveness and robustness of the design neural network-based pH estimator.
Hybrid fuzzy charged system search algorithm based state estimation in distribution networks
Directory of Open Access Journals (Sweden)
Sachidananda Prasad
2017-06-01
Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.
Weng, Yang; Xiao, Wendong; Xie, Lihua
2011-01-01
Distributed estimation of Gaussian mixtures has many applications in wireless sensor network (WSN), and its energy-efficient solution is still challenging. This paper presents a novel diffusion-based EM algorithm for this problem. A diffusion strategy is introduced for acquiring the global statistics in EM algorithm in which each sensor node only needs to communicate its local statistics to its neighboring nodes at each iteration. This improves the existing consensus-based distributed EM algorithm which may need much more communication overhead for consensus, especially in large scale networks. The robustness and scalability of the proposed approach can be achieved by distributed processing in the networks. In addition, we show that the proposed approach can be considered as a stochastic approximation method to find the maximum likelihood estimation for Gaussian mixtures. Simulation results show the efficiency of this approach.
A Sentiment Delivering Estimate Scheme Based on Trust Chain in Mobile Social Network
Directory of Open Access Journals (Sweden)
Meizi Li
2015-01-01
Full Text Available User sentiment analysis has become a flourishing frontier in data mining mobile social network platform since the mobile social network plays a significant role in users’ daily communication and sentiment interaction. This study studies the scheme of sentiment estimate by using the users’ trustworthy relationships for evaluating sentiment delivering. First, we address an overview of sentiment delivering estimate scheme and propose its related definitions, that is, trust chain among users, sentiment semantics, and sentiment ontology. Second, this study proposes the trust chain model and its evaluation method, which is composed of evaluation of atomic, serial, parallel, and combined trust chains. Then, we propose sentiment modeling method by presenting its modeling rules. Further, we propose the sentiment delivering estimate scheme from two aspects: explicit and implicit sentiment delivering estimate schemes, based on trust chain and sentiment modeling method. Finally, examinations and results are given to further explain effectiveness and feasibility of our scheme.
DEFF Research Database (Denmark)
Soliman, Hammam Abdelaal Hammam; Wang, Huai; Gadalla, Brwene Salah Abdelkarim
2015-01-01
challenges. A capacitance estimation method based on Artificial Neural Network (ANN) algorithm is therefore proposed in this paper. The implemented ANN estimated the capacitance of the DC-link capacitor in a back-toback converter. Analysis of the error of the capacitance estimation is also given......In power electronic converters, reliability of DC-link capacitors is one of the critical issues. The estimation of their health status as an application of condition monitoring have been an attractive subject for industrial field and hence for the academic research filed as well. More reliable...... solutions are required to be adopted by the industry applications in which usage of extra hardware, increased cost, and low estimation accuracy are the main challenges. Therefore, development of new condition monitoring methods based on software solutions could be the new era that covers the aforementioned...
Preamble-based channel estimation in single-relay networks using FBMC/OQAM
Mavrokefalidis, Christos; Kofidis, Eleftherios; Rontogiannis, Athanasios A.; Theodoridis, Sergios
2014-12-01
Preamble-based channel estimation in filter bank-based multicarrier (FBMC) systems using offset quadrature amplitude modulation (OQAM) has been extensively studied in the last few years, due to the many advantages this modulation scheme can offer over cyclic prefix (CP)-based orthogonal frequency division multiplexing (OFDM) and in view of the interesting challenges posed on the channel estimator by the interference effect inherent in such an FBMC system. In particular, preambles of short duration and of both the block ( full) and comb ( sparse) types were designed so as to minimize the channel estimation mean squared error (MSE) subject to a given transmit energy. In the light of the important role that relay-based cooperative networks are expected to play in future wireless communication systems, it is of interest to consider FBMC/OQAM, and in particular questions associated to preamble-based channel estimation, in such a context as well. The goal of this paper is to address these problems and come up with optimal solutions that extend existing results in a single relay-based cooperative network. Both low and medium frequency selective channels are considered. In addition to optimal preamble and estimator design, the equalization/detection task is studied, shedding light to a relay-generated interference effect and proposing a simple way to come over it. The reported simulation results corroborate the analysis and reveal interesting behavior with respect to channel frequency selectivity and signal-to-noise ratio.
Wireless Indoor Location Estimation Based on Neural Network RSS Signature Recognition (LENSR)
Energy Technology Data Exchange (ETDEWEB)
Kurt Derr; Milos Manic
2008-06-01
Location Based Services (LBS), context aware applications, and people and object tracking depend on the ability to locate mobile devices, also known as localization, in the wireless landscape. Localization enables a diverse set of applications that include, but are not limited to, vehicle guidance in an industrial environment, security monitoring, self-guided tours, personalized communications services, resource tracking, mobile commerce services, guiding emergency workers during fire emergencies, habitat monitoring, environmental surveillance, and receiving alerts. This paper presents a new neural network approach (LENSR) based on a competitive topological Counter Propagation Network (CPN) with k-nearest neighborhood vector mapping, for indoor location estimation based on received signal strength. The advantage of this approach is both speed and accuracy. The tested accuracy of the algorithm was 90.6% within 1 meter and 96.4% within 1.5 meters. Several approaches for location estimation using WLAN technology were reviewed for comparison of results.
Yu, Zhang; Xiaohui, Song; Jianfang, Li; Fei, Gao
2017-05-01
Cable overheating will lead to the cable insulation level reducing, speed up the cable insulation aging, even easy to cause short circuit faults. Cable overheating risk identification and warning is nessesary for distribution network operators. Cable overheating risk warning method based on impedance parameter estimation is proposed in the paper to improve the safty and reliability operation of distribution network. Firstly, cable impedance estimation model is established by using least square method based on the data from distribiton SCADA system to improve the impedance parameter estimation accuracy. Secondly, calculate the threshold value of cable impedance based on the historical data and the forecast value of cable impedance based on the forecasting data in future from distribiton SCADA system. Thirdly, establish risks warning rules library of cable overheating, calculate the cable impedance forecast value and analysis the change rate of impedance, and then warn the overheating risk of cable line based on the overheating risk warning rules library according to the variation relationship between impedance and line temperature rise. Overheating risk warning method is simulated in the paper. The simulation results shows that the method can identify the imedance and forecast the temperature rise of cable line in distribution network accurately. The result of overheating risk warning can provide decision basis for operation maintenance and repair.
Synchronization-based parameter estimation of fractional-order neural networks
Gu, Yajuan; Yu, Yongguang; Wang, Hu
2017-10-01
This paper focuses on the parameter estimation problem of fractional-order neural network. By combining the adaptive control and parameter update law, we generalize the synchronization-based identification method that has been reported in several literatures on identifying unknown parameters of integer-order systems. With this method, parameter identification and synchronization can be achieved simultaneously. Finally, a numerical example is given to illustrate the effectiveness of the theoretical results.
Xia, Peng; Hu, Jie; Peng, Yinghong
2017-10-25
A novel model based on deep learning is proposed to estimate kinematic information for myoelectric control from multi-channel electromyogram (EMG) signals. The neural information of limb movement is embedded in EMG signals that are influenced by all kinds of factors. In order to overcome the negative effects of variability in signals, the proposed model employs the deep architecture combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The EMG signals are transformed to time-frequency frames as the input to the model. The limb movement is estimated by the model that is trained with the gradient descent and backpropagation procedure. We tested the model for simultaneous and proportional estimation of limb movement in eight healthy subjects and compared it with support vector regression (SVR) and CNNs on the same data set. The experimental studies show that the proposed model has higher estimation accuracy and better robustness with respect to time. The combination of CNNs and RNNs can improve the model performance compared with using CNNs alone. The model of deep architecture is promising in EMG decoding and optimization of network structures can increase the accuracy and robustness. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Haorui Liu
2016-01-01
Full Text Available In the car control systems, it is hard to measure some key vehicle states directly and accurately when running on the road and the cost of the measurement is high as well. To address these problems, a vehicle state estimation method based on the kernel principal component analysis and the improved Elman neural network is proposed. Combining with nonlinear vehicle model of three degrees of freedom (3 DOF, longitudinal, lateral, and yaw motion, this paper applies the method to the soft sensor of the vehicle states. The simulation results of the double lane change tested by Matlab/SIMULINK cosimulation prove the KPCA-IENN algorithm (kernel principal component algorithm and improved Elman neural network to be quick and precise when tracking the vehicle states within the nonlinear area. This algorithm method can meet the software performance requirements of the vehicle states estimation in precision, tracking speed, noise suppression, and other aspects.
Uncertainties in neural network model based on carbon dioxide concentration for occupancy estimation
Energy Technology Data Exchange (ETDEWEB)
Alam, Azimil Gani; Rahman, Haolia; Kim, Jung-Kyung; Han, Hwataik [Kookmin University, Seoul (Korea, Republic of)
2017-05-15
Demand control ventilation is employed to save energy by adjusting airflow rate according to the ventilation load of a building. This paper investigates a method for occupancy estimation by using a dynamic neural network model based on carbon dioxide concentration in an occupied zone. The method can be applied to most commercial and residential buildings where human effluents to be ventilated. An indoor simulation program CONTAMW is used to generate indoor CO{sub 2} data corresponding to various occupancy schedules and airflow patterns to train neural network models. Coefficients of variation are obtained depending on the complexities of the physical parameters as well as the system parameters of neural networks, such as the numbers of hidden neurons and tapped delay lines. We intend to identify the uncertainties caused by the model parameters themselves, by excluding uncertainties in input data inherent in measurement. Our results show estimation accuracy is highly influenced by the frequency of occupancy variation but not significantly influenced by fluctuation in the airflow rate. Furthermore, we discuss the applicability and validity of the present method based on passive environmental conditions for estimating occupancy in a room from the viewpoint of demand control ventilation applications.
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-03-29
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.
Zhang, Li
With the deregulation of the electric power market in New England, an independent system operator (ISO) has been separated from the New England Power Pool (NEPOOL). The ISO provides a regional spot market, with bids on various electricity-related products and services submitted by utilities and independent power producers. A utility can bid on the spot market and buy or sell electricity via bilateral transactions. Good estimation of market clearing prices (MCP) will help utilities and independent power producers determine bidding and transaction strategies with low risks, and this is crucial for utilities to compete in the deregulated environment. MCP prediction, however, is difficult since bidding strategies used by participants are complicated and MCP is a non-stationary process. The main objective of this research is to provide efficient short-term load and MCP forecasting and corresponding confidence interval estimation methodologies. In this research, the complexity of load and MCP with other factors is investigated, and neural networks are used to model the complex relationship between input and output. With improved learning algorithm and on-line update features for load forecasting, a neural network based load forecaster was developed, and has been in daily industry use since summer 1998 with good performance. MCP is volatile because of the complexity of market behaviors. In practice, neural network based MCP predictors usually have a cascaded structure, as several key input factors need to be estimated first. In this research, the uncertainties involved in a cascaded neural network structure for MCP prediction are analyzed, and prediction distribution under the Bayesian framework is developed. A fast algorithm to evaluate the confidence intervals by using the memoryless Quasi-Newton method is also developed. The traditional back-propagation algorithm for neural network learning needs to be improved since MCP is a non-stationary process. The extended Kalman
Estimation of tool wear during CNC milling using neural network-based sensor fusion
Ghosh, N.; Ravi, Y. B.; Patra, A.; Mukhopadhyay, S.; Paul, S.; Mohanty, A. R.; Chattopadhyay, A. B.
2007-01-01
Cutting tool wear degrades the product quality in manufacturing processes. Monitoring tool wear value online is therefore needed to prevent degradation in machining quality. Unfortunately there is no direct way of measuring the tool wear online. Therefore one has to adopt an indirect method wherein the tool wear is estimated from several sensors measuring related process variables. In this work, a neural network-based sensor fusion model has been developed for tool condition monitoring (TCM). Features extracted from a number of machining zone signals, namely cutting forces, spindle vibration, spindle current, and sound pressure level have been fused to estimate the average flank wear of the main cutting edge. Novel strategies such as, signal level segmentation for temporal registration, feature space filtering, outlier removal, and estimation space filtering have been proposed. The proposed approach has been validated by both laboratory and industrial implementations.
Comparison of Artificial Neural Networks and GIS Based Solar Analysis for Solar Potential Estimation
Konakoǧlu, Berkant; Usta, Ziya; Cömert, Çetin; Gökalp, Ertan
2016-04-01
Nowadays, estimation of solar potential plays an important role in planning process for sustainable cities. The use of solar panels, which produces electricity directly from the sun, has become popular in accordance with developing technologies. Since the use of solar panels enables the users to decrease costs and increase yields, the use of solar panels will be more popular in the future. Production of electricity is not convenient for all circumstances. Shading effects, massive clouds and rainy weather are some factors that directly affect the production of electricity from solar energy. Hence, before the installation of solar panels, it is crucial to conduct spatial analysis and estimate the solar potential of the place that the solar panel will be installed. There are several approaches to determine the solar potential. Examination of the applications in the literature reveals that the applications conducted for determining the solar potential are divided into two main categories. Solar potential is estimated either by using artificial neural network approach in which statistical parameters such as the duration of sun shine, number of clear days, solar radiation etc. are used, or by spatial analysis conducted in GIS approaches in which spatial parameters such as, latitude, longitude, slope, aspect etc. are used. In the literature, there are several studies that use both approaches but the literature lacks of a study related to the comparison of these approaches. In this study, Karadeniz Technical University campus has been selected as study area. Monthly average values of the number of clear sky days, air temperature, atmospheric pressure, relative humidity, sunshine duration and solar radiation parameters obtained for the years between 2005 and 2015 will be used to perform artificial neural network analysis to estimate the solar potential of the study area. The solar potential will also be estimated by using GIS-based solar analysis modules. The results of
A method to estimate emission rates from industrial stacks based on neural networks.
Olcese, Luis E; Toselli, Beatriz M
2004-11-01
This paper presents a technique based on artificial neural networks (ANN) to estimate pollutant rates of emission from industrial stacks, on the basis of pollutant concentrations measured on the ground. The ANN is trained on data generated by the ISCST3 model, widely accepted for evaluation of dispersion of primary pollutants as a part of an environmental impact study. Simulations using theoretical values and comparison with field data are done, obtaining good results in both cases at predicting emission rates. The application of this technique would allow the local environment authority to control emissions from industrial plants without need of performing direct measurements inside the plant. copyright 2004 Elsevier Ltd.
Tissue microstructure estimation using a deep network inspired by a dictionary-based framework.
Ye, Chuyang
2017-12-01
Diffusion magnetic resonance imaging (dMRI) captures the anisotropic pattern of water displacement in the neuronal tissue and allows noninvasive investigation of the complex tissue microstructure. A number of biophysical models have been proposed to relate the tissue organization with the observed diffusion signals, so that the tissue microstructure can be inferred. The Neurite Orientation Dispersion and Density Imaging (NODDI) model has been a popular choice and has been widely used for many neuroscientific studies. It models the diffusion signal with three compartments that are characterized by distinct diffusion properties, and the parameters in the model describe tissue microstructure. In NODDI, these parameters are estimated in a maximum likelihood framework, where the nonlinear model fitting is computationally intensive. Therefore, efforts have been made to develop efficient and accurate algorithms for NODDI microstructure estimation, which is still an open problem. In this work, we propose a deep network based approach that performs end-to-end estimation of NODDI microstructure, which is named Microstructure Estimation using a Deep Network (MEDN). MEDN comprises two cascaded stages and is motivated by the AMICO algorithm, where the NODDI microstructure estimation is formulated in a dictionary-based framework. The first stage computes the coefficients of the dictionary. It resembles the solution to a sparse reconstruction problem, where the iterative process in conventional estimation approaches is unfolded and truncated, and the weights are learned instead of predetermined by the dictionary. In the second stage, microstructure properties are computed from the output of the first stage, which resembles the weighted sum of normalized dictionary coefficients in AMICO, and the weights are also learned. Because spatial consistency of diffusion signals can be used to reduce the effect of noise, we also propose MEDN+, which is an extended version of MEDN. MEDN
Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks.
Rumschinski, Philipp; Borchers, Steffen; Bosio, Sandro; Weismantel, Robert; Findeisen, Rolf
2010-05-25
Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates.
[Estimation of Winter Wheat Biomass Using Visible Spectral and BP Based Artificial Neural Networks].
Cui, Ri-xian; Liu, Ya-dong; Fu, Jin-dong
2015-09-01
The objective of this study was to evaluate the feasibility of using color digital image analysis and back propagation (BP) based artificial neural networks (ANN) method to estimate above ground biomass at the canopy level of winter wheat field. Digital color images of winter wheat canopies grown under six levels of nitrogen treatments were taken with a digital camera for four times during the elongation stage and at the same time wheat plants were sampled to measure above ground biomass. Canopy cover (CC) and 10 color indices were calculated from winter wheat canopy images by using image analysis program (developed in Microsoft Visual Basic). Correlation analysis was carried out to identify the relationship between CC, 10 color indices and winter wheat above ground biomass. Stepwise multiple linear regression and BP based ANN methods were used to establish the models to estimate winter wheat above ground biomass. The results showed that CC, and two color indices had a significant cor- relation with above ground biomass. CC revealed the highest correlation with winter wheat above ground biomass. Stepwise multiple linear regression model constituting CC and color indices of NDI and b, and BP based ANN model with four variables (CC, g, b and NDI) for input was constructed to estimate winter wheat above ground biomass. The validation results indicate that the model using BP based ANN method has a better performance with higher R2 (0.903) and lower RMSE (61.706) and RRMSE (18.876) in comparation with the stepwise regression model.
Estimating the Capacity of Urban Transportation Networks with an Improved Sensitivity Based Method
Directory of Open Access Journals (Sweden)
Muqing Du
2015-01-01
Full Text Available The throughput of a given transportation network is always of interest to the traffic administrative department, so as to evaluate the benefit of the transportation construction or expansion project before its implementation. The model of the transportation network capacity formulated as a mathematic programming with equilibrium constraint (MPEC well defines this problem. For practical applications, a modified sensitivity analysis based (SAB method is developed to estimate the solution of this bilevel model. The high-efficient origin-based (OB algorithm is extended for the precise solution of the combined model which is integrated in the network capacity model. The sensitivity analysis approach is also modified to simplify the inversion of the Jacobian matrix in large-scale problems. The solution produced in every iteration of SAB is restrained to be feasible to guarantee the success of the heuristic search. From the numerical experiments, the accuracy of the derivatives for the linear approximation could significantly affect the converging of the SAB method. The results also show that the proposed method could obtain good suboptimal solutions from different starting points in the test examples.
A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.
Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang
2015-11-13
Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.
A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks
Directory of Open Access Journals (Sweden)
Xuerong Cui
2015-11-01
Full Text Available Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR environments.
A proportional integral estimator-based clock synchronization protocol for wireless sensor networks.
Yang, Wenlun; Fu, Minyue
2017-11-01
Clock synchronization is an issue of vital importance in applications of WSNs. This paper proposes a proportional integral estimator-based protocol (EBP) to achieve clock synchronization for wireless sensor networks. As each local clock skew gradually drifts, synchronization accuracy will decline over time. Compared with existing consensus-based approaches, the proposed synchronization protocol improves synchronization accuracy under time-varying clock skews. Moreover, by restricting synchronization error of clock skew into a relative small quantity, it could reduce periodic re-synchronization frequencies. At last, a pseudo-synchronous implementation for skew compensation is introduced as synchronous protocol is unrealistic in practice. Numerical simulations are shown to illustrate the performance of the proposed protocol. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Chen, Xiaoshuang; Lin, Jin; Wan, Can
2016-01-01
State estimation (SE) in distribution networks is not as accurate as that in transmission networks. Traditionally, distribution networks (DNs) are lack of direct measurements due to the limitations of investments and the difficulties of maintenance. Therefore, it is critical to improve the accuracy...... of SE in distribution networks by placing additional physical meters. For state-of-the-art SE models, it is difficult to clearly quantify measurements' influences on SE errors, so the problems of optimal meter placement for reducing SE errors are mostly solved by heuristic or suboptimal algorithms...
Zeng, Y; Zhang, J; Yin, H; Pan, Y
2007-01-01
Visual evoked potentials (VEPs) are time-varying signals typically buried in relatively large background noise known as the electroencephalogram (EEG). In this paper, an adaptive noise cancellation with neural network-based fuzzy inference system (NNFIS) was used and the NNFIS was carefully designed to model the VEP signal. It is assumed that VEP responses can be modelled by NNFIS with the centres of its membership functions evenly distributed over time. The weights of NNFIS are adaptively determined by minimizing the variance of the error signal using the least mean squares (LMS) algorithm. As the NNFIS is dynamic to any change of VEP, the non-stationary characteristics of VEP can be tracked. Thus, this method should be able to track the VEP. Four sets of simulated data indicate that the proposed method is appropriate to estimate VEP. A total of 150 trials are processed to demonstrate the superior performance of the proposed method.
Directory of Open Access Journals (Sweden)
Bahita Mohamed
2011-01-01
Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.
Using AERONET to complement irradiance networks on the validation of satellite-based estimations
Oumbe, A.; Bru, H.; Ghedira, H.; Chiesa, M.; Blanc, P.; Wald, L.
2012-12-01
Long-term measurements of surface solar irradiance (SSI) are essential for predicting the production of solar energy conversion systems. Ground-based SSIs are also needed for validation and calibration of models which convert satellite images into down-welling irradiances. Unfortunately, well-controlled data are publicly available for only a limited number of locations, especially when it comes to beam normal irradiance (BNI). In the Middle East particularly, there is only one publicly available research-class station: the Sede Boqer station, monitored by the BSRN (Baseline Surface Radiation Network). Thus, estimations of SSIs have been so far difficult to validate in this region. Besides irradiance networks, AERONET (Aerosol Robotic network) program provides long-term and public accessible sun photometer measurements. Its main goal is to provide validation data for satellite retrievals of aerosol optical properties. Various atmospheric properties are measured: aerosol optical depth at several wavelengths, water vapor amount, Angstrom coefficients. These data can be utilized for computation of SSI in cloudless sky by means of a radiative transfer model (RTM). The appropriate conversion of AERONET atmospheric properties into irradiances would provide additional in-situ irradiance data. In this work, we select the AERONET data which are relevant for irradiance calculation, compute the direct and global irradiances using the RTM LibRadTran and validate the outcomes with nearest actual irradiance measurements. The comparisons are made in the Middle East region. At Sede Boqer where AERONET and BSRN measurements are simultaneously available, the standard-deviation obtained is only 6% for BNI and 5% for GHI (global horizontal irradiance) between the computed and the measured hourly mean irradiances (see the attached figure). When the AERONET and BSRN stations considered are 100 km away, the standard-deviation between actually measured and AERONET-derived irradiances
Directory of Open Access Journals (Sweden)
Cécile Souty
2016-11-01
Full Text Available Abstract Background In surveillance networks based on voluntary participation of health-care professionals, there is little choice regarding the selection of participants’ characteristics. External information about participants, for example local physician density, can help reduce bias in incidence estimates reported by the surveillance network. Methods There is an inverse association between the number of reported influenza-like illness (ILI cases and local general practitioners (GP density. We formulated and compared estimates of ILI incidence using this relationship. To compare estimates, we simulated epidemics using a spatially explicit disease model and their observation by surveillance networks with different characteristics: random, maximum coverage, largest cities, etc. Results In the French practice-based surveillance network – the “Sentinelles” network – GPs reported 3.6% (95% CI [3;4] less ILI cases as local GP density increased by 1 GP per 10,000 inhabitants. Incidence estimates varied markedly depending on scenarios for participant selection in surveillance. Yet accounting for change in GP density for participants allowed reducing bias. Applied on data from the Sentinelles network, changes in overall incidence ranged between 1.6 and 9.9%. Conclusions Local GP density is a simple measure that provides a way to reduce bias in estimating disease incidence in general practice. It can contribute to improving disease monitoring when it is not possible to choose the characteristics of participants.
Nakagawa, M.; Akano, K.; Kobayashi, T.; Sekiguchi, Y.
2017-09-01
Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.
Artificial neural network-based all-sky power estimation and fault detection in photovoltaic modules
Jazayeri, Kian; Jazayeri, Moein; Uysal, Sener
2017-04-01
The development of a system for output power estimation and fault detection in photovoltaic (PV) modules using an artificial neural network (ANN) is presented. Over 30,000 healthy and faulty data sets containing per-minute measurements of PV module output power (W) and irradiance (W/m2) along with real-time calculations of the Sun's position in the sky and the PV module surface temperature, collected during a three-month period, are fed to different ANNs as training paths. The first ANN being trained on healthy data is used for PV module output power estimation and the second ANN, which is trained on both healthy and faulty data, is utilized for PV module fault detection. The proposed PV module-level fault detection algorithm can expectedly be deployed in broader PV fleets by taking developmental considerations. The machine-learning-based automated system provides the possibility of all-sky real-time monitoring and fault detection of PV modules under any meteorological condition. Utilizing the proposed system, any power loss caused by damaged cells, shading conditions, accumulated dirt and dust on module surface, etc., is detected and reported immediately, potentially yielding increased reliability and efficiency of the PV systems and decreased support and maintenance costs.
Shekarrizfard, Maryam; Karimi-Jashni, A; Hadad, K
2012-01-01
In this paper, a novel method in the estimation and prediction of PM(10) is introduced using wavelet transform-based artificial neural networks (WT-ANN). First, the application of wavelet transform, selected for its temporal shift properties and multiresolution analysis characteristics enabling it to reduce disturbing perturbations in input training set data, is presented. Afterward, the circular statistical indices which are used in this method are formally introduced in order to investigate the relation between PM(10) levels and circular meteorological variables. Then, the results of the simulation of PM(10) based on WT-ANN by use of MATLAB software are discussed. The results of the above-mentioned simulation show an enhanced accuracy and speed in PM(10) estimation/prediction and a high degree of robustness compared with traditional ANN models.
Contreras, Rodrigo; Restrepo, Silvia E.; Pezoa, Jorge E.
2014-10-01
In this paper, the prototype implementation of a scalable, distributed protocol for calculating the global average of sensed environmental variables in unattended wireless sensor networks (WSNs) is presented. The design and implementation of the protocol introduces a communication scheme for discovering the WSN topology. Such scheme uses a synchronous flooding algorithm, which was implemented over an unreliable radiogram-based wireless channel. The topology discovery protocol has been synchronized with sampling time of the WSN and must be executed before the consensus-based estimation of the global averages. An average consensus algorithm, suited for clustered WSNs with static topologies, was selected from the literature. The algorithm was properly modified so that its implementation guarantees that the convergence time is bounded and less than the sampling time of the WSN. Moreover, to implement the consensus algorithm, a reliable packet-passing protocol was designed to exchange the weighting factors among the sensor nodes. Since the amount of data exchanged in each packet is bounded by the degree of the WSN, the scalability of the protocol is guaranteed to be linear. The proposed protocol was implemented in the Sun SPOT hardware/software platform using the Java programming language. All the radio communications were implemented over the IEEE 802.15.4 standard and the sensed environmental variables corresponded to the temperature and luminosity.
Rehan, Waqas; Fischer, Stefan; Rehan, Maaz
2016-09-12
Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end
Directory of Open Access Journals (Sweden)
Waqas Rehan
2016-09-01
Full Text Available Wireless sensor networks (WSNs have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM, that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI and the average of the link quality indicator (LQI of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC algorithm in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC algorithm, that can perform channel quality estimation on the basis of both current and past values of channel rank estimation
Rehan, Waqas; Fischer, Stefan; Rehan, Maaz
2016-01-01
Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end
Directory of Open Access Journals (Sweden)
Francisco Garcia
2017-01-01
Full Text Available Location privacy in wireless networks is nowadays a major concern. This is due to the fact that the mere fact of transmitting may allow a network to pinpoint a mobile node. We consider that a first step to protect a mobile node in this situation is to provide it with the means to quantify how accurately a network establishes its position. To achieve this end, we introduce the location-exposure algorithm (LEA, which runs on the mobile terminal only and whose operation consists of two steps. In the first step, LEA discovers the positions of nearby network nodes and uses this information to emulate how they estimate the position of the mobile node. In the second step, it quantifies the level of exposure by computing the distance between the position estimated in the first step and its true position. We refer to these steps as a location-exposure problem. We tested our proposal with simulations and testbed experiments. These results show the ability of LEA to reproduce the location of the mobile node, as seen by the network, and to quantify the level of exposure. This knowledge can help the mobile user decide which actions should be performed before transmitting.
Improved rapid magnitude estimation for a community-based, low-cost MEMS accelerometer network
Chung, Angela I.; Cochran, Elizabeth S.; Kaiser, Anna E.; Christensen, Carl M.; Yildirim, Battalgazi; Lawrence, Jesse F.
2015-01-01
Immediately following the Mw 7.2 Darfield, New Zealand, earthquake, over 180 Quake‐Catcher Network (QCN) low‐cost micro‐electro‐mechanical systems accelerometers were deployed in the Canterbury region. Using data recorded by this dense network from 2010 to 2013, we significantly improved the QCN rapid magnitude estimation relationship. The previous scaling relationship (Lawrence et al., 2014) did not accurately estimate the magnitudes of nearby (estimates earthquake magnitudes within 1 magnitude unit of the GNS Science GeoNet earthquake catalog magnitudes for 99% of the events tested, within 0.5 magnitude units for 90% of the events, and within 0.25 magnitude units for 57% of the events. These magnitudes are reliably estimated within 3 s of the initial trigger recorded on at least seven stations. In this report, we present the methods used to calculate a new scaling relationship and demonstrate the accuracy of the revised magnitude estimates using a program that is able to retrospectively estimate event magnitudes using archived data.
Directory of Open Access Journals (Sweden)
Mahmut Ozan Gökkan
2017-01-01
Full Text Available Optical parameters (properties of tissue-mimicking phantoms are determined through noninvasive optical imaging. Objective of this study is to decompose obtained diffuse reflectance into these optical properties such as absorption and scattering coefficients. To do so, transmission spectroscopy is firstly used to measure the coefficients via an experimental setup. Next, the optical properties of each characterized phantom are input for Monte Carlo (MC simulations to get diffuse reflectance. Also, a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5∘ angle to the phantoms. For the illumination of light, a laser light source at 633nm wavelength is preferred, because optical properties of different components in a biological tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion (CILE and evans blue (EB dye into a distilled water. Finally, all obtained diffuse reflectance values are used to estimate the optical coefficients by artificial neural networks (ANNs in inverse modeling. For a biological tissue it is found that the simulated and measured values in our results are in good agreement.
A. R. Moghadassi; Parvizian,F.; Hosseini, S.M.; Fazlali,A. R.
2009-01-01
Equations of state are useful for description of fluid properties such as pressure-volume-temperature (PVT). However, the success estimation of such correlations depends mainly on the range of data which have originated. Therefore new models are highly required. In this work a new method is proposed based on Artificial Neural Network (ANN) for estimation of PVT properties of compounds. The data sets were collected from Perry's Chemical Engineers' Handbook. Different training schemes for the b...
Directory of Open Access Journals (Sweden)
Kisong Lee
2016-01-01
Full Text Available As miniature-sized embedded computing platforms are ubiquitously deployed to our everyday environments, the issue of managing their power usage becomes important, especially when they are used in energy harvesting based self-organizing networks. One way to provide these devices with continuous power is to utilize RF-based energy transfer. Previous research in RF-based information and energy transfer builds up on the assumption that perfect channel estimation is easily achievable. However, as our preliminary experiments and many previous literature in wireless network systems show, making perfect estimations of the wireless channel is extremely challenging due to their quality fluctuations. To better reflect reality, in this work, we introduce an adaptive power allocation and splitting (APAS scheme which takes imperfect channel estimations into consideration. Our evaluation results show that the proposed APAS scheme achieves near-optimal performances for transferring energy and data over a single RF transmission.
Dai, Haifeng; Zhu, Letao; Zhu, Jiangong; Wei, Xuezhe; Sun, Zechang
2015-10-01
The accurate monitoring of battery cell temperature is indispensible to the design of battery thermal management system. To obtain the internal temperature of a battery cell online, an adaptive temperature estimation method based on Kalman filtering and an equivalent time-variant electrical network thermal (EENT) model is proposed. The EENT model uses electrical components to simulate the battery thermodynamics, and the model parameters are obtained with a least square algorithm. With a discrete state-space description of the EENT model, a Kalman filtering (KF) based internal temperature estimator is developed. Moreover, considering the possible time-varying external heat exchange coefficient, a joint Kalman filtering (JKF) based estimator is designed to simultaneously estimate the internal temperature and the external thermal resistance. Several experiments using the hard-cased LiFePO4 cells with embedded temperature sensors have been conducted to validate the proposed method. Validation results show that, the EENT model expresses the battery thermodynamics well, the KF based temperature estimator tracks the real central temperature accurately even with a poor initialization, and the JKF based estimator can simultaneously estimate both central temperature and external thermal resistance precisely. The maximum estimation errors of the KF- and JKF-based estimators are less than 1.8 °C and 1 °C respectively.
Directory of Open Access Journals (Sweden)
M. Nakagawa
2017-09-01
Full Text Available Image-based virtual reality (VR is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.
A new tool for quality of multimedia estimation based on network behaviour
Directory of Open Access Journals (Sweden)
Jaroslav Frnda
2016-03-01
Full Text Available In this paper, we present a software tool capable of predicting the final quality of triple play services by using the most common assessment metrics. The quality of speech and video in network environment is a growing concern of all the internet service providers to carry the multimedia traffic without the excessive delays and losses, which degrade the quality of multimedia as it is perceived by the end users. Prediction mathematical model is based on results obtained from many performed testing scenarios simulating real behavior in the network. Based on the proposed model, speech or video quality is calculated with regard to policies applied for packet processing by routers and to the level of total network utilization. The application cannot only predict QoS parameters but also generate the source code of particular QoS policy setting according to the user interaction and apply the policy to the routers in the network. Contribution of the work consists of a new software tool enables network administrators and designers to improve and optimize network traffic efficiently.
Directory of Open Access Journals (Sweden)
A. R. Moghadassi
2009-03-01
Full Text Available Equations of state are useful for description of fluid properties such as pressure-volume-temperature (PVT. However, the success estimation of such correlations depends mainly on the range of data which have originated. Therefore new models are highly required. In this work a new method is proposed based on Artificial Neural Network (ANN for estimation of PVT properties of compounds. The data sets were collected from Perry's Chemical Engineers' Handbook. Different training schemes for the back-propagation learning algorithm, such as; Scaled Conjugate Gradient (SCG, Levenberg-Marquardt (LM and Resilient back Propagation (RP methods were used. The accuracy and trend stability of the trained networks were tested against unseen data. The LM algorithm with sixty neurons in the hidden layer has proved to be the best suitable algorithm with the minimum Mean Square Error (MSE of 0.000606. The ANN's capability to estimate the PVT properties is one of the best estimating method with high performance.
2012-05-01
in particular, the mean- squared error (MSE) blows up with the SNR. Other than being inaccurate, since the SNR is unknown apriori , the estimate...requires per- fect knowledge of a, which is unknown apriori . In Section 3, we will introduce a learning-based distributed estimation procedure, the MDE
Artificial Neural Networks and Gene Expression Programing based age estimation using facial features
Directory of Open Access Journals (Sweden)
Baddrud Z. Laskar
2015-10-01
Full Text Available This work is about estimating human age automatically through analysis of facial images. It has got a lot of real-world applications. Due to prompt advances in the fields of machine vision, facial image processing, and computer graphics, automatic age estimation via faces in computer is one of the dominant topics these days. This is due to widespread real-world applications, in areas of biometrics, security, surveillance, control, forensic art, entertainment, online customer management and support, along with cosmetology. As it is difficult to estimate the exact age, this system is to estimate a certain range of ages. Four sets of classifications have been used to differentiate a person’s data into one of the different age groups. The uniqueness about this study is the usage of two technologies i.e., Artificial Neural Networks (ANN and Gene Expression Programing (GEP to estimate the age and then compare the results. New methodologies like Gene Expression Programing (GEP have been explored here and significant results were found. The dataset has been developed to provide more efficient results by superior preprocessing methods. This proposed approach has been developed, tested and trained using both the methods. A public data set was used to test the system, FG-NET. The quality of the proposed system for age estimation using facial features is shown by broad experiments on the available database of FG-NET.
DEFF Research Database (Denmark)
Soliman, Hammam Abdelaal Hammam; Wang, Huai; Blaabjerg, Frede
2016-01-01
of the aforementioned challenges and shortcomings. In this paper, a pure software condition monitoring method based on Artificial Neural Network (ANN) algorithm is proposed. The implemented ANN estimates the capacitance of the dc-link capacitor in a back-to-back converter. The error analysis of the estimated results......The reliability of dc-link capacitors in power electronic converters is one of the critical aspects to be considered in modern power converter design. The observation of their ageing process and the estimation of their health status have been an attractive subject for the industrial field and hence...
Hour-Glass Neural Network Based Daily Money Flow Estimation for Automatic Teller Machines
Karungaru, Stephen; Akashi, Takuya; Nakano, Miyoko; Fukumi, Minoru
Monetary transactions using Automated Teller Machines (ATMs) have become a normal part of our daily lives. At ATMs, one can withdraw, send or debit money and even update passbooks among many other possible functions. ATMs are turning the banking sector into a ubiquitous service. However, while the advantages for the ATM users (financial institution customers) are many, the financial institution side faces an uphill task in management and maintaining the cash flow in the ATMs. On one hand, too much money in a rarely used ATM is wasteful, while on the other, insufficient amounts would adversely affect the customers and may result in a lost business opportunity for the financial institution. Therefore, in this paper, we propose a daily cash flow estimation system using neural networks that enables better daily forecasting of the money required at the ATMs. The neural network used in this work is a five layered hour glass shaped structure that achieves fast learning, even for the time series data for which seasonality and trend feature extraction is difficult. Feature extraction is carried out using the Akamatsu Integral and Differential transforms. This work achieves an average estimation accuracy of 92.6%.
A network-based approach for estimating pedestrian journey-time exposure to air pollution.
Davies, Gemma; Whyatt, J Duncan
2014-07-01
Individual exposure to air pollution depends not only upon pollution concentrations in the surrounding environment, but also on the volume of air inhaled, which is determined by an individual's physiology and activity level. This study focuses on journey-time exposure, using network analysis in a GIS environment to identify pedestrian routes between multiple origins and destinations throughout the city of Lancaster, North West England. For each segment of a detailed footpath network, exposure was calculated accounting for PM2.5 concentrations (estimated using an atmospheric dispersion model) and respiratory minute volume (varying between individuals and with slope). For each of the routes generated the cumulative exposure to PM2.5 was estimated, allowing for easy comparison between multiple routes. Significant variations in exposure were found between routes depending on their geography, as well as in response to variations in background concentrations and meteorology between days. Differences in physiological characteristics such as age or weight were also seen to impact journey-time exposure considerably. In addition to assessing exposure for a given route, the approach was used to identify alternative routes that minimised journey-time exposure. Exposure reduction potential varied considerably between days, with even subtle shifts in route location, such as to the opposite side of the road, showing significant benefits. The method presented is both flexible and scalable, allowing for the interactions between physiology, activity level, pollution concentration and journey duration to be explored. In enabling physiology and activity level to be integrated into exposure calculations a more comprehensive estimate of journey-time exposure can be made, which has potential to provide more realistic inputs for epidemiological studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Kalman Filter-Based Hybrid Indoor Position Estimation Technique in Bluetooth Networks
Directory of Open Access Journals (Sweden)
Fazli Subhan
2013-01-01
Full Text Available This paper presents an extended Kalman filter-based hybrid indoor position estimation technique which is based on integration of fingerprinting and trilateration approach. In this paper, Euclidian distance formula is used for the first time instead of radio propagation model to convert the received signal to distance estimates. This technique combines the features of fingerprinting and trilateration approach in a more simple and robust way. The proposed hybrid technique works in two stages. In the first stage, it uses an online phase of fingerprinting and calculates nearest neighbors (NN of the target node, while in the second stage it uses trilateration approach to estimate the coordinate without the use of radio propagation model. The distance between calculated NN and detective access points (AP is estimated using Euclidian distance formula. Thus, distance between NN and APs provides radii for trilateration approach. Therefore, the position estimation accuracy compared to the lateration approach is better. Kalman filter is used to further enhance the accuracy of the estimated position. Simulation and experimental results validate the performance of proposed hybrid technique and improve the accuracy up to 53.64% and 25.58% compared to lateration and fingerprinting approaches, respectively.
A dynamic programming approach for quickly estimating large network-based MEV models
DEFF Research Database (Denmark)
Mai, Tien; Frejinger, Emma; Fosgerau, Mogens
2017-01-01
We propose a way to estimate a family of static Multivariate Extreme Value (MEV) models with large choice sets in short computational time. The resulting model is also straightforward and fast to use for prediction. Following Daly and Bierlaire (2006), the correlation structure is defined by a ro...... to converge (4.3 h on an Intel(R) 3.2 GHz machine using a non-parallelized code). We also show that our approach allows to estimate a cross-nested logit model of 111 nests with a real data set of more than 100,000 observations in 14 h.......We propose a way to estimate a family of static Multivariate Extreme Value (MEV) models with large choice sets in short computational time. The resulting model is also straightforward and fast to use for prediction. Following Daly and Bierlaire (2006), the correlation structure is defined...... by a rooted, directed graph where each node without successor is an alternative. We formulate a family of MEV models as dynamic discrete choice models on graphs of correlation structures and show that the dynamic models are consistent with MEV theory and generalize the network MEV model (Daly and Bierlaire...
Directory of Open Access Journals (Sweden)
M.R. Mosavi
2016-01-01
Full Text Available This paper presents a new method to estimate the time of important earthquakes in Hormozgan region with magnitude greater than 5.5 based on the Radial Basis Function (RBF Neural Network (NN models. Input vector to the network is composed of different seismicity rates between main events that are calculated in convenient and reliable way to create optimized training methods. It helps network with a limited number of training data to estimation. It is common for earthquakes modeling by data-driven methods in this case. In addition, the proposed method is combined with Rosenberg cluster method to remove aftershocks events from the history of catalog for NN to better process the data. The results show that created RBF model successfully estimates the interevent times between large and sequence earthquakes that can be used as a tool to predict earthquake, so that comparison with other NN structure, for example Multi-Layer Perceptron (MLP NN, reveals the superiority of the proposed method. Because of superiority proposed method has higher accuracy, lower costs and simpler network structure.
DEFF Research Database (Denmark)
Soliman, Hammam Abdelaal Hammam; Abdelsalam, Ibrahim; Wang, Huai
2017-01-01
, a proposed software condition monitoring methodology based on Artificial Neural Network (ANN) algorithm is presented. Matlab software is used to train and generate the proposed ANN. The proposed methodology estimates the capacitance of the DC-link capacitor in a three phase front-end diode bridge AC......In modern design of power electronic converters, reliability of DC-link capacitors is an essential aspect to be considered. The industrial field have been attracted to the monitoring of their health condition and the estimation of their ageing process status. The existing condition monitoring...
Energy Technology Data Exchange (ETDEWEB)
Zhang, Wenbing [Department of Mathematics, Yangzhou University, Yangzhou 225002 (China); Wang, Zidong [Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH (United Kingdom); Liu, Yurong, E-mail: yrliu@yzu.edu.cn [Department of Mathematics, Yangzhou University, Yangzhou 225002 (China); Communication Systems and Networks (CSN) Research Group, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ding, Derui [Shanghai Key Lab of Modern Optical System, Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Alsaadi, Fuad E. [Communication Systems and Networks (CSN) Research Group, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2017-01-05
The paper is concerned with the state estimation problem for a class of time-delayed complex networks with event-triggering communication protocol. A novel event generator function, which is dependent not only on the measurement output but also on a predefined positive constant, is proposed with hope to reduce the communication burden. A new concept of exponentially ultimate boundedness is provided to quantify the estimation performance. By means of the comparison principle, some sufficient conditions are obtained to guarantee that the estimation error is exponentially ultimately bounded, and then the estimator gains are obtained in terms of the solution of certain matrix inequalities. Furthermore, a rigorous proof is proposed to show that the designed triggering condition is free of the Zeno behavior. Finally, a numerical example is given to illustrate the effectiveness of the proposed event-based estimator. - Highlights: • An event-triggered estimator is designed for complex networks with time-varying delays. • A novel event generator function is proposed to reduce the communication burden. • The comparison principle is utilized to derive the sufficient conditions. • The designed triggering condition is shown to be free of the Zeno behavior.
Broiler weight estimation based on machine vision and artificial neural network.
Amraei, S; Abdanan Mehdizadeh, S; Salari, S
2017-04-01
1. Machine vision and artificial neural network (ANN) procedures were used to estimate live body weight of broiler chickens in 30 1-d-old broiler chickens reared for 42 d. 2. Imaging was performed two times daily. To localise chickens within the pen, an ellipse fitting algorithm was used and the chickens' head and tail removed using the Chan-Vese method. 3. The correlations between the body weight and 6 physical extracted features indicated that there were strong correlations between body weight and the 5 features including area, perimeter, convex area, major and minor axis length. 5. According to statistical analysis there was no significant difference between morning and afternoon data over 42 d. 6. In an attempt to improve the accuracy of live weight approximation different ANN techniques, including Bayesian regulation, Levenberg-Marquardt, Scaled conjugate gradient and gradient descent were used. Bayesian regulation with R 2 value of 0.98 was the best network for prediction of broiler weight. 7. The accuracy of the machine vision technique was examined and most errors were less than 50 g.
Mixed H2/H∞-Based Fusion Estimation for Energy-Limited Multi-Sensors in Wearable Body Networks
Directory of Open Access Journals (Sweden)
Chao Li
2017-12-01
Full Text Available In wireless sensor networks, sensor nodes collect plenty of data for each time period. If all of data are transmitted to a Fusion Center (FC, the power of sensor node would run out rapidly. On the other hand, the data also needs a filter to remove the noise. Therefore, an efficient fusion estimation model, which can save the energy of the sensor nodes while maintaining higher accuracy, is needed. This paper proposes a novel mixed H2/H∞-based energy-efficient fusion estimation model (MHEEFE for energy-limited Wearable Body Networks. In the proposed model, the communication cost is firstly reduced efficiently while keeping the estimation accuracy. Then, the parameters in quantization method are discussed, and we confirm them by an optimization method with some prior knowledge. Besides, some calculation methods of important parameters are researched which make the final estimates more stable. Finally, an iteration-based weight calculation algorithm is presented, which can improve the fault tolerance of the final estimate. In the simulation, the impacts of some pivotal parameters are discussed. Meanwhile, compared with the other related models, the MHEEFE shows a better performance in accuracy, energy-efficiency and fault tolerance.
Vargas-Meléndez, Leandro; Boada, Beatriz L; Boada, María Jesús L; Gauchía, Antonio; Díaz, Vicente
2016-08-31
This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a "pseudo-roll angle" through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors' estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator.
Directory of Open Access Journals (Sweden)
AlMuthanna Turki Nassar
2015-01-01
Full Text Available This paper presents radio frequency (RF capacity estimation for millimeter wave (mm-wave based fifth-generation (5G cellular networks using field-level simulations. It is shown that, by reducing antenna beamwidth from 65° to 30°, we can enhance the capacity of mm-wave cellular networks roughly by 3.0 times at a distance of 220 m from the base station (BS. This enhancement is far much higher than the corresponding enhancement of 1.2 times observed for 900 MHz and 2.6 GHz microwave networks at the same distance from the BS. Thus the use of narrow beamwidth transmitting antennas has more pronounced benefits in mm-wave networks. Deployment trials performed on an LTE TDD site operating on 2.6 GHz show that 6-sector site with 27° antenna beamwidth enhances the quality of service (QoS roughly by 40% and more than doubles the overall BS throughput (while enhancing the per sector throughput 1.1 times on average compared to a 3-sector site using 65° antenna beamwidth. This agrees well with our capacity simulations. Since mm-wave 5G networks will use arbitrary number of beams, with beamwidth much less than 30°, the capacity enhancement expected in 5G system when using narrow beamwidth antennas would be much more than three times observed in our simulations.
DEFF Research Database (Denmark)
Silva, Filipe Faria Da; Bak, Claus Leth; Balle Holst, Per
2012-01-01
. The simulation of electromagnetic transients in cable-based networks requires larger computational effort than in an equivalent overhead-line (OHL)-based network. Therefore, the method is demonstrated for the former, with the cases of OHL-based networks and hybrid cable-OHL networks addressed in a future paper......The simulation of an electromagnetic transient is only as good as the model's data and the level of detail put into the modeling. One parameter with influence in the results is the size of the modeling of the area around the switched-on line. If the area is too small, the results are inaccurate....... If the area is too large, the simulation requires a long period of time and numerical problems are more likely to exist. This paper proposes a method that can be used to estimate the depth of the modeling area using the grid layout, which can be obtained directly from a PSS/E file, or equivalent...
Voice Quality Estimation in Wireless Networks
Directory of Open Access Journals (Sweden)
Petr Zach
2015-01-01
Full Text Available This article deals with the impact of Wireless (Wi-Fi networks on the perceived quality of voice services. The Quality of Service (QoS metrics must be monitored in the computer network during the voice data transmission to ensure proper voice service quality the end-user has paid for, especially in the wireless networks. In addition to the QoS, research area called Quality of Experience (QoE provides metrics and methods for quality evaluation from the end-user’s perspective. This article focuses on a QoE estimation of Voice over IP (VoIP calls in the wireless networks using network simulator. Results contribute to voice quality estimation based on characteristics of the wireless network and location of a wireless client.
IEEE 802.15.4 ZigBee-Based Time-of-Arrival Estimation for Wireless Sensor Networks.
Cheon, Jeonghyeon; Hwang, Hyunsu; Kim, Dongsun; Jung, Yunho
2016-02-05
Precise time-of-arrival (TOA) estimation is one of the most important techniques in RF-based positioning systems that use wireless sensor networks (WSNs). Because the accuracy of TOA estimation is proportional to the RF signal bandwidth, using broad bandwidth is the most fundamental approach for achieving higher accuracy. Hence, ultra-wide-band (UWB) systems with a bandwidth of 500 MHz are commonly used. However, wireless systems with broad bandwidth suffer from the disadvantages of high complexity and high power consumption. Therefore, it is difficult to employ such systems in various WSN applications. In this paper, we present a precise time-of-arrival (TOA) estimation algorithm using an IEEE 802.15.4 ZigBee system with a narrow bandwidth of 2 MHz. In order to overcome the lack of bandwidth, the proposed algorithm estimates the fractional TOA within the sampling interval. Simulation results show that the proposed TOA estimation algorithm provides an accuracy of 0.5 m at a signal-to-noise ratio (SNR) of 8 dB and achieves an SNR gain of 5 dB as compared with the existing algorithm. In addition, experimental results indicate that the proposed algorithm provides accurate TOA estimation in a real indoor environment.
Parameter estimation in channel network flow simulation
Directory of Open Access Journals (Sweden)
Han Longxi
2008-03-01
Full Text Available Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.
Directory of Open Access Journals (Sweden)
Hamel Mathieu
2008-09-01
Full Text Available Abstract Background It has been suggested that there is a dose-response relationship between the amount of therapy and functional recovery in post-acute rehabilitation care. To this day, only the total time of therapy has been investigated as a potential determinant of this dose-response relationship because of methodological and measurement challenges. The primary objective of this study was to compare time and motion measures during real life physical therapy with estimates of active time (i.e. the time during which a patient is active physically obtained with a wireless body area network (WBAN of 3D accelerometer modules positioned at the hip, wrist and ankle. The secondary objective was to assess the differences in estimates of active time when using a single accelerometer module positioned at the hip. Methods Five patients (77.4 ± 5.2 y with 4 different admission diagnoses (stroke, lower limb fracture, amputation and immobilization syndrome were recruited in a post-acute rehabilitation center and observed during their physical therapy sessions throughout their stay. Active time was recorded by a trained observer using a continuous time and motion analysis program running on a Tablet-PC. Two WBAN configurations were used: 1 three accelerometer modules located at the hip, wrist and ankle (M3 and 2 one accelerometer located at the hip (M1. Acceleration signals from the WBANs were synchronized with the observations. Estimates of active time were computed based on the temporal density of the acceleration signals. Results A total of 62 physical therapy sessions were observed. Strong associations were found between WBANs estimates of active time and time and motion measures of active time. For the combined sessions, the intraclass correlation coefficient (ICC was 0.93 (P ≤ 0.001 for M3 and 0.79 (P ≤ 0.001 for M1. The mean percentage of differences between observation measures and estimates from the WBAN of active time was -8.7% ± 2.0% using
Boada, Beatriz L.; Boada, Maria Jesus L.; Vargas-Melendez, Leandro; Diaz, Vicente
2018-01-01
Nowadays, one of the main objectives in road transport is to decrease the number of accident victims. Rollover accidents caused nearly 33% of all deaths from passenger vehicle crashes. Roll Stability Control (RSC) systems prevent vehicles from untripped rollover accidents. The lateral load transfer is the main parameter which is taken into account in the RSC systems. This parameter is related to the roll angle, which can be directly measured from a dual-antenna GPS. Nevertheless, this is a costly technique. For this reason, roll angle has to be estimated. In this paper, a novel observer based on H∞ filtering in combination with a neural network (NN) for the vehicle roll angle estimation is proposed. The design of this observer is based on four main criteria: to use a simplified vehicle model, to use signals of sensors which are installed onboard in current vehicles, to consider the inaccuracy in the system model and to attenuate the effect of the external disturbances. Experimental results show the effectiveness of the proposed observer.
Sadeghi-Goughari, M.; Mojra, A.; Sadeghi, S.
2016-02-01
Intraoperative Thermal Imaging (ITI) is a new minimally invasive diagnosis technique that can potentially locate margins of brain tumor in order to achieve maximum tumor resection with least morbidity. This study introduces a new approach to ITI based on artificial tactile sensing (ATS) technology in conjunction with artificial neural networks (ANN) and feasibility and applicability of this method in diagnosis and localization of brain tumors is investigated. In order to analyze validity and reliability of the proposed method, two simulations were performed. (i) An in vitro experimental setup was designed and fabricated using a resistance heater embedded in agar tissue phantom in order to simulate heat generation by a tumor in the brain tissue; and (ii) A case report patient with parafalcine meningioma was presented to simulate ITI in the neurosurgical procedure. In the case report, both brain and tumor geometries were constructed from MRI data and tumor temperature and depth of location were estimated. For experimental tests, a novel assisted surgery robot was developed to palpate the tissue phantom surface to measure temperature variations and ANN was trained to estimate the simulated tumor’s power and depth. Results affirm that ITI based ATS is a non-invasive method which can be useful to detect, localize and characterize brain tumors.
Remote sensing based evapotranspiration (ET) mapping has become an important tool for water resources management at a regional scale. Accurate hourly climatic data and reference ET are crucial input for successfully implementing remote sensing based ET models such as Mapping ET with internal calibra...
Wang, Yonggang; Li, Deng; Lu, Xiaoming; Cheng, Xinyi; Wang, Liwei
2014-10-01
Continuous crystal-based positron emission tomography (PET) detectors could be an ideal alternative for current high-resolution pixelated PET detectors if the issues of high performance γ interaction position estimation and its real-time implementation are solved. Unfortunately, existing position estimators are not very feasible for implementation on field-programmable gate array (FPGA). In this paper, we propose a new self-organizing map neural network-based nearest neighbor (SOM-NN) positioning scheme aiming not only at providing high performance, but also at being realistic for FPGA implementation. Benefitting from the SOM feature mapping mechanism, the large set of input reference events at each calibration position is approximated by a small set of prototypes, and the computation of the nearest neighbor searching for unknown events is largely reduced. Using our experimental data, the scheme was evaluated, optimized and compared with the smoothed k-NN method. The spatial resolutions of full-width-at-half-maximum (FWHM) of both methods averaged over the center axis of the detector were obtained as 1.87 ±0.17 mm and 1.92 ±0.09 mm, respectively. The test results show that the SOM-NN scheme has an equivalent positioning performance with the smoothed k-NN method, but the amount of computation is only about one-tenth of the smoothed k-NN method. In addition, the algorithm structure of the SOM-NN scheme is more feasible for implementation on FPGA. It has the potential to realize real-time position estimation on an FPGA with a high-event processing throughput.
Su, Ho-Ting; You, Gene Jiing-Yun
2014-11-01
This study proposed a spatial information estimation model for the analysis of precipitation gauge networks, to improve on previous methods based on information theory. The proposed model employs a two-dimensional transinformation-distance (T-D) relationship in conjunction with multivariate information approximation to estimate transinformation to ungauged locations from existing stations, while taking into consideration the influence of multiple stations and anisotropy. The proposed model is used to evaluate the spatial distribution of precipitation data and the characteristics of information transfer, which are then applied in a spatial optimization algorithm for the selection of additional station locations. This framework was implemented to investigate temporal and spatial patterns in information content in the Shihmen Reservoir watershed. The results demonstrate obvious anisotropy associated with the delivery of information. By comparing different cases, it was determined that the efficiency of information delivery dominates the spatial distribution of the information content, such that eccentricity is merely supplemental. Efficiency in information delivery is also heavily influenced by temporal scale. For data covering long intervals (monthly and annual), efficiency in the delivery of information is relatively high, while the uncertainty or heterogeneity of hourly or daily time series produces low spatial correlations due to the inefficient delivery of information. The proposed spatial optimization algorithm confirmed that the optimal location for new stations lies close to the center of low information zones. Additional stations could improve information content considerably; however, the margin of improvement decreases with the number of stations.
Ruiz, Jonatan R; Ramirez-Lechuga, Jorge; Ortega, Francisco B; Castro-Piñero, José; Benitez, Jose M; Arauzo-Azofra, Antonio; Sanchez, Cristobal; Sjöström, Michael; Castillo, Manuel J; Gutierrez, Angel; Zabala, Mikel
2008-11-01
To develop an artificial neural network (ANN)-equation to estimate maximal oxygen uptake (VO(2max)) from 20m shuttle run test (20 mSRT) performance (stage), sex, age, weight, and height in young persons. The 20 mSRT was performed by 193 (122 boys and 71 girls) adolescents aged 13-19 years. All the adolescents wore a portable gas analyzer to measure VO(2) and heart rate during the test. The equation was developed and cross-validated following the ANN mathematical model. The neural net performance was assessed through several error measures. Agreement between the measured VO(2max) and estimated VO(2max) from Léger's and ANN equations were analysed following the Bland and Altman method. The percentage error was 17.13 and 7.38 for Léger and ANN-equation (P<0.001), respectively, and the standard error of the estimate obtained with Léger's equation was 4.27 ml/(kg min), while for the ANN-equation was 2.84 ml/(kg min). A Bland-Altman plot for the measured VO(2max) and Léger-VO(2max) showed a mean difference of 4.9 ml/(kg min) (P<0.001), while the Bland-Altman plot for the measured VO(2max) and ANN-VO(2max) showed a mean difference of 0.5 ml/(kg min) (P=0.654). In the validation sample, the percentage error was 21.08 and 8.68 for Léger and ANN-equation (P<0.001), respectively. In this study, an ANN-based equation to estimate VO(2max) from 20 mSRT performance (stage), sex, age, weight, and height in adolescents was developed and cross-validated. The newly developed equation was shown to be more accurate than Léger's. The proposed model has been coded in a user-friendly spreadsheet.
Neural Network for Estimating Conditional Distribution
DEFF Research Database (Denmark)
Schiøler, Henrik; Kulczycki, P.
Neural networks for estimating conditional distributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency is proved from a mild set of assumptions. A number of applications within...... statistcs, decision theory and signal processing are suggested, and a numerical example illustrating the capabilities of the elaborated network is given...
Mapping Neural Network Derived from the Parzen Window Estimator
DEFF Research Database (Denmark)
Schiøler, Henrik; Hartmann, U.
1992-01-01
The article presents a general theoretical basis for the construction of mapping neural networks. The theory is based on the Parzen Window estimator for......The article presents a general theoretical basis for the construction of mapping neural networks. The theory is based on the Parzen Window estimator for...
Directory of Open Access Journals (Sweden)
Martha Fabiola Contreras Higuera
2013-06-01
Full Text Available Power Line Communications (PLC refers to a group of technologies that allow to establish communication processes under the use of the grid as a physical means of transmission. The use of the grid as a physical means of transmission of information is not a new idea. Until a few years ago, the use of PLC had been limited to the implementation of solutions of control, automation and monitoring of sensors; which did not require a high bandwidth for its operation.During the late 1990s due to the new technological developments and the need to implement new alternatives for transfer of information, it was possible to reach speeds on the order of the Mbps, establishing the possibility of making use of the electricity network as a network of access. The current state of technology PLC allows to reach speeds of up to 200Mbps, which has enabled the transformation of the grid in a true network of band wide, capable of supporting data, voice and video provided by a telecommunications operator. The use of PLC-based network adapters allow easily design LANs and broadband communications through the electrical network, making any outlet in a point of connection for the user, without the need for wiring additional to existing ones. The electrical network is a structure which so far has been exclusively used for the transport of electrical energy. However, it is possible to make use of this network in processes of communication and transmission of information such as: voice, data and video; Bearing in mind that grid had not been designed for this purpose. The performance is without doubt one of the aspects of greatest interest in the global analysis in networks LAN, due to the effect it produces on the end user. Basically, the most common parameters for evaluating the performance of a network are: Throughput, use of the canal and various measures of retardation. In this article is presented a simple analysis of the HomePlug 1.0 standard applied to the
Estimating Conditional Distributions by Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1998-01-01
Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...
Estimation of Conditional Quantile using Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1999-01-01
The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....
Hamed Alemohammad, Seyed; Fang, Bin; Konings, Alexandra G.; Aires, Filipe; Green, Julia K.; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre
2017-09-01
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.
Estimation of Expectable Network Quality in Wireless Mesh Networks
Wollenberg, Till
2012-01-01
Part 3: Computing in Networks; International audience; Our work aims to improve the usability of wireless mesh networks as communication layer of smart office environments. While wireless mesh networks are well-suited for this task in general, the negative impact of interference, fading, and saturation makes the communication basically opportunistic. Our goal is to develop a system which allows a short-term estimation of network quality in terms of throughput, packet loss and latency. The est...
Distributed fusion estimation for sensor networks with communication constraints
Zhang, Wen-An; Song, Haiyu; Yu, Li
2016-01-01
This book systematically presents energy-efficient robust fusion estimation methods to achieve thorough and comprehensive results in the context of network-based fusion estimation. It summarizes recent findings on fusion estimation with communication constraints; several novel energy-efficient and robust design methods for dealing with energy constraints and network-induced uncertainties are presented, such as delays, packet losses, and asynchronous information... All the results are presented as algorithms, which are convenient for practical applications.
Traffic volume estimation using network interpolation techniques.
2013-12-01
Kriging method is a frequently used interpolation methodology in geography, which enables estimations of unknown values at : certain places with the considerations of distances among locations. When it is used in transportation field, network distanc...
Wang, Mao; Maeda, Yoichiro; TAKAHASHI, Yasutake
2014-01-01
Intention recognition can use multiple factors as inputs such as gestures, face images and eye gaze position. On the other hand，eye tracking technology，with its special advantages of applying to Human-Computer Interaction (HCI)，can be utilized to develop assistant systems for people with mobility difficulties. In this paper, we propose gaze estimation position information as input of fuzzy inference to achieve intention recognition based on object recongition and construct an assistant system...
Estimation of global network statistics from incomplete data.
Directory of Open Access Journals (Sweden)
Catherine A Bliss
Full Text Available Complex networks underlie an enormous variety of social, biological, physical, and virtual systems. A profound complication for the science of complex networks is that in most cases, observing all nodes and all network interactions is impossible. Previous work addressing the impacts of partial network data is surprisingly limited, focuses primarily on missing nodes, and suggests that network statistics derived from subsampled data are not suitable estimators for the same network statistics describing the overall network topology. We generate scaling methods to predict true network statistics, including the degree distribution, from only partial knowledge of nodes, links, or weights. Our methods are transparent and do not assume a known generating process for the network, thus enabling prediction of network statistics for a wide variety of applications. We validate analytical results on four simulated network classes and empirical data sets of various sizes. We perform subsampling experiments by varying proportions of sampled data and demonstrate that our scaling methods can provide very good estimates of true network statistics while acknowledging limits. Lastly, we apply our techniques to a set of rich and evolving large-scale social networks, Twitter reply networks. Based on 100 million tweets, we use our scaling techniques to propose a statistical characterization of the Twitter Interactome from September 2008 to November 2008. Our treatment allows us to find support for Dunbar's hypothesis in detecting an upper threshold for the number of active social contacts that individuals maintain over the course of one week.
Bayesian estimation of the network autocorrelation model
Dittrich, D.; Leenders, R.T.A.J.; Mulder, J.
2017-01-01
The network autocorrelation model has been extensively used by researchers interested modeling social influence effects in social networks. The most common inferential method in the model is classical maximum likelihood estimation. This approach, however, has known problems such as negative bias of
Wireless sensor networks distributed consensus estimation
Chen, Cailian; Guan, Xinping
2014-01-01
This SpringerBrief evaluates the cooperative effort of sensor nodes to accomplish high-level tasks with sensing, data processing and communication. The metrics of network-wide convergence, unbiasedness, consistency and optimality are discussed through network topology, distributed estimation algorithms and consensus strategy. Systematic analysis reveals that proper deployment of sensor nodes and a small number of low-cost relays (without sensing function) can speed up the information fusion and thus improve the estimation capability of wireless sensor networks (WSNs). This brief also investiga
Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao
2018-01-02
In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.
Gutierrez-Villalobos, Jose M; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A; Martínez-Hernández, Moisés A
2015-06-29
Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.
Directory of Open Access Journals (Sweden)
Jose. M. Gutierrez-Villalobos
2015-06-01
Full Text Available Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.
Canepa, Edward S.
2014-01-01
This article describes a new approach to urban traffic flow sensing using decentralized traffic state estimation. Traffic sensor data is generated both by fixed traffic flow sensor nodes and by probe vehicles equipped with a short range transceiver. The data generated by these sensors is sent to a local coordinator node, that poses the problem of estimating the local state of traffic as a mixed integer linear program (MILP). The resulting optimization program is then solved by the nodes in a distributed manner, using branch-and-bound methods. An optimal amount of noise is then added to the maps before dissemination to a central database. Unlike existing probe-based traffic monitoring systems, this system does not transmit user generated location tracks nor any user presence information to a centralized server, effectively preventing privacy attacks. A simulation of the system performance on computer-generated traffic data shows that the system can be implemented with currently available technology. © 2014 Springer International Publishing Switzerland.
Tuominen, Pekko; Tuononen, Minttu
2017-06-01
One of the key elements in short-term solar forecasting is the detection of clouds and their movement. This paper discusses a new method for extracting cloud cover and cloud movement information from ground based camera images using neural networks and the Lucas-Kanade method. Two novel features of the algorithm are that it performs well both inside and outside of the circumsolar region, i.e. the vicinity of the sun, and is capable of deciding a threefold sun state. More precisely, the sun state can be detected to be either clear, partly covered by clouds or overcast. This is possible due to the absence of a shadow band in the imaging system. Visual validation showed that the new algorithm performed well in detecting clouds of varying color and contrast in situations referred to as difficult for commonly used thresholding methods. Cloud motion field results were computed from two consecutive sky images by solving the optical flow problem with the fast to compute Lucas-Kanade method. A local filtering scheme developed in this study was used to remove noisy motion vectors and it is shown that this filtering technique results in a motion field with locally nearly uniform directions and smooth global changes in direction trends. Thin, transparent clouds still pose a challenge for detection and leave room for future improvements in the algorithm.
Fiber Orientation Estimation Guided by a Deep Network.
Ye, Chuyang; Prince, Jerry L
2017-09-01
Diffusion magnetic resonance imaging (dMRI) is currently the only tool for noninvasively imaging the brain's white matter tracts. The fiber orientation (FO) is a key feature computed from dMRI for tract reconstruction. Because the number of FOs in a voxel is usually small, dictionary-based sparse reconstruction has been used to estimate FOs. However, accurate estimation of complex FO configurations in the presence of noise can still be challenging. In this work we explore the use of a deep network for FO estimation in a dictionary-based framework and propose an algorithm named Fiber Orientation Reconstruction guided by a Deep Network (FORDN). FORDN consists of two steps. First, we use a smaller dictionary encoding coarse basis FOs to represent diffusion signals. To estimate the mixture fractions of the dictionary atoms, a deep network is designed to solve the sparse reconstruction problem. Second, the coarse FOs inform the final FO estimation, where a larger dictionary encoding a dense basis of FOs is used and a weighted ℓ1-norm regularized least squares problem is solved to encourage FOs that are consistent with the network output. FORDN was evaluated and compared with state-of-the-art algorithms that estimate FOs using sparse reconstruction on simulated and typical clinical dMRI data. The results demonstrate the benefit of using a deep network for FO estimation.
Directory of Open Access Journals (Sweden)
Pengshan Li
2016-10-01
Full Text Available With the continued social and economic development of northern China, landscape fragmentation has placed increasing pressure on the ecological system of the Beijing-Tianjin-Hebei (BTH region. To maintain the integrity of ecological processes under the influence of human activities, we must maintain effective connections between habitats and limit the impact of ecological isolation. In this paper, landscape elements were identified based on a kernel density estimation, including forests, grasslands, orchards and wetlands. The spatial configuration of ecological networks was analysed by the integrated density index, and a natural breaks classification was performed for the landscape type data and the results of the landscape spatial distribution analysis. The results showed that forest and grassland are the primary constituents of the core areas and act as buffer zones for the region’s ecological network. Rivers, as linear patches, and orchards, as stepping stones, form the main body of the ecological corridors, and isolated elements are distributed mainly in the plain area. Orchards have transition effects. Wetlands act as connections between different landscapes in the region. Based on these results, we make suggestions for the protection and planning of ecological networks. This study can also provide guidance for the coordinated development of the BTH region.
Deep space network software cost estimation model
Tausworthe, R. C.
1981-01-01
A parametric software cost estimation model prepared for Jet PRopulsion Laboratory (JPL) Deep Space Network (DSN) Data System implementation tasks is described. The resource estimation mdel modifies and combines a number of existing models. The model calibrates the task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit JPL software life-cycle statistics.
Network-based functional enrichment
Directory of Open Access Journals (Sweden)
Poirel Christopher L
2011-11-01
Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are
National Research Council Canada - National Science Library
Friman, Henrik
2006-01-01
... (extended from Leavitt, 1965). This text identifies aspects of network-based effectiveness that can benefit from a better understanding of leadership and management development of people, procedures, technology, and organizations...
DEFF Research Database (Denmark)
Landschützer, P.; Gruber, N.; Bakker, D.C.E.
2013-01-01
pressure of CO2 (pCO2) at a resolution of 1° × 1°. From those, we compute the air–sea CO2 flux maps using a standard gas exchange parameterization and high-resolution wind speeds. The neural networks fit the observed pCO2 data with a root mean square error (RMSE) of about 10 μatm and with almost no bias......) a continuous improvement of the observations, i.e., the Surface Ocean CO2 Atlas (SOCAT) v1.5 database and (ii) a newly developed technique to interpolate the observations in space and time. In particular, we use a 2 step neural network approach to reconstruct basin-wide monthly maps of the sea surface partial...
Position estimation of transceivers in communication networks
Kent, Claudia A [Pleasanton, CA; Dowla, Farid [Castro Valley, CA
2008-06-03
This invention provides a system and method using wireless communication interfaces coupled with statistical processing of time-of-flight data to locate by position estimation unknown wireless receivers. Such an invention can be applied in sensor network applications, such as environmental monitoring of water in the soil or chemicals in the air where the position of the network nodes is deemed critical. Moreover, the present invention can be arranged to operate in areas where a Global Positioning System (GPS) is not available, such as inside buildings, caves, and tunnels.
Estimation of the proteomic cancer co-expression sub networks by using association estimators.
Erdoğan, Cihat; Kurt, Zeyneb; Diri, Banu
2017-01-01
In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and mutual information (MI) based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators' performance, a multi-layer data integration platform on gene-disease associations (DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA) package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schurmann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists.
Estimation of the proteomic cancer co-expression sub networks by using association estimators.
Directory of Open Access Journals (Sweden)
Cihat Erdoğan
Full Text Available In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA. Correlation and mutual information (MI based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators' performance, a multi-layer data integration platform on gene-disease associations (DisGeNET and the Molecular Signatures Database (MSigDB was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink and 64% for Schurmann-Grassberger (SG association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists.
Farhadian, Maryam; Aliabadi, Mohsen; Darvishi, Ebrahim
2015-01-01
Prediction models are used in a variety of medical domains, and they are frequently built from experience which constitutes data acquired from actual cases. This study aimed to analyze the potential of artificial neural networks and logistic regression techniques for estimation of hearing impairment among industrial workers. A total of 210 workers employed in a steel factory (in West of Iran) were selected, and their occupational exposure histories were analyzed. The hearing loss thresholds of the studied workers were determined using a calibrated audiometer. The personal noise exposures were also measured using a noise dosimeter in the workstations. Data obtained from five variables, which can influence the hearing loss, were used as input features, and the hearing loss thresholds were considered as target feature of the prediction methods. Multilayer feedforward neural networks and logistic regression were developed using MATLAB R2011a software. Based on the World Health Organization classification for the grades of hearing loss, 74.2% of the studied workers have normal hearing thresholds, 23.4% have slight hearing loss, and 2.4% have moderate hearing loss. The accuracy and kappa coefficient of the best developed neural networks for prediction of the grades of hearing loss were 88.6 and 66.30, respectively. The accuracy and kappa coefficient of the logistic regression were also 84.28 and 51.30, respectively. Neural networks could provide more accurate predictions of the hearing loss than logistic regression. The prediction method can provide reliable and comprehensible information for occupational health and medicine experts.
Acharya, Nachiketa; Shrivastava, Nitin Anand; Panigrahi, B. K.; Mohanty, U. C.
2014-09-01
The south peninsular part of India gets maximum amount of rainfall during the northeast monsoon (NEM) season [October to November (OND)] which is the primary source of water for the agricultural activities in this region. A nonlinear method viz., Extreme learning machine (ELM) has been employed on general circulation model (GCM) products to make the multi-model ensemble (MME) based estimation of NEM rainfall (NEMR). The ELM is basically is an improved learning algorithm for the single feed-forward neural network (SLFN) architecture. The 27 year (1982-2008) lead-1 (using initial conditions of September for forecasting the mean rainfall of OND) hindcast runs (1982-2008) from seven GCM has been used to make MME. The improvement of the proposed method with respect to other regular MME (simple arithmetic mean of GCMs (EM) and singular value decomposition based multiple linear regressions based MME) has been assessed through several skill metrics like Spread distribution, multiplicative bias, prediction errors, the yield of prediction, Pearson's and Kendal's correlation coefficient and Wilmort's index of agreement. The efficiency of ELM estimated rainfall is established by all the stated skill scores. The performance of ELM in extreme NEMR years, out of which 4 years are characterized by deficit rainfall and 5 years are identified as excess, is also examined. It is found that the ELM could expeditiously capture these extremes reasonably well as compared to the other MME approaches.
Caquilpan, V.; Sáez, Doris; Hernández, Roberto; Llanos, Jacqueline; Roje, T.; Nunez Vicencio, Alfredo
2017-01-01
Microgrids are suitable electrical solutions for providing energy in rural zones. However, it is challenging to propose in advance a good design of the microgrid because the electrical load is difficult to estimate due to its highly dependence of the residential consumption. In this paper, a novel
Teimoorinia, Hossen; Ellison, Sara L.; Patton, David R.
2017-02-01
The application of artificial neural networks (ANNs) for the estimation of H I gas mass fraction (M_{H I}/{{M}_{*}}) is investigated, based on a sample of 13 674 galaxies in the Sloan Digital Sky Survey (SDSS) with H I detections or upper limits from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA). We show that, for an example set of fixed input parameters (g - r colour and I-band surface brightness), a multidimensional quadratic model yields M_{H I}/{{M}_{*}} scaling relations with a smaller scatter (0.22 dex) than traditional linear fits (0.32 dex), demonstrating that non-linear methods can lead to an improved performance over traditional approaches. A more extensive ANN analysis is performed using 15 galaxy parameters that capture variation in stellar mass, internal structure, environment and star formation. Of the 15 parameters investigated, we find that g - r colour, followed by stellar mass surface density, bulge fraction and specific star formation rate have the best connection with M_{H I}/{{M}_{*}}. By combining two control parameters, that indicate how well a given galaxy in SDSS is represented by the ALFALFA training set (PR) and the scatter in the training procedure (σfit), we develop a strategy for quantifying which SDSS galaxies our ANN can be adequately applied to, and the associated errors in the M_{H I}/{{M}_{*}} estimation. In contrast to previous works, our M_{H I}/{{M}_{*}} estimation has no systematic trend with galactic parameters such as M⋆, g - r and star formation rate. We present a catalogue of M_{H I}/{{M}_{*}} estimates for more than half a million galaxies in the SDSS, of which ˜150 000 galaxies have a secure selection parameter with average scatter in the M_{H I}/{{M}_{*}} estimation of 0.22 dex.
Position Estimation of Transceivers in Communication Networks
Energy Technology Data Exchange (ETDEWEB)
Dowla, F; Kent, C
2004-01-20
With rapid developments in wireless sensor networks, there is a growing need for transceiver position estimation independent of GPS, which may not be available in indoor networks. Our approach is to use range estimates from time-of-flight (TOF) measurements, a technique well suited to large bandwidth physical links, such as in ultra-wideband (UWB) systems. In our UWB systems, pulse duration less than 200 psecs can easily be resolved to less than a foot. Assuming an encoded UWB physical layer, we first test positioning accuracy using simulations. We are interested in sensitivity to range errors and the required number of ranging nodes, and we show that in a high-precision environment, such as UWB, the optimal number of transmitters is four. Four transmitters with {+-}20ft. range error can locate a receiver to within one or two feet. We then implement these algorithms on an 802.11 wireless network and demonstrate the ability to locate a network access point to approximately 20 feet.
Voltage Estimation in Active Distribution Grids Using Neural Networks
DEFF Research Database (Denmark)
Pertl, Michael; Heussen, Kai; Gehrke, Oliver
2016-01-01
the observability of distribution systems has to be improved. To increase the situational awareness of the power system operator data driven methods can be employed. These methods benefit from newly available data sources such as smart meters. This paper presents a voltage estimation method based on neural networks...
Estimating topological properties of weighted networks from limited information.
Cimini, Giulio; Squartini, Tiziano; Gabrielli, Andrea; Garlaschelli, Diego
2015-10-01
A problem typically encountered when studying complex systems is the limitedness of the information available on their topology, which hinders our understanding of their structure and of the dynamical processes taking place on them. A paramount example is provided by financial networks, whose data are privacy protected: Banks publicly disclose only their aggregate exposure towards other banks, keeping individual exposures towards each single bank secret. Yet, the estimation of systemic risk strongly depends on the detailed structure of the interbank network. The resulting challenge is that of using aggregate information to statistically reconstruct a network and correctly predict its higher-order properties. Standard approaches either generate unrealistically dense networks, or fail to reproduce the observed topology by assigning homogeneous link weights. Here, we develop a reconstruction method, based on statistical mechanics concepts, that makes use of the empirical link density in a highly nontrivial way. Technically, our approach consists in the preliminary estimation of node degrees from empirical node strengths and link density, followed by a maximum-entropy inference based on a combination of empirical strengths and estimated degrees. Our method is successfully tested on the international trade network and the interbank money market, and represents a valuable tool for gaining insights on privacy-protected or partially accessible systems.
Estimating topological properties of weighted networks from limited information
Gabrielli, Andrea; Cimini, Giulio; Garlaschelli, Diego; Squartini, Angelo
A typical problem met when studying complex systems is the limited information available on their topology, which hinders our understanding of their structural and dynamical properties. A paramount example is provided by financial networks, whose data are privacy protected. Yet, the estimation of systemic risk strongly depends on the detailed structure of the interbank network. The resulting challenge is that of using aggregate information to statistically reconstruct a network and correctly predict its higher-order properties. Standard approaches either generate unrealistically dense networks, or fail to reproduce the observed topology by assigning homogeneous link weights. Here we develop a reconstruction method, based on statistical mechanics concepts, that exploits the empirical link density in a highly non-trivial way. Technically, our approach consists in the preliminary estimation of node degrees from empirical node strengths and link density, followed by a maximum-entropy inference based on a combination of empirical strengths and estimated degrees. Our method is successfully tested on the international trade network and the interbank money market, and represents a valuable tool for gaining insights on privacy-protected or partially accessible systems. Acknoweledgement to ``Growthcom'' ICT - EC project (Grant No: 611272) and ``Crisislab'' Italian Project.
Estimating Ads’ Click through Rate with Recurrent Neural Network
Directory of Open Access Journals (Sweden)
Chen Qiao-Hong
2016-01-01
Full Text Available With the development of the Internet, online advertising spreads across every corner of the world, the ads' click through rate (CTR estimation is an important method to improve the online advertising revenue. Compared with the linear model, the nonlinear models can study much more complex relationships between a large number of nonlinear characteristics, so as to improve the accuracy of the estimation of the ads’ CTR. The recurrent neural network (RNN based on Long-Short Term Memory (LSTM is an improved model of the feedback neural network with ring structure. The model overcomes the problem of the gradient of the general RNN. Experiments show that the RNN based on LSTM exceeds the linear models, and it can effectively improve the estimation effect of the ads’ click through rate.
Estimation of blood flow rates in large microvascular networks.
Fry, Brendan C; Lee, Jack; Smith, Nicolas P; Secomb, Timothy W
2012-08-01
Recent methods for imaging microvascular structures provide geometrical data on networks containing thousands of segments. Prediction of functional properties, such as solute transport, requires information on blood flow rates also, but experimental measurement of many individual flows is difficult. Here, a method is presented for estimating flow rates in a microvascular network based on incomplete information on the flows in the boundary segments that feed and drain the network. With incomplete boundary data, the equations governing blood flow form an underdetermined linear system. An algorithm was developed that uses independent information about the distribution of wall shear stresses and pressures in microvessels to resolve this indeterminacy, by minimizing the deviation of pressures and wall shear stresses from target values. The algorithm was tested using previously obtained experimental flow data from four microvascular networks in the rat mesentery. With two or three prescribed boundary conditions, predicted flows showed relatively small errors in most segments and fewer than 10% incorrect flow directions on average. The proposed method can be used to estimate flow rates in microvascular networks, based on incomplete boundary data, and provides a basis for deducing functional properties of microvessel networks. © 2012 John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Raphaëlle Sauzède
2017-05-01
Full Text Available A neural network-based method (CANYON: CArbonate system and Nutrients concentration from hYdrological properties and Oxygen using a Neural-network was developed to estimate water-column (i.e., from surface to 8,000 m depth biogeochemically relevant variables in the Global Ocean. These are the concentrations of three nutrients [nitrate (NO3−, phosphate (PO43−, and silicate (Si(OH4] and four carbonate system parameters [total alkalinity (AT, dissolved inorganic carbon (CT, pH (pHT, and partial pressure of CO2 (pCO2], which are estimated from concurrent in situ measurements of temperature, salinity, hydrostatic pressure, and oxygen (O2 together with sampling latitude, longitude, and date. Seven neural-networks were developed using the GLODAPv2 database, which is largely representative of the diversity of open-ocean conditions, hence making CANYON potentially applicable to most oceanic environments. For each variable, CANYON was trained using 80 % randomly chosen data from the whole database (after eight 10° × 10° zones removed providing an “independent data-set” for additional validation, the remaining 20 % data were used for the neural-network test of validation. Overall, CANYON retrieved the variables with high accuracies (RMSE: 1.04 μmol kg−1 (NO3−, 0.074 μmol kg−1 (PO43−, 3.2 μmol kg−1 (Si(OH4, 0.020 (pHT, 9 μmol kg−1 (AT, 11 μmol kg−1 (CT and 7.6 % (pCO2 (30 μatm at 400 μatm. This was confirmed for the eight independent zones not included in the training process. CANYON was also applied to the Hawaiian Time Series site to produce a 22 years long simulated time series for the above seven variables. Comparison of modeled and measured data was also very satisfactory (RMSE in the order of magnitude of RMSE from validation test. CANYON is thus a promising method to derive distributions of key biogeochemical variables. It could be used for a variety of global and regional applications ranging from data quality control
Distributed estimation for adaptive sensor selection in wireless sensor networks
Mahmoud, Magdi S.; Hassan Hamid, Matasm M.
2014-05-01
Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.
Jia, Zhenyi; Zhou, Shenglu; Su, Quanlong; Yi, Haomin; Wang, Junxiao
2017-12-26
Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution.
Directory of Open Access Journals (Sweden)
Zhenyi Jia
2017-12-01
Full Text Available Soil pollution by metal(loids resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As and cadmium (Cd pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loids in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid pollution.
pathChirp: Efficient Available Bandwidth Estimation for Network Paths
Energy Technology Data Exchange (ETDEWEB)
Cottrell, Les
2003-04-30
This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sender and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.
Precipitation Estimation from Remotely Sensed Data Using Deep Neural Network
Tao, Y.; Gao, X.; Hsu, K. L.; Sorooshian, S.; Ihler, A.
2015-12-01
This research develops a precipitation estimation system from remote sensed data using state-of-the-art machine learning algorithms. Compared to ground-based precipitation measurements, satellite-based precipitation estimation products have advantages of temporal resolution and spatial coverage. Also, the massive amount of satellite data contains various measures related to precipitation formation and development. On the other hand, deep learning algorithms were newly developed in the area of machine learning, which was a breakthrough to deal with large and complex dataset, especially to image data. Here, we attempt to engage deep learning techniques to provide hourly precipitation estimation from satellite information, such as long wave infrared data. The brightness temperature data from infrared data is considered to contain cloud information. Radar stage IV dataset is used as ground measurement for parameter calibration. Stacked denoising auto-encoders (SDAE) is applied here to build a 4-layer neural network with 1000 hidden nodes for each hidden layer. SDAE involves two major steps: (1) greedily pre-training each layer as a denoising auto-encoder using the outputs of previous trained hidden layer output starting from visible layer to initialize parameters; (2) fine-tuning the whole deep neural network with supervised criteria. The results are compared with satellite precipitation product PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network Cloud Classification System). Based on the results, we have several valuable conclusions: By properly training the neural network, it is able to extract useful information for precipitation estimation. For example, it can reduce the mean squared error of the precipitation by 58% for the summer season in the central United States of the validation period. The SDAE method captures the shape of the precipitation from the cloud shape better compared to the CCS product. Design of
Application of radial basis neural network for state estimation of ...
African Journals Online (AJOL)
user
An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for state estimation is investigated by testing its applicability on a IEEE 14 bus ...
Directory of Open Access Journals (Sweden)
Danuta M Skowronski
Full Text Available Cases of a novel swine-origin influenza A(H3N2 variant (H3N2v have recently been identified in the US, primarily among children. We estimated potential epidemic attack rates (ARs based on age-specific estimates of sero-susceptibility and social interactions. A contact network model previously established for the Greater Vancouver Area (GVA, Canada was used to estimate average epidemic (infection ARs for the emerging H3N2v and comparator viruses (H1N1pdm09 and an extinguished H3N2 seasonal strain based on typical influenza characteristics, basic reproduction number (R(0, and effective contacts taking into account age-specific sero-protection rates (SPRs. SPRs were assessed in sera collected from the GVA in 2009 or earlier (pre-H1N1pdm09 and fall 2010 (post-H1N1pdm09, seasonal A/Brisbane/10/2007(H3N2, and H3N2v by hemagglutination inhibition (HI assay. SPR was assigned per convention based on proportion with HI antibody titre ≥40 (SPR40. Recognizing that the HI titre ≥40 was established as the 50%sero-protective threshold we also explored for ½SPR40, SPR80 and a blended gradient defined as: ¼SPR20, ½SPR40, ¾SPR80, SPR160. Base case analysis assumed R(0 = 1.40, but we also explored R(0 as high as 1.80. With R(0 = 1.40 and SPR40, simulated ARs were well aligned with field observations for H1N1pdm09 incidence (AR: 32%, sporadic detections without a third epidemic wave post-H1N1pdm09 (negligible AR<0.1% as well as A/Brisbane/10/2007(H3N2 seasonal strain extinction and antigenic drift replacement (negligible AR<0.1%. Simulated AR for the novel swine-origin H3N2v was 6%, highest in children 6-11years (16%. However, with modification to SPR thresholds per above, H3N2v AR ≥20% became possible. At SPR40, H3N2v AR ≥10%, ≥15% or ≥30%, occur if R(0≥1.48, ≥1.56 or ≥1.86, respectively. Based on conventional assumptions, the novel swine-origin H3N2v does not currently pose a substantial pandemic threat. If H3N2v epidemics do occur
Sparse and shrunken estimates of MRI networks in the brain and their influence on network properties
Romero-Garcia, Rafael; Clemmensen, Line H.
2014-03-01
Estimation of morphometric relationships between cortical regions is a widely used approach to identify and characterize structural connectivity. The elevated number of regions that can be considered in a whole-brain correlation analysis might lead to overfitted models. However, the overfitting can be avoided by using regularization methods. We found that, as expected, non-regularized correlations had low variability when a scarce number of variables were considered. However, a slight increase of variables led to an increase of variance of several magnitude orders. On the other hand, the regularized approaches showed more stable results with a relative low variance at the expense of a little bias. Interestingly, topological properties as local and global efficiency estimated in networks constructed from traditional non-regularized correlations also showed higher variability when compared to those from regularized networks. Our findings suggest that a population-based connectivity study can achieve a more robust description of cortical topology through regularization of the correlation estimates. Four regularization methods were examined: Two with shrinkage (Ridge and Schäfer's shrinkage), one with sparsity (Lasso) and one with both shrinkage and sparsity (Elastic net). Furthermore, the different regularizations resulted in different correlation estimates as well as network properties. The shrunken estimates resulted in lower variance of the estimates than the sparse estimates.
Risk Probability Estimating Based on Clustering
DEFF Research Database (Denmark)
Chen, Yong; Jensen, Christian D.; Gray, Elizabeth
2003-01-01
of prior experiences, recommendations from a trusted entity or the reputation of the other entity. In this paper we propose a dynamic mechanism for estimating the risk probability of a certain interaction in a given environment using hybrid neural networks. We argue that traditional risk assessment models...... from the insurance industry do not directly apply to ubiquitous computing environments. Instead, we propose a dynamic mechanism for risk assessment, which is based on pattern matching, classification and prediction procedures. This mechanism uses an estimator of risk probability, which is based...
Improving Sample Estimate Reliability and Validity with Linked Ego Networks
Lu, Xin
2012-01-01
Respondent-driven sampling (RDS) is currently widely used in public health, especially for the study of hard-to-access populations such as injecting drug users and men who have sex with men. The method works like a snowball sample but can, given that some assumptions are met, generate unbiased population estimates. However, recent studies have shown that traditional RDS estimators are likely to generate large variance and estimate error. To improve the performance of traditional estimators, we propose a method to generate estimates with ego network data collected by RDS. By simulating RDS processes on an empirical human social network with known population characteristics, we have shown that the precision of estimates on the composition of network link types is greatly improved with ego network data. The proposed estimator for population characteristics shows superior advantage over traditional RDS estimators, and most importantly, the new method exhibits strong robustness to the recruitment preference of res...
Estimation of parameter sensitivities for stochastic reaction networks
Gupta, Ankit
2016-01-07
Quantification of the effects of parameter uncertainty is an important and challenging problem in Systems Biology. We consider this problem in the context of stochastic models of biochemical reaction networks where the dynamics is described as a continuous-time Markov chain whose states represent the molecular counts of various species. For such models, effects of parameter uncertainty are often quantified by estimating the infinitesimal sensitivities of some observables with respect to model parameters. The aim of this talk is to present a holistic approach towards this problem of estimating parameter sensitivities for stochastic reaction networks. Our approach is based on a generic formula which allows us to construct efficient estimators for parameter sensitivity using simulations of the underlying model. We will discuss how novel simulation techniques, such as tau-leaping approximations, multi-level methods etc. can be easily integrated with our approach and how one can deal with stiff reaction networks where reactions span multiple time-scales. We will demonstrate the efficiency and applicability of our approach using many examples from the biological literature.
Chang, C.-H.; Johnson, N. C.; Cassar, N.
2014-06-01
Southern Ocean organic carbon export plays an important role in the global carbon cycle, yet its basin-scale climatology and variability are uncertain due to limited coverage of in situ observations. In this study, a neural network approach based on the self-organizing map (SOM) is adopted to construct weekly gridded (1° × 1°) maps of organic carbon export for the Southern Ocean from 1998 to 2009. The SOM is trained with in situ measurements of O2 / Ar-derived net community production (NCP) that are tightly linked to the carbon export in the mixed layer on timescales of one to two weeks and with six potential NCP predictors: photosynthetically available radiation (PAR), particulate organic carbon (POC), chlorophyll (Chl), sea surface temperature (SST), sea surface height (SSH), and mixed layer depth (MLD). This nonparametric approach is based entirely on the observed statistical relationships between NCP and the predictors and, therefore, is strongly constrained by observations. A thorough cross-validation yields three retained NCP predictors, Chl, PAR, and MLD. Our constructed NCP is further validated by good agreement with previously published, independent in situ derived NCP of weekly or longer temporal resolution through real-time and climatological comparisons at various sampling sites. The resulting November-March NCP climatology reveals a pronounced zonal band of high NCP roughly following the Subtropical Front in the Atlantic, Indian, and western Pacific sectors, and turns southeastward shortly after the dateline. Other regions of elevated NCP include the upwelling zones off Chile and Namibia, the Patagonian Shelf, the Antarctic coast, and areas surrounding the Islands of Kerguelen, South Georgia, and Crozet. This basin-scale NCP climatology closely resembles that of the satellite POC field and observed air-sea CO2 flux. The long-term mean area-integrated NCP south of 50° S from our dataset, 17.9 mmol C m-2 d-1, falls within the range of 8.3 to 24 mmol
Chang, C.-H.; Johnson, N. C.; Cassar, N.
2013-10-01
Southern Ocean organic carbon export plays an important role in the global carbon cycle, yet its basin-scale climatology and variability are uncertain due to limited coverage of in situ observations. In this study, a neural network approach based on the self-organizing map (SOM) is adopted to construct weekly gridded (1° × 1°) maps of organic carbon export for the Southern Ocean from 1998 to 2009. The SOM is trained with in situ measurements of O2 / Ar-derived net community production (NCP) that are tightly linked to the carbon export in the mixed layer on timescales of 1-2 weeks, and six potential NCP predictors: photosynthetically available radiation (PAR), particulate organic carbon (POC), chlorophyll (Chl), sea surface temperature (SST), sea surface height (SSH), and mixed layer depth (MLD). This non-parametric approach is based entirely on the observed statistical relationships between NCP and the predictors, and therefore is strongly constrained by observations. A thorough cross-validation yields three retained NCP predictors, Chl, PAR, and MLD. Our constructed NCP is further validated by good agreement with previously published independent in situ derived NCP of weekly or longer temporal resolution through real-time and climatological comparisons at various sampling sites. The resulting November-March NCP climatology reveals a pronounced zonal band of high NCP roughly following the subtropical front in the Atlantic, Indian and western Pacific sectors, and turns southeastward shortly after the dateline. Other regions of elevated NCP include the upwelling zones off Chile and Namibia, Patagonian Shelf, Antarctic coast, and areas surrounding the Islands of Kerguelen, South Georgia, and Crozet. This basin-scale NCP climatology closely resembles that of the satellite POC field and observed air-sea CO2 flux. The long-term mean area-integrated NCP south of 50° S from our dataset, 14 mmol C m-2 d-1, falls within the range of 8.3-24 mmol C m-2 d-1 from other model
Observer-Based Human Knee Stiffness Estimation.
Misgeld, Berno J E; Luken, Markus; Riener, Robert; Leonhardt, Steffen
2017-05-01
We consider the problem of stiffness estimation for the human knee joint during motion in the sagittal plane. The new stiffness estimator uses a nonlinear reduced-order biomechanical model and a body sensor network (BSN). The developed model is based on a two-dimensional knee kinematics approach to calculate the angle-dependent lever arms and the torques of the muscle-tendon-complex. To minimize errors in the knee stiffness estimation procedure that result from model uncertainties, a nonlinear observer is developed. The observer uses the electromyogram (EMG) of involved muscles as input signals and the segmental orientation as the output signal to correct the observer-internal states. Because of dominating model nonlinearities and nonsmoothness of the corresponding nonlinear functions, an unscented Kalman filter is designed to compute and update the observer feedback (Kalman) gain matrix. The observer-based stiffness estimation algorithm is subsequently evaluated in simulations and in a test bench, specifically designed to provide robotic movement support for the human knee joint. In silico and experimental validation underline the good performance of the knee stiffness estimation even in the cases of a knee stiffening due to antagonistic coactivation. We have shown the principle function of an observer-based approach to knee stiffness estimation that employs EMG signals and segmental orientation provided by our own IPANEMA BSN. The presented approach makes realtime, model-based estimation of knee stiffness with minimal instrumentation possible.
Artificial neural networks for stiffness estimation in magnetic resonance elastography.
Murphy, Matthew C; Manduca, Armando; Trzasko, Joshua D; Glaser, Kevin J; Huston, John; Ehman, Richard L
2017-11-28
To investigate the feasibility of using artificial neural networks to estimate stiffness from MR elastography (MRE) data. Artificial neural networks were fit using model-based training patterns to estimate stiffness from images of displacement using a patch size of ∼1 cm in each dimension. These neural network inversions (NNIs) were then evaluated in a set of simulation experiments designed to investigate the effects of wave interference and noise on NNI accuracy. NNI was also tested in vivo, comparing NNI results against currently used methods. In 4 simulation experiments, NNI performed as well or better than direct inversion (DI) for predicting the known stiffness of the data. Summary NNI results were also shown to be significantly correlated with DI results in the liver (R 2 = 0.974) and in the brain (R 2 = 0.915), and also correlated with established biological effects including fibrosis stage in the liver and age in the brain. Finally, repeatability error was lower in the brain using NNI compared to DI, and voxel-wise modeling using NNI stiffness maps detected larger effects than using DI maps with similar levels of smoothing. Artificial neural networks represent a new approach to inversion of MRE data. Summary results from NNI and DI are highly correlated and both are capable of detecting biologically relevant signals. Preliminary evidence suggests that NNI stiffness estimates may be more resistant to noise than an algebraic DI approach. Taken together, these results merit future investigation into NNIs to improve the estimation of stiffness in small regions. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Tranulis, C; Durand, L G; Senhadji, L; Pibarot, P
2002-03-01
The objective of the study was to develop a non-invasive method for the estimation of pulmonary arterial pressure (PAP) using a neural network (NN) and features extracted from the second heart sound (S2). To obtain the information required to train and test the NN, an animal model of pulmonary hypertension (PHT) was developed, and nine pigs were investigated. During the experiments, the electrocardiogram, phonocardiogram and PAP were recorded. Subsequently, between 15 and 50 S2 heart sounds were isolated for each PAP stage and for each animal studied. A Coiflet wavelet decomposition and a pseudo smoothed Wigner-Ville distribution were used to extract features from the S2 sounds and train a one-hidden-layer NN using two-thirds of the data. The NN performance was tested on the remaining one-third of the data. NN estimates of the systolic and mean PAPs were obtained for each S2 and then ensemble averaged over the 15-50 S2 sounds selected for each PAP stage. The standard errors between the mean and systolic PAPs estimated by the NN and those measured with a catheter were 6.0 mmHg and 8.4 mmHg, respectively, and the correlation coefficients were 0.89 and 0.86, respectively. The classification accuracy, using 23 mmHg mean PAP and 30 mmHg systolic PAP thresholds between normal PAP and PHT, was 97% and 91%, respectively.
Tranulis, Constantin; Durand, Louis-Gilles; Senhadji, Lotfi; Pibarot, Philippe
2002-01-01
The objective of this study was to develop a non-invasive method for the estimation of pulmonary arterial pressure (PAP) using a neural network (NN) and features extracted from the second heart sound (S2). To obtain the information required to train and test the NN, an animal model of pulmonary hypertension (PHT) was developed and 9 pigs were investigated. During the experiments, the electrocardiogram, the phonocardiogram, and the PAP were recorded. Subsequently, between 15 and 50 S2 were isolated for each PAP stage and for each animal studied. A Coiflet wavelet decomposition and a pseudo smoothed Wigner-Ville distribution were used to extract features from the S2 and train a one-hidden layer NN using 2/3 of the data. The NN performance was tested on the remaining 1/3 of the data. NN estimates of the systolic and mean PAPs were obtained for each S2 and then ensemble averaged over the 15 to 50 S2 selected for each PAP stage. The standard errors between the mean and systolic PAPs estimated by the NN and those measured with a catheter were of 6.0 mmHg and 8.4 mmHg, respectively, and the correlation coefficients were 0.89 and 0.86, respectively. The classification accuracy, using a 23 mmHg mean PAP and a 30 mmHg systolic PAP thresholds between normal PAP and PHT was 97% and 91% respectively. PMID:12043802
Sensor data security level estimation scheme for wireless sensor networks.
Ramos, Alex; Filho, Raimir Holanda
2015-01-19
Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates.
Distributed Estimation and Control for Robotic Networks
Simonetto, A.
2012-01-01
Mobile robots that communicate and cooperate to achieve a common task have been the subject of an increasing research interest in recent years. These possibly heterogeneous groups of robots communicate locally via a communication network and therefore are usually referred to as robotic networks.
Deep convolutional neural network approach for forehead tissue thickness estimation
Directory of Open Access Journals (Sweden)
Manit Jirapong
2017-09-01
Full Text Available In this paper, we presented a deep convolutional neural network (CNN approach for forehead tissue thickness estimation. We use down sampled NIR laser backscattering images acquired from a novel marker-less near-infrared laser-based head tracking system, combined with the beam’s incident angle parameter. These two-channel augmented images were constructed for the CNN input, while a single node output layer represents the estimated value of the forehead tissue thickness. The models were – separately for each subject – trained and tested on datasets acquired from 30 subjects (high resolution MRI data is used as ground truth. To speed up training, we used a pre-trained network from the first subject to bootstrap training for each of the other subjects. We could show a clear improvement for the tissue thickness estimation (mean RMSE of 0.096 mm. This proposed CNN model outperformed previous support vector regression (mean RMSE of 0.155 mm or Gaussian processes learning approaches (mean RMSE of 0.114 mm and eliminated their restrictions for future research.
Evaluating Expert Estimators Based on Elicited Competences
Directory of Open Access Journals (Sweden)
Hrvoje Karna
2015-07-01
Full Text Available Utilization of expert effort estimation approach shows promising results when it is applied to software development process. It is based on judgment and decision making process and due to comparative advantages extensively used especially in situations when classic models cannot be accounted for. This becomes even more accentuated in today’s highly dynamical project environment. Confronted with these facts companies are placing ever greater focus on their employees, specifically on their competences. Competences are defined as knowledge, skills and abilities required to perform job assignments. During effort estimation process different underlying expert competences influence the outcome i.e. judgments they express. Special problem here is the elicitation, from an input collection, of those competences that are responsible for accurate estimates. Based on these findings different measures can be taken to enhance estimation process. The approach used in study presented in this paper was targeted at elicitation of expert estimator competences responsible for production of accurate estimates. Based on individual competences scores resulting from performed modeling experts were ranked using weighted scoring method and their performance evaluated. Results confirm that experts with higher scores in competences identified by applied models in general exhibit higher accuracy during estimation process. For the purpose of modeling data mining methods were used, specifically the multilayer perceptron neural network and the classification and regression decision tree algorithms. Among other, applied methods are suitable for the purpose of elicitation as in a sense they mimic the ways human brains operate. Data used in the study was collected from real projects in the company specialized for development of IT solutions in telecom domain. The proposed model, applied methodology for elicitation of expert competences and obtained results give evidence that in
Simulation, State Estimation and Control of Nonlinear Superheater Attemporator using Neural Networks
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Sørensen, O.
2000-01-01
This paper considers the use of neural networks for nonlinear state estimation, system identification and control. As a case study we use data taken from a nonlinear injection valve for a superheater attemporator at a power plant. One neural network is trained as a nonlinear simulation model......-by-sample linearizations and state estimates provided by the observer network. Simulation studies show that the nonlinear observer-based control loop performs better than a similar control loop based on a linear observer....... of the process, then another network is trained to act as a combined state and parameter estimator for the process. The observer network incorporates smoothing of the parameter estimates in the form of regularization. A pole placement controller is designed which takes advantage of the sample...
Simulation, State Estimation and Control of Nonlinear Superheater Attemporator using Neural Networks
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Sørensen, O.
1999-01-01
This paper considers the use of neural networks for nonlinear state estimation, system identification and control. As a case study we use data taken from a nonlinear injection valve for a superheater attemporator at a power plant. One neural network is trained as a nonlinear simulation model......-by-sample linearizations and state estimates provided by the observer network. Simulation studies show that the nonlinear observer-based control loop performs better than a similar control loop based on a linear observer....... of the process, then another network is trained to act as a combined state and parameter estimator for the process. The observer network incorporates smoothing of the parameter estimates in the form of regularization. A pole placement controller is designed which takes advantage of the sample...
Application of Bayesian Networks for Estimation of Individual Psychological Characteristics
Litvinenko, Alexander
2017-07-19
In this paper we apply Bayesian networks for developing more accurate final overall estimations of psychological characteristics of an individual, based on psychological test results. Psychological tests which identify how much an individual possesses a certain factor are very popular and quite common in the modern world. We call this value for a given factor -- the final overall estimation. Examples of factors could be stress resistance, the readiness to take a risk, the ability to concentrate on certain complicated work and many others. An accurate qualitative and comprehensive assessment of human potential is one of the most important challenges in any company or collective. The most common way of studying psychological characteristics of each single person is testing. Psychologists and sociologists are constantly working on improvement of the quality of their tests. Despite serious work, done by psychologists, the questions in tests often do not produce enough feedback due to the use of relatively poor estimation systems. The overall estimation is usually based on personal experiences and the subjective perception of a psychologist or a group of psychologists about the investigated psychological personality factors.
Network Structure and Biased Variance Estimation in Respondent Driven Sampling.
Directory of Open Access Journals (Sweden)
Ashton M Verdery
Full Text Available This paper explores bias in the estimation of sampling variance in Respondent Driven Sampling (RDS. Prior methodological work on RDS has focused on its problematic assumptions and the biases and inefficiencies of its estimators of the population mean. Nonetheless, researchers have given only slight attention to the topic of estimating sampling variance in RDS, despite the importance of variance estimation for the construction of confidence intervals and hypothesis tests. In this paper, we show that the estimators of RDS sampling variance rely on a critical assumption that the network is First Order Markov (FOM with respect to the dependent variable of interest. We demonstrate, through intuitive examples, mathematical generalizations, and computational experiments that current RDS variance estimators will always underestimate the population sampling variance of RDS in empirical networks that do not conform to the FOM assumption. Analysis of 215 observed university and school networks from Facebook and Add Health indicates that the FOM assumption is violated in every empirical network we analyze, and that these violations lead to substantially biased RDS estimators of sampling variance. We propose and test two alternative variance estimators that show some promise for reducing biases, but which also illustrate the limits of estimating sampling variance with only partial information on the underlying population social network.
Network Structure and Biased Variance Estimation in Respondent Driven Sampling.
Verdery, Ashton M; Mouw, Ted; Bauldry, Shawn; Mucha, Peter J
2015-01-01
This paper explores bias in the estimation of sampling variance in Respondent Driven Sampling (RDS). Prior methodological work on RDS has focused on its problematic assumptions and the biases and inefficiencies of its estimators of the population mean. Nonetheless, researchers have given only slight attention to the topic of estimating sampling variance in RDS, despite the importance of variance estimation for the construction of confidence intervals and hypothesis tests. In this paper, we show that the estimators of RDS sampling variance rely on a critical assumption that the network is First Order Markov (FOM) with respect to the dependent variable of interest. We demonstrate, through intuitive examples, mathematical generalizations, and computational experiments that current RDS variance estimators will always underestimate the population sampling variance of RDS in empirical networks that do not conform to the FOM assumption. Analysis of 215 observed university and school networks from Facebook and Add Health indicates that the FOM assumption is violated in every empirical network we analyze, and that these violations lead to substantially biased RDS estimators of sampling variance. We propose and test two alternative variance estimators that show some promise for reducing biases, but which also illustrate the limits of estimating sampling variance with only partial information on the underlying population social network.
ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
Can Coskun
2016-12-01
Full Text Available This study aimed to use the artificial neural network (ANN method to estimate the surface temperature of a photovoltaic (PV panel. Using the experimentally obtained PV data, the accuracy of the ANN model was evaluated. To train the artificial neural network (ANN, outer temperature solar radiation and wind speed values were inputs and surface temperature was an output. The ANN was used to estimate PV panel surface temperature. Using the Levenberg-Marquardt (LM algorithm the feed forward artificial neural network was trained. Two back propagation type ANN algorithms were used and their performance was compared with the estimate from the LM algorithm. To train the artificial neural network, experimental data were used for two thirds with the remaining third used for testing. Additionally scaled conjugate gradient (SCG back propagation and resilient back propagation (RB type ANN algorithms were used for comparison with the LM algorithm. The performances of these three types of artificial neural network were compared and mean error rates of between 0.005962 and 0.012177% were obtained. The best estimate was produced by the LM algorithm. Estimation of PV surface temperature with artificial neural networks provides better results than conventional correlation methods. This study showed that artificial neural networks may be effectively used to estimate PV surface temperature.
Cloud networking understanding cloud-based data center networks
Lee, Gary
2014-01-01
Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures
Parameter estimation using compensatory neural networks
Indian Academy of Sciences (India)
Proposed here is a new neuron model, a basis for Compensatory Neural Network Architecture (CNNA), which not only reduces the total number of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron model as well as the higher ...
Neural networks for estimation of ocean wave parameters
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Rao, S.; Raju, D.H.
Ocean wave parameters play a significant role in the design of all coastal and offshore structures. In the present study, neural networks are used to estimate various ocean wave parameters from theoretical Pierson-Moskowitz spectra as well...
Estimating uncertainty and reliability of social network data using Bayesian inference.
Farine, Damien R; Strandburg-Peshkin, Ariana
2015-09-01
Social network analysis provides a useful lens through which to view the structure of animal societies, and as a result its use is increasingly widespread. One challenge that many studies of animal social networks face is dealing with limited sample sizes, which introduces the potential for a high level of uncertainty in estimating the rates of association or interaction between individuals. We present a method based on Bayesian inference to incorporate uncertainty into network analyses. We test the reliability of this method at capturing both local and global properties of simulated networks, and compare it to a recently suggested method based on bootstrapping. Our results suggest that Bayesian inference can provide useful information about the underlying certainty in an observed network. When networks are well sampled, observed networks approach the real underlying social structure. However, when sampling is sparse, Bayesian inferred networks can provide realistic uncertainty estimates around edge weights. We also suggest a potential method for estimating the reliability of an observed network given the amount of sampling performed. This paper highlights how relatively simple procedures can be used to estimate uncertainty and reliability in studies using animal social network analysis.
Wang, Jeff; Kato, Fumi; Yamashita, Hiroko; Baba, Motoi; Cui, Yi; Li, Ruijiang; Oyama-Manabe, Noriko; Shirato, Hiroki
2017-04-01
Breast cancer is the most common invasive cancer among women and its incidence is increasing. Risk assessment is valuable and recent methods are incorporating novel biomarkers such as mammographic density. Artificial neural networks (ANN) are adaptive algorithms capable of performing pattern-to-pattern learning and are well suited for medical applications. They are potentially useful for calibrating full-field digital mammography (FFDM) for quantitative analysis. This study uses ANN modeling to estimate volumetric breast density (VBD) from FFDM on Japanese women with and without breast cancer. ANN calibration of VBD was performed using phantom data for one FFDM system. Mammograms of 46 Japanese women diagnosed with invasive carcinoma and 53 with negative findings were analyzed using ANN models learned. ANN-estimated VBD was validated against phantom data, compared intra-patient, with qualitative composition scoring, with MRI VBD, and inter-patient with classical risk factors of breast cancer as well as cancer status. Phantom validations reached an R 2 of 0.993. Intra-patient validations ranged from R 2 of 0.789 with VBD to 0.908 with breast volume. ANN VBD agreed well with BI-RADS scoring and MRI VBD with R 2 ranging from 0.665 with VBD to 0.852 with breast volume. VBD was significantly higher in women with cancer. Associations with age, BMI, menopause, and cancer status previously reported were also confirmed. ANN modeling appears to produce reasonable measures of mammographic density validated with phantoms, with existing measures of breast density, and with classical biomarkers of breast cancer. FFDM VBD is significantly higher in Japanese women with cancer.
Estimating Traffic and Anomaly Maps via Network Tomography
Mardani, Morteza; Giannakis, Georgios B.
2014-01-01
Mapping origin-destination (OD) network traffic is pivotal for network management and proactive security tasks. However, lack of sufficient flow-level measurements as well as potential anomalies pose major challenges towards this goal. Leveraging the spatiotemporal correlation of nominal traffic, and the sparse nature of anomalies, this paper brings forth a novel framework to map out nominal and anomalous traffic, which treats jointly important network monitoring tasks including traffic estim...
Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks
Yu, Chao
2013-01-01
In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…
Parameter estimation of an aeroelastic aircraft using neural networks
Indian Academy of Sciences (India)
e-mail: scr@iitk.ac.in. Abstract. Application of neural networks to the problem of aerodynamic modelling and parameter estimation for aeroelastic aircraft is addressed. A neural model capable of ... of the network in terms of the number of neurons in the hidden layer, the learning rate, the momentum rate etc. is not an exact ...
Directory of Open Access Journals (Sweden)
paresa soulimani
2016-06-01
Full Text Available Pearl millet has tolerance to harsh growing conditions such as drought. It is at least equivalent to maize and generally superior to sorghum in protein content and metabolizable energy levels. Thus it is of importance for poultry feeding. Amino acid (AA determination is expensive and time consuming. Therefore nutritionists have prompted a search for alternatives to estimate AA levels. Traditionally, two methods of predicting AA levels have been developed using multiple linear regression (MLR with an input of either CP or proximate analysis. Artificial neural networks (ANN may be more effective to predict AA concentration in feedstuff. Therefore a study was conducted to predict the AAs level in pearl millet with either MLR or ANN. Fifty two samples of pearl millet’s data lines contained chemical compositions and AAs which collected from literature were used to find the relationship between chemical analysis as xi and AA contents as y. For both MLR and ANN models chemical composition (dry matter, ash, crude fiber, crude protein, ether extract was used as inputs and each individual AA was the output in each model. The results of this study showed that it is possible to predict AAs with a simple analytical determination of proximate analysis. Furthermore ANN models could more effectively identify the relationship between AAs and proximate analysis than linear regression model.
DEFF Research Database (Denmark)
Madsen, Per Printz
1999-01-01
The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...
DEFF Research Database (Denmark)
Madsen, Per Printz
1998-01-01
The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...
Estimating order statistics of network degrees
Chu, J.; Nadarajah, S.
2018-01-01
We model the order statistics of network degrees of big data sets by a range of generalised beta distributions. A three parameter beta distribution due to Libby and Novick (1982) is shown to give the best overall fit for at least four big data sets. The fit of this distribution is significantly better than the fit suggested by Olhede and Wolfe (2012) across the whole range of order statistics for all four data sets.
Bootstrapping least-squares estimates in biochemical reaction networks.
Linder, Daniel F; Rempała, Grzegorz A
2015-01-01
The paper proposes new computational methods of computing confidence bounds for the least-squares estimates (LSEs) of rate constants in mass action biochemical reaction network and stochastic epidemic models. Such LSEs are obtained by fitting the set of deterministic ordinary differential equations (ODEs), corresponding to the large-volume limit of a reaction network, to network's partially observed trajectory treated as a continuous-time, pure jump Markov process. In the large-volume limit the LSEs are asymptotically Gaussian, but their limiting covariance structure is complicated since it is described by a set of nonlinear ODEs which are often ill-conditioned and numerically unstable. The current paper considers two bootstrap Monte-Carlo procedures, based on the diffusion and linear noise approximations for pure jump processes, which allow one to avoid solving the limiting covariance ODEs. The results are illustrated with both in-silico and real data examples from the LINE 1 gene retrotranscription model and compared with those obtained using other methods.
Flood estimation: a neural network approach
Energy Technology Data Exchange (ETDEWEB)
Swain, P.C.; Seshachalam, C.; Umamahesh, N.V. [Regional Engineering Coll., Warangal (India). Water and Environment Div.
2000-07-01
The artificial neural network (ANN) approach described in this study aims at predicting the flood flow into a reservoir. This differs from the traditional methods of flow prediction in the sense that it belongs to a class of data driven approaches, where as the traditional methods are model driven. Physical processes influencing the occurrences of streamflow in a river are highly complex, and are very difficult to be modelled by available statistical or deterministic models. ANNs provide model free solutions and hence can be expected to be appropriate in these conditions. Non-linearity, adaptivity, evidential response and fault tolerance are additional properties and capabilities of the neural networks. This paper highlights the applicability of neural networks for predicting daily flood flow taking the Hirakud reservoir on river Mahanadi in Orissa, India as the case study. The correlation between the observed and predicted flows and the relative error are considered to measure the performance of the model. The correlation between the observed and the modelled flows are computed to be 0.9467 in testing phase of the model. (orig.)
Estimation of Anonymous Email Network Characteristics through Statistical Disclosure Attacks
Directory of Open Access Journals (Sweden)
Javier Portela
2016-11-01
Full Text Available Social network analysis aims to obtain relational data from social systems to identify leaders, roles, and communities in order to model profiles or predict a specific behavior in users’ network. Preserving anonymity in social networks is a subject of major concern. Anonymity can be compromised by disclosing senders’ or receivers’ identity, message content, or sender-receiver relationships. Under strongly incomplete information, a statistical disclosure attack is used to estimate the network and node characteristics such as centrality and clustering measures, degree distribution, and small-world-ness. A database of email networks in 29 university faculties is used to study the method. A research on the small-world-ness and Power law characteristics of these email networks is also developed, helping to understand the behavior of small email networks.
Adaptive algorithm for mobile user positioning based on environment estimation
Directory of Open Access Journals (Sweden)
Grujović Darko
2014-01-01
Full Text Available This paper analyzes the challenges to realize an infrastructure independent and a low-cost positioning method in cellular networks based on RSS (Received Signal Strength parameter, auxiliary timing parameter and environment estimation. The proposed algorithm has been evaluated using field measurements collected from GSM (Global System for Mobile Communications network, but it is technology independent and can be applied in UMTS (Universal Mobile Telecommunication Systems and LTE (Long-Term Evolution networks, also.
Optimizing Neural Network Architectures Using Generalization Error Estimators
DEFF Research Database (Denmark)
Larsen, Jan
1994-01-01
This paper addresses the optimization of neural network architectures. It is suggested to optimize the architecture by selecting the model with minimal estimated averaged generalization error. We consider a least-squares (LS) criterion for estimating neural network models, i.e., the associated...... model weights are estimated by minimizing the LS criterion. The quality of a particular estimated model is measured by the average generalization error. This is defined as the expected squared prediction error on a novel input-output sample averaged over all possible training sets. An essential part...... of the suggested architecture optimization scheme is to calculate an estimate of the average generalization error. We suggest using the GEN-estimator which allows for dealing with nonlinear, incomplete models, i.e., models which are not capable of modeling the underlying nonlinear relationship perfectly. In most...
Michele Veldsman
2017-01-01
Brain atrophy is a normal part of healthy aging, and stroke appears to have neurodegenerative effects, accelerating this atrophy to pathological levels. The distributed pattern of atrophy in healthy aging suggests that large-scale brain networks may be involved. At the same time, the network wide effects of stroke are beginning to be appreciated. There is now widespread use of network methods to understand the brain in terms of coordinated brain activity or white matter connectivity. Examinin...
Maximum-Likelihood Estimator of Clock Offset between Nanomachines in Bionanosensor Networks
Directory of Open Access Journals (Sweden)
Lin Lin
2015-12-01
Full Text Available Recent advances in nanotechnology, electronic technology and biology have enabled the development of bio-inspired nanoscale sensors. The cooperation among the bionanosensors in a network is envisioned to perform complex tasks. Clock synchronization is essential to establish diffusion-based distributed cooperation in the bionanosensor networks. This paper proposes a maximum-likelihood estimator of the clock offset for the clock synchronization among molecular bionanosensors. The unique properties of diffusion-based molecular communication are described. Based on the inverse Gaussian distribution of the molecular propagation delay, a two-way message exchange mechanism for clock synchronization is proposed. The maximum-likelihood estimator of the clock offset is derived. The convergence and the bias of the estimator are analyzed. The simulation results show that the proposed estimator is effective for the offset compensation required for clock synchronization. This work paves the way for the cooperation of nanomachines in diffusion-based bionanosensor networks.
Mathematical model of transmission network static state estimation
Directory of Open Access Journals (Sweden)
Ivanov Aleksandar
2012-01-01
Full Text Available In this paper the characteristics and capabilities of the power transmission network static state estimator are presented. The solving process of the mathematical model containing the measurement errors and their processing is developed. To evaluate difference between the general model of state estimation and the fast decoupled state estimation model, the both models are applied to an example, and so derived results are compared.
Experimental FSO network availability estimation using interactive fog condition monitoring
Turán, Ján.; Ovseník, Łuboš
2016-12-01
Free Space Optics (FSO) is a license free Line of Sight (LOS) telecommunication technology which offers full duplex connectivity. FSO uses infrared beams of light to provide optical broadband connection and it can be installed literally in a few hours. Data rates go through from several hundreds of Mb/s to several Gb/s and range is from several 100 m up to several km. FSO link advantages: Easy connection establishment, License free communication, No excavation are needed, Highly secure and safe, Allows through window connectivity and single customer service and Compliments fiber by accelerating the first and last mile. FSO link disadvantages: Transmission media is air, Weather and climate dependence, Attenuation due to rain, snow and fog, Scattering of laser beam, Absorption of laser beam, Building motion and Air pollution. In this paper FSO availability evaluation is based on long term measured data from Fog sensor developed and installed at TUKE experimental FSO network in TUKE campus, Košice, Slovakia. Our FSO experimental network has three links with different physical distances between each FSO heads. Weather conditions have a tremendous impact on FSO operation in terms of FSO availability. FSO link availability is the percentage of time over a year that the FSO link will be operational. It is necessary to evaluate the climate and weather at the actual geographical location where FSO link is going to be mounted. It is important to determine the impact of a light scattering, absorption, turbulence and receiving optical power at the particular FSO link. Visibility has one of the most critical influences on the quality of an FSO optical transmission channel. FSO link availability is usually estimated using visibility information collected from nearby airport weather stations. Raw data from fog sensor (Fog Density, Relative Humidity, Temperature measured at each ms) are collected and processed by FSO Simulator software package developed at our Department. Based
Wireless Power Transfer for Distributed Estimation in Sensor Networks
Mai, Vien V.; Shin, Won-Yong; Ishibashi, Koji
2017-04-01
This paper studies power allocation for distributed estimation of an unknown scalar random source in sensor networks with a multiple-antenna fusion center (FC), where wireless sensors are equipped with radio-frequency based energy harvesting technology. The sensors' observation is locally processed by using an uncoded amplify-and-forward scheme. The processed signals are then sent to the FC, and are coherently combined at the FC, at which the best linear unbiased estimator (BLUE) is adopted for reliable estimation. We aim to solve the following two power allocation problems: 1) minimizing distortion under various power constraints; and 2) minimizing total transmit power under distortion constraints, where the distortion is measured in terms of mean-squared error of the BLUE. Two iterative algorithms are developed to solve the non-convex problems, which converge at least to a local optimum. In particular, the above algorithms are designed to jointly optimize the amplification coefficients, energy beamforming, and receive filtering. For each problem, a suboptimal design, a single-antenna FC scenario, and a common harvester deployment for colocated sensors, are also studied. Using the powerful semidefinite relaxation framework, our result is shown to be valid for any number of sensors, each with different noise power, and for an arbitrarily number of antennas at the FC.
A neural network applied to estimate Burr XII distribution parameters
Energy Technology Data Exchange (ETDEWEB)
Abbasi, B., E-mail: b.abbasi@gmail.co [Department of Industrial Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Hosseinifard, S.Z. [Department of Statistics and Operations Research, RMIT University, Melbourne (Australia); Coit, D.W. [Department of Industrial and System Engineering, Rutgers University, Piscataway, NJ (United States)
2010-06-15
The Burr XII distribution can closely approximate many other well-known probability density functions such as the normal, gamma, lognormal, exponential distributions as well as Pearson type I, II, V, VII, IX, X, XII families of distributions. Considering a wide range of shape and scale parameters of the Burr XII distribution, it can have an important role in reliability modeling, risk analysis and process capability estimation. However, estimating parameters of the Burr XII distribution can be a complicated task and the use of conventional methods such as maximum likelihood estimation (MLE) and moment method (MM) is not straightforward. Some tables to estimate Burr XII parameters have been provided by Burr (1942) but they are not adequate for many purposes or data sets. Burr tables contain specific values of skewness and kurtosis and their corresponding Burr XII parameters. Using interpolation or extrapolation to estimate other values may provide inappropriate estimations. In this paper, we present a neural network to estimate Burr XII parameters for different values of skewness and kurtosis as inputs. A trained network is presented, and one can use it without previous knowledge about neural networks to estimate Burr XII distribution parameters. Accurate estimation of the Burr parameters is an extension of simulation studies.
Vargas-Melendez, Leandro; Boada, Beatriz L; Boada, Maria Jesus L; Gauchia, Antonio; Diaz, Vicente
2017-04-29
Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33 % of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle's parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle's roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle's states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.
Estimating plant root water uptake using a neural network approach
DEFF Research Database (Denmark)
Qiao, D M; Shi, H B; Pang, H B
2010-01-01
Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil...... and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root...... but has not yet been addressed. This paper presents and tests such an approach. The method is based on a neural network model, estimating the water uptake using different types of data that are easy to measure in the field. Sunflower grown in a sandy loam subjected to water stress and salinity was taken...
Estimating extreme river discharges in Europe through a Bayesian network
Paprotny, Dominik; Morales-Nápoles, Oswaldo
2017-06-01
Large-scale hydrological modelling of flood hazards requires adequate extreme discharge data. In practise, models based on physics are applied alongside those utilizing only statistical analysis. The former require enormous computational power, while the latter are mostly limited in accuracy and spatial coverage. In this paper we introduce an alternate, statistical approach based on Bayesian networks (BNs), a graphical model for dependent random variables. We use a non-parametric BN to describe the joint distribution of extreme discharges in European rivers and variables representing the geographical characteristics of their catchments. Annual maxima of daily discharges from more than 1800 river gauges (stations with catchment areas ranging from 1.4 to 807 000 km2) were collected, together with information on terrain, land use and local climate. The (conditional) correlations between the variables are modelled through copulas, with the dependency structure defined in the network. The results show that using this method, mean annual maxima and return periods of discharges could be estimated with an accuracy similar to existing studies using physical models for Europe and better than a comparable global statistical model. Performance of the model varies slightly between regions of Europe, but is consistent between different time periods, and remains the same in a split-sample validation. Though discharge prediction under climate change is not the main scope of this paper, the BN was applied to a large domain covering all sizes of rivers in the continent both for present and future climate, as an example. Results show substantial variation in the influence of climate change on river discharges. The model can be used to provide quick estimates of extreme discharges at any location for the purpose of obtaining input information for hydraulic modelling.
Control and estimation methods over communication networks
Mahmoud, Magdi S
2014-01-01
This book provides a rigorous framework in which to study problems in the analysis, stability and design of networked control systems. Four dominant sources of difficulty are considered: packet dropouts, communication bandwidth constraints, parametric uncertainty, and time delays. Past methods and results are reviewed from a contemporary perspective, present trends are examined, and future possibilities proposed. Emphasis is placed on robust and reliable design methods. New control strategies for improving the efficiency of sensor data processing and reducing associated time delay are presented. The coverage provided features: · an overall assessment of recent and current fault-tolerant control algorithms; · treatment of several issues arising at the junction of control and communications; · key concepts followed by their proofs and efficient computational methods for their implementation; and · simulation examples (including TrueTime simulations) to...
Tamada, Yoshinori; Imoto, Seiya; Araki, Hiromitsu; Nagasaki, Masao; Print, Cristin; Charnock-Jones, D Stephen; Miyano, Satoru
2011-01-01
We present a novel algorithm to estimate genome-wide gene networks consisting of more than 20,000 genes from gene expression data using nonparametric Bayesian networks. Due to the difficulty of learning Bayesian network structures, existing algorithms cannot be applied to more than a few thousand genes. Our algorithm overcomes this limitation by repeatedly estimating subnetworks in parallel for genes selected by neighbor node sampling. Through numerical simulation, we confirmed that our algorithm outperformed a heuristic algorithm in a shorter time. We applied our algorithm to microarray data from human umbilical vein endothelial cells (HUVECs) treated with siRNAs, to construct a human genome-wide gene network, which we compared to a small gene network estimated for the genes extracted using a traditional bioinformatics method. The results showed that our genome-wide gene network contains many features of the small network, as well as others that could not be captured during the small network estimation. The results also revealed master-regulator genes that are not in the small network but that control many of the genes in the small network. These analyses were impossible to realize without our proposed algorithm.
Tamada, Yoshinori; Bannai, Hideo; Imoto, Seiya; Katayama, Toshiaki; Kanehisa, Minoru; Miyano, Satoru
2005-12-01
Since microarray gene expression data do not contain sufficient information for estimating accurate gene networks, other biological information has been considered to improve the estimated networks. Recent studies have revealed that highly conserved proteins that exhibit similar expression patterns in different organisms, have almost the same function in each organism. Such conserved proteins are also known to play similar roles in terms of the regulation of genes. Therefore, this evolutionary information can be used to refine regulatory relationships among genes, which are estimated from gene expression data. We propose a statistical method for estimating gene networks from gene expression data by utilizing evolutionarily conserved relationships between genes. Our method simultaneously estimates two gene networks of two distinct organisms, with a Bayesian network model utilizing the evolutionary information so that gene expression data of one organism helps to estimate the gene network of the other. We show the effectiveness of the method through the analysis on Saccharomyces cerevisiae and Homo sapiens cell cycle gene expression data. Our method was successful in estimating gene networks that capture many known relationships as well as several unknown relationships which are likely to be novel. Supplementary information is available at http://bonsai.ims.u-tokyo.ac.jp/~tamada/bayesnet/.
Automated mammographic breast density estimation using a fully convolutional network.
Lee, Juhun; Nishikawa, Robert M
2018-01-24
The purpose of this study was to develop a fully automated algorithm for mammographic breast density estimation using deep learning. Our algorithm used a fully convolutional network, which is a deep learning framework for image segmentation, to segment both the breast and the dense fibroglandular areas on mammographic images. Using the segmented breast and dense areas, our algorithm computed the breast percent density (PD), which is the faction of dense area in a breast. Our dataset included full-field digital screening mammograms of 604 women, which included 1208 mediolateral oblique (MLO) and 1208 craniocaudal (CC) views. We allocated 455, 58, and 91 of 604 women and their exams into training, testing, and validation datasets, respectively. We established ground truth for the breast and the dense fibroglandular areas via manual segmentation and segmentation using a simple thresholding based on BI-RADS density assessments by radiologists, respectively. Using the mammograms and ground truth, we fine-tuned a pretrained deep learning network to train the network to segment both the breast and the fibroglandular areas. Using the validation dataset, we evaluated the performance of the proposed algorithm against radiologists' BI-RADS density assessments. Specifically, we conducted a correlation analysis between a BI-RADS density assessment of a given breast and its corresponding PD estimate by the proposed algorithm. In addition, we evaluated our algorithm in terms of its ability to classify the BI-RADS density using PD estimates, and its ability to provide consistent PD estimates for the left and the right breast and the MLO and CC views of the same women. To show the effectiveness of our algorithm, we compared the performance of our algorithm against a state of the art algorithm, laboratory for individualized breast radiodensity assessment (LIBRA). The PD estimated by our algorithm correlated well with BI-RADS density ratings by radiologists. Pearson's rho values of
Estimating the epidemic threshold on networks by deterministic connections
Energy Technology Data Exchange (ETDEWEB)
Li, Kezan, E-mail: lkzzr@sohu.com; Zhu, Guanghu [School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004 (China); Fu, Xinchu [Department of Mathematics, Shanghai University, Shanghai 200444 (China); Small, Michael [School of Mathematics and Statistics, The University of Western Australia, Crawley, Western Australia 6009 (Australia)
2014-12-15
For many epidemic networks some connections between nodes are treated as deterministic, while the remainder are random and have different connection probabilities. By applying spectral analysis to several constructed models, we find that one can estimate the epidemic thresholds of these networks by investigating information from only the deterministic connections. Nonetheless, in these models, generic nonuniform stochastic connections and heterogeneous community structure are also considered. The estimation of epidemic thresholds is achieved via inequalities with upper and lower bounds, which are found to be in very good agreement with numerical simulations. Since these deterministic connections are easier to detect than those stochastic connections, this work provides a feasible and effective method to estimate the epidemic thresholds in real epidemic networks.
Factorized Estimation of Partially Shared Parameters in Diffusion Networks
Czech Academy of Sciences Publication Activity Database
Dedecius, Kamil; Sečkárová, Vladimíra
2017-01-01
Roč. 65, č. 19 (2017), s. 5153-5163 ISSN 1053-587X R&D Projects: GA ČR(CZ) GP14-06678P; GA ČR(CZ) GA16-09848S Institutional support: RVO:67985556 Keywords : Diffusion network * Diffusion estimation * Heterogeneous parameters * Multitask networks Subject RIV: BD - Theory of Information Impact factor: 4.300, year: 2016 http:// library .utia.cas.cz/separaty/2017/AS/dedecius-0477044.pdf
Directory of Open Access Journals (Sweden)
Misun Ahn
2017-12-01
Full Text Available This paper proposes a virtualized network function orchestration system based on Network Function Virtualization (NFV, one of the main technologies in 5G mobile networks. This system should provide connectivity between network devices and be able to create flexible network function and distribution. This system focuses more on access networks. By experimenting with various scenarios of user service established and activated in a network, we examine whether rapid adoption of new service is possible and whether network resources can be managed efficiently. The proposed method is based on Bluetooth transfer technology and mesh networking to provide automatic connections between network machines and on a Docker flat form, which is a container virtualization technology for setting and managing key functions. Additionally, the system includes a clustering and recovery measure regarding network function based on the Docker platform. We will briefly introduce the QR code perceived service as a user service to examine the proposal and based on this given service, we evaluate the function of the proposal and present analysis. Through the proposed approach, container relocation has been implemented according to a network device’s CPU usage and we confirm successful service through function evaluation on a real test bed. We estimate QR code recognition speed as the amount of network equipment is gradually increased, improving user service and confirm that the speed of recognition is increased as the assigned number of network devices is increased by the user service.
Estimating Stochastic Volatility Models using Prediction-based Estimating Functions
DEFF Research Database (Denmark)
Lunde, Asger; Brix, Anne Floor
In this paper prediction-based estimating functions (PBEFs), introduced in Sørensen (2000), are reviewed and PBEFs for the Heston (1993) stochastic volatility model are derived. The finite sample performance of the PBEF based estimator is investigated in a Monte Carlo study, and compared...
Flood quantile estimation at ungauged sites by Bayesian networks
Mediero, L.; Santillán, D.; Garrote, L.
2012-04-01
Estimating flood quantiles at a site for which no observed measurements are available is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. The most common technique used is the multiple regression analysis, which relates physical and climatic basin characteristic to flood quantiles. Regression equations are fitted from flood frequency data and basin characteristics at gauged sites. Regression equations are a rigid technique that assumes linear relationships between variables and cannot take the measurement errors into account. In addition, the prediction intervals are estimated in a very simplistic way from the variance of the residuals in the estimated model. Bayesian networks are a probabilistic computational structure taken from the field of Artificial Intelligence, which have been widely and successfully applied to many scientific fields like medicine and informatics, but application to the field of hydrology is recent. Bayesian networks infer the joint probability distribution of several related variables from observations through nodes, which represent random variables, and links, which represent causal dependencies between them. A Bayesian network is more flexible than regression equations, as they capture non-linear relationships between variables. In addition, the probabilistic nature of Bayesian networks allows taking the different sources of estimation uncertainty into account, as they give a probability distribution as result. A homogeneous region in the Tagus Basin was selected as case study. A regression equation was fitted taking the basin area, the annual maximum 24-hour rainfall for a given recurrence interval and the mean height as explanatory variables. Flood quantiles at ungauged sites were estimated by Bayesian networks. Bayesian networks need to be learnt from a huge enough data set. As observational data are reduced, a
Estimating functional brain networks by incorporating a modularity prior.
Qiao, Lishan; Zhang, Han; Kim, Minjeong; Teng, Shenghua; Zhang, Limei; Shen, Dinggang
2016-11-01
Functional brain network analysis has become one principled way of revealing informative organization architectures in healthy brains, and providing sensitive biomarkers for diagnosis of neurological disorders. Prior to any post hoc analysis, however, a natural issue is how to construct "ideal" brain networks given, for example, a set of functional magnetic resonance imaging (fMRI) time series associated with different brain regions. Although many methods have been developed, it is currently still an open field to estimate biologically meaningful and statistically robust brain networks due to our limited understanding of the human brain as well as complex noises in the observed data. Motivated by the fact that the brain is organized with modular structures, in this paper, we propose a novel functional brain network modeling scheme by encoding a modularity prior under a matrix-regularized network learning framework, and further formulate it as a sparse low-rank graph learning problem, which can be solved by an efficient optimization algorithm. Then, we apply the learned brain networks to identify patients with mild cognitive impairment (MCI) from normal controls. We achieved 89.01% classification accuracy even with a simple feature selection and classification pipeline, which significantly outperforms the conventional brain network construction methods. Moreover, we further explore brain network features that contributed to MCI identification, and discovered potential biomarkers for personalized diagnosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Menendez Martinez, A.; Ariel Gomez Gutierrez, A.; Alvarez Ramos, I.; Biscarri Trivino, F. [Universidad de Sevilla (Spain)
2000-07-01
Monitoring the flows managed by water supply companies involves processing huge amounts of data. These data also have to correspond to the topology of the network in a way that is consistent with the data collection time. The specific purpose database described in this article was developed to meet such requirements. (Author) 4 refs.
Parameter estimation of an aeroelastic aircraft using neural networks
Indian Academy of Sciences (India)
Application of neural networks to the problem of aerodynamic modelling and parameter estimation for aeroelastic aircraft is addressed. A neural model capable of predicting generalized force and moment coefficients using measured motion and control variables only, without any need for conventional normal elastic ...
Iterative Available Bandwidth Estimation for Mobile Transport Networks
DEFF Research Database (Denmark)
Ubeda Castellanos, Carlos; López Villa, Dimas; Teyeb, Oumer Mohammed
2007-01-01
Available bandwidth estimation has lately been proposed to be used for end-to-end resource management in existing and emerging mobile communication systems, whose transport networks could end up being the bottleneck rather than the air interface. Algorithms for admission control, handover...
Energy parameter estimation in solar powered wireless sensor networks
Mousa, Mustafa
2014-02-24
The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.
Using arborescences to estimate hierarchicalness in directed complex networks
2018-01-01
Complex networks are a useful tool for the understanding of complex systems. One of the emerging properties of such systems is their tendency to form hierarchies: networks can be organized in levels, with nodes in each level exerting control on the ones beneath them. In this paper, we focus on the problem of estimating how hierarchical a directed network is. We propose a structural argument: a network has a strong top-down organization if we need to delete only few edges to reduce it to a perfect hierarchy—an arborescence. In an arborescence, all edges point away from the root and there are no horizontal connections, both characteristics we desire in our idealization of what a perfect hierarchy requires. We test our arborescence score in synthetic and real-world directed networks against the current state of the art in hierarchy detection: agony, flow hierarchy and global reaching centrality. These tests highlight that our arborescence score is intuitive and we can visualize it; it is able to better distinguish between networks with and without a hierarchical structure; it agrees the most with the literature about the hierarchy of well-studied complex systems; and it is not just a score, but it provides an overall scheme of the underlying hierarchy of any directed complex network. PMID:29381761
Convolutional neural networks for estimating spatially distributed evapotranspiration
García-Pedrero, Angel M.; Gonzalo-Martín, Consuelo; Lillo-Saavedra, Mario F.; Rodriguéz-Esparragón, Dionisio; Menasalvas, Ernestina
2017-10-01
Efficient water management in agriculture requires an accurate estimation of evapotranspiration (ET). There are available several balance energy surface models that provide a daily ET estimation (ETd) spatially and temporarily distributed for different crops over wide areas. These models need infrared thermal spectral band (gathered from remotely sensors) to estimate sensible heat flux from the surface temperature. However, this spectral band is not available for most current operational remote sensors. Even though the good results provided by machine learning (ML) methods in many different areas, few works have applied these approaches for forecasting distributed ETd on space and time when aforementioned information is missing. However, these methods do not exploit the land surface characteristics and the relationships among land covers producing estimation errors. In this work, we have developed and evaluated a methodology that provides spatial distributed estimates of ETd without thermal information by means of Convolutional Neural Networks.
McDonald, K. C.; Kimball, J. S.; Zimmerman, R.
2002-01-01
We employ daily surface Radar backscatter data from the SeaWinds Ku-band Scatterometer onboard Quikscat to estimate landscape freeze-thaw state and associated length of the seasonal non-frozen period as a surrogate for determining the annual growing season across boreal and subalpine regions of North America for 2000 and 2001.
Estimating the stochastic bifurcation structure of cellular networks.
Directory of Open Access Journals (Sweden)
Carl Song
2010-03-01
Full Text Available High throughput measurement of gene expression at single-cell resolution, combined with systematic perturbation of environmental or cellular variables, provides information that can be used to generate novel insight into the properties of gene regulatory networks by linking cellular responses to external parameters. In dynamical systems theory, this information is the subject of bifurcation analysis, which establishes how system-level behaviour changes as a function of parameter values within a given deterministic mathematical model. Since cellular networks are inherently noisy, we generalize the traditional bifurcation diagram of deterministic systems theory to stochastic dynamical systems. We demonstrate how statistical methods for density estimation, in particular, mixture density and conditional mixture density estimators, can be employed to establish empirical bifurcation diagrams describing the bistable genetic switch network controlling galactose utilization in yeast Saccharomyces cerevisiae. These approaches allow us to make novel qualitative and quantitative observations about the switching behavior of the galactose network, and provide a framework that might be useful to extract information needed for the development of quantitative network models.
Host Event Based Network Monitoring
Energy Technology Data Exchange (ETDEWEB)
Jonathan Chugg
2013-01-01
The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.
An Improved Convolutional Neural Network on Crowd Density Estimation
Directory of Open Access Journals (Sweden)
Pan Shao-Yun
2016-01-01
Full Text Available In this paper, a new method is proposed for crowd density estimation. An improved convolutional neural network is combined with traditional texture feature. The data calculated by the convolutional layer can be treated as a new kind of features.So more useful information of images can be extracted by different features.In the meantime, the size of image has little effect on the result of convolutional neural network. Experimental results indicate that our scheme has adequate performance to allow for its use in real world applications.
Estimation of RTT and bandwidth for congestion Control Applications in Communication Networks
Jacobsson, Krister; Hjalmarsson, Håkan; Möller, Niels; Johansson, Karl Henrik
2004-01-01
Heterogeneous communication networks with their variety of application demands, uncertain time-varying traffic load, and mixture of wired and wireless links pose several challenging problem in modeling and control. In this paper we focus on the round-trip time (RTT), which is a particularly important variable for efficient end-to-end congestion control, and on bandwidth estimation. Based on a simple aggregated model of the network, an algorithm combining a Kalman filter and a change detection...
CNEM: Cluster Based Network Evolution Model
Directory of Open Access Journals (Sweden)
Sarwat Nizamani
2015-01-01
Full Text Available This paper presents a network evolution model, which is based on the clustering approach. The proposed approach depicts the network evolution, which demonstrates the network formation from individual nodes to fully evolved network. An agglomerative hierarchical clustering method is applied for the evolution of network. In the paper, we present three case studies which show the evolution of the networks from the scratch. These case studies include: terrorist network of 9/11 incidents, terrorist network of WMD (Weapons Mass Destruction plot against France and a network of tweets discussing a topic. The network of 9/11 is also used for evaluation, using other social network analysis methods which show that the clusters created using the proposed model of network evolution are of good quality, thus the proposed method can be used by law enforcement agencies in order to further investigate the criminal networks
An artificial neural network for estimating haplotype frequencies.
Cartier, Kevin C; Baechle, Daniel
2005-12-30
The problem of estimating haplotype frequencies from population data has been considered by numerous investigators, resulting in a wide variety of possible algorithmic and statistical solutions. We propose a relatively unique approach that employs an artificial neural network (ANN) to predict the most likely haplotype frequencies from a sample of population genotype data. Through an innovative ANN design for mapping genotype patterns to diplotypes, we have produced a prototype that demonstrates the feasibility of this approach, with provisional results that correlate well with estimates produced by the expectation maximization algorithm for haplotype frequency estimation. Given the computational demands of estimating haplotype frequencies for 20 or more single-nucleotide polymorphisms, the ANN approach is promising because its design fits well with parallel computing architectures.
Petkewich, Matthew D.; Conrads, Paul
2013-01-01
The Everglades Depth Estimation Network is an integrated network of real-time water-level gaging stations, a ground-elevation model, and a water-surface elevation model designed to provide scientists, engineers, and water-resource managers with water-level and water-depth information (1991-2013) for the entire freshwater portion of the Greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for the Everglades Depth Estimation Network in order for the Network to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. In a previous study, water-level estimation equations were developed to fill in missing data to increase the accuracy of the daily water-surface elevation model. During this study, those equations were updated because of the addition and removal of water-level gaging stations, the consistent use of water-level data relative to the North American Vertical Datum of 1988, and availability of recent data (March 1, 2006, to September 30, 2011). Up to three linear regression equations were developed for each station by using three different input stations to minimize the occurrences of missing data for an input station. Of the 667 water-level estimation equations developed to fill missing data at 223 stations, more than 72 percent of the equations have coefficients of determination greater than 0.90, and 97 percent have coefficients of determination greater than 0.70.
Robust state estimation for stochastic genetic regulatory networks
Liang, Jinling; Lam, James
2010-01-01
In this article, the state estimation problem is investigated for genetic regulatory networks (GRNs) with parameter uncertainties and stochastic disturbances. To account for the unavoidable modelling errors and parameter fluctuations, the network parameters are assumed to be time-varying but norm-bounded. Furthermore, scalar multiplicative white noises are introduced into both the translation process and the feedback regulation process in order to reflect the inherent intracellular and extracellular noise perturbations. The purpose of the addressed problem is to design a linear state estimator that can estimate the true concentration of the mRNA and the protein of the uncertain GRNs. By resorting to the Lyapunov-Krasovskii functional method combined with the linear matrix inequality (LMI) technique, sufficient conditions are first established for ensuring the stochastic stability of the dynamics of the estimation error, and the estimator gains are then designed in terms of the solutions to some LMIs that can be easily solved by using the standard numerical software. A three-node GRN is presented to show the effectiveness of the proposed design procedures.
Channel estimation for physical layer network coding systems
Gao, Feifei; Wang, Gongpu
2014-01-01
This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performa
NASA Software Cost Estimation Model: An Analogy Based Estimation Model
Hihn, Jairus; Juster, Leora; Menzies, Tim; Mathew, George; Johnson, James
2015-01-01
The cost estimation of software development activities is increasingly critical for large scale integrated projects such as those at DOD and NASA especially as the software systems become larger and more complex. As an example MSL (Mars Scientific Laboratory) developed at the Jet Propulsion Laboratory launched with over 2 million lines of code making it the largest robotic spacecraft ever flown (Based on the size of the software). Software development activities are also notorious for their cost growth, with NASA flight software averaging over 50% cost growth. All across the agency, estimators and analysts are increasingly being tasked to develop reliable cost estimates in support of program planning and execution. While there has been extensive work on improving parametric methods there is very little focus on the use of models based on analogy and clustering algorithms. In this paper we summarize our findings on effort/cost model estimation and model development based on ten years of software effort estimation research using data mining and machine learning methods to develop estimation models based on analogy and clustering. The NASA Software Cost Model performance is evaluated by comparing it to COCOMO II, linear regression, and K- nearest neighbor prediction model performance on the same data set.
An artificial neural network for estimating haplotype frequencies
Baechle Daniel; Cartier Kevin C
2005-01-01
Abstract The problem of estimating haplotype frequencies from population data has been considered by numerous investigators, resulting in a wide variety of possible algorithmic and statistical solutions. We propose a relatively unique approach that employs an artificial neural network (ANN) to predict the most likely haplotype frequencies from a sample of population genotype data. Through an innovative ANN design for mapping genotype patterns to diplotypes, we have produced a prototype that d...
Using Of Learning Vector Quantization Network for Pan Evaporation Estimation
Directory of Open Access Journals (Sweden)
Kamil7 A. Abdulmohsen
2013-05-01
Full Text Available A modern technique is presented to study the evaporation process which is considered as an important component of the hydrological cycle. The Pan Evaporation depth is estimated depending upon four metrological factors viz. (temperature, relative humidity, sunshine, and wind speed. Unsupervised Artificial Neural Network has been proposed to accomplish the study goal, specifically, a type called Linear Vector Quantitization, (LVQ. A step by step method is used to cope with difficulties that usually associated with computation procedures inherent in these kind of networks. Such systematic approach may close the gap between the hesitation of the user to make use of the capabilities of these type of neural networks and the relative complexity involving the computations procedures. The results reveal the possibility of using LVQ for of Pan Evaporation depth estimation where a good agreement has been noticed between the outputs of the proposed network and the observed values of the Pan Evaporation depth with a correlation coefficient of 0.986.
Directory of Open Access Journals (Sweden)
Salleh Abu
2007-08-01
Full Text Available Abstract Background Wax esters are important ingredients in cosmetics, pharmaceuticals, lubricants and other chemical industries due to their excellent wetting property. Since the naturally occurring wax esters are expensive and scarce, these esters can be produced by enzymatic alcoholysis of vegetable oils. In an enzymatic reaction, study on modeling and optimization of the reaction system to increase the efficiency of the process is very important. The classical method of optimization involves varying one parameter at a time that ignores the combined interactions between physicochemical parameters. RSM is one of the most popular techniques used for optimization of chemical and biochemical processes and ANNs are powerful and flexible tools that are well suited to modeling biochemical processes. Results The coefficient of determination (R2 and absolute average deviation (AAD values between the actual and estimated responses were determined as 1 and 0.002844 for ANN training set, 0.994122 and 1.289405 for ANN test set, and 0.999619 and 0.0256 for RSM training set respectively. The predicted optimum condition was: reaction time 7.38 h, temperature 53.9°C, amount of enzyme 0.149 g, and substrate molar ratio 1:3.41. The actual experimental percentage yield was 84.6% at optimum condition, which compared well to the maximum predicted value by ANN (83.9% and RSM (85.4%. The order of effective parameters on wax ester percentage yield were; respectively, time with 33.69%, temperature with 30.68%, amount of enzyme with 18.78% and substrate molar ratio with 16.85%, whereas R2 and AAD were determined as 0.99998696 and 1.377 for ANN, and 0.99991515 and 3.131 for RSM respectively. Conclusion Though both models provided good quality predictions in this study, yet the ANN showed a clear superiority over RSM for both data fitting and estimation capabilities.
Degeneracy estimation in interference models on wireless networks
McBride, Neal; Bulava, John; Galiotto, Carlo; Marchetti, Nicola; Macaluso, Irene; Doyle, Linda
2017-03-01
We present a Monte Carlo study of interference in real-world wireless networks using the Potts model. Our approach maps the Potts energy to discrete interference levels. These levels depend on the configurations of radio frequency allocation in the network. For the first time, we estimate the degeneracy of these interference levels using the Wang-Landau algorithm. The cumulative distribution function of the resulting density of states is found to increase rapidly at a critical interference value. We compare these critical values for several different real-world interference networks and Potts models. Our results show that models with a greater number of available frequency channels and less dense interference networks result in the majority of configurations having lower interference levels. Consequently, their critical interference levels occur at lower values. Furthermore, the area under the density of states increases and shifts to lower interference values. Therefore, the probability of randomly sampling low interference configurations is higher under these conditions. This result can be used to consider dynamic and distributed spectrum allocation in future wireless networks.
Security Event Counts Estimate in Automated Systems for Network Attacks Detection
Directory of Open Access Journals (Sweden)
D. O. Kovalev
2011-03-01
Full Text Available Information security monitoring systems specifics in large automated systems are being analyzed. Security events distribution for different time intervals was determined and further used to estimate the security events counts. Proposed events counts estimate method is based on a dynamically updated table of moments. This method allows to determine the acceptable number of security events at different time intervals as well as exceeding situations which are being the signal for abnormal network activity.
Wang, Y; Zhu, W; Cheng, X; Li, D
2013-03-07
Continuous crystal based PET detectors have features of simple design, low cost, good energy resolution and high detection efficiency. Through single-end readout of scintillation light, direct three-dimensional (3D) position estimation could be another advantage that the continuous crystal detector would have. In this paper, we propose to use artificial neural networks to simultaneously estimate the plane coordinate and DOI coordinate of incident γ photons with detected scintillation light. Using our experimental setup with an '8 + 8' simplified signal readout scheme, the training data of perpendicular irradiation on the front surface and one side surface are obtained, and the plane (x, y) networks and DOI networks are trained and evaluated. The test results show that the artificial neural network for DOI estimation is as effective as for plane estimation. The performance of both estimators is presented by resolution and bias. Without bias correction, the resolution of the plane estimator is on average better than 2 mm and that of the DOI estimator is about 2 mm over the whole area of the detector. With bias correction, the resolution at the edge area for plane estimation or at the end of the block away from the readout PMT for DOI estimation becomes worse, as we expect. The comprehensive performance of the 3D positioning by a neural network is accessed by the experimental test data of oblique irradiations. To show the combined effect of the 3D positioning over the whole area of the detector, the 2D flood images of oblique irradiation are presented with and without bias correction.
Manifold absolute pressure estimation using neural network with hybrid training algorithm.
Muslim, Mohd Taufiq; Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli
2017-01-01
In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.
Manifold absolute pressure estimation using neural network with hybrid training algorithm.
Directory of Open Access Journals (Sweden)
Mohd Taufiq Muslim
Full Text Available In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM algorithm, Bayesian Regularization (BR algorithm and Particle Swarm Optimization (PSO algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS. The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.
Estimation of delays in generalized asynchronous Boolean networks.
Das, Haimabati; Layek, Ritwik Kumar
2016-10-20
A new generalized asynchronous Boolean network (GABN) model has been proposed in this paper. This continuous-time discrete-state model captures the biological reality of cellular dynamics without compromising the computational efficiency of the Boolean framework. The GABN synthesis procedure is based on the prior knowledge of the logical structure of the regulatory network, and the experimental transcriptional parameters. The novelty of the proposed methodology lies in considering different delays associated with the activation and deactivation of a particular protein (especially the transcription factors). A few illustrative examples of some well-studied network motifs have been provided to explore the scope of using the GABN model for larger networks. The GABN model of the p53-signaling pathway in response to γ-irradiation has also been simulated in the current paper to provide an indirect validation of the proposed schema.
Location-Based Services in Vehicular Networks
Wu, Di
2013-01-01
Location-based services have been identified as a promising communication paradigm in highly mobile and dynamic vehicular networks. However, existing mobile ad hoc networking cannot be directly applied to vehicular networking due to differences in traffic conditions, mobility models and network topologies. On the other hand, hybrid architectures…
Schedule-based sequential localization in asynchronous wireless networks
Zachariah, Dave; De Angelis, Alessio; Dwivedi, Satyam; Händel, Peter
2014-12-01
In this paper, we consider the schedule-based network localization concept, which does not require synchronization among nodes and does not involve communication overhead. The concept makes use of a common transmission sequence, which enables each node to perform self-localization and to localize the entire network, based on noisy propagation-time measurements. We formulate the schedule-based localization problem as an estimation problem in a Bayesian framework. This provides robustness with respect to uncertainty in such system parameters as anchor locations and timing devices. Moreover, we derive a sequential approximate maximum a posteriori (AMAP) estimator. The estimator is fully decentralized and copes with varying noise levels. By studying the fundamental constraints given by the considered measurement model, we provide a system design methodology which enables a scalable solution. Finally, we evaluate the performance of the proposed AMAP estimator by numerical simulations emulating an impulse-radio ultra-wideband (IR-UWB) wireless network.
CSIR Research Space (South Africa)
Snider, G
2015-01-01
Full Text Available Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM(sub2.5)) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short...
Topic-based Social Influence Measurement for Social Networks
Directory of Open Access Journals (Sweden)
Asso Hamzehei
2017-11-01
Full Text Available Social science studies have acknowledged that the social influence of individuals is not identical. Social networks structure and shared text can reveal immense information about users, their interests, and topic-based influence. Although some studies have considered measuring user influence, less has been on measuring and estimating topic-based user influence. In this paper, we propose an approach that incorporates network structure, user-generated content for topic-based influence measurement, and user’s interactions in the network. We perform experimental analysis on Twitter data and show that our proposed approach can effectively measure topic-based user influence.
Estimation of Handling Flexible Cystoscope Using Neural Network
Nakamura, Munehiro; Kanaya, Jiro; Kimura, Haruhiko
This paper presents a system for estimating handling of a flexible cystoscope in bladder checkup. In the checkup, all the seven parts of the bladder wall can be observed with a flexible cystoscope. However, since the shape and color of the parts are depended on participants and five of the parts have same shape and color, it is difficult to grasp the location that the cystoscope is projecting. For the reason, it is often happened that urologists can not confirm that all the parts were observed. Since urologists conduct the checkup by handling the cystoscope and watching movement of the location that the cystoscope is projecting, reproducing the checkup by a computer would recognize oversights. And then, the proposed method extracts movement of the location and estimates the handling by the neural network. The experimental results of the estimations for 9 videos recorded in the checkup have shown a possibility of reproducing the checkup.
Instrumental variable estimation based on grouped data
Bekker, Paul A.; Ploeg, Jan van der
2000-01-01
The paper considers the estimation of the coefficients of a single equation in the presence of dummy intruments. We derive pseudo ML and GMM estimators based on moment restrictions induced either by the structural form or by the reduced form of the model. The performance of the estimators is
Instrumental variable estimation based on grouped data
Bekker, PA; van der Ploeg, Jan
The paper considers the estimation of the coefficients of a single equation in the presence of dummy intruments. We derive pseudo ML and GMM estimators based on moment restrictions induced either by the structural form or by the reduced form of the model. The performance of the estimators is
A Robust Approach for Clock Offset Estimation in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Kim Jang-Sub
2010-01-01
Full Text Available The maximum likelihood estimators (MLEs for the clock phase offset assuming a two-way message exchange mechanism between the nodes of a wireless sensor network were recently derived assuming Gaussian and exponential network delays. However, the MLE performs poorly in the presence of non-Gaussian or nonexponential network delay distributions. Currently, there is a need to develop clock synchronization algorithms that are robust to the distribution of network delays. This paper proposes a clock offset estimator based on the composite particle filter (CPF to cope with the possible asymmetries and non-Gaussianity of the network delay distributions. Also, a variant of the CPF approach based on the bootstrap sampling (BS is shown to exhibit good performance in the presence of reduced number of observations. Computer simulations illustrate that the basic CPF and its BS-based variant present superior performance than MLE under general random network delay distributions such as asymmetric Gaussian, exponential, Gamma, Weibull as well as various mixtures.
Estimating Type Ia Supernova Metallicities Using Neural Networks
Villar, V. Ashley
2017-01-01
Normal Type Ia supernovae (SNe) can be used as standardizable candles because their progenitors, white dwarfs, are a fairly homogenous class of objects. However, intrinsic variability in these events arise from a number of factors, including metallicity. Recent studies have investigated the effects of metallicity on Type Ia SNe observables from both a theoretical approach, by tuning model metallicity to analyze spectral features, and an observational approach, by studying the effect of host metallicity on light curves. In this work, we take a new, data-driven approach to the problem. Inspired by the success of neural networks in the field of image processing, we aim to estimate the metallicities of Type Ia SNe progenitors from their near-maximum spectra using feed-forward neural networks. We first collect a sample of near-maximum Type Ia SNe spectra from the literature to be smoothed and down-sampled. We then estimate the metallicities of the SNe hosts using the B-band magnitudes. We build a multilayer perceptron to generate a model that takes as input the down-sampled spectra and returns a scalar metallicity. Finally, we discuss basic considerations to be taken when working with spectral (as opposed to image) data using neural networks.
An acoustical model based monitoring network
Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der
2010-01-01
In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the
Location based Network Optimizations for Mobile Wireless Networks
DEFF Research Database (Denmark)
Nielsen, Jimmy Jessen
The availability of location information in mobile devices, e.g., through built-in GPS receivers in smart phones, has motivated the investigation of the usefulness of location based network optimizations. Since the quality of input information is important for network optimizations, a main focus...... of this work is to evaluate how location based network optimizations are affected by varying quality of input information such as location information and user movements. The first contribution in this thesis concerns cooperative network-based localization systems. The investigations focus on assessing...... the achievable accuracy of future localization system in mobile settings, as well as quantifying the impact of having a realistic model of the required measurement exchanges. Secondly, this work has considered different large scale and small scale location based network optimizations, namely centralized relay...
Eppenhof, Koen A. J.; Pluim, Josien P. W.
2017-02-01
Error estimation in medical image registration is valuable when validating, comparing, or combining registration methods. To validate a nonlinear image registration method, ideally the registration error should be known for the entire image domain. We propose a supervised method for the estimation of a registration error map for nonlinear image registration. The method is based on a convolutional neural network that estimates the norm of the residual deformation from patches around each pixel in two registered images. This norm is interpreted as the registration error, and is defined for every pixel in the image domain. The network is trained using a set of artificially deformed images. Each training example is a pair of images: the original image, and a random deformation of that image. No manually labeled ground truth error is required. At test time, only the two registered images are required as input. We train and validate the network on registrations in a set of 2D digital subtraction angiography sequences, such that errors up to eight pixels can be estimated. We show that for this range of errors the convolutional network is able to learn the registration error in pairs of 2D registered images at subpixel precision. Finally, we present a proof of principle for the extension to 3D registration problems in chest CTs, showing that the method has the potential to estimate errors in 3D registration problems.
Generalized method of moments for estimating parameters of stochastic reaction networks.
Lück, Alexander; Wolf, Verena
2016-10-21
Discrete-state stochastic models have become a well-established approach to describe biochemical reaction networks that are influenced by the inherent randomness of cellular events. In the last years several methods for accurately approximating the statistical moments of such models have become very popular since they allow an efficient analysis of complex networks. We propose a generalized method of moments approach for inferring the parameters of reaction networks based on a sophisticated matching of the statistical moments of the corresponding stochastic model and the sample moments of population snapshot data. The proposed parameter estimation method exploits recently developed moment-based approximations and provides estimators with desirable statistical properties when a large number of samples is available. We demonstrate the usefulness and efficiency of the inference method on two case studies. The generalized method of moments provides accurate and fast estimations of unknown parameters of reaction networks. The accuracy increases when also moments of order higher than two are considered. In addition, the variance of the estimator decreases, when more samples are given or when higher order moments are included.
A Network Formation Model Based on Subgraphs
Chandrasekhar, Arun
2016-01-01
We develop a new class of random-graph models for the statistical estimation of network formation that allow for substantial correlation in links. Various subgraphs (e.g., links, triangles, cliques, stars) are generated and their union results in a network. We provide estimation techniques for recovering the rates at which the underlying subgraphs were formed. We illustrate the models via a series of applications including testing for incentives to form cross-caste relationships in rural India, testing to see whether network structure is used to enforce risk-sharing, testing as to whether networks change in response to a community's exposure to microcredit, and show that these models significantly outperform stochastic block models in matching observed network characteristics. We also establish asymptotic properties of the models and various estimators, which requires proving a new Central Limit Theorem for correlated random variables.
Balzer, Laura; Staples, Patrick; Onnela, Jukka-Pekka; DeGruttola, Victor
2017-04-01
Several cluster-randomized trials are underway to investigate the implementation and effectiveness of a universal test-and-treat strategy on the HIV epidemic in sub-Saharan Africa. We consider nesting studies of pre-exposure prophylaxis within these trials. Pre-exposure prophylaxis is a general strategy where high-risk HIV- persons take antiretrovirals daily to reduce their risk of infection from exposure to HIV. We address how to target pre-exposure prophylaxis to high-risk groups and how to maximize power to detect the individual and combined effects of universal test-and-treat and pre-exposure prophylaxis strategies. We simulated 1000 trials, each consisting of 32 villages with 200 individuals per village. At baseline, we randomized the universal test-and-treat strategy. Then, after 3 years of follow-up, we considered four strategies for targeting pre-exposure prophylaxis: (1) all HIV- individuals who self-identify as high risk, (2) all HIV- individuals who are identified by their HIV+ partner (serodiscordant couples), (3) highly connected HIV- individuals, and (4) the HIV- contacts of a newly diagnosed HIV+ individual (a ring-based strategy). We explored two possible trial designs, and all villages were followed for a total of 7 years. For each village in a trial, we used a stochastic block model to generate bipartite (male-female) networks and simulated an agent-based epidemic process on these networks. We estimated the individual and combined intervention effects with a novel targeted maximum likelihood estimator, which used cross-validation to data-adaptively select from a pre-specified library the candidate estimator that maximized the efficiency of the analysis. The universal test-and-treat strategy reduced the 3-year cumulative HIV incidence by 4.0% on average. The impact of each pre-exposure prophylaxis strategy on the 4-year cumulative HIV incidence varied by the coverage of the universal test-and-treat strategy with lower coverage resulting in a larger
A Quantum Cryptography Communication Network Based on Software Defined Network
Directory of Open Access Journals (Sweden)
Zhang Hongliang
2018-01-01
Full Text Available With the development of the Internet, information security has attracted great attention in today’s society, and quantum cryptography communication network based on quantum key distribution (QKD is a very important part of this field, since the quantum key distribution combined with one-time-pad encryption scheme can guarantee the unconditional security of the information. The secret key generated by quantum key distribution protocols is a very valuable resource, so making full use of key resources is particularly important. Software definition network (SDN is a new type of network architecture, and it separates the control plane and the data plane of network devices through OpenFlow technology, thus it realizes the flexible control of the network resources. In this paper, a quantum cryptography communication network model based on SDN is proposed to realize the flexible control of quantum key resources in the whole cryptography communication network. Moreover, we propose a routing algorithm which takes into account both the hops and the end-to-end availible keys, so that the secret key generated by QKD can be used effectively. We also simulate this quantum cryptography communication network, and the result shows that based on SDN and the proposed routing algorithm the performance of this network is improved since the effective use of the quantum key resources.
A Network Coding Based Routing Protocol for Underwater Sensor Networks
Directory of Open Access Journals (Sweden)
Xin Guan
2012-04-01
Full Text Available Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs. Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR.We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.
A network coding based routing protocol for underwater sensor networks.
Wu, Huayang; Chen, Min; Guan, Xin
2012-01-01
Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.
Comparison of Available Bandwidth Estimation Techniques in Packet-Switched Mobile Networks
DEFF Research Database (Denmark)
López Villa, Dimas; Ubeda Castellanos, Carlos; Teyeb, Oumer Mohammed
2006-01-01
of information regarding the available bandwidth in the transport network, as it could end up being the bottleneck rather than the air interface. This paper provides a comparative study of three well known available bandwidth estimation techniques, i.e. TOPP, SLoPS and pathChirp, taking into account......The relative contribution of the transport network towards the per-user capacity in mobile telecommunication systems is becoming very important due to the ever increasing air-interface data rates. Thus, resource management procedures such as admission, load and handover control can make use...... the statistical conditions of the available bandwidth and assessing the variability of their estimations. Simulation-based studies on a mobile transport network show that pathChirp outperforms TOPP and SLoPS, both in terms of accuracy and efficiency....
ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM
Directory of Open Access Journals (Sweden)
Santosh Kumar Chaudhari
2011-06-01
Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.
Instrumental variables estimates of peer effects in social networks.
An, Weihua
2015-03-01
Estimating peer effects with observational data is very difficult because of contextual confounding, peer selection, simultaneity bias, and measurement error, etc. In this paper, I show that instrumental variables (IVs) can help to address these problems in order to provide causal estimates of peer effects. Based on data collected from over 4000 students in six middle schools in China, I use the IV methods to estimate peer effects on smoking. My design-based IV approach differs from previous ones in that it helps to construct potentially strong IVs and to directly test possible violation of exogeneity of the IVs. I show that measurement error in smoking can lead to both under- and imprecise estimations of peer effects. Based on a refined measure of smoking, I find consistent evidence for peer effects on smoking. If a student's best friend smoked within the past 30 days, the student was about one fifth (as indicated by the OLS estimate) or 40 percentage points (as indicated by the IV estimate) more likely to smoke in the same time period. The findings are robust to a variety of robustness checks. I also show that sharing cigarettes may be a mechanism for peer effects on smoking. A 10% increase in the number of cigarettes smoked by a student's best friend is associated with about 4% increase in the number of cigarettes smoked by the student in the same time period. Copyright © 2014 Elsevier Inc. All rights reserved.
Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks.
Fröhlich, Fabian; Kaltenbacher, Barbara; Theis, Fabian J; Hasenauer, Jan
2017-01-01
Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics.
Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks.
Directory of Open Access Journals (Sweden)
Fabian Fröhlich
2017-01-01
Full Text Available Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics.
Inference of Gene Regulatory Network Based on Local Bayesian Networks.
Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan
2016-08-01
The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce
Channel Estimation in DCT-Based OFDM
Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing
2014-01-01
This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic. PMID:24757439
Channel estimation in DCT-based OFDM.
Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing
2014-01-01
This paper derives the channel estimation of a discrete cosine transform-(DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic.
Estimating Urban Traffic Patterns through Probabilistic Interconnectivity of Road Network Junctions.
Directory of Open Access Journals (Sweden)
Ed Manley
Full Text Available The emergence of large, fine-grained mobility datasets offers significant opportunities for the development and application of new methodologies for transportation analysis. In this paper, the link between routing behaviour and traffic patterns in urban areas is examined, introducing a method to derive estimates of traffic patterns from a large collection of fine-grained routing data. Using this dataset, the interconnectivity between road network junctions is extracted in the form of a Markov chain. This representation encodes the probability of the successive usage of adjacent road junctions, encoding routes as flows between decision points rather than flows along road segments. This network of functional interactions is then integrated within a modified Markov chain Monte Carlo (MCMC framework, adapted for the estimation of urban traffic patterns. As part of this approach, the data-derived links between major junctions influence the movement of directed random walks executed across the network to model origin-destination journeys. The simulation process yields estimates of traffic distribution across the road network. The paper presents an implementation of the modified MCMC approach for London, United Kingdom, building an MCMC model based on a dataset of nearly 700000 minicab routes. Validation of the approach clarifies how each element of the MCMC framework contributes to junction prediction performance, and finds promising results in relation to the estimation of junction choice and minicab traffic distribution. The paper concludes by summarising the potential for the development and extension of this approach to the wider urban modelling domain.
Durer-pentagon-based complex network
Directory of Open Access Journals (Sweden)
Rui Hou
2016-04-01
Full Text Available A novel Durer-pentagon-based complex network was constructed by adding a centre node. The properties of the complex network including the average degree, clustering coefficient, average path length, and fractal dimension were determined. The proposed complex network is small-world and fractal.
Cooperative Anchor-Free Position Estimation for Hierarchical Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Fu-Kai Chan
2010-02-01
Full Text Available This paper proposes a distributed algorithm for establishing connectivity and location estimation in cluster-based wireless sensor networks. The algorithm exploits the information flow while coping with distributed signal processing and the requirements of network scalability. Once the estimation procedure and communication protocol are performed, sensor clusters can be merged to establish a single global coordinate system without GPS sensors using only distance information. In order to adjust the sensor positions, the refinement schemes and cooperative fusion approaches are applied to reduce the estimation error and improve the measurement accuracy. This paper outlines the technical foundations of the localization techniques and presents the tradeoffs in algorithm design. The feasibility of the proposed schemes is shown to be effective under certain assumptions and the analysis is supported by simulation and numerical studies.
World Equity Premium based Risk Aversion Estimates
L.C.G. Pozzi (Lorenzo)
2010-01-01
textabstractThe equity premium puzzle holds that the coefficient of relative risk aversion estimated from the consumption based CAPM under power utility is excessively high. Moreover, estimates in the literature vary considerably across countries. We gauge the uncertainty pertaining to the country
Estimation of the number of extreme pathways for metabolic networks
Directory of Open Access Journals (Sweden)
Thiele Ines
2007-09-01
Full Text Available Abstract Background The set of extreme pathways (ExPa, {pi}, defines the convex basis vectors used for the mathematical characterization of the null space of the stoichiometric matrix for biochemical reaction networks. ExPa analysis has been used for a number of studies to determine properties of metabolic networks as well as to obtain insight into their physiological and functional states in silico. However, the number of ExPas, p = |{pi}|, grows with the size and complexity of the network being studied, and this poses a computational challenge. For this study, we investigated the relationship between the number of extreme pathways and simple network properties. Results We established an estimating function for the number of ExPas using these easily obtainable network measurements. In particular, it was found that log [p] had an exponential relationship with log[∑i=1Rd−id+ici] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacyGGSbaBcqGGVbWBcqGGNbWzdaWadaqaamaaqadabaGaemizaq2aaSbaaSqaaiabgkHiTmaaBaaameaacqWGPbqAaeqaaaWcbeaakiabdsgaKnaaBaaaleaacqGHRaWkdaWgaaadbaGaemyAaKgabeaaaSqabaGccqWGJbWydaWgaaWcbaGaemyAaKgabeaaaeaacqWGPbqAcqGH9aqpcqaIXaqmaeaacqWGsbGua0GaeyyeIuoaaOGaay5waiaaw2faaaaa@4414@, where R = |Reff| is the number of active reactions in a network, d−i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGKbazdaWgaaWcbaGaeyOeI0YaaSbaaWqaaiabdMgaPbqabaaaleqaaaaa@30A9@ and d+i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb
Robust node estimation and topology discovery for large-scale networks
Alouini, Mohamed-Slim
2017-02-23
Various examples are provided for node estimation and topology discovery for networks. In one example, a method includes receiving a packet having an identifier from a first node; adding the identifier to another transmission packet based on a comparison between the first identifier and existing identifiers associated with the other packet; adjusting a transmit probability based on the comparison; and transmitting the other packet based on a comparison between the transmit probability and a probability distribution. In another example, a system includes a network device that can adds an identifier received in a packet to a list including existing identifiers and adjust a transmit probability based on a comparison between the identifiers; and transmit another packet based on a comparison between the transmit probability and a probability distribution. In another example, a method includes determining a quantity of sensor devices based on a plurality of identifiers received in a packet.
Sparse and shrunken estimates of MRI networks in the brain and their influence on network properties
DEFF Research Database (Denmark)
Romero-Garcia, Rafael; Clemmensen, Line Katrine Harder
2014-01-01
Estimation of morphometric relationships between cortical regions is a widely used approach to identify and characterize structural connectivity. The elevated number of regions that can be considered in a whole-brain correlation analysis might lead to overfitted models. However, the overfitting can...... approaches showed more stable results with a relative low variance at the expense of a little bias. Interestingly, topological properties as local and global efficiency estimated in networks constructed from traditional non-regularized correlations also showed higher variability when compared to those from...
Agent-based modeling and network dynamics
Namatame, Akira
2016-01-01
The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...
Structure Learning and Statistical Estimation in Distribution Networks - Part I
Energy Technology Data Exchange (ETDEWEB)
Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-13
Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as those related to demand response, outage detection and management, and improved load-monitoring. In this two part paper, inspired by proliferation of the metering technology, we discuss estimation problems in structurally loopy but operationally radial distribution grids from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. In Part I, the objective is to learn the operational layout of the grid. Part II of this paper presents algorithms that estimate load statistics or line parameters in addition to learning the grid structure. Further, Part II discusses the problem of structure estimation for systems with incomplete measurement sets. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time– which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.
Rule-Based Flight Software Cost Estimation
Stukes, Sherry A.; Spagnuolo, John N. Jr.
2015-01-01
This paper discusses the fundamental process for the computation of Flight Software (FSW) cost estimates. This process has been incorporated in a rule-based expert system [1] that can be used for Independent Cost Estimates (ICEs), Proposals, and for the validation of Cost Analysis Data Requirements (CADRe) submissions. A high-level directed graph (referred to here as a decision graph) illustrates the steps taken in the production of these estimated costs and serves as a basis of design for the expert system described in this paper. Detailed discussions are subsequently given elaborating upon the methodology, tools, charts, and caveats related to the various nodes of the graph. We present general principles for the estimation of FSW using SEER-SEM as an illustration of these principles when appropriate. Since Source Lines of Code (SLOC) is a major cost driver, a discussion of various SLOC data sources for the preparation of the estimates is given together with an explanation of how contractor SLOC estimates compare with the SLOC estimates used by JPL. Obtaining consistency in code counting will be presented as well as factors used in reconciling SLOC estimates from different code counters. When sufficient data is obtained, a mapping into the JPL Work Breakdown Structure (WBS) from the SEER-SEM output is illustrated. For across the board FSW estimates, as was done for the NASA Discovery Mission proposal estimates performed at JPL, a comparative high-level summary sheet for all missions with the SLOC, data description, brief mission description and the most relevant SEER-SEM parameter values is given to illustrate an encapsulation of the used and calculated data involved in the estimates. The rule-based expert system described provides the user with inputs useful or sufficient to run generic cost estimation programs. This system's incarnation is achieved via the C Language Integrated Production System (CLIPS) and will be addressed at the end of this paper.
Subspace Based Blind Sparse Channel Estimation
DEFF Research Database (Denmark)
Hayashi, Kazunori; Matsushima, Hiroki; Sakai, Hideaki
2012-01-01
The paper proposes a subspace based blind sparse channel estimation method using 1–2 optimization by replacing the 2–norm minimization in the conventional subspace based method by the 1–norm minimization problem. Numerical results confirm that the proposed method can significantly improve...... the estimation accuracy for the sparse channel, while achieving the same performance as the conventional subspace method when the channel is dense. Moreover, the proposed method enables us to estimate the channel response with unknown channel order if the channel is sparse enough....
Network Medicine: A Network-based Approach to Human Diseases
Ghiassian, Susan Dina
With the availability of large-scale data, it is now possible to systematically study the underlying interaction maps of many complex systems in multiple disciplines. Statistical physics has a long and successful history in modeling and characterizing systems with a large number of interacting individuals. Indeed, numerous approaches that were first developed in the context of statistical physics, such as the notion of random walks and diffusion processes, have been applied successfully to study and characterize complex systems in the context of network science. Based on these tools, network science has made important contributions to our understanding of many real-world, self-organizing systems, for example in computer science, sociology and economics. Biological systems are no exception. Indeed, recent studies reflect the necessity of applying statistical and network-based approaches in order to understand complex biological systems, such as cells. In these approaches, a cell is viewed as a complex network consisting of interactions among cellular components, such as genes and proteins. Given the cellular network as a platform, machinery, functionality and failure of a cell can be studied with network-based approaches, a field known as systems biology. Here, we apply network-based approaches to explore human diseases and their associated genes within the cellular network. This dissertation is divided in three parts: (i) A systematic analysis of the connectivity patterns among disease proteins within the cellular network. The quantification of these patterns inspires the design of an algorithm which predicts a disease-specific subnetwork containing yet unknown disease associated proteins. (ii) We apply the introduced algorithm to explore the common underlying mechanism of many complex diseases. We detect a subnetwork from which inflammatory processes initiate and result in many autoimmune diseases. (iii) The last chapter of this dissertation describes the
Network repair based on community structure
Wang, Tianyu; Zhang, Jun; Sun, Xiaoqian; Wandelt, Sebastian
2017-06-01
Real-world complex systems are often fragile under disruptions. Accordingly, research on network repair has been studied intensively. Recently proposed efficient strategies for network disruption, based on collective influence, call for more research on efficient network repair strategies. Existing strategies are often designed to repair networks with local information only. However, the absence of global information impedes the creation of efficient repairs. Motivated by this limitation, we propose a concept of community-level repair, which leverages the community structure of the network during the repair process. Moreover, we devise a general framework of network repair, with in total six instances. Evaluations on real-world and random networks show the effectiveness and efficiency of the community-level repair approaches, compared to local and random repairs. Our study contributes to a better understanding of repair processes, and reveals that exploitation of the community structure improves the repair process on a disrupted network significantly.
Estimation of LOCA break size using cascaded Fuzzy neural networks
Energy Technology Data Exchange (ETDEWEB)
Choi, Geon Pil; Yoo, Kwae Hwan; Back, Ju Hyun; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)
2017-04-15
Operators of nuclear power plants may not be equipped with sufficient information during a loss-of-coolant accident (LOCA), which can be fatal, or they may not have sufficient time to analyze the information they do have, even if this information is adequate. It is not easy to predict the progression of LOCAs in nuclear power plants. Therefore, accurate information on the LOCA break position and size should be provided to efficiently manage the accident. In this paper, the LOCA break size is predicted using a cascaded fuzzy neural network (CFNN) model. The input data of the CFNN model are the time-integrated values of each measurement signal for an initial short-time interval after a reactor scram. The training of the CFNN model is accomplished by a hybrid method combined with a genetic algorithm and a least squares method. As a result, LOCA break size is estimated exactly by the proposed CFNN model.
Estimation of LOCA Break Size Using Cascaded Fuzzy Neural Networks
Directory of Open Access Journals (Sweden)
Geon Pil Choi
2017-04-01
Full Text Available Operators of nuclear power plants may not be equipped with sufficient information during a loss-of-coolant accident (LOCA, which can be fatal, or they may not have sufficient time to analyze the information they do have, even if this information is adequate. It is not easy to predict the progression of LOCAs in nuclear power plants. Therefore, accurate information on the LOCA break position and size should be provided to efficiently manage the accident. In this paper, the LOCA break size is predicted using a cascaded fuzzy neural network (CFNN model. The input data of the CFNN model are the time-integrated values of each measurement signal for an initial short-time interval after a reactor scram. The training of the CFNN model is accomplished by a hybrid method combined with a genetic algorithm and a least squares method. As a result, LOCA break size is estimated exactly by the proposed CFNN model.
Community Based Networks and 5G
DEFF Research Database (Denmark)
Williams, Idongesit
2016-01-01
is hinged on a research aimed at understanding how and why Community Based Networks deploy telecom and Broadband infrastructure. The study was a qualitative study carried out inductively using Grounded Theory. Six cases were investigated.Two Community Based Network Mobilization models were identified......The deployment of previous wireless standards has provided more benefits for urban dwellers than rural dwellers. 5G deployment may not be different. This paper identifies that Community Based Networks as carriers that deserve recognition as potential 5G providers may change this. The argument....... The findings indicate that 5G connectivity can be extended to rural areas by these networks, via heterogenous networks. Hence the delivery of 5G data rates delivery via Wireless WAN in rural areas can be achieved by utilizing the causal factors of the identified models for Community Based Networks....
Estimation of Minimum DNBR Using Cascaded Fuzzy Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong Yeong; Yoo, Kwae Hwan; Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)
2015-05-15
This phenomenon of boiling crisis is called a departure from nucleate boiling (DNB). The DNB phenomena can influence the fuel cladding and fuel pellets. The DNB ratio (DNBR) is defined as the ratio of the expected DNB heat flux to the actual fuel rod heat flux. Since it is very important to monitor and predict the minimum DNBR in a reactor core to prevent the boiling crisis and clad melting, a number of researches have been conducted to predict DNBR values. The aim of this study is to estimate the minimum DNBR in a reactor core using the measured signals of the reactor coolant system (RCS) by applying cascaded fuzzy neural networks (CFNN) according to operating conditions. Reactor core monitoring and protection systems require minimum DNBR prediction. The CFNN can be used to optimize the minimum DNBR value through the process of adding fuzzy neural networks (FNN) repeatedly. The proposed algorithm is trained by using the data set prepared for training (development data) and verified by using another data set different (independent) from the development data. The developed CFNN models were applied to the first fuel cycle of OPR1000. The RMS errors are 0.23% and 0.12% for the positive and negative ASI, respectively.
Training Based Channel Estimation for Multitaper GFDM System
Directory of Open Access Journals (Sweden)
Shravan Kumar Bandari
2017-01-01
Full Text Available Recent activities in the cellular network world clearly show the need to design new physical layer waveforms in order to meet future wireless requirements. Generalized Frequency Division Multiplexing (GFDM is one of the leading candidates for 5G and one of its key features is the usage of circular pulse shaping of subcarriers to remove prototype filter transients. Due to the nonorthogonal nature of the conventional GFDM system, inherent interference will affect adversely channel estimation. With Discrete Prolate Spheroidal Sequences (DPSSs or multitapers as prototype filters an improved orthogonal GFDM system can be developed. In this work, we investigate channel estimation methods for multitaper GFDM (MGFDM systems with and without Discrete Fourier Transform (DFT. The simulation results are presented using Least Squares (LS and Minimum Mean Square Error (MMSE channel estimation (CE methods. DFT based CE methods provide better estimates of the channel but with an additional computational cost.
Evolution of semilocal string networks. II. Velocity estimators
Lopez-Eiguren, A.; Urrestilla, J.; Achúcarro, A.; Avgoustidis, A.; Martins, C. J. A. P.
2017-07-01
We continue a comprehensive numerical study of semilocal string networks and their cosmological evolution. These can be thought of as hybrid networks comprised of (nontopological) string segments, whose core structure is similar to that of Abelian Higgs vortices, and whose ends have long-range interactions and behavior similar to that of global monopoles. Our study provides further evidence of a linear scaling regime, already reported in previous studies, for the typical length scale and velocity of the network. We introduce a new algorithm to identify the position of the segment cores. This allows us to determine the length and velocity of each individual segment and follow their evolution in time. We study the statistical distribution of segment lengths and velocities for radiation- and matter-dominated evolution in the regime where the strings are stable. Our segment detection algorithm gives higher length values than previous studies based on indirect detection methods. The statistical distribution shows no evidence of (anti)correlation between the speed and the length of the segments.
View Estimation Based on Value System
Takahashi, Yasutake; Shimada, Kouki; Asada, Minoru
Estimation of a caregiver's view is one of the most important capabilities for a child to understand the behavior demonstrated by the caregiver, that is, to infer the intention of behavior and/or to learn the observed behavior efficiently. We hypothesize that the child develops this ability in the same way as behavior learning motivated by an intrinsic reward, that is, he/she updates the model of the estimated view of his/her own during the behavior imitated from the observation of the behavior demonstrated by the caregiver based on minimizing the estimation error of the reward during the behavior. From this view, this paper shows a method for acquiring such a capability based on a value system from which values can be obtained by reinforcement learning. The parameters of the view estimation are updated based on the temporal difference error (hereafter TD error: estimation error of the state value), analogous to the way such that the parameters of the state value of the behavior are updated based on the TD error. Experiments with simple humanoid robots show the validity of the method, and the developmental process parallel to young children's estimation of its own view during the imitation of the observed behavior of the caregiver is discussed.
Alternative Sensor System and MLP Neural Network for Vehicle Pedal Activity Estimation
Directory of Open Access Journals (Sweden)
Ahmed M. Wefky
2010-04-01
Full Text Available It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch reflects the driver’s behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.
Improved estimation of energy expenditure by artificial neural network modeling.
Hay, Dean Charles; Wakayama, Akinobu; Sakamura, Ken; Fukashiro, Senshi
2008-12-01
Estimation of energy expenditure in daily living conditions can be a tool for clinical assessment of health status, as well as a self-measure of lifestyle and general activity levels. Criterion measures are either prohibitively expensive or restricted to laboratory settings. Portable devices (heart rate monitors, pedometers) have gained recent popularity, but accuracy of the prediction equations remains questionable. This study applied an artificial neural network modeling approach to the problem of estimating energy expenditure with different dynamic inputs (accelerometry, heart rate above resting (HRar), and electromyography (EMG)). Nine feed-forward back-propagation models were trained, with the goal of minimizing the mean squared error (MSE) of the training datasets. Model 1 (accelerometry only) and model 2 (HRar only) performed poorly and had significantly greater MSE than all other models (p energy expenditure for models 3 to 9 ranged from 0.745 to 0.817. Analysis of mean error within specific movement categories indicates that EMG models may be better at predicting higher-intensity energy expenditure, but combined accelerometry and HRar provides an economical solution, with sufficient accuracy.
Total alkalinity estimation using MLR and neural network techniques
Velo, A.; Pérez, F. F.; Tanhua, T.; Gilcoto, M.; Ríos, A. F.; Key, R. M.
2013-02-01
During the last decade, two important collections of carbon relevant hydrochemical data have become available: GLODAP and CARINA. These collections comprise a synthesis of bottle data for all ocean depths from many cruises collected over several decades. For a majority of the cruises at least two carbon parameters were measured. However, for a large number of stations, samples or even cruises, the carbonate system is under-determined (i.e., only one or no carbonate parameter was measured) resulting in data gaps for the carbonate system in these collections. A method for filling these gaps would be very useful, as it would help with estimations of the anthropogenic carbon (Cant) content or quantification of oceanic acidification. The aim of this work is to apply and describe, a 3D moving window multilinear regression algorithm (MLR) to fill gaps in total alkalinity (AT) of the CARINA and GLODAP data collections for the Atlantic. In addition to filling data gaps, the estimated AT values derived from the MLR are useful in quality control of the measurements of the carbonate system, as they can aid in the identification of outliers. For comparison, a neural network algorithm able to perform non-linear predictions was also designed. The goal here was to design an alternative approach to accomplish the same task of filling AT gaps. Both methods return internally consistent results, thereby giving confidence in our approach.
Model-based estimation for official statistics
van den Brakel, J.; Bethlehem, J.
2008-01-01
Design-based and model-assisted estimation procedures are widely applied by most of the European national statistical institutes. There are, however, situations were model-based approaches can have additional value in the production of official statistics, e.g. to deal with small sample sizes,
Ocean wave parameters estimation using backpropagation neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; SubbaRao; Raju, D.H.
output at the kth output nodes. 2.1. Backpropagation learning Backpropagation is the most widely used algorithm for supervised learning with multi- layer feed-forward networks. The idea of the backpropagation learning algorithm is the repeated application... solely determines the size of the weight update. During the learning process the adaptive updating weight evolves based on its local sight on the error function E, which is given below: w ðtþ1Þ ij ¼ w ðtÞ ij þDw ðtÞ ij , (7) where Dw ij , is given as, Dw...
Memristor-based neural networks
Thomas, Andy
2013-03-01
The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them.
S-curve networks and a new method for estimating degree distributions of complex networks
Guo, Jin-Li
2010-01-01
In the study of complex networks almost all theoretical models are infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 addresses, we propose a forecasting model by using S curve (Logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference value for optimizing the distribution of IPv4 address resource and the development of IPv6. Based on the laws of IPv4 growth, that is, the bulk growth and the finitely growing limit, we propose a finite network model with the bulk growth. The model is called S-curve network. Analysis demonstrates that the analytic method based on uniform distributions (i.e., Barab\\'asi-Albert method) is not suitable for the network. We develop a new method to predict the growth dynamics of the individual nodes, and use this to calculate analytically the connectivity distribution and the scaling exponents. The analytical result agrees with the simulation well, obeying an approximately power-...
Lee, Jong-Ha; Won, Chang-Hee
2011-01-01
In this paper, we developed a methodology for estimating three parameters of tissue inclusion: size, depth, and Young's modulus from the tactile data obtained at the tissue surface with the tactile sensation imaging system. The estimation method consists of the forward algorithm using finite element method, and inversion algorithm using artificial neural network. The forward algorithm is designed to comprehensively predict the tactile data based on the mechanical properties of the tissue inclusion. This forward information is used to develop an inversion algorithm that will be used to extract the size, depth, and Young's modulus of a tissue inclusion from the tactile image. The proposed method is then validated with custom made tissue phantoms with matching elasticities of typical human breast tissues. The experimental results showed that the proposed estimation method estimates the size, depth, and Young's modulus of tissue inclusions with root mean squared errors of 1.25 mm, 2.09 mm, and 28.65 kPa, respectively.
Liang, Yunyi; Cui, Zhiyong; Tian, Yu; Chen, Huimiao; Wang, Yinhai
2018-01-01
This study proposes a deep generative adversarial architecture (GAA) for network-wide spatial-temporal traffic state estimation. The GAA is able to combine traffic flow theory with neural networks and thus improve the accuracy of traffic state estimation. It consists of two Long Short-Term Memory Neural Networks (LSTM NNs) which capture correlation in time and space among traffic flow and traffic density. One of the LSTM NNs, called a discriminative network, aims to maximize the probability o...
Damage and Loss Estimation for Natural Gas Networks: The Case of Istanbul
Çaktı, Eser; Hancılar, Ufuk; Şeşetyan, Karin; Bıyıkoǧlu, Hikmet; Şafak, Erdal
2017-04-01
Natural gas networks are one of the major lifeline systems to support human, urban and industrial activities. The continuity of gas supply is critical for almost all functions of modern life. Under natural phenomena such as earthquakes and landslides the damages to the system elements may lead to explosions and fires compromising human life and damaging physical environment. Furthermore, the disruption in the gas supply puts human activities at risk and also results in economical losses. This study is concerned with the performance of one of the largest natural gas distribution systems in the world. Physical damages to Istanbul's natural gas network are estimated under the most recent probabilistic earthquake hazard models available, as well as under simulated ground motions from physics based models. Several vulnerability functions are used in modelling damages to system elements. A first-order assessment of monetary losses to Istanbul's natural gas distribution network is also attempted.
UD-WCMA: An Energy Estimation and Forecast Scheme for Solar Powered Wireless Sensor Networks
Dehwah, Ahmad H.
2017-04-11
Energy estimation and forecast represents an important role for energy management in solar-powered wireless sensor networks (WSNs). In general, the energy in such networks is managed over a finite time horizon in the future based on input solar power forecasts to enable continuous operation of the WSNs and achieve the sensing objectives while ensuring that no node runs out of energy. In this article, we propose a dynamic version of the weather conditioned moving average technique (UD-WCMA) to estimate and predict the variations of the solar power in a wireless sensor network. The presented approach combines the information from the real-time measurement data and a set of stored profiles representing the energy patterns in the WSNs location to update the prediction model. The UD-WCMA scheme is based on adaptive weighting parameters depending on the weather changes which makes it flexible compared to the existing estimation schemes without any precalibration. A performance analysis has been performed considering real irradiance profiles to assess the UD-WCMA prediction accuracy. Comparative numerical tests to standard forecasting schemes (EWMA, WCMA, and Pro-Energy) shows the outperformance of the new algorithm. The experimental validation has proven the interesting features of the UD-WCMA in real time low power sensor nodes.
Access Based Cost Estimation for Beddown Analysis
2006-03-23
everyone in Air Mobility Command Planning and Programs Requirements Division that contributed to this effort: especially Major Brad Buckman and...investigate available on-line sources of data and other existing databases. The necessary protocols and network access authorizations must be...System (C2IPS), and Standard Base Supply System (SBSS), etc. Figure 2 outlines the basic architecture and interface protocols . The system provides
Time-Dependent Noise in GPS Position Time Series By a Network Noise Estimator
Dmitrieva, K.; Segall, P.
2014-12-01
Some current estimates of GPS velocity uncertainties for continuous stations with more than a decade of data can be very low, noise, such as random walk. Traditional estimators, based on individual time series, are insensitive to low amplitude random walk, yet such noise significantly increases GPS velocity uncertainties. We develop a new approach to estimating noise in GPS time series, focusing on areas where the signal in the data is well characterized. We analyze data from the seismically inactive parts of central US. The data is decomposed into signal, plate rotation and Glacial Isostatic Adjustment (GIA), and various noise components. Our method processes multiple stations simultaneously with a Kalman Filter, and estimates average noise components for the network by maximum likelihood. Currently, we model white noise, flicker noise and random walk. Synthetic tests show that this approach correctly estimates the velocity uncertainty by determining a good estimate of random walk variance, even when it is too small to be correctly estimated by traditional approaches. We present preliminary results from a network of 15 GPS stations in the central USA. The data is in a North America fixed reference frame, we subtract seasonal components and GIA displacements used in the SNARF model. Hence, all data in this reference frame is treated as noise. We estimate random walk of 0.82 mm/yr0.5, flicker noise of 3.96 mm/yr0.25 and white noise of 1.05 mm. From these noise parameters the estimated velocity uncertainty is 0.29 mm/yr for 10 years of daily data. This uncertainty is significantly greater than estimated by the traditional methods, at 0.12 mm/yr. The estimated uncertainty is still less than the median residual velocity in the North America fixed reference frame, which could indicate that the true uncertainties are even larger. Additionally we estimated noise parameters and velocity uncertainties for the vertical component and for the data with common-mode signal
Arabzadeh, Vida; Niaki, S. T. A.; Arabzadeh, Vahid
2017-10-01
One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven methods for cost estimation based on the application of artificial neural network (ANN) and regression models. The learning algorithms of the ANN are the Levenberg-Marquardt and the Bayesian regulated. Moreover, regression models are hybridized with a genetic algorithm to obtain better estimates of the coefficients. The methods are applied in a real case, where the input parameters of the models are assigned based on the key issues involved in a spherical tank construction. The results reveal that while a high correlation between the estimated cost and the real cost exists; both ANNs could perform better than the hybridized regression models. In addition, the ANN with the Levenberg-Marquardt learning algorithm (LMNN) obtains a better estimation than the ANN with the Bayesian-regulated learning algorithm (BRNN). The correlation between real data and estimated values is over 90%, while the mean square error is achieved around 0.4. The proposed LMNN model can be effective to reduce uncertainty and complexity in the early stages of the construction project.
National Research Council Canada - National Science Library
Wei Li; Ke Zhang; Yuqiao Long; Li Feng
2017-01-01
.... Regarding the correlation between active stream networks and stream recession flow characteristics, we developed a new method to estimate the ASNL, under different wetness conditions, of a catchment...
Directory of Open Access Journals (Sweden)
Satoshi Ezoe
Full Text Available BACKGROUND: Men who have sex with men (MSM are one of the groups most at risk for HIV infection in Japan. However, size estimates of MSM populations have not been conducted with sufficient frequency and rigor because of the difficulty, high cost and stigma associated with reaching such populations. This study examined an innovative and simple method for estimating the size of the MSM population in Japan. We combined an internet survey with the network scale-up method, a social network method for estimating the size of hard-to-reach populations, for the first time in Japan. METHODS AND FINDINGS: An internet survey was conducted among 1,500 internet users who registered with a nationwide internet-research agency. The survey participants were asked how many members of particular groups with known population sizes (firepersons, police officers, and military personnel they knew as acquaintances. The participants were also asked to identify the number of their acquaintances whom they understood to be MSM. Using these survey results with the network scale-up method, the personal network size and MSM population size were estimated. The personal network size was estimated to be 363.5 regardless of the sex of the acquaintances and 174.0 for only male acquaintances. The estimated MSM prevalence among the total male population in Japan was 0.0402% without adjustment, and 2.87% after adjusting for the transmission error of MSM. CONCLUSIONS: The estimated personal network size and MSM prevalence seen in this study were comparable to those from previous survey results based on the direct-estimation method. Estimating population sizes through combining an internet survey with the network scale-up method appeared to be an effective method from the perspectives of rapidity, simplicity, and low cost as compared with more-conventional methods.
Mutual information-based LPI optimisation for radar network
Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun
2015-07-01
Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.
Cilia-based transport networks
Bodenschatz, Eberhard
Cerebrospinal fluid conveys many physiologically important signaling factors through the ventricular cavities of the brain. We investigated the transport of cerebrospinal fluid in the third ventricle of the mouse brain and discovered a highly organized pattern of cilia modules, which collectively give rise to a network of fluid flows that allows for precise transport within this ventricle. Our work suggests that ciliated epithelia can generate and maintain complex, spatiotemporally regulated flow networks. I shall also show results on how to assemble artificial cilia and cilia carpets. Supported by the BMBF MaxSynBio.
Analyzing and constraining signaling networks: parameter estimation for the user.
Geier, Florian; Fengos, Georgios; Felizzi, Federico; Iber, Dagmar
2012-01-01
The behavior of most dynamical models not only depends on the wiring but also on the kind and strength of interactions which are reflected in the parameter values of the model. The predictive value of mathematical models therefore critically hinges on the quality of the parameter estimates. Constraining a dynamical model by an appropriate parameterization follows a 3-step process. In an initial step, it is important to evaluate the sensitivity of the parameters of the model with respect to the model output of interest. This analysis points at the identifiability of model parameters and can guide the design of experiments. In the second step, the actual fitting needs to be carried out. This step requires special care as, on the one hand, noisy as well as partial observations can corrupt the identification of system parameters. On the other hand, the solution of the dynamical system usually depends in a highly nonlinear fashion on its parameters and, as a consequence, parameter estimation procedures get easily trapped in local optima. Therefore any useful parameter estimation procedure has to be robust and efficient with respect to both challenges. In the final step, it is important to access the validity of the optimized model. A number of reviews have been published on the subject. A good, nontechnical overview is provided by Jaqaman and Danuser (Nat Rev Mol Cell Biol 7(11):813-819, 2006) and a classical introduction, focussing on the algorithmic side, is given in Press (Numerical recipes: The art of scientific computing, Cambridge University Press, 3rd edn., 2007, Chapters 10 and 15). We will focus on the practical issues related to parameter estimation and use a model of the TGFβ-signaling pathway as an educative example. Corresponding parameter estimation software and models based on MATLAB code can be downloaded from the authors's web page ( http://www.bsse.ethz.ch/cobi ).
In silico network topology-based prediction of gene essentiality
da Silva, Joao Paulo Muller; Mombach, Jose Carlos Merino; Vieira, Renata; da Silva, Jose Guliherme Camargo; Lemke, Ney; Sinigaglia, Marialva
2007-01-01
The identification of genes essential for survival is important for the understanding of the minimal requirements for cellular life and for drug design. As experimental studies with the purpose of building a catalog of essential genes for a given organism are time-consuming and laborious, a computational approach which could predict gene essentiality with high accuracy would be of great value. We present here a novel computational approach, called NTPGE (Network Topology-based Prediction of Gene Essentiality), that relies on network topology features of a gene to estimate its essentiality. The first step of NTPGE is to construct the integrated molecular network for a given organism comprising protein physical, metabolic and transcriptional regulation interactions. The second step consists in training a decision tree-based machine learning algorithm on known essential and non-essential genes of the organism of interest, considering as learning attributes the network topology information for each of these genes...
Structure Learning and Statistical Estimation in Distribution Networks - Part II
Energy Technology Data Exchange (ETDEWEB)
Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-13
Limited placement of real-time monitoring devices in the distribution grid, recent trends notwithstanding, has prevented the easy implementation of demand-response and other smart grid applications. Part I of this paper discusses the problem of learning the operational structure of the grid from nodal voltage measurements. In this work (Part II), the learning of the operational radial structure is coupled with the problem of estimating nodal consumption statistics and inferring the line parameters in the grid. Based on a Linear-Coupled(LC) approximation of AC power flows equations, polynomial time algorithms are designed to identify the structure and estimate nodal load characteristics and/or line parameters in the grid using the available nodal voltage measurements. Then the structure learning algorithm is extended to cases with missing data, where available observations are limited to a fraction of the grid nodes. The efficacy of the presented algorithms are demonstrated through simulations on several distribution test cases.
Upper Bound Performance Estimation for Copper Based Broadband Access
DEFF Research Database (Denmark)
Jensen, Michael; Gutierrez Lopez, Jose Manuel
2012-01-01
Around 70% of all broadband connections in the European Union are carried over copper, and the scenario is unlikely to change in the next few years as carriers still believe in the profitability of their copper infrastructure. In this paper we show how to estimate the performance upper bound of c...... to define the limitations of copper based broadband access. A case study in a municipality in Denmark shows how the estimated network dimension to be able to provide video conference services to the majority of the population might be too high to be implemented in reality.......Around 70% of all broadband connections in the European Union are carried over copper, and the scenario is unlikely to change in the next few years as carriers still believe in the profitability of their copper infrastructure. In this paper we show how to estimate the performance upper bound...
Cognitive Radio-based Home Area Networks
Sarijari, M.A.B.
2016-01-01
A future home area network (HAN) is envisaged to consist of a large number of devices that support various applications such as smart grid, security and safety systems, voice call, and video streaming. Most of these home devices are communicating based on various wireless networking technologies
Directory of Open Access Journals (Sweden)
J. Uwamahoro
2012-06-01
Full Text Available Estimating the geoeffectiveness of solar events is of significant importance for space weather modelling and prediction. This paper describes the development of a neural network-based model for estimating the probability occurrence of geomagnetic storms following halo coronal mass ejection (CME and related interplanetary (IP events. This model incorporates both solar and IP variable inputs that characterize geoeffective halo CMEs. Solar inputs include numeric values of the halo CME angular width (AW, the CME speed (Vcme, and the comprehensive flare index (cfi, which represents the flaring activity associated with halo CMEs. IP parameters used as inputs are the numeric peak values of the solar wind speed (Vsw and the southward Z-component of the interplanetary magnetic field (IMF or Bs. IP inputs were considered within a 5-day time window after a halo CME eruption. The neural network (NN model training and testing data sets were constructed based on 1202 halo CMEs (both full and partial halo and their properties observed between 1997 and 2006. The performance of the developed NN model was tested using a validation data set (not part of the training data set covering the years 2000 and 2005. Under the condition of halo CME occurrence, this model could capture 100% of the subsequent intense geomagnetic storms (Dst ≤ −100 nT. For moderate storms (−100 < Dst ≤ −50, the model is successful up to 75%. This model's estimate of the storm occurrence rate from halo CMEs is estimated at a probability of 86%.
Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks.
Shi, Chaoyang; Chen, Bi Yu; Lam, William H K; Li, Qingquan
2017-12-06
Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks.
Estimation and Healing of Coverage Hole in Hybrid Sensor Networks: A Simulation Approach
Directory of Open Access Journals (Sweden)
Guanglin Zhang
2017-09-01
Full Text Available Nowadays, wireless sensor network which consists of numerous tiny sensors has been widely used. One of the major challenges in such networks is how to cover the sensing area effectively and maintain longer network lifetime with limited energy simultaneously. In this paper, we study hybrid sensor network which contains both static and mobile sensors. We divide monitoring area into Delaunay Triangulation (DT by using of Delaunay theory, estimate static sensors coverage holes, calculate the number of assistant mobile sensors and then work out the positions of assisted mobile nodes in each triangle. Next, mobile sensors will move to heal the coverage holes. Compared with the similarity methods, the algorithm HCHA we proposed is simpler, the advantages of our algorithm mainly represents in the following aspects. Firstly, it is relatively simple to estimate coverage hole based on Delaunay in our proposed algorithm. Secondly, we figure out the quantitative number range of assisted sensors those need to heal the coverage holes. Thirdly, we come up with a kind of deployment rule of assisted sensors.
Model-based control of networked systems
Garcia, Eloy; Montestruque, Luis A
2014-01-01
This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled. The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates . It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control. Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and ...
Modeling the interdependent network based on two-mode networks
An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian
2017-10-01
Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.
HydrogeoEstimatorXL: an Excel-based tool for estimating hydraulic gradient magnitude and direction
Devlin, J. F.; Schillig, P. C.
2017-05-01
HydrogeoEstimatorXL is a free software tool for the interpretation of flow systems based on spatial hydrogeological field data from multi-well networks. It runs on the familiar Excel spreadsheet platform. The program accepts well location coordinates and hydraulic head data, and returns an analysis of the area flow system in two dimensions based on (1) a single best fit plane of the potentiometric surface and (2) three-point estimators, i.e., well triplets assumed to bound planar sections of the potentiometric surface. The software produces graphical outputs including histograms of hydraulic gradient magnitude and direction, groundwater velocity (based on a site average hydraulic properties), as well as mapped renditions of the estimator triangles and the velocity vectors associated with them. Within the software, a transect can be defined and the mass discharge of a groundwater contaminant crossing the transect can be estimated. This kind of analysis is helpful in gaining an overview of a site's hydrogeology, for problem definition, and as a review tool to check the reasonableness of other independent calculations.
Reggente, Matteo; Peters, Jan; Theunis, Jan; Van Poppel, Martine; Rademaker, Michael; De Baets, Bernard; Kumar, Prashant
2015-04-01
We propose three estimation strategies (local, remote and mixed) for ultrafine particles (UFP) at three sites in an urban air pollution monitoring network. Estimates are obtained through Gaussian process regression based on concentrations of gaseous pollutants (NOx, O3, CO) and UFP. As local strategy, we use local measurements of gaseous pollutants (local covariates) to estimate UFP at the same site. As remote strategy, we use measurements of gaseous pollutants and UFP from two independent sites (remote covariates) to estimate UFP at a third site. As mixed strategy, we use local and remote covariates to estimate UFP. The results suggest: UFP can be estimated with good accuracy based on NOx measurements at the same location; it is possible to estimate UFP at one location based on measurements of NOx or UFP at two remote locations; the addition of remote UFP to local NOx, O3 or CO measurements improves models' performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wilczyńska-Piliszek, Agata J; Piliszek, Sławomir; Falandysz, Jerzy
2012-01-01
Polychlorinated azobenzenes (PCABs) can be found as contaminant by products in 3,4-dichloroaniline and its derivatives and in the herbicides Diuron, Linuron, Methazole, Neburon, Propanil and SWEP. Trans congeners of PCABs are physically and chemically more stable and so are environmentally relevant, when compared to unstable cis congeners. In this study, to fulfill gaps on environmentally relevant partitioning properties of PCABs, the values of n-octanol/water partition coefficients (log K(OW)) have been determined for 209 congeners of chloro-trans-azobenzene (Ct-AB) by means of quantitative structure-property relationship (QSPR) approach and artificial neural networks (ANN) predictive ability. The QSPR methods used based on geometry optimalization and quantum-chemical structural descriptors, which were computed on the level of density functional theory (DFT) using B3LYP functional and 6-311++G basis set in Gaussian 03 and of the semi-empirical quantum chemistry method (PM6) of the molecular orbital package (MOPAC). Polychlorinated dibenzo-p-dioxins (PCDDs), -furans (PCDFs) and -biphenyls (PCBs), to which PCABs are related, were reference compounds in this study. An experimentally obtained data on physical and chemical properties of PCDD/Fs and PCBs were reference data for ANN predictions of log K(OW) values of Ct-ABs in this study. Both calculation methods gave similar results in term of absolute log K(OW) values, while the models generated by PM6 are considered highly efficient in time spent, when compared to these by DFT. The estimated log K(OW) values of 209 Ct-ABs varied between 5.22-5.57 and 5.45-5.60 for Mono-, 5.56-6.00 and 5.59-6.07 for Di-, 5.89-6.56 and 5.91-6.46 for Tri-, 6.10-7.05 and 6.13-6.80 for Tetra-, 6.43-7.39 and 6.48-7.14 for Penta-, 6.61-7.78 and 6.98-7.42 for Hexa-, 7.41-7.94 and 7.34-7.86 for Hepta-, 7.99-8.17 and 7.72-8.20 for Octa-, 8.35-8.42 and 8.10-8.62 for NonaCt-ABs, and 8.52-8.60 and 8.81-8.83 for DecaCt-AB. These log K(OW) values
Dynamics-based centrality for directed networks.
Masuda, Naoki; Kori, Hiroshi
2010-11-01
Determining the relative importance of nodes in directed networks is important in, for example, ranking websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied to strongly connected networks, to the case of general directed networks such that we can quantitatively compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality defined as the stationary density of the continuous-time random walk with random jumps is shown to be equivalent to the absorption probability of the random walk with sinks at each node but without random jumps. Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network supplied with sinks but not with random jumps.
Cloud-based Networked Visual Servo Control
DEFF Research Database (Denmark)
Wu, Haiyan; Lu, Lei; Chen, Chih-Chung
2013-01-01
feedback, ii) a stabilizing control law for the networked visual servo control system with time-varying feedback time delay, and iii) a sending rate scheduling strategy aiming at reducing the communication network load. The performance of the networked visual servo control system with sending rate......The performance of vision-based control systems, in particular of highly dynamic vision-based motion control systems, is often limited by the low sampling rate of the visual feedback caused by the long image processing time. In order to overcome this problem, the networked visual servo control......, which integrates networked computational resources for cloud image processing, is considered in this article. The main contributions of this article are i) a real-time transport protocol for transmitting large volume image data on a cloud computing platform, which enables high sampling rate visual...
Directory of Open Access Journals (Sweden)
Markku O. Kuismin
2017-10-01
Full Text Available Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a neighborhood selection algorithm to infer population genetic structure and gene flow between populations. The resulting relationships are used to construct an individual-level population graph. Different network substructures known as communities are then dissociated from each other using a community detection algorithm. Inference of population structure using networks combines the good properties of: (i network theory (broad collection of tools, including aesthetically pleasing visualization, (ii principal component analysis (dimension reduction together with simple visual inspection, and (iii model-based methods (e.g., ancestry coefficient estimates. We have named our process CONE (for community oriented network estimation. CONE has fewer restrictions than conventional assignment methods in that properties such as the number of subpopulations need not be fixed before the analysis and the sample may include close relatives or involve uneven sampling. Applying CONE on simulated data sets resulted in more accurate estimates of the true number of subpopulations than model-based methods, and provided comparable ancestry coefficient estimates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease outbreak, and the human genome diversity panel illustrate that population structures estimated with CONE are consistent with the earlier findings
Kuismin, Markku O; Ahlinder, Jon; Sillanpӓӓ, Mikko J
2017-10-05
Estimation of genetic population structure based on molecular markers is a common task in population genetics and ecology. We apply a generalized linear model with LASSO regularization to infer relationships between individuals and populations from molecular marker data. Specifically, we apply a neighborhood selection algorithm to infer population genetic structure and gene flow between populations. The resulting relationships are used to construct an individual-level population graph. Different network substructures known as communities are then dissociated from each other using a community detection algorithm. Inference of population structure using networks combines the good properties of: (i) network theory (broad collection of tools, including aesthetically pleasing visualization), (ii) principal component analysis (dimension reduction together with simple visual inspection), and (iii) model-based methods (e.g., ancestry coefficient estimates). We have named our process CONE (for community oriented network estimation). CONE has fewer restrictions than conventional assignment methods in that properties such as the number of subpopulations need not be fixed before the analysis and the sample may include close relatives or involve uneven sampling. Applying CONE on simulated data sets resulted in more accurate estimates of the true number of subpopulations than model-based methods, and provided comparable ancestry coefficient estimates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease outbreak, and the human genome diversity panel illustrate that population structures estimated with CONE are consistent with the earlier findings. Copyright © 2017 Kuismin et al.
Dynamic QoS Provisioning for Ethernet-based Networks
Angelopoulos, J.; Kanonakis, K.; Leligou, H. C.; Orfanoudakis, Th.; Katsigiannis, M.
2008-11-01
The evolution towards packet-based access networks and the importance of quality of experience brings the need for access networks that support the offer of a wide range of multimedia services not currently available to the desired extent. Legacy networks based on circuit switching used explicit signalling that travelled to all nodes along the path to book resources before the launce of the media stream. This approach does not scale well and is not in line with the philosophy of packet networks. Still, the need to reserve resources in advance remains since real-time services have limited if any means of adjusting their rates to the prevailing network conditions and to preserve customer satisfaction the traditional preventive approach that needs accurate estimates of resource needs for the duration of the session is the only option. The paper describes a possible CAC solution based on measuring flows and enriches the network with implicit admission control (without obviating explicit control if available) and can manage resource allocation to protect quality-demanding services from degradation. The basis is a flow measurement system, which will estimate the traffic load produced by the flow and activate admission control. However, because in most cases these initial indication may well be misleading, it will be cross checked against a database of previously recorded flows per customer interface which can provide long term data on the flows leaving only a few cases that have to be corrected on the fly. The overall product is a self-learning autonomic system that supports QoS in the access network for services that do not communicate with the network layer such as, for example, peer-to-peer real-time multimedia applications.
Improved Shape Parameter Estimation in Pareto Distributed Clutter with Neural Networks
Directory of Open Access Journals (Sweden)
José Raúl Machado-Fernández
2016-12-01
Full Text Available The main problem faced by naval radars is the elimination of the clutter input which is a distortion signal appearing mixed with target reflections. Recently, the Pareto distribution has been related to sea clutter measurements suggesting that it may provide a better fit than other traditional distributions. The authors propose a new method for estimating the Pareto shape parameter based on artificial neural networks. The solution achieves a precise estimation of the parameter, having a low computational cost, and outperforming the classic method which uses Maximum Likelihood Estimates (MLE. The presented scheme contributes to the development of the NATE detector for Pareto clutter, which uses the knowledge of clutter statistics for improving the stability of the detection, among other applications.
Spiliopoulos, I.; Hristopulos, D. T.; Petrakis, M. P.; Chorti, A.
2011-03-01
This paper addresses the estimation of geometric anisotropy parameters from scattered spatial data that are obtained from environmental surveillance networks. Estimates of geometric anisotropy improve the accuracy of spatial interpolation procedures that aim to generate smooth maps for visualization of the data and for decision making purposes. The anisotropy parameters involve the orientation angle of the principal anisotropy axes and the anisotropy ratio (i.e., the ratio of the principal correlation lengths). The approach that we employ is based on the covariance Hessian identity (CHI) method, which links the mean gradient tensor with the Hessian matrix of the covariance function. We extend CHI to clustered CHI for application in data sets that include patches of extreme values and clusters of varying sampling density. We investigate the impact of CHI anisotropy estimation on the performance of spatial interpolation by ordinary kriging using a data set that involves both real background radioactivity measurements and a simulated release of a radioactive plume.
Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks.
Sun, Xiaodian; Medvedovic, Mario
2016-02-01
Parameter estimation for high dimension complex dynamic system is a hot topic. However, the current statistical model and inference approach is known as a large p small n problem. How to reduce the dimension of the dynamic model and improve the accuracy of estimation is more important. To address this question, the authors take some known parameters and structure of system as priori knowledge and incorporate it into dynamic model. At the same time, they decompose the whole dynamic model into subset network modules, based on different modules, and then they apply different estimation approaches. This technique is called Rao-Blackwellised particle filters decomposition methods. To evaluate the performance of this method, the authors apply it to synthetic data generated from repressilator model and experimental data of the JAK-STAT pathway, but this method can be easily extended to large-scale cases.
Estimating the Importance of Terrorists in a Terror Network
Elhajj, Ahmed; Elsheikh, Abdallah; Addam, Omar; Alzohbi, Mohamad; Zarour, Omar; Aksaç, Alper; Öztürk, Orkun; Özyer, Tansel; Ridley, Mick; Alhajj, Reda
While criminals may start their activities at individual level, the same is in general not true for terrorists who are mostly organized in well established networks. The effectiveness of a terror network could be realized by watching many factors, including the volume of activities accomplished by its members, the capabilities of its members to hide, and the ability of the network to grow and to maintain its influence even after the loss of some members, even leaders. Social network analysis, data mining and machine learning techniques could play important role in measuring the effectiveness of a network in general and in particular a terror network in support of the work presented in this chapter. We present a framework that employs clustering, frequent pattern mining and some social network analysis measures to determine the effectiveness of a network. The clustering and frequent pattern mining techniques start with the adjacency matrix of the network. For clustering, we utilize entries in the table by considering each row as an object and each column as a feature. Thus features of a network member are his/her direct neighbors. We maintain the weight of links in case of weighted network links. For frequent pattern mining, we consider each row of the adjacency matrix as a transaction and each column as an item. Further, we map entries into a 0/1 scale such that every entry whose value is greater than zero is assigned the value one; entries keep the value zero otherwise. This way we can apply frequent pattern mining algorithms to determine the most influential members in a network as well as the effect of removing some members or even links between members of a network. We also investigate the effect of adding some links between members. The target is to study how the various members in the network change role as the network evolves. This is measured by applying some social network analysis measures on the network at each stage during the development. We report
Building a Network Based Laboratory Environment
Directory of Open Access Journals (Sweden)
Sea Shuan Luo
2009-12-01
Full Text Available This paper presents a comparative study about the development of a network based laboratory environment in the “Unix introduction” course for the undergraduate students. The study results and the response from the students from 2005 to 2006 will be used to better understand what kind of method is more suitable for students. We also use the data collected to adjust our teaching strategy and try to build up a network based laboratory environment.
The effect of tracking network configuration on GPS baseline estimates for the CASA Uno experiment
Wolf, S. Kornreich; Dixon, T. H.; Freymueller, J. T.
1990-01-01
The effect of the tracking network on long (greater than 100 km) GPS baseline estimates was estimated using various subsets of the global tracking network initiated by the first Central and South America (CASA Uno) experiment. It was found that best results could be obtained with a global tacking network consisting of three U.S. stations, two sites in the southwestern Pacific, and two sites in Europe. In comparison with smaller subsets, this global network improved the baseline repeatability, the resolution of carrier phase cycle ambiguities, and formal errors of the orbit estimates.
Tang, Xu-Guang; Song, Kai-Shan; Liu, Dian-Wei; Wang, Zong-Ming; Zhang, Bai; Du, Jia; Zeng, Li-Hong; Jiang, Guang-Jia; Wang, Yuan-Dong
2011-02-01
The estimation of crop chlorophyll content could provide technical support for precision agriculture. Canopy spectral reflectance was simulated for different chlorophyll levels using radiative transfer models. Then with multiperiod measured hyperspectral data and corresponding chlorophyll content, after extracting six wavelet energy coefficients from the responded bands, an evaluation of soybean chlorophyll content retrieval methods was conducted using multiple linear regression, BP neural network, RBF neural network and PLS method. The estimate effects of the three methods were compared afterwards. The result showed that the three methods based on wavelet analysis have an ideal effect on the chlorophyll content estimation. R2 of validated model of multiple linear regression, BP neural network, RBF neural network and PLS method were 0. 634, 0. 715, 0. 873 and 0.776, respectively. PLS based on Gaussian kernel function and RBF NN methods were better with higher precision, which could estimate chlorophyll content stably.
Entropy-based adaptive attitude estimation
Kiani, Maryam; Barzegar, Aylin; Pourtakdoust, Seid H.
2018-03-01
Gaussian approximation filters have increasingly been developed to enhance the accuracy of attitude estimation in space missions. The effective employment of these algorithms demands accurate knowledge of system dynamics and measurement models, as well as their noise characteristics, which are usually unavailable or unreliable. An innovation-based adaptive filtering approach has been adopted as a solution to this problem; however, it exhibits two major challenges, namely appropriate window size selection and guaranteed assurance of positive definiteness for the estimated noise covariance matrices. The current work presents two novel techniques based on relative entropy and confidence level concepts in order to address the abovementioned drawbacks. The proposed adaptation techniques are applied to two nonlinear state estimation algorithms of the extended Kalman filter and cubature Kalman filter for attitude estimation of a low earth orbit satellite equipped with three-axis magnetometers and Sun sensors. The effectiveness of the proposed adaptation scheme is demonstrated by means of comprehensive sensitivity analysis on the system and environmental parameters by using extensive independent Monte Carlo simulations.
Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M; Aguiar, Javier M; Carro, Belén
2012-10-17
This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.
A spatial neural fuzzy network for estimating pan evaporation at ungauged sites
Directory of Open Access Journals (Sweden)
C.-H. Chung
2012-01-01
Full Text Available Evaporation is an essential reference to the management of water resources. In this study, a hybrid model that integrates a spatial neural fuzzy network with the kringing method is developed to estimate pan evaporation at ungauged sites. The adaptive network-based fuzzy inference system (ANFIS can extract the nonlinear relationship of observations, while kriging is an excellent geostatistical interpolator. Three-year daily data collected from nineteen meteorological stations covering the whole of Taiwan are used to train and test the constructed model. The pan evaporation (E_{pan} at ungauged sites can be obtained through summing up the outputs of the spatially weighted ANFIS and the residuals adjusted by kriging. Results indicate that the proposed AK model (hybriding ANFIS and kriging can effectively improve the accuracy of E_{pan} estimation as compared with that of empirical formula. This hybrid model demonstrates its reliability in estimating the spatial distribution of E_{pan} and consequently provides precise E_{pan} estimation by taking geographical features into consideration.
Inferring biomolecular interaction networks based on convex optimization.
Han, Soohee; Yoon, Yeoin; Cho, Kwang-Hyun
2007-10-01
We present an optimization-based inference scheme to unravel the functional interaction structure of biomolecular components within a cell. The regulatory network of a cell is inferred from the data obtained by perturbation of adjustable parameters or initial concentrations of specific components. It turns out that the identification procedure leads to a convex optimization problem with regularization as we have to achieve the sparsity of a network and also reflect any a priori information on the network structure. Since the convex optimization has been well studied for a long time, a variety of efficient algorithms were developed and many numerical solvers are freely available. In order to estimate time derivatives from discrete-time samples, a cubic spline fitting is incorporated into the proposed optimization procedure. Throughout simulation studies on several examples, it is shown that the proposed convex optimization scheme can effectively uncover the functional interaction structure of a biomolecular regulatory network with reasonable accuracy.
DEFF Research Database (Denmark)
Nielsen, J.N.; Knudsen, Morten; Nielsen, Jens Frederik Dalsgaard
A course in database design and implementation has been de- signed, utilizing existing network facilities. The course is an elementary course for students of computer engineering. Its purpose is to give the students a theoretical database knowledge as well as practical experience with design...... and implementation. A tutorial relational database and the students self-designed databases are implemented on the UNIX system of Aalborg University, thus giving the teacher the possibility of live demonstrations in the lecture room, and the students the possibility of interactive learning in their working rooms...
Uncertainty estimation for map-based analyses
Ronald E. McRoberts; Mark A. Hatfield; Susan J. Crocker
2010-01-01
Traditionally, natural resource managers have asked the question, âHow much?â and have received sample-based estimates of resource totals or means. Increasingly, however, the same managers are now asking the additional question, âWhere?â and are expecting spatially explicit answers in the form of maps. Recent development of natural resource databases, access to...
Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data
Molod, Andrea M.; Salmun, H.; Dempsey, M
2015-01-01
An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear conditions, summertime averaged hourly time series of PBL heights compare well with Richardson-number based estimates at the few NPN stations with hourly temperature measurements. Comparisons with clear sky reanalysis based estimates show that the wind profiler PBL heights are lower by approximately 250-500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy conditions, and are generally higher than both the Richardson number based and reanalysis PBL heights, resulting in a smaller clear-cloudy condition difference. The algorithm presented here was shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.
PID Controller Based on Memristive CMAC Network
Directory of Open Access Journals (Sweden)
Lidan Wang
2013-01-01
Full Text Available Compound controller which consists of CMAC network and PID network is mainly used in control system, especially in robot control. It can realize nonlinear tracking control of the real-time dynamic trajectory and possesses good approximation effect. According to the structure and principle of the compound controller, memristor is introduced to CMAC network to be a compound controller in this paper. The new PID controller based on memristive CMAC network is built up by replacing the synapse in the original controller by memristors. The effect of curve approximation is obtained by MATLAB simulation experiments. This network improves the response and learning speed of the system and processes better robustness and antidisturbance performance.
Modeling and adaptive control of a camless engine using neural networks and estimation techniques
Energy Technology Data Exchange (ETDEWEB)
Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering
2007-08-09
A system to control the cylinder air charge (CAC) in a camless internal combustion (IC) engine was recently developed. The performance of an IC engine connected to an adaptive artificial neural network (ANN) based feedback controller was then investigated. A control oriented model for the engine intake process was created based on thermodynamics laws and was validated against engine experimental data. Input-output data at a speed of 1500 RPM was generated and used to train an ANN model for the engine. The inputs were the intake valve lift (IVL) and closing timing (IVC). The output was the CAC. The controller consisted of a feedforward controller, CAC estimator, and on-line ANN parameter estimator. The feedforward controller provided IVL and IVC that satisfied the driver's torque demand and was the inverse of the engine ANN model. The on-line ANN used the error between the CAC measurement from the CAC estimator and its predicted value from the ANN to update the network's parameters. The feedforward controller was therefore adapted since its operation depended on the ANN model. The adaptation scheme improved the ANN prediction accuracy when the engine parts degraded, the speed changed or when modeling errors occurred. The engine controller exhibited good CAC tracking performance. Computer simulation demonstrated the capability of the camless engine controller. 17 refs., 5 figs.
Zhang, Yongsheng; Yao, Enjian; Wei, Heng; Zheng, Kangning
2017-01-01
Considering that metro network expansion brings us with more alternative routes, it is attractive to integrate the impacts of routes set and the interdependency among alternative routes on route choice probability into route choice modeling. Therefore, the formulation, estimation and application of a constrained multinomial probit (CMNP) route choice model in the metro network are carried out in this paper. The utility function is formulated as three components: the compensatory component is a function of influencing factors; the non-compensatory component measures the impacts of routes set on utility; following a multivariate normal distribution, the covariance of error component is structured into three parts, representing the correlation among routes, the transfer variance of route, and the unobserved variance respectively. Considering multidimensional integrals of the multivariate normal probability density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sampling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Furthermore, the proposed CMNP model also shows a good forecasting performance for the route choice probabilities calculation and a good application performance for transfer flow volume prediction.
Network based sky Brightness Monitor
McKenna, Dan; Pulvermacher, R.; Davis, D. R.
2009-01-01
We have developed and are currently testing an autonomous 2 channel photometer designed to measure the night sky brightness in the visual wavelengths over a multi-year campaign. The photometer uses a robust silicon sensor filtered with Hoya CM500 glass. The Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The Sky Brightness monitor consists of two units, the remote photometer and a network interface. Currently these devices use 2.4 Ghz transceivers with a free space range of 100 meters. The remote unit is battery powered with day time recharging using a solar panel. Data received by the network interface transmits data via standard POP Email protocol. A second version is under development for radio sensitive areas using an optical fiber for data transmission. We will present the current comparison with the National Park Service sky monitoring camera. We will also discuss the calibration methods used for standardization and temperature compensation. This system is expected to be deployed in the next year and be operated by the International Dark Sky Association SKYMONITOR project.
Node-based learning of differential networks from multi-platform gene expression data.
Ou-Yang, Le; Zhang, Xiao-Fei; Wu, Min; Li, Xiao-Li
2017-10-01
Recovering gene regulatory networks and exploring the network rewiring between two different disease states are important for revealing the mechanisms behind disease progression. The advent of high-throughput experimental techniques has enabled the possibility of inferring gene regulatory networks and differential networks using computational methods. However, most of existing differential network analysis methods are designed for single-platform data analysis and assume that differences between networks are driven by individual edges. Therefore, they cannot take into account the common information shared across different data platforms and may fail in identifying driver genes that lead to the change of network. In this study, we develop a node-based multi-view differential network analysis model to simultaneously estimate multiple gene regulatory networks and their differences from multi-platform gene expression data. Our model can leverage the strength across multiple data platforms to improve the accuracy of network inference and differential network estimation. Simulation studies demonstrate that our model can obtain more accurate estimations of gene regulatory networks and differential networks than other existing state-of-the-art models. We apply our model on TCGA ovarian cancer samples to identify network rewiring associated with drug resistance. We observe from our experiments that the hub nodes of our identified differential networks include known drug resistance-related genes and potential targets that are useful to improve the treatment of drug resistant tumors. Copyright © 2017 Elsevier Inc. All rights reserved.
Nakano, Alberto Yoshihiro; Nakagawa, Seiichi; Yamamoto, Kazumasa
2009-12-01
A method which automatically provides the position and orientation of a directional acoustic source in an enclosed environment is proposed. In this method, different combinations of the estimated parameters from the received signals and the microphone positions of each array are used as inputs to the artificial neural network (ANN). The estimated parameters are composed of time delay estimates (TDEs), source position estimates, distance estimates, and energy features. The outputs of the ANN are the source orientation (one out of four possible orientations shifted by 90 degrees and either the best array which is defined as the nearest to the source) or the source position in two dimensional/three dimensional (2D/3D) space. This paper studies the position and orientation estimation performances of the ANN for different input/output combinations (and different numbers of hidden units). The best combination of parameters (TDEs and microphone positions) yields 21.8% reduction in the average position error compared to the following baselines and a correct orientation ratio greater than 99%. Position localization baselines consist of a time delay of arrival based method with an average position error of 34.1 cm and the steered response power with phase transform method with an average position error of 29.8 cm in 3D space.
Distance Distributions and Proximity Estimation Given Knowledge of the Heterogeneous Network Layout
Xenakis, Dionysis; Merakos, Lazaros; Kountouris, Marios; Passas, Nikos; Verikoukis, Christos
2015-01-01
Today's heterogeneous wireless network (HWN) is a collection of ubiquitous wireless networking elements (WNEs) that support diverse functional capabilities and networking purposes. In such a heterogeneous networking environment, proximity estimation will play a key role for the seamless support of emerging applications that span from the direct exchange of localized traffic between homogeneous WNEs (peer-to-peer communications) to positioning for autonomous systems using location information ...
DEFF Research Database (Denmark)
Chon, K H; Hoyer, D; Armoundas, A A
1999-01-01
error is obtained by subtracting the corrupt signal of the estimated ARMA model obtained via the deterministic estimation step from the system output response. We present computer simulation examples to show the efficacy of the proposed stochastic recurrent neural network approach in obtaining accurate......In this study, we introduce a new approach for estimating linear and nonlinear stochastic autoregressive moving average (ARMA) model parameters, given a corrupt signal, using artificial recurrent neural networks. This new approach is a two-step approach in which the parameters of the deterministic...... part of the stochastic ARMA model are first estimated via a three-layer artificial neural network (deterministic estimation step) and then reestimated using the prediction error as one of the inputs to the artificial neural networks in an iterative algorithm (stochastic estimation step). The prediction...
Distributed parameter estimation in unreliable sensor networks via broadcast gossip algorithms.
Wang, Huiwei; Liao, Xiaofeng; Wang, Zidong; Huang, Tingwen; Chen, Guo
2016-01-01
In this paper, we present an asynchronous algorithm to estimate the unknown parameter under an unreliable network which allows new sensors to join and old sensors to leave, and can tolerate link failures. Each sensor has access to partially informative measurements when it is awakened. In addition, the proposed algorithm can avoid the interference among messages and effectively reduce the accumulated measurement and quantization errors. Based on the theory of stochastic approximation, we prove that our proposed algorithm almost surely converges to the unknown parameter. Finally, we present a numerical example to assess the performance and the communication cost of the algorithm. Copyright © 2015 Elsevier Ltd. All rights reserved.
APPLYING ARTIFICIAL NEURAL NETWORK OPTIMIZED BY FIREWORKS ALGORITHM FOR STOCK PRICE ESTIMATION
Directory of Open Access Journals (Sweden)
Khuat Thanh Tung
2016-04-01
Full Text Available Stock prediction is to determine the future value of a company stock dealt on an exchange. It plays a crucial role to raise the profit gained by firms and investors. Over the past few years, many methods have been developed in which plenty of efforts focus on the machine learning framework achieving the promising results. In this paper, an approach based on Artificial Neural Network (ANN optimized by Fireworks algorithm and data preprocessing by Haar Wavelet is applied to estimate the stock prices. The system was trained and tested with real data of various companies collected from Yahoo Finance. The obtained results are encouraging.
SDL-based network performance simulation
Yang, Yang; Lu, Yang; Lin, Xiaokang
2005-11-01
Specification and description language (SDL) is an object-oriented formal language defined as a standard by ITU-T. Though SDL is mainly used in describing communication protocols, it is an efficient way to simulate the network performance with SDL tools according to our experience. This paper presents our methodology of SDL-based network performance simulation in such aspects as the simulation platform, the simulation modes and the integrated simulation environment. Note that Telelogic Tau 4.3 SDL suite is used here as the simulation environment though our methodology isn't limited to the software. Finally the SDL-based open shortest path first (OSPF) performance simulation in the wireless private network is illustrated as an example of our methodology, which indicates that SDL is indeed an efficient language in the area of the network performance simulation.
Toward Measuring Network Aesthetics Based on Symmetry
Directory of Open Access Journals (Sweden)
Zengqiang Chen
2017-05-01
Full Text Available In this exploratory paper, we discuss quantitative graph-theoretical measures of network aesthetics. Related work in this area has typically focused on geometrical features (e.g., line crossings or edge bendiness of drawings or visual representations of graphs which purportedly affect an observer’s perception. Here we take a very different approach, abandoning reliance on geometrical properties, and apply information-theoretic measures to abstract graphs and networks directly (rather than to their visual representaions as a means of capturing classical appreciation of structural symmetry. Examples are used solely to motivate the approach to measurement, and to elucidate our symmetry-based mathematical theory of network aesthetics.
Directory of Open Access Journals (Sweden)
Rui Zhang
2014-12-01
Full Text Available This paper presents a hierarchical approach to network construction and time series estimation in persistent scatterer interferometry (PSI for deformation analysis using the time series of high-resolution satellite SAR images. To balance between computational efficiency and solution accuracy, a dividing and conquering algorithm (i.e., two levels of PS networking and solution is proposed for extracting deformation rates of a study area. The algorithm has been tested using 40 high-resolution TerraSAR-X images collected between 2009 and 2010 over Tianjin in China for subsidence analysis, and validated by using the ground-based leveling measurements. The experimental results indicate that the hierarchical approach can remarkably reduce computing time and memory requirements, and the subsidence measurements derived from the hierarchical solution are in good agreement with the leveling data.
Mi, Shichao; Han, Hui; Chen, Cailian; Yan, Jian; Guan, Xinping
2016-02-19
Heterogeneous wireless sensor networks (HWSNs) can achieve more tasks and prolong the network lifetime. However, they are vulnerable to attacks from the environment or malicious nodes. This paper is concerned with the issues of a consensus secure scheme in HWSNs consisting of two types of sensor nodes. Sensor nodes (SNs) have more computation power, while relay nodes (RNs) with low power can only transmit information for sensor nodes. To address the security issues of distributed estimation in HWSNs, we apply the heterogeneity of responsibilities between the two types of sensors and then propose a parameter adjusted-based consensus scheme (PACS) to mitigate the effect of the malicious node. Finally, the convergence property is proven to be guaranteed, and the simulation results validate the effectiveness and efficiency of PACS.
Directory of Open Access Journals (Sweden)
Shichao Mi
2016-02-01
Full Text Available Heterogeneous wireless sensor networks (HWSNs can achieve more tasks and prolong the network lifetime. However, they are vulnerable to attacks from the environment or malicious nodes. This paper is concerned with the issues of a consensus secure scheme in HWSNs consisting of two types of sensor nodes. Sensor nodes (SNs have more computation power, while relay nodes (RNs with low power can only transmit information for sensor nodes. To address the security issues of distributed estimation in HWSNs, we apply the heterogeneity of responsibilities between the two types of sensors and then propose a parameter adjusted-based consensus scheme (PACS to mitigate the effect of the malicious node. Finally, the convergence property is proven to be guaranteed, and the simulation results validate the effectiveness and efficiency of PACS.
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation.
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-05-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.
Robust Cognitive-GN BER Estimator for Dynamic WDM Networks
DEFF Research Database (Denmark)
Borkowski, Robert; Caballero Jambrina, Antonio; Arlunno, Valeria
2014-01-01
We introduce and experimentally demonstrate a simple yet reliable and fast tool for estimating BER of lightpaths over uncompensated links. The model provides accurate estimates for capacity upgrade scenarios when modulation format order is increased.......We introduce and experimentally demonstrate a simple yet reliable and fast tool for estimating BER of lightpaths over uncompensated links. The model provides accurate estimates for capacity upgrade scenarios when modulation format order is increased....
METAPHOR: Probability density estimation for machine learning based photometric redshifts
Amaro, V.; Cavuoti, S.; Brescia, M.; Vellucci, C.; Tortora, C.; Longo, G.
2017-06-01
We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).
Robust correlation coefficient based on Qn estimator
Zakaria, Nur Amira; Abdullah, Suhaida; Ahad, Nor Aishah
2017-11-01
This paper presents a new robust correlation coefficient called Qn correlation coefficient. This coefficient is developed as an alternative for classical correlation coefficient as the performance of classical correlation coefficient is nasty under contamination data. This study applied robust scale estimator called Qn because this estimator have high breakdown point. Simulation studies are carried out in determining the performances of the new robust correlation coefficient. Clean and contamination data are generated in assessing the performance of these coefficient. The performances of the Qn correlation coefficient is compared with classical correlation coefficient based on the value of coefficient, average bias and standard error. The outcome of the simulation studies shows that the performance of Qn correlation coefficient is superior compared to the classical and existing robust correlation coefficient.
Postprocessing MPEG based on estimated quantization parameters
DEFF Research Database (Denmark)
Forchhammer, Søren
2009-01-01
Postprocessing of MPEG(-2) video is widely used to attenuate the coding artifacts, especially deblocking but also deringing have been addressed. The focus has been on filters where the decoder has access to the code stream and e.g. utilizes information about the quantization parameter. We consider...... the case where the coded stream is not accessible, or from an architectural point of view not desirable to use, and instead estimate some of the MPEG stream parameters based on the decoded sequence. The I-frames are detected and the quantization parameters are estimated from the coded stream and used......' postprocessing compares favorable to a reference postprocessing filter which has access to the quantization parameters not only for I-frames but also on P and B-frames....
Directory of Open Access Journals (Sweden)
A. Babaei
2013-06-01
Full Text Available In this paper a method for estimating the dimension of rectangular cracks is proposed. The use of Eddy current (ECnondestructive testing (NDT based on probe impedance changes on the crack regions is considered. The artificialneural network estimates the dimension of new cracks using impedance changes of the eddy current probe. Theexperimental results and finite element method (FEM results are used for training the artificial neural network. Byincreasing the number of experiments, the results of the finite element method are not necessary. The simulationresults are very promising.
Energy Technology Data Exchange (ETDEWEB)
Almonacid, F.; Rus, C.; Perez-Higueras, P.; Hontoria, L.
2010-07-01
Despite the great technological advances in photovoltaic and in particular in network-connected systems, efforts are still required in research, technological development and innovation (i + d + i) must be aimed primarily at addressing the different system parts. one aspect that can help achieve this goal is majorette estimation methods of energy produced by photovoltaic generators. There are a number of cases resulting in a decrease of the expected energy. In this paper we will compare a standard method widely used in the estimation of the power of the photovoltaic generator with another novel method, developed at the University of Jaen, based on artificial neural networks (ANN). (Author) 9 refs.
Short-term estimation of GNSS TEC using a neural network model in Brazil
Ferreira, Arthur Amaral; Borges, Renato Alves; Paparini, Claudia; Ciraolo, Luigi; Radicella, Sandro M.
2017-10-01
This work presents a novel Neural Network (NN) model to estimate Total Electron Content (TEC) from Global Navigation Satellite Systems (GNSS) measurements in three distinct sectors in Brazil. The purpose of this work is to start the investigations on the development of a regional model that can be used to determine the vertical TEC over Brazil, aiming future applications on a near real-time frame estimations and short-term forecasting. The NN is used to estimate the GNSS TEC values at void locations, where no dual-frequency GNSS receiver that may be used as a source of data to GNSS TEC estimation is available. This approach is particularly useful for GNSS single-frequency users that rely on corrections of ionospheric range errors by TEC models. GNSS data from the first GLONASS network for research and development (GLONASS R&D network) installed in Latin America, and from the Brazilian Network for Continuous Monitoring of the GNSS (RMBC) were used on TEC calibration. The input parameters of the NN model are based on features known to influence TEC values, such as geographic location of the GNSS receiver, magnetic activity, seasonal and diurnal variations, and solar activity. Data from two ten-days periods (from DoY 154 to 163 and from 282 to 291) are used to train the network. Three distinct analyses have been carried out in order to assess time-varying and spatial performance of the model. At the spatial performance analysis, for each region, a set of stations is chosen to provide training data to the NN, and after the training procedure, the NN is used to estimate vTEC behavior for the test station which data were not presented to the NN in training process. An analysis is done by comparing, for each testing station, the estimated NN vTEC delivered by the NN and reference calibrated vTEC. Also, as a second analysis, the network ability to forecast one day after the time interval (DoY 292) based on information of the second period of investigation is also assessed
Parallel mutual information estimation for inferring gene regulatory networks on GPUs
Directory of Open Access Journals (Sweden)
Liu Weiguo
2011-06-01
Full Text Available Abstract Background Mutual information is a measure of similarity between two variables. It has been widely used in various application domains including computational biology, machine learning, statistics, image processing, and financial computing. Previously used simple histogram based mutual information estimators lack the precision in quality compared to kernel based methods. The recently introduced B-spline function based mutual information estimation method is competitive to the kernel based methods in terms of quality but at a lower computational complexity. Results We present a new approach to accelerate the B-spline function based mutual information estimation algorithm with commodity graphics hardware. To derive an efficient mapping onto this type of architecture, we have used the Compute Unified Device Architecture (CUDA programming model to design and implement a new parallel algorithm. Our implementation, called CUDA-MI, can achieve speedups of up to 82 using double precision on a single GPU compared to a multi-threaded implementation on a quad-core CPU for large microarray datasets. We have used the results obtained by CUDA-MI to infer gene regulatory networks (GRNs from microarray data. The comparisons to existing methods including ARACNE and TINGe show that CUDA-MI produces GRNs of higher quality in less time. Conclusions CUDA-MI is publicly available open-source software, written in CUDA and C++ programming languages. It obtains significant speedup over sequential multi-threaded implementation by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.
A framework for parameter estimation and model selection in kernel deep stacking networks.
Welchowski, Thomas; Schmid, Matthias
2016-06-01
Kernel deep stacking networks (KDSNs) are a novel method for supervised learning in biomedical research. Belonging to the class of deep learning techniques, KDSNs are based on artificial neural network architectures that involve multiple nonlinear transformations of the input data. Unlike traditional artificial neural networks, KDSNs do not rely on backpropagation algorithms but on an efficient fitting procedure that is based on a series of kernel ridge regression models with closed-form solutions. Although being computationally advantageous, KDSN modeling remains a challenging task, as it requires the specification of a large number of tuning parameters. We propose a new data-driven framework for parameter estimation, hyperparameter tuning, and model selection in KDSNs. The proposed methodology is based on a combination of model-based optimization and hill climbing approaches that do not require the pre-specification of any of the KDSN tuning parameters. We demonstrate the performance of KDSNs by analyzing three medical data sets on hospital readmission of diabetes patients, coronary artery disease, and hospital costs. Our numerical studies show that the run-time of the proposed KDSN methodology is significantly shorter than the respective run-time of grid search strategies for hyperparameter tuning. They also show that KDSN modeling is competitive in terms of prediction accuracy with other state-of-the-art techniques for statistical learning. KDSNs are a computationally efficient approximation of backpropagation-based artificial neural network techniques. Application of the proposed methodology results in a fast tuning procedure that generates KDSN fits having a similar prediction accuracy as other techniques in the field of deep learning. Copyright © 2016 Elsevier B.V. All rights reserved.
Estimation and Control of Networked Distributed Parameter Systems: Application to Traffic Flow
Canepa, Edward
2016-11-01
The management of large-scale transportation infrastructure is becoming a very complex task for the urban areas of this century which are covering bigger geographic spaces and facing the inclusion of connected and self-controlled vehicles. This new system paradigm can leverage many forms of sensing and interaction, including a high-scale mobile sensing approach. To obtain a high penetration sensing system on urban areas more practical and scalable platforms are needed, combined with estimation algorithms suitable to the computational capabilities of these platforms. The purpose of this work was to develop a transportation framework that is able to handle different kinds of sensing data (e.g., connected vehicles, loop detectors) and optimize the traffic state on a defined traffic network. The framework estimates the traffic on road networks modeled by a family of Lighthill-Whitham-Richards equations. Based on an equivalent formulation of the problem using a Hamilton-Jacobi equation and using a semi-analytic formula, I will show that the model constraints resulting from the Hamilton-Jacobi equation are linear, albeit with unknown integer variables. This general framework solve exactly a variety of problems arising in transportation networks: traffic estimation, traffic control (including robust control), cybersecurity and sensor fault detection, or privacy analysis of users in probe-based traffic monitoring systems. This framework is very flexible, fast, and yields exact results. The recent advances in sensors (GPS, inertial measurement units) and microprocessors enable the development low-cost dedicated devices for traffic sensing in cities, 5 which are highly scalable, providing a feasible solution to cover large urban areas. However, one of the main problems to address is the privacy of the users of the transportation system, the framework presented here is a viable option to guarantee the privacy of the users by design.
Estimation procedure of the efficiency of the heat network segment
Polivoda, F. A.; Sokolovskii, R. I.; Vladimirov, M. A.; Shcherbakov, V. P.; Shatrov, L. A.
2017-07-01
An extensive city heat network contains many segments, and each segment operates with different efficiency of heat energy transfer. This work proposes an original technical approach; it involves the evaluation of the energy efficiency function of the heat network segment and interpreting of two hyperbolic functions in the form of the transcendental equation. In point of fact, the problem of the efficiency change of the heat network depending on the ambient temperature was studied. Criteria dependences used for evaluation of the set segment efficiency of the heat network and finding of the parameters for the most optimal control of the heat supply process of the remote users were inferred with the help of the functional analysis methods. Generally, the efficiency function of the heat network segment is interpreted by the multidimensional surface, which allows illustrating it graphically. It was shown that the solution of the inverse problem is possible as well. Required consumption of the heating agent and its temperature may be found by the set segment efficient and ambient temperature; requirements to heat insulation and pipe diameters may be formulated as well. Calculation results were received in a strict analytical form, which allows investigating the found functional dependences for availability of the extremums (maximums) under the set external parameters. A conclusion was made that it is expedient to apply this calculation procedure in two practically important cases: for the already made (built) network, when the change of the heat agent consumption and temperatures in the pipe is only possible, and for the projecting (under construction) network, when introduction of changes into the material parameters of the network is possible. This procedure allows clarifying diameter and length of the pipes, types of insulation, etc. Length of the pipes may be considered as the independent parameter for calculations; optimization of this parameter is made in
Probability estimation of ignitions formation in the electrical network
Directory of Open Access Journals (Sweden)
Solyonyj Sergey
2017-01-01
Full Text Available Their fire safety is one of the major requirements, which is imposed to electric networks. However extensiveness of methods of her assessment and a different of approaches to definition of factors of danger leads to complication of the choice of a technique and process of an assessment. The work purpose is development of a uniform method of mathematical modelling and an assessment of safe operation of electric networks.
A consensus-based multi-agent approach for estimation in robust fault detection.
Jiang, Yulian; Liu, Jianchang; Wang, Shenquan
2014-09-01
This paper is devoted to distributed estimation in robust fault detection for sensor networks with networked-induced delays and packet dropouts by using a consensus-based multi-agent approach. Utilizing the information interaction and coordination among the neighboring networks based on multi-agent theory, we design novel and multiple agent-based robust fault detection filters (RFDFs) subject to only partial estimated and measured information. Asymptotically stable sufficient conditions for the innovative constructed filters are derived in the form of linear matrix inequality (LMI) and the threshold fit for each agent-based RFDF is determined. An illustrative example is given to demonstrate the effectiveness of the consensus-based multi-agent approach for the estimation in robust fault detection. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Estimation of concrete compressive strength using artificial neural network
Directory of Open Access Journals (Sweden)
Kostić Srđan
2015-01-01
Full Text Available In present paper, concrete compressive strength is evaluated using back propagation feed-forward artificial neural network. Training of neural network is performed using Levenberg-Marquardt learning algorithm for four architectures of artificial neural networks, one, three, eight and twelve nodes in a hidden layer in order to avoid the occurrence of overfitting. Training, validation and testing of neural network is conducted for 75 concrete samples with distinct w/c ratio and amount of superplasticizer of melamine type. These specimens were exposed to different number of freeze/thaw cycles and their compressive strength was determined after 7, 20 and 32 days. The obtained results indicate that neural network with one hidden layer and twelve hidden nodes gives reasonable prediction accuracy in comparison to experimental results (R=0.965, MSE=0.005. These results of the performed analysis are further confirmed by calculating the standard statistical errors: the chosen architecture of neural network shows the smallest value of mean absolute percentage error (MAPE=, variance absolute relative error (VARE and median absolute error (MEDAE, and the highest value of variance accounted for (VAF.
Estimation of System Operating Margin for Different Modulation Schemes in Vehicular Ad-Hoc Networks
TilotmaYadav; Partha Pratim Bhattacharya
2013-01-01
In this paper, system operating margin (SOM) is estimated for vehicular ad-hoc networks in absence and presence of Rayleigh fading. The Ad-hoc IEEE 802.11 model is considered for estimating the signal strength and system operating margin. Rayleigh fading was then simulated and system operating margin are estimated in Rayleigh fading environment for different standard modulation schemes.
Dong, Bo; Biswas, Subir; Montoye, Alexander; Pfeiffer, Karin
2013-01-01
This paper presents the implementation details, system architecture and performance of a wearable sensor network that was designed for human activity recognition and energy expenditure estimation. We also included ActiGraph GT3X+ as a popular single sensor solution for detailed comparison with the proposed wearable sensor network. Linear regression and Artificial Neural Network are implemented and tested. Through a rigorous system study and experiment, it is shown that the wearable multi-sensor network outperforms the single sensor solution in terms of energy expenditure estimation.
Prediction of Palm Oil-Based Methyl Ester Biodiesel Density Using Artificial Neural Networks
Baroutian, Saeid; Kheireddine Aroua, Mohamed; Raman, Abdul Aziz Abdul; Meriam Nik Sulaiman, Nik
In this study, a new approach based on Artificial Neural Networks (ANNs) has been designed to estimate the density of pure palm oil-based methyl ester biodiesel. The experimental density data measured at various temperatures from 14 to 90°C at 1°C intervals were used to train the networks. The present research, applied a three layer back propagation neural network with seven neurons in the hidden layer. The results from the network are in good agreement with the measured data and the average absolute percent deviation is 0.29%. The results of ANNs have also been compared with the results of empirical and theoretical estimations.
ESTIMATION OF STATURE BASED ON FOOT LENGTH
Directory of Open Access Journals (Sweden)
Vidyullatha Shetty
2015-01-01
Full Text Available BACKGROUND : Stature is the height of the person in the upright posture. It is an important measure of physical identity. Estimation of body height from its segments or dismember parts has important considerations for identifications of living or dead human body or remains recovered from disasters or other similar conditions. OBJECTIVE : Stature is an important indicator for identification. There are numerous means to establish stature and their significance lies in the simplicity of measurement, applicability and accuracy in prediction. Our aim of the study was to review the relationship between foot length and body height. METHODS : The present study reviews various prospective studies which were done to estimate the stature. All the measurements were taken by using standard measuring devices and standard anthropometric techniques. RESULTS : This review shows there is a correlation between stature and foot dimensions it is found to be positive and statistically highly significant. Prediction of stature was found to be most accurate by multiple regression analysis. CONCLUSIONS : Stature and gender estimation can be done by using foot measurements and stud y will help in medico - legal cases in establishing identity of an individual and this would be useful for Anatomists and Anthropologists to calculate stature based on foot length
MUSIC algorithm DoA estimation for cooperative node location in mobile ad hoc networks
Warty, Chirag; Yu, Richard Wai; ElMahgoub, Khaled; Spinsante, Susanna
In recent years the technological development has encouraged several applications based on distributed communications network without any fixed infrastructure. The problem of providing a collaborative early warning system for multiple mobile nodes against a fast moving object. The solution is provided subject to system level constraints: motion of nodes, antenna sensitivity and Doppler effect at 2.4 GHz and 5.8 GHz. This approach consists of three stages. The first phase consists of detecting the incoming object using a highly directive two element antenna at 5.0 GHz band. The second phase consists of broadcasting the warning message using a low directivity broad antenna beam using 2× 2 antenna array which then in third phase will be detected by receiving nodes by using direction of arrival (DOA) estimation technique. The DOA estimation technique is used to estimate the range and bearing of the incoming nodes. The position of fast arriving object can be estimated using the MUSIC algorithm for warning beam DOA estimation. This paper is mainly intended to demonstrate the feasibility of early detection and warning system using a collaborative node to node communication links. The simulation is performed to show the behavior of detecting and broadcasting antennas as well as performance of the detection algorithm. The idea can be further expanded to implement commercial grade detection and warning system
Directory of Open Access Journals (Sweden)
Pan-Sang Kang
2016-06-01
Full Text Available Polymer flooding is now considered a technically- and commercially-proven method for enhanced oil recovery (EOR. The viscosity of the injected polymer solution is the key property for successful polymer flooding. Given that the viscosity of a polymer solution has a non-linear relationship with various influential parameters (molecular weight, degree of hydrolysis, polymer concentration, cation concentration of polymer solution, shear rate, temperature and that measurement of viscosity based on these parameters is a time-consuming process, the range of solution samples and the measurement conditions need to be limited and precise. Viscosity estimation of the polymer solution is effective for these purposes. An artificial neural network (ANN was applied to the viscosity estimation of FlopaamTM 3330S, FlopaamTM 3630S and AN-125 solutions, three commonly-used EOR polymers. The viscosities measured and estimated by ANN and the Carreau model using Lee’s correlation, the only method for estimating the viscosity of an EOR polymer solution in unmeasured conditions, were compared. Estimation accuracy was evaluated by the average absolute relative deviation, which has been widely used for accuracy evaluation of the results of ANN models. In all conditions, the accuracy of the ANN model is higher than that of the Carreau model using Lee’s correlation.
Yu, Kai; Yin, Ming; Luo, Ji-An; Wang, Yingguan; Bao, Ming; Hu, Yu-Hen; Wang, Zhi
2016-05-23
A compressive sensing joint sparse representation direction of arrival estimation (CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can be avoided. To investigate the spatial sparsity, an upper bound of the coherence of incoming sensor signals is derived assuming a linear sensor array configuration. This bound provides a theoretical constraint on the angular separation of acoustic sources to ensure the spatial sparsity of the received acoustic sensor array signals. The Cram e ´ r-Rao bound of the CSJSR-DoA estimator that quantifies the theoretical DoA estimation performance is also derived. The potential performance of the CSJSR-DoA approach is validated using both simulations and field experiments on a prototype WSAN platform. Compared to existing compressive sensing-based DoA estimation methods, the CSJSR-DoA approach shows significant performance improvement.
A network-based dynamical ranking system
Motegi, Shun
2012-01-01
Ranking players or teams in sports is of practical interests. From the viewpoint of networks, a ranking system is equivalent a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score (i.e., strength) of a player, for example, depends on time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. Our ranking system, also interpreted as a centrality measure for directed temporal networks, has two parameters. One parameter represents the exponential decay rate of the past score, and the other parameter controls the effect of indirect wins on the score. We derive a set of linear online update equ...
Designing Network-based Business Model Ontology
DEFF Research Database (Denmark)
Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz
2015-01-01
Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....
Reference crop evapotranspiration estimate using high-resolution meteorological network's data
Directory of Open Access Journals (Sweden)
C. Lussana
2009-10-01
Full Text Available Water management authorities need detailed information about each component of the hydrological balance. This document presents a method to estimate the evapotranspiration rate, initialized in order to obtain the reference crop evapotranspiration rate (ET_{0}. By using an Optimal Interpolation (OI scheme, the hourly observations of several meteorological variables, measured by a high-resolution local meteorological network, are interpolated over a regular grid. The analysed meteorological fields, containing detailed meteorological information, enter a model for turbulent heat fluxes estimation based on Monin-Obukhov surface layer similarity theory. The obtained ET_{0} fields are then post-processed and disseminated to the users.
Agricultural pesticide use estimates for the USGS National Water Quality Network, 1992-2014
Baker, Nancy T.
2016-01-01
The National Water Quality Network (NWQN) for Rivers and Streams includes 113 surface-water river and stream sites monitored by the U.S. Geological Survey (USGS) National Water Quality Program (NWQP). The NWQN represents the consolidation of four historical national networks: the USGS National Water-Quality Assessment (NAWQA) Project, the USGS National Stream Quality Accounting Network (NASQAN), the National Monitoring Network (NMN), and the Hydrologic Benchmark Network (HBN). The NWQN includes 22 large river coastal sites, 41 large river inland sites, 30 wadeable stream reference sites, 10 wadeable stream urban sites, and 10 wadeable stream agricultural sites. In addition to the 113 NWQN sites, 3 large inland river monitoring sites from the USGS Cooperative Matching Funds program are also included in this annual water-quality reporting Web site to be consistent with previous USGS studies of nutrient transport in the Mississippi-Atchafalaya River Basin. This data release provides estimated agricultural pesticide use for 83 NWQN watersheds for 110 pesticide compounds from 1992-2014. Pesticide use was not estimated for the 30 wadeable stream reference sites, or from 3 large river coastal sites (07381590, "Wax Lake Outlet at Calumet, LA3"; 07381600, "Lower Atchafalaya River at Morgan City, LA2"; or 15565477, "Yukon River at Pilot Station, AK"). Use was not estimated for reference sites because pesticides are not monitored at reference water-quality sampling sites. Pesticide use data are not available for Alaska and thus no data is available for the Yukon River site. The other two coastal sites (07381590 and 07381600) where use was not estimated are outflow distributaries into the Gulf of Mexico. This data release provides use estimates for the same pesticide parent compounds sampled in water and analyzed by USGS, National Water Quality Laboratory (NWQL), Schedule 2437: http://wwwnwql.cr.usgs.gov/USGS/catalog/index.cfm. Pesticide use data are not available for
On Channel Estimation for Analog Network Coding in a Frequency-Selective Fading Channel
Directory of Open Access Journals (Sweden)
Sjödin Tomas
2011-01-01
Full Text Available Recently, broadband analog network coding (ANC was introduced for high-speed transmission over the wireless (frequency-selective fading channel. However, ANC requires the knowledge of channel state information (CSI for self-information removal and coherent signal detection. In ANC, the users' pilot signals interfere during the first slot, which renders the relay unable to estimate CSIs of different users, and, consequently, four time-slot pilot-assisted channel estimation (CE is required to avoid interference. Naturally, this will reduce the capacity of ANC scheme. In this paper, we theoretically analyze the bit error rate (BER performance of bi-directional broadband ANC communication based on orthogonal frequency division multiplexing (OFDM radio access. We also theoretically analyze the performance of the channel estimator's mean square error (MSE. The analysis is based on the assumption of perfect timing and frequency synchronization. The achievable BER performance and the estimator's MSE for broadband ANC is evaluated by numerical and computer simulation. We discuss how, and by how much, the imperfect knowledge of CSI affects the BER performance of broadband ANC. It is shown that the CE scheme achieves a slightly higher BER in comparison with ideal CE case for a low and moderate mobile terminal speed in a frequency-selective fading channel.
A neural network model for estimating soil phosphorus using terrain analysis
Directory of Open Access Journals (Sweden)
Ali Keshavarzi
2015-12-01
Full Text Available Artificial neural network (ANN model was developed and tested for estimating soil phosphorus (P in Kouhin watershed area (1000 ha, Qazvin province, Iran using terrain analysis. Based on the soil distribution correlation, vegetation growth pattern across the topographically heterogeneous landscape, the topographic and vegetation attributes were used in addition to pedologic information for the development of ANN model in area for estimating of soil phosphorus. Totally, 85 samples were collected and tested for phosphorus contents and corresponding attributes were estimated by the digital elevation model (DEM. In order to develop the pedo-transfer functions, data linearity was checked, correlated and 80% was used for modeling and ANN was tested using 20% of collected data. Results indicate that 68% of the variation in soil phosphorus could be explained by elevation and Band 1 data and significant correlation was observed between input variables and phosphorus contents. There was a significant correlation between soil P and terrain attributes which can be used to derive the pedo-transfer function for soil P estimation to manage nutrient deficiency. Results showed that P values can be calculated more accurately with the ANN-based pedo-transfer function with the input topographic variables along with the Band 1.
Spectral estimation of the percolation transition in clustered networks
Zhang, Pan
2017-10-01
There have been several spectral bounds for the percolation transition in networks, using spectrum of matrices associated with the network such as the adjacency matrix and the nonbacktracking matrix. However, they are far from being tight when the network is sparse and displays clustering or transitivity, which is represented by existence of short loops, e.g., triangles. In this paper, for the bond percolation, we first propose a message-passing algorithm for calculating size of percolating clusters considering effects of triangles, then relate the percolation transition to the leading eigenvalue of a matrix that we name the triangle-nonbacktracking matrix, by analyzing stability of the message-passing equations. We establish that our method gives a tighter lower bound to the bond percolation transition than previous spectral bounds, and it becomes exact for an infinite network with no loops longer than 3. We evaluate numerically our methods on synthetic and real-world networks, and discuss further generalizations of our approach to include higher-order substructures.
Computational approach in estimating the need of ditch network maintenance
Lauren, Ari; Hökkä, Hannu; Launiainen, Samuli; Palviainen, Marjo; Repo, Tapani; Leena, Finer; Piirainen, Sirpa
2015-04-01
Ditch network maintenance (DNM), implemented annually in 70 000 ha area in Finland, is the most controversial of all forest management practices. Nationwide, it is estimated to increase the forest growth by 1…3 million m3 per year, but simultaneously to cause 65 000 tons export of suspended solids and 71 tons of phosphorus (P) to water courses. A systematic approach that allows simultaneous quantification of the positive and negative effects of DNM is required. Excess water in the rooting zone slows the gas exchange and decreases biological activity interfering with the forest growth in boreal forested peatlands. DNM is needed when: 1) the excess water in the rooting zone restricts the forest growth before the DNM, and 2) after the DNM the growth restriction ceases or decreases, and 3) the benefits of DNM are greater than the caused adverse effects. Aeration in the rooting zone can be used as a drainage criterion. Aeration is affected by several factors such as meteorological conditions, tree stand properties, hydraulic properties of peat, ditch depth, and ditch spacing. We developed a 2-dimensional DNM simulator that allows the user to adjust these factors and to evaluate their effect on the soil aeration at different distance from the drainage ditch. DNM simulator computes hydrological processes and soil aeration along a water flowpath between two ditches. Applying daily time step it calculates evapotranspiration, snow accumulation and melt, infiltration, soil water storage, ground water level, soil water content, air-filled porosity and runoff. The model performance in hydrology has been tested against independent high frequency field monitoring data. Soil aeration at different distance from the ditch is computed under steady-state assumption using an empirical oxygen consumption model, simulated air-filled porosity, and diffusion coefficient at different depths in soil. Aeration is adequate and forest growth rate is not limited by poor aeration if the
Application of radial basis neural network for state estimation of ...
African Journals Online (AJOL)
user
MultiCraft. International Journal of Engineering, Science and Technology. Vol. 2, No. 3, 2010, pp. 19-28. INTERNATIONAL. JOURNAL OF. ENGINEERING,. SCIENCE AND. TECHNOLOGY ... state estimation is investigated by testing its applicability on a IEEE 14 bus system. The proposed estimator is compared with.
Directory of Open Access Journals (Sweden)
Einar Sørheim
1990-10-01
Full Text Available A neural network architecture called ART2/BP is proposed. Thc goal has been to construct an artificial neural network that learns incrementally an unknown mapping, and is motivated by the instability found in back propagation (BP networks: after first learning pattern A and then pattern B, a BP network often has completely 'forgotten' pattern A. A network using both supervised and unsupervised training is proposed, consisting of a combination of ART2 and BP. ART2 is used to build and focus a supervised backpropagation network consisting of many small subnetworks each specialized on a particular domain of the input space. The ART2/BP network has the advantage of being able to dynamically expand itself in response to input patterns containing new information. Simulation results show that the ART2/BP network outperforms a classical maximum likelihood method for the estimation of a discrete dynamic and nonlinear transfer function.
In silico network topology-based prediction of gene essentiality
da Silva, João Paulo Müller; Acencio, Marcio Luis; Mombach, José Carlos Merino; Vieira, Renata; da Silva, José Camargo; Lemke, Ney; Sinigaglia, Marialva
2008-02-01
The identification of genes essential for survival is important for the understanding of the minimal requirements for cellular life and for drug design. As experimental studies with the purpose of building a catalog of essential genes for a given organism are time-consuming and laborious, a computational approach which could predict gene essentiality with high accuracy would be of great value. We present here a novel computational approach, called NTPGE (Network Topology-based Prediction of Gene Essentiality), that relies on the network topology features of a gene to estimate its essentiality. The first step of NTPGE is to construct the integrated molecular network for a given organism comprising protein physical, metabolic and transcriptional regulation interactions. The second step consists in training a decision-tree-based machine-learning algorithm on known essential and non-essential genes of the organism of interest, considering as learning attributes the network topology information for each of these genes. Finally, the decision-tree classifier generated is applied to the set of genes of this organism to estimate essentiality for each gene. We applied the NTPGE approach for discovering the essential genes in Escherichia coli and then assessed its performance.
New Survey Questions and Estimators for Network Clustering with Respondent-Driven Sampling Data
Verdery, Ashton M; Siripong, Nalyn; Abdesselam, Kahina; Bauldry, Shawn
2016-01-01
Respondent-driven sampling (RDS) is a popular method for sampling hard-to-survey populations that leverages social network connections through peer recruitment. While RDS is most frequently applied to estimate the prevalence of infections and risk behaviors of interest to public health, like HIV/AIDS or condom use, it is rarely used to draw inferences about the structural properties of social networks among such populations because it does not typically collect the necessary data. Drawing on recent advances in computer science, we introduce a set of data collection instruments and RDS estimators for network clustering, an important topological property that has been linked to a network's potential for diffusion of information, disease, and health behaviors. We use simulations to explore how these estimators, originally developed for random walk samples of computer networks, perform when applied to RDS samples with characteristics encountered in realistic field settings that depart from random walks. In partic...
Nonlinear neural network for hemodynamic model state and input estimation using fMRI data
Karam, Ayman M.
2014-11-01
Originally inspired by biological neural networks, artificial neural networks (ANNs) are powerful mathematical tools that can solve complex nonlinear problems such as filtering, classification, prediction and more. This paper demonstrates the first successful implementation of ANN, specifically nonlinear autoregressive with exogenous input (NARX) networks, to estimate the hemodynamic states and neural activity from simulated and measured real blood oxygenation level dependent (BOLD) signals. Blocked and event-related BOLD data are used to test the algorithm on real experiments. The proposed method is accurate and robust even in the presence of signal noise and it does not depend on sampling interval. Moreover, the structure of the NARX networks is optimized to yield the best estimate with minimal network architecture. The results of the estimated neural activity are also discussed in terms of their potential use.
Overlapping Community Detection based on Network Decomposition
Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin
2016-04-01
Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.
Snow glacier melt estimation in tropical Andean glaciers using artificial neural networks
Directory of Open Access Journals (Sweden)
V. Moya Quiroga
2013-04-01
Full Text Available Snow and glacier melt (SGM estimation plays an important role in water resources management. Although melting process can be modelled by energy balance methods, such studies require detailed data, which is rarely available. Hence, new and simpler approaches are needed for SGM estimations. The present study aims at developing an artificial neural networks (ANN based technique for estimating the energy available for melt (EAM and SGM rates using available and easy to obtain data such as temperature, short-wave radiation and relative humidity. Several ANN and multiple linear regression models (MLR were developed to represent the energy fluxes and estimate the EAM. The models were trained using measured data from the Zongo glacier located in the outer tropics and validated against measured data from the Antizana glacier located in the inner tropics. It was found that ANN models provide a better generalisation when applied to other data sets. The performance of the models was improved by including Antizana data into the training set, as it was proved to provide better results than other techniques like the use of a prior logarithmic transformation. The final model was validated against measured data from the Alpine glaciers Argentière and Saint-Sorlin. Then, the models were applied for the estimation of SGM at Condoriri glacier. The estimated SGM was compared with SGM estimated by an enhanced temperature method and proved to have the same behaviour considering temperature sensibility. Moreover, the ANN models have the advantage of direct application, while the temperature method requires calibration of empirical coefficients.
Indoor positioning in wireless local area networks with online path-loss parameter estimation.
Bruno, Luigi; Addesso, Paolo; Restaino, Rocco
2014-01-01
Location based services are gathering an even wider interest also in indoor environments and urban canyons, where satellite systems like GPS are no longer accurate. A much addressed solution for estimating the user position exploits the received signal strengths (RSS) in wireless local area networks (WLANs), which are very common nowadays. However, the performances of RSS based location systems are still unsatisfactory for many applications, due to the difficult modeling of the propagation channel, whose features are affected by severe changes. In this paper we propose a localization algorithm which takes into account the nonstationarity of the working conditions by estimating and tracking the key parameters of RSS propagation. It is based on a Sequential Monte Carlo realization of the optimal Bayesian estimation scheme, whose functioning is improved by exploiting the Rao-Blackwellization rationale. Two key statistical models for RSS characterization are deeply analyzed, by presenting effective implementations of the proposed scheme and by assessing the positioning accuracy by extensive computer experiments. Many different working conditions are analyzed by simulated data and corroborated through the validation in a real world scenario.
Artificial neural network approach for estimation of surface specific ...
Indian Academy of Sciences (India)
Microwave sensor MSMR (Multifrequency Scanning Microwave Radiometer) data onboard Oceansat-1 was used for retrieval of monthly averages of near surface specific humidity (a) and air temperature (a) by means of Artificial Neural Network (ANN). The MSMR measures the microwave radiances in 8 channels at ...
Network Inference and Maximum Entropy Estimation on Information Diagrams
Czech Academy of Sciences Publication Activity Database
Martin, E.A.; Hlinka, J.; Meinke, A.; Děchtěrenko, Filip; Tintěra, J.; Oliver, I.; Davidsen, J.
2017-01-01
Roč. 7, č. 1 (2017), s. 1-15, č. článku 7062. ISSN 2045-2322 R&D Projects: GA ČR GA13-23940S Institutional support: RVO:68081740 Keywords : complex networks * mutual information * entropy maximization * fMRI Subject RIV: AN - Psychology Impact factor: 4.259, year: 2016
Application of radial basis neural network for state estimation of ...
African Journals Online (AJOL)
user
states, and j e is the measurement error, which is assumed to have zero mean and variance 2 j σ . There are m ... and with equality and inequality constraints, minimize. ∑. = −. = m ... constant factor unlike sum of product of the inputs and respective synaptic weights as in case of feed forward network. The RBF unit or transfer ...
Network estimation in State Space Models with L1-regularization ...
African Journals Online (AJOL)
Microarray technologies and related methods coupled with appropriate mathematical and statistical models have made it possible to identify dynamic regulatory networks by measuring time course expression levels of many genes simultaneously. However one of the challenges is the high-dimensional nature of such data ...
Hsieh, Chih-Sheng; Lee, Lung fei
2017-01-01
In this paper, we model network formation and network interactions under a unified framework. The key feature of our model is to allow individuals to respond to incentives stemming from interaction benefits on certain activities when they choose friends (network links), while capturing homophily in terms of unobserved characteristic variables in network formation and activities. There are two advantages of this modeling approach: first, one can evaluate whether incentives from certain interac...
Directory of Open Access Journals (Sweden)
Stefan Berger
2010-01-01
Full Text Available Channel estimation protocols for wireless two-hop networks with amplify-and-forward (AF relays are compared. We consider multiuser relaying networks, where the gain factors are chosen such that the signals from all relays add up coherently at the destinations. While the destinations require channel knowledge in order to decode, our focus lies on the channel estimates that are used to calculate the relay gains. Since knowledge of the compound two-hop channels is generally not sufficient to do this, the protocols considered here measure all single-hop coefficients in the network. We start from the observation that the direction in which the channels are measured determines (1 the number of channel uses required to estimate all coefficient and (2 the need for global carrier phase reference. Four protocols are identified that differ in the direction in which the first-hop and the second-hop channels are measured. We derive a sensible measure for the accuracy of the channel estimates in the presence of additive noise and phase noise and compare the protocols based on this measure. Finally, we provide a quantitative performance comparison for a simple single-user application example. It is important to note that the results can be used to compare the channel estimation protocols for any two-hop network configuration and gain allocation scheme.
Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.
Xia, Youshen; Wang, Jun
2015-07-01
This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Braga, Rodrigo M; Buckner, Randy L
2017-07-19
Certain organizational features of brain networks present in the individual are lost when central tendencies are examined in the group. Here we investigated the detailed network organization of four individuals each scanned 24 times using MRI. We discovered that the distributed network known as the default network is comprised of two separate networks possessing adjacent regions in eight or more cortical zones. A distinction between the networks is that one is coupled to the hippocampal formation while the other is not. Further exploration revealed that these two networks were juxtaposed with additional networks that themselves fractionate group-defined networks. The collective networks display a repeating spatial progression in multiple cortical zones, suggesting that they are embedded within a broad macroscale gradient. Regions contributing to the newly defined networks are spatially variable across individuals and adjacent to distinct networks, raising issues for network estimation in group-averaged data and applied endeavors, including targeted neuromodulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Dong, Bo; Biswas, Subir; Montoye, Alexander; Pfeiffer, Karin
2013-01-01
This paper presents the implementation details, system architecture and performance of a wearable sensor network that was designed for human activity recognition and energy expenditure estimation. We also included ActiGraph GT3X+ as a popular single sensor solution for detailed comparison with the proposed wearable sensor network. Linear regression and Artificial Neural Network are implemented and tested. Through a rigorous system study and experiment, it is shown that the wearable multi-sens...
Location-based Forwarding in Vehicular Networks
Klein Wolterink, W.
2013-01-01
In this thesis we focus on location-based message forwarding in vehicular networks to support intelligent transportation systems (ITSs). ITSs are transport systems that utilise information and communication technologies to increase their level of automation, in this way levering the performance of
WIRELESS SENSOR NETWORK BASED CONVEYOR SURVEILLANCE SYSTEM
Attila Trohák; Máté Kolozsi-Tóth; Péter Rádi
2011-01-01
In the paper we will introduce an intelligent conveyor surveillance system. We started a research project to design and develop a conveyor surveillance system based on wireless sensor network and GPRS communication. Our system is able to measure temperature on fixed and moving, rotating surfaces and able to detect smoke. We would like to introduce the developed devices and give an application example.
Coordinated SLNR based Precoding in Large-Scale Heterogeneous Networks
Boukhedimi, Ikram
2017-03-06
This work focuses on the downlink of large-scale two-tier heterogeneous networks composed of a macro-cell overlaid by micro-cell networks. Our interest is on the design of coordinated beamforming techniques that allow to mitigate the inter-cell interference. Particularly, we consider the case in which the coordinating base stations (BSs) have imperfect knowledge of the channel state information. Under this setting, we propose a regularized SLNR based precoding design in which the regularization factor is used to allow better resilience with respect to the channel estimation errors. Based on tools from random matrix theory, we provide an analytical analysis of the SINR and SLNR performances. These results are then exploited to propose a proper setting of the regularization factor. Simulation results are finally provided in order to validate our findings and to confirm the performance of the proposed precoding scheme.
A Comparative Approach to Hand Force Estimation using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Farid Mobasser
2012-01-01
Full Text Available In many applications that include direct human involvement such as control of prosthetic arms, athletic training, and studying muscle physiology, hand force is needed for control, modeling and monitoring purposes. The use of inexpensive and easily portable active electromyography (EMG electrodes and position sensors would be advantageous in these applications compared to the use of force sensors which are often very expensive and require bulky frames. Among non-model-based estimation methods, Multilayer Perceptron Artificial Neural Networks (MLPANN has widely been used to estimate muscle force or joint torque from different anatomical features in humans or animals. This paper investigates the use of Radial Basis Function (RBF ANN and MLPANN for force estimation and experimentally compares the performance of the two methodologies for the same human anatomy, ie, hand force estimation, under an ensemble of operational conditions. In this unified study, the EMG signal readings from upper-arm muscles involved in elbow joint movement and elbow angular position and velocity are utilized as inputs to the ANNs. In addition, the use of the elbow angular acceleration signal as an input for the ANNs is also investigated.
A Comparative Approach to Hand Force Estimation using Artificial Neural Networks.
Mobasser, Farid; Hashtrudi-Zaad, Keyvan
2012-01-01
In many applications that include direct human involvement such as control of prosthetic arms, athletic training, and studying muscle physiology, hand force is needed for control, modeling and monitoring purposes. The use of inexpensive and easily portable active electromyography (EMG) electrodes and position sensors would be advantageous in these applications compared to the use of force sensors which are often very expensive and require bulky frames. Among non-model-based estimation methods, Multilayer Perceptron Artificial Neural Networks (MLPANN) has widely been used to estimate muscle force or joint torque from different anatomical features in humans or animals. This paper investigates the use of Radial Basis Function (RBF) ANN and MLPANN for force estimation and experimentally compares the performance of the two methodologies for the same human anatomy, ie, hand force estimation, under an ensemble of operational conditions. In this unified study, the EMG signal readings from upper-arm muscles involved in elbow joint movement and elbow angular position and velocity are utilized as inputs to the ANNs. In addition, the use of the elbow angular acceleration signal as an input for the ANNs is also investigated.
Directory of Open Access Journals (Sweden)
J. B. Habarulema
2012-05-01
Full Text Available In this work, results obtained by investigating the application of different neural network backpropagation training algorithms are presented. This was done to assess the performance accuracy of each training algorithm in total electron content (TEC estimations using identical datasets in models development and verification processes. Investigated training algorithms are standard backpropagation (SBP, backpropagation with weight delay (BPWD, backpropagation with momentum (BPM term, backpropagation with chunkwise weight update (BPC and backpropagation for batch (BPB training. These five algorithms are inbuilt functions within the Stuttgart Neural Network Simulator (SNNS and the main objective was to find out the training algorithm that generates the minimum error between the TEC derived from Global Positioning System (GPS observations and the modelled TEC data. Another investigated algorithm is the MatLab based Levenberg-Marquardt backpropagation (L-MBP, which achieves convergence after the least number of iterations during training. In this paper, neural network (NN models were developed using hourly TEC data (for 8 years: 2000–2007 derived from GPS observations over a receiver station located at Sutherland (SUTH (32.38° S, 20.81° E, South Africa. Verification of the NN models for all algorithms considered was performed on both "seen" and "unseen" data. Hourly TEC values over SUTH for 2003 formed the "seen" dataset. The "unseen" dataset consisted of hourly TEC data for 2002 and 2008 over Cape Town (CPTN (33.95° S, 18.47° E and SUTH, respectively. The models' verification showed that all algorithms investigated provide comparable results statistically, but differ significantly in terms of time required to achieve convergence during input-output data training/learning. This paper therefore provides a guide to neural network users for choosing appropriate algorithms based on the availability of computation capabilities used for research.
Directory of Open Access Journals (Sweden)
J. B. Habarulema
2012-05-01
Full Text Available In this work, results obtained by investigating the application of different neural network backpropagation training algorithms are presented. This was done to assess the performance accuracy of each training algorithm in total electron content (TEC estimations using identical datasets in models development and verification processes. Investigated training algorithms are standard backpropagation (SBP, backpropagation with weight delay (BPWD, backpropagation with momentum (BPM term, backpropagation with chunkwise weight update (BPC and backpropagation for batch (BPB training. These five algorithms are inbuilt functions within the Stuttgart Neural Network Simulator (SNNS and the main objective was to find out the training algorithm that generates the minimum error between the TEC derived from Global Positioning System (GPS observations and the modelled TEC data. Another investigated algorithm is the MatLab based Levenberg-Marquardt backpropagation (L-MBP, which achieves convergence after the least number of iterations during training. In this paper, neural network (NN models were developed using hourly TEC data (for 8 years: 2000–2007 derived from GPS observations over a receiver station located at Sutherland (SUTH (32.38° S, 20.81° E, South Africa. Verification of the NN models for all algorithms considered was performed on both "seen" and "unseen" data. Hourly TEC values over SUTH for 2003 formed the "seen" dataset. The "unseen" dataset consisted of hourly TEC data for 2002 and 2008 over Cape Town (CPTN (33.95° S, 18.47° E and SUTH, respectively. The models' verification showed that all algorithms investigated provide comparable results statistically, but differ significantly in terms of time required to achieve convergence during input-output data training/learning. This paper therefore provides a guide to neural network users for choosing appropriate algorithms based on the availability of computation capabilities used for research.
Network Inference and Maximum Entropy Estimation on Information Diagrams
Czech Academy of Sciences Publication Activity Database
Martin, E.A.; Hlinka, Jaroslav; Meinke, A.; Děchtěrenko, Filip; Tintěra, J.; Oliver, I.; Davidsen, J.
2017-01-01
Roč. 7, č. 1 (2017), č. článku 7062. ISSN 2045-2322 R&D Projects: GA ČR GA13-23940S; GA MZd(CZ) NV15-29835A Grant - others:GA MŠk(CZ) LO1611 Institutional support: RVO:67985807 Keywords : complex networks * mutual information * entropy maximization * fMRI Subject RIV: BD - Theory of Information Impact factor: 4.259, year: 2016
Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
Fabian Fröhlich; Barbara Kaltenbacher; Theis, Fabian J; Jan Hasenauer
2017-01-01
Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model ...
SAR ATR Based on Convolutional Neural Network
Directory of Open Access Journals (Sweden)
Tian Zhuangzhuang
2016-06-01
Full Text Available This study presents a new method of Synthetic Aperture Radar (SAR image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recognition SAR datasets prove the validity of this method.
Porosity Estimation By Artificial Neural Networks Inversion . Application to Algerian South Field
Eladj, Said; Aliouane, Leila; Ouadfeul, Sid-Ali
2017-04-01
One of the main geophysicist's current challenge is the discovery and the study of stratigraphic traps, this last is a difficult task and requires a very fine analysis of the seismic data. The seismic data inversion allows obtaining lithological and stratigraphic information for the reservoir characterization . However, when solving the inverse problem we encounter difficult problems such as: Non-existence and non-uniqueness of the solution add to this the instability of the processing algorithm. Therefore, uncertainties in the data and the non-linearity of the relationship between the data and the parameters must be taken seriously. In this case, the artificial intelligence techniques such as Artificial Neural Networks(ANN) is used to resolve this ambiguity, this can be done by integrating different physical properties data which requires a supervised learning methods. In this work, we invert the acoustic impedance 3D seismic cube using the colored inversion method, then, the introduction of the acoustic impedance volume resulting from the first step as an input of based model inversion method allows to calculate the Porosity volume using the Multilayer Perceptron Artificial Neural Network. Application to an Algerian South hydrocarbon field clearly demonstrate the power of the proposed processing technique to predict the porosity for seismic data, obtained results can be used for reserves estimation, permeability prediction, recovery factor and reservoir monitoring. Keywords: Artificial Neural Networks, inversion, non-uniqueness , nonlinear, 3D porosity volume, reservoir characterization .
Bayesian estimation inherent in a Mexican-hat-type neural network
Takiyama, Ken
2016-05-01
Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.
Kunwar, Bharat; Johansson, Anders
2015-01-01
Estimating city evacuation time is a non-trivial problem due to the interaction between thousands of individual agents, giving rise to various collective phenomena, such as bottleneck formation, intermittent flow and stop-and-go waves. We present a mean field approach to draw relationships between road network spatial attributes, number of evacuees and resultant evacuation time estimate (ETE). We divide $50$ medium sized UK cities into a total of $697$ catchment areas which we define as an area where all agents share the same nearest exit node. In these catchment areas, 90% of agents are within $5.4$ km of their designated exit node. We establish a characteristic flow rate from catchment area attributes (population, distance to exit node and exit node width) and a mean flow rate in free-flow regime by simulating total evacuations using an agent based `queuing network' model. We use these variables to determine a relationship between catchment area attributes and resultant ETE. This relationship could enable e...
Fast and Accurate Video PQoS Estimation over Wireless Networks
Directory of Open Access Journals (Sweden)
Emanuele Viterbo
2008-06-01
Full Text Available This paper proposes a curve fitting technique for fast and accurate estimation of the perceived quality of streaming media contents, delivered within a wireless network. The model accounts for the effects of various network parameters such as congestion, radio link power, and video transmission bit rate. The evaluation of the perceived quality of service (PQoS is based on the well-known VQM objective metric, a powerful technique which is highly correlated to the more expensive and time consuming subjective metrics. Currently, PQoS is used only for offline analysis after delivery of the entire video content. Thanks to the proposed simple model, we can estimate in real time the video PQoS and we can rapidly adapt the content transmission through scalable video coding and bit rates in order to offer the best perceived quality to the end users. The designed model has been validated through many different measurements in realistic wireless environments using an ad hoc WiFi test bed.
Bayesian estimation inherent in a Mexican-hat-type neural network.
Takiyama, Ken
2016-05-01
Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.
Location Estimation in Wireless Sensor Networks Using Spring-Relaxation Technique
Directory of Open Access Journals (Sweden)
Qing Zhang
2010-05-01
Full Text Available Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN. Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS is not practical. In this paper, we propose a low-cost WSN localization solution. Our design uses received signal strength indicators for ranging, light weight distributed algorithms based on the spring-relaxation technique for location computation, and the cooperative approach to achieve certain location estimation accuracy with a low number of nodes with known locations. We provide analysis to show the suitability of the spring-relaxation technique for WSN localization with cooperative approach, and perform simulation experiments to illustrate its accuracy in localization.
Location estimation in wireless sensor networks using spring-relaxation technique.
Zhang, Qing; Foh, Chuan Heng; Seet, Boon-Chong; Fong, A C M
2010-01-01
Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN). Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS) is not practical. In this paper, we propose a low-cost WSN localization solution. Our design uses received signal strength indicators for ranging, light weight distributed algorithms based on the spring-relaxation technique for location computation, and the cooperative approach to achieve certain location estimation accuracy with a low number of nodes with known locations. We provide analysis to show the suitability of the spring-relaxation technique for WSN localization with cooperative approach, and perform simulation experiments to illustrate its accuracy in localization.
Network Based High Speed Product Innovation
DEFF Research Database (Denmark)
Lindgren, Peter
In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...
Directory of Open Access Journals (Sweden)
Weikai Li
2017-08-01
Full Text Available Functional brain network (FBN has been becoming an increasingly important way to model the statistical dependence among neural time courses of brain, and provides effective imaging biomarkers for diagnosis of some neurological or psychological disorders. Currently, Pearson's Correlation (PC is the simplest and most widely-used method in constructing FBNs. Despite its advantages in statistical meaning and calculated performance, the PC tends to result in a FBN with dense connections. Therefore, in practice, the PC-based FBN needs to be sparsified by removing weak (potential noisy connections. However, such a scheme depends on a hard-threshold without enough flexibility. Different from this traditional strategy, in this paper, we propose a new approach for estimating FBNs by remodeling PC as an optimization problem, which provides a way to incorporate biological/physical priors into the FBNs. In particular, we introduce an L1-norm regularizer into the optimization model for obtaining a sparse solution. Compared with the hard-threshold scheme, the proposed framework gives an elegant mathematical formulation for sparsifying PC-based networks. More importantly, it provides a platform to encode other biological/physical priors into the PC-based FBNs. To further illustrate the flexibility of the proposed method, we extend the model to a weighted counterpart for learning both sparse and scale-free networks, and then conduct experiments to identify autism spectrum disorders (ASD from normal controls (NC based on the constructed FBNs. Consequently, we achieved an 81.52% classification accuracy which outperforms the baseline and state-of-the-art methods.
Constrained map-based inventory estimation
Paul C. Van Deusen; Francis A. Roesch
2007-01-01
A region can conceptually be tessellated into polygons at different scales or resolutions. Likewise, samples can be taken from the region to determine the value of a polygon variable for each scale. Sampled polygons can be used to estimate values for other polygons at the same scale. However, estimates should be compatible across the different scales. Estimates are...
Directory of Open Access Journals (Sweden)
Wen-Yeau Chang
2013-01-01
Full Text Available This paper proposes an equivalent circuit parameters measurement and estimation method for proton exchange membrane fuel cell (PEMFC. The parameters measurement method is based on current loading technique; in current loading test a no load PEMFC is suddenly turned on to obtain the waveform of the transient terminal voltage. After the equivalent circuit parameters were measured, a hybrid method that combines a radial basis function (RBF neural network and enhanced particle swarm optimization (EPSO algorithm is further employed for the equivalent circuit parameters estimation. The RBF neural network is adopted such that the estimation problem can be effectively processed when the considered data have different features and ranges. In the hybrid method, EPSO algorithm is used to tune the connection weights, the centers, and the widths of RBF neural network. Together with the current loading technique, the proposed hybrid estimation method can effectively estimate the equivalent circuit parameters of PEMFC. To verify the proposed approach, experiments were conducted to demonstrate the equivalent circuit parameters estimation of PEMFC. A practical PEMFC stack was purposely created to produce the common current loading activities of PEMFC for the experiments. The practical results of the proposed method were studied in accordance with the conditions for different loading conditions.
Hydrogel networks based on ABA triblock copolymers.
Tartivel, Lucile; Behl, Marc; Schroeter, Michael; Lendlein, Andreas
2012-01-01
Triblock copolymers from hydrophilic oligo(ethylene glycol) segment A and oligo(propylene glycol) segment B, providing an ABA structure (OEG-OPG-OEG triblock), are known to be biocompatible and are used as self-solidifying gels in drug depots. A complete removal of these depots would be helpful in cases of undesired side effects of a drug, but this remains a challenge as they liquefy below their transition temperature. Therefore we describe the synthesis of covalently cross-linked hydrogel networks. Triblock copolymer-based hydrogels were created by irradiating aqueous solutions of the corresponding macro-dimethacrylates with UV light. The degree of swelling, swelling kinetics, mechanical properties and morphology of the networks were investigated. Depending on precursor concentration, equilibrium degree of swelling of the films ranged between 500% and 880% and was reached in 1 hour. In addition, values for storage and loss moduli of the hydrogel networks were in the 100 Pa to 10 kPa range. Although OEG-OPG-OEG triblocks are known for their micellization, which could hamper polymer network formation, reactive OEG-OPG-OEG triblock oligomers could be successfully polymerized into hydrogel networks. The degree of swelling of these hydrogels depends on their molecular weight and on the oligomer concentration used for hydrogel preparation. In combination with the temperature sensitivity of the ABA triblock copolymers, it is assumed that such hydrogels might be beneficial for future medical applications - e.g., removable drug release systems.
Dynamic social networks based on movement
Scharf, Henry; Hooten, Mevin B.; Fosdick, Bailey K.; Johnson, Devin S.; London, Joshua M.; Durban, John W.
2016-01-01
Network modeling techniques provide a means for quantifying social structure in populations of individuals. Data used to define social connectivity are often expensive to collect and based on case-specific, ad hoc criteria. Moreover, in applications involving animal social networks, collection of these data is often opportunistic and can be invasive. Frequently, the social network of interest for a given population is closely related to the way individuals move. Thus, telemetry data, which are minimally invasive and relatively inexpensive to collect, present an alternative source of information. We develop a framework for using telemetry data to infer social relationships among animals. To achieve this, we propose a Bayesian hierarchical model with an underlying dynamic social network controlling movement of individuals via two mechanisms: an attractive effect and an aligning effect. We demonstrate the model and its ability to accurately identify complex social behavior in simulation, and apply our model to telemetry data arising from killer whales. Using auxiliary information about the study population, we investigate model validity and find the inferred dynamic social network is consistent with killer whale ecology and expert knowledge.
Estimating switching costs of changing social networking sites
Nakamura, Akihiro
2012-01-01
This study's empirical analysis shows that the consumers' switching costs when changing SNS are less than that when changing BB service. SNS switching cost is estimated at JPY 944, while that in BB service is estimated at JPY 2864 (JPY 80 = USD 1 on 21st May 2012). According to these results, the switching cost of the former is approximately one-third of that of the latter. One of the reasons why SNS switching costs are smaller could be because of the current small number of friends on SNS. I...
Can shoulder joint reaction forces be estimated by neural networks?
de Vries, W.H.K.; Veeger, H.E.J.; Baten, C.T.M.; van der Helm, F.C.T.
2016-01-01
To facilitate the development of future shoulder endoprostheses, a long term load profile of the shoulder joint is desired. A musculoskeletal model using 3D kinematics and external forces as input can estimate the mechanical load on the glenohumeral joint, in terms of joint reaction forces. For long
Aviles, Angelica I.; Alsaleh, Samar; Sobrevilla, Pilar; Casals, Alicia
2016-03-01
Robotic-Assisted Surgery approach overcomes the limitations of the traditional laparoscopic and open surgeries. However, one of its major limitations is the lack of force feedback. Since there is no direct interaction between the surgeon and the tissue, there is no way of knowing how much force the surgeon is applying which can result in irreversible injuries. The use of force sensors is not practical since they impose different constraints. Thus, we make use of a neuro-visual approach to estimate the applied forces, in which the 3D shape recovery together with the geometry of motion are used as input to a deep network based on LSTM-RNN architecture. When deep networks are used in real time, pre-processing of data is a key factor to reduce complexity and improve the network performance. A common pre-processing step is dimensionality reduction which attempts to eliminate redundant and insignificant information by selecting a subset of relevant features to use in model construction. In this work, we show the effects of dimensionality reduction in a real-time application: estimating the applied force in Robotic-Assisted Surgeries. According to the results, we demonstrated positive effects of doing dimensionality reduction on deep networks including: faster training, improved network performance, and overfitting prevention. We also show a significant accuracy improvement, ranging from about 33% to 86%, over existing approaches related to force estimation.
An Artificial Neural Network for Movement Pattern Analysis to Estimate Blood Alcohol Content Level.
Gharani, Pedram; Suffoletto, Brian; Chung, Tammy; Karimi, Hassan A
2017-12-13
Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of "just-in-time" injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN), we performed regression analysis to define a model determining association between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN) was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption.
Community structure of complex networks based on continuous neural network
Dai, Ting-ting; Shan, Chang-ji; Dong, Yan-shou
2017-09-01
As a new subject, the research of complex networks has attracted the attention of researchers from different disciplines. Community structure is one of the key structures of complex networks, so it is a very important task to analyze the community structure of complex networks accurately. In this paper, we study the problem of extracting the community structure of complex networks, and propose a continuous neural network (CNN) algorithm. It is proved that for any given initial value, the continuous neural network algorithm converges to the eigenvector of the maximum eigenvalue of the network modularity matrix. Therefore, according to the stability of the evolution of the network symbol will be able to get two community structure.
Application of Artificial Neural Networks for Efficient High-Resolution 2D DOA Estimation
Directory of Open Access Journals (Sweden)
M. Agatonović
2012-12-01
Full Text Available A novel method to provide high-resolution Two-Dimensional Direction of Arrival (2D DOA estimation employing Artificial Neural Networks (ANNs is presented in this paper. The observed space is divided into azimuth and elevation sectors. Multilayer Perceptron (MLP neural networks are employed to detect the presence of a source in a sector while Radial Basis Function (RBF neural networks are utilized for DOA estimation. It is shown that a number of appropriately trained neural networks can be successfully used for the high-resolution DOA estimation of narrowband sources in both azimuth and elevation. The training time of each smaller network is significantly re¬duced as different training sets are used for networks in detection and estimation stage. By avoiding the spectral search, the proposed method is suitable for real-time ap¬plications as it provides DOA estimates in a matter of seconds. At the same time, it demonstrates the accuracy comparable to that of the super-resolution 2D MUSIC algorithm.
Voice Quality Estimation in Combined Radio-VoIP Networks for Dispatching Systems
Directory of Open Access Journals (Sweden)
Jiri Vodrazka
2016-01-01
Full Text Available The voice quality modelling assessment and planning field is deeply and widely theoretically and practically mastered for common voice communication systems, especially for the public fixed and mobile telephone networks including Next Generation Networks (NGN - internet protocol based networks. This article seeks to contribute voice quality modelling assessment and planning for dispatching communication systems based on Internet Protocol (IP and private radio networks. The network plan, correction in E-model calculation and default values for the model are presented and discussed.
Quantitative learning strategies based on word networks
Zhao, Yue-Tian-Yi; Jia, Zi-Yang; Tang, Yong; Xiong, Jason Jie; Zhang, Yi-Cheng
2018-02-01
Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network.
Ouagal, M; Berkvens, D; Hendrikx, P; Fecher-Bourgeois, F; Saegerman, C
2012-12-01
In sub-Saharan Africa, most epidemiological surveillance networks for animal diseases were temporarily funded by foreign aid. It should be possible for national public funds to ensure the sustainability of such decision support tools. Taking the epidemiological surveillance network for animal diseases in Chad (REPIMAT) as an example, this study aims to estimate the network's cost by identifying the various costs and expenditures for each level of intervention. The network cost was estimated on the basis of an analysis of the operational organisation of REPIMAT, additional data collected in surveys and interviews with network field workers and a market price listing for Chad. These costs were then compared with those of other epidemiological surveillance networks in West Africa. The study results indicate that REPIMAT costs account for 3% of the State budget allocated to the Ministry of Livestock. In Chad in general, as in other West African countries, fixed costs outweigh variable costs at every level of intervention. The cost of surveillance principally depends on what is needed for surveillance at the local level (monitoring stations) and at the intermediate level (official livestock sectors and regional livestock delegations) and on the cost of the necessary equipment. In African countries, the cost of surveillance per square kilometre depends on livestock density.
Energy Technology Data Exchange (ETDEWEB)
Hancock, M.F. Jr. [Rollins College, Winter Park, FL (United States)
1995-12-31
The National Council on Compensation Insurance (NCCI) maintains a national data base of outcomes of workers` compensation claims. We consider whether a radial basis function network can predict the total dollar value of a claim based upon medical and demographic indicators (MDI`s). This work used data from 12,130 workers` compensation claims collected over a period of four years from the state of New Mexico. Two problems were addressed: (1) How well can the total incurred medical expense for all claims be predicted from available MDI`s? For individual claims? (2) How well can the duration of disability be predicted from available MDI`s? The available features intuitively correlated with total medical cost were selected, including type of injury, part of body injured, person`s age at time of injury, gender, marital status, etc. These features were statistically standardized and sorted by correlation with outcome valuation. Principal component analysis was applied. A radial basis function neural network was applied to the feature sets in both supervised and unsupervised training modes. For sets used in training, individual case valuations could consistently be predicted to within $1000 over 98% of the time. For these sets, it was possible to predict total medical expense for the training sets themselves to within 10%. When applied as blind tests against sets which were NOT part of the training data, the prediction was within 15% on the whole sets. Results on individual cases were very poor in only 30% of the cases were the predictions for the training sets within $1000 of their actual valuations. Single-factor analysis suggested that the presence of an attorney strongly decorrelated the data. A simple stratification was performed to remove cases involving attorneys and contested claims, and the procedures above repeated. Preliminary results based upon the very limited effort applied indicate that NCCI data support population estimates, but not single-point estimates.
Wardi, Y.; Gong, W.-B.; Cassandras, C. G.; Kallmes, M. H.
1991-01-01
The authors present smoothed perturbation analysis (SPA) estimators for the derivative of a number of occupancy-related functions in serial queuing networks with finite buffer spaces. The functions are the average number of customers at a network as seen by an arrival, the probability that a customer is blocked at a particular queue, and the probability that a customer leaves a queue empty. In all three cases, the variable is a parameter of the distribution of service times at one of the queues. The derivative estimators considered are very simple and flexible, and they easily lend themselves to analysis of unbiasedness. Unlike most of the established SPA estimators, the present ones are not based on the computation of hazard rates.
Estimating the Size of a Large Network and its Communities from a Random Sample.
Chen, Lin; Karbasi, Amin; Crawford, Forrest W
2016-01-01
Most real-world networks are too large to be measured or studied directly and there is substantial interest in estimating global network properties from smaller sub-samples. One of the most important global properties is the number of vertices/nodes in the network. Estimating the number of vertices in a large network is a major challenge in computer science, epidemiology, demography, and intelligence analysis. In this paper we consider a population random graph G = (V, E) from the stochastic block model (SBM) with K communities/blocks. A sample is obtained by randomly choosing a subset W ⊆ V and letting G(W) be the induced subgraph in G of the vertices in W. In addition to G(W), we observe the total degree of each sampled vertex and its block membership. Given this partial information, we propose an efficient PopULation Size Estimation algorithm, called PULSE, that accurately estimates the size of the whole population as well as the size of each community. To support our theoretical analysis, we perform an exhaustive set of experiments to study the effects of sample size, K, and SBM model parameters on the accuracy of the estimates. The experimental results also demonstrate that PULSE significantly outperforms a widely-used method called the network scale-up estimator in a wide variety of scenarios.
Some Estimation Approaches of Intensities for a Two Stage Open Queueing Network
Directory of Open Access Journals (Sweden)
Suresh B Pathare
2014-02-01
Full Text Available In this paper we propose a consistent and asymptotically normal estimator (CAN for intensity parameters for a queueing network with distribution-free inter-arrival and service times. Using this estimator and its estimated variance, some asymptotic confidence interval of intensities are constructed. Exact- t, Bootstrap-t, Variance-stabilized bootstrap-t, Standard bootstrap, Bayesian bootstrap, Percentile bootstrap and Bias-corrected and accelerated bootstrap are also applied to develop the confidence intervals of intensities. A comparative analysis is conducted to demonstrate performances of the confidence intervals of intensities for a queueing network with short run.
Diffusion Adaptation Over Clustered Multitask Networks Based on the Affine Projection Algorithm
Gogineni, Vinay Chakravarthi; Chakraborty, Mrityunjoy
2015-01-01
Distributed adaptive networks achieve better estimation performance by exploiting temporal and as well spatial diversity while consuming few resources. Recent works have studied the single task distributed estimation problem, in which the nodes estimate a single optimum parameter vector collaboratively. However, there are many important applications where the multiple vectors have to estimated simultaneously, in a collaborative manner. This paper presents multi-task diffusion strategies based...
Modeling acquaintance networks based on balance theory
Directory of Open Access Journals (Sweden)
Vukašinović Vida
2014-09-01
Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models
Estimating peer effects in networks with peer encouragement designs.
Eckles, Dean; Kizilcec, René F; Bakshy, Eytan
2016-07-05
Peer effects, in which the behavior of an individual is affected by the behavior of their peers, are central to social science. Because peer effects are often confounded with homophily and common external causes, recent work has used randomized experiments to estimate effects of specific peer behaviors. These experiments have often relied on the experimenter being able to randomly modulate mechanisms by which peer behavior is transmitted to a focal individual. We describe experimental designs that instead randomly assign individuals' peers to encouragements to behaviors that directly affect those individuals. We illustrate this method with a large peer encouragement design on Facebook for estimating the effects of receiving feedback from peers on posts shared by focal individuals. We find evidence for substantial effects of receiving marginal feedback on multiple behaviors, including giving feedback to others and continued posting. These findings provide experimental evidence for the role of behaviors directed at specific individuals in the adoption and continued use of communication technologies. In comparison, observational estimates differ substantially, both underestimating and overestimating effects, suggesting that researchers and policy makers should be cautious in relying on them.
Energy Technology Data Exchange (ETDEWEB)
Ma, Denglong [Fuli School of Food Equipment Engineering and Science, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); Zhang, Zaoxiao, E-mail: zhangzx@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); School of Chemical Engineering and Technology, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China)
2016-07-05
Highlights: • The intelligent network models were built to predict contaminant gas concentrations. • The improved network models coupled with Gaussian dispersion model were presented. • New model has high efficiency and accuracy for concentration prediction. • New model were applied to indentify the leakage source with satisfied results. - Abstract: Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.
Estimating marine aerosol particle volume and number from Maritime Aerosol Network data
Directory of Open Access Journals (Sweden)
A. M. Sayer
2012-09-01
Full Text Available As well as spectral aerosol optical depth (AOD, aerosol composition and concentration (number, volume, or mass are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The "average solution" MODIS dataset agrees more closely with MAN than the "best solution" dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data. However, without accurate AOD data and prior knowledge of
A Trace Data-Based Approach for an Accurate Estimation of Precise Utilization Maps in LTE
Directory of Open Access Journals (Sweden)
Almudena Sánchez
2017-01-01
Full Text Available For network planning and optimization purposes, mobile operators make use of Key Performance Indicators (KPIs, computed from Performance Measurements (PMs, to determine whether network performance needs to be improved. In current networks, PMs, and therefore KPIs, suffer from lack of precision due to an insufficient temporal and/or spatial granularity. In this work, an automatic method, based on data traces, is proposed to improve the accuracy of radio network utilization measurements collected in a Long-Term Evolution (LTE network. The method’s output is an accurate estimate of the spatial and temporal distribution for the cell utilization ratio that can be extended to other indicators. The method can be used to improve automatic network planning and optimization algorithms in a centralized Self-Organizing Network (SON entity, since potential issues can be more precisely detected and located inside a cell thanks to temporal and spatial precision. The proposed method is tested with real connection traces gathered in a large geographical area of a live LTE network and considers overload problems due to trace file size limitations, which is a key consideration when analysing a large network. Results show how these distributions provide a very detailed information of network utilization, compared to cell based statistics.
Directory of Open Access Journals (Sweden)
Youtao Gao
2017-01-01
Full Text Available In order to improve the accuracy of the dynamical model used in the orbit determination of the Lagrangian navigation satellites, the nonlinear perturbations acting on Lagrangian navigation satellites are estimated by a neural network. A neural network based state observer is applied to autonomously determine the orbits of Lagrangian navigation satellites using only satellite-to-satellite range. This autonomous orbit determination method does not require linearizing the dynamical mode. There is no need to calculate the transition matrix. It is proved that three satellite-to-satellite ranges are needed using this method; therefore, the navigation constellation should include four Lagrangian navigation satellites at least. Four satellites orbiting on the collinear libration orbits are chosen to construct a constellation which is used to demonstrate the utility of this method. Simulation results illustrate that the stable error of autonomous orbit determination is about 10 m. The perturbation can be estimated by the neural network.
Network-based recommendation algorithms: A review
Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš
2016-06-01
Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.
A personalized-model-based central aortic pressure estimation method.
Jiang, Sheng; Zhang, Zhi-Qiang; Wang, Fang; Wu, Jian-Kang
2016-12-08
Central Aortic Pressure (CAP) can be used to predict cardiovascular structural damage and cardiovascular events, and the development of simple, well-validated and non-invasive methods for CAP waveforms estimation is critical to facilitate the routine clinical applications of CAP. Existing widely applied methods, such as generalized transfer function (GTF-CAP) method and N-Point Moving Average (NPMA-CAP) method, are based on clinical practices, and lack a mathematical foundation. Those methods also have inherent drawback that there is no personalisation, and missing individual aortic characteristics. To overcome this pitfall, we present a personalized-model-based central aortic pressure estimation method (PM-CAP)in this paper. This PM-CAP has a mathematical foundation: a human aortic network model is proposed which is developed based on viscous fluid mechanics theory and could be personalized conveniently. Via measuring the pulse wave at the proximal and distal ends of the radial artery, the least square method is then proposed to estimate patient-specific circuit parameters. Thus the central aortic pulse wave can be obtained via calculating the transfer function between the radial artery and central aorta. An invasive validation study with 18 subjects comparing PM-CAP with direct aortic root pressure measurements during percutaneous transluminal coronary intervention was carried out at the Beijing Hospital. The experimental results show better performance of the PM-CAP method compared to the GTF-CAP method and NPMA-CAP method, which illustrates the feasibility and effectiveness of the proposed method. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of transport demand modeling in pollution estimation of a street network
Directory of Open Access Journals (Sweden)
Jović Jadranka J.
2009-01-01
Full Text Available The importance of transportation modeling, especially personal car flow modeling, is well recognized in transportation planning. Modern software tools give the possibility of generating many development scenarios of transport system, which can be tested quickly. Transportation models represent a good (and necessary basis in the procedure of environmental traffic impacts and energy emission estimation. Research in this paper deals with the possibility of using transportation modeling as a tool for estimation of some air pollution and global warming indicators on street network, produced by personal cars with internal combustion engines. These indicators could be the basis for defining planning and management solutions for transport system with respect to their environmental impacts. All the analyses are based on several years of research experience in Belgrade. According to the emissions of gases from the model, the values of other green house gases can be estimated using the known relations between the pollutants. There is a possibility that all these data can be used to calculate the transportation systems impact on temperature increase in urban areas.
Zhang, Baocheng; Liu, Teng; Yuan, Yunbin
2017-11-01
The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.
Research on Network Scanning Strategy Based on Information Granularity
Qin, Futong; Shi, Pengfei; Du, Jing; Cheng, Ruosi; Zhou, Yunyan
2017-10-01
As the basic mean to obtain the information of the targets network, network scanning is often used to discover the security risks and vulnerabilities existing on the network. However, with the development of network technology, the scale of network is more and more large, and the network scanning efficiency put forward higher requirements. In this paper, the concept of network scanning information granularity is proposed, and the design method of network scanning strategy based on information granularity is proposed. Based on single information granularity and hybrid information granularity, four network scanning strategies were designed and verified experimentally. Experiments show that the network scanning strategies based on hybrid information granularity can improve the efficiency of network scanning.
Cardinality Estimation Algorithm in Large-Scale Anonymous Wireless Sensor Networks
Douik, Ahmed
2017-08-30
Consider a large-scale anonymous wireless sensor network with unknown cardinality. In such graphs, each node has no information about the network topology and only possesses a unique identifier. This paper introduces a novel distributed algorithm for cardinality estimation and topology discovery, i.e., estimating the number of node and structure of the graph, by querying a small number of nodes and performing statistical inference methods. While the cardinality estimation allows the design of more efficient coding schemes for the network, the topology discovery provides a reliable way for routing packets. The proposed algorithm is shown to produce a cardinality estimate proportional to the best linear unbiased estimator for dense graphs and specific running times. Simulation results attest the theoretical results and reveal that, for a reasonable running time, querying a small group of nodes is sufficient to perform an estimation of 95% of the whole network. Applications of this work include estimating the number of Internet of Things (IoT) sensor devices, online social users, active protein cells, etc.
Correlation-based similarity networks for unequally sampled data
Rehfeld, Kira; Donges, Jonathan F.; Marwan, Norbert; Kurths, Jürgen
2010-05-01
Complex networks present a promising and increasingly popular paradigm for the description and analysis of interactions within complex spatially extended systems in the geosciences. Typically, a network is constructed by thresholding a similarity matrix which is based on a set of time series representing the system's dynamics at different locations. In geoscientific applications such as paleoclimate records derived from ice and sediment cores or speleothems, however, researchers are inherently faced with irregularly and heterogenously sampled time series. For this type of data, standard similarity measures, e.g., Pearson correlation or mutual information, must fail. Most attention has been placed on frequency-based methods focussing on the derivation of power spectra, such as the Lomb-Scargle periodogram. In the context of paleoscientific network research correlation estimation is of high interest, but available methods require interpolation prior to analysis. Here we present a generalization of the Pearson correlation coefficient adapted to irregularly sampled time series and show that it has advantages over the standard approach. Characterizing the method in the application to model systems we further extend our scope to real world data and show that it offers new options for network research and provide novel insights into the functioning of the earth system.
Structure Learning for Deep Neural Networks Based on Multiobjective Optimization.
Liu, Jia; Gong, Maoguo; Miao, Qiguang; Wang, Xiaogang; Li, Hao
2017-05-05
This paper focuses on the connecting structure of deep neural networks and proposes a layerwise structure learning method based on multiobjective optimization. A model with better generalization can be obtained by reducing the connecting parameters in deep networks. The aim is to find the optimal structure with high representation ability and better generalization for each layer. Then, the visible data are modeled with respect to structure based on the products of experts. In order to mitigate the difficulty of estimating the denominator in PoE, the denominator is simplified and taken as another objective, i.e., the connecting sparsity. Moreover, for the consideration of the contradictory nature between the representation ability and the network connecting sparsity, the multiobjective model is established. An improved multiobjective evolutionary algorithm is used to solve this model. Two tricks are designed to decrease the computational cost according to the properties of input data. The experiments on single-layer level, hierarchical level, and application level demonstrate the effectiveness of the proposed algorithm, and the learned structures can improve the performance of deep neural networks.
Wireless Sensor Network Based Smart Parking System
Directory of Open Access Journals (Sweden)
Jeffrey JOSEPH
2014-01-01
Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.
Dynamics of hate based Internet user networks
Sobkowicz, P.; Sobkowicz, A.
2010-02-01
We present a study of the properties of network of political discussions on one of the most popular Polish Internet forums. This provides the opportunity to study the computer mediated human interactions in strongly bipolar environment. The comments of the participants are found to be mostly disagreements, with strong percentage of invective and provocative ones. Binary exchanges (quarrels) play significant role in the network growth and topology. Statistical analysis shows that the growth of the discussions depends on the degree of controversy of the subject and the intensity of personal conflict between the participants. This is in contrast to most previously studied social networks, for example networks of scientific citations, where the nature of the links is much more positive and based on similarity and collaboration rather than opposition and abuse. The work discusses also the implications of the findings for more general studies of consensus formation, where our observations of increased conflict contradict the usual assumptions that interactions between people lead to averaging of opinions and agreement.
Community detection based on network communicability
Estrada, Ernesto
2011-03-01
We propose a new method for detecting communities based on the concept of communicability between nodes in a complex network. This method, designated as N-ComBa K-means, uses a normalized version of the adjacency matrix to build the communicability matrix and then applies K-means clustering to find the communities in a graph. We analyze how this method performs for some pathological cases found in the analysis of the detection limit of communities and propose some possible solutions on the basis of the analysis of the ratio of local to global densities in graphs. We use four different quality criteria for detecting the best clustering and compare the new approach with the Girvan-Newman algorithm for the analysis of two "classical" networks: karate club and bottlenose dolphins. Finally, we analyze the more challenging case of homogeneous networks with community structure, for which the Girvan-Newman completely fails in detecting any clustering. The N-ComBa K-means approach performs very well in these situations and we applied it to detect the community structure in an international trade network of miscellaneous manufactures of metal having these characteristics. Some final remarks about the general philosophy of community detection are also discussed.
Community detection based on network communicability.
Estrada, Ernesto
2011-03-01
We propose a new method for detecting communities based on the concept of communicability between nodes in a complex network. This method, designated as N-ComBa K-means, uses a normalized version of the adjacency matrix to build the communicability matrix and then applies K-means clustering to find the communities in a graph. We analyze how this method performs for some pathological cases found in the analysis of the detection limit of communities and propose some possible solutions on the basis of the analysis of the ratio of local to global densities in graphs. We use four different quality criteria for detecting the best clustering and compare the new approach with the Girvan-Newman algorithm for the analysis of two "classical" networks: karate club and bottlenose dolphins. Finally, we analyze the more challenging case of homogeneous networks with community structure, for which the Girvan-Newman completely fails in detecting any clustering. The N-ComBa K-means approach performs very well in these situations and we applied it to detect the community structure in an international trade network of miscellaneous manufactures of metal having these characteristics. Some final remarks about the general philosophy of community detection are also discussed.
Timescale analysis of rule-based biochemical reaction networks.
Klinke, David J; Finley, Stacey D
2012-01-01
The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed on reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of interleukin-12 (IL-12) signaling in naïve CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based on the available data. The analysis correctly predicted that reactions associated with Janus Kinase 2 and Tyrosine Kinase 2 binding to their corresponding receptor exist at a pseudo-equilibrium. By contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. Copyright © 2011 American Institute of Chemical Engineers (AIChE).
Di Nuovo, Alessandro G; Di Nuovo, Santo; Buono, Serafino
2012-02-01
The estimation of a person's intelligence quotient (IQ) by means of psychometric tests is indispensable in the application of psychological assessment to several fields. When complex tests as the Wechsler scales, which are the most commonly used and universally recognized parameter for the diagnosis of degrees of retardation, are not applicable, it is necessary to use other psycho-diagnostic tools more suited for the subject's specific condition. But to ensure a homogeneous diagnosis it is necessary to reach a common metric, thus, the aim of our work is to build models able to estimate accurately and reliably the Wechsler IQ, starting from different psycho-diagnostic tools. Four different psychometric tests (Leiter international performance scale; coloured progressive matrices test; the mental development scale; psycho educational profile), along with the Wechsler scale, were administered to a group of 40 mentally retarded subjects, with various pathologies, and control persons. The obtained database is used to evaluate Wechsler IQ estimation models starting from the scores obtained in the other tests. Five modelling methods, two statistical and three from machine learning, that belong to the family of artificial neural networks (ANNs) are employed to build the estimator. Several error metrics for estimated IQ and for retardation level classification are defined to compare the performance of the various models with univariate and multivariate analyses. Eight empirical studies show that, after ten-fold cross-validation, best average estimation error is of 3.37 IQ points and mental retardation level classification error of 7.5%. Furthermore our experiments prove the superior performance of ANN methods over statistical regression ones, because in all cases considered ANN models show the lowest estimation error (from 0.12 to 0.9 IQ points) and the lowest classification error (from 2.5% to 10%). Since the estimation performance is better than the confidence interval of
A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks.
Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin
2016-09-07
Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay.
Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.
Kiparissides, A; Hatzimanikatis, V
2017-01-01
The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier
A comparison of biomarker based incidence estimators.
Directory of Open Access Journals (Sweden)
Thomas A McWalter
Full Text Available BACKGROUND: Cross-sectional surveys utilizing biomarkers that test for recent infection provide a convenient and cost effective way to estimate HIV incidence. In particular, the BED assay has been developed for this purpose. Controversy surrounding the way in which false positive results from the biomarker should be handled has lead to a number of different estimators that account for imperfect specificity. We compare the estimators proposed by McDougal et al., Hargrove et al. and McWalter & Welte. METHODOLOGY/PRINCIPAL FINDINGS: The three estimators are analyzed and compared. An identity showing a relationship between the calibration parameters in the McDougal methodology is shown. When the three estimators are tested under a steady state epidemic, which includes individuals who fail to progress on the biomarker, only the McWalter/Welte method recovers an unbiased result. CONCLUSIONS/SIGNIFICANCE: Our analysis shows that the McDougal estimator can be reduced to a formula that only requires calibration of a mean window period and a long-term specificity. This allows simpler calibration techniques to be used and shows that all three estimators can be expressed using the same set of parameters. The McWalter/Welte method is applicable under the least restrictive assumptions and is the least prone to bias of the methods reviewed.
Research of ad hoc network based on SINCGARS network
Nie, Hao; Cai, Xiaoxia; Chen, Hong; Chen, Jian; Weng, Pengfei
2016-03-01
In today's world, science and technology make a spurt of progress, so society has entered the era of information technology, network. Only the comprehensive use of electronic warfare and network warfare means can we maximize their access to information and maintain the information superiority. Combined with the specific combat mission and operational requirements, the research design and construction in accordance with the actual military which are Suitable for the future of information technology needs of the tactical Adhoc network, tactical internet, will greatly improve the operational efficiency of the command of the army. Through the study of the network of the U.S. military SINCGARS network, it can explore the routing protocol and mobile model, to provide a reference for the research of our army network.
Estimating sediment-fill thickness in intermontane valleys using artificial neural networks
Mey, Juergen; Scherler, Dirk; Strecker, Manfred R.; Zeilinger, Gerold
2014-05-01
Knowledge about the thickness and spatial distribution of sedimentary fills in intermontane valleys and internally drained orogenic plateau settings is important for many applications in the fields of hydrology, geology, geohazards, economic resources, and geomorphology. However, direct measurements of sediment thickness are time consuming and require sophisticated geophysical tools, infrastructure and logistics that are often not available. This has resulted in a general scarcity of such data, often incomplete and fraught with error, especially in remote areas. Here, we present a new approach to estimate valley fill thickness based on the geometric properties of a landscape using artificial neural networks. We test the potential of this approach by employing a 3-stage procedure. First, we run tests with three synthetic datasets representing valleys involving different complexities to explore our model's sensitivity to network architecture and training data. Second, we apply the method to a glacierized setting in the European Alps in the region of the Unteraar Glacier and the Rhone Glacier where ground-penetrating radar measurements of ice thickness allow for an analysis of the prediction performance in active subglacial terrain. In the third step, we estimate the sediment-fill thickness of the Rhone Valley, one of the largest intermontane basins in the Western Alps, where seismic reflection data are used as a benchmark for an assessment of the method's performance on a large spatial scale of a formerly glaciated landscape. Our results to date show that a successful application strongly depends on the network architecture and the choice of the training region. For the currently ice-covered catchments our prediction of the ice thickness is in good agreement with the geophysical control data, but below that of methods, which are based on ice-mechanical principles. However, in case of the sedimentary fill of the Rhone Valley where no corresponding physically-based
Balouchestani, Mohammadreza
2017-05-01
Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.
SINR-based Network Selection for Optimization in Heterogeneous Wireless Networks (HWNs
Directory of Open Access Journals (Sweden)
Abubakar M. Miyim
2016-02-01
Full Text Available To guarantee the phenomenon of “Always Best Connection” in heterogeneous wireless networks, a vertical handover optimization is necessary to realize seamless mobility. Received signal strength (RSS from the user equipment (UE contains interference from surrounding base stations, which happens to be a function of the network load of the nearby cells. An expression is derived for the received SINR (signal to interference and noise ratio as a function of traffic load in interfering cells of data networks. A better estimate of the UE SINR is achieved by taking into account the contribution of inter-cell interference. The proposed scheme affords UE to receive high throughput with less data rate, and hence benefits users who are located far from the base station. The proposed scheme demonstrates an improved throughput between the serving base station and the cell boundary.
Gilani, Syed Sherjeel Ahmad; Zubair, Muhammad; Khan, Zeeshan Shafi
Infrastructure-based Wireless Mesh Networks are emerging as an affordable, robust, flexible and scalable technology. With the advent of Wireless Mesh Networks (WMNs) the dream of connecting multiple technology based networks seems to come true. A fully secure WMN is still a challenge for the researchers. In infrastructure-based WMNs almost all types of existing Wireless Networks like Wi-Fi, Cellular, WiMAX, and Sensor etc can be connected through Wireless Mesh Routers (WMRs). This situation can lead to a security problem. Some nodes can be part of the network with high processing power, large memory and least energy issues while others may belong to a network having low processing power, small memory and serious energy limitations. The later type of the nodes is very much vulnerable to targeted attacks. In our research we have suggested to set some rules on the WMR to mitigate these kinds of targeted flooding attacks. The WMR will then share those set of rules with other WMRs for Effective Utilization of Resources.
Real-time yield estimation based on deep learning
Rahnemoonfar, Maryam; Sheppard, Clay
2017-05-01
Crop yield estimation is an important task in product management and marketing. Accurate yield prediction helps farmers to make better decision on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on the manual counting of fruits is very time consuming and expensive process and it is not practical for big fields. Robotic systems including Unmanned Aerial Vehicles (UAV) and Unmanned Ground Vehicles (UGV), provide an efficient, cost-effective, flexible, and scalable solution for product management and yield prediction. Recently huge data has been gathered from agricultural field, however efficient analysis of those data is still a challenging task. Computer vision approaches currently face diffident challenges in automatic counting of fruits or flowers including occlusion caused by leaves, branches or other fruits, variance in natural illumination, and scale. In this paper a novel deep convolutional network algorithm was developed to facilitate the accurate yield prediction and automatic counting of fruits and vegetables on the images. Our method is robust to occlusion, shadow, uneven illumination and scale. Experimental results in comparison to the state-of-the art show the effectiveness of our algorithm.
Advanced neural network-based computational schemes for robust fault diagnosis
Mrugalski, Marcin
2014-01-01
The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...
Directory of Open Access Journals (Sweden)
Zhuo Qi Lee
Full Text Available Biased random walk has been studied extensively over the past decade especially in the transport and communication networks communities. The mean first passage time (MFPT of a biased random walk is an important performance indicator in those domains. While the fundamental matrix approach gives precise solution to MFPT, the computation is expensive and the solution lacks interpretability. Other approaches based on the Mean Field Theory relate MFPT to the node degree alone. However, nodes with the same degree may have very different local weight distribution, which may result in vastly different MFPT. We derive an approximate bound to the MFPT of biased random walk with short relaxation time on complex network where the biases are controlled by arbitrarily assigned node weights. We show that the MFPT of a node in this general case is closely related to not only its node degree, but also its local weight distribution. The MFPTs obtained from computer simulations also agree with the new theoretical analysis. Our result enables fast estimation of MFPT, which is useful especially to differentiate between nodes that have very different local node weight distribution even though they share the same node degrees.
Optimising TCP for cloud-based mobile networks
DEFF Research Database (Denmark)
Artuso, Matteo; Christiansen, Henrik Lehrmann
2016-01-01
Cloud-based mobile networks are foreseen to be a technological enabler for the next generation of mobile networks. Their design requires substantial research as they pose unique challenges, especially from the point of view of additional delays in the fronthaul network. Commonly used network prot...
Eom, Young-Ho; Jo, Hang-Hyun
2015-05-11
Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks can be used to effectively reveal the network structure only with limited local information.
Eom, Young-Ho; Jo, Hang-Hyun
2015-05-01
Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks can be used to effectively reveal the network structure only with limited local information.
Energy Technology Data Exchange (ETDEWEB)
Schuelke, J.S.; Quirein, J.A.; Sarg, J.F.
1998-12-31
This case study shows the benefit of using multiple seismic trace attributes and the pattern recognition capabilities of neural networks to predict reservoir architecture and porosity distribution in the Pegasus Field, West Texas. The study used the power of neural networks to integrate geologic, borehole and seismic data. Illustrated are the improvements between the new neural network approach and the more traditional method of seismic trace inversion for porosity estimation. Comprehensive statistical methods and interpretational/subjective measures are used in the prediction of porosity from seismic attributes. A 3-D volume of seismic derived porosity estimates for the Devonian reservoir provide a very detailed estimate of porosity, both spatially and vertically, for the field. The additional reservoir porosity detail provided, between the well control, allows for optimal placement of horizontal wells and improved field development. 6 refs., 2 figs.
The Everglades Depth Estimation Network (EDEN) surface-water model, version 2
Telis, Pamela A.; Xie, Zhixiao; Liu, Zhongwei; Li, Yingru; Conrads, Paul
2015-01-01
The Everglades Depth Estimation Network (EDEN) is an integrated network of water-level gages, interpolation models that generate daily water-level and water-depth data, and applications that compute derived hydrologic data across the freshwater part of the greater Everglades landscape. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN in order for EDEN to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan.
Zhu, Xiaoyuan; Zhang, Hui; Yang, Bo; Zhang, Guichen
2018-01-01
In order to improve oscillation damping control performance as well as gear shift quality of electric vehicle equipped with integrated motor-transmission system, a cloud-based shaft torque estimation scheme is proposed in this paper by using measurable motor and wheel speed signals transmitted by wireless network. It can help reduce computational burden of onboard controllers and also relief network bandwidth requirement of individual vehicle. Considering possible delays during signal wireless transmission, delay-dependent full-order observer design is proposed to estimate the shaft torque in cloud server. With these random delays modeled by using homogenous Markov chain, robust H∞ performance is adopted to minimize the effect of wireless network-induced delays, signal measurement noise as well as system modeling uncertainties on shaft torque estimation error. Observer parameters are derived by solving linear matrix inequalities, and simulation results using acceleration test and tip-in, tip-out test demonstrate the effectiveness of proposed shaft torque observer design.
Directory of Open Access Journals (Sweden)
Grosso Juan M.
2016-09-01
Full Text Available This paper proposes a reliability-based economic model predictive control (MPC strategy for the management of generalised flow-based networks, integrating some ideas on network service reliability, dynamic safety stock planning, and degradation of equipment health. The proposed strategy is based on a single-layer economic optimisation problem with dynamic constraints, which includes two enhancements with respect to existing approaches. The first enhancement considers chance-constraint programming to compute an optimal inventory replenishment policy based on a desired risk acceptability level, leading to dynamical allocation of safety stocks in flow-based networks to satisfy non-stationary flow demands. The second enhancement computes a smart distribution of the control effort and maximises actuators’ availability by estimating their degradation and reliability. The proposed approach is illustrated with an application of water transport networks using the Barcelona network as the case study considered.
Directory of Open Access Journals (Sweden)
Dawei Han
2012-02-01
Full Text Available The application of ANNs (Artifi cial Neural Networks has been studied by many researchers in modelling rainfall runoff processes. However, the work so far has been focused on the rainfall data from traditional raingauges. Weather radar is a modern technology which could provide high resolution rainfall in time and space. In this study, a comparison in rainfall runoff modelling between the raingauge and weather radar has been carried out. The data were collected from Brue catchment in Southwest of England, with 49 raingauges covering 136 km2 and two C-band weather radars. This raingauge network is extremely dense (for research purposes and does not represent the usual raingauge density in operational flood forecasting systems. The ANN models were set up with both lumped and spatial rainfall input. The results showed that raingauge data outperformed radar data in all the events tested, regardless of the lumped and spatial input. La aplicación de Redes Neuronales Artificiales (RNA en el modelado de lluvia-flujo ha sido estudiada ampliamente. Sin embargo, hasta ahora se han utilizado datos provenientes de pluviómetros tradicionales. Los radares meteorológicos son una tecnología moderna que puede proveer datos de lluvia de alta resolución en tiempo y espacio. Este es un trabajo de comparación en el modelado lluvia-flujo entre pluviómetros y radares meteorológicos. Los datos provienen de la cuenca del río Brue en el suroeste de Inglaterra, con 49 pluviómetros cubriendo 136 km2 y dos radares meteorológicos en la banda C. Esta red de pluviómetros es extremadamente densa (para investigación y no representa la densidad usual en sistemas de predicción de inundaciones. Los modelos de RNA fueron implementados con datos de entrada de lluvia tanto espaciados como no distribuidos. Los resultados muestran que los datos de los pluviómetros fueron mejores que los datos de los radares en todos los eventos probados.
Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks
Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Rahmani, Amirreza
2011-01-01
Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a
Network-based analysis of proteomic profiles
Wong, Limsoon
2016-01-26
Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.
Sign: large-scale gene network estimation environment for high performance computing.
Tamada, Yoshinori; Shimamura, Teppei; Yamaguchi, Rui; Imoto, Seiya; Nagasaki, Masao; Miyano, Satoru
2011-01-01
Our research group is currently developing software for estimating large-scale gene networks from gene expression data. The software, called SiGN, is specifically designed for the Japanese flagship supercomputer "K computer" which is planned to achieve 10 petaflops in 2012, and other high performance computing environments including Human Genome Center (HGC) supercomputer system. SiGN is a collection of gene network estimation software with three different sub-programs: SiGN-BN, SiGN-SSM and SiGN-L1. In these three programs, five different models are available: static and dynamic nonparametric Bayesian networks, state space models, graphical Gaussian models, and vector autoregressive models. All these models require a huge amount of computational resources for estimating large-scale gene networks and therefore are designed to be able to exploit the speed of 10 petaflops. The software will be available freely for "K computer" and HGC supercomputer system users. The estimated networks can be viewed and analyzed by Cell Illustrator Online and SBiP (Systems Biology integrative Pipeline). The software project web site is available at http://sign.hgc.jp/ .
Network Slicing Based 5G and Future Mobile Networks: Mobility, Resource Management, and Challenges
Zhang, H.; Liu, N.; Chu, X; Long, K.; Aghvami, A.; Leung, V. C. M.
2017-01-01
The fifth-generation (5G) networks are expected to be able to satisfy users' different quality-of-service (QoS) requirements. Network slicing is a promising technology for 5G networks to provide services tailored for users' specific QoS demands. Driven by the increased massive wireless data traffic from different application scenarios, efficient resource allocation schemes should be exploited to improve the flexibility of network resource allocation and capacity of 5G networks based on networ...
Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco
2015-02-05
One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.
Bootstrap-Based Inference for Cube Root Consistent Estimators
DEFF Research Database (Denmark)
Cattaneo, Matias D.; Jansson, Michael; Nagasawa, Kenichi
This note proposes a consistent bootstrap-based distributional approximation for cube root consistent estimators such as the maximum score estimator of Manski (1975) and the isotonic density estimator of Grenander (1956). In both cases, the standard nonparametric bootstrap is known to be inconsis......This note proposes a consistent bootstrap-based distributional approximation for cube root consistent estimators such as the maximum score estimator of Manski (1975) and the isotonic density estimator of Grenander (1956). In both cases, the standard nonparametric bootstrap is known...
Blind Reverberation Time Estimation Based on Laplace Distribution
Jan, Tariqullah; Wang, Wenwu
2012-01-01
We propose an algorithm for the estimation of reverberation time (RT) from the reverberant speech signal by using a maximum likelihood (ML) estimator. Based on the analysis of an existing RT estimation method, which models the reverberation decay as a Gaussian random process modulated by a deterministic envelope, a Laplacian distribution based decay model is proposed in which an efficient procedure for locating free decay from reverberant speech is also incorporated. Then the RT is estimated ...
Community Detection for Multiplex Social Networks Based on Relational Bayesian Networks
DEFF Research Database (Denmark)
Jiang, Jiuchuan; Jaeger, Manfred
2014-01-01
. In this paper we propose to use relational Bayesian networks for the specification of probabilistic network models, and develop inference techniques that solve the community detection problem based on these models. The use of relational Bayesian networks as a flexible high-level modeling framework enables us......Many techniques have been proposed for community detection in social networks. Most of these techniques are only designed for networks defined by a single relation. However, many real networks are multiplex networks that contain multiple types of relations and different attributes on the nodes...
Dynamic Object Identification with SOM-based neural networks
Directory of Open Access Journals (Sweden)
Aleksey Averkin
2014-03-01
Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.
Non-Linear State Estimation Using Pre-Trained Neural Networks
DEFF Research Database (Denmark)
Bayramoglu, Enis; Andersen, Nils Axel; Ravn, Ole
2010-01-01
effecting the transformation. This function is approximated by a neural network using offline training. The training is based on monte carlo sampling. A way to obtain parametric distributions of flexible shape to be used easily with these networks is also presented. The method can also be used to improve...... other parametric methods around regions with strong non-linearities by including them inside the network....
Network-based automation for SMEs
DEFF Research Database (Denmark)
Parizi, Mohammad Shahabeddini; Radziwon, Agnieszka
2017-01-01
could be obtained through network interaction. Based on two extreme cases of SMEs representing low-tech industry and an in-depth analysis of their manufacturing facilities this paper presents how collaboration between firms embedded in a regional ecosystem could result in implementation of new...... automation solutions. The empirical data collection involved application of a combination of comparative case study method with action research elements. This article provides an outlook over the challenges in implementing technological improvements and the way how it could be resolved in collaboration......, this paper develops and discusses a set of guidelines for systematic productivity improvement within an innovative collaboration in regards to automation processes in SMEs....
WEB BASED LEARNING OF COMPUTER NETWORK COURSE
Directory of Open Access Journals (Sweden)
Hakan KAPTAN
2004-04-01
Full Text Available As a result of developing on Internet and computer fields, web based education becomes one of the area that many improving and research studies are done. In this study, web based education materials have been explained for multimedia animation and simulation aided Computer Networks course in Technical Education Faculties. Course content is formed by use of university course books, web based education materials and technology web pages of companies. Course content is formed by texts, pictures and figures to increase motivation of students and facilities of learning some topics are supported by animations. Furthermore to help working principles of routing algorithms and congestion control algorithms simulators are constructed in order to interactive learning
The use of neural networks in identifying error sources in satellite-derived tropical SST estimates.
Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin
2011-01-01
An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%.
The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates
Directory of Open Access Journals (Sweden)
Yu-Hsin Cheng
2011-07-01
Full Text Available An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES. By using the Back Propagation Network (BPN algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%.
Canepa, Edward S.
2017-06-19
Nowadays, traffic management has become a challenge for urban areas, which are covering larger geographic spaces and facing the generation of different kinds of traffic data. This article presents a robust traffic estimation framework for highways modeled by a system of Lighthill Whitham Richards equations that is able to assimilate different sensor data available. We first present an equivalent formulation of the problem using a Hamilton–Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton–Jacobi equation are linear ones. We then pose the problem of estimating the traffic density given incomplete and inaccurate traffic data as a Mixed Integer Program. We then extend the density estimation framework to highway networks with any available data constraint and modeling junctions. Finally, we present a travel estimation application for a small network using real traffic measurements obtained obtained during Mobile Century traffic experiment, and comparing the results with ground truth data.
Wang, Gang; Briskot, Till; Hahn, Tobias; Baumann, Pascal; Hubbuch, Jürgen
2017-03-03
Mechanistic modeling has been repeatedly successfully applied in process development and control of protein chromatography. For each combination of adsorbate and adsorbent, the mechanistic models have to be calibrated. Some of the model parameters, such as system characteristics, can be determined reliably by applying well-established experimental methods, whereas others cannot be measured directly. In common practice of protein chromatography modeling, these parameters are identified by applying time-consuming methods such as frontal analysis combined with gradient experiments, curve-fitting, or combined Yamamoto approach. For new components in the chromatographic system, these traditional calibration approaches require to be conducted repeatedly. In the presented work, a novel method for the calibration of mechanistic models based on artificial neural network (ANN) modeling was applied. An in silico screening of possible model parameter combinations was performed to generate learning material for the ANN model. Once the ANN model was trained to recognize chromatograms and to respond with the corresponding model parameter set, it was used to calibrate the mechanistic model from measured chromatograms. The ANN model's capability of parameter estimation was tested by predicting gradient elution chromatograms. The time-consuming model parameter estimation process itself could be reduced down to milliseconds. The functionality of the method was successfully demonstrated in a study with the calibration of the transport-dispersive model (TDM) and the stoichiometric displacement model (SDM) for a protein mixture. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Noise-insensitive no-reference image blur estimation by convolutional neural networks
Wegner, D.; Koerber, M.; Repasi, E.
2017-05-01
A few image quality metrics for blur assessment have been presented in the last years. However, most of those metrics do not take image noise into account. Yet, image noise is an unavoidable part of the image forming process with digital cameras. Some thermal imagers show larger sensor noise and inhomogeneity compared to cameras operating in the visible range. Further, natural imagery might contain a combination of several degradations. Assessment of degraded images by observer trials is expensive and time consuming. A single robust quality metric might be derived by metrics highly responsive to single degradations and insensitive to others. Hence separate assessment of image blur and noise seems to be reasonable. In this paper we present a deep learning approach for noise-insensitive blur predictions by using Convolutional Neural Networks (CNN) on image patches. In contrast to current blur metrics the model output is highly correlated to blur distortion over a wide range of image noise. The model is trained on images of ImageNet database impaired by Gaussian blur and noise and tested on artificial and natural image data. Local blur estimation based on patches is especially useful for estimation of non-uniform blur due to motion and atmospheric turbulence.
Ren, Yihui; Eubank, Stephen; Nath, Madhurima
2016-10-01
Network reliability is the probability that a dynamical system composed of discrete elements interacting on a network will be found in a configuration that satisfies a particular property. We introduce a reliability property, Ising feasibility, for which the network reliability is the Ising model's partition function. As shown by Moore and Shannon, the network reliability can be separated into two factors: structural, solely determined by the network topology, and dynamical, determined by the underlying dynamics. In this case, the structural factor is known as the joint density of states. Using methods developed to approximate the structural factor for other reliability properties, we simulate the joint density of states, yielding an approximation for the partition function. Based on a detailed examination of why naïve Monte Carlo sampling gives a poor approximation, we introduce a parallel scheme for estimating the joint density of states using a Markov-chain Monte Carlo method with a spin-exchange random walk. This parallel scheme makes simulating the Ising model in the presence of an external field practical on small computer clusters for networks with arbitrary topology with ∼10^{6} energy levels and more than 10^{308} microstates.
A study of Time-varying Cost Parameter Estimation Methods in Traffic Networks for Mobile Robots
Das, Pragna; Xirgo, Lluís Ribas
2015-01-01
Industrial robust controlling systems built using automated guided vehicles (AGVs) requires planning which depends on cost parameters like time and energy of the mobile robots functioning in the system. This work addresses the problem of on-line traversal time identification and estimation for proper mobility of mobile robots on systems' traffic networks. Several filtering and estimation methods have been investigated with respect to proper identification of traversal time of arcs of systems'...
The implementation of a standards based heterogeneous network
Energy Technology Data Exchange (ETDEWEB)
Eldridge, J.M.; Tolendino, L.F.
1991-08-05
Computer networks, supporting an organization's activities, are prevalent and very important to the organization's mission. Implementing a heterogenous organizational network allows the staff to select the computing environment that best supports their job requirements. This paper outlines the lessons learned implementing a heterogenous computer network based on networking standards such as TCP/IP and Ethernet. Such a network is a viable alternative to a proprietary, vendor supported network and can provide all the functionality customers expect in a computer network. 2 figs.
Networking activities in technology-based entrepreneurial teams
DEFF Research Database (Denmark)
Neergaard, Helle
2005-01-01
Based on social network theoy, this article investigates the distribution of networking roles and responsibilities in entrepreneurial founding teams. Its focus is on the team as a collection of individuals, thus allowing the research to address differences in networking patterns. It identifies six...... central networking activities and shows that not all founding team members are equally active 'networkers'. The analyses show that team members prioritize different networking activities and that one member in particular has extensive networking activities whereas other memebrs of the team are more...
Path capacity estimation in heterogeneous, best-effort, small-scale IP networks
Delphinanto, A.; Koonen, T.; Zhang, S.; Den Hartog, F.
2010-01-01
Current QoS solutions for IP networks are usually based on traffic classification and need to be supported by every device in the end-to-end path to be effective. This is relatively expensive for home networks. Alternative techniques have been proposed that require end-user services to pragmatically
UPM: unified policy-based network management
Law, Eddie; Saxena, Achint
2001-07-01
Besides providing network management to the Internet, it has become essential to offer different Quality of Service (QoS) to users. Policy-based management provides control on network routers to achieve this goal. The Internet Engineering Task Force (IETF) has proposed a two-tier architecture whose implementation is based on the Common Open Policy Service (COPS) protocol and Lightweight Directory Access Protocol (LDAP). However, there are several limitations to this design such as scalability and cross-vendor hardware compatibility. To address these issues, we present a functionally enhanced multi-tier policy management architecture design in this paper. Several extensions are introduced thereby adding flexibility and scalability. In particular, an intermediate entity between the policy server and policy rule database called the Policy Enforcement Agent (PEA) is introduced. By keeping internal data in a common format, using a standard protocol, and by interpreting and translating request and decision messages from multi-vendor hardware, this agent allows a dynamic Unified Information Model throughout the architecture. We have tailor-made this unique information system to save policy rules in the directory server and allow executions of policy rules with dynamic addition of new equipment during run-time.
Paper-based Synthetic Gene Networks
Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.
2014-01-01
Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167
Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.
2017-11-01
In Hezaveh et al. we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational-lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data, as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single variational parameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that the application of approximate Bayesian neural networks to astrophysical modeling problems can be a fast alternative to Monte Carlo Markov Chains, allowing orders of magnitude improvement in speed.
Resilient Disaster Network Based on Software Defined Cognitive Wireless Network Technology
Directory of Open Access Journals (Sweden)
Goshi Sato
2015-01-01
Full Text Available In order to temporally recover the information network infrastructure in disaster areas from the Great East Japan Earthquake in 2011, various wireless network technologies such as satellite IP network, 3G, and Wi-Fi were effectively used. However, since those wireless networks are individually introduced and installed but not totally integrated, some of networks were congested due to the sudden network traffic generation and unbalanced traffic distribution, and eventually the total network could not effectively function. In this paper, we propose a disaster resilient network which integrates various wireless networks into a cognitive wireless network that users can use as an access network to the Internet at the serious disaster occurrence. We designed and developed the disaster resilient network based on software defined network (SDN technology to automatically select the best network link and route among the possible access networks to the Internet by periodically monitoring their network states and evaluate those using extended AHP method. In order to verify the usefulness of our proposed system, a prototype system is constructed and its performance is evaluated.
Hong, Xia
2006-07-01
In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.
A dynamic programming approach to missing data estimation using neural networks
CSIR Research Space (South Africa)
Nelwamondo, FV
2013-01-01
Full Text Available This paper develops and presents a novel technique for missing data estimation using a combination of dynamic programming, neural networks and genetic algorithms (GA) on suitable subsets of the input data. The method proposed here is well suited...
Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network
Nam, Hyeong-Min; Park, Chun-Su; Jung, Seung-Won; Ko, Sung-Jea
Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.
Estimating the Size of a Large Network and its Communities from a Random Sample
Chen, Lin; Crawford, Forrest W
2016-01-01
Most real-world networks are too large to be measured or studied directly and there is substantial interest in estimating global network properties from smaller sub-samples. One of the most important global properties is the number of vertices/nodes in the network. Estimating the number of vertices in a large network is a major challenge in computer science, epidemiology, demography, and intelligence analysis. In this paper we consider a population random graph G = (V;E) from the stochastic block model (SBM) with K communities/blocks. A sample is obtained by randomly choosing a subset W and letting G(W) be the induced subgraph in G of the vertices in W. In addition to G(W), we observe the total degree of each sampled vertex and its block membership. Given this partial information, we propose an efficient PopULation Size Estimation algorithm, called PULSE, that correctly estimates the size of the whole population as well as the size of each community. To support our theoretical analysis, we perform an exhausti...
Heikkilä, M.; Solaimani, H. (Sam); Kuivaniemi, L.; Suoranta, M.
2014-01-01
Purpose: The objective of this paper is to propose and demonstrate a framework for estimating performance in a networked business model. Design/methodology/approach: Our approach is design science, utilising action research in studying a case of four independent firms in Health & Wellbeing sector
Vehicle Speed Estimation and Forecasting Methods Based on Cellular Floating Vehicle Data
Directory of Open Access Journals (Sweden)
Wei-Kuang Lai
2016-02-01
Full Text Available Traffic information estimation and forecasting methods based on cellular floating vehicle data (CFVD are proposed to analyze the signals (e.g., handovers (HOs, call arrivals (CAs, normal location updates (NLUs and periodic location updates (PLUs from cellular networks. For traffic information estimation, analytic models are proposed to estimate the traffic flow in accordance with the amounts of HOs and NLUs and to estimate the traffic density in accordance with the amounts of CAs and PLUs. Then, the vehicle speeds can be estimated in accordance with the estimated traffic flows and estimated traffic densities. For vehicle speed forecasting, a back-propagation neural network algorithm is considered to predict the future vehicle speed in accordance with the current traffic information (i.e., the estimated vehicle speeds from CFVD. In the experimental environment, this study adopted the practical traffic information (i.e., traffic flow and vehicle speed from Taiwan Area National Freeway Bureau as the input characteristics of the traffic simulation program and referred to the mobile station (MS communication behaviors from Chunghwa Telecom to simulate the traffic information and communication records. The experimental results illustrated that the average accuracy of the vehicle speed forecasting method is 95.72%. Therefore, the proposed methods based on CFVD are suitable for an intelligent transportation system.
Energy Technology Data Exchange (ETDEWEB)
Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.
1982-03-01
This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.
Parameter estimation of breast tumour using dynamic neural network from thermal pattern
Directory of Open Access Journals (Sweden)
Elham Saniei
2016-11-01
Full Text Available This article presents a new approach for estimating the depth, size, and metabolic heat generation rate of a tumour. For this purpose, the surface temperature distribution of a breast thermal image and the dynamic neural network was used. The research consisted of two steps: forward and inverse. For the forward section, a finite element model was created. The Pennes bio-heat equation was solved to find surface and depth temperature distributions. Data from the analysis, then, were used to train the dynamic neural network model (DNN. Results from the DNN training/testing confirmed those of the finite element model. For the inverse section, the trained neural network was applied to estimate the depth temperature distribution (tumour position from the surface temperature profile, extracted from the thermal image. Finally, tumour parameters were obtained from the depth temperature distribution. Experimental findings (20 patients were promising in terms of the model’s potential for retrieving tumour parameters.
Artificial organic networks artificial intelligence based on carbon networks
Ponce-Espinosa, Hiram; Molina, Arturo
2014-01-01
This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: · approximation; · inference; · clustering; · control; · class...
EIGENVECTOR-BASED CENTRALITY MEASURES FOR TEMPORAL NETWORKS*
Taylor, Dane; MYERS, SEAN A.; Clauset, Aaron; Porter, Mason A.; Mucha, Peter J.
2017-01-01
Numerous centrality measures have been developed to quantify the importances of nodes in time-independent networks, and many of them can be expressed as the leading eigenvector of some matrix. With the increasing availability of network data that changes in time, it is important to extend such eigenvector-based centrality measures to time-dependent networks. In this paper, we introduce a principled generalization of network centrality measures that is valid for any eigenvector-based centralit...
Directory of Open Access Journals (Sweden)
N. Baghdadi
2012-06-01
Full Text Available The purpose of this study was to develop an approach to estimate soil surface parameters from C-band polarimetric SAR data in the case of bare agricultural soils. An inversion technique based on multi-layer perceptron (MLP neural networks was introduced. The neural networks were trained and validated on a noisy simulated dataset generated from the Integral Equation Model (IEM on a wide range of surface roughness and soil moisture, as it is encountered in agricultural contexts for bare soils. The performances of neural networks in retrieving soil moisture and surface roughness were tested for several inversion cases using or not using a-priori knowledge on soil parameters. The inversion approach was then validated using RADARSAT-2 images in polarimetric mode. The introduction of expert knowledge on the soil moisture (dry to wet soils or very wet soils improves the soil moisture estimates, whereas the precision on the surface roughness estimation remains unchanged. Moreover, the use of polarimetric parameters α_{1} and anisotropy were used to improve the soil parameters estimates. These parameters provide to neural networks the probable ranges of soil moisture (lower or higher than 0.30 cm^{3} cm^{−3} and surface roughness (root mean square surface height lower or higher than 1.0 cm. Soil moisture can be retrieved correctly from C-band SAR data by using the neural networks technique. Soil moisture errors were estimated at about 0.098 cm^{3} cm^{−3} without a-priori information on soil parameters and 0.065 cm^{3} cm^{−3} (RMSE applying a-priori information on the soil moisture. The retrieval of surface roughness is possible only for low and medium values (lower than 2 cm. Results show that the precision on the soil roughness estimates was about 0.7 cm. For surface roughness lower than 2 cm, the precision on the soil roughness is better with an RMSE about 0.5 cm. The use of polarimetric
Ibarra, Juan G.; Tao, Yang; Xin, Hongwei
2000-11-01
A noninvasive method for the estimation of internal temperature in chicken meat immediately following cooking is proposed. The external temperature from IR images was correlated with measured internal temperature through a multilayer neural network. To provide inputs for the network, time series experiments were conducted to obtain simultaneous observations of internal and external temperatures immediately after cooking during the cooling process. An IR camera working at the spectral band of 3.4 to 5.0 micrometers registered external temperature distributions without the interference of close-to-oven environment, while conventional thermocouples registered internal temperatures. For an internal temperature at a given time, simultaneous and lagged external temperature observations were used as the input of the neural network. Based on practical and statistical considerations, a criterion is established to reduce the nodes in the neural network input. The combined method was able to estimate internal temperature for times between 0 and 540 s within a standard error of +/- 1.01 degree(s)C, and within an error of +/- 1.07 degree(s)C for short times after cooking (3 min), with two thermograms at times t and t+30s. The method has great potential for monitoring of doneness of chicken meat in conveyor belt type cooking and can be used as a platform for similar studies in other food products.
Directory of Open Access Journals (Sweden)
Ahmad Aryafar
2016-06-01
Full Text Available Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN.In the first step, experimental studies were carried out on 7 carbonate rock samples in different conditions at particular feed rates (100, 200, 300and 400 and depth of cuts (15, 22, 30and 35mm using a fully instrumented laboratory rig that is enable to change the machine parameters and measure the ampere consumption. In next step, a back propagation neural network was designed for modelling the sawing process for predicting the ampere consumption. The input network consisting of two parts: machine, work piece characteristics and the output of neural network was ampere consumption. This research evaluated the competencies of neural networks to estimate the ampere consumption in sawing process. The correlation coefficient between measured and predicted data in training and testing data is 0.95 and 0.97 respectively. The root mean square error (RMSE for train and test data is 1.2 and 0.7 respectively. The results of this study showed that the ANNs can be used to estimate the ampere consumption with high ability and low error for industrial applications. Moreover, the cost of sawing machine ampere consumption can be accurately estimated using this neural model from some important physical and mechanical properties of rock.
Directory of Open Access Journals (Sweden)
Mohamed A. Ahmed
2016-03-01
Full Text Available Nowadays, with large-scale offshore wind power farms (WPFs becoming a reality, more efforts are needed to maintain a reliable communication network for WPF monitoring. Deployment topologies, redundancy, and network availability are the main items to enhance the communication reliability between wind turbines (WTs and control centers. Traditional communication networks for monitoring and control (i.e., supervisory control and data acquisition (SCADA systems using switched gigabit Ethernet will not be sufficient for the huge amount of data passing through the network. In this paper, the optical power budget, optical path loss, reliability, and network cost of the proposed Ethernet Passive Optical Network (EPON-based communication network for small-size offshore WPFs have been evaluated for five different network architectures. The proposed network model consists of an optical network unit device (ONU deployed on the WT side for collecting data from different internal networks. All ONUs from different WTs are connected to a central optical line terminal (OLT, placed in the control center. There are no active electronic elements used between the ONUs and the OLT, which reduces the costs and complexity of maintenance and deployment. As fiber access networks without any protection are characterized by poor reliability, three different protection schemes have been configured, explained, and discussed. Considering the cost of network components, the total implementation expense of different architectures with, or without, protection have been calculated and compared. The proposed network model can significantly contribute to the communication network architecture for next generation WPFs.
Reactor vessel water level estimation during severe accidents using cascaded fuzzy neural networks
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong Yeong; Yoo, Kwae Hwan; Choi, Geon Pil; Back, Ju Hyun; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)
2016-06-15
Global concern and interest in the safety of nuclear power plants have increased considerably since the Fukushima accident. In the event of a severe accident, the reactor vessel water level cannot be measured. The reactor vessel water level has a direct impact on confirming the safety of reactor core cooling. However, in the event of a severe accident, it may be possible to estimate the reactor vessel water level by employing other information. The cascaded fuzzy neural network (CFNN) model can be used to estimate the reactor vessel water level through the process of repeatedly adding fuzzy neural networks. The developed CFNN model was found to be sufficiently accurate for estimating the reactor vessel water level when the sensor performance had deteriorated. Therefore, the developed CFNN model can help provide effective information to operators in the event of a severe accident.
Distributed Information Compression for Target Tracking in Cluster-Based Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Shi-Kuan Liao
2016-06-01
Full Text Available Target tracking is a critical wireless sensor application, which involves signal and information processing technologies. In conventional target position estimation methods, an estimate is usually demonstrated by an average target position. In contrast, this work proposes a distributed information compression method to describe the measurement uncertainty of tracking problems in cluster-based wireless sensor networks. The leader-based information processing scheme is applied to perform target positioning and energy conservation. A two-level hierarchical network topology is adopted for energy-efficient target tracking with information compression. A Level 1 network architecture is a cluster-based network topology for managing network operations. A Level 2 network architecture is an event-based and leader-based topology, utilizing the concept of information compression to process the estimates of sensor nodes. The simulation results show that compared to conventional schemes, the proposed data processing scheme has a balanced system performance in terms of tracking accuracy, data size for transmission and energy consumption.
Network-Based and Binless Frequency Analyses.
Directory of Open Access Journals (Sweden)
Sybil Derrible
Full Text Available We introduce and develop a new network-based and binless methodology to perform frequency analyses and produce histograms. In contrast with traditional frequency analysis techniques that use fixed intervals to bin values, we place a range ±ζ around each individual value in a data set and count the number of values within that range, which allows us to compare every single value of a data set with one another. In essence, the methodology is identical to the construction of a network, where two values are connected if they lie within a given a range (±ζ. The value with the highest degree (i.e., most connections is therefore assimilated to the mode of the distribution. To select an optimal range, we look at the stability of the proportion of nodes in the largest cluster. The methodology is validated by sampling 12 typical distributions, and it is applied to a number of real-world data sets with both spatial and temporal components. The methodology can be applied to any data set and provides a robust means to uncover meaningful patterns and trends. A free python script and a tutorial are also made available to facilitate the application of the method.
Network video transmission system based on SOPC
Zhang, Zhengbing; Deng, Huiping; Xia, Zhenhua
2008-03-01
Video systems have been widely used in many fields such as conferences, public security, military affairs and medical treatment. With the rapid development of FPGA, SOPC has been paid great attentions in the area of image and video processing in recent years. A network video transmission system based on SOPC is proposed in this paper for the purpose of video acquisition, video encoding and network transmission. The hardware platform utilized to design the system is an SOPC board of model Altera's DE2, which includes an FPGA chip of model EP2C35F672C6, an Ethernet controller and a video I/O interface. An IP core, known as Nios II embedded processor, is used as the CPU of the system. In addition, a hardware module for format conversion of video data, and another module to realize Motion-JPEG have been designed with Verilog HDL. These two modules are attached to the Nios II processor as peripheral equipments through the Avalon bus. Simulation results show that these two modules work as expected. Uclinux including TCP/IP protocol as well as the driver of Ethernet controller is chosen as the embedded operating system and an application program scheme is proposed.
Object Classification Using Substance Based Neural Network
Directory of Open Access Journals (Sweden)
P. Sengottuvelan
2014-01-01
Full Text Available Object recognition has shown tremendous increase in the field of image analysis. The required set of image objects is identified and retrieved on the basis of object recognition. In this paper, we propose a novel classification technique called substance based image classification (SIC using a wavelet neural network. The foremost task of SIC is to remove the surrounding regions from an image to reduce the misclassified portion and to effectively reflect the shape of an object. At first, the image to be extracted is performed with SIC system through the segmentation of the image. Next, in order to attain more accurate information, with the extracted set of regions, the wavelet transform is applied for extracting the configured set of features. Finally, using the neural network classifier model, misclassification over the given natural images and further background images are removed from the given natural image using the LSEG segmentation. Moreover, to increase the accuracy of object classification, SIC system involves the removal of the regions in the surrounding image. Performance evaluation reveals that the proposed SIC system reduces the occurrence of misclassification and reflects the exact shape of an object to approximately 10–15%.
Using convolutional neural networks to estimate time-of-flight from PET detector waveforms
Berg, Eric; Cherry, Simon R.
2018-01-01
Although there have been impressive strides in detector development for time-of-flight positron emission tomography, most detectors still make use of simple signal processing methods to extract the time-of-flight information from the detector signals. In most cases, the timing pick-off for each waveform is computed using leading edge discrimination or constant fraction discrimination, as these were historically easily implemented with analog pulse processing electronics. However, now with the availability of fast waveform digitizers, there is opportunity to make use of more of the timing information contained in the coincident detector waveforms with advanced signal processing techniques. Here we describe the application of deep convolutional neural networks (CNNs), a type of machine learning, to estimate time-of-flight directly from the pair of digitized detector waveforms for a coincident event. One of the key features of this approach is the simplicity in obtaining ground-truth-labeled data needed to train the CNN: the true time-of-flight is determined from the difference in path length between the positron emission and each of the coincident detectors, which can be easily controlled experimentally. The experimental setup used here made use of two photomultiplier tube-based scintillation detectors, and a point source, stepped in 5 mm increments over a 15 cm range between the two detectors. The detector waveforms were digitized at 10 GS s‑1 using a bench-top oscilloscope. The results shown here demonstrate that CNN-based time-of-flight estimation improves timing resolution by 20% compared to leading edge discrimination (231 ps versus 185 ps), and 23% compared to constant fraction discrimination (242 ps versus 185 ps). By comparing several different CNN architectures, we also showed that CNN depth (number of convolutional and fully connected layers) had the largest impact on timing resolution, while the exact network parameters, such as convolutional
Flexible Tube-Based Network Control Project
National Aeronautics and Space Administration — The Innovation Laboratory, Inc. builds a control system which controls the topology of an air traffic flow network and the network flow properties which enables Air...
Estimating pole/zero errors in GSN-IRIS/USGS network calibration metadata
Ringler, A.T.; Hutt, C.R.; Aster, R.; Bolton, H.; Gee, L.S.; Storm, T.
2012-01-01
Mapping the digital record of a seismograph into true ground motion requires the correction of the data by some description of the instrument's response. For the Global Seismographic Network (Butler et al., 2004), as well as many other networks, this instrument response is represented as a Laplace domain pole–zero model and published in the Standard for the Exchange of Earthquake Data (SEED) format. This Laplace representation assumes that the seismometer behaves as a linear system, with any abrupt changes described adequately via multiple time-invariant epochs. The SEED format allows for published instrument response errors as well, but these typically have not been estimated or provided to users. We present an iterative three-step method to estimate the instrument response parameters (poles and zeros) and their associated errors using random calibration signals. First, we solve a coarse nonlinear inverse problem using a least-squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a nonlinear parameter estimation problem to obtain the least-squares best-fit Laplace pole–zero–gain model. Third, by applying the central limit theorem, we estimate the errors in this pole–zero model by solving the inverse problem at each frequency in a two-thirds octave band centered at each best-fit pole–zero frequency. This procedure yields error estimates of the 99% confidence interval. We demonstrate the method by applying it to a number of recent Incorporated Research Institutions in Seismology/United States Geological Survey (IRIS/USGS) network calibrations (network code IU).
Personalized Network-Based Treatments in Oncology
DEFF Research Database (Denmark)
Robin, Xavier; Creixell, Pau; Radetskaya, Oxana
2013-01-01
Network medicine aims at unraveling cell signaling networks to propose personalized treatments for patients suffering from complex diseases. In this short review, we show the relevance of network medicine to cancer treatment by outlining the potential convergence points of the most recent technol...
Analysis of neural networks through base functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.
Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more
Measurement-Based Network Link Dimensioning
de Oliveira Schmidt, R.; van den Berg, Hans Leo; Pras, Aiko
The ever increasing traffic demands and the current trend of network and services virtualization calls for effective approaches for optimal use of network resources. In the future Internet multiple virtual networks will coexist on top of the same physical infrastructure, and these will compete for
Measurement-based network link dimensioning
Schmidt, R. de O.; Den Berg, J.L. van den; Pras, A.
2015-01-01
The ever increasing traffic demands and the current trend of network and services virtualization calls for effective approaches for optimal use of network resources. In the future Internet multiple virtual networks will coexist on top of the same physical infrastructure, and these will compete for
The observer-based synchronization and parameter estimation of a ...
Indian Academy of Sciences (India)
Observer-based synchronization and parameter estimation of chaotic systems has been an interesting and important issue in theory and various fields of application. In this paper first we investigate the observer-based synchronization of a class of chaotic systems, and then discuss its parameter estimation via a single ...
A Bayesian compositional estimator for microbial taxonomy based on biomarkers
Van den Meersche, K.; Middelburg, J.J.; Soetaert, K.E.R.
2008-01-01
Determination of microbial taxonomy based on lipid or pigment spectra requires use of a compositional estimator. We present a new approach based on Bayesian inference and an implementation in the open software platform R. The Bayesian Compositional Estimator (BCE) aims not only to obtain a maximum
El-Melegy, Moumen T
2013-07-01
This paper addresses the problem of fitting a functional model to data corrupted with outliers using a multilayered feed-forward neural network. Although it is of high importance in practical applications, this problem has not received careful attention from the neural network research community. One recent approach to solving this problem is to use a neural network training algorithm based on the random sample consensus (RANSAC) framework. This paper proposes a new algorithm that offers two enhancements over the original RANSAC algorithm. The first one improves the algorithm accuracy and robustness by employing an M-estimator cost function to decide on the best estimated model from the randomly selected samples. The other one improves the time performance of the algorithm by utilizing a statistical pretest based on Wald's sequential probability ratio test. The proposed algorithm is successfully evaluated on synthetic and real data, contaminated with varying degrees of outliers, and compared with existing neural network training algorithms.
Cooperative UAV-Based Communications Backbone for Sensor Networks
Energy Technology Data Exchange (ETDEWEB)
Roberts, R S
2001-10-07
The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs are used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.