WorldWideScience

Sample records for network based algorithm

  1. Network-based recommendation algorithms: A review

    Science.gov (United States)

    Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš

    2016-06-01

    Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.

  2. Node-Dependence-Based Dynamic Incentive Algorithm in Opportunistic Networks

    Directory of Open Access Journals (Sweden)

    Ruiyun Yu

    2014-01-01

    Full Text Available Opportunistic networks lack end-to-end paths between source nodes and destination nodes, so the communications are mainly carried out by the “store-carry-forward” strategy. Selfish behaviors of rejecting packet relay requests will severely worsen the network performance. Incentive is an efficient way to reduce selfish behaviors and hence improves the reliability and robustness of the networks. In this paper, we propose the node-dependence-based dynamic gaming incentive (NDI algorithm, which exploits the dynamic repeated gaming to motivate nodes relaying packets for other nodes. The NDI algorithm presents a mechanism of tolerating selfish behaviors of nodes. Reward and punishment methods are also designed based on the node dependence degree. Simulation results show that the NDI algorithm is effective in increasing the delivery ratio and decreasing average latency when there are a lot of selfish nodes in the opportunistic networks.

  3. An improved localization algorithm based on genetic algorithm in wireless sensor networks.

    Science.gov (United States)

    Peng, Bo; Li, Lei

    2015-04-01

    Wireless sensor network (WSN) are widely used in many applications. A WSN is a wireless decentralized structure network comprised of nodes, which autonomously set up a network. The node localization that is to be aware of position of the node in the network is an essential part of many sensor network operations and applications. The existing localization algorithms can be classified into two categories: range-based and range-free. The range-based localization algorithm has requirements on hardware, thus is expensive to be implemented in practice. The range-free localization algorithm reduces the hardware cost. Because of the hardware limitations of WSN devices, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. However, these techniques usually have higher localization error compared to the range-based algorithms. DV-Hop is a typical range-free localization algorithm utilizing hop-distance estimation. In this paper, we propose an improved DV-Hop algorithm based on genetic algorithm. Simulation results show that our proposed algorithm improves the localization accuracy compared with previous algorithms.

  4. Community Clustering Algorithm in Complex Networks Based on Microcommunity Fusion

    Directory of Open Access Journals (Sweden)

    Jin Qi

    2015-01-01

    Full Text Available With the further research on physical meaning and digital features of the community structure in complex networks in recent years, the improvement of effectiveness and efficiency of the community mining algorithms in complex networks has become an important subject in this area. This paper puts forward a concept of the microcommunity and gets final mining results of communities through fusing different microcommunities. This paper starts with the basic definition of the network community and applies Expansion to the microcommunity clustering which provides prerequisites for the microcommunity fusion. The proposed algorithm is more efficient and has higher solution quality compared with other similar algorithms through the analysis of test results based on network data set.

  5. The guitar chord-generating algorithm based on complex network

    Science.gov (United States)

    Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais

    2016-02-01

    This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.

  6. A Vehicle Detection Algorithm Based on Deep Belief Network

    Directory of Open Access Journals (Sweden)

    Hai Wang

    2014-01-01

    Full Text Available Vision based vehicle detection is a critical technology that plays an important role in not only vehicle active safety but also road video surveillance application. Traditional shallow model based vehicle detection algorithm still cannot meet the requirement of accurate vehicle detection in these applications. In this work, a novel deep learning based vehicle detection algorithm with 2D deep belief network (2D-DBN is proposed. In the algorithm, the proposed 2D-DBN architecture uses second-order planes instead of first-order vector as input and uses bilinear projection for retaining discriminative information so as to determine the size of the deep architecture which enhances the success rate of vehicle detection. On-road experimental results demonstrate that the algorithm performs better than state-of-the-art vehicle detection algorithm in testing data sets.

  7. AdaBoost-based algorithm for network intrusion detection.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  8. Quantum-based algorithm for optimizing artificial neural networks.

    Science.gov (United States)

    Tzyy-Chyang Lu; Gwo-Ruey Yu; Jyh-Ching Juang

    2013-08-01

    This paper presents a quantum-based algorithm for evolving artificial neural networks (ANNs). The aim is to design an ANN with few connections and high classification performance by simultaneously optimizing the network structure and the connection weights. Unlike most previous studies, the proposed algorithm uses quantum bit representation to codify the network. As a result, the connectivity bits do not indicate the actual links but the probability of the existence of the connections, thus alleviating mapping problems and reducing the risk of throwing away a potential candidate. In addition, in the proposed model, each weight space is decomposed into subspaces in terms of quantum bits. Thus, the algorithm performs a region by region exploration, and evolves gradually to find promising subspaces for further exploitation. This is helpful to provide a set of appropriate weights when evolving the network structure and to alleviate the noisy fitness evaluation problem. The proposed model is tested on four benchmark problems, namely breast cancer and iris, heart, and diabetes problems. The experimental results show that the proposed algorithm can produce compact ANN structures with good generalization ability compared to other algorithms.

  9. Access Network Selection Based on Fuzzy Logic and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Mohammed Alkhawlani

    2008-01-01

    Full Text Available In the next generation of heterogeneous wireless networks (HWNs, a large number of different radio access technologies (RATs will be integrated into a common network. In this type of networks, selecting the most optimal and promising access network (AN is an important consideration for overall networks stability, resource utilization, user satisfaction, and quality of service (QoS provisioning. This paper proposes a general scheme to solve the access network selection (ANS problem in the HWN. The proposed scheme has been used to present and design a general multicriteria software assistant (SA that can consider the user, operator, and/or the QoS view points. Combined fuzzy logic (FL and genetic algorithms (GAs have been used to give the proposed scheme the required scalability, flexibility, and simplicity. The simulation results show that the proposed scheme and SA have better and more robust performance over the random-based selection.

  10. An Energy Consumption Optimized Clustering Algorithm for Radar Sensor Networks Based on an Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Jiang Ting

    2010-01-01

    Full Text Available We optimize the cluster structure to solve problems such as the uneven energy consumption of the radar sensor nodes and random cluster head selection in the traditional clustering routing algorithm. According to the defined cost function for clusters, we present the clustering algorithm which is based on radio-free space path loss. In addition, we propose the energy and distance pheromones based on the residual energy and aggregation of the radar sensor nodes. According to bionic heuristic algorithm, a new ant colony-based clustering algorithm for radar sensor networks is also proposed. Simulation results show that this algorithm can get a better balance of the energy consumption and then remarkably prolong the lifetime of the radar sensor network.

  11. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  12. Neural-network-based voice-tracking algorithm

    Science.gov (United States)

    Baker, Mary; Stevens, Charise; Chaparro, Brennen; Paschall, Dwayne

    2002-11-01

    A voice-tracking algorithm was developed and tested for the purposes of electronically separating the voice signals of simultaneous talkers. Many individuals suffer from hearing disorders that often inhibit their ability to focus on a single speaker in a multiple speaker environment (the cocktail party effect). Digital hearing aid technology makes it possible to implement complex algorithms for speech processing in both the time and frequency domains. In this work, an average magnitude difference function (AMDF) was performed on mixed voice signals in order to determine the fundamental frequencies present in the signals. A time prediction neural network was trained to recognize normal human voice inflection patterns, including rising, falling, rising-falling, and falling-rising patterns. The neural network was designed to track the fundamental frequency of a single talker based on the training procedure. The output of the neural network can be used to design an active filter for speaker segregation. Tests were done using audio mixing of two to three speakers uttering short phrases. The AMDF function accurately identified the fundamental frequencies present in the signal. The neural network was tested using a single speaker uttering a short sentence. The network accurately tracked the fundamental frequency of the speaker.

  13. Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Jianyong Liu

    2015-01-01

    Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.

  14. Learning algorithms for feedforward networks based on finite samples

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M.; Iyengar, S.S.

    1994-09-01

    Two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by feedforward networks, are discussed. The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can be directly adapted to concept learning problems.

  15. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network.

    Science.gov (United States)

    Lin, Kai; Wang, Di; Hu, Long

    2016-07-01

    With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.

  16. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2016-07-01

    Full Text Available With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC. The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.

  17. MIRA: mutual information-based reporter algorithm for metabolic networks.

    Science.gov (United States)

    Cicek, A Ercument; Roeder, Kathryn; Ozsoyoglu, Gultekin

    2014-06-15

    Discovering the transcriptional regulatory architecture of the metabolism has been an important topic to understand the implications of transcriptional fluctuations on metabolism. The reporter algorithm (RA) was proposed to determine the hot spots in metabolic networks, around which transcriptional regulation is focused owing to a disease or a genetic perturbation. Using a z-score-based scoring scheme, RA calculates the average statistical change in the expression levels of genes that are neighbors to a target metabolite in the metabolic network. The RA approach has been used in numerous studies to analyze cellular responses to the downstream genetic changes. In this article, we propose a mutual information-based multivariate reporter algorithm (MIRA) with the goal of eliminating the following problems in detecting reporter metabolites: (i) conventional statistical methods suffer from small sample sizes, (ii) as z-score ranges from minus to plus infinity, calculating average scores can lead to canceling out opposite effects and (iii) analyzing genes one by one, then aggregating results can lead to information loss. MIRA is a multivariate and combinatorial algorithm that calculates the aggregate transcriptional response around a metabolite using mutual information. We show that MIRA's results are biologically sound, empirically significant and more reliable than RA. We apply MIRA to gene expression analysis of six knockout strains of Escherichia coli and show that MIRA captures the underlying metabolic dynamics of the switch from aerobic to anaerobic respiration. We also apply MIRA to an Autism Spectrum Disorder gene expression dataset. Results indicate that MIRA reports metabolites that highly overlap with recently found metabolic biomarkers in the autism literature. Overall, MIRA is a promising algorithm for detecting metabolic drug targets and understanding the relation between gene expression and metabolic activity. The code is implemented in C# language using

  18. Bioinspired evolutionary algorithm based for improving network coverage in wireless sensor networks.

    Science.gov (United States)

    Abbasi, Mohammadjavad; Bin Abd Latiff, Muhammad Shafie; Chizari, Hassan

    2014-01-01

    Wireless sensor networks (WSNs) include sensor nodes in which each node is able to monitor the physical area and send collected information to the base station for further analysis. The important key of WSNs is detection and coverage of target area which is provided by random deployment. This paper reviews and addresses various area detection and coverage problems in sensor network. This paper organizes many scenarios for applying sensor node movement for improving network coverage based on bioinspired evolutionary algorithm and explains the concern and objective of controlling sensor node coverage. We discuss area coverage and target detection model by evolutionary algorithm.

  19. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  20. Consensus-based sparse signal reconstruction algorithm for wireless sensor networks

    National Research Council Canada - National Science Library

    Peng, Bao; Zhao, Zhi; Han, Guangjie; Shen, Jian

    2016-01-01

    This article presents a distributed Bayesian reconstruction algorithm for wireless sensor networks to reconstruct the sparse signals based on variational sparse Bayesian learning and consensus filter...

  1. Prolonging the Lifetime of Wireless Sensor Networks Interconnected to Fixed Network Using Hierarchical Energy Tree Based Routing Algorithm

    Directory of Open Access Journals (Sweden)

    M. Kalpana

    2014-01-01

    Full Text Available This research work proposes a mathematical model for the lifetime of wireless sensor networks (WSN. It also proposes an energy efficient routing algorithm for WSN called hierarchical energy tree based routing algorithm (HETRA based on hierarchical energy tree constructed using the available energy in each node. The energy efficiency is further augmented by reducing the packet drops using exponential congestion control algorithm (TCP/EXP. The algorithms are evaluated in WSNs interconnected to fixed network with seven distribution patterns, simulated in ns2 and compared with the existing algorithms based on the parameters such as number of data packets, throughput, network lifetime, and data packets average network lifetime product. Evaluation and simulation results show that the combination of HETRA and TCP/EXP maximizes longer network lifetime in all the patterns. The lifetime of the network with HETRA algorithm has increased approximately 3.2 times that of the network implemented with AODV.

  2. Prolonging the lifetime of wireless sensor networks interconnected to fixed network using hierarchical energy tree based routing algorithm.

    Science.gov (United States)

    Kalpana, M; Dhanalakshmi, R; Parthiban, P

    2014-01-01

    This research work proposes a mathematical model for the lifetime of wireless sensor networks (WSN). It also proposes an energy efficient routing algorithm for WSN called hierarchical energy tree based routing algorithm (HETRA) based on hierarchical energy tree constructed using the available energy in each node. The energy efficiency is further augmented by reducing the packet drops using exponential congestion control algorithm (TCP/EXP). The algorithms are evaluated in WSNs interconnected to fixed network with seven distribution patterns, simulated in ns2 and compared with the existing algorithms based on the parameters such as number of data packets, throughput, network lifetime, and data packets average network lifetime product. Evaluation and simulation results show that the combination of HETRA and TCP/EXP maximizes longer network lifetime in all the patterns. The lifetime of the network with HETRA algorithm has increased approximately 3.2 times that of the network implemented with AODV.

  3. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.

    Science.gov (United States)

    Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar

    2017-08-01

    Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

  4. Computing of network tenacity based on modified binary particle swarm optimization algorithm

    Science.gov (United States)

    Shen, Maoxing; Sun, Chengyu

    2017-05-01

    For rapid calculation of network node tenacity, which can depict the invulnerability performance of network, this paper designs a computational method based on modified binary particle swarm optimization (BPSO) algorithm. Firstly, to improve the astringency of the BPSO algorithm, the algorithm adopted an improved bit transfer probability function and location updating formula. Secondly, algorithm for fitness function value of BPSO based on the breadth-first search is designed. Thirdly, the computing method for network tenacity based on the modified BPSO algorithm is presented. Results of experiment conducted in the Advanced Research Project Agency (ARPA) network and Tactical Support Communication (TCS) network illustrate that the computing method is impactful and high-performance to calculate network tenacity.

  5. An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2013-01-01

    Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.

  6. A Network Traffic Prediction Model Based on Quantum-Behaved Particle Swarm Optimization Algorithm and Fuzzy Wavelet Neural Network

    OpenAIRE

    Kun Zhang; Zhao Hu; Xiao-Ting Gan; Jian-Bo Fang

    2016-01-01

    Due to the fact that the fluctuation of network traffic is affected by various factors, accurate prediction of network traffic is regarded as a challenging task of the time series prediction process. For this purpose, a novel prediction method of network traffic based on QPSO algorithm and fuzzy wavelet neural network is proposed in this paper. Firstly, quantum-behaved particle swarm optimization (QPSO) was introduced. Then, the structure and operation algorithms of WFNN are presented. The pa...

  7. Single satellite beam scanning positioning based on Neural Network BP algorithm

    Directory of Open Access Journals (Sweden)

    Li Yongwei

    2017-01-01

    Full Text Available In this paper, the principle of single line positioning based on beam scanning and the neural network algorithm are analysing, and the neural network BP algorithm is applying to the single satellite positioning. At the same time, this paper presents a new algorithm based on electron beam (MEO for the single scan positioning (Middle Earth orbit. Finally, through theoretical analysis and simulation, it is proving that the neural network BP algorithm of single satellite beam scanning is feasible in fast positioning.

  8. An intelligent scheduling method based on improved particle swarm optimization algorithm for drainage pipe network

    Science.gov (United States)

    Luo, Yaqi; Zeng, Bi

    2017-08-01

    This paper researches the drainage routing problem in drainage pipe network, and propose an intelligent scheduling method. The method relates to the design of improved particle swarm optimization algorithm, the establishment of the corresponding model from the pipe network, and the process by using the algorithm based on improved particle swarm optimization to find the optimum drainage route in the current environment.

  9. Wavelet-Based MPNLMS Adaptive Algorithm for Network Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Hongyang Deng

    2007-03-01

    Full Text Available The μ-law proportionate normalized least mean square (MPNLMS algorithm has been proposed recently to solve the slow convergence problem of the proportionate normalized least mean square (PNLMS algorithm after its initial fast converging period. But for the color input, it may become slow in the case of the big eigenvalue spread of the input signal's autocorrelation matrix. In this paper, we use the wavelet transform to whiten the input signal. Due to the good time-frequency localization property of the wavelet transform, a sparse impulse response in the time domain is also sparse in the wavelet domain. By applying the MPNLMS technique in the wavelet domain, fast convergence for the color input is observed. Furthermore, we show that some nonsparse impulse responses may become sparse in the wavelet domain. This motivates the usage of the wavelet-based MPNLMS algorithm. Advantages of this approach are documented.

  10. Wavelet-Based MPNLMS Adaptive Algorithm for Network Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Doroslovački Miloš

    2007-01-01

    Full Text Available The μ-law proportionate normalized least mean square (MPNLMS algorithm has been proposed recently to solve the slow convergence problem of the proportionate normalized least mean square (PNLMS algorithm after its initial fast converging period. But for the color input, it may become slow in the case of the big eigenvalue spread of the input signal's autocorrelation matrix. In this paper, we use the wavelet transform to whiten the input signal. Due to the good time-frequency localization property of the wavelet transform, a sparse impulse response in the time domain is also sparse in the wavelet domain. By applying the MPNLMS technique in the wavelet domain, fast convergence for the color input is observed. Furthermore, we show that some nonsparse impulse responses may become sparse in the wavelet domain. This motivates the usage of the wavelet-based MPNLMS algorithm. Advantages of this approach are documented.

  11. An Algorithm of Quantum Restricted Boltzmann Machine Network Based on Quantum Gates and Its Application

    Directory of Open Access Journals (Sweden)

    Peilin Zhang

    2015-01-01

    Full Text Available We present an algorithm of quantum restricted Boltzmann machine network based on quantum gates. The algorithm is used to initialize the procedure that adjusts the qubit and weights. After adjusting, the network forms an unsupervised generative model that gives better classification performance than other discriminative models. In addition, we show how the algorithm can be constructed with quantum circuit for quantum computer.

  12. A fast identification algorithm for Box-Cox transformation based radial basis function neural network.

    Science.gov (United States)

    Hong, Xia

    2006-07-01

    In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

  13. A SAT-based algorithm for finding attractors in synchronous Boolean networks.

    Science.gov (United States)

    Dubrova, Elena; Teslenko, Maxim

    2011-01-01

    This paper addresses the problem of finding attractors in synchronous Boolean networks. The existing Boolean decision diagram-based algorithms have limited capacity due to the excessive memory requirements of decision diagrams. The simulation-based algorithms can be applied to larger networks, however, they are incomplete. We present an algorithm, which uses a SAT-based bounded model checking to find all attractors in a Boolean network. The efficiency of the presented algorithm is evaluated by analyzing seven networks models of real biological processes, as well as 150,000 randomly generated Boolean networks of sizes between 100 and 7,000. The results show that our approach has a potential to handle an order of magnitude larger models than currently possible.

  14. Research and Application of Improved AGP Algorithm for Structural Optimization Based on Feedforward Neural Networks

    Directory of Open Access Journals (Sweden)

    Ruliang Wang

    2015-01-01

    Full Text Available The adaptive growing and pruning algorithm (AGP has been improved, and the network pruning is based on the sigmoidal activation value of the node and all the weights of its outgoing connections. The nodes are pruned directly, but those nodes that have internal relation are not removed. The network growing is based on the idea of variance. We directly copy those nodes with high correlation. An improved AGP algorithm (IAGP is proposed. And it improves the network performance and efficiency. The simulation results show that, compared with the AGP algorithm, the improved method (IAGP can quickly and accurately predict traffic capacity.

  15. Optimization of wireless sensor networks based on chicken swarm optimization algorithm

    Science.gov (United States)

    Wang, Qingxi; Zhu, Lihua

    2017-05-01

    In order to reduce the energy consumption of wireless sensor network and improve the survival time of network, the clustering routing protocol of wireless sensor networks based on chicken swarm optimization algorithm was proposed. On the basis of LEACH agreement, it was improved and perfected that the points on the cluster and the selection of cluster head using the chicken group optimization algorithm, and update the location of chicken which fall into the local optimum by Levy flight, enhance population diversity, ensure the global search capability of the algorithm. The new protocol avoided the die of partial node of intensive using by making balanced use of the network nodes, improved the survival time of wireless sensor network. The simulation experiments proved that the protocol is better than LEACH protocol on energy consumption, also is better than that of clustering routing protocol based on particle swarm optimization algorithm.

  16. Hybrid fuzzy charged system search algorithm based state estimation in distribution networks

    Directory of Open Access Journals (Sweden)

    Sachidananda Prasad

    2017-06-01

    Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.

  17. An Associate Rules Mining Algorithm Based on Artificial Immune Network for SAR Image Segmentation

    Directory of Open Access Journals (Sweden)

    Mengling Zhao

    2015-01-01

    Full Text Available As a computational intelligence method, artificial immune network (AIN algorithm has been widely applied to pattern recognition and data classification. In the existing artificial immune network algorithms, the calculating affinity for classifying is based on calculating a certain distance, which may lead to some unsatisfactory results in dealing with data with nominal attributes. To overcome the shortcoming, the association rules are introduced into AIN algorithm, and we propose a new classification algorithm an associate rules mining algorithm based on artificial immune network (ARM-AIN. The new method uses the association rules to represent immune cells and mine the best association rules rather than searching optimal clustering centers. The proposed algorithm has been extensively compared with artificial immune network classification (AINC algorithm, artificial immune network classification algorithm based on self-adaptive PSO (SPSO-AINC, and PSO-AINC over several large-scale data sets, target recognition of remote sensing image, and segmentation of three different SAR images. The result of experiment indicates the superiority of ARM-AIN in classification accuracy and running time.

  18. Node deployment algorithm based on viscous fluid model for wireless sensor networks.

    Science.gov (United States)

    Chen, Jiguang; Qian, Huanyan

    2014-01-01

    With the scale expands, traditional deployment algorithms are becoming increasingly complicated than before, which are no longer fit for sensor networks. In order to reduce the complexity, we propose a node deployment algorithm based on viscous fluid model. In wireless sensor networks, sensor nodes are abstracted as fluid particles. Similar to the diffusion and self-propagation behavior of fluid particles, sensor nodes realize deployment in unknown region following the motion rules of fluid. Simulation results show that our algorithm archives good coverage rate and homogeneity in large-scale sensor networks.

  19. The spectral positioning algorithm of new spectrum vehicle based on convex programming in wireless sensor network

    Science.gov (United States)

    Zhang, Yongjun; Lu, Zhixin

    2017-10-01

    Spectrum resources are very precious, so it is increasingly important to locate interference signals rapidly. Convex programming algorithms in wireless sensor networks are often used as localization algorithms. But in view of the traditional convex programming algorithm is too much overlap of wireless sensor nodes that bring low positioning accuracy, the paper proposed a new algorithm. Which is mainly based on the traditional convex programming algorithm, the spectrum car sends unmanned aerial vehicles (uses) that can be used to record data periodically along different trajectories. According to the probability density distribution, the positioning area is segmented to further reduce the location area. Because the algorithm only increases the communication process of the power value of the unknown node and the sensor node, the advantages of the convex programming algorithm are basically preserved to realize the simple and real-time performance. The experimental results show that the improved algorithm has a better positioning accuracy than the original convex programming algorithm.

  20. Location-Based Self-Adaptive Routing Algorithm for Wireless Sensor Networks in Home Automation

    Directory of Open Access Journals (Sweden)

    Hong SeungHo

    2011-01-01

    Full Text Available The use of wireless sensor networks in home automation (WSNHA is attractive due to their characteristics of self-organization, high sensing fidelity, low cost, and potential for rapid deployment. Although the AODVjr routing algorithm in IEEE 802.15.4/ZigBee and other routing algorithms have been designed for wireless sensor networks, not all are suitable for WSNHA. In this paper, we propose a location-based self-adaptive routing algorithm for WSNHA called WSNHA-LBAR. It confines route discovery flooding to a cylindrical request zone, which reduces the routing overhead and decreases broadcast storm problems in the MAC layer. It also automatically adjusts the size of the request zone using a self-adaptive algorithm based on Bayes' theorem. This makes WSNHA-LBAR more adaptable to the changes of the network state and easier to implement. Simulation results show improved network reliability as well as reduced routing overhead.

  1. Traffic Control Algorithm Offering Multi-Class Fairness in PON Based Access Networks

    Science.gov (United States)

    Okumura, Yasuyuki

    This letter proposes a dynamic bandwidth allocation algorithm for access networks based PON (Passive Optical Network). It considers the mixture of transport layer protocols when responding to traffic congestion at the SNI (Service Node Interface). Simulations on a mixture of TCP (Transmission Control Protocol), and UDP (User Datagram Protocol) traffic flows show that the algorithm increases the throughput of TCP, improves the fairness between the two protocols, and solves the congestion problem at the SNI.

  2. BFL: a node and edge betweenness based fast layout algorithm for large scale networks

    Science.gov (United States)

    Hashimoto, Tatsunori B; Nagasaki, Masao; Kojima, Kaname; Miyano, Satoru

    2009-01-01

    Background Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements. Results To overcome these problems, we propose the use of a biologically important graph metric, betweenness, a measure of network flow. This metric is highly correlated with many biological phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach reduces the expected runtime of the algorithm to O(n2) when considering edge crossings, and to O(n log n) when considering only density and edge lengths. Conclusion Our BFL algorithm is compared against fast graph layout algorithms and approaches requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all layout algorithms tested while providing readability on par with intensive optimization algorithms. We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard desktop computer. PMID:19146673

  3. Multi-index algorithm of identifying important nodes in complex networks based on linear discriminant analysis

    Science.gov (United States)

    Hu, Fang; Liu, Yuhua

    2015-02-01

    The evaluation of node importance has great significance to complex network, so it is important to seek and protect important nodes to ensure the security and stability of the entire network. At present, most evaluation algorithms of node importance adopt the single-index methods, which are incomplete and limited, and cannot fully reflect the complex situation of network. In this paper, after synthesizing multi-index factors of node importance, including eigenvector centrality, betweenness centrality, closeness centrality, degree centrality, mutual-information, etc., the authors are proposing a new multi-index evaluation algorithm of identifying important nodes in complex networks based on linear discriminant analysis (LDA). In order to verify the validity of this algorithm, a series of simulation experiments have been done. Through comprehensive analysis, the simulation results show that the new algorithm is more rational, effective, integral and accurate.

  4. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.

    Science.gov (United States)

    Gu, Weiwei; Gong, Li; Lou, Xiaodan; Zhang, Jiang

    2017-10-13

    Network embedding which encodes all vertices in a network as a set of numerical vectors in accordance with it's local and global structures, has drawn widespread attention. Network embedding not only learns significant features of a network, such as the clustering and linking prediction but also learns the latent vector representation of the nodes which provides theoretical support for a variety of applications, such as visualization, link prediction, node classification, and recommendation. As the latest progress of the research, several algorithms based on random walks have been devised. Although those algorithms have drawn much attention for their high scores in learning efficiency and accuracy, there is still a lack of theoretical explanation, and the transparency of those algorithms has been doubted. Here, we propose an approach based on the open-flow network model to reveal the underlying flow structure and its hidden metric space of different random walk strategies on networks. We show that the essence of embedding based on random walks is the latent metric structure defined on the open-flow network. This not only deepens our understanding of random- walk-based embedding algorithms but also helps in finding new potential applications in network embedding.

  5. Hybrid protection algorithms based on game theory in multi-domain optical networks

    Science.gov (United States)

    Guo, Lei; Wu, Jingjing; Hou, Weigang; Liu, Yejun; Zhang, Lincong; Li, Hongming

    2011-12-01

    With the network size increasing, the optical backbone is divided into multiple domains and each domain has its own network operator and management policy. At the same time, the failures in optical network may lead to a huge data loss since each wavelength carries a lot of traffic. Therefore, the survivability in multi-domain optical network is very important. However, existing survivable algorithms can achieve only the unilateral optimization for profit of either users or network operators. Then, they cannot well find the double-win optimal solution with considering economic factors for both users and network operators. Thus, in this paper we develop the multi-domain network model with involving multiple Quality of Service (QoS) parameters. After presenting the link evaluation approach based on fuzzy mathematics, we propose the game model to find the optimal solution to maximize the user's utility, the network operator's utility, and the joint utility of user and network operator. Since the problem of finding double-win optimal solution is NP-complete, we propose two new hybrid protection algorithms, Intra-domain Sub-path Protection (ISP) algorithm and Inter-domain End-to-end Protection (IEP) algorithm. In ISP and IEP, the hybrid protection means that the intelligent algorithm based on Bacterial Colony Optimization (BCO) and the heuristic algorithm are used to solve the survivability in intra-domain routing and inter-domain routing, respectively. Simulation results show that ISP and IEP have the similar comprehensive utility. In addition, ISP has better resource utilization efficiency, lower blocking probability, and higher network operator's utility, while IEP has better user's utility.

  6. Genetic Algorithm-Based Artificial Neural Network for Voltage Stability Assessment

    Directory of Open Access Journals (Sweden)

    Garima Singh

    2011-01-01

    Full Text Available With the emerging trend of restructuring in the electric power industry, many transmission lines have been forced to operate at almost their full capacities worldwide. Due to this, more incidents of voltage instability and collapse are being observed throughout the world leading to major system breakdowns. To avoid these undesirable incidents, a fast and accurate estimation of voltage stability margin is required. In this paper, genetic algorithm based back propagation neural network (GABPNN has been proposed for voltage stability margin estimation which is an indication of the power system's proximity to voltage collapse. The proposed approach utilizes a hybrid algorithm that integrates genetic algorithm and the back propagation neural network. The proposed algorithm aims to combine the capacity of GAs in avoiding local minima and at the same time fast execution of the BP algorithm. Input features for GABPNN are selected on the basis of angular distance-based clustering technique. The performance of the proposed GABPNN approach has been compared with the most commonly used gradient based BP neural network by estimating the voltage stability margin at different loading conditions in 6-bus and IEEE 30-bus system. GA based neural network learns faster, at the same time it provides more accurate voltage stability margin estimation as compared to that based on BP algorithm. It is found to be suitable for online applications in energy management systems.

  7. Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks

    Science.gov (United States)

    Ren, Shengwei; Zhang, Li; Zhang, Shibing

    2016-10-01

    Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.

  8. MABC: Power-Based Location Planning with a Modified ABC Algorithm for 5G Networks

    Directory of Open Access Journals (Sweden)

    Ruchi Sachan

    2017-01-01

    Full Text Available The modernization of smart devices has emerged in exponential growth in data traffic for a high-capacity wireless network. 5G networks must be capable of handling the excessive stress associated with resource allocation methods for its successful deployment. We also need to take care of the problem of causing energy consumption during the dense deployment process. The dense deployment results in severe power consumption because of fulfilling the demands of the increasing traffic load accommodated by base stations. This paper proposes an improved Artificial Bee Colony (ABC algorithm which uses the set of variables such as the transmission power and location of each base station (BS to improve the accuracy of localization of a user equipment (UE for the efficient energy consumption at BSes. To estimate the optimal configuration of BSes and reduce the power requirement of connected UEs, we enhanced the ABC algorithm, which is named a Modified ABC (MABC algorithm, and compared it with the latest work on Real-Coded Genetic Algorithm (RCGA and Differential Evolution (DE algorithm. The proposed algorithm not only determines the optimal coverage of underutilized BSes but also optimizes the power utilization considering the green networks. The performance comparisons of the modified algorithms were conducted to show that the proposed approach has better effectiveness than the legacy algorithms, ABC, RCGA, and DE.

  9. Improved Correction Localization Algorithm Based on Wave Direction Spectrum for Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhang Ming

    2014-09-01

    Full Text Available Localization is an important topic in the underwater wireless sensor networks (UWSN because sensor nodes are randomly scattered over a region and can get connected into a network on their own. In this paper, we proposed an improved correction localization algorithm based on wave direction spectrum for underwater wireless sensor networks. First, we use the length of anchor nodes and depth of nodes to compute the radius and achieve the initial positioning. Second, we estimate the moving distance of nodes through analyzing the wave direction spectrum, the correction coefficient was computed for X-axis, Y-axis, Z-axis respectively to correct the coordinate. Simulation shows that the localization accuracy of the proposed algorithm is better under the same time and speed environment than USP algorithm and SLMP algorithm.

  10. A Low Energy Algorithm of Wireless Sensor Networks Based on Fractal Dimension

    Directory of Open Access Journals (Sweden)

    Ting Dong

    2014-05-01

    Full Text Available For the energy limitation of nodes and imbalance energy consuming among nodes, this paper proposes an optimization algorithm --Low Energy Algorithm-- of wireless sensor networks based on fractal dimension algorithm for the purpose of reduction of the energy consumption. The nodes in WSN cannot be located evenly, and cannot move with the monitoring environment changed once be located. Considering the characteristics of WSN, the paper designs an optimized clustering method accompany with dimension by calculating the dimension of each cluster to determine the cluster which needs to be adjusted dynamically. If the cluster with high value of dimension, increasing more nodes in this cluster. If the cluster with low value of dimension, reducing more nodes in the cluster. The simulation results show that the LEA algorithm improves energy efficiency, prolongs the network lifetime, and balances energy consumption in the sensor network.

  11. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.

    Science.gov (United States)

    Vimalarani, C; Subramanian, R; Sivanandam, S N

    2016-01-01

    Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  12. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    C. Vimalarani

    2016-01-01

    Full Text Available Wireless Sensor Network (WSN is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  13. A Network Traffic Prediction Model Based on Quantum-Behaved Particle Swarm Optimization Algorithm and Fuzzy Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2016-01-01

    Full Text Available Due to the fact that the fluctuation of network traffic is affected by various factors, accurate prediction of network traffic is regarded as a challenging task of the time series prediction process. For this purpose, a novel prediction method of network traffic based on QPSO algorithm and fuzzy wavelet neural network is proposed in this paper. Firstly, quantum-behaved particle swarm optimization (QPSO was introduced. Then, the structure and operation algorithms of WFNN are presented. The parameters of fuzzy wavelet neural network were optimized by QPSO algorithm. Finally, the QPSO-FWNN could be used in prediction of network traffic simulation successfully and evaluate the performance of different prediction models such as BP neural network, RBF neural network, fuzzy neural network, and FWNN-GA neural network. Simulation results show that QPSO-FWNN has a better precision and stability in calculation. At the same time, the QPSO-FWNN also has better generalization ability, and it has a broad prospect on application.

  14. Study on Optimized Elman Neural Network Classification Algorithm Based on PLS and CA

    Science.gov (United States)

    Zhao, Dean; Shen, Tian; Zhao, Yuyan

    2014-01-01

    High-dimensional large sample data sets, between feature variables and between samples, may cause some correlative or repetitive factors, occupy lots of storage space, and consume much computing time. Using the Elman neural network to deal with them, too many inputs will influence the operating efficiency and recognition accuracy; too many simultaneous training samples, as well as being not able to get precise neural network model, also restrict the recognition accuracy. Aiming at these series of problems, we introduce the partial least squares (PLS) and cluster analysis (CA) into Elman neural network algorithm, by the PLS for dimension reduction which can eliminate the correlative and repetitive factors of the features. Using CA eliminates the correlative and repetitive factors of the sample. If some subclass becomes small sample, with high-dimensional feature and fewer numbers, PLS shows a unique advantage. Each subclass is regarded as one training sample to train the different precise neural network models. Then simulation samples are discriminated and classified into different subclasses, using the corresponding neural network to recognize it. An optimized Elman neural network classification algorithm based on PLS and CA (PLS-CA-Elman algorithm) is established. The new algorithm aims at improving the operating efficiency and recognition accuracy. By the case analysis, the new algorithm has unique superiority, worthy of further promotion. PMID:25165470

  15. An efficient Lagrangean relaxation-based object tracking algorithm in wireless sensor networks.

    Science.gov (United States)

    Lin, Frank Yeong-Sung; Lee, Cheng-Ta

    2010-01-01

    In this paper we propose an energy-efficient object tracking algorithm in wireless sensor networks (WSNs). Such sensor networks have to be designed to achieve energy-efficient object tracking for any given arbitrary topology. We consider in particular the bi-directional moving objects with given frequencies for each pair of sensor nodes and link transmission cost. This problem is formulated as a 0/1 integer-programming problem. A Lagrangean relaxation-based (LR-based) heuristic algorithm is proposed for solving the optimization problem. Experimental results showed that the proposed algorithm achieves near optimization in energy-efficient object tracking. Furthermore, the algorithm is very efficient and scalable in terms of the solution time.

  16. Research on Localization Algorithms Based on Acoustic Communication for Underwater Sensor Networks.

    Science.gov (United States)

    Luo, Junhai; Fan, Liying; Wu, Shan; Yan, Xueting

    2018-01-03

    The water source, as a significant body of the earth, with a high value, serves as a hot topic to study Underwater Sensor Networks (UWSNs). Various applications can be realized based on UWSNs. Our paper mainly concentrates on the localization algorithms based on the acoustic communication for UWSNs. An in-depth survey of localization algorithms is provided for UWSNs. We first introduce the acoustic communication, network architecture, and routing technique in UWSNs. The localization algorithms are classified into five aspects, namely, computation algorithm, spatial coverage, range measurement, the state of the nodes and communication between nodes that are different from all other survey papers. Moreover, we collect a lot of pioneering papers, and a comprehensive comparison is made. In addition, some challenges and open issues are raised in our paper.

  17. Diffusion-based EM algorithm for distributed estimation of Gaussian mixtures in wireless sensor networks.

    Science.gov (United States)

    Weng, Yang; Xiao, Wendong; Xie, Lihua

    2011-01-01

    Distributed estimation of Gaussian mixtures has many applications in wireless sensor network (WSN), and its energy-efficient solution is still challenging. This paper presents a novel diffusion-based EM algorithm for this problem. A diffusion strategy is introduced for acquiring the global statistics in EM algorithm in which each sensor node only needs to communicate its local statistics to its neighboring nodes at each iteration. This improves the existing consensus-based distributed EM algorithm which may need much more communication overhead for consensus, especially in large scale networks. The robustness and scalability of the proposed approach can be achieved by distributed processing in the networks. In addition, we show that the proposed approach can be considered as a stochastic approximation method to find the maximum likelihood estimation for Gaussian mixtures. Simulation results show the efficiency of this approach.

  18. A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Sho Fukuda

    2014-12-01

    Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks

  19. A Survey on Position-Based Routing Algorithms in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lin Ya-Ping

    2009-02-01

    Full Text Available Wireless sensor networks (WSN have attracted much attention in recent years for its unique characteristics and wide use in many different applications. Routing protocol is one of key technologies in WSN. In this paper, the position-based routing protocols are surveyed and classified into four categories: flooding-based, curve-based, grid-based and ant algorithm-based intelligent. To each category, the main contribution of related routing protocols is shown including the relationship among the routing protocols. The different routing algorithms in the same category and the different categories are compared based on popular metrics. Moreover, some open research directions in WSN are also discussed.

  20. Threshold based AntNet algorithm for dynamic traffic routing of road networks

    Directory of Open Access Journals (Sweden)

    Ayman M. Ghazy

    2012-07-01

    Full Text Available Dynamic routing algorithms play an important role in road traffic routing to avoid congestion and to direct vehicles to better routes. AntNet routing algorithms have been applied, extensively and successfully, in data communication network. However, its application for dynamic routing on road networks is still considerably limited. This paper presents a modified version of the AntNet routing algorithm, called “Threshold based AntNet”, that has the ability to efficiently utilize a priori information of dynamic traffic routing, especially, for road networks. The modification exploits the practical and pre-known information for most road traffic networks, namely, the good travel times between sources and destinations. The values of those good travel times are manipulated as threshold values. This approach has proven to conserve tracking of good routes. According to the dynamic nature of the problem, the presented approach guards the agility of rediscovering a good route. Attaining the thresholds (good reported travel times, of a given source to destination route, permits for a better utilization of the computational resources, that, leads to better accommodation for the network changes. The presented algorithm introduces a new type of ants called “check ants”. It assists in preserving good routes and, better yet, exposes and discards the degraded ones. The threshold AntNet algorithm presents a new strategy for updating the routing information, supported by the backward ants.

  1. A Multi-Attribute Pheromone Ant Secure Routing Algorithm Based on Reputation Value for Sensor Networks

    Science.gov (United States)

    Zhang, Lin; Yin, Na; Fu, Xiong; Lin, Qiaomin; Wang, Ruchuan

    2017-01-01

    With the development of wireless sensor networks, certain network problems have become more prominent, such as limited node resources, low data transmission security, and short network life cycles. To solve these problems effectively, it is important to design an efficient and trusted secure routing algorithm for wireless sensor networks. Traditional ant-colony optimization algorithms exhibit only local convergence, without considering the residual energy of the nodes and many other problems. This paper introduces a multi-attribute pheromone ant secure routing algorithm based on reputation value (MPASR). This algorithm can reduce the energy consumption of a network and improve the reliability of the nodes’ reputations by filtering nodes with higher coincidence rates and improving the method used to update the nodes’ communication behaviors. At the same time, the node reputation value, the residual node energy and the transmission delay are combined to formulate a synthetic pheromone that is used in the formula for calculating the random proportion rule in traditional ant-colony optimization to select the optimal data transmission path. Simulation results show that the improved algorithm can increase both the security of data transmission and the quality of routing service. PMID:28282894

  2. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks.

    Science.gov (United States)

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-08

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.

  3. A Multi-Attribute Pheromone Ant Secure Routing Algorithm Based on Reputation Value for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2017-03-01

    Full Text Available With the development of wireless sensor networks, certain network problems have become more prominent, such as limited node resources, low data transmission security, and short network life cycles. To solve these problems effectively, it is important to design an efficient and trusted secure routing algorithm for wireless sensor networks. Traditional ant-colony optimization algorithms exhibit only local convergence, without considering the residual energy of the nodes and many other problems. This paper introduces a multi-attribute pheromone ant secure routing algorithm based on reputation value (MPASR. This algorithm can reduce the energy consumption of a network and improve the reliability of the nodes’ reputations by filtering nodes with higher coincidence rates and improving the method used to update the nodes’ communication behaviors. At the same time, the node reputation value, the residual node energy and the transmission delay are combined to formulate a synthetic pheromone that is used in the formula for calculating the random proportion rule in traditional ant-colony optimization to select the optimal data transmission path. Simulation results show that the improved algorithm can increase both the security of data transmission and the quality of routing service.

  4. A Multi-Attribute Pheromone Ant Secure Routing Algorithm Based on Reputation Value for Sensor Networks.

    Science.gov (United States)

    Zhang, Lin; Yin, Na; Fu, Xiong; Lin, Qiaomin; Wang, Ruchuan

    2017-03-08

    With the development of wireless sensor networks, certain network problems have become more prominent, such as limited node resources, low data transmission security, and short network life cycles. To solve these problems effectively, it is important to design an efficient and trusted secure routing algorithm for wireless sensor networks. Traditional ant-colony optimization algorithms exhibit only local convergence, without considering the residual energy of the nodes and many other problems. This paper introduces a multi-attribute pheromone ant secure routing algorithm based on reputation value (MPASR). This algorithm can reduce the energy consumption of a network and improve the reliability of the nodes' reputations by filtering nodes with higher coincidence rates and improving the method used to update the nodes' communication behaviors. At the same time, the node reputation value, the residual node energy and the transmission delay are combined to formulate a synthetic pheromone that is used in the formula for calculating the random proportion rule in traditional ant-colony optimization to select the optimal data transmission path. Simulation results show that the improved algorithm can increase both the security of data transmission and the quality of routing service.

  5. Heterogeneity Involved Network-based Algorithm Leads to Accurate and Personalized Recommendations

    CERN Document Server

    Qiu, Tian; Zhang, Zi-Ke; Zhong, Li-Xin; Chen, Guang

    2013-01-01

    Heterogeneity of both the source and target objects is taken into account in a network-based algorithm for the directional resource transformation between objects. Based on a biased heat conduction recommendation method (BHC) which considers the heterogeneity of the target object, we propose a heterogeneous heat conduction algorithm (HHC), by further taking the source object degree as the weight of diffusion. Tested on three real datasets, the Netflix, RYM and MovieLens, the HHC algorithm is found to present a better recommendation in both the accuracy and personalization than two excellent algorithms, i.e., the original BHC and a hybrid algorithm of heat conduction and mass diffusion (HHM), while not requiring any other accessorial information or parameter. Moreover, the HHC even elevates the recommendation accuracy on cold objects, referring to the so-called cold start problem, for effectively relieving the recommendation bias on objects with different level of popularity.

  6. Multi-target Particle Filter Tracking Algorithm Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liu Hong-Xia

    2014-05-01

    Full Text Available In order to improve the multi-target tracking efficiency for wireless sensor networks and solve the problem of data transmission, analyzed existing particle filter tracking algorithm, ensure that one of the core technology for wireless sensor network performance. In this paper, from the basic theory of target tracking, in-depth analysis on the basis of the principle of particle filter, based on dynamic clustering, proposed the multi-target Kalman particle filter (MEPF algorithm, through the expansion of Calman filter (EKF to generate the proposal distribution, a reduction in the required number of particles to improve the particle filter accuracy at the same time, reduce the computational complexity of target tracking algorithm, thus reducing the energy consumption. Application results show that the MEPF in the proposed algorithm can achieve better tracking of target tracking and forecasting, in a small number of particles still has good tracking accuracy.

  7. CLASSIFICATION OF NEURAL NETWORK FOR TECHNICAL CONDITION OF TURBOFAN ENGINES BASED ON HYBRID ALGORITHM

    Directory of Open Access Journals (Sweden)

    Valentin Potapov

    2016-12-01

    Full Text Available Purpose: This work presents a method of diagnosing the technical condition of turbofan engines using hybrid neural network algorithm based on software developed for the analysis of data obtained in the aircraft life. Methods: allows the engine diagnostics with deep recognition to the structural assembly in the presence of single structural damage components of the engine running and the multifaceted damage. Results: of the optimization of neural network structure to solve the problems of evaluating technical state of the bypass turbofan engine, when used with genetic algorithms.

  8. An Improved ARIMA-Based Traffic Anomaly Detection Algorithm for Wireless Sensor Networks

    OpenAIRE

    Qin Yu; Lyu Jibin; Lirui Jiang

    2016-01-01

    Traffic anomaly detection is emerging as a necessary component as wireless networks gain popularity. In this paper, based on the improved Autoregressive Integrated Moving Average (ARIMA) model, we propose a traffic anomaly detection algorithm for wireless sensor networks (WSNs) which considers the particular imbalanced, nonstationary properties of the WSN traffic and the limited energy and computing capacity of the wireless sensors at the same time. We systematically analyze the characteristi...

  9. Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks

    Directory of Open Access Journals (Sweden)

    Jingjing Ma

    2014-01-01

    Full Text Available Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.

  10. A Genetic Algorithm-based Antenna Selection Approach for Large-but-Finite MIMO Networks

    KAUST Repository

    Makki, Behrooz

    2016-12-29

    We study the performance of antenna selectionbased multiple-input-multiple-output (MIMO) networks with large but finite number of transmit antennas and receivers. Considering the continuous and bursty communication scenarios with different users’ data request probabilities, we develop an efficient antenna selection scheme using genetic algorithms (GA). As demonstrated, the proposed algorithm is generic in the sense that it can be used in the cases with different objective functions, precoding methods, levels of available channel state information and channel models. Our results show that the proposed GAbased algorithm reaches (almost) the same throughput as the exhaustive search-based optimal approach, with substantially less implementation complexity.

  11. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  12. Cost-Based Vertical Handover Decision Algorithm for WWAN/WLAN Integrated Networks

    Directory of Open Access Journals (Sweden)

    Kim LaeYoung

    2009-01-01

    Full Text Available Abstract Next generation wireless communications are expected to rely on integrated networks consisting of multiple wireless technologies. Heterogeneous networks based on Wireless Local Area Networks (WLANs and Wireless Wide Area Networks (WWANs can combine their respective advantages on coverage and data rates, offering a high Quality of Service (QoS to mobile users. In such environment, multi-interface terminals should seamlessly switch from one network to another in order to obtain improved performance or at least to maintain a continuous wireless connection. Therefore, network selection algorithm is important in providing better performance to the multi-interface terminals in the integrated networks. In this paper, we propose a cost-based vertical handover decision algorithm that triggers the Vertical Handover (VHO based on a cost function for WWAN/WLAN integrated networks. For the cost function, we focus on developing an analytical model of the expected cost of WLAN for the mobile users that enter the double-coverage area while having a connection in the WWAN. Our simulation results show that the proposed scheme achieves better performance in terms of power consumption and throughput than typical approach where WLANs are always preferred whenever the WLAN access is available.

  13. Cost-Based Vertical Handover Decision Algorithm for WWAN/WLAN Integrated Networks

    Directory of Open Access Journals (Sweden)

    KunHo Hong

    2009-01-01

    Full Text Available Next generation wireless communications are expected to rely on integrated networks consisting of multiple wireless technologies. Heterogeneous networks based on Wireless Local Area Networks (WLANs and Wireless Wide Area Networks (WWANs can combine their respective advantages on coverage and data rates, offering a high Quality of Service (QoS to mobile users. In such environment, multi-interface terminals should seamlessly switch from one network to another in order to obtain improved performance or at least to maintain a continuous wireless connection. Therefore, network selection algorithm is important in providing better performance to the multi-interface terminals in the integrated networks. In this paper, we propose a cost-based vertical handover decision algorithm that triggers the Vertical Handover (VHO based on a cost function for WWAN/WLAN integrated networks. For the cost function, we focus on developing an analytical model of the expected cost of WLAN for the mobile users that enter the double-coverage area while having a connection in the WWAN. Our simulation results show that the proposed scheme achieves better performance in terms of power consumption and throughput than typical approach where WLANs are always preferred whenever the WLAN access is available.

  14. A New Recommendation Algorithm Based on User’s Dynamic Information in Complex Social Network

    Directory of Open Access Journals (Sweden)

    Jiujun Cheng

    2015-01-01

    Full Text Available The development of recommendation system comes with the research of data sparsity, cold start, scalability, and privacy protection problems. Even though many papers proposed different improved recommendation algorithms to solve those problems, there is still plenty of room for improvement. In the complex social network, we can take full advantage of dynamic information such as user’s hobby, social relationship, and historical log to improve the performance of recommendation system. In this paper, we proposed a new recommendation algorithm which is based on social user’s dynamic information to solve the cold start problem of traditional collaborative filtering algorithm and also considered the dynamic factors. The algorithm takes user’s response information, dynamic interest, and the classic similar measurement of collaborative filtering algorithm into account. Then, we compared the new proposed recommendation algorithm with the traditional user based collaborative filtering algorithm and also presented some of the findings from experiment. The results of experiment demonstrate that the new proposed algorithm has a better recommended performance than the collaborative filtering algorithm in cold start scenario.

  15. Classification of ETM+ Remote Sensing Image Based on Hybrid Algorithm of Genetic Algorithm and Back Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Haisheng Song

    2013-01-01

    Full Text Available The back propagation neural network (BPNN algorithm can be used as a supervised classification in the processing of remote sensing image classification. But its defects are obvious: falling into the local minimum value easily, slow convergence speed, and being difficult to determine intermediate hidden layer nodes. Genetic algorithm (GA has the advantages of global optimization and being not easy to fall into local minimum value, but it has the disadvantage of poor local searching capability. This paper uses GA to generate the initial structure of BPNN. Then, the stable, efficient, and fast BP classification network is gotten through making fine adjustments on the improved BP algorithm. Finally, we use the hybrid algorithm to execute classification on remote sensing image and compare it with the improved BP algorithm and traditional maximum likelihood classification (MLC algorithm. Results of experiments show that the hybrid algorithm outperforms improved BP algorithm and MLC algorithm.

  16. Localization Algorithm Based on a Spring Model (LASM for Large Scale Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2008-03-01

    Full Text Available A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1 for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.

  17. A density based link clustering algorithm for overlapping community detection in networks

    Science.gov (United States)

    Zhou, Xu; Liu, Yanheng; Wang, Jian; Li, Chun

    2017-11-01

    Overlapping is an interesting and common characteristic of community structure in networks. Link clustering method for overlapping community detection has attracted a lot of attention in the area of social networks applications. However, it may make the clustering result with excessive overlap and cluster bridge edge and border edge mistakenly to adjacent communities. To solve this problem, a density based link clustering algorithm is proposed to improve the accuracy of detecting overlapping communities in networks in this study. It creates a number of clusters containing core edges only based on concept named as core density reachable during the expansion. Then an updating strategy for unclassified edges is designed to assign them to the closest cluster. In addition, a similarity measure for computing the similarity between two edges is presented. Experiments on synthetic networks and real networks have been conducted. The experimental results demonstrate that our method performs better than other algorithms on detecting community structure and overlapping nodes, it can get nearly 15% higher than the NMI value of other algorithms on some synthetic networks.

  18. Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks.

    Directory of Open Access Journals (Sweden)

    Seungseob Lee

    Full Text Available Data traffic demands in cellular networks today are increasing at an exponential rate, giving rise to the development of heterogeneous networks (HetNets, in which small cells complement traditional macro cells by extending coverage to indoor areas. However, the deployment of small cells as parts of HetNets creates a key challenge for operators' careful network planning. In particular, massive and unplanned deployment of base stations can cause high interference, resulting in highly degrading network performance. Although different mathematical modeling and optimization methods have been used to approach various problems related to this issue, most traditional network planning models are ill-equipped to deal with HetNet-specific characteristics due to their focus on classical cellular network designs. Furthermore, increased wireless data demands have driven mobile operators to roll out large-scale networks of small long term evolution (LTE cells. Therefore, in this paper, we aim to derive an optimum network planning algorithm for large-scale LTE HetNets. Recently, attempts have been made to apply evolutionary algorithms (EAs to the field of radio network planning, since they are characterized as global optimization methods. Yet, EA performance often deteriorates rapidly with the growth of search space dimensionality. To overcome this limitation when designing optimum network deployments for large-scale LTE HetNets, we attempt to decompose the problem and tackle its subcomponents individually. Particularly noting that some HetNet cells have strong correlations due to inter-cell interference, we propose a correlation grouping approach in which cells are grouped together according to their mutual interference. Both the simulation and analytical results indicate that the proposed solution outperforms the random-grouping based EA as well as an EA that detects interacting variables by monitoring the changes in the objective function algorithm in terms

  19. Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks.

    Science.gov (United States)

    Lee, Seungseob; Lee, SuKyoung; Kim, Kyungsoo; Kim, Yoon Hyuk

    2015-01-01

    Data traffic demands in cellular networks today are increasing at an exponential rate, giving rise to the development of heterogeneous networks (HetNets), in which small cells complement traditional macro cells by extending coverage to indoor areas. However, the deployment of small cells as parts of HetNets creates a key challenge for operators' careful network planning. In particular, massive and unplanned deployment of base stations can cause high interference, resulting in highly degrading network performance. Although different mathematical modeling and optimization methods have been used to approach various problems related to this issue, most traditional network planning models are ill-equipped to deal with HetNet-specific characteristics due to their focus on classical cellular network designs. Furthermore, increased wireless data demands have driven mobile operators to roll out large-scale networks of small long term evolution (LTE) cells. Therefore, in this paper, we aim to derive an optimum network planning algorithm for large-scale LTE HetNets. Recently, attempts have been made to apply evolutionary algorithms (EAs) to the field of radio network planning, since they are characterized as global optimization methods. Yet, EA performance often deteriorates rapidly with the growth of search space dimensionality. To overcome this limitation when designing optimum network deployments for large-scale LTE HetNets, we attempt to decompose the problem and tackle its subcomponents individually. Particularly noting that some HetNet cells have strong correlations due to inter-cell interference, we propose a correlation grouping approach in which cells are grouped together according to their mutual interference. Both the simulation and analytical results indicate that the proposed solution outperforms the random-grouping based EA as well as an EA that detects interacting variables by monitoring the changes in the objective function algorithm in terms of system

  20. A differential evolution-based routing algorithm for environmental monitoring wireless sensor networks.

    Science.gov (United States)

    Li, Xiaofang; Xu, Lizhong; Wang, Huibin; Song, Jie; Yang, Simon X

    2010-01-01

    The traditional Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol is a clustering-based protocol. The uneven selection of cluster heads results in premature death of cluster heads and premature blind nodes inside the clusters, thus reducing the overall lifetime of the network. With a full consideration of information on energy and distance distribution of neighboring nodes inside the clusters, this paper proposes a new routing algorithm based on differential evolution (DE) to improve the LEACH routing protocol. To meet the requirements of monitoring applications in outdoor environments such as the meteorological, hydrological and wetland ecological environments, the proposed algorithm uses the simple and fast search features of DE to optimize the multi-objective selection of cluster heads and prevent blind nodes for improved energy efficiency and system stability. Simulation results show that the proposed new LEACH routing algorithm has better performance, effectively extends the working lifetime of the system, and improves the quality of the wireless sensor networks.

  1. Sequential Classification of Palm Gestures Based on A* Algorithm and MLP Neural Network for Quadrocopter Control

    Directory of Open Access Journals (Sweden)

    Wodziński Marek

    2017-06-01

    Full Text Available This paper presents an alternative approach to the sequential data classification, based on traditional machine learning algorithms (neural networks, principal component analysis, multivariate Gaussian anomaly detector and finding the shortest path in a directed acyclic graph, using A* algorithm with a regression-based heuristic. Palm gestures were used as an example of the sequential data and a quadrocopter was the controlled object. The study includes creation of a conceptual model and practical construction of a system using the GPU to ensure the realtime operation. The results present the classification accuracy of chosen gestures and comparison of the computation time between the CPU- and GPU-based solutions.

  2. mproved Correction Localization Algorithm Based on Dynamic Weighted Centroid for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xuejiao Chen

    2014-08-01

    Full Text Available For wireless sensor network applications that require location information for sensor nodes, locations of nodes can be estimated by a number of localization algorithms. However, precise location information may be unavailable due to the constraint in energy, computation, or terrain. An improved correction localization algorithm based on dynamic weighted centroid for wireless sensor networks was proposed in this paper. The idea is that each anchor node computes its position error through its neighbor anchor nodes in its range, the position error will be transform to distance error, according the distance between unknown node and anchor node and the anchor node’s distance error, the dynamic weighted value will be computed. For each unknown node, it can use the coordinate of anchor node in its range and the dynamic weighted value to compute it’s coordinate. Simulation results show that the localization accuracy of the proposed algorithm is better than the traditional centroid localization algorithm and weighted centroid localization algorithm, the position error of three algorithms is decreased along radius increasing, where the decreased trend of our algorithm is significant.

  3. The wireless sensor network (WSN triangle centroid localization algorithm based on RSSI

    Directory of Open Access Journals (Sweden)

    Zhang Chuan Wei

    2016-01-01

    Full Text Available Node location is one of the key technologies in wireless sensor network. RSSI-based location is a hotspot in nowadays. For resolving biggish error in RSSI-based location, the paper presents a new method of location, RSSI-based triangle and centroid location, using triangle and centroid method to reduce the error of RSSI measurement. Simulation experiments prove that this algorithm can obviously improve the location accuracy compared to trilateration.

  4. Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System

    Directory of Open Access Journals (Sweden)

    A. A. Salama

    2015-03-01

    Full Text Available In this paper, we present a review of different recommender system algorithms that are utilized in social networks based e-Learning systems. Future research will include our proposed our e-Learning system that utilizes Recommender System and Social Network. Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache in [21, 22, 23] and Salama et al. in [24-66].The purpose of this paper is to utilize a neutrosophic set to analyze social networks data conducted through learning activities.

  5. Research on wind field algorithm of wind lidar based on BP neural network and grey prediction

    Science.gov (United States)

    Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei

    2018-01-01

    This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.

  6. An Adaptive Connectivity-based Centroid Algorithm for Node Positioning in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Aries Pratiarso

    2015-06-01

    Full Text Available In wireless sensor network applications, the position of nodes is randomly distributed following the contour of the observation area. A simple solution without any measurement tools is provided by range-free method. However, this method yields the coarse estimating position of the nodes. In this paper, we propose Adaptive Connectivity-based (ACC algorithm. This algorithm is a combination of Centroid as range-free based algorithm, and hop-based connectivity algorithm. Nodes have a possibility to estimate their own position based on the connectivity level between them and their reference nodes. Each node divides its communication range into several regions where each of them has a certain weight depends on the received signal strength. The weighted value is used to obtain the estimated position of nodes. Simulation result shows that the proposed algorithm has up to 3 meter error of estimated position on 100x100 square meter observation area, and up to 3 hop counts for 80 meters' communication range. The proposed algorithm performs an average error positioning up to 10 meters better than Weighted Centroid algorithm. Keywords: adaptive, connectivity, centroid, range-free.

  7. A Distance-Based Energy Aware Routing Algorithm for Wireless Sensor Networks

    Science.gov (United States)

    Wang, Jin; Kim, Jeong-Uk; Shu, Lei; Niu, Yu; Lee, Sungyoung

    2010-01-01

    Energy efficiency and balancing is one of the primary challenges for wireless sensor networks (WSNs) since the tiny sensor nodes cannot be easily recharged once they are deployed. Up to now, many energy efficient routing algorithms or protocols have been proposed with techniques like clustering, data aggregation and location tracking etc. However, many of them aim to minimize parameters like total energy consumption, latency etc., which cause hotspot nodes and partitioned network due to the overuse of certain nodes. In this paper, a Distance-based Energy Aware Routing (DEAR) algorithm is proposed to ensure energy efficiency and energy balancing based on theoretical analysis of different energy and traffic models. During the routing process, we consider individual distance as the primary parameter in order to adjust and equalize the energy consumption among involved sensors. The residual energy is also considered as a secondary factor. In this way, all the intermediate nodes will consume their energy at similar rate, which maximizes network lifetime. Simulation results show that the DEAR algorithm can reduce and balance the energy consumption for all sensor nodes so network lifetime is greatly prolonged compared to other routing algorithms. PMID:22163422

  8. Dynamic link load balancing based integrated routing algorithm in IP-over-WDM networks

    Science.gov (United States)

    Zhang, Zhizhong; Zhang, Yunlin; Zeng, Qingji; Wang, Jianxin; Ye, Tong; Zhou, Yuli

    2004-04-01

    Integrated routing is a routing approach to support the peer interconnection model in IP over WDM networks. To have a better network link load distribution and network usage in IP over WDM networks, in which network nodes may have the ability to handle traffic in fine granularities, it is important to take into account the combined routing at the IP and WDM layers. Based upon this, this paper develops an algorithm for integrated dynamic routing of bandwidth guaranteed paths in IP over WDM networks. For newly dynamic arriving requests, as the developed algorithm takes into account the combined topology and resource usage information at the IP and WDM layers, and the routing procedure makes full use of the statistic information of the users" bandwidth requirement and considers carefully both the routing cost and the corresponding length of the routing path, thus a better link load balancing and network usage can be achieved. Simulation results show that the developed scheme performs well in terms of performance metrics such as the number of rejected demands and the network link load balancing.

  9. Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network

    Science.gov (United States)

    Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond

    2016-01-01

    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead. PMID:27855165

  10. Improved Cost-Base Design of Water Distribution Networks using Genetic Algorithm

    Science.gov (United States)

    Moradzadeh Azar, Foad; Abghari, Hirad; Taghi Alami, Mohammad; Weijs, Steven

    2010-05-01

    Population growth and progressive extension of urbanization in different places of Iran cause an increasing demand for primary needs. The water, this vital liquid is the most important natural need for human life. Providing this natural need is requires the design and construction of water distribution networks, that incur enormous costs on the country's budget. Any reduction in these costs enable more people from society to access extreme profit least cost. Therefore, investment of Municipal councils need to maximize benefits or minimize expenditures. To achieve this purpose, the engineering design depends on the cost optimization techniques. This paper, presents optimization models based on genetic algorithm(GA) to find out the minimum design cost Mahabad City's (North West, Iran) water distribution network. By designing two models and comparing the resulting costs, the abilities of GA were determined. the GA based model could find optimum pipe diameters to reduce the design costs of network. Results show that the water distribution network design using Genetic Algorithm could lead to reduction of at least 7% in project costs in comparison to the classic model. Keywords: Genetic Algorithm, Optimum Design of Water Distribution Network, Mahabad City, Iran.

  11. The Index-Based Subgraph Matching Algorithm (ISMA): Fast Subgraph Enumeration in Large Networks Using Optimized Search Trees

    Science.gov (United States)

    Demeyer, Sofie; Michoel, Tom; Fostier, Jan; Audenaert, Pieter; Pickavet, Mario; Demeester, Piet

    2013-01-01

    Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/. PMID:23620730

  12. A General Combinatorial Ant System-based Distributed Routing Algorithm for Communication Networks

    Directory of Open Access Journals (Sweden)

    Jose Aguilar

    2007-08-01

    Full Text Available In this paper, a general Combinatorial Ant System-based distributed routing algorithm modeled like a dynamic combinatorial optimization problem is presented. In the proposed algorithm, the solution space of the dynamic combinatorial optimization problem is mapped into the space where the ants will walk, and the transition probability and the pheromone update formula of the Ant System is defined according to the objective function of the communication problem. The general nature of the approach allows for the optimization of the routing function to be applied in different types of networks just changing the performance criteria to be optimized. In fact, we test and compare the performance of our routing algorithm against well-known routing schemes for wired and wireless networks, and show its superior performance in terms throughput, delay and energy efficiency.

  13. Securing mobile ad hoc networks using danger theory-based artificial immune algorithm.

    Science.gov (United States)

    Abdelhaq, Maha; Alsaqour, Raed; Abdelhaq, Shawkat

    2015-01-01

    A mobile ad hoc network (MANET) is a set of mobile, decentralized, and self-organizing nodes that are used in special cases, such as in the military. MANET properties render the environment of this network vulnerable to different types of attacks, including black hole, wormhole and flooding-based attacks. Flooding-based attacks are one of the most dangerous attacks that aim to consume all network resources and thus paralyze the functionality of the whole network. Therefore, the objective of this paper is to investigate the capability of a danger theory-based artificial immune algorithm called the mobile dendritic cell algorithm (MDCA) to detect flooding-based attacks in MANETs. The MDCA applies the dendritic cell algorithm (DCA) to secure the MANET with additional improvements. The MDCA is tested and validated using Qualnet v7.1 simulation tool. This work also introduces a new simulation module for a flooding attack called the resource consumption attack (RCA) using Qualnet v7.1. The results highlight the high efficiency of the MDCA in detecting RCAs in MANETs.

  14. Securing mobile ad hoc networks using danger theory-based artificial immune algorithm.

    Directory of Open Access Journals (Sweden)

    Maha Abdelhaq

    Full Text Available A mobile ad hoc network (MANET is a set of mobile, decentralized, and self-organizing nodes that are used in special cases, such as in the military. MANET properties render the environment of this network vulnerable to different types of attacks, including black hole, wormhole and flooding-based attacks. Flooding-based attacks are one of the most dangerous attacks that aim to consume all network resources and thus paralyze the functionality of the whole network. Therefore, the objective of this paper is to investigate the capability of a danger theory-based artificial immune algorithm called the mobile dendritic cell algorithm (MDCA to detect flooding-based attacks in MANETs. The MDCA applies the dendritic cell algorithm (DCA to secure the MANET with additional improvements. The MDCA is tested and validated using Qualnet v7.1 simulation tool. This work also introduces a new simulation module for a flooding attack called the resource consumption attack (RCA using Qualnet v7.1. The results highlight the high efficiency of the MDCA in detecting RCAs in MANETs.

  15. Performance evaluation of wavelet-based ECG compression algorithms for telecardiology application over CDMA network.

    Science.gov (United States)

    Kim, Byung S; Yoo, Sun K

    2007-09-01

    The use of wireless networks bears great practical importance in instantaneous transmission of ECG signals during movement. In this paper, three typical wavelet-based ECG compression algorithms, Rajoub (RA), Embedded Zerotree Wavelet (EZ), and Wavelet Transform Higher-Order Statistics Coding (WH), were evaluated to find an appropriate ECG compression algorithm for scalable and reliable wireless tele-cardiology applications, particularly over a CDMA network. The short-term and long-term performance characteristics of the three algorithms were analyzed using normal, abnormal, and measurement noise-contaminated ECG signals from the MIT-BIH database. In addition to the processing delay measurement, compression efficiency and reconstruction sensitivity to error were also evaluated via simulation models including the noise-free channel model, random noise channel model, and CDMA channel model, as well as over an actual CDMA network currently operating in Korea. This study found that the EZ algorithm achieves the best compression efficiency within a low-noise environment, and that the WH algorithm is competitive for use in high-error environments with degraded short-term performance with abnormal or contaminated ECG signals.

  16. Mobile Ad Hoc Network Energy Cost Algorithm Based on Artificial Bee Colony

    Directory of Open Access Journals (Sweden)

    Mustafa Tareq

    2017-01-01

    Full Text Available A mobile ad hoc network (MANET is a collection of mobile nodes that dynamically form a temporary network without using any existing network infrastructure. MANET selects a path with minimal number of intermediate nodes to reach the destination node. As the distance between each node increases, the quantity of transmission power increases. The power level of nodes affects the simplicity with which a route is constituted between a couple of nodes. This study utilizes the swarm intelligence technique through the artificial bee colony (ABC algorithm to optimize the energy consumption in a dynamic source routing (DSR protocol in MANET. The proposed algorithm is called bee DSR (BEEDSR. The ABC algorithm is used to identify the optimal path from the source to the destination to overcome energy problems. The performance of the BEEDSR algorithm is compared with DSR and bee-inspired protocols (BeeIP. The comparison was conducted based on average energy consumption, average throughput, average end-to-end delay, routing overhead, and packet delivery ratio performance metrics, varying the node speed and packet size. The BEEDSR algorithm is superior in performance than other protocols in terms of energy conservation and delay degradation relating to node speed and packet size.

  17. Node Deployment Algorithm Based on Connected Tree for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2015-07-01

    Full Text Available Designing an efficient deployment method to guarantee optimal monitoring quality is one of the key topics in underwater sensor networks. At present, a realistic approach of deployment involves adjusting the depths of nodes in water. One of the typical algorithms used in such process is the self-deployment depth adjustment algorithm (SDDA. This algorithm mainly focuses on maximizing network coverage by constantly adjusting node depths to reduce coverage overlaps between two neighboring nodes, and thus, achieves good performance. However, the connectivity performance of SDDA is irresolute. In this paper, we propose a depth adjustment algorithm based on connected tree (CTDA. In CTDA, the sink node is used as the first root node to start building a connected tree. Finally, the network can be organized as a forest to maintain network connectivity. Coverage overlaps between the parent node and the child node are then reduced within each sub-tree to optimize coverage. The hierarchical strategy is used to adjust the distance between the parent node and the child node to reduce node movement. Furthermore, the silent mode is adopted to reduce communication cost. Simulations show that compared with SDDA, CTDA can achieve high connectivity with various communication ranges and different numbers of nodes. Moreover, it can realize coverage as high as that of SDDA with various sensing ranges and numbers of nodes but with less energy consumption. Simulations under sparse environments show that the connectivity and energy consumption performances of CTDA are considerably better than those of SDDA. Meanwhile, the connectivity and coverage performances of CTDA are close to those depth adjustment algorithms base on connected dominating set (CDA, which is an algorithm similar to CTDA. However, the energy consumption of CTDA is less than that of CDA, particularly in sparse underwater environments.

  18. An Enhanced OFDM Resource Allocation Algorithm in C-RAN Based 5G Public Safety Network

    Directory of Open Access Journals (Sweden)

    Lei Feng

    2016-01-01

    Full Text Available Public Safety Network (PSN is the network for critical communication when disaster occurs. As a key technology in 5G, Cloud-Radio Access Network (C-RAN can play an important role in PSN instead of LTE-based RAN. This paper firstly introduces C-RAN based PSN architecture and models the OFDM resource allocation problem in C-RAN based PSN as an integer quadratic programming, which allows the trade-off between expected bitrates and allocating fairness of PSN Service User (PSU. However, C-RAN based PSN needs to improve the efficiency of allocating algorithm because of a mass of PSU-RRH associations when disaster occurs. To deal with it, the resources allocating problem with integer variables is relaxed into one with continuous variables in the first step and an algorithm based on Generalized Bender’s Decomposition (GBD is proposed to solve it. Then we use Feasible Pump (FP method to get a feasible integer solution on the original OFDM resources allocation problem. The final experiments show the total throughput achieved by C-RAN based PSN is at most higher by 19.17% than the LTE-based one. And the average computational time of the proposed GBD and FP algorithm is at most lower than Barrier by 51.5% and GBD with no relaxation by 30.1%, respectively.

  19. An Evolutionary Algorithm of the Regional Collaborative Innovation Based on Complex Network

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2016-01-01

    Full Text Available This paper proposed a new perspective to study the evolution of regional collaborative innovation based on complex network theory. The two main conceptions of evolution, “graph with dynamic features” and “network evolution,” have been provided in advance. Afterwards, we illustrate the overall architecture and capability model of the regional collaborative innovation system, which contains several elements and participants. Therefore, we can definitely assume that the regional collaborative innovation system could be regarded as a complex network model. In the proposed evolutionary algorithm, we consider that each node in the network could only connect to less than a certain amount of neighbors, and the extreme value is determined by its importance. Through the derivation, we have created a probability density function as the most important constraint and supporting condition of our simulation experiments. Then, a case study was performed to explore the network topology and validate the effectiveness of our algorithm. All the raw datasets were obtained from the official website of the National Bureau of Statistic of China and some other open sources. Finally, some meaningful recommendations were presented to policy makers, especially based on the experimental results and some common conclusions of complex networks.

  20. Highway Passenger Transport Based Express Parcel Service Network Design: Model and Algorithm

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2017-01-01

    Full Text Available Highway passenger transport based express parcel service (HPTB-EPS is an emerging business that uses unutilised room of coach trunk to ship parcels between major cities. While it is reaping more and more express market, the managers are facing difficult decisions to design the service network. This paper investigates the HPTB-EPS network design problem and analyses the time-space characteristics of such network. A mixed-integer programming model is formulated integrating the service decision, frequency, and network flow distribution. To solve the model, a decomposition-based heuristic algorithm is designed by decomposing the problem as three steps: construction of service network, service path selection, and distribution of network flow. Numerical experiment using real data from our partner company demonstrates the effectiveness of our model and algorithm. We found that our solution could reduce the total cost by up to 16.3% compared to the carrier’s solution. The sensitivity analysis demonstrates the robustness and flexibility of the solutions of the model.

  1. A High-Efficiency Uneven Cluster Deployment Algorithm Based on Network Layered for Event Coverage in UWSNs

    Directory of Open Access Journals (Sweden)

    Shanen Yu

    2016-12-01

    Full Text Available Most existing deployment algorithms for event coverage in underwater wireless sensor networks (UWSNs usually do not consider that network communication has non-uniform characteristics on three-dimensional underwater environments. Such deployment algorithms ignore that the nodes are distributed at different depths and have different probabilities for data acquisition, thereby leading to imbalances in the overall network energy consumption, decreasing the network performance, and resulting in poor and unreliable late network operation. Therefore, in this study, we proposed an uneven cluster deployment algorithm based network layered for event coverage. First, according to the energy consumption requirement of the communication load at different depths of the underwater network, we obtained the expected value of deployment nodes and the distribution density of each layer network after theoretical analysis and deduction. Afterward, the network is divided into multilayers based on uneven clusters, and the heterogeneous communication radius of nodes can improve the network connectivity rate. The recovery strategy is used to balance the energy consumption of nodes in the cluster and can efficiently reconstruct the network topology, which ensures that the network has a high network coverage and connectivity rate in a long period of data acquisition. Simulation results show that the proposed algorithm improves network reliability and prolongs network lifetime by significantly reducing the blind movement of overall network nodes while maintaining a high network coverage and connectivity rate.

  2. Probabilistic Neighborhood-Based Data Collection Algorithms for 3D Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo

    2017-02-08

    Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency.

  3. A Collaborative Secure Localization Algorithm Based on Trust Model in Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Han, Guangjie; Liu, Li; Jiang, Jinfang; Shu, Lei; Rodrigues, Joel J P C

    2016-02-16

    Localization is one of the hottest research topics in Underwater Wireless Sensor Networks (UWSNs), since many important applications of UWSNs, e.g., event sensing, target tracking and monitoring, require location information of sensor nodes. Nowadays, a large number of localization algorithms have been proposed for UWSNs. How to improve location accuracy are well studied. However, few of them take location reliability or security into consideration. In this paper, we propose a Collaborative Secure Localization algorithm based on Trust model (CSLT) for UWSNs to ensure location security. Based on the trust model, the secure localization process can be divided into the following five sub-processes: trust evaluation of anchor nodes, initial localization of unknown nodes, trust evaluation of reference nodes, selection of reference node, and secondary localization of unknown node. Simulation results demonstrate that the proposed CSLT algorithm performs better than the compared related works in terms of location security, average localization accuracy and localization ratio.

  4. A Collaborative Secure Localization Algorithm Based on Trust Model in Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Guangjie Han

    2016-02-01

    Full Text Available Localization is one of the hottest research topics in Underwater Wireless Sensor Networks (UWSNs, since many important applications of UWSNs, e.g., event sensing, target tracking and monitoring, require location information of sensor nodes. Nowadays, a large number of localization algorithms have been proposed for UWSNs. How to improve location accuracy are well studied. However, few of them take location reliability or security into consideration. In this paper, we propose a Collaborative Secure Localization algorithm based on Trust model (CSLT for UWSNs to ensure location security. Based on the trust model, the secure localization process can be divided into the following five sub-processes: trust evaluation of anchor nodes, initial localization of unknown nodes, trust evaluation of reference nodes, selection of reference node, and secondary localization of unknown node. Simulation results demonstrate that the proposed CSLT algorithm performs better than the compared related works in terms of location security, average localization accuracy and localization ratio.

  5. Network-Oblivious Algorithms

    DEFF Research Database (Denmark)

    Bilardi, Gianfranco; Pietracaprina, Andrea; Pucci, Geppino

    2016-01-01

    A framework is proposed for the design and analysis of network-oblivious algorithms, namely algorithms that can run unchanged, yet efficiently, on a variety of machines characterized by different degrees of parallelism and communication capabilities. The framework prescribes that a network...... in the latter model implies optimality in the decomposable bulk synchronous parallel model, which is known to effectively describe a wide and significant class of parallel platforms. The proposed framework can be regarded as an attempt to port the notion of obliviousness, well established in the context...

  6. An Improved Topology-Potential-Based Community Detection Algorithm for Complex Network

    Directory of Open Access Journals (Sweden)

    Zhixiao Wang

    2014-01-01

    Full Text Available Topology potential theory is a new community detection theory on complex network, which divides a network into communities by spreading outward from each local maximum potential node. At present, almost all topology-potential-based community detection methods ignore node difference and assume that all nodes have the same mass. This hypothesis leads to inaccuracy of topology potential calculation and then decreases the precision of community detection. Inspired by the idea of PageRank algorithm, this paper puts forward a novel mass calculation method for complex network nodes. A node’s mass obtained by our method can effectively reflect its importance and influence in complex network. The more important the node is, the bigger its mass is. Simulation experiment results showed that, after taking node mass into consideration, the topology potential of node is more accurate, the distribution of topology potential is more reasonable, and the results of community detection are more precise.

  7. Quality of Service Issues for Reinforcement Learning Based Routing Algorithm for Ad-Hoc Networks

    OpenAIRE

    Kulkarni, Shrirang Ambaji; Rao, G. Raghavendra

    2012-01-01

    Mobile ad-hoc networks are dynamic networks which are decentralized and autonomous in nature. Many routing algorithms have been proposed for these dynamic networks. It is an important problem to model Quality of Service requirements on these types of algorithms which traditionally have certain limitations. To model this scenario we have considered a reinforcement learning algorithm SAMPLE. SAMPLE promises to deal effectively with congestion and under high traffic load. As it is natural for ad...

  8. A Multi-view Dense Matching Algorithm of High Resolution Aerial Images Based on Graph Network

    Directory of Open Access Journals (Sweden)

    YAN Li

    2016-10-01

    Full Text Available A multi-view dense matching algorithm of high resolution aerial images based on graph network was presented. Overlap ratio and direction between adjacent images was used to find the candidate stereo pairs and build the graph network, then a Coarse-to-Fine strategy based on modified semi-global matching algorithm (SGM was adapted to calculate the disparity map of stereo pairs. Finally, dense point cloud was generated and fused using a multi-triangulation method based on graph network. In the experiment part, the Vaihingen aerial image dataset and the oblique nadir image block of Zürich in ISPRS/EuroSDR project were used to test the algorithm above. Experiment results show that out method is effective for multi-view dense matching of high resolution aerial images in consideration of completeness, efficiency and precision, while the RMS of average reprojection error can reach subpixel level and the actual deviation is better than 1.5 GSD. Due to the introduction of guided median filter, regions of sharp discontinuities, weak textureness or repeat textureness like buildings, vegetation and water body can also be matched well.

  9. Optimal Power Allocation Algorithm for Radar Network Systems Based on Low Probability of Intercept Optimization(in English

    Directory of Open Access Journals (Sweden)

    Shi Chen-guang

    2014-08-01

    Full Text Available A novel optimal power allocation algorithm for radar network systems is proposed for Low Probability of Intercept (LPI technology in modern electronic warfare. The algorithm is based on the LPI optimization. First, the Schleher intercept factor for a radar network is derived, and then the Schleher intercept factor is minimized by optimizing the transmission power allocation among netted radars in the network to guarantee target-tracking performance. Furthermore, the Nonlinear Programming Genetic Algorithm (NPGA is used to solve the resulting nonconvex, nonlinear, and constrained optimization problem. Numerical simulation results show the effectiveness of the proposed algorithm.

  10. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    Science.gov (United States)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  11. A Forest Early Fire Detection Algorithm Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    CHENG Qiang

    2014-03-01

    Full Text Available Wireless Sensor Networks (WSN adopt GHz as their communication carrier, and it has been found that GHz carrier attenuation model in transmission path is associated with vegetation water content. In this paper, based on RSSI mechanism of WSN nodes we formed vegetation dehydration sensors. Through relationships between vegetation water content and carrier attenuation, we perceived forest vegetation water content variations and early fire gestation process, and established algorithms of early forest fires detection. Experiments confirm that wireless sensor networks can accurately perceive vegetation dehydration events and forest fire events. Simulation results show that, WSN dehydration perception channel (P2P representing 75 % amounts of carrier channel or more, it can meet the detection requirements, which presented a new algorithm of early forest fire detection.

  12. Computationally Efficient Power Allocation Algorithm in Multicarrier-Based Cognitive Radio Networks: OFDM and FBMC Systems

    Directory of Open Access Journals (Sweden)

    Shaat Musbah

    2010-01-01

    Full Text Available Cognitive Radio (CR systems have been proposed to increase the spectrum utilization by opportunistically access the unused spectrum. Multicarrier communication systems are promising candidates for CR systems. Due to its high spectral efficiency, filter bank multicarrier (FBMC can be considered as an alternative to conventional orthogonal frequency division multiplexing (OFDM for transmission over the CR networks. This paper addresses the problem of resource allocation in multicarrier-based CR networks. The objective is to maximize the downlink capacity of the network under both total power and interference introduced to the primary users (PUs constraints. The optimal solution has high computational complexity which makes it unsuitable for practical applications and hence a low complexity suboptimal solution is proposed. The proposed algorithm utilizes the spectrum holes in PUs bands as well as active PU bands. The performance of the proposed algorithm is investigated for OFDM and FBMC based CR systems. Simulation results illustrate that the proposed resource allocation algorithm with low computational complexity achieves near optimal performance and proves the efficiency of using FBMC in CR context.

  13. A Circuit-Based Neural Network with Hybrid Learning of Backpropagation and Random Weight Change Algorithms

    Science.gov (United States)

    Yang, Changju; Kim, Hyongsuk; Adhikari, Shyam Prasad; Chua, Leon O.

    2016-01-01

    A hybrid learning method of a software-based backpropagation learning and a hardware-based RWC learning is proposed for the development of circuit-based neural networks. The backpropagation is known as one of the most efficient learning algorithms. A weak point is that its hardware implementation is extremely difficult. The RWC algorithm, which is very easy to implement with respect to its hardware circuits, takes too many iterations for learning. The proposed learning algorithm is a hybrid one of these two. The main learning is performed with a software version of the BP algorithm, firstly, and then, learned weights are transplanted on a hardware version of a neural circuit. At the time of the weight transplantation, a significant amount of output error would occur due to the characteristic difference between the software and the hardware. In the proposed method, such error is reduced via a complementary learning of the RWC algorithm, which is implemented in a simple hardware. The usefulness of the proposed hybrid learning system is verified via simulations upon several classical learning problems. PMID:28025566

  14. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks

    Science.gov (United States)

    2014-01-01

    Background Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. Methods In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. Results The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. Conclusions The algorithm of probability graph isomorphism

  15. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks.

    Science.gov (United States)

    He, Jieyue; Wang, Chunyan; Qiu, Kunpu; Zhong, Wei

    2014-01-01

    Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. The algorithm of probability graph isomorphism evaluation based on circuit simulation

  16. iMASKO: A Genetic Algorithm Based Optimization Framework for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nanhao Zhu

    2013-10-01

    Full Text Available In this paper we present the design and implementation of a generic GA-based optimization framework iMASKO (iNL@MATLAB Genetic Algorithm-based Sensor NetworK Optimizer to optimize the performance metrics of wireless sensor networks. Due to the global search property of genetic algorithms, the framework is able to automatically and quickly fine tune hundreds of possible solutions for the given task to find the best suitable tradeoff. We test and evaluate the framework by using it to explore a SystemC-based simulation process to tune the configuration of the unslotted CSMA/CA algorithm of IEEE 802.15.4, aiming to discover the most available tradeoff solutions for the required performance metrics. In particular, in the test cases different sensor node platforms are under investigation. A weighted sum based cost function is used to measure the optimization effectiveness and capability of the framework. In the meantime, another experiment is performed to test the framework’s optimization characteristic in multi-scenario and multi-objectives conditions.

  17. An Efficient Multi-path Routing Algorithm Based on Hybrid Firefly Algorithm for Wireless Mesh Networks

    OpenAIRE

    K. Kumaravel; A. Marimuthu

    2015-01-01

    Wireless Mesh Network (WMN) uses the latest technology which helps in providing end users a high quality service referred to as the Internet’s “last mile”. Also considering WMN one of the most important technologies that are employed is multicast communication. Among the several issues routing which is significantly an important issue is addressed by every WMN technologies and this is done during the process of data transmission. The IEEE 802.11s Standard entails and sets procedures which nee...

  18. Application of Levenberg-Marquardt Optimization Algorithm Based Multilayer Neural Networks for Hydrological Time Series Modeling

    Directory of Open Access Journals (Sweden)

    Umut Okkan

    2011-07-01

    Full Text Available Recently, Artificial Neural Networks (ANN, which is mathematical modelingtools inspired by the properties of the biological neural system, has been typically used inthe studies of hydrological time series modeling. These modeling studies generally includethe standart feed forward backpropagation (FFBP algorithms such as gradient-descent,gradient-descent with momentum rate and, conjugate gradient etc. As the standart FFBPalgorithms have some disadvantages relating to the time requirement and slowconvergency in training, Newton and Levenberg-Marquardt algorithms, which arealternative approaches to standart FFBP algorithms, were improved and also used in theapplications. In this study, an application of Levenberg-Marquardt algorithm based ANN(LM-ANN for the modeling of monthly inflows of Demirkopru Dam, which is located inthe Gediz basin, was presented. The LM-ANN results were also compared with gradientdescentwith momentum rate algorithm based FFBP model (GDM-ANN. When thestatistics of the long-term and also seasonal-term outputs are compared, it can be seen thatthe LM-ANN model that has been developed, is more sensitive for prediction of theinflows. In addition, LM-ANN approach can be used for modeling of other hydrologicalcomponents in terms of a rapid assessment and its robustness.

  19. Modeling the cooling performance of vortex tube using a genetic algorithm-based artificial neural network

    Directory of Open Access Journals (Sweden)

    Pouraria Hassan

    2016-01-01

    Full Text Available In this study, artificial neural networks (ANNs have been used to model the effects of four important parameters consist of the ratio of the length to diameter(L/D, the ratio of the cold outlet diameter to the tube diameter(d/D, inlet pressure(P, and cold mass fraction (Y on the cooling performance of counter flow vortex tube. In this approach, experimental data have been used to train and validate the neural network model with MATLAB software. Also, genetic algorithm (GA has been used to find the optimal network architecture. In this model, temperature drop at the cold outlet has been considered as the cooling performance of the vortex tube. Based on experimental data, cooling performance of the vortex tube has been predicted by four inlet parameters (L/D, d/D, P, Y. The results of this study indicate that the genetic algorithm-based artificial neural network model is capable of predicting the cooling performance of vortex tube in a wide operating range and with satisfactory precision.

  20. A Swarm Intelligent Algorithm Based Route Maintaining Protocol for Mobile Sink Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaoming Wu

    2015-01-01

    Full Text Available Recent studies have shown that mobile sink can be a solution to solve the problem that energy consumption of sensor nodes is not balanced in wireless sensor networks (WSNs. Caused by the sink mobility, the paths between the sensor nodes and the sink change frequently and have profound influence on the lifetime of WSN. It is necessary to design a protocol that can find efficient routings between the mobile sink and nodes but does not consume too many network resources. In this paper, we propose a swarm intelligent algorithm based route maintaining protocol to resolve this issue. The protocol utilizes the concentric ring mechanism to guide the route researching direction and adopts the optimal routing selection to maintain the data delivery route in mobile sink WSN. Using the immune based artificial bee colony (IABC algorithm to optimize the forwarding path, the routing maintaining protocol could find an alternative routing path quickly and efficiently when the coordinate of sink is changed in WSN. The results of our extensive experiments demonstrate that our proposed route maintaining protocol is able to balance the network traffic load and prolong the network lifetime.

  1. Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks

    Science.gov (United States)

    Zhang, Ying; Wang, Jun; Han, Dezhi; Wu, Huafeng; Zhou, Rundong

    2017-01-01

    Due to the high-energy efficiency and scalability, the clustering routing algorithm has been widely used in wireless sensor networks (WSNs). In order to gather information more efficiently, each sensor node transmits data to its Cluster Head (CH) to which it belongs, by multi-hop communication. However, the multi-hop communication in the cluster brings the problem of excessive energy consumption of the relay nodes which are closer to the CH. These nodes’ energy will be consumed more quickly than the farther nodes, which brings the negative influence on load balance for the whole networks. Therefore, we propose an energy-efficient distributed clustering algorithm based on fuzzy approach with non-uniform distribution (EEDCF). During CHs’ election, we take nodes’ energies, nodes’ degree and neighbor nodes’ residual energies into consideration as the input parameters. In addition, we take advantage of Takagi, Sugeno and Kang (TSK) fuzzy model instead of traditional method as our inference system to guarantee the quantitative analysis more reasonable. In our scheme, each sensor node calculates the probability of being as CH with the help of fuzzy inference system in a distributed way. The experimental results indicate EEDCF algorithm is better than some current representative methods in aspects of data transmission, energy consumption and lifetime of networks. PMID:28671641

  2. Novel quantum inspired binary neural network algorithm

    Indian Academy of Sciences (India)

    In this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically ...

  3. A Cluster-Based Fuzzy Fusion Algorithm for Event Detection in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    ZiQi Hao

    2015-01-01

    Full Text Available As limited energy is one of the tough challenges in wireless sensor networks (WSN, energy saving becomes important in increasing the lifecycle of the network. Data fusion enables combining information from several sources thus to provide a unified scenario, which can significantly save sensor energy and enhance sensing data accuracy. In this paper, we propose a cluster-based data fusion algorithm for event detection. We use k-means algorithm to form the nodes into clusters, which can significantly reduce the energy consumption of intracluster communication. Distances between cluster heads and event and energy of clusters are fuzzified, thus to use a fuzzy logic to select the clusters that will participate in data uploading and fusion. Fuzzy logic method is also used by cluster heads for local decision, and then the local decision results are sent to the base station. Decision-level fusion for final decision of event is performed by base station according to the uploaded local decisions and fusion support degree of clusters calculated by fuzzy logic method. The effectiveness of this algorithm is demonstrated by simulation results.

  4. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sandeep Pirbhulal

    2015-06-01

    Full Text Available Body Sensor Network (BSN is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG, Photoplethysmography (PPG, Electrocardiogram (ECG, etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA, Data Encryption Standard (DES and Rivest Shamir Adleman (RSA. Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.

  5. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    Science.gov (United States)

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  6. Managing Emergencies Optimally Using a Random Neural Network-Based Algorithm

    Directory of Open Access Journals (Sweden)

    Qing Han

    2013-10-01

    Full Text Available Emergency rescues require that first responders provide support to evacuate injured and other civilians who are obstructed by the hazards. In this case, the emergency personnel can take actions strategically in order to rescue people maximally, efficiently and quickly. The paper studies the effectiveness of a random neural network (RNN-based task assignment algorithm involving optimally matching emergency personnel and injured civilians, so that the emergency personnel can aid trapped people to move towards evacuation exits in real-time. The evaluations are run on a decision support evacuation system using the Distributed Building Evacuation Simulator (DBES multi-agent platform in various emergency scenarios. The simulation results indicate that the RNN-based task assignment algorithm provides a near-optimal solution to resource allocation problems, which avoids resource wastage and improves the efficiency of the emergency rescue process.

  7. Multi-hop localization algorithm based on grid-scanning for wireless sensor networks.

    Science.gov (United States)

    Wan, Jiangwen; Guo, Xiaolei; Yu, Ning; Wu, Yinfeng; Feng, Renjian

    2011-01-01

    For large-scale wireless sensor networks (WSNs) with a minority of anchor nodes, multi-hop localization is a popular scheme for determining the geographical positions of the normal nodes. However, in practice existing multi-hop localization methods suffer from various kinds of problems, such as poor adaptability to irregular topology, high computational complexity, low positioning accuracy, etc. To address these issues in this paper, we propose a novel Multi-hop Localization algorithm based on Grid-Scanning (MLGS). First, the factors that influence the multi-hop distance estimation are studied and a more realistic multi-hop localization model is constructed. Then, the feasible regions of the normal nodes are determined according to the intersection of bounding square rings. Finally, a verifiably good approximation scheme based on grid-scanning is developed to estimate the coordinates of the normal nodes. Additionally, the positioning accuracy of the normal nodes can be improved through neighbors' collaboration. Extensive simulations are performed in isotropic and anisotropic networks. The comparisons with some typical algorithms of node localization confirm the effectiveness and efficiency of our algorithm.

  8. A Wavelet Analysis-Based Dynamic Prediction Algorithm to Network Traffic

    Directory of Open Access Journals (Sweden)

    Meng Fan-Bo

    2016-01-01

    Full Text Available Network traffic is a significantly important parameter for network traffic engineering, while it holds highly dynamic nature in the network. Accordingly, it is difficult and impossible to directly predict traffic amount of end-to-end flows. This paper proposes a new prediction algorithm to network traffic using the wavelet analysis. Firstly, network traffic is converted into the time-frequency domain to capture time-frequency feature of network traffic. Secondly, in different frequency components, we model network traffic in the time-frequency domain. Finally, we build the prediction model about network traffic. At the same time, the corresponding prediction algorithm is presented to attain network traffic prediction. Simulation results indicates that our approach is promising.

  9. A Novel SWMM Based Algorithm Application to Storm Sewer Network Design

    Directory of Open Access Journals (Sweden)

    Zhiyu Shao

    2017-09-01

    Full Text Available An automated algorithm based on the dynamic hydrological and hydraulic simulation modules in Storm Water Management Model (SWMM was developed to aid the design of storm sewer networks, provided that a layout is given. Numerical performance of the proposed algorithm was compared with the existing design methods with two application cases. The automated computation process of the sewer network design was divided into two stages and solved iteratively, determining pipe diameter and pipe slope, respectively. In the first stage, starting with a set of initial values including pipe diameter, pipe cover depth, and ground elevation at manholes, the iteration was carried out from the downstream to the upstream while the pipe slopes of the network were assumed to be fixed and the diameter of each pipe segment was calculated. In the second stage, pipe diameters calculated from the first stage were fixed and the pipe slopes were calculated successively from the downstream pipe segment to the upstream pipe segment. Every time the diameter or slope of a pipe segment was adjusted, the pipe flow rate, velocity, and flow depth were obtained by running SWMM hydrological and hydraulic simulation modules. The iteration terminated once the combination scheme of pipe diameters and slopes met the design ordinance which requires the pipe flows full under gravity in a design return period. A real urban sewer system in a hilly city and a benchmark sewer network from the literature were tested to validate the proposed automated algorithm, and good performance was shown. The automated design results explicitly show that the proposed storm sewer design approach leads to a quality solution with reduced computational effort.

  10. Fuzzy-logic based Q-Learning interference management algorithms in two-tier networks

    Science.gov (United States)

    Xu, Qiang; Xu, Zezhong; Li, Li; Zheng, Yan

    2017-10-01

    Unloading from macrocell network and enhancing coverage can be realized by deploying femtocells in the indoor scenario. However, the system performance of the two-tier network could be impaired by the co-tier and cross-tier interference. In this paper, a distributed resource allocation scheme is studied when each femtocell base station is self-governed and the resource cannot be assigned centrally through the gateway. A novel Q-Learning interference management scheme is proposed, that is divided into cooperative and independent part. In the cooperative algorithm, the interference information is exchanged between the cell-edge users which are classified by the fuzzy logic in the same cell. Meanwhile, we allocate the orthogonal subchannels to the high-rate cell-edge users to disperse the interference power when the data rate requirement is satisfied. The resource is assigned directly according to the minimum power principle in the independent algorithm. Simulation results are provided to demonstrate the significant performance improvements in terms of the average data rate, interference power and energy efficiency over the cutting-edge resource allocation algorithms.

  11. A Novel Pruning Algorithm for Smoothing Feedforward Neural Networks Based on Group Lasso Method.

    Science.gov (United States)

    Wang, Jian; Xu, Chen; Yang, Xifeng; Zurada, Jacek M

    2017-09-26

    In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic idea of these methods stems from the Group Lasso concept which deals with the variable selection problem at the group level. There are two main drawbacks when the Group Lasso penalty has been directly employed during network training. They are numerical oscillations and theoretical challenges in computing the gradients at the origin. To overcome these obstacles, smoothing functions have then been introduced by approximating the Group Lasso penalty. Numerical experiments for classification and regression problems demonstrate that the proposed algorithms perform better than the other three classical penalization methods, Weight Decay, Weight Elimination, and Approximate Smoother, on both generalization and pruning efficiency. In addition, detailed simulations based on a specific data set have been performed to compare with some other common pruning strategies, which verify the advantages of the proposed algorithm. The pruning abilities of the proposed strategy have been investigated in detail for a relatively large data set, MNIST, in terms of various smoothing approximation cases.

  12. Node Self-Deployment Algorithm Based on an Uneven Cluster with Radius Adjusting for Underwater Sensor Networks.

    Science.gov (United States)

    Jiang, Peng; Xu, Yiming; Wu, Feng

    2016-01-14

    Existing move-restricted node self-deployment algorithms are based on a fixed node communication radius, evaluate the performance based on network coverage or the connectivity rate and do not consider the number of nodes near the sink node and the energy consumption distribution of the network topology, thereby degrading network reliability and the energy consumption balance. Therefore, we propose a distributed underwater node self-deployment algorithm. First, each node begins the uneven clustering based on the distance on the water surface. Each cluster head node selects its next-hop node to synchronously construct a connected path to the sink node. Second, the cluster head node adjusts its depth while maintaining the layout formed by the uneven clustering and then adjusts the positions of in-cluster nodes. The algorithm originally considers the network reliability and energy consumption balance during node deployment and considers the coverage redundancy rate of all positions that a node may reach during the node position adjustment. Simulation results show, compared to the connected dominating set (CDS) based depth computation algorithm, that the proposed algorithm can increase the number of the nodes near the sink node and improve network reliability while guaranteeing the network connectivity rate. Moreover, it can balance energy consumption during network operation, further improve network coverage rate and reduce energy consumption.

  13. Node Self-Deployment Algorithm Based on an Uneven Cluster with Radius Adjusting for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-01-01

    Full Text Available Existing move-restricted node self-deployment algorithms are based on a fixed node communication radius, evaluate the performance based on network coverage or the connectivity rate and do not consider the number of nodes near the sink node and the energy consumption distribution of the network topology, thereby degrading network reliability and the energy consumption balance. Therefore, we propose a distributed underwater node self-deployment algorithm. First, each node begins the uneven clustering based on the distance on the water surface. Each cluster head node selects its next-hop node to synchronously construct a connected path to the sink node. Second, the cluster head node adjusts its depth while maintaining the layout formed by the uneven clustering and then adjusts the positions of in-cluster nodes. The algorithm originally considers the network reliability and energy consumption balance during node deployment and considers the coverage redundancy rate of all positions that a node may reach during the node position adjustment. Simulation results show, compared to the connected dominating set (CDS based depth computation algorithm, that the proposed algorithm can increase the number of the nodes near the sink node and improve network reliability while guaranteeing the network connectivity rate. Moreover, it can balance energy consumption during network operation, further improve network coverage rate and reduce energy consumption.

  14. Energy Efficiency Performance Improvements for Ant-Based Routing Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Adamu Murtala Zungeru

    2013-01-01

    Full Text Available The main problem for event gathering in wireless sensor networks (WSNs is the restricted communication range for each node. Due to the restricted communication range and high network density, event forwarding in WSNs is very challenging and requires multihop data forwarding. Currently, the energy-efficient ant based routing (EEABR algorithm, based on the ant colony optimization (ACO metaheuristic, is one of the state-of-the-art energy-aware routing protocols. In this paper, we propose three improvements to the EEABR algorithm to further improve its energy efficiency. The improvements to the original EEABR are based on the following: (1 a new scheme to intelligently initialize the routing tables giving priority to neighboring nodes that simultaneously could be the destination, (2 intelligent update of routing tables in case of a node or link failure, and (3 reducing the flooding ability of ants for congestion control. The energy efficiency improvements are significant particularly for dynamic routing environments. Experimental results using the RMASE simulation environment show that the proposed method increases the energy efficiency by up to 9% and 64% in converge-cast and target-tracking scenarios, respectively, over the original EEABR without incurring a significant increase in complexity. The method is also compared and found to also outperform other swarm-based routing protocols such as sensor-driven and cost-aware ant routing (SC and Beesensor.

  15. A Novel OBDD-Based Reliability Evaluation Algorithm for Wireless Sensor Networks on the Multicast Model

    Directory of Open Access Journals (Sweden)

    Zongshuai Yan

    2015-01-01

    Full Text Available The two-terminal reliability calculation for wireless sensor networks (WSNs is a #P-hard problem. The reliability calculation of WSNs on the multicast model provides an even worse combinatorial explosion of node states with respect to the calculation of WSNs on the unicast model; many real WSNs require the multicast model to deliver information. This research first provides a formal definition for the WSN on the multicast model. Next, a symbolic OBDD_Multicast algorithm is proposed to evaluate the reliability of WSNs on the multicast model. Furthermore, our research on OBDD_Multicast construction avoids the problem of invalid expansion, which reduces the number of subnetworks by identifying the redundant paths of two adjacent nodes and s-t unconnected paths. Experiments show that the OBDD_Multicast both reduces the complexity of the WSN reliability analysis and has a lower running time than Xing’s OBDD- (ordered binary decision diagram- based algorithm.

  16. Analysis of Video Signal Transmission Through DWDM Network Based on a Quality Check Algorithm

    Directory of Open Access Journals (Sweden)

    A. Markovic

    2013-04-01

    Full Text Available This paper provides an analysis of the multiplexed video signal transmission through the Dense Wavelength Division Multiplexing (DWDM network based on a quality check algorithm, which determines where the interruption of the transmission quality starts. On the basis of this algorithm, simulations of transmission for specific values of fiber parameters ​​ are executed. The analysis of the results shows how the BER and Q-factor change depends on the length of the fiber, i.e. on the number of amplifiers, and what kind of an effect the number of multiplexed channels and the flow rate per channel have on a transmited signals. Analysis of DWDM systems is performed in the software package OptiSystem 7.0, which is designed for systems with flow rates of 2.5 Gb/s and 10 Gb/s per channel.

  17. A Localization Algorithm Based on AOA for Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Sun Lee

    2012-01-01

    Full Text Available Knowledge of positions of sensor nodes in Wireless Sensor Networks (WSNs will make possible many applications such as asset monitoring, object tracking and routing. In WSNs, the errors may happen in the measurement of distances and angles between pairs of nodes in WSN and these errors will be propagated to different nodes, the estimation of positions of sensor nodes can be difficult and have huge errors. In this paper, we will propose localization algorithm based on both distance and angle to landmark. So, we introduce a method of incident angle to landmark and the algorithm to exchange physical data such as distances and incident angles and update the position of a node by utilizing multiple landmarks and multiple paths to landmarks.

  18. Network intrusion detection based on a general regression neural network optimized by an improved artificial immune algorithm.

    Science.gov (United States)

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.

  19. Network intrusion detection based on a general regression neural network optimized by an improved artificial immune algorithm.

    Directory of Open Access Journals (Sweden)

    Jianfa Wu

    Full Text Available To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN based on the artificial immune algorithm with elitist strategies (AIAE. The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA, particle swarm optimization (PSO, and fuzzy C-mean clustering (FCM to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.

  20. Sensor Node Deployment Approach in Wireless Sensor Network Based on Multi-objective Flower Pollination Algorithm

    Directory of Open Access Journals (Sweden)

    Faten Hajjej

    2017-06-01

    Full Text Available Wireless Sensor Network (WSN is one of the most dominant technology trends in the upcoming decades. Due to the lack of communication infrastructure, designing a WSN has posed a real challenge to the designers. WSNs should capture information from the environment, acquired, receive and retransmit them while having enough lifetime to reach many decades without external intervention. Thus, optimizing some objective functions, like energy consumption and coverage at the levels of nodes deployment is required to enhance the performances. In this work, deployment issue has been modeled as a constrained multi-objective optimization (MOO problem. The aim of this work was to find the optimal sensor nodes positions in the area of interest in terms of coverage, energy consumption and network connectivity. A new multi-objective optimization approach based on Flower Pollination Algorithm (FPA was introduced. The simulation results show that the proposed approach improve both coverage and energy consumption compared with other multi objective approaches.

  1. Virtual-Lattice Based Intrusion Detection Algorithm over Actuator-Assisted Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jing Yan

    2017-05-01

    Full Text Available Due to the lack of a physical line of defense, intrusion detection becomes one of the key issues in applications of underwater wireless sensor networks (UWSNs, especially when the confidentiality has prime importance. However, the resource-constrained property of UWSNs such as sparse deployment and energy constraint makes intrusion detection a challenging issue. This paper considers a virtual-lattice-based approach to the intrusion detection problem in UWSNs. Different from most existing works, the UWSNs consist of two kinds of nodes, i.e., sensor nodes (SNs, which cannot move autonomously, and actuator nodes (ANs, which can move autonomously according to the performance requirement. With the cooperation of SNs and ANs, the intruder detection probability is defined. Then, a virtual lattice-based monitor (VLM algorithm is proposed to detect the intruder. In order to reduce the redundancy of communication links and improve detection probability, an optimal and coordinative lattice-based monitor patrolling (OCLMP algorithm is further provided for UWSNs, wherein an equal price search strategy is given for ANs to find the shortest patrolling path. Under VLM and OCLMP algorithms, the detection probabilities are calculated, while the topology connectivity can be guaranteed. Finally, simulation results are presented to show that the proposed method in this paper can improve the detection accuracy and save the energy consumption compared with the conventional methods.

  2. Virtual-Lattice Based Intrusion Detection Algorithm over Actuator-Assisted Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Yan, Jing; Li, Xiaolei; Luo, Xiaoyuan; Guan, Xinping

    2017-05-20

    Due to the lack of a physical line of defense, intrusion detection becomes one of the key issues in applications of underwater wireless sensor networks (UWSNs), especially when the confidentiality has prime importance. However, the resource-constrained property of UWSNs such as sparse deployment and energy constraint makes intrusion detection a challenging issue. This paper considers a virtual-lattice-based approach to the intrusion detection problem in UWSNs. Different from most existing works, the UWSNs consist of two kinds of nodes, i.e., sensor nodes (SNs), which cannot move autonomously, and actuator nodes (ANs), which can move autonomously according to the performance requirement. With the cooperation of SNs and ANs, the intruder detection probability is defined. Then, a virtual lattice-based monitor (VLM) algorithm is proposed to detect the intruder. In order to reduce the redundancy of communication links and improve detection probability, an optimal and coordinative lattice-based monitor patrolling (OCLMP) algorithm is further provided for UWSNs, wherein an equal price search strategy is given for ANs to find the shortest patrolling path. Under VLM and OCLMP algorithms, the detection probabilities are calculated, while the topology connectivity can be guaranteed. Finally, simulation results are presented to show that the proposed method in this paper can improve the detection accuracy and save the energy consumption compared with the conventional methods.

  3. Clustering-based energy-saving algorithm in ultra-dense network

    Science.gov (United States)

    Huang, Junwei; Zhou, Pengguang; Teng, Deyang; Zhang, Renchi; Xu, Hao

    2017-06-01

    In Ultra-dense Networks (UDN), dense deployment of low power small base stations will cause serious small cells interference and a large amount of energy consumption. The purpose of this paper is to explore the method of reducing small cells interference and energy saving system in UDN, and we innovatively propose a sleep-waking-active (SWA) scheme. The scheme decreases the user outage causing by failure to detect users’ service requests, shortens the opening time of active base stations directly switching to sleep mode; we further proposes a Vertex Surrounding Clustering(VSC) algorithm, which first colours the small cells with the most strongest interference and next extends to the adjacent small cells. VSC algorithm can use the least colour to stain the small cell, reduce the number of iterations and promote the efficiency of colouring. The simulation results show that SWA scheme can effectively improve the system Energy Efficiency (EE), the VSC algorithm can reduce the small cells interference and optimize the users’ Spectrum Efficiency (SE) and throughput.

  4. A Multiobjective Evolutionary Algorithm Based on Structural and Attribute Similarities for Community Detection in Attributed Networks.

    Science.gov (United States)

    Li, Zhangtao; Liu, Jing; Wu, Kai

    2017-08-16

    Most of the existing community detection algorithms are based on vertex connectivity. While in many real networks, each vertex usually has one or more attributes describing its properties which are often homogeneous in a cluster. Such networks can be modeled as attributed graphs, whose attributes sometimes are equally important to topological structure in graph clustering. One important challenge is to detect communities considering both topological structure and vertex properties simultaneously. To this propose, a multiobjective evolutionary algorithm based on structural and attribute similarities (MOEA-SA) is first proposed to solve the attributed graph clustering problems in this paper. In MOEA-SA, a new objective named as attribute similarity SA is proposed and another objective employed is the modularity Q. A hybrid representation is used and a neighborhood correction strategy is designed to repair the wrongly assigned genes through making balance between structural and attribute information. Moreover, an effective multi-individual-based mutation operator is designed to guide the evolution toward the good direction. The performance of MOEA-SA is validated on several real Facebook attributed graphs and several ego-networks with multiattribute. Two measurements, namely density T and entropy E, are used to evaluate the quality of communities obtained. Experimental results demonstrate the effectiveness of MOEA-SA and the systematic comparisons with existing methods show that MOEA-SA can get better values of T and E in each graph and find more relevant communities with practical meanings. Knee points corresponding to the best compromise solutions are calculated to guide decision makers to make convenient choices.

  5. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm.

    Science.gov (United States)

    Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo

    2015-07-28

    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.

  6. Neural network based adaptive control of nonlinear plants using random search optimization algorithms

    Science.gov (United States)

    Boussalis, Dhemetrios; Wang, Shyh J.

    1992-01-01

    This paper presents a method for utilizing artificial neural networks for direct adaptive control of dynamic systems with poorly known dynamics. The neural network weights (controller gains) are adapted in real time using state measurements and a random search optimization algorithm. The results are demonstrated via simulation using two highly nonlinear systems.

  7. A mobile anchor assisted localization algorithm based on regular hexagon in wireless sensor networks.

    Science.gov (United States)

    Han, Guangjie; Zhang, Chenyu; Lloret, Jaime; Shu, Lei; Rodrigues, Joel J P C

    2014-01-01

    Localization is one of the key technologies in wireless sensor networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints of cost and power consumption make it infeasible to equip each sensor node in the network with a global position system (GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use several mobile anchors which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. This paper proposes a mobile anchor assisted localization algorithm based on regular hexagon (MAALRH) in two-dimensional WSNs, which can cover the whole monitoring area with a boundary compensation method. Unknown nodes calculate their positions by using trilateration. We compare the MAALRH with HILBERT, CIRCLES, and S-CURVES algorithms in terms of localization ratio, localization accuracy, and path length. Simulations show that the MAALRH can achieve high localization ratio and localization accuracy when the communication range is not smaller than the trajectory resolution.

  8. A Mobile Anchor Assisted Localization Algorithm Based on Regular Hexagon in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Guangjie Han

    2014-01-01

    Full Text Available Localization is one of the key technologies in wireless sensor networks (WSNs, since it provides fundamental support for many location-aware protocols and applications. Constraints of cost and power consumption make it infeasible to equip each sensor node in the network with a global position system (GPS unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use several mobile anchors which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. This paper proposes a mobile anchor assisted localization algorithm based on regular hexagon (MAALRH in two-dimensional WSNs, which can cover the whole monitoring area with a boundary compensation method. Unknown nodes calculate their positions by using trilateration. We compare the MAALRH with HILBERT, CIRCLES, and S-CURVES algorithms in terms of localization ratio, localization accuracy, and path length. Simulations show that the MAALRH can achieve high localization ratio and localization accuracy when the communication range is not smaller than the trajectory resolution.

  9. A Mobile Anchor Assisted Localization Algorithm Based on Regular Hexagon in Wireless Sensor Networks

    Science.gov (United States)

    Rodrigues, Joel J. P. C.

    2014-01-01

    Localization is one of the key technologies in wireless sensor networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints of cost and power consumption make it infeasible to equip each sensor node in the network with a global position system (GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use several mobile anchors which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. This paper proposes a mobile anchor assisted localization algorithm based on regular hexagon (MAALRH) in two-dimensional WSNs, which can cover the whole monitoring area with a boundary compensation method. Unknown nodes calculate their positions by using trilateration. We compare the MAALRH with HILBERT, CIRCLES, and S-CURVES algorithms in terms of localization ratio, localization accuracy, and path length. Simulations show that the MAALRH can achieve high localization ratio and localization accuracy when the communication range is not smaller than the trajectory resolution. PMID:25133212

  10. A new betweenness centrality measure based on an algorithm for ranking the nodes of a network

    OpenAIRE

    Agryzkov, Taras; Oliver, Jose L.; Tortosa Grau, Leandro; Vicent, Jose F.

    2014-01-01

    We propose and discuss a new centrality index for urban street patterns represented as networks in geographical space. This centrality measure, that we call ranking-betweenness centrality, combines the idea behind the random-walk betweenness centrality measure and the idea of ranking the nodes of a network produced by an adapted PageRank algorithm. We initially use a PageRank algorithm in which we are able to transform some information of the network that we want to analyze into numerical val...

  11. A Network Intrusions Detection System based on a Quantum Bio Inspired Algorithm

    OpenAIRE

    Soliman, Omar S.; Rassem, Aliaa

    2014-01-01

    Network intrusion detection systems (NIDSs) have a role of identifying malicious activities by monitoring the behavior of networks. Due to the currently high volume of networks trafic in addition to the increased number of attacks and their dynamic properties, NIDSs have the challenge of improving their classification performance. Bio-Inspired Optimization Algorithms (BIOs) are used to automatically extract the the discrimination rules of normal or abnormal behavior to improve the classificat...

  12. Artificial Neural Network Algorithm for Condition Monitoring of DC-link Capacitors Based on Capacitance Estimation

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Gadalla, Brwene Salah Abdelkarim

    2015-01-01

    challenges. A capacitance estimation method based on Artificial Neural Network (ANN) algorithm is therefore proposed in this paper. The implemented ANN estimated the capacitance of the DC-link capacitor in a back-toback converter. Analysis of the error of the capacitance estimation is also given......In power electronic converters, reliability of DC-link capacitors is one of the critical issues. The estimation of their health status as an application of condition monitoring have been an attractive subject for industrial field and hence for the academic research filed as well. More reliable...... solutions are required to be adopted by the industry applications in which usage of extra hardware, increased cost, and low estimation accuracy are the main challenges. Therefore, development of new condition monitoring methods based on software solutions could be the new era that covers the aforementioned...

  13. Intelligent control a hybrid approach based on fuzzy logic, neural networks and genetic algorithms

    CERN Document Server

    Siddique, Nazmul

    2014-01-01

    Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller.  The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of t...

  14. Complex networks an algorithmic perspective

    CERN Document Server

    Erciyes, Kayhan

    2014-01-01

    Network science is a rapidly emerging field of study that encompasses mathematics, computer science, physics, and engineering. A key issue in the study of complex networks is to understand the collective behavior of the various elements of these networks.Although the results from graph theory have proven to be powerful in investigating the structures of complex networks, few books focus on the algorithmic aspects of complex network analysis. Filling this need, Complex Networks: An Algorithmic Perspective supplies the basic theoretical algorithmic and graph theoretic knowledge needed by every r

  15. Acoustic Performance of Exhaust Muffler based Genetic Algorithms and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Wang Xiao Li

    2013-07-01

    Full Text Available The noise level was one of the important indicators as a measure of the quality and performance of the diesel engine, exhaust noise in diesel engines machine noise accounted for an important proportion of installed performance exhaust mufflerwas an effective way to control exhaust noise. This article using orthogonal test program was to the muffler structure parameters as input to the sound pressure level and diesel fuel each output artificial neural network (BP network learning sample. Matlab artificial neural network toolbox to complete the training of the network, and better noise performance and fuel consumption rate performance muffler internal structure parameters combination was obtained through genetic algorithm gifted collaborative validation of artificial neural networks and genetic algorithms to optimize application exhaust muffler design is entirely feasible

  16. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-08-13

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

  17. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks

    Science.gov (United States)

    Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal

    2015-01-01

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191

  18. Adaptive Predistortions Based on Neural Networks Associated with Levenberg-Marquardt Algorithm for Satellite Down Links

    Directory of Open Access Journals (Sweden)

    Roviras Daniel

    2008-01-01

    Full Text Available Abstract This paper presents adaptive predistortion techniques based on a feed-forward neural network (NN to linearize power amplifiers such as those used in satellite communications. Indeed, it presents the suitable NN structures which give the best performances for three satellite down links. The first link is a stationary memoryless travelling wave tube amplifier (TWTA, the second one is a nonstationary memoryless TWT amplifier while the third is an amplifier with memory modeled by a memoryless amplifier followed by a linear filter. Equally important, it puts forward the studies concerning the application of different NN training algorithms in order to determine the most prefermant for adaptive predistortions. This comparison examined through computer simulation for 64 carriers and 16-QAM OFDM system, with a Saleh's TWT amplifier, is based on some quality measure (mean square error, the required training time to reach a particular quality level, and computation complexity. The chosen adaptive predistortions (NN structures associated with an adaptive algorithm have a low complexity, fast convergence, and best performance.

  19. Adaptive Predistortions Based on Neural Networks Associated with Levenberg-Marquardt Algorithm for Satellite Down Links

    Directory of Open Access Journals (Sweden)

    Daniel Roviras

    2008-08-01

    Full Text Available This paper presents adaptive predistortion techniques based on a feed-forward neural network (NN to linearize power amplifiers such as those used in satellite communications. Indeed, it presents the suitable NN structures which give the best performances for three satellite down links. The first link is a stationary memoryless travelling wave tube amplifier (TWTA, the second one is a nonstationary memoryless TWT amplifier while the third is an amplifier with memory modeled by a memoryless amplifier followed by a linear filter. Equally important, it puts forward the studies concerning the application of different NN training algorithms in order to determine the most prefermant for adaptive predistortions. This comparison examined through computer simulation for 64 carriers and 16-QAM OFDM system, with a Saleh's TWT amplifier, is based on some quality measure (mean square error, the required training time to reach a particular quality level, and computation complexity. The chosen adaptive predistortions (NN structures associated with an adaptive algorithm have a low complexity, fast convergence, and best performance.

  20. Condition Monitoring for DC-link Capacitors Based on Artificial Neural Network Algorithm

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Gadalla, Brwene Salah Abdelkarim

    2015-01-01

    hardware will reduce the cost, and therefore could be more promising for industry applications. A condition monitoring method based on Artificial Neural Network (ANN) algorithm is therefore proposed in this paper. The implementation of the ANN to the DC-link capacitor condition monitoring in a back......In power electronic systems, capacitor is one of the reliability critical components . Recently, the condition monitoring of capacitors to estimate their health status have been attracted by the academic research. Industry applications require more reliable power electronics products...... with preventive maintenance. However, the existing capacitor condition monitoring methods suffer from either increased hardware cost or low estimation accuracy, being the challenges to be adopted in industry applications. New development in condition monitoring technology with software solutions without extra...

  1. Research on Fuzzy Immune Self-Adaptive PID Algorithm Based on New Smith Predictor for Networked Control System

    Directory of Open Access Journals (Sweden)

    Haitao Zhang

    2015-01-01

    Full Text Available We first analyze the effect of network-induced delay on the stability of networked control systems (NCSs. Then, aiming at stochastic characteristics of the time delay, we introduce a new Smith predictor to remove the exponential function with the time delay in the closed-loop characteristic equation of the NCS. Furthermore, we combine the fuzzy PID algorithm with the fuzzy immune control algorithm and present a fuzzy immune self-adaptive PID algorithm to compensate the influence of the model deviation of the controlled object. At last, a kind of fuzzy immune self-adaptive PID algorithm based on new Smith predictor is presented to apply to the NCS. The simulation research on a DC motor is given to show the effectiveness of the proposed algorithm.

  2. Boolean regulatory network reconstruction using literature based knowledge with a genetic algorithm optimization method.

    Science.gov (United States)

    Dorier, Julien; Crespo, Isaac; Niknejad, Anne; Liechti, Robin; Ebeling, Martin; Xenarios, Ioannis

    2016-10-06

    Prior knowledge networks (PKNs) provide a framework for the development of computational biological models, including Boolean models of regulatory networks which are the focus of this work. PKNs are created by a painstaking process of literature curation, and generally describe all relevant regulatory interactions identified using a variety of experimental conditions and systems, such as specific cell types or tissues. Certain of these regulatory interactions may not occur in all biological contexts of interest, and their presence may dramatically change the dynamical behaviour of the resulting computational model, hindering the elucidation of the underlying mechanisms and reducing the usefulness of model predictions. Methods are therefore required to generate optimized contextual network models from generic PKNs. We developed a new approach to generate and optimize Boolean networks, based on a given PKN. Using a genetic algorithm, a model network is built as a sub-network of the PKN and trained against experimental data to reproduce the experimentally observed behaviour in terms of attractors and the transitions that occur between them under specific perturbations. The resulting model network is therefore contextualized to the experimental conditions and constitutes a dynamical Boolean model closer to the observed biological process used to train the model than the original PKN. Such a model can then be interrogated to simulate response under perturbation, to detect stable states and their properties, to get insights into the underlying mechanisms and to generate new testable hypotheses. Generic PKNs attempt to synthesize knowledge of all interactions occurring in a biological process of interest, irrespective of the specific biological context. This limits their usefulness as a basis for the development of context-specific, predictive dynamical Boolean models. The optimization method presented in this article produces specific, contextualized models from generic

  3. FRCA: A Fuzzy Relevance-Based Cluster Head Selection Algorithm for Wireless Mobile Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Taegwon Jeong

    2011-05-01

    Full Text Available Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP, the Weighted-based Adaptive Clustering Algorithm (WACA, and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM. The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  4. FRCA: a fuzzy relevance-based cluster head selection algorithm for wireless mobile ad-hoc sensor networks.

    Science.gov (United States)

    Lee, Chongdeuk; Jeong, Taegwon

    2011-01-01

    Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA) to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP), the Weighted-based Adaptive Clustering Algorithm (WACA), and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM). The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  5. Single Allocation Hub-and-spoke Networks Design Based on Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Pingle

    2014-10-01

    Full Text Available Capacitated single allocation hub-and-spoke networks can be abstracted as a mixed integer linear programming model equation with three variables. Introducing an improved ant colony algorithm, which has six local search operators. Meanwhile, introducing the "Solution Pair" concept to decompose and optimize the composition of the problem, the problem can become more specific and effectively meet the premise and advantages of using ant colony algorithm. Finally, location simulation experiment is made according to Australia Post data to demonstrate this algorithm has good efficiency and stability for solving this problem.

  6. DATA SECURITY IN LOCAL AREA NETWORK BASED ON FAST ENCRYPTION ALGORITHM

    Directory of Open Access Journals (Sweden)

    G. Ramesh

    2010-06-01

    Full Text Available Hacking is one of the greatest problems in the wireless local area networks. Many algorithms have been used to prevent the outside attacks to eavesdrop or prevent the data to be transferred to the end-user safely and correctly. In this paper, a new symmetrical encryption algorithm is proposed that prevents the outside attacks. The new algorithm avoids key exchange between users and reduces the time taken for the encryption and decryption. It operates at high data rate in comparison with The Data Encryption Standard (DES, Triple DES (TDES, Advanced Encryption Standard (AES-256, and RC6 algorithms. The new algorithm is applied successfully on both text file and voice message.

  7. Fuzzy ranking based non-dominated sorting genetic algorithm-II for network overload alleviation

    Directory of Open Access Journals (Sweden)

    Pandiarajan K.

    2014-09-01

    Full Text Available This paper presents an effective method of network overload management in power systems. The three competing objectives 1 generation cost 2 transmission line overload and 3 real power loss are optimized to provide pareto-optimal solutions. A fuzzy ranking based non-dominated sorting genetic algorithm-II (NSGA-II is used to solve this complex nonlinear optimization problem. The minimization of competing objectives is done by generation rescheduling. Fuzzy ranking method is employed to extract the best compromise solution out of the available non-dominated solutions depending upon its highest rank. N-1 contingency analysis is carried out to identify the most severe lines and those lines are selected for outage. The effectiveness of the proposed approach is demonstrated for different contingency cases in IEEE 30 and IEEE 118 bus systems with smooth cost functions and their results are compared with other single objective evolutionary algorithms like Particle swarm optimization (PSO and Differential evolution (DE. Simulation results show the effectiveness of the proposed approach to generate well distributed pareto-optimal non-dominated solutions of multi-objective problem

  8. A Network-Based Algorithm for Clustering Multivariate Repeated Measures Data

    Science.gov (United States)

    Koslovsky, Matthew; Arellano, John; Schaefer, Caroline; Feiveson, Alan; Young, Millennia; Lee, Stuart

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Astronaut Corps is a unique occupational cohort for which vast amounts of measures data have been collected repeatedly in research or operational studies pre-, in-, and post-flight, as well as during multiple clinical care visits. In exploratory analyses aimed at generating hypotheses regarding physiological changes associated with spaceflight exposure, such as impaired vision, it is of interest to identify anomalies and trends across these expansive datasets. Multivariate clustering algorithms for repeated measures data may help parse the data to identify homogeneous groups of astronauts that have higher risks for a particular physiological change. However, available clustering methods may not be able to accommodate the complex data structures found in NASA data, since the methods often rely on strict model assumptions, require equally-spaced and balanced assessment times, cannot accommodate missing data or differing time scales across variables, and cannot process continuous and discrete data simultaneously. To fill this gap, we propose a network-based, multivariate clustering algorithm for repeated measures data that can be tailored to fit various research settings. Using simulated data, we demonstrate how our method can be used to identify patterns in complex data structures found in practice.

  9. Simulating Visual Learning and Optical Illusions via a Network-Based Genetic Algorithm

    Science.gov (United States)

    Siu, Theodore; Vivar, Miguel; Shinbrot, Troy

    We present a neural network model that uses a genetic algorithm to identify spatial patterns. We show that the model both learns and reproduces common visual patterns and optical illusions. Surprisingly, we find that the illusions generated are a direct consequence of the network architecture used. We discuss the implications of our results and the insights that we gain on how humans fall for optical illusions

  10. Performance Analysis of Particle Swarm Optimization Based Routing Algorithm in Optical Burst Switching Networks

    Science.gov (United States)

    Hou, Rui; Yu, Junle

    2011-12-01

    Optical burst switching (OBS) has been regarded as the next generation optical switching technology. In this paper, the routing problem based on particle swarm optimization (PSO) algorithm in OBS has been studies and analyzed. Simulation results indicate that, the PSO based routing algorithm will optimal than the conversional shortest path first algorithm in space cost and calculation cost. Conclusions have certain theoretical significances for the improvement of OBS routing protocols.

  11. Large-Scale Recurrent Neural Network Based Modelling of Gene Regulatory Network Using Cuckoo Search-Flower Pollination Algorithm.

    Science.gov (United States)

    Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K

    2016-01-01

    The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.

  12. Large-Scale Recurrent Neural Network Based Modelling of Gene Regulatory Network Using Cuckoo Search-Flower Pollination Algorithm

    Directory of Open Access Journals (Sweden)

    Sudip Mandal

    2016-01-01

    Full Text Available The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.

  13. A Spectrum Sensing Method Based on Signal Feature and Clustering Algorithm in Cognitive Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yongwei Zhang

    2017-01-01

    Full Text Available In order to solve the problem of difficulty in determining the threshold in spectrum sensing technologies based on the random matrix theory, a spectrum sensing method based on clustering algorithm and signal feature is proposed for Cognitive Wireless Multimedia Sensor Networks. Firstly, the wireless communication signal features are obtained according to the sampling signal covariance matrix. Then, the clustering algorithm is used to classify and test the signal features. Different signal features and clustering algorithms are compared in this paper. The experimental results show that the proposed method has better sensing performance.

  14. Optimization of steel casting feeding system based on BP neural network and genetic algorithm

    Directory of Open Access Journals (Sweden)

    Xue-dan Gong

    2016-05-01

    Full Text Available The trial-and-error method is widely used for the current optimization of the steel casting feeding system, which is highly random, subjective and thus inefficient. In the present work, both the theoretical and the experimental research on the modeling and optimization methods of the process are studied. An approximate alternative model is established based on the Back Propagation (BP neural network and experimental design. The process parameters of the feeding system are taken as the input, the volumes of shrinkage cavities and porosities calculated by simulation are simultaneously taken as the output. Thus, a mathematical model is established by the BP neural network to combine the input variables with the output response. Then, this model is optimized by the nonlinear optimization function of the genetic algorithm. Finally, a feeding system optimization of a steel traveling wheel is conducted. No shrinkage cavities and porosities are induced through the optimization. Compared to the initial design scheme, the process yield is increased by 4.1% and the volume of the riser is decreased by 5.48×106 mm3.

  15. A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm

    Science.gov (United States)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu

    Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.

  16. Logistics Distribution Center Location Evaluation Based on Genetic Algorithm and Fuzzy Neural Network

    Science.gov (United States)

    Shao, Yuxiang; Chen, Qing; Wei, Zhenhua

    Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.

  17. Traffic Congestion Evaluation and Signal Control Optimization Based on Wireless Sensor Networks: Model and Algorithms

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2012-01-01

    Full Text Available This paper presents the model and algorithms for traffic flow data monitoring and optimal traffic light control based on wireless sensor networks. Given the scenario that sensor nodes are sparsely deployed along the segments between signalized intersections, an analytical model is built using continuum traffic equation and develops the method to estimate traffic parameter with the scattered sensor data. Based on the traffic data and principle of traffic congestion formation, we introduce the congestion factor which can be used to evaluate the real-time traffic congestion status along the segment and to predict the subcritical state of traffic jams. The result is expected to support the timing phase optimization of traffic light control for the purpose of avoiding traffic congestion before its formation. We simulate the traffic monitoring based on the Mobile Century dataset and analyze the performance of traffic light control on VISSIM platform when congestion factor is introduced into the signal timing optimization model. The simulation result shows that this method can improve the spatial-temporal resolution of traffic data monitoring and evaluate traffic congestion status with high precision. It is helpful to remarkably alleviate urban traffic congestion and decrease the average traffic delays and maximum queue length.

  18. Optimization-Based Artificial Bee Colony Algorithm for Data Collection in Large-Scale Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yinggao Yue

    2016-01-01

    Full Text Available Data collection is a fundamental operation in various mobile wireless sensor networks (MWSN applications. The energy of nodes around the Sink can be untimely depleted owing to the fact that sensor nodes must transmit vast amounts of data, readily forming a bottleneck in energy consumption; mobile wireless sensor networks have been designed to address this issue. In this study, we focused on a large-scale and intensive MWSN which allows a certain amount of data latency by investigating mobile Sink balance from three aspects: data collection maximization, mobile path length minimization, and network reliability optimization. We also derived a corresponding formula to represent the MWSN and proved that it represents an NP-hard problem. Traditional data collection methods only focus on increasing the amount data collection or reducing the overall network energy consumption, which is why we designed the proposed heuristic algorithm to jointly consider cluster head selection, the routing path from ordinary nodes to the cluster head node, and mobile Sink path planning optimization. The proposed data collection algorithm for mobile Sinks is, in effect, based on artificial bee colony. Simulation results show that, in comparison with other algorithms, the proposed algorithm can effectively reduce data transmission, save energy, improve network data collection efficiency and reliability, and extend the network lifetime.

  19. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.

    Science.gov (United States)

    Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N

    2015-04-28

    Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.

  20. An efficient distributed localisation algorithm for wireless sensor networks: based on smart reference-selection method

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2013-05-01

    Full Text Available of the available references to enhance their performance. However, to implement an efficient localisation algorithm for WSNs one should reconsider this assumption. This paper introduces an efficient localisation algorithm that is based on a novel smart reference-selection...

  1. The congestion control algorithm based on queue management of each node in mobile ad hoc networks

    Science.gov (United States)

    Wei, Yifei; Chang, Lin; Wang, Yali; Wang, Gaoping

    2016-12-01

    This paper proposes an active queue management mechanism, considering the node's own ability and its importance in the network to set the queue threshold. As the network load increases, local congestion of mobile ad hoc network may lead to network performance degradation, hot node's energy consumption increase even failure. If small energy nodes congested because of forwarding data packets, then when it is used as the source node will cause a lot of packet loss. This paper proposes an active queue management mechanism, considering the node's own ability and its importance in the network to set the queue threshold. Controlling nodes buffer queue in different levels of congestion area probability by adjusting the upper limits and lower limits, thus nodes can adjust responsibility of forwarding data packets according to their own situation. The proposed algorithm will slow down the send rate hop by hop along the data package transmission direction from congestion node to source node so that to prevent further congestion from the source node. The simulation results show that, the algorithm can better play the data forwarding ability of strong nodes, protect the weak nodes, can effectively alleviate the network congestion situation.

  2. Gossip algorithms in quantum networks

    Science.gov (United States)

    Siomau, Michael

    2017-01-01

    Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up - in the best case exponentially - the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication.

  3. Memetic Algorithm-Based Multi-Objective Coverage Optimization for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2014-10-01

    Full Text Available Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms.

  4. Memetic Algorithm-Based Multi-Objective Coverage Optimization for Wireless Sensor Networks

    Science.gov (United States)

    Chen, Zhi; Li, Shuai; Yue, Wenjing

    2014-01-01

    Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms. PMID:25360579

  5. A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks.

    Science.gov (United States)

    Xu, Yan; Zeng, Xiaoqin; Han, Lixin; Yang, Jing

    2013-07-01

    We use a supervised multi-spike learning algorithm for spiking neural networks (SNNs) with temporal encoding to simulate the learning mechanism of biological neurons in which the SNN output spike trains are encoded by firing times. We first analyze why existing gradient-descent-based learning methods for SNNs have difficulty in achieving multi-spike learning. We then propose a new multi-spike learning method for SNNs based on gradient descent that solves the problems of error function construction and interference among multiple output spikes during learning. The method could be widely applied to single spiking neurons to learn desired output spike trains and to multilayer SNNs to solve classification problems. By overcoming learning interference among multiple spikes, our method has high learning accuracy when there are a relatively large number of output spikes in need of learning. We also develop an output encoding strategy with respect to multiple spikes for classification problems. This effectively improves the classification accuracy of multi-spike learning compared to that of single-spike learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Design of the smart home system based on the optimal routing algorithm and ZigBee network

    Science.gov (United States)

    Xie, Xiaoxia

    2017-01-01

    To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system. PMID:29131868

  7. Design of the smart home system based on the optimal routing algorithm and ZigBee network.

    Science.gov (United States)

    Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng

    2017-01-01

    To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.

  8. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks.

    Science.gov (United States)

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-12-04

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches.

  9. A Path-Based Gradient Projection Algorithm for the Cost-Based System Optimum Problem in Networks with Continuously Distributed Value of Time

    Directory of Open Access Journals (Sweden)

    Wen-Xiang Wu

    2014-01-01

    Full Text Available The cost-based system optimum problem in networks with continuously distributed value of time is formulated as a path-based form, which cannot be solved by the Frank-Wolfe algorithm. In light of magnitude improvement in the availability of computer memory in recent years, path-based algorithms have been regarded as a viable approach for traffic assignment problems with reasonably large network sizes. We develop a path-based gradient projection algorithm for solving the cost-based system optimum model, based on Goldstein-Levitin-Polyak method which has been successfully applied to solve standard user equilibrium and system optimum problems. The Sioux Falls network tested is used to verify the effectiveness of the algorithm.

  10. An Investigation of a New Social Networks Contact Suggestion Based on Face Recognition Algorithm

    Directory of Open Access Journals (Sweden)

    Ivan Zelinka

    2016-01-01

    Full Text Available Automated comparison of faces in the photographs is a well established discipline. The main aim of this paper is to describe an approach whereby face recognition can be used in suggestion of a new contacts. The new contact suggestion is a common technique used across all main social networks. Our approach uses a freely available face comparison called "Betaface" together with our automated processig of the user´s Facebook profile. The research´s main point of interest is the comparison of friend´s facial images in a social network itself, how to process such a great amount of photos and what additional sources of data should be used. In this approach we used our automated processing algorithm Betaface in the social network Facebook and for the additional data, the Flickr social network was used. The results and their quality are discussed at the end.

  11. Distributed Constrained Stochastic Subgradient Algorithms Based on Random Projection and Asynchronous Broadcast over Networks

    Directory of Open Access Journals (Sweden)

    Junlong Zhu

    2017-01-01

    Full Text Available We consider a distributed constrained optimization problem over a time-varying network, where each agent only knows its own cost functions and its constraint set. However, the local constraint set may not be known in advance or consists of huge number of components in some applications. To deal with such cases, we propose a distributed stochastic subgradient algorithm over time-varying networks, where the estimate of each agent projects onto its constraint set by using random projection technique and the implement of information exchange between agents by employing asynchronous broadcast communication protocol. We show that our proposed algorithm is convergent with probability 1 by choosing suitable learning rate. For constant learning rate, we obtain an error bound, which is defined as the expected distance between the estimates of agent and the optimal solution. We also establish an asymptotic upper bound between the global objective function value at the average of the estimates and the optimal value.

  12. Gossip algorithms in quantum networks

    Energy Technology Data Exchange (ETDEWEB)

    Siomau, Michael, E-mail: siomau@nld.ds.mpg.de [Physics Department, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia); Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany)

    2017-01-23

    Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up – in the best case exponentially – the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication. - Highlights: • We analyze the performance of gossip algorithms in quantum networks. • Local operations and classical communication (LOCC) can speed the performance up. • The speed-up is exponential in the best case; the number of LOCC is polynomial.

  13. A Routing Algorithm for WiFi-Based Wireless Sensor Network and the Application in Automatic Meter Reading

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-01-01

    Full Text Available The Automatic Meter Reading (AMR network for the next generation Smart Grid is required to possess many essential functions, such as data reading and writing, intelligent power transmission, and line damage detection. However, the traditional AMR network cannot meet the previous requirement. With the development of the WiFi sensor node in the low power cost, a new kind of wireless sensor network based on the WiFi technology can be used in application. In this paper, we have designed a new architecture of WiFi-based wireless sensor network, which is suitable for the next generation AMR system. We have also proposed a new routing algorithm called Energy Saving-Based Hybrid Wireless Mesh Protocol (E-HWMP on the premise of current algorithm, which can improve the energy saving of the HWMP and be suitable for the WiFi-based wireless sensor network. The simulation results show that the life cycle of network is extended.

  14. E-commerce System Security Assessment based on Bayesian Network Algorithm Research

    OpenAIRE

    Ting Li; Xin Li

    2013-01-01

    Evaluation of e-commerce network security is based on assessment method Bayesian networks, and it first defines the vulnerability status of e-commerce system evaluation index and the vulnerability of the state model of e-commerce systems, and after the principle of the Bayesian network reliability of e-commerce system and the criticality of the vulnerabilities were analyzed, experiments show that the change method is a good evaluation of the security of e-commerce systems.

  15. A Passenger Flow Risk Forecasting Algorithm for High-Speed Railway Transport Hub Based on Surveillance Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhengyu Xie

    2016-01-01

    Full Text Available Passenger flow risk forecasting is a vital task for safety management in high-speed railway transport hub. In this paper, we considered the passenger flow risk forecasting problem in high-speed railway transport hub. Based on the surveillance sensor networks, a passenger flow risk forecasting algorithm was developed based on spatial correlation. Computational results showed that the proposed forecasting approach was effective and significant for the high-speed railway transport hub.

  16. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm.

    Science.gov (United States)

    Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour

    2012-09-01

    In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  17. [Using the Tabu-search-algorithm-based Bayesian network to analyze the risk factors of coronary heart diseases].

    Science.gov (United States)

    Wei, Z; Zhang, X L; Rao, H X; Wang, H F; Wang, X; Qiu, L X

    2016-06-01

    Under the available data gathered from a coronary study questionnaires with 10 792 cases, this article constructs a Bayesian network model based on the tabu search algorithm and calculates the conditional probability of each node, using the Maximum-likelihood. Pros and cons of the Bayesian network model are evaluated to compare against the logistic regression model in the analysis of coronary factors. Applicability of this network model in clinical study is also investigated. Results show that Bayesian network model can reveal the complex correlations among influencing factors on the coronary and the relationship with coronary heart diseases. Bayesian network model seems promising and more practical than the logistic regression model in analyzing the influencing factors of coronary heart disease.

  18. Flow enforcement algorithms for ATM networks

    DEFF Research Database (Denmark)

    Dittmann, Lars; Jacobsen, Søren B.; Moth, Klaus

    1991-01-01

    Four measurement algorithms for flow enforcement in asynchronous transfer mode (ATM) networks are presented. The algorithms are the leaky bucket, the rectangular sliding window, the triangular sliding window, and the exponentially weighted moving average. A comparison, based partly on teletraffic....... Implementations are proposed on the block diagram level, and dimensioning examples are carried out when flow enforcing a renewal-type connection using the four algorithms. The corresponding hardware demands are estimated aid compared......Four measurement algorithms for flow enforcement in asynchronous transfer mode (ATM) networks are presented. The algorithms are the leaky bucket, the rectangular sliding window, the triangular sliding window, and the exponentially weighted moving average. A comparison, based partly on teletraffic...... theory and partly on signal processing theory, is carried out. It is seen that the time constant involved increases with the increasing burstiness of the connection. It is suggested that the RMS measurement bandwidth be used to dimension linear algorithms for equal flow enforcement characteristics...

  19. Principal component analysis networks and algorithms

    CERN Document Server

    Kong, Xiangyu; Duan, Zhansheng

    2017-01-01

    This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.

  20. A Q-Learning-Based Delay-Aware Routing Algorithm to Extend the Lifetime of Underwater Sensor Networks.

    Science.gov (United States)

    Jin, Zhigang; Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei

    2017-07-19

    Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20-25% compared with a classic lifetime-extended routing protocol (QELAR).

  1. An Interference-Aware Traffic-Priority-Based Link Scheduling Algorithm for Interference Mitigation in Multiple Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Thien T. T. Le

    2016-12-01

    Full Text Available Currently, wireless body area networks (WBANs are effectively used for health monitoring services. However, in cases where WBANs are densely deployed, interference among WBANs can cause serious degradation of network performance and reliability. Inter-WBAN interference can be reduced by scheduling the communication links of interfering WBANs. In this paper, we propose an interference-aware traffic-priority-based link scheduling (ITLS algorithm to overcome inter-WBAN interference in densely deployed WBANs. First, we model a network with multiple WBANs as an interference graph where node-level interference and traffic priority are taken into account. Second, we formulate link scheduling for multiple WBANs as an optimization model where the objective is to maximize the throughput of the entire network while ensuring the traffic priority of sensor nodes. Finally, we propose the ITLS algorithm for multiple WBANs on the basis of the optimization model. High spatial reuse is also achieved in the proposed ITLS algorithm. The proposed ITLS achieves high spatial reuse while considering traffic priority, packet length, and the number of interfered sensor nodes. Our simulation results show that the proposed ITLS significantly increases spatial reuse and network throughput with lower delay by mitigating inter-WBAN interference.

  2. A Q-Learning-Based Delay-Aware Routing Algorithm to Extend the Lifetime of Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhigang Jin

    2017-07-01

    Full Text Available Underwater sensor networks (UWSNs have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20–25% compared with a classic lifetime-extended routing protocol (QELAR.

  3. LEA: An Algorithm to Estimate the Level of Location Exposure in Infrastructure-Based Wireless Networks

    Directory of Open Access Journals (Sweden)

    Francisco Garcia

    2017-01-01

    Full Text Available Location privacy in wireless networks is nowadays a major concern. This is due to the fact that the mere fact of transmitting may allow a network to pinpoint a mobile node. We consider that a first step to protect a mobile node in this situation is to provide it with the means to quantify how accurately a network establishes its position. To achieve this end, we introduce the location-exposure algorithm (LEA, which runs on the mobile terminal only and whose operation consists of two steps. In the first step, LEA discovers the positions of nearby network nodes and uses this information to emulate how they estimate the position of the mobile node. In the second step, it quantifies the level of exposure by computing the distance between the position estimated in the first step and its true position. We refer to these steps as a location-exposure problem. We tested our proposal with simulations and testbed experiments. These results show the ability of LEA to reproduce the location of the mobile node, as seen by the network, and to quantify the level of exposure. This knowledge can help the mobile user decide which actions should be performed before transmitting.

  4. Adaptive Security Architecture based on EC-MQV Algorithm in Personal Network (PN)

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Prasad, Neeli R.

    2007-01-01

    Abstract — Personal Networks (PNs) have been focused on in order to support the user’s business and private activities without jeopardizing privacy and security of the users and their data. In such a network, it is necessary to produce a proper key agreement method according to the feature...... of the network. One of the features of the network is that the personal devices have deferent capabilities such as computational ability, memory size, transmission power, processing speed and implementation cost. Therefore an adaptive security mechanism should be contrived for such a network of various device...... combinations based on user’s location and device’s capability. The paper proposes new adaptive security architecture with three levels of asymmetric key agreement scheme by using context-aware security manager (CASM) based on elliptic curve cryptosystem (EC-MQV)....

  5. Artificial neural network-based pharmacogenomic algorithm for warfarin dose optimization.

    Science.gov (United States)

    Pavani, Addepalli; Naushad, Shaik Mohammad; Kumar, Rajasekar Manoj; Srinath, Murali; Malempati, Amaresh Rao; Kutala, Vijay Kumar

    2016-01-01

    To develop more precise pharmacogenomic algorithm for prediction of safe and effective dose of warfarin. An artificial neural network (ANN) algorithm was developed by using age, gender, BMI, plasma vitamin K levels, thyroid status and ten genetic variables as the inputs and therapeutic warfarin dose as the output. Hyperbolic tangent function was used to build an ANN architecture. This model explained 93.5% variability in warfarin dosing and predicted warfarin dose accurately in 74.5% patients whose international normalized ratio (INR) was less than 2.0 and in 83.3% patients whose INR was more than 3.5. This algorithm reduced the out-of-range INRs (odds ratio [OR]: 0.49; 95% CI: 0.30-0.79; p = 0.003), the rate of adverse drug reactions (OR: 0.00; 95% CI: 0.00-1.21; p = 0.06) and time to reach first therapeutic INR (OR: 6.73; 95% CI: 2.17-22.31; p algorithm was found to be applicable in both euthyroid and hypothyroid status. S-warfarin/7-hydroxywarfarin ratio was found to increase in subjects with CYP2C9*2 and CYP2C9*3 justifying the warfarin sensitivity attributed to these variants. An application of ANN for warfarin dosing improves predictability and provides safe and effective dosing.

  6. Algorithm for complete enumeration based on a stroke graph to solve the supply network configuration and operations scheduling problem

    Directory of Open Access Journals (Sweden)

    Julien Maheut

    2013-07-01

    Full Text Available Purpose: The purpose of this paper is to present an algorithm that solves the supply network configuration and operations scheduling problem in a mass customization company that faces alternative operations for one specific tool machine order in a multiplant context. Design/methodology/approach: To achieve this objective, the supply chain network configuration and operations scheduling problem is presented. A model based on stroke graphs allows the design of an algorithm that enumerates all the feasible solutions. The algorithm considers the arrival of a new customized order proposal which has to be inserted into a scheduled program. A selection function is then used to choose the solutions to be simulated in a specific simulation tool implemented in a Decision Support System. Findings and Originality/value: The algorithm itself proves efficient to find all feasible solutions when alternative operations must be considered. The stroke structure is successfully used to schedule operations when considering more than one manufacturing and supply option in each step. Research limitations/implications: This paper includes only the algorithm structure for a one-by-one, sequenced introduction of new products into the list of units to be manufactured. Therefore, the lotsizing process is done on a lot-per-lot basis. Moreover, the validation analysis is done through a case study and no generalization can be done without risk. Practical implications: The result of this research would help stakeholders to determine all the feasible and practical solutions for their problem. It would also allow to assessing the total costs and delivery times of each solution. Moreover, the Decision Support System proves useful to assess alternative solutions. Originality/value: This research offers a simple algorithm that helps solve the supply network configuration problem and, simultaneously, the scheduling problem by considering alternative operations. The proposed system

  7. Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network

    Directory of Open Access Journals (Sweden)

    Cheng-Ming Lee

    2016-11-01

    Full Text Available A reinforcement learning algorithm is proposed to improve the accuracy of short-term load forecasting (STLF in this article. The proposed model integrates radial basis function neural network (RBFNN, support vector regression (SVR, and adaptive annealing learning algorithm (AALA. In the proposed methodology, firstly, the initial structure of RBFNN is determined by using an SVR. Then, an AALA with time-varying learning rates is used to optimize the initial parameters of SVR-RBFNN (AALA-SVR-RBFNN. In order to overcome the stagnation for searching optimal RBFNN, a particle swarm optimization (PSO is applied to simultaneously find promising learning rates in AALA. Finally, the short-term load demands are predicted by using the optimal RBFNN. The performance of the proposed methodology is verified on the actual load dataset from the Taiwan Power Company (TPC. Simulation results reveal that the proposed AALA-SVR-RBFNN can achieve a better load forecasting precision compared to various RBFNNs.

  8. The superior fault tolerance of artificial neural network training with a fault/noise injection-based genetic algorithm.

    Science.gov (United States)

    Su, Feng; Yuan, Peijiang; Wang, Yangzhen; Zhang, Chen

    2016-10-01

    Artificial neural networks (ANNs) are powerful computational tools that are designed to replicate the human brain and adopted to solve a variety of problems in many different fields. Fault tolerance (FT), an important property of ANNs, ensures their reliability when significant portions of a network are lost. In this paper, a fault/noise injection-based (FIB) genetic algorithm (GA) is proposed to construct fault-tolerant ANNs. The FT performance of an FIB-GA was compared with that of a common genetic algorithm, the back-propagation algorithm, and the modification of weights algorithm. The FIB-GA showed a slower fitting speed when solving the exclusive OR (XOR) problem and the overlapping classification problem, but it significantly reduced the errors in cases of single or multiple faults in ANN weights or nodes. Further analysis revealed that the fit weights showed no correlation with the fitting errors in the ANNs constructed with the FIB-GA, suggesting a relatively even distribution of the various fitting parameters. In contrast, the output weights in the training of ANNs implemented with the use the other three algorithms demonstrated a positive correlation with the errors. Our findings therefore indicate that a combination of the fault/noise injection-based method and a GA is capable of introducing FT to ANNs and imply that the distributed ANNs demonstrate superior FT performance.

  9. Performance Analysis of Different Backoff Algorithms for WBAN-Based Emerging Sensor Networks

    Directory of Open Access Journals (Sweden)

    Pervez Khan

    2017-03-01

    Full Text Available The Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA procedure of IEEE 802.15.6 Medium Access Control (MAC protocols for the Wireless Body Area Network (WBAN use an Alternative Binary Exponential Backoff (ABEB procedure. The backoff algorithm plays an important role to avoid collision in wireless networks. The Binary Exponential Backoff (BEB algorithm used in different standards does not obtain the optimum performance due to enormous Contention Window (CW gaps induced from packet collisions. Therefore, The IEEE 802.15.6 CSMA/CA has developed the ABEB procedure to avoid the large CW gaps upon each collision. However, the ABEB algorithm may lead to a high collision rate (as the CW size is incremented on every alternative collision and poor utilization of the channel due to the gap between the subsequent CW. To minimize the gap between subsequent CW sizes, we adopted the Prioritized Fibonacci Backoff (PFB procedure. This procedure leads to a smooth and gradual increase in the CW size, after each collision, which eventually decreases the waiting time, and the contending node can access the channel promptly with little delay; while ABEB leads to irregular and fluctuated CW values, which eventually increase collision and waiting time before a re-transmission attempt. We analytically approach this problem by employing a Markov chain to design the PFB scheme for the CSMA/CA procedure of the IEEE 80.15.6 standard. The performance of the PFB algorithm is compared against the ABEB function of WBAN CSMA/CA. The results show that the PFB procedure adopted for IEEE 802.15.6 CSMA/CA outperforms the ABEB procedure.

  10. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lund, Ole

    2009-01-01

    this binding event. RESULTS: Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data...... class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. CONCLUSION: The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http://www.cbs.dtu.dk/services/Net...

  11. The Social Relationship Based Adaptive Multi-Spray-and-Wait Routing Algorithm for Disruption Tolerant Network

    Directory of Open Access Journals (Sweden)

    Jianfeng Guan

    2017-01-01

    Full Text Available The existing spray-based routing algorithms in DTN cannot dynamically adjust the number of message copies based on actual conditions, which results in a waste of resource and a reduction of the message delivery rate. Besides, the existing spray-based routing protocols may result in blind spots or dead end problems due to the limitation of various given metrics. Therefore, this paper proposes a social relationship based adaptive multiple spray-and-wait routing algorithm (called SRAMSW which retransmits the message copies based on their residence times in the node via buffer management and selects forwarders based on the social relationship. By these means, the proposed algorithm can remove the plight of the message congestion in the buffer and improve the probability of replicas to reach their destinations. The simulation results under different scenarios show that the SRAMSW algorithm can improve the message delivery rate and reduce the messages’ dwell time in the cache and further improve the buffer effectively.

  12. Distribution Network Expansion Planning Based on Multi-objective PSO Algorithm

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Wu, Qiuwei

    2013-01-01

    This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO...... algorithm was proposed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified...

  13. Optimisation of groundwater level monitoring networks using geostatistical modelling based on the Spartan family variogram and a genetic algorithm method

    Science.gov (United States)

    Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2016-04-01

    Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the

  14. An artificial neural network based $b$ jet identification algorithm at the CDF Experiment

    CERN Document Server

    Freeman, J; Ketchum, W; Poprocki, S; Pronko, A; Rusu, V; Wittich, P

    2011-01-01

    We present the development and validation of a new multivariate $b$ jet identification algorithm ("$b$ tagger") used at the CDF experiment at the Fermilab Tevatron. At collider experiments, $b$ taggers allow one to distinguish particle jets containing $B$ hadrons from other jets. Employing feed-forward neural network architectures, this tagger is unique in its emphasis on using information from individual tracks. This tagger not only contains the usual advantages of a multivariate technique such as maximal use of information in a jet and tunable purity/efficiency operating points, but is also capable of evaluating jets with only a single track. To demonstrate the effectiveness of the tagger, we employ a novel method wherein we calculate the false tag rate and tag efficiency as a function of the placement of a lower threshold on a jet's neural network output value in $Z+1$ jet and $t\\bar{t}$ candidate samples, rich in light flavor and $b$ jets, respectively.

  15. Single neural adaptive controller and neural network identifier based on PSO algorithm for spherical actuators with 3D magnet array

    Science.gov (United States)

    Yan, Liang; Zhang, Lu; Zhu, Bo; Zhang, Jingying; Jiao, Zongxia

    2017-10-01

    Permanent magnet spherical actuator (PMSA) is a multi-variable featured and inter-axis coupled nonlinear system, which unavoidably compromises its motion control implementation. Uncertainties such as external load and friction torque of ball bearing and manufacturing errors also influence motion performance significantly. Therefore, the objective of this paper is to propose a controller based on a single neural adaptive (SNA) algorithm and a neural network (NN) identifier optimized with a particle swarm optimization (PSO) algorithm to improve the motion stability of PMSA with three-dimensional magnet arrays. The dynamic model and computed torque model are formulated for the spherical actuator, and a dynamic decoupling control algorithm is developed. By utilizing the global-optimization property of the PSO algorithm, the NN identifier is trained to avoid locally optimal solution and achieve high-precision compensations to uncertainties. The employment of the SNA controller helps to reduce the effect of compensation errors and convert the system to a stable one, even if there is difference between the compensations and uncertainties due to external disturbances. A simulation model is established, and experiments are conducted on the research prototype to validate the proposed control algorithm. The amplitude of the parameter perturbation is set to 5%, 10%, and 15%, respectively. The strong robustness of the proposed hybrid algorithm is validated by the abundant simulation data. It shows that the proposed algorithm can effectively compensate the influence of uncertainties and eliminate the effect of inter-axis couplings of the spherical actuator.

  16. EXPERIMENT BASED FAULT DIAGNOSIS ON BOTTLE FILLING PLANT WITH LVQ ARTIFICIAL NEURAL NETWORK ALGORITHM

    Directory of Open Access Journals (Sweden)

    Mustafa DEMETGÜL

    2008-01-01

    Full Text Available In this study, an artificial neural network is developed to find an error rapidly on pneumatic system. Also the ANN prevents the system versus the failure. The error on the experimental bottle filling plant can be defined without any interference using analog values taken from pressure sensors and linear potentiometers. The sensors and potentiometers are placed on different places of the plant. Neural network diagnosis faults on plant, where no bottle, cap closing cylinder B is not working, bottle cap closing cylinder C is not working, air pressure is not sufficient, water is not filling and low air pressure faults. The fault is diagnosed by artificial neural network with LVQ. It is possible to find an failure by using normal programming or PLC. The reason offing Artificial Neural Network is to give a information where the fault is. However, ANN can be used for different systems. The aim is to find the fault by using ANN simultaneously. In this situation, the error taken place on the pneumatic system is collected by a data acquisition card. It is observed that the algorithm is very capable program for many industrial plants which have mechatronic systems.

  17. A Topology Evolution Model Based on Revised PageRank Algorithm and Node Importance for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaogang Qi

    2015-01-01

    Full Text Available Wireless sensor network (WSN is a classical self-organizing communication network, and its topology evolution currently becomes one of the attractive issues in this research field. Accordingly, the problem is divided into two subproblems: one is to design a new preferential attachment method and the other is to analyze the dynamics of the network topology evolution. To solve the first subproblem, a revised PageRank algorithm, called Con-rank, is proposed to evaluate the node importance upon the existing node contraction, and then a novel preferential attachment is designed based on the node importance calculated by the proposed Con-rank algorithm. To solve the second one, we firstly analyze the network topology evolution dynamics in a theoretical way and then simulate the evolution process. Theoretical analysis proves that the network topology evolution of our model agrees with power-law distribution, and simulation results are well consistent with our conclusions obtained from the theoretical analysis and simultaneously show that our topology evolution model is superior to the classic BA model in the average path length and the clustering coefficient, and the network topology is more robust and can tolerate the random attacks.

  18. Power backup Density based Clustering Algorithm for Maximizing Lifetime of Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    WSNs consists several nodes spread over experimental fields for specific application temporarily. The spatially distributed sensor nodes sense and gather the information for intended parameters like temperature, sound, vibrations, etc for the particular application. In this paper, we evaluate...... the impact of different algorithms i.e. clustering for densely populated field application, energy backup by adding energy harvesting node in field, positioning energy harvesting node smartly in the field and also positioning the base station in sensor field to optimize the communication between cluster head...... algorithm can be applied for many sensitive applications like military for hostile and remote areas or environmental monitoring where human intervention is not possible....

  19. Consensus-based distributed optimisation of multi-agent networks via a two level subgradient-proximal algorithm

    Science.gov (United States)

    Hu, Bin; Guan, Zhi-Hong; Liao, Rui-Quan; Zhang, Ding-Xue; Zheng, Gui-Lin

    2015-05-01

    This paper presents a consensus-based stochastic subgradient algorithm for multi-agent networks to minimise multiple convex but not necessarily differential objective functions, subject to an intersection set of multiple closed convex constraint sets. Compared with the existing results an alternative subgradient algorithm is first introduced based on two level subgradient iterations, where the first level is to minimise the component functions, and the second to enforce the iterates not oscillate from the constraint set wildly. In addition, a distributed consensus-based type of the proposed subgradient algorithm is constructed within the framework of multi-agent networks for the case when the iteration index of local objective functions and local constraint sets is not homologous. Detailed convergence analysis of the proposed algorithms is established using matrix theories and super-martingale convergence theorem. In addition, a pre-step convergence factor is obtained in this study to characterise the distance between the iterations and the optimal set, while some existing literatures only present a convergence work. Simulation results are given to demonstrate the effectiveness of the developed theoretical results.

  20. Algorithm For A Self-Growing Neural Network

    Science.gov (United States)

    Cios, Krzysztof J.

    1996-01-01

    CID3 algorithm simulates self-growing neural network. Constructs decision trees equivalent to hidden layers of neural network. Based on ID3 algorithm, which dynamically generates decision tree while minimizing entropy of information. CID3 algorithm generates feedforward neural network by use of either crisp or fuzzy measure of entropy.

  1. Artificial neural network modeling and genetic algorithm based medium optimization for the improved production of marine biosurfactant.

    Science.gov (United States)

    Sivapathasekaran, C; Mukherjee, Soumen; Ray, Arja; Gupta, Ashish; Sen, Ramkrishna

    2010-04-01

    A nonlinear model describing the relationship between the biosurfactant concentration as a process output and the critical medium components as the independent variables was developed by artificial neural network modeling. The model was optimized for the maximum biosurfactant production by using genetic algorithm. Based on a single-factor-at-a-time optimization strategy, the critical medium components were found to be glucose, urea, SrCl(2) and MgSO(4). The experimental results obtained from a statistical experimental design were used for the modeling and optimization by linking an artificial neural network (ANN) model with genetic algorithm (GA) in MATLAB. Using the optimized concentration of critical elements, the biosurfactant yield showed close agreement with the model prediction. An enhancement in biosurfactant production by approximately 70% was achieved by this optimization procedure. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Variances handling method of clinical pathways based on T-S fuzzy neural networks with novel hybrid learning algorithm.

    Science.gov (United States)

    Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Ye, Yan; Yao, Yang

    2012-06-01

    Clinical pathways' variances present complex, fuzzy, uncertain and high-risk characteristics. They could cause complicating diseases or even endanger patients' life if not handled effectively. In order to improve the accuracy and efficiency of variances handling by Takagi-Sugeno (T-S) fuzzy neural networks (FNNs), a new variances handling method for clinical pathways (CPs) is proposed in this study, which is based on T-S FNNs with novel hybrid learning algorithm. And the optimal structure and parameters can be achieved simultaneously by integrating the random cooperative decomposing particle swarm optimization algorithm (RCDPSO) and discrete binary version of PSO (DPSO) algorithm. Finally, a case study on liver poisoning of osteosarcoma preoperative chemotherapy CP is used to validate the proposed method. The result demonstrates that T-S FNNs based on the proposed algorithm achieves superior performances in efficiency, precision, and generalization ability to standard T-S FNNs, Mamdani FNNs and T-S FNNs based on other algorithms (CPSO and PSO) for variances handling of CPs.

  3. ALPHABET SIGN LANGUAGE RECOGNITION USING LEAP MOTION TECHNOLOGY AND RULE BASED BACKPROPAGATION-GENETIC ALGORITHM NEURAL NETWORK (RBBPGANN

    Directory of Open Access Journals (Sweden)

    Wijayanti Nurul Khotimah

    2017-01-01

    Full Text Available Sign Language recognition was used to help people with normal hearing communicate effectively with the deaf and hearing-impaired. Based on survey that conducted by Multi-Center Study in Southeast Asia, Indonesia was on the top four position in number of patients with hearing disability (4.6%. Therefore, the existence of Sign Language recognition is important. Some research has been conducted on this field. Many neural network types had been used for recognizing many kinds of sign languages. However, their performance are need to be improved. This work focuses on the ASL (Alphabet Sign Language in SIBI (Sign System of Indonesian Language which uses one hand and 26 gestures. Here, thirty four features were extracted by using Leap Motion. Further, a new method, Rule Based-Backpropagation Genetic Al-gorithm Neural Network (RB-BPGANN, was used to recognize these Sign Languages. This method is combination of Rule and Back Propagation Neural Network (BPGANN. Based on experiment this pro-posed application can recognize Sign Language up to 93.8% accuracy. It was very good to recognize large multiclass instance and can be solution of overfitting problem in Neural Network algorithm.

  4. Vectorized algorithms for spiking neural network simulation.

    Science.gov (United States)

    Brette, Romain; Goodman, Dan F M

    2011-06-01

    High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.

  5. A Real-Time and Closed-Loop Control Algorithm for Cascaded Multilevel Inverter Based on Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Libing Wang

    2014-01-01

    Full Text Available In order to control the cascaded H-bridges (CHB converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC algorithm is employed to minimize the total harmonic distortion (THD and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current’s THD (<5% when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.

  6. A real-time and closed-loop control algorithm for cascaded multilevel inverter based on artificial neural network.

    Science.gov (United States)

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (switching angle pulse generation scheme is proposed and experiment results verify its correctness.

  7. A Real-Time and Closed-Loop Control Algorithm for Cascaded Multilevel Inverter Based on Artificial Neural Network

    Science.gov (United States)

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness. PMID:24772025

  8. Network-based Type-2 Fuzzy System with Water Flow Like Algorithm for System Identification and Signal Processing

    Directory of Open Access Journals (Sweden)

    Che-Ting Kuo

    2015-02-01

    Full Text Available This paper introduces a network-based interval type-2 fuzzy inference system (NT2FIS with a dynamic solution agent algorithm water flow like algorithm (WFA, for nonlinear system identification and blind source separation (BSS problem. The NT2FIS consists of interval type-2 asymmetric fuzzy membership functions and TSK-type consequent parts to enhance the performance. The proposed scheme is optimized by a new heuristic learning algorithm, WFA, with dynamic solution agents. The proposed WFA is inspired by the natural behavior of water flow. Splitting, moving, merging, evaporation, and precipitation have all been introduced for optimization. Some modifications, including new moving strategies, such as the application of tabu searching and gradient-descent techniques, are proposed to enhance the performance of the WFA in training the NT2FIS systems. Simulation and comparison results for nonlinear system identification and blind signal separation are presented to illustrate the performance and effectiveness of the proposed approach.

  9. High-precision approach to localization scheme of visible light communication based on artificial neural networks and modified genetic algorithms

    Science.gov (United States)

    Guan, Weipeng; Wu, Yuxiang; Xie, Canyu; Chen, Hao; Cai, Ye; Chen, Yingcong

    2017-10-01

    An indoor positioning algorithm based on visible light communication (VLC) is presented. This algorithm is used to calculate a three-dimensional (3-D) coordinate of an indoor optical wireless environment, which includes sufficient orders of multipath reflections from reflecting surfaces of the room. Leveraging the global optimization ability of the genetic algorithm (GA), an innovative framework for 3-D position estimation based on a modified genetic algorithm is proposed. Unlike other techniques using VLC for positioning, the proposed system can achieve indoor 3-D localization without making assumptions about the height or acquiring the orientation angle of the mobile terminal. Simulation results show that an average localization error of less than 1.02 cm can be achieved. In addition, in most VLC-positioning systems, the effect of reflection is always neglected and its performance is limited by reflection, which makes the results not so accurate for a real scenario and the positioning errors at the corners are relatively larger than other places. So, we take the first-order reflection into consideration and use artificial neural network to match the model of a nonlinear channel. The studies show that under the nonlinear matching of direct and reflected channels the average positioning errors of four corners decrease from 11.94 to 0.95 cm. The employed algorithm is emerged as an effective and practical method for indoor localization and outperform other existing indoor wireless localization approaches.

  10. Efficient Algorithm for Computing Link-based Similarity in Real World Networks

    DEFF Research Database (Denmark)

    Cai, Yuanzhe; Cong, Gao; Xu, Jia

    2009-01-01

    Similarity calculation has many applications, such as information retrieval, and collaborative filtering, among many others. It has been shown that link-based similarity measure, such as SimRank, is very effective in characterizing the object similarities in networks, such as the Web, by exploiti...

  11. AR-RBFS: Aware-Routing Protocol Based on Recursive Best-First Search Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Farzad Kiani

    2016-01-01

    Full Text Available Energy issue is one of the most important problems in wireless sensor networks. They consist of low-power sensor nodes and a few base station nodes. They must be adaptive and efficient in data transmission to sink in various areas. This paper proposes an aware-routing protocol based on clustering and recursive search approaches. The paper focuses on the energy efficiency issue with various measures such as prolonging network lifetime along with reducing energy consumption in the sensor nodes and increasing the system reliability. Our proposed protocol consists of two phases. In the first phase (network development phase, the sensors are placed into virtual layers. The second phase (data transmission is related to routes discovery and data transferring so it is based on virtual-based Classic-RBFS algorithm in the lake of energy problem environments but, in the nonchargeable environments, all nodes in each layer can be modeled as a random graph and then begin to be managed by the duty cycle method. Additionally, the protocol uses new topology control, data aggregation, and sleep/wake-up schemas for energy saving in the network. The simulation results show that the proposed protocol is optimal in the network lifetime and packet delivery parameters according to the present protocols.

  12. A Depth-Adjustment Deployment Algorithm Based on Two-Dimensional Convex Hull and Spanning Tree for Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Jiang, Peng; Liu, Shuai; Liu, Jun; Wu, Feng; Zhang, Le

    2016-07-14

    Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs) just consider how to optimize network coverage and connectivity rate. However, these literatures don't discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D) convex hull and spanning tree (NDACS) for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability.

  13. A Depth-Adjustment Deployment Algorithm Based on Two-Dimensional Convex Hull and Spanning Tree for Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-07-01

    Full Text Available Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs just consider how to optimize network coverage and connectivity rate. However, these literatures don’t discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D convex hull and spanning tree (NDACS for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability.

  14. CASCADE: a novel quasi all paths-based network analysis algorithm for clustering biological interactions

    Directory of Open Access Journals (Sweden)

    Zhang Aidong

    2008-01-01

    Full Text Available Abstract Background Quantitative characterization of the topological characteristics of protein-protein interaction (PPI networks can enable the elucidation of biological functional modules. Here, we present a novel clustering methodology for PPI networks wherein the biological and topological influence of each protein on other proteins is modeled using the probability distribution that the series of interactions necessary to link a pair of distant proteins in the network occur within a time constant (the occurrence probability. Results CASCADE selects representative nodes for each cluster and iteratively refines clusters based on a combination of the occurrence probability and graph topology between every protein pair. The CASCADE approach is compared to nine competing approaches. The clusters obtained by each technique are compared for enrichment of biological function. CASCADE generates larger clusters and the clusters identified have p-values for biological function that are approximately 1000-fold better than the other methods on the yeast PPI network dataset. An important strength of CASCADE is that the percentage of proteins that are discarded to create clusters is much lower than the other approaches which have an average discard rate of 45% on the yeast protein-protein interaction network. Conclusion CASCADE is effective at detecting biologically relevant clusters of interactions.

  15. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci

    Directory of Open Access Journals (Sweden)

    Turner Stephen D

    2010-09-01

    Full Text Available Abstract Background Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Methods Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. Results We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. Conclusions We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA

  16. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci.

    Science.gov (United States)

    Turner, Stephen D; Dudek, Scott M; Ritchie, Marylyn D

    2010-09-27

    Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and modelling gene-gene interactions that

  17. Localization Algorithms of Underwater Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Yongjun Xu

    2012-02-01

    Full Text Available In Underwater Wireless Sensor Networks (UWSNs, localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes’ mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs.

  18. Localization algorithms of Underwater Wireless Sensor Networks: a survey.

    Science.gov (United States)

    Han, Guangjie; Jiang, Jinfang; Shu, Lei; Xu, Yongjun; Wang, Feng

    2012-01-01

    In Underwater Wireless Sensor Networks (UWSNs), localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes' mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs.

  19. Biomarker Discovery Based on Hybrid Optimization Algorithm and Artificial Neural Networks on Microarray Data for Cancer Classification.

    Science.gov (United States)

    Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Pirhadi, Shiva; Garshasbi, Masoud

    2015-01-01

    The improvement of high-through-put gene profiling based microarrays technology has provided monitoring the expression value of thousands of genes simultaneously. Detailed examination of changes in expression levels of genes can help physicians to have efficient diagnosing, classification of tumors and cancer's types as well as effective treatments. Finding genes that can classify the group of cancers correctly based on hybrid optimization algorithms is the main purpose of this paper. In this paper, a hybrid particle swarm optimization and genetic algorithm method are used for gene selection and also artificial neural network (ANN) is adopted as the classifier. In this work, we have improved the ability of the algorithm for the classification problem by finding small group of biomarkers and also best parameters of the classifier. The proposed approach is tested on three benchmark gene expression data sets: Blood (acute myeloid leukemia, acute lymphoblastic leukemia), colon and breast datasets. We used 10-fold cross-validation to achieve accuracy and also decision tree algorithm to find the relation between the biomarkers for biological point of view. To test the ability of the trained ANN models to categorize the cancers, we analyzed additional blinded samples that were not previously used for the training procedure. Experimental results show that the proposed method can reduce the dimension of the data set and confirm the most informative gene subset and improve classification accuracy with best parameters based on datasets.

  20. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-02-01

    Full Text Available Due to their special environment, Underwater Wireless Sensor Networks (UWSNs are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object’s mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  1. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms.

    Science.gov (United States)

    Zhang, Ying; Liang, Jixing; Jiang, Shengming; Chen, Wei

    2016-02-06

    Due to their special environment, Underwater Wireless Sensor Networks (UWSNs) are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO) is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object's mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  2. PARALLEL ALGORITHM FOR BAYESIAN NETWORK STRUCTURE LEARNING

    Directory of Open Access Journals (Sweden)

    S. A. Arustamov

    2013-03-01

    Full Text Available The article deals with implementation of a scalable parallel algorithm for structure learning of Bayesian network. Comparative analysis of sequential and parallel algorithms is done.

  3. Diffusion Adaptation Over Clustered Multitask Networks Based on the Affine Projection Algorithm

    OpenAIRE

    Gogineni, Vinay Chakravarthi; Chakraborty, Mrityunjoy

    2015-01-01

    Distributed adaptive networks achieve better estimation performance by exploiting temporal and as well spatial diversity while consuming few resources. Recent works have studied the single task distributed estimation problem, in which the nodes estimate a single optimum parameter vector collaboratively. However, there are many important applications where the multiple vectors have to estimated simultaneously, in a collaborative manner. This paper presents multi-task diffusion strategies based...

  4. Learning Bayesian network structure using a cloud-based adaptive immune genetic algorithm

    Science.gov (United States)

    Song, Qin; Lin, Feng; Sun, Wei; Chang, KC

    2011-06-01

    A new BN structure learning method using a cloud-based adaptive immune genetic algorithm (CAIGA) is proposed. Since the probabilities of crossover and mutation in CAIGA are adaptively varied depending on X-conditional cloud generator, it could improve the diversity of the structure population and avoid local optimum. This is due to the stochastic nature and stable tendency of the cloud model. Moreover, offspring structure population is simplified by using immune theory to reduce its computational complexity. The experiment results reveal that this method can be effectively used for BN structure learning.

  5. Feature Selection and Classification of Electroencephalographic Signals: An Artificial Neural Network and Genetic Algorithm Based Approach.

    Science.gov (United States)

    Erguzel, Turker Tekin; Ozekes, Serhat; Tan, Oguz; Gultekin, Selahattin

    2015-10-01

    Feature selection is an important step in many pattern recognition systems aiming to overcome the so-called curse of dimensionality. In this study, an optimized classification method was tested in 147 patients with major depressive disorder (MDD) treated with repetitive transcranial magnetic stimulation (rTMS). The performance of the combination of a genetic algorithm (GA) and a back-propagation (BP) neural network (BPNN) was evaluated using 6-channel pre-rTMS electroencephalographic (EEG) patterns of theta and delta frequency bands. The GA was first used to eliminate the redundant and less discriminant features to maximize classification performance. The BPNN was then applied to test the performance of the feature subset. Finally, classification performance using the subset was evaluated using 6-fold cross-validation. Although the slow bands of the frontal electrodes are widely used to collect EEG data for patients with MDD and provide quite satisfactory classification results, the outcomes of the proposed approach indicate noticeably increased overall accuracy of 89.12% and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.904 using the reduced feature set. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  6. [Medium optimization for mycelia production of Antrodia camphorata based on artificial neural network-genetic algorithm].

    Science.gov (United States)

    Lu, Zhenming; He, Zhe; Xu, Hongyu; Shi, Jinsong; Xu, Zhenghong

    2011-12-01

    To illustrate the complex fermentation process of submerged culture of Antrodia camphorata ATCC 200183, we observed the morphology change of this filamentous fungus. Then we used two optimization models namely response surface methodology (RSM) and artificial neural network (ANN) to model the fermentation process of Antrodia camphorata. By genetic algorithm (GA), we optimized the inoculum size and medium components for Antrodia camphorata production. The results show that fitness and prediction accuracy of ANN model was higher when compared to those of RSM model. Using GA, we optimized the input space of ANN model, and obtained maximum biomass of 6.2 g/L at the GA-optimized concentrations of spore (1.76x 10(5) /mL) and medium components (glucose, 29.1 g/L; peptone, 9.3 g/L; and soybean flour, 2.8 g/L). The biomass obtained using the ANN-GA designed medium was (6.1+/-0.2) g/L which was in good agreement with the predicted value. The same optimization process may be used to improve the production of mycelia and bioactive metabolites from potent medicinal fungi by changing the fermentation parameters.

  7. Capacitance Estimation for DC-link Capacitors in a Back-to-Back Converter Based on Artificial Neural Network Algorithm

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    of the aforementioned challenges and shortcomings. In this paper, a pure software condition monitoring method based on Artificial Neural Network (ANN) algorithm is proposed. The implemented ANN estimates the capacitance of the dc-link capacitor in a back-to-back converter. The error analysis of the estimated results......The reliability of dc-link capacitors in power electronic converters is one of the critical aspects to be considered in modern power converter design. The observation of their ageing process and the estimation of their health status have been an attractive subject for the industrial field and hence...

  8. Applying network analysis and Nebula (neighbor-edges based and unbiased leverage algorithm) to ToxCast data.

    Science.gov (United States)

    Ye, Hao; Luo, Heng; Ng, Hui Wen; Meehan, Joe; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2016-01-01

    ToxCast data have been used to develop models for predicting in vivo toxicity. To predict the in vivo toxicity of a new chemical using a ToxCast data based model, its ToxCast bioactivity data are needed but not normally available. The capability of predicting ToxCast bioactivity data is necessary to fully utilize ToxCast data in the risk assessment of chemicals. We aimed to understand and elucidate the relationships between the chemicals and bioactivity data of the assays in ToxCast and to develop a network analysis based method for predicting ToxCast bioactivity data. We conducted modularity analysis on a quantitative network constructed from ToxCast data to explore the relationships between the assays and chemicals. We further developed Nebula (neighbor-edges based and unbiased leverage algorithm) for predicting ToxCast bioactivity data. Modularity analysis on the network constructed from ToxCast data yielded seven modules. Assays and chemicals in the seven modules were distinct. Leave-one-out cross-validation yielded a Q(2) of 0.5416, indicating ToxCast bioactivity data can be predicted by Nebula. Prediction domain analysis showed some types of ToxCast assay data could be more reliably predicted by Nebula than others. Network analysis is a promising approach to understand ToxCast data. Nebula is an effective algorithm for predicting ToxCast bioactivity data, helping fully utilize ToxCast data in the risk assessment of chemicals. Published by Elsevier Ltd.

  9. A Real-time Spectrum Handoff Algorithm for VoIP based Cognitive Radio Networks: Design and Performance Analysis

    Science.gov (United States)

    Chakraborty, Tamal; Saha Misra, Iti

    2016-03-01

    Secondary Users (SUs) in a Cognitive Radio Network (CRN) face unpredictable interruptions in transmission due to the random arrival of Primary Users (PUs), leading to spectrum handoff or dropping instances. An efficient spectrum handoff algorithm, thus, becomes one of the indispensable components in CRN, especially for real-time communication like Voice over IP (VoIP). In this regard, this paper investigates the effects of spectrum handoff on the Quality of Service (QoS) for VoIP traffic in CRN, and proposes a real-time spectrum handoff algorithm in two phases. The first phase (VAST-VoIP based Adaptive Sensing and Transmission) adaptively varies the channel sensing and transmission durations to perform intelligent dropping decisions. The second phase (ProReact-Proactive and Reactive Handoff) deploys efficient channel selection mechanisms during spectrum handoff for resuming communication. Extensive performance analysis in analytical and simulation models confirms a decrease in spectrum handoff delay for VoIP SUs by more than 40% and 60%, compared to existing proactive and reactive algorithms, respectively and ensures a minimum 10% reduction in call-dropping probability with respect to the previous works in this domain. The effective SU transmission duration is also maximized under the proposed algorithm, thereby making it suitable for successful VoIP communication.

  10. Base station selection for energy efficient network operation with the majorization-minimization algorithm

    CERN Document Server

    Pollakis, Emmanuel; Stańczak, Slawomir

    2012-01-01

    In this paper, we study the problem of reducing the energy consumption in a mobile communication network; we select the smallest set of active base stations that can preserve the quality of service (the minimum data rate) required by the users. In more detail, we start by posing this problem as an integer programming problem, the solution of which shows the optimal assignment (in the sense of minimizing the total energy consumption) between base stations and users. In particular, this solution shows which base stations can then be switched off or put in idle mode to save energy. However, solving this problem optimally is intractable in general, so in this study we develop a suboptimal approach that builds upon recent techniques that have been successfully applied to, among other problems, sparse signal reconstruction, portfolio optimization, statistical estimation, and error correction. More precisely, we relax the original integer programming problem as a minimization problem where the objective function is ...

  11. Comprehensive preference optimization of an irreversible thermal engine using pareto based mutable smart bee algorithm and generalized regression neural network

    DEFF Research Database (Denmark)

    Mozaffari, Ahmad; Gorji-Bandpy, Mofid; Samadian, Pendar

    2013-01-01

    and stochastic algorithms were proposed to facilitate controlling of the engineering systems. In this study, an extended version of mutable smart bee algorithm (MSBA) called Pareto based mutable smart bee (PBMSB) is inspired to cope with multi-objective problems. Besides, a set of benchmark problems and four...... well-known Pareto based optimizing algorithms i.e. multi-objective bee algorithm (MOBA), multi-objective particle swarm optimization (MOPSO) algorithm, non-dominated sorting genetic algorithm (NSGA-II), and strength Pareto evolutionary algorithm (SPEA 2) are utilized to confirm the acceptable...

  12. Discrimination of liver cancer in cellular level based on backscatter micro-spectrum with PCA algorithm and BP neural network

    Science.gov (United States)

    Yang, Jing; Wang, Cheng; Cai, Gan; Dong, Xiaona

    2016-10-01

    The incidence and mortality rate of the primary liver cancer are very high and its postoperative metastasis and recurrence have become important factors to the prognosis of patients. Circulating tumor cells (CTC), as a new tumor marker, play important roles in the early diagnosis and individualized treatment. This paper presents an effective method to distinguish liver cancer based on the cellular scattering spectrum, which is a non-fluorescence technique based on the fiber confocal microscopic spectrometer. Combining the principal component analysis (PCA) with back propagation (BP) neural network were utilized to establish an automatic recognition model for backscatter spectrum of the liver cancer cells from blood cell. PCA was applied to reduce the dimension of the scattering spectral data which obtained by the fiber confocal microscopic spectrometer. After dimensionality reduction by PCA, a neural network pattern recognition model with 2 input layer nodes, 11 hidden layer nodes, 3 output nodes was established. We trained the network with 66 samples and also tested it. Results showed that the recognition rate of the three types of cells is more than 90%, the relative standard deviation is only 2.36%. The experimental results showed that the fiber confocal microscopic spectrometer combining with the algorithm of PCA and BP neural network can automatically identify the liver cancer cell from the blood cells. This will provide a better tool for investigating the metastasis of liver cancers in vivo, the biology metabolic characteristics of liver cancers and drug transportation. Additionally, it is obviously referential in practical application.

  13. Multi-objective optimization of pulsatile ventricular assist device hemocompatibility based on neural networks and a genetic algorithm.

    Science.gov (United States)

    Xu, Zihao; Yang, Ming; Wang, Xianghui; Wang, Zhong

    2015-08-04

    Given the benefit of pulsatile blood flow for perfusion of coronary arteries and end organs, pulsatile ventricular assist devices (VADs) are still widely used as paracorporeal mechanical circulatory support devices in clinical applications. However, poor hemocompatibility limits the service period of the VADs. Most previous improvements on VAD hemocompatibility were conducted by trial-and-error CFD analysis, which does not easily arrive at the best solution. In this paper, a multi-objective optimization method integrating neural networks and NSGA-II (Non-dominated Sorted Genetic Algorithm-II) based on FSI simulation was developed and applied to a pulsatile VAD to optimize its hemocompatibility. First, the VAD blood chamber was parameterized with the principal geometrical parameters. Three hemocompatibility indices including hemolysis, platelet activation, and platelet deposition were chosen as goal functions. The neural networks were built to fit the nonlinear relationship between goal functions and geometrical parameters. Next, a multi-objective optimization algorithm (NSGA-II) was used to search out the Pareto optimal solutions in the built neural networks. Finally, the best compromise solution was selected from the Pareto optimal solutions by a fuzzy membership approach and validated by FSI simulation. The best compromise solution simultaneously possesses an acceptable hemolysis index, platelet activation index, and platelet deposition index, and the corresponding relative errors between the indices predicted by optimization algorithm and the one calculated by FSI simulations are all less than 5%. The results suggest that the proposed multi-objective optimization method has the potential for application in optimizing pulsatile VAD hemocompatibility, and may also be applied to other blood-wetted devices.

  14. SA-SOM algorithm for detecting communities in complex networks

    Science.gov (United States)

    Chen, Luogeng; Wang, Yanran; Huang, Xiaoming; Hu, Mengyu; Hu, Fang

    2017-10-01

    Currently, community detection is a hot topic. This paper, based on the self-organizing map (SOM) algorithm, introduced the idea of self-adaptation (SA) that the number of communities can be identified automatically, a novel algorithm SA-SOM of detecting communities in complex networks is proposed. Several representative real-world networks and a set of computer-generated networks by LFR-benchmark are utilized to verify the accuracy and the efficiency of this algorithm. The experimental findings demonstrate that this algorithm can identify the communities automatically, accurately and efficiently. Furthermore, this algorithm can also acquire higher values of modularity, NMI and density than the SOM algorithm does.

  15. A Real-Time Smooth Weighted Data Fusion Algorithm for Greenhouse Sensing Based on Wireless Sensor Networks.

    Science.gov (United States)

    Zou, Tengyue; Wang, Yuanxia; Wang, Mengyi; Lin, Shouying

    2017-11-06

    Wireless sensor networks are widely used to acquire environmental parameters to support agricultural production. However, data variation and noise caused by actuators often produce complex measurement conditions. These factors can lead to nonconformity in reporting samples from different nodes and cause errors when making a final decision. Data fusion is well suited to reduce the influence of actuator-based noise and improve automation accuracy. A key step is to identify the sensor nodes disturbed by actuator noise and reduce their degree of participation in the data fusion results. A smoothing value is introduced and a searching method based on Prim's algorithm is designed to help obtain stable sensing data. A voting mechanism with dynamic weights is then proposed to obtain the data fusion result. The dynamic weighting process can sharply reduce the influence of actuator noise in data fusion and gradually condition the data to normal levels over time. To shorten the data fusion time in large networks, an acceleration method with prediction is also presented to reduce the data collection time. A real-time system is implemented on STMicroelectronics STM32F103 and NORDIC nRF24L01 platforms and the experimental results verify the improvement provided by these new algorithms.

  16. Support vector machine based training of multilayer feedforward neural networks as optimized by particle swarm algorithm: application in QSAR studies of bioactivity of organic compounds.

    Science.gov (United States)

    Lin, Wei-Qi; Jiang, Jian-Hui; Zhou, Yan-Ping; Wu, Hai-Long; Shen, Guo-Li; Yu, Ru-Qin

    2007-01-30

    Multilayer feedforward neural networks (MLFNNs) are important modeling techniques widely used in QSAR studies for their ability to represent nonlinear relationships between descriptors and activity. However, the problems of overfitting and premature convergence to local optima still pose great challenges in the practice of MLFNNs. To circumvent these problems, a support vector machine (SVM) based training algorithm for MLFNNs has been developed with the incorporation of particle swarm optimization (PSO). The introduction of the SVM based training mechanism imparts the developed algorithm with inherent capacity for combating the overfitting problem. Moreover, with the implementation of PSO for searching the optimal network weights, the SVM based learning algorithm shows relatively high efficiency in converging to the optima. The proposed algorithm has been evaluated using the Hansch data set. Application to QSAR studies of the activity of COX-2 inhibitors is also demonstrated. The results reveal that this technique provides superior performance to backpropagation (BP) and PSO training neural networks.

  17. Analysis of Stiffened Penstock External Pressure Stability Based on Immune Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    Wensheng Dong

    2014-01-01

    Full Text Available The critical external pressure stability calculation of stiffened penstock in the hydroelectric power station is very important work for penstock design. At present, different assumptions and boundary simplification are adopted by different calculation methods which sometimes cause huge differences too. In this paper, we present an immune based artificial neural network model via the model and stability theory of elastic ring, we study effects of some factors (such as pipe diameter, pipe wall thickness, sectional size of stiffening ring, and spacing between stiffening rings on penstock critical external pressure during huge thin-wall procedure of penstock. The results reveal that the variation of diameter and wall thickness can lead to sharp variation of penstock external pressure bearing capacity and then give the change interval of it. This paper presents an optimizing design method to optimize sectional size and spacing of stiffening rings and to determine penstock bearing capacity coordinate with the bearing capacity of stiffening rings and penstock external pressure stability coordinate with its strength safety. As a practical example, the simulation results illustrate that the method presented in this paper is available and can efficiently overcome inherent defects of BP neural network.

  18. A new and accurate fault location algorithm for combined transmission lines using Adaptive Network-Based Fuzzy Inference System

    Energy Technology Data Exchange (ETDEWEB)

    Sadeh, Javad; Afradi, Hamid [Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box: 91775-1111, Mashhad (Iran)

    2009-11-15

    This paper presents a new and accurate algorithm for locating faults in a combined overhead transmission line with underground power cable using Adaptive Network-Based Fuzzy Inference System (ANFIS). The proposed method uses 10 ANFIS networks and consists of 3 stages, including fault type classification, faulty section detection and exact fault location. In the first part, an ANFIS is used to determine the fault type, applying four inputs, i.e., fundamental component of three phase currents and zero sequence current. Another ANFIS network is used to detect the faulty section, whether the fault is on the overhead line or on the underground cable. Other eight ANFIS networks are utilized to pinpoint the faults (two for each fault type). Four inputs, i.e., the dc component of the current, fundamental frequency of the voltage and current and the angle between them, are used to train the neuro-fuzzy inference systems in order to accurately locate the faults on each part of the combined line. The proposed method is evaluated under different fault conditions such as different fault locations, different fault inception angles and different fault resistances. Simulation results confirm that the proposed method can be used as an efficient means for accurate fault location on the combined transmission lines. (author)

  19. A Hybrid Water Distribution Networks Design Optimization Method Based on a Search Space Reduction Approach and a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Juan Reca

    2017-11-01

    Full Text Available This work presents a new approach to increase the efficiency of the heuristics methods applied to the optimal design of water distribution systems. The approach is based on reducing the search space by bounding the diameters that can be used for every network pipe. To reduce the search space, two opposite extreme flow distribution scenarios are analyzed and velocity restrictions to the pipe flow are then applied. The first scenario produces the most uniform flow distribution in the network. The opposite scenario is represented by the network with the maximum flow accumulation. Both extreme flow distributions are calculated by solving a quadratic programming problem, which is a very robust and efficient procedure. This approach has been coupled to a Genetic Algorithm (GA. The GA has an integer coding scheme and variable number of alleles depending on the number of diameters comprised within the velocity restrictions. The methodology has been applied to several benchmark networks and its performance has been compared to a classic GA formulation with a non-bounded search space. It considerably reduced the search space and provided a much faster and more accurate convergence than the GA formulation. This approach can also be coupled to other metaheuristics.

  20. Design of Randomly Deployed Heterogeneous Wireless Sensor Networks by Algorithms Based on Swarm Intelligence

    OpenAIRE

    Joon-Woo Lee; Won Kim

    2015-01-01

    This paper reports the design of a randomly deployed heterogeneous wireless sensor network (HWSN) with two types of nodes: a powerful node and an ordinary node. Powerful nodes, such as Cluster Heads (CHs), communicate directly to the data sink of the network, and ordinary nodes sense the desired information and transmit the processed data to powerful nodes. The heterogeneity of HWSNs improves the networks lifetime and coverage. This paper focuses on the design of a random network among HWSNs....

  1. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.

    Science.gov (United States)

    Cao, Buwen; Luo, Jiawei; Liang, Cheng; Wang, Shulin; Song, Dan

    2015-10-01

    The identification of protein complexes in protein-protein interaction (PPI) networks has greatly advanced our understanding of biological organisms. Existing computational methods to detect protein complexes are usually based on specific network topological properties of PPI networks. However, due to the inherent complexity of the network structures, the identification of protein complexes may not be fully addressed by using single network topological property. In this study, we propose a novel MultiObjective Evolutionary Programming Genetic Algorithm (MOEPGA) which integrates multiple network topological features to detect biologically meaningful protein complexes. Our approach first systematically analyzes the multiobjective problem in terms of identifying protein complexes from PPI networks, and then constructs the objective function of the iterative algorithm based on three common topological properties of protein complexes from the benchmark dataset, finally we describe our algorithm, which mainly consists of three steps, population initialization, subgraph mutation and subgraph selection operation. To show the utility of our method, we compared MOEPGA with several state-of-the-art algorithms on two yeast PPI datasets. The experiment results demonstrate that the proposed method can not only find more protein complexes but also achieve higher accuracy in terms of fscore. Moreover, our approach can cover a certain number of proteins in the input PPI network in terms of the normalized clustering score. Taken together, our method can serve as a powerful framework to detect protein complexes in yeast PPI networks, thereby facilitating the identification of the underlying biological functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Routing algorithms in networks-on-chip

    CERN Document Server

    Daneshtalab, Masoud

    2014-01-01

    This book provides a single-source reference to routing algorithms for Networks-on-Chip (NoCs), as well as in-depth discussions of advanced solutions applied to current and next generation, many core NoC-based Systems-on-Chip (SoCs). After a basic introduction to the NoC design paradigm and architectures, routing algorithms for NoC architectures are presented and discussed at all abstraction levels, from the algorithmic level to actual implementation.  Coverage emphasizes the role played by the routing algorithm and is organized around key problems affecting current and next generation, many-core SoCs. A selection of routing algorithms is included, specifically designed to address key issues faced by designers in the ultra-deep sub-micron (UDSM) era, including performance improvement, power, energy, and thermal issues, fault tolerance and reliability.   ·         Provides a comprehensive overview of routing algorithms for Networks-on-Chip and NoC-based, manycore systems; ·         Describe...

  3. CoCMA: Energy-Efficient Coverage Control in Cluster-Based Wireless Sensor Networks Using a Memetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yung-Chung Wang

    2009-06-01

    Full Text Available Deployment of wireless sensor networks (WSNs has drawn much attention in recent years. Given the limited energy for sensor nodes, it is critical to implement WSNs with energy efficiency designs. Sensing coverage in networks, on the other hand, may degrade gradually over time after WSNs are activated. For mission-critical applications, therefore, energy-efficient coverage control should be taken into consideration to support the quality of service (QoS of WSNs. Usually, coverage-controlling strategies present some challenging problems: (1 resolving the conflicts while determining which nodes should be turned off to conserve energy; (2 designing an optimal wake-up scheme that avoids awakening more nodes than necessary. In this paper, we implement an energy-efficient coverage control in cluster-based WSNs using a Memetic Algorithm (MA-based approach, entitled CoCMA, to resolve the challenging problems. The CoCMA contains two optimization strategies: a MA-based schedule for sensor nodes and a wake-up scheme, which are responsible to prolong the network lifetime while maintaining coverage preservation. The MA-based schedule is applied to a given WSN to avoid unnecessary energy consumption caused by the redundant nodes. During the network operation, the wake-up scheme awakens sleeping sensor nodes to recover coverage hole caused by dead nodes. The performance evaluation of the proposed CoCMA was conducted on a cluster-based WSN (CWSN under either a random or a uniform deployment of sensor nodes. Simulation results show that the performance yielded by the combination of MA and wake-up scheme is better than that in some existing approaches. Furthermore, CoCMA is able to activate fewer sensor nodes to monitor the required sensing area.

  4. CoCMA: Energy-Efficient Coverage Control in Cluster-Based Wireless Sensor Networks Using a Memetic Algorithm.

    Science.gov (United States)

    Jiang, Joe-Air; Chen, Chia-Pang; Chuang, Cheng-Long; Lin, Tzu-Shiang; Tseng, Chwan-Lu; Yang, En-Cheng; Wang, Yung-Chung

    2009-01-01

    Deployment of wireless sensor networks (WSNs) has drawn much attention in recent years. Given the limited energy for sensor nodes, it is critical to implement WSNs with energy efficiency designs. Sensing coverage in networks, on the other hand, may degrade gradually over time after WSNs are activated. For mission-critical applications, therefore, energy-efficient coverage control should be taken into consideration to support the quality of service (QoS) of WSNs. Usually, coverage-controlling strategies present some challenging problems: (1) resolving the conflicts while determining which nodes should be turned off to conserve energy; (2) designing an optimal wake-up scheme that avoids awakening more nodes than necessary. In this paper, we implement an energy-efficient coverage control in cluster-based WSNs using a Memetic Algorithm (MA)-based approach, entitled CoCMA, to resolve the challenging problems. The CoCMA contains two optimization strategies: a MA-based schedule for sensor nodes and a wake-up scheme, which are responsible to prolong the network lifetime while maintaining coverage preservation. The MA-based schedule is applied to a given WSN to avoid unnecessary energy consumption caused by the redundant nodes. During the network operation, the wake-up scheme awakens sleeping sensor nodes to recover coverage hole caused by dead nodes. The performance evaluation of the proposed CoCMA was conducted on a cluster-based WSN (CWSN) under either a random or a uniform deployment of sensor nodes. Simulation results show that the performance yielded by the combination of MA and wake-up scheme is better than that in some existing approaches. Furthermore, CoCMA is able to activate fewer sensor nodes to monitor the required sensing area.

  5. Breadth-first search-based single-phase algorithms for bridge detection in wireless sensor networks.

    Science.gov (United States)

    Akram, Vahid Khalilpour; Dagdeviren, Orhan

    2013-07-10

    Wireless sensor networks (WSNs) are promising technologies for exploring harsh environments, such as oceans, wild forests, volcanic regions and outer space. Since sensor nodes may have limited transmission range, application packets may be transmitted by multi-hop communication. Thus, connectivity is a very important issue. A bridge is a critical edge whose removal breaks the connectivity of the network. Hence, it is crucial to detect bridges and take preventions. Since sensor nodes are battery-powered, services running on nodes should consume low energy. In this paper, we propose energy-efficient and distributed bridge detection algorithms for WSNs. Our algorithms run single phase and they are integrated with the Breadth-First Search (BFS) algorithm, which is a popular routing algorithm. Our first algorithm is an extended version of Milic's algorithm, which is designed to reduce the message length. Our second algorithm is novel and uses ancestral knowledge to detect bridges. We explain the operation of the algorithms, analyze their proof of correctness, message, time, space and computational complexities. To evaluate practical importance, we provide testbed experiments and extensive simulations. We show that our proposed algorithms provide less resource consumption, and the energy savings of our algorithms are up by 5.5-times.

  6. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    Directory of Open Access Journals (Sweden)

    Lund Ole

    2009-09-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC molecule plays a central role in controlling the adaptive immune response to infections. MHC class I molecules present peptides derived from intracellular proteins to cytotoxic T cells, whereas MHC class II molecules stimulate cellular and humoral immunity through presentation of extracellularly derived peptides to helper T cells. Identification of which peptides will bind a given MHC molecule is thus of great importance for the understanding of host-pathogen interactions, and large efforts have been placed in developing algorithms capable of predicting this binding event. Results Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data due to redundant binding core representation. Incorporation of information about the residues flanking the peptide-binding core is shown to significantly improve the prediction accuracy. The method is evaluated on a large-scale benchmark consisting of six independent data sets covering 14 human MHC class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. Conclusion The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http://www.cbs.dtu.dk/services/NetMHCII-2.0.

  7. Optimal Allocation of Generalized Power Sources in Distribution Network Based on Multi-Objective Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Li Ran

    2017-01-01

    Full Text Available Optimal allocation of generalized power sources in distribution network is researched. A simple index of voltage stability is put forward. Considering the investment and operation benefit, the stability of voltage and the pollution emissions of generalized power sources in distribution network, a multi-objective optimization planning model is established. A multi-objective particle swarm optimization algorithm is proposed to solve the optimal model. In order to improve the global search ability, the strategies of fast non-dominated sorting, elitism and crowding distance are adopted in this algorithm. Finally, tested the model and algorithm by IEEE-33 node system to find the best configuration of GP, the computed result shows that with the generalized power reasonable access to the active distribution network, the investment benefit and the voltage stability of the system is improved, and the proposed algorithm has better global search capability.

  8. A Neural-Network Clustering-Based Algorithm for Privacy Preserving Data Mining

    Science.gov (United States)

    Tsiafoulis, S.; Zorkadis, V. C.; Karras, D. A.

    The increasing use of fast and efficient data mining algorithms in huge collections of personal data, facilitated through the exponential growth of technology, in particular in the field of electronic data storage media and processing power, has raised serious ethical, philosophical and legal issues related to privacy protection. To cope with these concerns, several privacy preserving methodologies have been proposed, classified in two categories, methodologies that aim at protecting the sensitive data and those that aim at protecting the mining results. In our work, we focus on sensitive data protection and compare existing techniques according to their anonymity degree achieved, the information loss suffered and their performance characteristics. The ℓ-diversity principle is combined with k-anonymity concepts, so that background information can not be exploited to successfully attack the privacy of data subjects data refer to. Based on Kohonen Self Organizing Feature Maps (SOMs), we firstly organize data sets in subspaces according to their information theoretical distance to each other, then create the most relevant classes paying special attention to rare sensitive attribute values, and finally generalize attribute values to the minimum extend required so that both the data disclosure probability and the information loss are possibly kept negligible. Furthermore, we propose information theoretical measures for assessing the anonymity degree achieved and empirical tests to demonstrate it.

  9. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm.

    Science.gov (United States)

    Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-12-08

    We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.

  10. Golden Ratio Genetic Algorithm Based Approach for Modelling and Analysis of the Capacity Expansion of Urban Road Traffic Network

    Directory of Open Access Journals (Sweden)

    Lun Zhang

    2015-01-01

    Full Text Available This paper presents the modelling and analysis of the capacity expansion of urban road traffic network (ICURTN. Thebilevel programming model is first employed to model the ICURTN, in which the utility of the entire network is maximized with the optimal utility of travelers’ route choice. Then, an improved hybrid genetic algorithm integrated with golden ratio (HGAGR is developed to enhance the local search of simple genetic algorithms, and the proposed capacity expansion model is solved by the combination of the HGAGR and the Frank-Wolfe algorithm. Taking the traditional one-way network and bidirectional network as the study case, three numerical calculations are conducted to validate the presented model and algorithm, and the primary influencing factors on extended capacity model are analyzed. The calculation results indicate that capacity expansion of road network is an effective measure to enlarge the capacity of urban road network, especially on the condition of limited construction budget; the average computation time of the HGAGR is 122 seconds, which meets the real-time demand in the evaluation of the road network capacity.

  11. Model-Based Hookload Monitoring and Prediction at Drilling Rigs using Neural Networks and Forward-Selection Algorithm

    Science.gov (United States)

    Arnaout, A.; Fruhwirth, R.; Winter, M.; Esmael, B.; Thonhauser, G.

    2012-04-01

    The use of neural networks and advanced machine learning techniques in the oil & gas industry is a growing trend in the market. Especially in drilling oil & gas wells, prediction and monitoring different drilling parameters is an essential task to prevent serious problems like "Kick", "Lost Circulation" or "Stuck Pipe" among others. The hookload represents the weight load of the drill string at the crane hook. It is one of the most important parameters. During drilling the parameter "Weight on Bit" is controlled by the driller whereby the hookload is the only measure to monitor how much weight on bit is applied to the bit to generate the hole. Any changes in weight on bit will be directly reflected at the hookload. Furthermore any unwanted contact between the drill string and the wellbore - potentially leading to stuck pipe problem - will appear directly in the measurements of the hookload. Therefore comparison of the measured to the predicted hookload will not only give a clear idea on what is happening down-hole, it also enables the prediction of a number of important events that may cause problems in the borehole and yield in some - fortunately rare - cases in catastrophes like blow-outs. Heuristic models using highly sophisticated neural networks were designed for the hookload prediction; the training data sets were prepared in cooperation with drilling experts. Sensor measurements as well as a set of derived feature channels were used as input to the models. The contents of the final data set can be separated into (1) features based on rig operation states, (2) real-time sensors features and (3) features based on physics. A combination of novel neural network architecture - the Completely Connected Perceptron and parallel learning techniques which avoid trapping into local error minima - was used for building the models. In addition automatic network growing algorithms and highly sophisticated stopping criterions offer robust and efficient estimation of the

  12. Energy optimization based path selection algorithm for IEEE 802.11s wireless mesh networks

    CSIR Research Space (South Africa)

    Mhlanga, MM

    2011-09-01

    Full Text Available It is everyone’s dream to have network connectivity anywhere at all times. This dream can only be realized provided there are feasible solutions that are put in place for the next generation of wireless works. Wireless Mesh Networks (WMNs...

  13. A Power Planning Algorithm Based on RPL for AMI Wireless Sensor Networks.

    Science.gov (United States)

    Miguel, Marcio L F; Jamhour, Edgard; Pellenz, Marcelo E; Penna, Manoel C

    2017-03-25

    The advanced metering infrastructure (AMI) is an architecture for two-way communication between electric, gas and water meters and city utilities. The AMI network is a wireless sensor network that provides communication for metering devices in the neighborhood area of the smart grid. Recently, the applicability of a routing protocol for low-power and lossy networks (RPL) has been considered in AMI networks. Some studies in the literature have pointed out problems with RPL, including sub-optimal path selection and instability. In this paper, we defend the viewpoint that careful planning of the transmission power in wireless RPL networks can significantly reduce the pointed problems. This paper presents a method for planning the transmission power in order to assure that, after convergence, the size of the parent set of the RPL nodes is as close as possible to a predefined size. Another important feature is that all nodes in the parent set offer connectivity through links of similar quality.

  14. A contention-based efficient-information perception algorithm (CEiPA) for vehicular ad hoc networks

    Institute of Scientific and Technical Information of China (English)

    Chen Lijia; Jiang Hao; Yan Puliu

    2009-01-01

    The problem of information dissemination is researched for vehicular ad-hoc networks (VANET) in this paper, and a contention-based efficient-information perception algorithm (CEiPA) is proposed. The idea of CEiPA is that beacons are delivered over VANET with limited lifetime and efficient information. CEiPA consists of two phases. The first one is initialization phase, during which the count timers Tcycle and Tlocal are set to start beacon delivery while Tcycle is also used to monitor and restart beaconing. The second one is beacon delivery phase. An elaborate distance function is employed to set contention delay for beacons of each vehicle. In this way beacons will be sent in order, which decreases the collision of beacons. Simulation results show that CEiPA enables each beacon to carry more efficient information and spread them over more vehicles with lower network overhead than the periodic beacon scheme. CEiPA is also flexible and scalable because the efficient information threshold it employs is a balance among the freshness of information, network overhead and perception area of a vehicle.

  15. Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods

    Science.gov (United States)

    Ma, Xiaoke; Wang, Bingbo; Yu, Liang

    2018-01-01

    Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.

  16. A Comparative Analysis of Community Detection Algorithms on Artificial Networks.

    Science.gov (United States)

    Yang, Zhao; Algesheimer, René; Tessone, Claudio J

    2016-08-01

    Many community detection algorithms have been developed to uncover the mesoscopic properties of complex networks. However how good an algorithm is, in terms of accuracy and computing time, remains still open. Testing algorithms on real-world network has certain restrictions which made their insights potentially biased: the networks are usually small, and the underlying communities are not defined objectively. In this study, we employ the Lancichinetti-Fortunato-Radicchi benchmark graph to test eight state-of-the-art algorithms. We quantify the accuracy using complementary measures and algorithms' computing time. Based on simple network properties and the aforementioned results, we provide guidelines that help to choose the most adequate community detection algorithm for a given network. Moreover, these rules allow uncovering limitations in the use of specific algorithms given macroscopic network properties. Our contribution is threefold: firstly, we provide actual techniques to determine which is the most suited algorithm in most circumstances based on observable properties of the network under consideration. Secondly, we use the mixing parameter as an easily measurable indicator of finding the ranges of reliability of the different algorithms. Finally, we study the dependency with network size focusing on both the algorithm's predicting power and the effective computing time.

  17. A method for classification of network traffic based on C5.0 Machine Learning Algorithm

    DEFF Research Database (Denmark)

    Bujlow, Tomasz; Riaz, M. Tahir; Pedersen, Jens Myrup

    2012-01-01

    and classification, an algorithm for recognizing flow direction and the C5.0 itself. Classified applications include Skype, FTP, torrent, web browser traffic, web radio, interactive gaming and SSH. We performed subsequent tries using different sets of parameters and both training and classification options...

  18. A sub-clustering algorithm based on spatial data correlation for energy conservation in wireless sensor networks.

    Science.gov (United States)

    Tsai, Ming-Hui; Huang, Yueh-Min

    2014-11-18

    Wireless sensor networks (WSNs) have emerged as a promising solution for various applications due to their low cost and easy deployment. Typically, their limited power capability, i.e., battery powered, make WSNs encounter the challenge of extension of network lifetime. Many hierarchical protocols show better ability of energy efficiency in the literature. Besides, data reduction based on the correlation of sensed readings can efficiently reduce the amount of required transmissions. Therefore, we use a sub-clustering procedure based on spatial data correlation to further separate the hierarchical (clustered) architecture of a WSN. The proposed algorithm (2TC-cor) is composed of two procedures: the prediction model construction procedure and the sub-clustering procedure. The energy conservation benefits by the reduced transmissions, which are dependent on the prediction model. Also, the energy can be further conserved because of the representative mechanism of sub-clustering. As presented by simulation results, it shows that 2TC-cor can effectively conserve energy and monitor accurately the environment within an acceptable level.

  19. Measurement correction method for force sensor used in dynamic pressure calibration based on artificial neural network optimized by genetic algorithm

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2017-12-01

    We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.

  20. Optimization of Indoor Thermal Comfort Parameters with the Adaptive Network-Based Fuzzy Inference System and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-01-01

    Full Text Available The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS model and improved particle swarm optimization (PSO algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output “metamodels” for the subsequent optimization. With the improved PSO algorithm and the stratified sequence method, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.

  1. Study of Vivaldi Algorithm in Energy Constraint Networks

    Directory of Open Access Journals (Sweden)

    Tomas Handl

    2011-01-01

    Full Text Available The presented paper discusses a viability of Vivaldi localization algorithm and synthetic coordinate system in general to be used for localization purposes in energy constraint networks. Synthetic coordinate systems achieve good results in IP based networks and thus, it could be a perspective way of node localization in other types of networks. However, transfer of Vivaldi algorithm into a different kind of network is a difficult task because the different basic characteristic of the network and network nodes. In this paper we focus on the different aspects of IP based networks and networks of wireless sensors which suffer from strict energy limitation. During our work we proposed a modified version of two dimensional Vivaldi localization algorithm with height system and developed a simulator tool for initial investigation of its function in ad-hoc energy constraint networks.

  2. Quantitative analysis of cefalexin based on artificial neural networks combined with modified genetic algorithm using short near-infrared spectroscopy.

    Science.gov (United States)

    Huan, Yanfu; Feng, Guodong; Wang, Bin; Ren, Yulin; Fei, Qiang

    2013-05-15

    In this paper, a novel chemometric method was developed for rapid, accurate, and quantitative analysis of cefalexin in samples. The experiments were carried out by using the short near-infrared spectroscopy coupled with artificial neural networks. In order to enhancing the predictive ability of artificial neural networks model, a modified genetic algorithm was used to select fixed number of wavelength. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Strictly convex loss functions for port-Hamiltonian based optimization algorithm for MTDC networks

    NARCIS (Netherlands)

    Benedito, Ernest; del Puerto Flores, Dunstano; Doria-Cerezo, A.; van der Feltz, Olivier; Scherpen, Jacquelien M.A.

    2016-01-01

    In this work we propose a primal-dual method that can be cast in a port-Hamiltonian framework for minimizing the power losses in a multi-terminal DC network. The main contribution consists of proposing an alternative power loss function by means of a change of variables that translates the convex

  4. A relative rate utility based distributed power allocation algorithm for Cognitive Radio Networks

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Øien, G.E.; Lundheim, L.

    2012-01-01

    In an underlay Cognitive Radio Network, multiple secondary users coexist geographically and spectrally with multiple primary users under a constraint on the maximum received interference power at the primary receivers. Given such a setting, one may ask "how to achieve maximum utility benefit...

  5. Distributed precision based localization algorithm for ad-hoc wireless networks

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Evers, L.; van Hoesel, L.F.W.; Octavian, Stefan

    2005-01-01

    The invention relates to method for determining the position of a non-anchor node in an ad-hoc network comprising a number of non-anchor nodes and at least one anchor node having a predetermined location, said method comprising the steps of: determining the distance from a first non-anchor node to a

  6. An Efficient Hierarchy Algorithm for Community Detection in Complex Networks

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2014-01-01

    Full Text Available Community structure is one of the most fundamental and important topology characteristics of complex networks. The research on community structure has wide applications and is very important for analyzing the topology structure, understanding the functions, finding the hidden properties, and forecasting the time-varying of the networks. This paper analyzes some related algorithms and proposes a new algorithm—CN agglomerative algorithm based on graph theory and the local connectedness of network to find communities in network. We show this algorithm is distributed and polynomial; meanwhile the simulations show it is accurate and fine-grained. Furthermore, we modify this algorithm to get one modified CN algorithm and apply it to dynamic complex networks, and the simulations also verify that the modified CN algorithm has high accuracy too.

  7. Scalable Virtual Network Mapping Algorithm for Internet-Scale Networks

    Science.gov (United States)

    Yang, Qiang; Wu, Chunming; Zhang, Min

    The proper allocation of network resources from a common physical substrate to a set of virtual networks (VNs) is one of the key technical challenges of network virtualization. While a variety of state-of-the-art algorithms have been proposed in an attempt to address this issue from different facets, the challenge still remains in the context of large-scale networks as the existing solutions mainly perform in a centralized manner which requires maintaining the overall and up-to-date information of the underlying substrate network. This implies the restricted scalability and computational efficiency when the network scale becomes large. This paper tackles the virtual network mapping problem and proposes a novel hierarchical algorithm in conjunction with a substrate network decomposition approach. By appropriately transforming the underlying substrate network into a collection of sub-networks, the hierarchical virtual network mapping algorithm can be carried out through a global virtual network mapping algorithm (GVNMA) and a local virtual network mapping algorithm (LVNMA) operated in the network central server and within individual sub-networks respectively with their cooperation and coordination as necessary. The proposed algorithm is assessed against the centralized approaches through a set of numerical simulation experiments for a range of network scenarios. The results show that the proposed hierarchical approach can be about 5-20 times faster for VN mapping tasks than conventional centralized approaches with acceptable communication overhead between GVNCA and LVNCA for all examined networks, whilst performs almost as well as the centralized solutions.

  8. Performance Testing of GPU-Based Approximate Matching Algorithm on Network Traffic

    Science.gov (United States)

    2015-03-01

    26  E .  COMPARING REFERENCE SET AND TARGET SET USING THE CPU IMPLEMENTATION OF SDHASH...network either by sending it as an attachment in electronic mail (email), Instant Messenger (IM), posting it on social media sites such as Facebook ... Instagram , Twitter, LinkedIn, etc., or transferring it to cloud storage services such as Google Drive, Microsoft OneDrive, DropBox, Apple iCloud. In

  9. Evolutionary algorithms for mobile ad hoc networks

    CERN Document Server

    Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal

    2014-01-01

    Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...

  10. Algorithms for radio networks with dynamic topology

    Science.gov (United States)

    Shacham, Nachum; Ogier, Richard; Rutenburg, Vladislav V.; Garcia-Luna-Aceves, Jose

    1991-08-01

    The objective of this project was the development of advanced algorithms and protocols that efficiently use network resources to provide optimal or nearly optimal performance in future communication networks with highly dynamic topologies and subject to frequent link failures. As reflected by this report, we have achieved our objective and have significantly advanced the state-of-the-art in this area. The research topics of the papers summarized include the following: efficient distributed algorithms for computing shortest pairs of disjoint paths; minimum-expected-delay alternate routing algorithms for highly dynamic unreliable networks; algorithms for loop-free routing; multipoint communication by hierarchically encoded data; efficient algorithms for extracting the maximum information from event-driven topology updates; methods for the neural network solution of link scheduling and other difficult problems arising in communication networks; and methods for robust routing in networks subject to sophisticated attacks.

  11. Soy sauce classification by geographic region and fermentation based on artificial neural network and genetic algorithm.

    Science.gov (United States)

    Xu, Libin; Li, Yang; Xu, Ning; Hu, Yong; Wang, Chao; He, Jianjun; Cao, Yueze; Chen, Shigui; Li, Dongsheng

    2014-12-24

    This work demonstrated the possibility of using artificial neural networks to classify soy sauce from China. The aroma profiles of different soy sauce samples were differentiated using headspace solid-phase microextraction. The soy sauce samples were analyzed by gas chromatography-mass spectrometry, and 22 and 15 volatile aroma compounds were selected for sensitivity analysis to classify the samples by fermentation and geographic region, respectively. The 15 selected samples can be classified by fermentation and geographic region with a prediction success rate of 100%. Furans and phenols represented the variables with the greatest contribution in classifying soy sauce samples by fermentation and geographic region, respectively.

  12. A New Intrusion Detection System Based on KNN Classification Algorithm in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2014-01-01

    abnormal nodes from normal nodes by observing their abnormal behaviors, and we analyse parameter selection and error rate of the intrusion detection system. The paper elaborates on the design and implementation of the detection system. This system has achieved efficient, rapid intrusion detection by improving the wireless ad hoc on-demand distance vector routing protocol (Ad hoc On-Demand Distance the Vector Routing, AODV. Finally, the test results show that: the system has high detection accuracy and speed, in accordance with the requirement of wireless sensor network intrusion detection.

  13. A network-flow based valve-switching aware binding algorithm for flow-based microfluidic biochips

    DEFF Research Database (Denmark)

    Tseng, Kai-Han; You, Sheng-Chi; Minhass, Wajid Hassan

    2013-01-01

    biochip needs more chip-integrated micro-valves, i.e., the basic unit of fluid-handling functionality, to manipulate the fluid flow for biochemical applications. Moreover, frequent switching of micro-valves results in decreased reliability. To minimize the valve-switching activities, we develop a network......Designs of flow-based microfluidic biochips are receiving much attention recently because they replace conventional biological automation paradigm and are able to integrate different biochemical analysis functions on a chip. However, as the design complexity increases, a flow-based microfluidic...

  14. A Network Selection Algorithm Considering Power Consumption in Hybrid Wireless Networks

    Science.gov (United States)

    Joe, Inwhee; Kim, Won-Tae; Hong, Seokjoon

    In this paper, we propose a novel network selection algorithm considering power consumption in hybrid wireless networks for vertical handover. CDMA, WiBro, WLAN networks are candidate networks for this selection algorithm. This algorithm is composed of the power consumption prediction algorithm and the final network selection algorithm. The power consumption prediction algorithm estimates the expected lifetime of the mobile station based on the current battery level, traffic class and power consumption for each network interface card of the mobile station. If the expected lifetime of the mobile station in a certain network is not long enough compared the handover delay, this particular network will be removed from the candidate network list, thereby preventing unnecessary handovers in the preprocessing procedure. On the other hand, the final network selection algorithm consists of AHP (Analytic Hierarchical Process) and GRA (Grey Relational Analysis). The global factors of the network selection structure are QoS, cost and lifetime. If user preference is lifetime, our selection algorithm selects the network that offers longest service duration due to low power consumption. Also, we conduct some simulations using the OPNET simulation tool. The simulation results show that the proposed algorithm provides longer lifetime in the hybrid wireless network environment.

  15. Cascaded evolutionary algorithm for nonlinear system identification based on correlation functions and radial basis functions neural networks

    Science.gov (United States)

    Ayala, Helon Vicente Hultmann; Coelho, Leandro dos Santos

    2016-02-01

    The present work introduces a procedure for input selection and parameter estimation for system identification based on Radial Basis Functions Neural Networks (RBFNNs) models with an improved objective function based on the residuals and its correlation function coefficients. We show the results when the proposed methodology is applied to model a magnetorheological damper, with real acquired data, and other two well-known benchmarks. The canonical genetic and differential evolution algorithms are used in cascade to decompose the problem of defining the lags taken as the inputs of the model and its related parameters based on the simultaneous minimization of the residuals and higher orders correlation functions. The inner layer of the cascaded approach is composed of a population which represents the lags on the inputs and outputs of the system and an outer layer represents the corresponding parameters of the RBFNN. The approach is able to define both the inputs of the model and its parameters. This is interesting as it frees the designer of manual procedures, which are time consuming and prone to error, usually done to define the model inputs. We compare the proposed methodology with other works found in the literature, showing overall better results for the cascaded approach.

  16. Spectrum Assignment Algorithm for Cognitive Machine-to-Machine Networks

    Directory of Open Access Journals (Sweden)

    Soheil Rostami

    2016-01-01

    Full Text Available A novel aggregation-based spectrum assignment algorithm for Cognitive Machine-To-Machine (CM2M networks is proposed. The introduced algorithm takes practical constraints including interference to the Licensed Users (LUs, co-channel interference (CCI among CM2M devices, and Maximum Aggregation Span (MAS into consideration. Simulation results show clearly that the proposed algorithm outperforms State-Of-The-Art (SOTA algorithms in terms of spectrum utilisation and network capacity. Furthermore, the convergence analysis of the proposed algorithm verifies its high convergence rate.

  17. A Location-Aware Vertical Handoff Algorithm for Hybrid Networks

    KAUST Repository

    Mehbodniya, Abolfazl

    2010-07-01

    One of the main objectives of wireless networking is to provide mobile users with a robust connection to different networks so that they can move freely between heterogeneous networks while running their computing applications with no interruption. Horizontal handoff, or generally speaking handoff, is a process which maintains a mobile user\\'s active connection as it moves within a wireless network, whereas vertical handoff (VHO) refers to handover between different types of networks or different network layers. Optimizing VHO process is an important issue, required to reduce network signalling and mobile device power consumption as well as to improve network quality of service (QoS) and grade of service (GoS). In this paper, a VHO algorithm in multitier (overlay) networks is proposed. This algorithm uses pattern recognition to estimate user\\'s position, and decides on the handoff based on this information. For the pattern recognition algorithm structure, the probabilistic neural network (PNN) which has considerable simplicity and efficiency over existing pattern classifiers is used. Further optimization is proposed to improve the performance of the PNN algorithm. Performance analysis and comparisons with the existing VHO algorithm are provided and demonstrate a significant improvement with the proposed algorithm. Furthermore, incorporating the proposed algorithm, a structure is proposed for VHO from the medium access control (MAC) layer point of view. © 2010 ACADEMY PUBLISHER.

  18. FAST ZEROX ALGORITHM FOR ROUTING IN OPTICAL MULTISTAGE INTERCONNECTION NETWORKS

    Directory of Open Access Journals (Sweden)

    T. D. Shahida

    2010-05-01

    Full Text Available Based on the ZeroX algorithm, a fast and efficient crosstalk-free time- domain algorithm called the Fast ZeroX or shortly FastZ_X algorithm is proposed for solving optical crosstalk problem in optical Omega multistage interconnection networks. A new pre-routing technique called the inverse Conflict Matrix (iCM is also introduced to map all possible conflicts identified between each node in the network as another representation of the standard conflict matrix commonly used in previous Zero-based algorithms. It is shown that using the new iCM, the original ZeroX algorithm is simplified, thus improved the algorithm by reducing the time to complete routing process. Through simulation modeling, the new approach yields the best performance in terms of minimal routing time in comparison to the original ZeroX algorithm as well as previous algorithms tested for comparison in this paper.

  19. Congested Link Inference Algorithms in Dynamic Routing IP Network

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2017-01-01

    Full Text Available The performance descending of current congested link inference algorithms is obviously in dynamic routing IP network, such as the most classical algorithm CLINK. To overcome this problem, based on the assumptions of Markov property and time homogeneity, we build a kind of Variable Structure Discrete Dynamic Bayesian (VSDDB network simplified model of dynamic routing IP network. Under the simplified VSDDB model, based on the Bayesian Maximum A Posteriori (BMAP and Rest Bayesian Network Model (RBNM, we proposed an Improved CLINK (ICLINK algorithm. Considering the concurrent phenomenon of multiple link congestion usually happens, we also proposed algorithm CLILRS (Congested Link Inference algorithm based on Lagrangian Relaxation Subgradient to infer the set of congested links. We validated our results by the experiments of analogy, simulation, and actual Internet.

  20. Feed-Forward Neural Network Soft-Sensor Modeling of Flotation Process Based on Particle Swarm Optimization and Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2015-01-01

    Full Text Available For predicting the key technology indicators (concentrate grade and tailings recovery rate of flotation process, a feed-forward neural network (FNN based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO algorithm and gravitational search algorithm (GSA is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process.

  1. Feed Forward Neural Network Algorithm for Frequent Patterns Mining

    OpenAIRE

    Dr. K.R.Pardasani; Sanjay Sharma; Amit Bhagat

    2010-01-01

    Association rule mining is used to find relationships among items in large data sets. Frequent patterns mining is an important aspect in association rule mining. In this paper, an efficient algorithm named Apriori-Feed Forward(AFF) based on Apriori algorithm and the Feed Forward Neural Network is presented to mine frequent patterns. Apriori algorithm scans database many times to generate frequent itemsets whereas Apriori-Feed Forward(AFF) algorithm scans database Only Once. Computational resu...

  2. Enhanced Handover Decision Algorithm in Heterogeneous Wireless Network.

    Science.gov (United States)

    Abdullah, Radhwan Mohamed; Zukarnain, Zuriati Ahmad

    2017-07-14

    Transferring a huge amount of data between different network locations over the network links depends on the network's traffic capacity and data rate. Traditionally, a mobile device may be moved to achieve the operations of vertical handover, considering only one criterion, that is the Received Signal Strength (RSS). The use of a single criterion may cause service interruption, an unbalanced network load and an inefficient vertical handover. In this paper, we propose an enhanced vertical handover decision algorithm based on multiple criteria in the heterogeneous wireless network. The algorithm consists of three technology interfaces: Long-Term Evolution (LTE), Worldwide interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN). It also employs three types of vertical handover decision algorithms: equal priority, mobile priority and network priority. The simulation results illustrate that the three types of decision algorithms outperform the traditional network decision algorithm in terms of handover number probability and the handover failure probability. In addition, it is noticed that the network priority handover decision algorithm produces better results compared to the equal priority and the mobile priority handover decision algorithm. Finally, the simulation results are validated by the analytical model.

  3. An artificial immune system algorithm approach for reconfiguring distribution network

    Science.gov (United States)

    Syahputra, Ramadoni; Soesanti, Indah

    2017-08-01

    This paper proposes an artificial immune system (AIS) algorithm approach for reconfiguring distribution network with the presence distributed generators (DG). The distribution network with high-performance is a network that has a low power loss, better voltage profile, and loading balance among feeders. The task for improving the performance of the distribution network is optimization of network configuration. The optimization has become a necessary study with the presence of DG in entire networks. In this work, optimization of network configuration is based on an AIS algorithm. The methodology has been tested in a model of 33 bus IEEE radial distribution networks with and without DG integration. The results have been showed that the optimal configuration of the distribution network is able to reduce power loss and to improve the voltage profile of the distribution network significantly.

  4. Optimization of water-level monitoring networks in the eastern Snake River Plain aquifer using a kriging-based genetic algorithm method

    Science.gov (United States)

    Fisher, Jason C.

    2013-01-01

    Long-term groundwater monitoring networks can provide essential information for the planning and management of water resources. Budget constraints in water resource management agencies often mean a reduction in the number of observation wells included in a monitoring network. A network design tool, distributed as an R package, was developed to determine which wells to exclude from a monitoring network because they add little or no beneficial information. A kriging-based genetic algorithm method was used to optimize the monitoring network. The algorithm was used to find the set of wells whose removal leads to the smallest increase in the weighted sum of the (1) mean standard error at all nodes in the kriging grid where the water table is estimated, (2) root-mean-squared-error between the measured and estimated water-level elevation at the removed sites, (3) mean standard deviation of measurements across time at the removed sites, and (4) mean measurement error of wells in the reduced network. The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The network design tool was applied to optimize two observation well networks monitoring the water table of the eastern Snake River Plain aquifer, Idaho; these networks include the 2008 Federal-State Cooperative water-level monitoring network (Co-op network) with 166 observation wells, and the 2008 U.S. Geological Survey-Idaho National Laboratory water-level monitoring network (USGS-INL network) with 171 wells. Each water-level monitoring network was optimized five times: by removing (1) 10, (2) 20, (3) 40, (4) 60, and (5) 80 observation wells from the original network. An examination of the trade-offs associated with changes in the number of wells to remove indicates that 20 wells can be removed from the Co-op network with a relatively small degradation of the estimated water table map, and 40 wells

  5. Analysis of Community Detection Algorithms for Large Scale Cyber Networks

    Energy Technology Data Exchange (ETDEWEB)

    Mane, Prachita; Shanbhag, Sunanda; Kamath, Tanmayee; Mackey, Patrick S.; Springer, John

    2016-09-30

    The aim of this project is to use existing community detection algorithms on an IP network dataset to create supernodes within the network. This study compares the performance of different algorithms on the network in terms of running time. The paper begins with an introduction to the concept of clustering and community detection followed by the research question that the team aimed to address. Further the paper describes the graph metrics that were considered in order to shortlist algorithms followed by a brief explanation of each algorithm with respect to the graph metric on which it is based. The next section in the paper describes the methodology used by the team in order to run the algorithms and determine which algorithm is most efficient with respect to running time. Finally, the last section of the paper includes the results obtained by the team and a conclusion based on those results as well as future work.

  6. A generic algorithm for layout of biological networks.

    Science.gov (United States)

    Schreiber, Falk; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

    2009-11-12

    Biological networks are widely used to represent processes in biological systems and to capture interactions and dependencies between biological entities. Their size and complexity is steadily increasing due to the ongoing growth of knowledge in the life sciences. To aid understanding of biological networks several algorithms for laying out and graphically representing networks and network analysis results have been developed. However, current algorithms are specialized to particular layout styles and therefore different algorithms are required for each kind of network and/or style of layout. This increases implementation effort and means that new algorithms must be developed for new layout styles. Furthermore, additional effort is necessary to compose different layout conventions in the same diagram. Also the user cannot usually customize the placement of nodes to tailor the layout to their particular need or task and there is little support for interactive network exploration. We present a novel algorithm to visualize different biological networks and network analysis results in meaningful ways depending on network types and analysis outcome. Our method is based on constrained graph layout and we demonstrate how it can handle the drawing conventions used in biological networks. The presented algorithm offers the ability to produce many of the fundamental popular drawing styles while allowing the exibility of constraints to further tailor these layouts.

  7. A generic algorithm for layout of biological networks

    Directory of Open Access Journals (Sweden)

    Dwyer Tim

    2009-11-01

    Full Text Available Abstract Background Biological networks are widely used to represent processes in biological systems and to capture interactions and dependencies between biological entities. Their size and complexity is steadily increasing due to the ongoing growth of knowledge in the life sciences. To aid understanding of biological networks several algorithms for laying out and graphically representing networks and network analysis results have been developed. However, current algorithms are specialized to particular layout styles and therefore different algorithms are required for each kind of network and/or style of layout. This increases implementation effort and means that new algorithms must be developed for new layout styles. Furthermore, additional effort is necessary to compose different layout conventions in the same diagram. Also the user cannot usually customize the placement of nodes to tailor the layout to their particular need or task and there is little support for interactive network exploration. Results We present a novel algorithm to visualize different biological networks and network analysis results in meaningful ways depending on network types and analysis outcome. Our method is based on constrained graph layout and we demonstrate how it can handle the drawing conventions used in biological networks. Conclusion The presented algorithm offers the ability to produce many of the fundamental popular drawing styles while allowing the exibility of constraints to further tailor these layouts.

  8. Algorithms and networking for computer games

    CERN Document Server

    Smed, Jouni

    2006-01-01

    Algorithms and Networking for Computer Games is an essential guide to solving the algorithmic and networking problems of modern commercial computer games, written from the perspective of a computer scientist. Combining algorithmic knowledge and game-related problems, the authors discuss all the common difficulties encountered in game programming. The first part of the book tackles algorithmic problems by presenting how they can be solved practically. As well as ""classical"" topics such as random numbers, tournaments and game trees, the authors focus on how to find a path in, create the terrai

  9. Bayesian network structure learning using chaos hybrid genetic algorithm

    Science.gov (United States)

    Shen, Jiajie; Lin, Feng; Sun, Wei; Chang, KC

    2012-06-01

    A new Bayesian network (BN) learning method using a hybrid algorithm and chaos theory is proposed. The principles of mutation and crossover in genetic algorithm and the cloud-based adaptive inertia weight were incorporated into the proposed simple particle swarm optimization (sPSO) algorithm to achieve better diversity, and improve the convergence speed. By means of ergodicity and randomicity of chaos algorithm, the initial network structure population is generated by using chaotic mapping with uniform search under structure constraints. When the algorithm converges to a local minimal, a chaotic searching is started to skip the local minima and to identify a potentially better network structure. The experiment results show that this algorithm can be effectively used for BN structure learning.

  10. Evaluation of Strategies for Dynamic Routing Algorithms in Support of Flex-Grid based GMPLS Elastic Optical Networks

    DEFF Research Database (Denmark)

    Turus, Ioan; Kleist, Josva; Fagertun, Anna Manolova

    2013-01-01

    We evaluate OSPF-TE extensions within GMPLS framework in support of flex-grid optical networks. Based on OSPF-TE LSAs, two routing strategies are proposed achieving up to 15% and 70% respectively improved blocking ratio for low loaded network (10-30 Erlangs) compared to the shortest path scenario....

  11. SPECIAL LIBRARIES OF FRAGMENTS OF ALGORITHMIC NETWORKS TO AUTOMATE THE DEVELOPMENT OF ALGORITHMIC MODELS

    Directory of Open Access Journals (Sweden)

    V. E. Marley

    2015-01-01

    Full Text Available Summary. The concept of algorithmic models appeared from the algorithmic approach in which the simulated object, the phenomenon appears in the form of process, subject to strict rules of the algorithm, which placed the process of operation of the facility. Under the algorithmic model is the formalized description of the scenario subject specialist for the simulated process, the structure of which is comparable with the structure of the causal and temporal relationships between events of the process being modeled, together with all information necessary for its software implementation. To represent the structure of algorithmic models used algorithmic network. Normally, they were defined as loaded finite directed graph, the vertices which are mapped to operators and arcs are variables, bound by operators. The language of algorithmic networks has great features, the algorithms that it can display indifference the class of all random algorithms. In existing systems, automation modeling based on algorithmic nets, mainly used by operators working with real numbers. Although this reduces their ability, but enough for modeling a wide class of problems related to economy, environment, transport, technical processes. The task of modeling the execution of schedules and network diagrams is relevant and useful. There are many counting systems, network graphs, however, the monitoring process based analysis of gaps and terms of graphs, no analysis of prediction execution schedule or schedules. The library is designed to build similar predictive models. Specifying source data to obtain a set of projections from which to choose one and take it for a new plan.

  12. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    African Journals Online (AJOL)

    NJD

    Genetic Algorithm Optimized Neural Networks Ensemble as. Calibration Model for Simultaneous Spectrophotometric. Estimation of Atenolol and Losartan Potassium in Tablets. Dondeti Satyanarayana*, Kamarajan Kannan and Rajappan Manavalan. Department of Pharmacy, Annamalai University, Annamalainagar, Tamil ...

  13. A trust evaluation algorithm for wireless sensor networks based on node behaviors and D-S evidence theory.

    Science.gov (United States)

    Feng, Renjian; Xu, Xiaofeng; Zhou, Xiang; Wan, Jiangwen

    2011-01-01

    For wireless sensor networks (WSNs), many factors, such as mutual interference of wireless links, battlefield applications and nodes exposed to the environment without good physical protection, result in the sensor nodes being more vulnerable to be attacked and compromised. In order to address this network security problem, a novel trust evaluation algorithm defined as NBBTE (Node Behavioral Strategies Banding Belief Theory of the Trust Evaluation Algorithm) is proposed, which integrates the approach of nodes behavioral strategies and modified evidence theory. According to the behaviors of sensor nodes, a variety of trust factors and coefficients related to the network application are established to obtain direct and indirect trust values through calculating weighted average of trust factors. Meanwhile, the fuzzy set method is applied to form the basic input vector of evidence. On this basis, the evidence difference is calculated between the indirect and direct trust values, which link the revised D-S evidence combination rule to finally synthesize integrated trust value of nodes. The simulation results show that NBBTE can effectively identify malicious nodes and reflects the characteristic of trust value that 'hard to acquire and easy to lose'. Furthermore, it is obvious that the proposed scheme has an outstanding advantage in terms of illustrating the real contribution of different nodes to trust evaluation.

  14. Gossip Consensus Algorithm Based on Time-Varying Influence Factors and Weakly Connected Graph for Opinion Evolution in Social Networks

    Directory of Open Access Journals (Sweden)

    Lingyun Li

    2013-01-01

    Full Text Available We provide a new gossip algorithm to investigate the problem of opinion consensus with the time-varying influence factors and weakly connected graph among multiple agents. What is more, we discuss not only the effect of the time-varying factors and the randomized topological structure but also the spread of misinformation and communication constrains described by probabilistic quantized communication in the social network. Under the underlying weakly connected graph, we first denote that all opinion states converge to a stochastic consensus almost surely; that is, our algorithm indeed achieves the consensus with probability one. Furthermore, our results show that the mean of all the opinion states converges to the average of the initial states when time-varying influence factors satisfy some conditions. Finally, we give a result about the square mean error between the dynamic opinion states and the benchmark without quantized communication.

  15. Hybrid Wireless Sensor Network Coverage Holes Restoring Algorithm

    Directory of Open Access Journals (Sweden)

    Liu Zhouzhou

    2016-01-01

    Full Text Available Aiming at the perception hole caused by the necessary movement or failure of nodes in the wireless sensor actuator network, this paper proposed a kind of coverage restoring scheme based on hybrid particle swarm optimization algorithm. The scheme first introduced network coverage based on grids, transformed the coverage restoring problem into unconstrained optimization problem taking the network coverage as the optimization target, and then solved the optimization problem in the use of the hybrid particle swarm optimization algorithm with the idea of simulated annealing. Simulation results show that the probabilistic jumping property of simulated annealing algorithm could make up for the defect that particle swarm optimization algorithm is easy to fall into premature convergence, and the hybrid algorithm can effectively solve the coverage restoring problem.

  16. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  17. Recommending Learning Activities in Social Network Using Data Mining Algorithms

    Science.gov (United States)

    Mahnane, Lamia

    In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). "NSN-AP-CF" processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the…

  18. Recommending Learning Activities in Social Network Using Data Mining Algorithms

    Science.gov (United States)

    Mahnane, Lamia

    2017-01-01

    In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). "NSN-AP-CF" processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the…

  19. Improved Degree Search Algorithms in Unstructured P2P Networks

    Directory of Open Access Journals (Sweden)

    Guole Liu

    2012-01-01

    Full Text Available Searching and retrieving the demanded correct information is one important problem in networks; especially, designing an efficient search algorithm is a key challenge in unstructured peer-to-peer (P2P networks. Breadth-first search (BFS and depth-first search (DFS are the current two typical search methods. BFS-based algorithms show the perfect performance in the aspect of search success rate of network resources, while bringing the huge search messages. On the contrary, DFS-based algorithms reduce the search message quantity and also cause the dropping of search success ratio. To address the problem that only one of performances is excellent, we propose two memory function degree search algorithms: memory function maximum degree algorithm (MD and memory function preference degree algorithm (PD. We study their performance including the search success rate and the search message quantity in different networks, which are scale-free networks, random graph networks, and small-world networks. Simulations show that the two performances are both excellent at the same time, and the performances are improved at least 10 times.

  20. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    Science.gov (United States)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  1. Radial basis function network-based transform for a nonlinear support vector machine as optimized by a particle swarm optimization algorithm with application to QSAR studies.

    Science.gov (United States)

    Tang, Li-Juan; Zhou, Yan-Ping; Jiang, Jian-Hui; Zou, Hong-Yan; Wu, Hai-Long; Shen, Guo-Li; Yu, Ru-Qin

    2007-01-01

    The support vector machine (SVM) has been receiving increasing interest in an area of QSAR study for its ability in function approximation and remarkable generalization performance. However, selection of support vectors and intensive optimization of kernel width of a nonlinear SVM are inclined to get trapped into local optima, leading to an increased risk of underfitting or overfitting. To overcome these problems, a new nonlinear SVM algorithm is proposed using adaptive kernel transform based on a radial basis function network (RBFN) as optimized by particle swarm optimization (PSO). The new algorithm incorporates a nonlinear transform of the original variables to feature space via a RBFN with one input and one hidden layer. Such a transform intrinsically yields a kernel transform of the original variables. A synergetic optimization of all parameters including kernel centers and kernel widths as well as SVM model coefficients using PSO enables the determination of a flexible kernel transform according to the performance of the total model. The implementation of PSO demonstrates a relatively high efficiency in convergence to a desired optimum. Applications of the proposed algorithm to QSAR studies of binding affinity of HIV-1 reverse transcriptase inhibitors and activity of 1-phenylbenzimidazoles reveal that the new algorithm provides superior performance to the backpropagation neural network and a conventional nonlinear SVM, indicating that this algorithm holds great promise in nonlinear SVM learning.

  2. A Multidomain Survivable Virtual Network Mapping Algorithm

    Directory of Open Access Journals (Sweden)

    Xiancui Xiao

    2017-01-01

    Full Text Available Although the existing networks are more often deployed in the multidomain environment, most of existing researches focus on single-domain networks and there are no appropriate solutions for the multidomain virtual network mapping problem. In fact, most studies assume that the underlying network can operate without any interruption. However, physical networks cannot ensure the normal provision of network services for external reasons and traditional single-domain networks have difficulties to meet user needs, especially for the high security requirements of the network transmission. In order to solve the above problems, this paper proposes a survivable virtual network mapping algorithm (IntD-GRC-SVNE that implements multidomain mapping in network virtualization. IntD-GRC-SVNE maps the virtual communication networks onto different domain networks and provides backup resources for virtual links which improve the survivability of the special networks. Simulation results show that IntD-GRC-SVNE can not only improve the survivability of multidomain communications network but also render the network load more balanced and greatly improve the network acceptance rate due to employment of GRC (global resource capacity.

  3. Algorithms for Finding Small Attractors in Boolean Networks

    Directory of Open Access Journals (Sweden)

    Hayashida Morihiro

    2007-01-01

    Full Text Available A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.

  4. Genetic algorithm for neural networks optimization

    Science.gov (United States)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  5. An algorithm for link restoration of wavelength routing optical networks

    DEFF Research Database (Denmark)

    Limal, Emmanuel; Stubkjær, Kristian

    1999-01-01

    We present an algorithm for restoration of single link failure in wavelength routing multihop optical networks. The algorithm is based on an innovative study of networks using graph theory. It has the following original features: it (i) assigns working and spare channels simultaneously, (ii) prev...... low complexity is studied in detail and compared to the complexity of a classical path assignment algorithm. Finally, we explain how to use the algorithm to control the restoration path lengths.......We present an algorithm for restoration of single link failure in wavelength routing multihop optical networks. The algorithm is based on an innovative study of networks using graph theory. It has the following original features: it (i) assigns working and spare channels simultaneously, (ii......) prevents the search for unacceptable routing paths by pointing out channels required for restoration, (iii) offers a high utilization of the capacity resources and (iv) allows a trivial search for the restoration paths. The algorithm is for link restoration of networks without wavelength translation. Its...

  6. A New Optimized GA-RBF Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Weikuan Jia

    2014-01-01

    Full Text Available When confronting the complex problems, radial basis function (RBF neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm, which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer’s neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid.

  7. A new optimized GA-RBF neural network algorithm.

    Science.gov (United States)

    Jia, Weikuan; Zhao, Dean; Shen, Tian; Su, Chunyang; Hu, Chanli; Zhao, Yuyan

    2014-01-01

    When confronting the complex problems, radial basis function (RBF) neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm), which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer's neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS) algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid.

  8. Development of hybrid genetic-algorithm-based neural networks using regression trees for modeling air quality inside a public transportation bus.

    Science.gov (United States)

    Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok

    2013-02-01

    The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic-algorithm-based

  9. Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm

    Directory of Open Access Journals (Sweden)

    O. G. Monahov

    2014-01-01

    Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously

  10. ANOMALY DETECTION IN NETWORKING USING HYBRID ARTIFICIAL IMMUNE ALGORITHM

    Directory of Open Access Journals (Sweden)

    D. Amutha Guka

    2012-01-01

    Full Text Available Especially in today’s network scenario, when computers are interconnected through internet, security of an information system is very important issue. Because no system can be absolutely secure, the timely and accurate detection of anomalies is necessary. The main aim of this research paper is to improve the anomaly detection by using Hybrid Artificial Immune Algorithm (HAIA which is based on Artificial Immune Systems (AIS and Genetic Algorithm (GA. In this research work, HAIA approach is used to develop Network Anomaly Detection System (NADS. The detector set is generated by using GA and the anomalies are identified using Negative Selection Algorithm (NSA which is based on AIS. The HAIA algorithm is tested with KDD Cup 99 benchmark dataset. The detection rate is used to measure the effectiveness of the NADS. The results and consistency of the HAIA are compared with earlier approaches and the results are presented. The proposed algorithm gives best results when compared to the earlier approaches.

  11. Artificial Neural Networks, and Evolutionary Algorithms as a systems biology approach to a data-base on fetal growth restriction.

    Science.gov (United States)

    Street, Maria E; Buscema, Massimo; Smerieri, Arianna; Montanini, Luisa; Grossi, Enzo

    2013-12-01

    One of the specific aims of systems biology is to model and discover properties of cells, tissues and organisms functioning. A systems biology approach was undertaken to investigate possibly the entire system of intra-uterine growth we had available, to assess the variables of interest, discriminate those which were effectively related with appropriate or restricted intrauterine growth, and achieve an understanding of the systems in these two conditions. The Artificial Adaptive Systems, which include Artificial Neural Networks and Evolutionary Algorithms lead us to the first analyses. These analyses identified the importance of the biochemical variables IL-6, IGF-II and IGFBP-2 protein concentrations in placental lysates, and offered a new insight into placental markers of fetal growth within the IGF and cytokine systems, confirmed they had relationships and offered a critical assessment of studies previously performed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Fault Diagnosis System of Induction Motors Based on Neural Network and Genetic Algorithm Using Stator Current Signals

    Directory of Open Access Journals (Sweden)

    Tian Han

    2006-01-01

    Full Text Available This paper proposes an online fault diagnosis system for induction motors through the combination of discrete wavelet transform (DWT, feature extraction, genetic algorithm (GA, and neural network (ANN techniques. The wavelet transform improves the signal-to-noise ratio during a preprocessing. Features are extracted from motor stator current, while reducing data transfers and making online application available. GA is used to select the most significant features from the whole feature database and optimize the ANN structure parameter. Optimized ANN is trained and tested by the selected features of the measurement data of stator current. The combination of advanced techniques reduces the learning time and increases the diagnosis accuracy. The efficiency of the proposed system is demonstrated through motor faults of electrical and mechanical origins on the induction motors. The results of the test indicate that the proposed system is promising for the real-time application.

  13. Proposed Network Intrusion Detection System ‎Based on Fuzzy c Mean Algorithm in Cloud ‎Computing Environment

    Directory of Open Access Journals (Sweden)

    Shawq Malik Mehibs

    2017-12-01

    Full Text Available Nowadays cloud computing had become is an integral part of IT industry, cloud computing provides Working environment allow a user of environmental to share data and resources over the internet. Where cloud computing its virtual grouping of resources offered over the internet, this lead to different matters related to the security and privacy in cloud computing. And therefore, create intrusion detection very important to detect outsider and insider intruders of cloud computing with high detection rate and low false positive alarm in the cloud environment. This work proposed network intrusion detection module using fuzzy c mean algorithm. The kdd99 dataset used for experiments .the proposed system characterized by a high detection rate with low false positive alarm

  14. Efficiency Criteria as a Solution to the Uncertainty in the Choice of Population Size in Population-Based Algorithms Applied to Water Network Optimization

    Directory of Open Access Journals (Sweden)

    Daniel Mora-Melià

    2016-12-01

    Full Text Available Different Population-based Algorithms (PbAs have been used in recent years to solve all types of optimization problems related to water resource issues. However, the performances of these techniques depend heavily on correctly setting some specific parameters that guide the search for solutions. The initial random population size P is the only parameter common to all PbAs, but this parameter has received little attention from researchers. This paper explores P behaviour in a pipe-sizing problem considering both quality and speed criteria. To relate both concepts, this study applies a method based on an efficiency ratio E. First, specific parameters in each algorithm are calibrated with a fixed P. Second, specific parameters remain fixed, and the initial population size P is modified. After more than 600,000 simulations, the influence of P on obtaining successful solutions is statistically analysed. The proposed methodology is applied to four well-known benchmark networks and four different algorithms. The main conclusion of this study is that using a small population size is more efficient above a certain minimum size. Moreover, the results ensure optimal parameter calibration in each algorithm, and they can be used to select the most appropriate algorithm depending on the complexity of the problem and the goal of optimization.

  15. Using network properties to evaluate targeted immunization algorithms

    Directory of Open Access Journals (Sweden)

    Bita Shams

    2014-09-01

    Full Text Available Immunization of complex network with minimal or limited budget is a challenging issue for research community. In spite of much literature in network immunization, no comprehensive research has been conducted for evaluation and comparison of immunization algorithms. In this paper, we propose an evaluation framework for immunization algorithms regarding available amount of vaccination resources, goal of immunization program, and time complexity. The evaluation framework is designed based on network topological metrics which is extensible to all epidemic spreading model. Exploiting evaluation framework on well-known targeted immunization algorithms shows that in general, immunization based on PageRank centrality outperforms other targeting strategies in various types of networks, whereas, closeness and eigenvector centrality exhibit the worst case performance.

  16. LANN-SVD: A Non-Iterative SVD-Based Learning Algorithm for One-Layer Neural Networks.

    Science.gov (United States)

    Fontenla-Romero, Oscar; Perez-Sanchez, Beatriz; Guijarro-Berdinas, Bertha

    2017-09-01

    In the scope of data analytics, the volume of a data set can be defined as a product of instance size and dimensionality of the data. In many real problems, data sets are mainly large only on one of these aspects. Machine learning methods proposed in the literature are able to efficiently learn in only one of these two situations, when the number of variables is much greater than instances or vice versa. However, there is no proposal allowing to efficiently handle either circumstances in a large-scale scenario. In this brief, we present an approach to integrally address both situations, large dimensionality or large instance size, by using a singular value decomposition (SVD) within a learning algorithm for one-layer feedforward neural network. As a result, a noniterative solution is obtained, where the weights can be calculated in a closed-form manner, thereby avoiding low convergence rate and also hyperparameter tuning. The proposed learning method, LANN-SVD in short, presents a good computational efficiency for large-scale data analytic. Comprehensive comparisons were conducted to assess LANN-SVD against other state-of-the-art algorithms. The results of this brief exhibited the superior efficiency of the proposed method in any circumstance.

  17. Performance evaluation of power control algorithms in wireless cellular networks

    Science.gov (United States)

    Temaneh-Nyah, C.; Iita, V.

    2014-10-01

    Power control in a mobile communication network intents to control the transmission power levels in such a way that the required quality of service (QoS) for the users is guaranteed with lowest possible transmission powers. Most of the studies of power control algorithms in the literature are based on some kind of simplified assumptions which leads to compromise in the validity of the results when applied in a real environment. In this paper, a CDMA network was simulated. The real environment was accounted for by defining the analysis area and the network base stations and mobile stations are defined by their geographical coordinates, the mobility of the mobile stations is accounted for. The simulation also allowed for a number of network parameters including the network traffic, and the wireless channel models to be modified. Finally, we present the simulation results of a convergence speed based comparative analysis of three uplink power control algorithms.

  18. Slow update stochastic simulation algorithms for modeling complex biochemical networks.

    Science.gov (United States)

    Ghosh, Debraj; De, Rajat K

    2017-10-30

    The stochastic simulation algorithm (SSA) based modeling is a well recognized approach to predict the stochastic behavior of biological networks. The stochastic simulation of large complex biochemical networks is a challenge as it takes a large amount of time for simulation due to high update cost. In order to reduce the propensity update cost, we proposed two algorithms: slow update exact stochastic simulation algorithm (SUESSA) and slow update exact sorting stochastic simulation algorithm (SUESSSA). We applied cache-based linear search (CBLS) in these two algorithms for improving the search operation for finding reactions to be executed. Data structure used for incorporating CBLS is very simple and the cost of maintaining this during propensity update operation is very low. Hence, time taken during propensity updates, for simulating strongly coupled networks, is very fast; which leads to reduction of total simulation time. SUESSA and SUESSSA are not only restricted to elementary reactions, they support higher order reactions too. We used linear chain model and colloidal aggregation model to perform a comparative analysis of the performances of our methods with the existing algorithms. We also compared the performances of our methods with the existing ones, for large biochemical networks including B cell receptor and FcϵRI signaling networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. An Efficient Crosstalk-Free Routing Algorithm Based on Permutation Decomposition for Optical Multi-log2N Switching Networks

    OpenAIRE

    Liu, Xiaofeng; Zhao, Youjian; Wu, Yajuan

    2013-01-01

    Part 3: Session 3: Parallel Architectures; International audience; Optical switching networks (OSN) based on optical directional couplers (DC) may be the most promising candidate to provide a high switching rate when the speed mismatch problem between links (optical fibers) and switches is increasingly serious. Although such switches have many advantages, the DC suffers from an inherent crosstalk problem that can greatly aggravate the switching performance. Based on semi-permutations, a paral...

  20. A clustering algorithm for determining community structure in complex networks

    Science.gov (United States)

    Jin, Hong; Yu, Wei; Li, ShiJun

    2018-02-01

    Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather-Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.

  1. A network-based method using a random walk with restart algorithm and screening tests to identify novel genes associated with Menière's disease.

    Science.gov (United States)

    Li, Lin; Wang, YanShu; An, Lifeng; Kong, XiangYin; Huang, Tao

    2017-01-01

    As a chronic illness derived from hair cells of the inner ear, Menière's disease (MD) negatively influences the quality of life of individuals and leads to a number of symptoms, such as dizziness, temporary hearing loss, and tinnitus. The complete identification of novel genes related to MD would help elucidate its underlying pathological mechanisms and improve its diagnosis and treatment. In this study, a network-based method was developed to identify novel MD-related genes based on known MD-related genes. A human protein-protein interaction (PPI) network was constructed using the PPI information reported in the STRING database. A classic ranking algorithm, the random walk with restart (RWR) algorithm, was employed to search for novel genes using known genes as seed nodes. To make the identified genes more reliable, a series of screening tests, including a permutation test, an interaction test and an enrichment test, were designed to select essential genes from those obtained by the RWR algorithm. As a result, several inferred genes, such as CD4, NOTCH2 and IL6, were discovered. Finally, a detailed biological analysis was performed on fifteen of the important inferred genes, which indicated their strong associations with MD.

  2. Comparison and evaluation of network clustering algorithms applied to genetic interaction networks.

    Science.gov (United States)

    Hou, Lin; Wang, Lin; Berg, Arthur; Qian, Minping; Zhu, Yunping; Li, Fangting; Deng, Minghua

    2012-01-01

    The goal of network clustering algorithms detect dense clusters in a network, and provide a first step towards the understanding of large scale biological networks. With numerous recent advances in biotechnologies, large-scale genetic interactions are widely available, but there is a limited understanding of which clustering algorithms may be most effective. In order to address this problem, we conducted a systematic study to compare and evaluate six clustering algorithms in analyzing genetic interaction networks, and investigated influencing factors in choosing algorithms. The algorithms considered in this comparison include hierarchical clustering, topological overlap matrix, bi-clustering, Markov clustering, Bayesian discriminant analysis based community detection, and variational Bayes approach to modularity. Both experimentally identified and synthetically constructed networks were used in this comparison. The accuracy of the algorithms is measured by the Jaccard index in comparing predicted gene modules with benchmark gene sets. The results suggest that the choice differs according to the network topology and evaluation criteria. Hierarchical clustering showed to be best at predicting protein complexes; Bayesian discriminant analysis based community detection proved best under epistatic miniarray profile (EMAP) datasets; the variational Bayes approach to modularity was noticeably better than the other algorithms in the genome-scale networks.

  3. (Box-filling-model)-based ONU schedule algorithm and bandwidth-requirement-based ONU transfer mechanism for multi-subsystem-based VPONs' management in metro-access optical network

    Science.gov (United States)

    Zhang, Yuchao; Gan, Chaoqin; Gou, Kaiyu; Hua, Jian

    2017-07-01

    ONU schedule algorithm and ONU transfer mechanism for multi-subsystem-based VPONs' management is proposed in this paper. To avoid frequent wavelength switch and realize high system stability, ONU schedule algorithm is presented for wavelength allocation by introducing box-filling model. At the same time, judgement mechanism is designed to filter wavelength-increased request caused by slight bandwidth fluctuation of VPON. To share remained bandwidth among VPONs, ONU transfer mechanism is put forward according to flexible wavelength routing. To manage wavelength resource of entire network and wavelength requirement from VPONs, information-managed matrix model is constructed. Finally, the effectiveness of the proposed scheme is demonstrated by simulation and analysis.

  4. High-Speed Rail Train Timetabling Problem: A Time-Space Network Based Method with an Improved Branch-and-Price Algorithm

    Directory of Open Access Journals (Sweden)

    Bisheng He

    2014-01-01

    Full Text Available A time-space network based optimization method is designed for high-speed rail train timetabling problem to improve the service level of the high-speed rail. The general time-space path cost is presented which considers both the train travel time and the high-speed rail operation requirements: (1 service frequency requirement; (2 stopping plan adjustment; and (3 priority of train types. Train timetabling problem based on time-space path aims to minimize the total general time-space path cost of all trains. An improved branch-and-price algorithm is applied to solve the large scale integer programming problem. When dealing with the algorithm, a rapid branching and node selection for branch-and-price tree and a heuristic train time-space path generation for column generation are adopted to speed up the algorithm computation time. The computational results of a set of experiments on China’s high-speed rail system are presented with the discussions about the model validation, the effectiveness of the general time-space path cost, and the improved branch-and-price algorithm.

  5. Remote sensing of harmful algal events in optically complex waters using regionally specific neural network-based algorithms for MERIS data

    Science.gov (United States)

    Gonzalez Vilas, L.; Castro Fernandez, M.; Spyrakos, E.; Torres Palenzuela, J.

    2013-08-01

    In typical case 2 waters an accurate remote sensing retrieval of chlorophyll a (chla) is still challenging. There is a widespread understanding that universally applicable water constituent retrieval algorithms are currently not feasible, shifting the research focus to regionally specific implementations of powerful inversion methods. This study takes advantage of regionally specific chlorophyll a (chla) algorithms, which were developed by the authors of this abstract in previous works, and the characteristics of Medium Resolution Imaging Spectrometer (MERIS) in order to study harmful algal events in the optically complex waters of the Galician Rias (NW). Harmful algal events are a frequent phenomenon in this area with direct and indirect impacts to the mussel production that constitute a very important economic activity for the local community. More than 240 106 kg of mussel per year are produced in these highly primary productive upwelling systems. A MERIS archive from nine years (2003-2012) was analysed using regionally specific chla algorithms. The latter were developed based on Multilayer perceptron (MLP) artificial neural networks and fuzzy c-mean clustering techniques (FCM). FCM specifies zones (based on water leaving reflectances) where the retrieval algorithms normally provide more reliable results. Monthly chla anomalies and other statistics were calculated for the nine years MERIS archive. These results were then related to upwelling indices and other associated measurements to determine the driver forces for specific phytoplankton blooms. The distribution and changes of chla are also discussed.

  6. Study on high-speed cutting parameters optimization of AlMn1Cu based on neural network and genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhenhua Wang

    2016-04-01

    Full Text Available In this article, the cutting parameters optimization method for aluminum alloy AlMn1Cu in high-speed milling was studied in order to properly select the high-speed cutting parameters. First, a back propagation neural network model for predicting surface roughness of AlMn1Cu was proposed. The prediction model can improve the prediction accuracy and well work out the higher-order nonlinear relationship between surface roughness and cutting parameters. Second, considering the constraints of technical requirements on surface roughness, a mathematical model for optimizing cutting parameters based on the Bayesian neural network prediction model of surface roughness was established so as to obtain the maximum machining efficiency. The genetic algorithm adopting the homogeneous design to initialize population as well as steady-state reproduction without duplicates was also presented. The application indicates that the algorithm can effectively avoid precocity, strengthen global optimization, and increase the calculation efficiency. Finally, a case was presented on the application of the proposed cutting parameters optimization algorithm to optimize the cutting parameters.

  7. Interlog protein network: an evolutionary benchmark of protein interaction networks for the evaluation of clustering algorithms.

    Science.gov (United States)

    Jafari, Mohieddin; Mirzaie, Mehdi; Sadeghi, Mehdi

    2015-10-05

    In the field of network science, exploring principal and crucial modules or communities is critical in the deduction of relationships and organization of complex networks. This approach expands an arena, and thus allows further study of biological functions in the field of network biology. As the clustering algorithms that are currently employed in finding modules have innate uncertainties, external and internal validations are necessary. Sequence and network structure alignment, has been used to define the Interlog Protein Network (IPN). This network is an evolutionarily conserved network with communal nodes and less false-positive links. In the current study, the IPN is employed as an evolution-based benchmark in the validation of the module finding methods. The clustering results of five algorithms; Markov Clustering (MCL), Restricted Neighborhood Search Clustering (RNSC), Cartographic Representation (CR), Laplacian Dynamics (LD) and Genetic Algorithm; to find communities in Protein-Protein Interaction networks (GAPPI) are assessed by IPN in four distinct Protein-Protein Interaction Networks (PPINs). The MCL shows a more accurate algorithm based on this evolutionary benchmarking approach. Also, the biological relevance of proteins in the IPN modules generated by MCL is compatible with biological standard databases such as Gene Ontology, KEGG and Reactome. In this study, the IPN shows its potential for validation of clustering algorithms due to its biological logic and straightforward implementation.

  8. Decentralized diagnostics based on a distributed micro-genetic algorithm for transducer networks monitoring large experimental systems

    Science.gov (United States)

    Arpaia, P.; Cimmino, P.; Girone, M.; Commara, G. La; Maisto, D.; Manna, C.; Pezzetti, M.

    2014-09-01

    Evolutionary approach to centralized multiple-faults diagnostics is extended to distributed transducer networks monitoring large experimental systems. Given a set of anomalies detected by the transducers, each instance of the multiple-fault problem is formulated as several parallel communicating sub-tasks running on different transducers, and thus solved one-by-one on spatially separated parallel processes. A micro-genetic algorithm merges evaluation time efficiency, arising from a small-size population distributed on parallel-synchronized processors, with the effectiveness of centralized evolutionary techniques due to optimal mix of exploitation and exploration. In this way, holistic view and effectiveness advantages of evolutionary global diagnostics are combined with reliability and efficiency benefits of distributed parallel architectures. The proposed approach was validated both (i) by simulation at CERN, on a case study of a cold box for enhancing the cryogeny diagnostics of the Large Hadron Collider, and (ii) by experiments, under the framework of the industrial research project MONDIEVOB (Building Remote Monitoring and Evolutionary Diagnostics), co-funded by EU and the company Del Bo srl, Napoli, Italy.

  9. Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100.

    Science.gov (United States)

    Zhang, Yu; Xu, Jingliang; Yuan, Zhenhong; Xu, Huijuan; Yu, Qiang

    2010-05-01

    Cellulase was covalently immobilized on a smart polymer, Eudragit L-100 by carbodiimide coupling. Using data of central composite design, response surface methodology (RSM) and artificial neural network (ANN) were developed to investigate the effect of pH, carbodiimide concentration, and coupling time on the activity yield of immobilized cellulase. Results showed simulation and prediction accuracy of ANN was apparently higher compared to RSM. The maximum activity yield obtained from RSM was 57.56% at pH 5.54, carbodiimide concentration 0.32%, and coupling time 3.03 h, where the experimental value was 60.87 + or - 4.79%. Using ANN as fitness function, a maximum activity yield of 69.83% was searched by genetic algorithm at pH 5.07, carbodiimide concentration 0.36%, and coupling time 4.10 h, where the experimental value was 66.75 + or - 5.21%. ANN gave a 9.7% increase of activity yield over RSM. After reusing immobilized cellulase for 5 cycles, the remaining productivity was over 50%. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Study on the idity fuzzy neural network controller based on improved genetic algorithm of intelligent temperature control system in vegetable greenhouse

    Science.gov (United States)

    Zhang, Su; Yuan, Hongbo; Zhou, Yuhong; Wang, Nan

    2009-07-01

    In order to create the environment that the suitable crop grows, direct against the characteristic of the system of the greenhouse. The aim of the research was to study the intelligent temperature control system in vegetable greenhouse. Based on computer automatic control ,a kind of intelligent temperature control system in vegetable greenhouse was designed. The design thought of systematic hardwares such as temperature collection system, temperature display, control system, heater control circuit in the heater were expounded in detail The control algorithm of the system was improved and system simulation was made by using MATLAB finally. The control algorithm of the system was improved by a new fuzzy neural network controller. The stimulation curve showed that the system had better controlling and tracking performances ,higher accuracy of controlling the temperature. And this system and host epigyny computer could constitute the secondary computer control system which was favorable for realizing the centralized management of the production.

  11. Genetic algorithm based on optimization of neural network structure for fault diagnosis of the clutch retainer mechanism of MF 285 tractor

    Directory of Open Access Journals (Sweden)

    S. F Mousavi

    2016-09-01

    and error procedure was used to minimize the mean square error of the network output and the desired amount of training step. During the training step, four neural networks including Db4, Db30, Db35 and Db40 achieved a gradient descent weight in the learning bias and four neural networks including Db9, Db15, Db20 and Db25 achieved a gradient descent with momentum weight in the learning bias. The two of the achieved neural networks including Db4, Db20 have circular logarithm function and the remaining networks have annular hyperbolic tangent transfer function. The most appropriate networks configuration was acquired when the network exhibited the minimal error with the training and testing data sets. The results show that the highest accuracy of the GA-ANN Artificial neural networks for all rotational speeds (1000, 1500 and 2000 rpm, and working conditions (intact gear and shaft, damaged bearing and worn shaft observed for the network family of Db4. The highest error observed for the family of Db20 with MSE of 0.011. Conclusions Artificial neural networks can somewhat think and make decisions similar to an expert person. In this project in order to predict the occurrence of a failure of the clutch mechanism of MF 285 tractor, the experimental data were obtained using some sensors, and the data were transferred to a computer by means of a data analytical. By training of the neural networks, the errors were identified separately. The output data from the combined Neural Network and Genetic Algorithm shows that the performance of the prediction model is enhanced. Based on the experiments and calculations, the best data set belongs to the family of Db4 network with the least MSE equal to 4.09E-07 and r equal to 0.99999, indicating that the model could precisely detect the faulty bearings or shafts.

  12. Fast Decision Algorithms in Low-Power Embedded Processors for Quality-of-Service Based Connectivity of Mobile Sensors in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Juan M. Sánchez-Pérez

    2012-02-01

    Full Text Available When a mobile wireless sensor is moving along heterogeneous wireless sensor networks, it can be under the coverage of more than one network many times. In these situations, the Vertical Handoff process can happen, where the mobile sensor decides to change its connection from a network to the best network among the available ones according to their quality of service characteristics. A fitness function is used for the handoff decision, being desirable to minimize it. This is an optimization problem which consists of the adjustment of a set of weights for the quality of service. Solving this problem efficiently is relevant to heterogeneous wireless sensor networks in many advanced applications. Numerous works can be found in the literature dealing with the vertical handoff decision, although they all suffer from the same shortfall: a non-comparable efficiency. Therefore, the aim of this work is twofold: first, to develop a fast decision algorithm that explores the entire space of possible combinations of weights, searching that one that minimizes the fitness function; and second, to design and implement a system on chip architecture based on reconfigurable hardware and embedded processors to achieve several goals necessary for competitive mobile terminals: good performance, low power consumption, low economic cost, and small area integration.

  13. Fast decision algorithms in low-power embedded processors for quality-of-service based connectivity of mobile sensors in heterogeneous wireless sensor networks.

    Science.gov (United States)

    Jaraíz-Simón, María D; Gómez-Pulido, Juan A; Vega-Rodríguez, Miguel A; Sánchez-Pérez, Juan M

    2012-01-01

    When a mobile wireless sensor is moving along heterogeneous wireless sensor networks, it can be under the coverage of more than one network many times. In these situations, the Vertical Handoff process can happen, where the mobile sensor decides to change its connection from a network to the best network among the available ones according to their quality of service characteristics. A fitness function is used for the handoff decision, being desirable to minimize it. This is an optimization problem which consists of the adjustment of a set of weights for the quality of service. Solving this problem efficiently is relevant to heterogeneous wireless sensor networks in many advanced applications. Numerous works can be found in the literature dealing with the vertical handoff decision, although they all suffer from the same shortfall: a non-comparable efficiency. Therefore, the aim of this work is twofold: first, to develop a fast decision algorithm that explores the entire space of possible combinations of weights, searching that one that minimizes the fitness function; and second, to design and implement a system on chip architecture based on reconfigurable hardware and embedded processors to achieve several goals necessary for competitive mobile terminals: good performance, low power consumption, low economic cost, and small area integration.

  14. Effect of AQM-Based RLC Buffer Management on the eNB Scheduling Algorithm in LTE Network

    Directory of Open Access Journals (Sweden)

    Anup Kumar Paul

    2017-09-01

    Full Text Available With the advancement of the Long-Term Evolution (LTE network and smart-phones, most of today’s internet content is delivered via cellular links. Due to the nature of wireless signal propagation, the capacity of the last hop link can vary within a short period of time. Unfortunately, Transmission Control Protocol (TCP does not perform well in such scenarios, potentially leading to poor Quality of Service (QoS (e.g., end-to-end throughput and delay for the end user. In this work, we have studied the effect of Active Queue Management (AQM based congestion control and intra LTE handover on the performance of different Medium Access Control (MAC schedulers with TCP traffic by ns3 simulation. A proper AQM design in the Radio Link Control (RLC buffer of eNB in the LTE network leads to the avoidance of forced drops and link under-utilization along with robustness to a variety of network traffic-loads. We first demonstrate that the original Random Early Detection (RED linear dropping function cannot cope well with different traffic-load scenarios. Then, we establish a heuristic approach in which different non-linear functions are proposed with one parameter free to define. In our simulations, we demonstrate that the performance of different schedulers can be enhanced via proper dropping function.

  15. Solving Bi-Objective Optimal Power Flow using Hybrid method of Biogeography-Based Optimization and Differential Evolution Algorithm: A case study of the Algerian Electrical Network

    Directory of Open Access Journals (Sweden)

    Ouafa Herbadji

    2016-03-01

    Full Text Available This paper proposes a new hybrid metaheuristique algorithm based on the hybridization of Biogeography-based optimization with the Differential Evolution for solving the optimal power flow problem with emission control. The biogeography-based optimization (BBO algorithm is strongly influenced by equilibrium theory of island biogeography, mainly through two steps: Migration and Mutation. Differential Evolution (DE is one of the best Evolutionary Algorithms for global optimization. The hybridization of these two methods is used to overcome traps of local optimal solutions and problems of time consumption. The objective of this paper is to minimize the total fuel cost of generation, total emission, total real power loss and also maintain an acceptable system performance in terms of limits on generator real power, bus voltages and power flow of transmission lines. In the present work, BBO/DE has been applied to solve the optimal power flow problems on IEEE 30-bus test system and the Algerian electrical network 114 bus. The results obtained from this method show better performances compared with DE, BBO and other well known metaheuristique and evolutionary optimization methods.

  16. Algorithmic Complexity and Reprogrammability of Chemical Structure Networks

    KAUST Repository

    Zenil, Hector

    2018-02-16

    Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.

  17. AN INTELLIGENT VERTICAL HANDOVER DECISION ALGORITHM FOR WIRELESS HETEROGENEOUS NETWORKS

    OpenAIRE

    V. Anantha Narayanan; Rajeswari, A; Sureshkumar, V.

    2014-01-01

    The Next Generation Wireless Networks (NGWN) should be compatible with other communication technologies to offer the best connectivity to the mobile terminal which can access any IP based services at any time from any network without the knowledge of its user. It requires an intelligent vertical handover decision making algorithm to migrate between technologies that enable seamless mobility, always best connection and minimal terminal power consumption. Currently existing decision engines are...

  18. Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data

    Science.gov (United States)

    2015-07-01

    Bayesian networks. In IJCNN, pp. 2391– 2396. Ghahramani, Z., & Jordan, M. I. (1997). Factorial hidden markov models. Machine Learning, 29(2-3), 245–273...algorithms like EM (which require inference). 1 INTRODUCTION When learning the parameters of a Bayesian network from data with missing values, the...missing at random assumption (MAR), but also for a broad class of data that is not MAR. Their analysis is based on a graphical representation for

  19. An algorithm J-SC of detecting communities in complex networks

    Science.gov (United States)

    Hu, Fang; Wang, Mingzhu; Wang, Yanran; Hong, Zhehao; Zhu, Yanhui

    2017-11-01

    Currently, community detection in complex networks has become a hot-button topic. In this paper, based on the Spectral Clustering (SC) algorithm, we introduce the idea of Jacobi iteration, and then propose a novel algorithm J-SC for community detection in complex networks. Furthermore, the accuracy and efficiency of this algorithm are tested by some representative real-world networks and several computer-generated networks. The experimental results indicate that the J-SC algorithm can accurately and effectively detect the community structure in these networks. Meanwhile, compared with the state-of-the-art community detecting algorithms SC, SOM, K-means, Walktrap and Fastgreedy, the J-SC algorithm has better performance, reflecting that this new algorithm can acquire higher values of modularity and NMI. Moreover, this new algorithm has faster running time than SOM and Walktrap algorithms.

  20. Block Least Mean Squares Algorithm over Distributed Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    T. Panigrahi

    2012-01-01

    Full Text Available In a distributed parameter estimation problem, during each sampling instant, a typical sensor node communicates its estimate either by the diffusion algorithm or by the incremental algorithm. Both these conventional distributed algorithms involve significant communication overheads and, consequently, defeat the basic purpose of wireless sensor networks. In the present paper, we therefore propose two new distributed algorithms, namely, block diffusion least mean square (BDLMS and block incremental least mean square (BILMS by extending the concept of block adaptive filtering techniques to the distributed adaptation scenario. The performance analysis of the proposed BDLMS and BILMS algorithms has been carried out and found to have similar performances to those offered by conventional diffusion LMS and incremental LMS algorithms, respectively. The convergence analyses of the proposed algorithms obtained from the simulation study are also found to be in agreement with the theoretical analysis. The remarkable and interesting aspect of the proposed block-based algorithms is that their communication overheads per node and latencies are less than those of the conventional algorithms by a factor as high as the block size used in the algorithms.

  1. CN: a consensus algorithm for inferring gene regulatory networks using the SORDER algorithm and conditional mutual information test.

    Science.gov (United States)

    Aghdam, Rosa; Ganjali, Mojtaba; Zhang, Xiujun; Eslahchi, Changiz

    2015-03-01

    Inferring Gene Regulatory Networks (GRNs) from gene expression data is a major challenge in systems biology. The Path Consistency (PC) algorithm is one of the popular methods in this field. However, as an order dependent algorithm, PC algorithm is not robust because it achieves different network topologies if gene orders are permuted. In addition, the performance of this algorithm depends on the threshold value used for independence tests. Consequently, selecting suitable sequential ordering of nodes and an appropriate threshold value for the inputs of PC algorithm are challenges to infer a good GRN. In this work, we propose a heuristic algorithm, namely SORDER, to find a suitable sequential ordering of nodes. Based on the SORDER algorithm and a suitable interval threshold for Conditional Mutual Information (CMI) tests, a network inference method, namely the Consensus Network (CN), has been developed. In the proposed method, for each edge of the complete graph, a weighted value is defined. This value is considered as the reliability value of dependency between two nodes. The final inferred network, obtained using the CN algorithm, contains edges with a reliability value of dependency of more than a defined threshold. The effectiveness of this method is benchmarked through several networks from the DREAM challenge and the widely used SOS DNA repair network in Escherichia coli. The results indicate that the CN algorithm is suitable for learning GRNs and it considerably improves the precision of network inference. The source of data sets and codes are available at .

  2. Odd-graceful labeling algorithm and its implementation of generalized ring core network

    Science.gov (United States)

    Xie, Jianmin; Hong, Wenmei; Zhao, Tinggang; Yao, Bing

    2017-08-01

    The computer implementation of some labeling algorithms of special networks has practical guiding significance to computer communication network system design of functional, reliability, low communication cost. Generalized ring core network is a very important hybrid network topology structure and it is the basis of generalized ring network. In this paper, based on the requirements of research of generalized ring network addressing, the author has designed the odd-graceful labeling algorithm of generalized ring core network when n1, n2,…nm ≡ 0(mod 4), proved odd-graceful of the structure, worked out the corresponding software, and shown the practical effectiveness of this algorithm with our experimental data.

  3. A source location algorithm of lightning detection networks in China

    Directory of Open Access Journals (Sweden)

    Z. X. Hu

    2010-10-01

    Full Text Available Fast and accurate retrieval of lightning sources is crucial to the early warning and quick repairs of lightning disaster. An algorithm for computing the location and onset time of cloud-to-ground lightning using the time-of-arrival (TOA and azimuth-of-arrival (AOA data is introduced in this paper. The algorithm can iteratively calculate the least-squares solution of a lightning source on an oblate spheroidal Earth. It contains a set of unique formulas to compute the geodesic distance and azimuth and an explicit method to compute the initial position using TOA data of only three sensors. Since the method accounts for the effects of the oblateness of the Earth, it would provide a more accurate solution than algorithms based on planar or spherical surface models. Numerical simulations are presented to test this algorithm and evaluate the performance of a lightning detection network in the Hubei province of China. Since 1990s, the proposed algorithm has been used in many regional lightning detection networks installed by the electric power system in China. It is expected that the proposed algorithm be used in more lightning detection networks and other location systems.

  4. A new mutually reinforcing network node and link ranking algorithm.

    Science.gov (United States)

    Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E

    2015-10-23

    This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity.

  5. A new mutually reinforcing network node and link ranking algorithm

    Science.gov (United States)

    Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E.

    2015-10-01

    This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity.

  6. Applied Graph-Mining Algorithms to Study Biomolecular Interaction Networks

    Science.gov (United States)

    2014-01-01

    Protein-protein interaction (PPI) networks carry vital information on the organization of molecular interactions in cellular systems. The identification of functionally relevant modules in PPI networks is one of the most important applications of biological network analysis. Computational analysis is becoming an indispensable tool to understand large-scale biomolecular interaction networks. Several types of computational methods have been developed and employed for the analysis of PPI networks. Of these computational methods, graph comparison and module detection are the two most commonly used strategies. This review summarizes current literature on graph kernel and graph alignment methods for graph comparison strategies, as well as module detection approaches including seed-and-extend, hierarchical clustering, optimization-based, probabilistic, and frequent subgraph methods. Herein, we provide a comprehensive review of the major algorithms employed under each theme, including our recently published frequent subgraph method, for detecting functional modules commonly shared across multiple cancer PPI networks. PMID:24800226

  7. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

    Directory of Open Access Journals (Sweden)

    Christian L Barrett

    2006-05-01

    Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

  8. A Compression Algorithm in Wireless Sensor Networks of Bearing Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Bin; Meng Qingfeng; Wang Nan [Theory of Lubrication and Bearing Institute, Xi' an Jiaotong University Xi' an, 710049 (China); Li Zhi, E-mail: rthree.zhengbin@stu.xjtu.edu.cn [Dalian Machine Tool Group Corp. Dalian, 116620 (China)

    2011-07-19

    The energy consumption of wireless sensor networks (WSNs) is always an important problem in the application of wireless sensor networks. This paper proposes a data compression algorithm to reduce amount of data and energy consumption during the data transmission process in the on-line WSNs-based bearing monitoring system. The proposed compression algorithm is based on lifting wavelets, Zerotree coding and Hoffman coding. Among of that, 5/3 lifting wavelets is used for dividing data into different frequency bands to extract signal characteristics. Zerotree coding is applied to calculate the dynamic thresholds to retain the attribute data. The attribute data are then encoded by Hoffman coding to further enhance the compression ratio. In order to validate the algorithm, simulation is carried out by using Matlab. The result of simulation shows that the proposed algorithm is very suitable for the compression of bearing monitoring data. The algorithm has been successfully used in online WSNs-based bearing monitoring system, in which TI DSP TMS320F2812 is used to realize the algorithm.

  9. System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm

    Science.gov (United States)

    Wang, Danshi; Zhang, Min; Li, Ze; Song, Chuang; Fu, Meixia; Li, Jin; Chen, Xue

    2017-09-01

    A bio-inspired detector based on the artificial neural network (ANN) and genetic algorithm is proposed in the context of a coherent optical transmission system. The ANN is designed to mitigate 16-quadrature amplitude modulation system impairments, including linear impairment: Gaussian white noise, laser phase noise, in-phase/quadrature component imbalance, and nonlinear impairment: nonlinear phase. Without prior information or heuristic assumptions, the ANN, functioning as a machine learning algorithm, can learn and capture the characteristics of impairments from observed data. Numerical simulations were performed, and dispersion-shifted, dispersion-managed, and dispersion-unmanaged fiber links were investigated. The launch power dynamic range and maximum transmission distance for the bio-inspired method were 2.7 dBm and 240 km greater, respectively, than those of the maximum likelihood estimation algorithm. Moreover, the linewidth tolerance of the bio-inspired technique was 170 kHz greater than that of the k-means method, demonstrating its usability for digital signal processing in coherent systems.

  10. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1999-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  11. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1998-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  12. A Fast and Efficient Algorithm for Mining Top-k Nodes in Complex Networks

    Science.gov (United States)

    Liu, Dong; Jing, Yun; Zhao, Jing; Wang, Wenjun; Song, Guojie

    2017-02-01

    One of the key problems in social network analysis is influence maximization, which has great significance both in theory and practical applications. Given a complex network and a positive integer k, and asks the k nodes to trigger the largest expected number of the remaining nodes. Many mature algorithms are mainly divided into propagation-based algorithms and topology- based algorithms. The propagation-based algorithms are based on optimization of influence spread process, so the influence spread of them significantly outperforms the topology-based algorithms. But these algorithms still takes days to complete on large networks. Contrary to propagation based algorithms, the topology-based algorithms are based on intuitive parameter statistics and static topology structure properties. Their running time are extremely short but the results of influence spread are unstable. In this paper, we propose a novel topology-based algorithm based on local index rank (LIR). The influence spread of our algorithm is close to the propagation-based algorithm and sometimes over them. Moreover, the running time of our algorithm is millions of times shorter than that of propagation-based algorithms. Our experimental results show that our algorithm has a good and stable performance in IC and LT model.

  13. Multimedia over cognitive radio networks algorithms, protocols, and experiments

    CERN Document Server

    Hu, Fei

    2014-01-01

    PrefaceAbout the EditorsContributorsNetwork Architecture to Support Multimedia over CRNA Management Architecture for Multimedia Communication in Cognitive Radio NetworksAlexandru O. Popescu, Yong Yao, Markus Fiedler , and Adrian P. PopescuPaving a Wider Way for Multimedia over Cognitive Radios: An Overview of Wideband Spectrum Sensing AlgorithmsBashar I. Ahmad, Hongjian Sun, Cong Ling, and Arumugam NallanathanBargaining-Based Spectrum Sharing for Broadband Multimedia Services in Cognitive Radio NetworkYang Yan, Xiang Chen, Xiaofeng Zhong, Ming Zhao, and Jing WangPhysical Layer Mobility Challen

  14. The General Regression Neural Network Based on the Fruit Fly Optimization Algorithm and the Data Inconsistency Rate for Transmission Line Icing Prediction

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2017-12-01

    Full Text Available Accurate and stable prediction of icing thickness on transmission lines is of great significance for ensuring the safe operation of the power grid. In order to improve the accuracy and stability of icing prediction, an innovative prediction model based on the generalized regression neural network (GRNN and the fruit fly optimization algorithm (FOA is proposed. Firstly, a feature selection method based on the data inconsistency rate (IR is adopted to select the optimal feature, which aims to reduce redundant input vectors. Then, the fruit FOA is utilized for optimization of smoothing factor for the GRNN. Lastly, the icing forecasting method FOA-IR-GRNN is established. Two cases in different locations and different months are selected to validate the proposed model. The results indicate that the new hybrid FOA-IR-GRNN model presents better accuracy, robustness, and generality in icing forecasting.

  15. Genetic algorithm application in optimization of wireless sensor networks.

    Science.gov (United States)

    Norouzi, Ali; Zaim, A Halim

    2014-01-01

    There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs.

  16. Prediction of SEM–X-ray images’ data of cement-based materials using artificial neural network algorithm

    Directory of Open Access Journals (Sweden)

    Ashraf Ragab Mohamed

    2014-09-01

    Full Text Available Recent advances of computational capabilities have motivated the development of more sophisticated models to simulate cement-based hydration. However, the input parameters for such models, obtained from SEM–X-ray image analyses, are quite complicated and hinder their versatile application. This paper addresses the utilization of the artificial neural networks (ANNs to predict the SEM–X-ray images’ data of cement-based materials (surface area fraction and the cement phases’ correlation functions. ANNs have been used to correlate these data, already obtained for 21 types of cement, to basic cement data (cement compounds and fineness. Two approaches have been proposed; the ANN, and the ANN-regression method. Comparisons have shown that the ANN proves effectiveness in predicting the surface area fraction, while the ANN-regression is more computationally suitable for the correlation functions. Results have shown good agreement between the proposed techniques and the actual data with respect to hydration products, degree of hydration, and simulated images.

  17. Wireless Sensor Networks : Structure and Algorithms

    NARCIS (Netherlands)

    van Dijk, T.C.|info:eu-repo/dai/nl/304841293

    2014-01-01

    In this thesis we look at various problems in wireless networking. First we consider two problems in physical-model networks. We introduce a new model for localisation. The model is based on a range-free model of radio transmissions. The first scheme is randomised and we analyse its expected

  18. Structure-Based Algorithms for Microvessel Classification

    KAUST Repository

    Smith, Amy F.

    2015-02-01

    © 2014 The Authors. Microcirculation published by John Wiley & Sons Ltd. Objective: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. Methods: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. Results: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. Conclusions: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.

  19. A Differentiated Anonymity Algorithm for Social Network Privacy Preservation

    Directory of Open Access Journals (Sweden)

    Yuqin Xie

    2016-12-01

    Full Text Available Devising methods to publish social network data in a form that affords utility without compromising privacy remains a longstanding challenge, while many existing methods based on k-anonymity algorithms on social networks may result in nontrivial utility loss without analyzing the social network topological structure and without considering the attributes of sparse distribution. Toward this objective, we explore the impact of the attributes of sparse distribution on data utility. Firstly, we propose a new utility metric that emphasizes network structure distortion and attribute value loss. Furthermore, we design and implement a differentiated k-anonymity l-diversity social network anonymity algorithm, which seeks to protect users’ privacy in social networks and increase the usability of the published anonymized data. Its key idea is that it divides a node into two child nodes and only anonymizes sensitive values to satisfy anonymity requirements. The evaluation results show that our method can effectively improve the data utility as compared to generalized anonymizing algorithms.

  20. An Improved Harmony Search Algorithm for Power Distribution Network Planning

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Distribution network planning because of involving many variables and constraints is a multiobjective, discrete, nonlinear, and large-scale optimization problem. Harmony search (HS algorithm is a metaheuristic algorithm inspired by the improvisation process of music players. HS algorithm has several impressive advantages, such as easy implementation, less adjustable parameters, and quick convergence. But HS algorithm still has some defects such as premature convergence and slow convergence speed. According to the defects of the standard algorithm and characteristics of distribution network planning, an improved harmony search (IHS algorithm is proposed in this paper. We set up a mathematical model of distribution network structure planning, whose optimal objective function is to get the minimum annual cost and constraint conditions are overload and radial network. IHS algorithm is applied to solve the complex optimization mathematical model. The empirical results strongly indicate that IHS algorithm can effectively provide better results for solving the distribution network planning problem compared to other optimization algorithms.

  1. Wireless sensor network-based improved NPW leakage detection algorithm for real-time application in pipelines

    CSIR Research Space (South Africa)

    Adedeji, K

    2016-09-01

    Full Text Available of pipelines transporting this resource needs to be reduced. This paper briefly elaborates on work in progress employing wireless sensor networks (WSNs) to an improved negative pressure wave method for real-time leakage monitoring of a water pipeline network....

  2. Solving Hub Network Problem Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mursyid Hasan Basri

    2012-01-01

    non-linearity, so there is no guarantee to find the optimal solution. Moreover, it has generated a great number of variables. Therefore, a heuristic method is required to find near optimal solution with reasonable computation time. For this reason, a genetic algorithm (GA-based procedure is proposed. The proposed procedure then is applied to the same problem as discussed in the basic model. The results indicated that there is significant improvement on hub locations. Flows are successfully consolidated to several big ports as expected. With regards to spoke allocations, however, spokes are not fairly allocated.Keywords: Hub and Spoke Model; Marine Transportation; Genetic Algorithm

  3. Evolutionary Algorithms For Neural Networks Binary And Real Data Classification

    Directory of Open Access Journals (Sweden)

    Dr. Hanan A.R. Akkar

    2015-08-01

    Full Text Available Artificial neural networks are complex networks emulating the way human rational neurons process data. They have been widely used generally in prediction clustering classification and association. The training algorithms that used to determine the network weights are almost the most important factor that influence the neural networks performance. Recently many meta-heuristic and Evolutionary algorithms are employed to optimize neural networks weights to achieve better neural performance. This paper aims to use recently proposed algorithms for optimizing neural networks weights comparing these algorithms performance with other classical meta-heuristic algorithms used for the same purpose. However to evaluate the performance of such algorithms for training neural networks we examine such algorithms to classify four opposite binary XOR clusters and classification of continuous real data sets such as Iris and Ecoli.

  4. Information Dynamics in Networks: Models and Algorithms

    Science.gov (United States)

    2016-09-13

    ICDCS). 29-JUN-15, Columbus, OH, USA. : , . Value-Based Network Externalities and Optimal Auction Design, Conference on Web and Internet Economics...NAME Total Number: NAME Total Number: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: ...... ...... Inventions (DD882) Scientific Progress In...Value-based network externalities and optimal auction design. In Web and Internet Economics - 10th International Conference, WINE 2014, Beijing, China, December 14-17, pages 147–160, 2014. 6

  5. RECONFIGURACIÓN DE REDES ELÉCTRICAS DE MEDIA TENSIÓN BASADA EN EL ALGORITMO DE PRIM RECONFIGURATION OF MEDIUM VOLTAGE NETWORKS BASED ON PRIM'S ALGORITHM

    Directory of Open Access Journals (Sweden)

    Angely Cárcamo-Gallardo

    2007-04-01

    Full Text Available En este trabajo se presenta un nuevo algoritmo que permite reconfigurar un sistema de distribución (SD de energía eléctrica minimizando la energía no suministrada (ENS. El SD se modela utilizando teoría de grafos, mientras que la ENS se formula recursivamente y se parametriza en términos de los índices de confiabilidad del SD. Empleando esta modelación se transforma el problema de optimización en el problema de encontrar el árbol de mínima expansión (AME a partir del grafo que modela al SD, donde la métrica de distancia utilizada corresponde a la ENS a cada nodo del SD. Para encontrar de manera eficiente el AME se utiliza el algoritmo de Prim, ya que pertenece a la clase de algoritmos voraces en el cálculo del AME. Adicionalmente, se propone un algoritmo que realiza una revisión del AME obtenido analizando las topologías que fueron descartadas aleatoriamente durante el proceso de decisión. El desempeño del algoritmo de optimización se evalúa en sistemas de pruebas y en dos sistemas eléctricos reales.This paper presents a novel algorithm to reconfigure an electric power distribution network (EPDN, minimizing its non-supplied energy (NSE. The EPDN is modeled using graph theory and the NSE is recursively formulated in terms of the reliability parameters of the EPDN. Based on this mathematical model, we transform the original optimization problem into the graph theory problem of finding the minimum spanning tree (MST of a given graph, which models the EPDN. The distance metric employed by the searching algorithm is the NSE. In order to efficiently find the MST, Prim's algorithm is employed due to is greedy search behavior. In addition, a backtracking algorithm is used to check the MST obtained. The backtracking algorithm analyzes all the candidate topologies that were randomly discarded during the decision process. The performance of the optimization algorithm is evaluated using testing systems and two actual EPDNs.

  6. DS+: Reliable Distributed Snapshot Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Gamze Uslu

    2013-01-01

    Full Text Available Acquiring the snapshot of a distributed system helps gathering system related global state. In wireless sensor networks (WSNs, global state shows if a node is terminated or deadlock occurs along with many other situations which prevents a WSN from fully functioning. In this paper, we present a fully distributed snapshot acquisition algorithm adapted to tree topology wireless sensor networks (WSNs. Since snapshot acquisition is through control messages sent over highly lossy wireless channels and congested nodes, we enhanced the snapshot algorithm with a sink based reliability suit to achieve robustness. We analyzed the performance of the algorithm in terms of snapshot success ratio and response time in simulation and experimental small test bed environment. The results reveal that the proposed tailor made reliability model increases snapshot acquisition performance by a factor of seven and response time by a factor of two in a 30-node network. We have also shown that the proposed algorithm outperforms its counterparts in the specified network setting.

  7. Consensus algorithm in smart grid and communication networks

    Science.gov (United States)

    Alfagee, Husain Abdulaziz

    On a daily basis, consensus theory attracts more and more researches from different areas of interest, to apply its techniques to solve technical problems in a way that is faster, more reliable, and even more precise than ever before. A power system network is one of those fields that consensus theory employs extensively. The use of the consensus algorithm to solve the Economic Dispatch and Load Restoration Problems is a good example. Instead of a conventional central controller, some researchers have explored an algorithm to solve the above mentioned problems, in a distribution manner, using the consensus algorithm, which is based on calculation methods, i.e., non estimation methods, for updating the information consensus matrix. Starting from this point of solving these types of problems mentioned, specifically, in a distribution fashion, using the consensus algorithm, we have implemented a new advanced consensus algorithm. It is based on the adaptive estimation techniques, such as the Gradient Algorithm and the Recursive Least Square Algorithm, to solve the same problems. This advanced work was tested on different case studies that had formerly been explored, as seen in references 5, 7, and 18. Three and five generators, or agents, with different topologies, correspond to the Economic Dispatch Problem and the IEEE 16-Bus power system corresponds to the Load Restoration Problem. In all the cases we have studied, the results met our expectations with extreme accuracy, and completely matched the results of the previous researchers. There is little question that this research proves the capability and dependability of using the consensus algorithm, based on the estimation methods as the Gradient Algorithm and the Recursive Least Square Algorithm to solve such power problems.

  8. A Decomposition Algorithm for Learning Bayesian Network Structures from Data

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Cordero Hernandez, Jorge

    2008-01-01

    It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...... the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks....

  9. Pressure prediction model based on artificial neural network optimized by genetic algorithm and its application in quasi-static calibration of piezoelectric high-pressure sensor.

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Jiang, Jian; Shang, Fei; Chen, Jing

    2016-12-01

    This paper applies back propagation neural network (BPNN) optimized by genetic algorithm (GA) for the prediction of pressure generated by a drop-weight device and the quasi-static calibration of piezoelectric high-pressure sensors for the measurement of propellant powder gas pressure. The method can effectively overcome the slow convergence and local minimum problems of BPNN. Based on test data of quasi-static comparison calibration method, a mathematical model between each parameter of drop-weight device and peak pressure and pulse width was established, through which the practical quasi-static calibration without continuously using expensive reference sensors could be realized. Compared with multiple linear regression method, the GA-BPNN model has higher prediction accuracy and stability. The percentages of prediction error of peak pressure and pulse width are less than 0.7% and 0.3%, respectively.

  10. Intelligent Control of Urban Road Networks: Algorithms, Systems and Communications

    Science.gov (United States)

    Smith, Mike

    This paper considers control in road networks. Using a simple example based on the well-known Braess network [1] the paper shows that reducing delay for traffic, assuming that the traffic distribution is fixed, may increase delay when travellers change their travel choices in light of changes in control settings and hence delays. It is shown that a similar effect occurs within signal controlled networks. In this case the effect appears at first sight to be much stronger: the overall capacity of a network may be substantially reduced by utilising standard responsive signal control algorithms. In seeking to reduce delays for existing flows, these policies do not allow properly for consequent routeing changes by travellers. Control methods for signal-controlled networks that do take proper account of the reactions of users are suggested; these require further research, development, and careful real-life trials.

  11. Construction of monitoring model and algorithm design on passenger security during shipping based on improved Bayesian network.

    Science.gov (United States)

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.

  12. Construction of Monitoring Model and Algorithm Design on Passenger Security during Shipping Based on Improved Bayesian Network

    Directory of Open Access Journals (Sweden)

    Jiali Wang

    2014-01-01

    Full Text Available A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.

  13. A community detection algorithm based on structural similarity

    Science.gov (United States)

    Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu

    2017-09-01

    In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.

  14. Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks

    Science.gov (United States)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.

  15. A Message-Passing Algorithm for Wireless Network Scheduling.

    Science.gov (United States)

    Paschalidis, Ioannis Ch; Huang, Fuzhuo; Lai, Wei

    2015-10-01

    We consider scheduling in wireless networks and formulate it as Maximum Weighted Independent Set (MWIS) problem on a "conflict" graph that captures interference among simultaneous transmissions. We propose a novel, low-complexity, and fully distributed algorithm that yields high-quality feasible solutions. Our proposed algorithm consists of two phases, each of which requires only local information and is based on message-passing. The first phase solves a relaxation of the MWIS problem using a gradient projection method. The relaxation we consider is tighter than the simple linear programming relaxation and incorporates constraints on all cliques in the graph. The second phase of the algorithm starts from the solution of the relaxation and constructs a feasible solution to the MWIS problem. We show that our algorithm always outputs an optimal solution to the MWIS problem for perfect graphs. Simulation results compare our policies against Carrier Sense Multiple Access (CSMA) and other alternatives and show excellent performance.

  16. GPS-free localization algorithm for wireless sensor networks.

    Science.gov (United States)

    Wang, Lei; Xu, Qingzheng

    2010-01-01

    Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time.

  17. A Novel Fractional-Order PID Controller for Integrated Pressurized Water Reactor Based on Wavelet Kernel Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-xin Zhao

    2014-01-01

    Full Text Available This paper presents a novel wavelet kernel neural network (WKNN with wavelet kernel function. It is applicable in online learning with adaptive parameters and is applied on parameters tuning of fractional-order PID (FOPID controller, which could handle time delay problem of the complex control system. Combining the wavelet function and the kernel function, the wavelet kernel function is adopted and validated the availability for neural network. Compared to the conservative wavelet neural network, the most innovative character of the WKNN is its rapid convergence and high precision in parameters updating process. Furthermore, the integrated pressurized water reactor (IPWR system is established by RELAP5, and a novel control strategy combining WKNN and fuzzy logic rule is proposed for shortening controlling time and utilizing the experiential knowledge sufficiently. Finally, experiment results verify that the control strategy and controller proposed have the practicability and reliability in actual complicated system.

  18. GOP-based channel rate allocation using genetic algorithm for scalable video streaming over error-prone networks.

    Science.gov (United States)

    Fang, Tao; Chau, Lap-Pui

    2006-06-01

    In this paper, we address the problem of unequal error protection (UEP) for scalable video transmission over wireless packet-erasure channel. Unequal amounts of protection are allocated to the different frames (I- or P-frame) of a group-of-pictures (GOP), and in each frame, unequal amounts of protection are allocated to the progressive bit-stream of scalable video to provide a graceful degradation of video quality as packet loss rate varies. We use a genetic algorithm (GA) to quickly get the allocation pattern, which is hard to get with other conventional methods, like hill-climbing method. Theoretical analysis and experimental results both demonstrate the advantage of the proposed algorithm.

  19. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    Science.gov (United States)

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  20. An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks.

    Science.gov (United States)

    Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen

    2016-01-01

    The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper.

  1. Network intrusion detection by the coevolutionary immune algorithm of artificial immune systems with clonal selection

    Science.gov (United States)

    Salamatova, T.; Zhukov, V.

    2017-02-01

    The paper presents the application of the artificial immune systems apparatus as a heuristic method of network intrusion detection for algorithmic provision of intrusion detection systems. The coevolutionary immune algorithm of artificial immune systems with clonal selection was elaborated. In testing different datasets the empirical results of evaluation of the algorithm effectiveness were achieved. To identify the degree of efficiency the algorithm was compared with analogs. The fundamental rules based of solutions generated by this algorithm are described in the article.

  2. A Formal Verification Model for Performance Analysis of Reinforcement Learning Algorithms Applied t o Dynamic Networks

    OpenAIRE

    Shrirang Ambaji KULKARNI; Raghavendra G . RAO

    2017-01-01

    Routing data packets in a dynamic network is a difficult and important problem in computer networks. As the network is dynamic, it is subject to frequent topology changes and is subject to variable link costs due to congestion and bandwidth. Existing shortest path algorithms fail to converge to better solutions under dynamic network conditions. Reinforcement learning algorithms posses better adaptation techniques in dynamic environments. In this paper we apply model based Q-Routing technique ...

  3. Distributed Multitarget Probabilistic Coverage Control Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ying Tian

    2014-01-01

    Full Text Available This paper is concerned with the problem of multitarget coverage based on probabilistic detection model. Coverage configuration is an effective method to alleviate the energy-limitation problem of sensors. Firstly, considering the attenuation of node’s sensing ability, the target probabilistic coverage problem is defined and formalized, which is based on Neyman-Peason probabilistic detection model. Secondly, in order to turn off redundant sensors, a simplified judging rule is derived, which makes the probabilistic coverage judgment execute on each node locally. Thirdly, a distributed node schedule scheme is proposed for implementing the distributed algorithm. Simulation results show that this algorithm is robust to the change of network size, and when compared with the physical coverage algorithm, it can effectively minimize the number of active sensors, which guarantees all the targets γ-covered.

  4. Interpolative Boolean algebra based multicriteria routing algorithm

    Directory of Open Access Journals (Sweden)

    Jeremić Marina

    2015-01-01

    Full Text Available In order to improve the quality-of-service of distributed applications, we propose a multi-criteria algorithm based on interpolative Boolean algebra for routing in an overlay network. We use a mesh topology because it can be easily implemented, and it makes addressing of the cores quite simple during routing. In this paper, we consider four criteria: buffer usage, the distance between peers, bandwidth, and remaining battery power. The proposed routing algorithm determines the path which satisfies quality-of service requirements using interpolative Boolean algebra; the decision at each node is made based on the ranking of available options considering multiple constraints. The simulation shows that the proposed approach provides better results than the standard shortest path routing algorithm.

  5. A simple and efficient algorithm for modeling modular complex networks

    Science.gov (United States)

    Kowalczyk, Mateusz; Fronczak, Piotr; Fronczak, Agata

    2017-09-01

    In this paper we introduce a new algorithm to generate networks in which node degrees and community sizes can follow any arbitrary distribution. We compare the quality and efficiency of the proposed algorithm and the well-known algorithm by Lancichinetti et al. In contrast to the later one, the new algorithm, at the cost of accuracy, allows to generate two orders of magnitude larger networks in a reasonable time and it can be easily described analytically.

  6. Recurrent neural networks training with stable bounding ellipsoid algorithm.

    Science.gov (United States)

    Yu, Wen; de Jesús Rubio, José

    2009-06-01

    Bounding ellipsoid (BE) algorithms offer an attractive alternative to traditional training algorithms for neural networks, for example, backpropagation and least squares methods. The benefits include high computational efficiency and fast convergence speed. In this paper, we propose an ellipsoid propagation algorithm to train the weights of recurrent neural networks for nonlinear systems identification. Both hidden layers and output layers can be updated. The stability of the BE algorithm is proven.

  7. Training product unit neural networks with genetic algorithms

    Science.gov (United States)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  8. New Scheduling Algorithms for Agile All-Photonic Networks

    Science.gov (United States)

    Mehri, Mohammad Saleh; Ghaffarpour Rahbar, Akbar

    2017-12-01

    An optical overlaid star network is a class of agile all-photonic networks that consists of one or more core node(s) at the center of the star network and a number of edge nodes around the core node. In this architecture, a core node may use a scheduling algorithm for transmission of traffic through the network. A core node is responsible for scheduling optical packets that arrive from edge nodes and switching them toward their destinations. Nowadays, most edge nodes use virtual output queue (VOQ) architecture for buffering client packets to achieve high throughput. This paper presents two efficient scheduling algorithms called discretionary iterative matching (DIM) and adaptive DIM. These schedulers find maximum matching in a small number of iterations and provide high throughput and incur low delay. The number of arbiters in these schedulers and the number of messages exchanged between inputs and outputs of a core node are reduced. We show that DIM and adaptive DIM can provide better performance in comparison with iterative round-robin matching with SLIP (iSLIP). SLIP means the act of sliding for a short distance to select one of the requested connections based on the scheduling algorithm.

  9. Quantifying the multi-scale performance of network inference algorithms.

    Science.gov (United States)

    Oates, Chris J; Amos, Richard; Spencer, Simon E F

    2014-10-01

    Graphical models are widely used to study complex multivariate biological systems. Network inference algorithms aim to reverse-engineer such models from noisy experimental data. It is common to assess such algorithms using techniques from classifier analysis. These metrics, based on ability to correctly infer individual edges, possess a number of appealing features including invariance to rank-preserving transformation. However, regulation in biological systems occurs on multiple scales and existing metrics do not take into account the correctness of higher-order network structure. In this paper novel performance scores are presented that share the appealing properties of existing scores, whilst capturing ability to uncover regulation on multiple scales. Theoretical results confirm that performance of a network inference algorithm depends crucially on the scale at which inferences are to be made; in particular strong local performance does not guarantee accurate reconstruction of higher-order topology. Applying these scores to a large corpus of data from the DREAM5 challenge, we undertake a data-driven assessment of estimator performance. We find that the "wisdom of crowds" network, that demonstrated superior local performance in the DREAM5 challenge, is also among the best performing methodologies for inference of regulation on multiple length scales.

  10. Ground-based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distributions of aerosol components

    Science.gov (United States)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Hara, Yukari; Itsushi, Uno; Yasunaga, Kazuaki; Kudo, Rei; Kim, Sang-Woo

    2017-02-01

    We improved two-wavelength polarization Mie-scattering lidars at several main sites of the Asian dust and aerosol lidar observation network (AD-Net) by adding a nitrogen Raman scatter measurement channel at 607 nm and have conducted ground-based network observation with the improved Mie-Raman lidars (MRL) in East Asia since 2009. This MRL provides 1α+2β+1δ data at nighttime: extinction coefficient (α532), backscatter coefficient (β532), and depolarization ratio (δ532) of particles at 532 nm and an attenuated backscatter coefficient at 1064 nm (βat,1064). Furthermore, we developed a Multi-wavelength Mie-Raman lidar (MMRL) providing 2α+3β+2δ data (α at 355 and 532 nm; β at 355 and 532; βat at 1064 nm; and δ at 355 and 532 nm) and constructed MMRLs at several main sites of the AD-Net. We identified an aerosol-rich layer and height of the planetary boundary layer (PBL) using βat,1064 data, and derived aerosol optical properties (AOPs, for example, αa, βa, δa, and lidar ratio (Sa)). We demonstrated that AOPs cloud be derived with appropriate accuracy. Seasonal means of AOPs in the PBL were evaluated for each MRL observation site using three-year data from 2010 through 2012; the AOPs changed according to each season and region. For example, Sa,532 at Fukue, Japan, were 44±15 sr in winter and 49±17 in summer; those at Seoul, Korea, were 56±18 sr in winter and 62±15 sr in summer. We developed an algorithm to estimate extinction coefficients at 532 nm for black carbon, dust, sea-salt, and air-pollution aerosols consisting of a mixture of sulfate, nitrate, and organic-carbon substances using the 1α532+2β532 and 1064+1δ532 data. With this method, we assume an external mixture of aerosol components and prescribe their size distributions, refractive indexes, and particle shapes. We applied the algorithm to the observed data to demonstrate the performance of the algorithm and determined the vertical structure for each aerosol component.

  11. Genetic Algorithms for Optimal Reactive Power Compensation of a Power System with Wind Generators based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    L. Krichen

    2007-03-01

    Full Text Available In this paper, we develop a method to maintain an acceptable voltages profile and minimization of active losses of a power system including wind generators in real time. These tasks are ensured by acting on capacitor and inductance benches implemented in the consuming nodes. To solve this problem, we minimize an objective function associated to active losses under constraints imposed on the voltages and the reactive productions of the various benches. The minimization procedure was realised by the use of genetic algorithms (GA. The major disadvantage of this technique is that it requires a significant computing time thus not making it possible to deal with the problem in real time. After a training phase, a neural model has the capacity to provide a good estimation of the voltages, the reactive productions and the losses for forecast curves of the load and the wind speed, in real time.

  12. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.

  13. A source-initiated on-demand routing algorithm based on the Thorup-Zwick theory for mobile wireless sensor networks.

    Science.gov (United States)

    Mao, Yuxin; Zhu, Ping

    2013-01-01

    The unreliability and dynamics of mobile wireless sensor networks make it hard to perform end-to-end communications. This paper presents a novel source-initiated on-demand routing mechanism for efficient data transmission in mobile wireless sensor networks. It explores the Thorup-Zwick theory to achieve source-initiated on-demand routing with time efficiency. It is able to find out shortest routing path between source and target in a network and transfer data in linear time. The algorithm is easy to be implemented and performed in resource-constrained mobile wireless sensor networks. We also evaluate the approach by analyzing its cost in detail. It can be seen that the approach is efficient to support data transmission in mobile wireless sensor networks.

  14. VSMURF: A Novel Sliding Window Cleaning Algorithm for RFID Networks

    Directory of Open Access Journals (Sweden)

    He Xu

    2017-01-01

    Full Text Available Radio Frequency Identification (RFID is one of the key technologies of the Internet of Things (IoT and is used in many areas, such as mobile payments, public transportation, smart lock, and environment protection. However, the performance of RFID equipment can be easily affected by the surrounding environment, such as electronic productions and metal appliances. These can impose an impact on the RF signal, which makes the collection of RFID data unreliable. Usually, the unreliability of RFID source data includes three aspects: false negatives, false positives, and dirty data. False negatives are the key problem, as the probability of false positives and dirty data occurrence is relatively small. This paper proposes a novel sliding window cleaning algorithm called VSMURF, which is based on the traditional SMURF algorithm which combines the dynamic change of tags and the value analysis of confidence. Experimental results show that VSMURF algorithm performs better in most conditions and when the tag’s speed is low or high. In particular, if the velocity parameter is set to 2 m/epoch, our proposed VSMURF algorithm performs better than SMURF. The results also show that VSMURF algorithm has better performance than other algorithms in solving the problem of false negatives for RFID networks.

  15. NML Computation Algorithms for Tree-Structured Multinomial Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Kontkanen Petri

    2007-01-01

    Full Text Available Typical problems in bioinformatics involve large discrete datasets. Therefore, in order to apply statistical methods in such domains, it is important to develop efficient algorithms suitable for discrete data. The minimum description length (MDL principle is a theoretically well-founded, general framework for performing statistical inference. The mathematical formalization of MDL is based on the normalized maximum likelihood (NML distribution, which has several desirable theoretical properties. In the case of discrete data, straightforward computation of the NML distribution requires exponential time with respect to the sample size, since the definition involves a sum over all the possible data samples of a fixed size. In this paper, we first review some existing algorithms for efficient NML computation in the case of multinomial and naive Bayes model families. Then we proceed by extending these algorithms to more complex, tree-structured Bayesian networks.

  16. Predicting arsenic and heavy metals contamination in groundwater resources of Ghahavand plain based on an artificial neural network optimized by imperialist competitive algorithm

    Directory of Open Access Journals (Sweden)

    Meysam Alizamir

    2017-10-01

    Full Text Available Background: The effects of trace elements on human health and the environment gives importance to the analysis of heavy metals contamination in environmental samples and, more particularly, human food sources. Therefore, the current study aimed to predict arsenic and heavy metals (Cu, Pb, and Zn contamination in the groundwater resources of Ghahavand Plain based on an artificial neural network (ANN optimized by imperialist competitive algorithm (ICA. Methods: This study presents a new method for predicting heavy metal concentrations in the groundwater resources of Ghahavand plain based on ANN and ICA. The developed approaches were trained using 75% of the data to obtain the optimum coefficients and then tested using 25% of the data. Two statistical indicators, the coefficient of determination (R2 and the root-mean-square error (RMSE, were employed to evaluate model performance. A comparison of the performances of the ICA-ANN and ANN models revealed the superiority of the new model. Results of this study demonstrate that heavy metal concentrations can be reliably predicted by applying the new approach. Results: Results from different statistical indicators during the training and validation periods indicate that the best performance can be obtained with the ANN-ICA model. Conclusion: This method can be employed effectively to predict heavy metal concentrations in the groundwater resources of Ghahavand plain.

  17. LEARNING ALGORITHM EFFECT ON MULTILAYER FEED FORWARD ARTIFICIAL NEURAL NETWORK PERFORMANCE IN IMAGE CODING

    Directory of Open Access Journals (Sweden)

    OMER MAHMOUD

    2007-08-01

    Full Text Available One of the essential factors that affect the performance of Artificial Neural Networks is the learning algorithm. The performance of Multilayer Feed Forward Artificial Neural Network performance in image compression using different learning algorithms is examined in this paper. Based on Gradient Descent, Conjugate Gradient, Quasi-Newton techniques three different error back propagation algorithms have been developed for use in training two types of neural networks, a single hidden layer network and three hidden layers network. The essence of this study is to investigate the most efficient and effective training methods for use in image compression and its subsequent applications. The obtained results show that the Quasi-Newton based algorithm has better performance as compared to the other two algorithms.

  18. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2016-10-01

    Full Text Available The development of intrusion detection systems (IDS that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC and deep neural network (DNN algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN, support vector machine (SVM, random forest (RF and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  19. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    Science.gov (United States)

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  20. Inferring gene regulatory networks by singular value decomposition and gravitation field algorithm.

    Science.gov (United States)

    Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms.

  1. Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm.

    Science.gov (United States)

    Ozturk, Celal; Karaboga, Dervis; Gorkemli, Beyza

    2011-01-01

    As the usage and development of wireless sensor networks are increasing, the problems related to these networks are being realized. Dynamic deployment is one of the main topics that directly affect the performance of the wireless sensor networks. In this paper, the artificial bee colony algorithm is applied to the dynamic deployment of stationary and mobile sensor networks to achieve better performance by trying to increase the coverage area of the network. A probabilistic detection model is considered to obtain more realistic results while computing the effectively covered area. Performance of the algorithm is compared with that of the particle swarm optimization algorithm, which is also a swarm based optimization technique and formerly used in wireless sensor network deployment. Results show artificial bee colony algorithm can be preferable in the dynamic deployment of wireless sensor networks.

  2. Probabilistic Dynamic Deployment of Wireless Sensor Networks by Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Dervis Karaboga

    2011-06-01

    Full Text Available As the usage and development of wireless sensor networks are increasing, the problems related to these networks are being realized. Dynamic deployment is one of the main topics that directly affect the performance of the wireless sensor networks. In this paper, the artificial bee colony algorithm is applied to the dynamic deployment of stationary and mobile sensor networks to achieve better performance by trying to increase the coverage area of the network. A probabilistic detection model is considered to obtain more realistic results while computing the effectively covered area. Performance of the algorithm is compared with that of the particle swarm optimization algorithm, which is also a swarm based optimization technique and formerly used in wireless sensor network deployment. Results show artificial bee colony algorithm can be preferable in the dynamic deployment of wireless sensor networks.

  3. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    Science.gov (United States)

    Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.

    2014-01-01

    The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339

  4. Novel Spectrum Sensing Algorithms for OFDM Cognitive Radio Networks.

    Science.gov (United States)

    Shi, Zhenguo; Wu, Zhilu; Yin, Zhendong; Cheng, Qingqing

    2015-06-15

    Spectrum sensing technology plays an increasingly important role in cognitive radio networks. Consequently, several spectrum sensing algorithms have been proposed in the literature. In this paper, we present a new spectrum sensing algorithm "Differential Characteristics-Based OFDM (DC-OFDM)" for detecting OFDM signal on account of differential characteristics. We put the primary value on channel gain θ around zero to detect the presence of primary user. Furthermore, utilizing the same method of differential operation, we improve two traditional OFDM sensing algorithms (cyclic prefix and pilot tones detecting algorithms), and propose a "Differential Characteristics-Based Cyclic Prefix (DC-CP)" detector and a "Differential Characteristics-Based Pilot Tones (DC-PT)" detector, respectively. DC-CP detector is based on auto-correlation vector to sense the spectrum, while the DC-PT detector takes the frequency-domain cross-correlation of PT as the test statistic to detect the primary user. Moreover, the distributions of the test statistics of the three proposed methods have been derived. Simulation results illustrate that all of the three proposed methods can achieve good performance under low signal to noise ratio (SNR) with the presence of timing delay. Specifically, the DC-OFDM detector gets the best performance among the presented detectors. Moreover, both of the DC-CP and DC-PT detector achieve significant improvements compared with their corresponding original detectors.

  5. An Energy Efficient Multipath Routing Algorithm for Wireless Sensor Networks

    NARCIS (Netherlands)

    Dulman, S.O.; Wu Jian, W.J.; Havinga, Paul J.M.

    In this paper we introduce a new routing algorithm for wireless sensor networks. The aim of this algorithm is to provide on-demand multiple disjoint paths between a data source and a destination. Our Multipath On-Demand Routing Algorithm (MDR) improves the reliability of data routing in a wireless

  6. Adaptive clustering algorithm for community detection in complex networks

    Science.gov (United States)

    Ye, Zhenqing; Hu, Songnian; Yu, Jun

    2008-10-01

    Community structure is common in various real-world networks; methods or algorithms for detecting such communities in complex networks have attracted great attention in recent years. We introduced a different adaptive clustering algorithm capable of extracting modules from complex networks with considerable accuracy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular structure can emerge from a collection of these active nodes during a self-organization process where vertices constantly regroup. In addition, we show that our algorithm appears advantageous over other competing methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate organization in reality.

  7. A New Node Deployment and Location Dispatch Algorithm for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-01-01

    Full Text Available Considering that deployment strategies for underwater sensor networks should contribute to fully connecting the networks, a Guaranteed Full Connectivity Node Deployment (GFCND algorithm is proposed in this study. The GFCND algorithm attempts to deploy the coverage nodes according to the greedy iterative strategy, after which the connectivity nodes are used to improve network connectivity and fully connect the whole network. Furthermore, a Location Dispatch Based on Command Nodes (LDBCN algorithm is proposed, which accomplishes the location adjustment of the common nodes with the help of the SINK node and the command nodes. The command nodes then dispatch the common nodes. Simulation results show that the GFCND algorithm achieves a comparatively large coverage percentage and a fully connected network; furthermore, the LDBCN algorithm helps the common nodes preserve more total energy when they reach their destination locations.

  8. Power control algorithms for mobile ad hoc networks

    Directory of Open Access Journals (Sweden)

    Nuraj L. Pradhan

    2011-07-01

    We will also focus on an adaptive distributed power management (DISPOW algorithm as an example of the multi-parameter optimization approach which manages the transmit power of nodes in a wireless ad hoc network to preserve network connectivity and cooperatively reduce interference. We will show that the algorithm in a distributed manner builds a unique stable network topology tailored to its surrounding node density and propagation environment over random topologies in a dynamic mobile wireless channel.

  9. Spectral algorithms for heterogeneous biological networks.

    Science.gov (United States)

    McDonald, Martin; Higham, Desmond J; Vass, J Keith

    2012-11-01

    Spectral methods, which use information relating to eigenvectors, singular vectors and generalized singular vectors, help us to visualize and summarize sets of pairwise interactions. In this work, we motivate and discuss the use of spectral methods by taking a matrix computation view and applying concepts from applied linear algebra. We show that this unified approach is sufficiently flexible to allow multiple sources of network information to be combined. We illustrate the methods on microarray data arising from a large population-based study in human adipose tissue, combined with related information concerning metabolic pathways.

  10. The Vital Network: An Algorithmic Milieu of Communication and Control

    Directory of Open Access Journals (Sweden)

    Sandra Robinson

    2016-09-01

    Full Text Available The biological turn in computing has influenced the development of algorithmic control and what I call the vital network: a dynamic, relational, and generative assemblage that is self-organizing in response to the heterogeneity of contemporary network processes, connections, and communication. I discuss this biological turn in computation and control for communication alongside historically significant developments in cybernetics that set out the foundation for the development of self-regulating computer systems. Control is shifting away from models that historically relied on the human-animal model of cognition to govern communication and control, as in early cybernetics and computer science, to a decentred, nonhuman model of control by algorithm for communication and networks. To illustrate the rise of contemporary algorithmic control, I outline a particular example, that of the biologically-inspired routing algorithm known as a ‘quorum sensing’ algorithm. The increasing expansion of algorithms as a sense-making apparatus is important in the context of social media, but also in the subsystems that coordinate networked flows of information. In that domain, algorithms are not inferring categories of identity, sociality, and practice associated with Internet consumers, rather, these algorithms are designed to act on information flows as they are transmitted along the network. The development of autonomous control realized through the power of the algorithm to monitor, sort, organize, determine, and transmit communication is the form of control emerging as a postscript to Gilles Deleuze’s ‘postscript on societies of control.’

  11. Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic Algorithms.

    Science.gov (United States)

    Chen, Hsinchun

    1995-01-01

    Presents an overview of artificial-intelligence-based inductive learning techniques and their use in information science research. Three methods are discussed: the connectionist Hopfield network; the symbolic ID3/ID5R; evolution-based genetic algorithms. The knowledge representations and algorithms of these methods are examined in the context of…

  12. A smart local moving algorithm for large-scale modularity-based community detection

    CERN Document Server

    Waltman, Ludo

    2013-01-01

    We introduce a new algorithm for modularity-based community detection in large networks. The algorithm, which we refer to as a smart local moving algorithm, takes advantage of a well-known local moving heuristic that is also used by other algorithms. Compared with these other algorithms, our proposed algorithm uses the local moving heuristic in a more sophisticated way. Based on an analysis of a diverse set of networks, we show that our smart local moving algorithm identifies community structures with higher modularity values than other algorithms for large-scale modularity optimization, among which the popular 'Louvain algorithm' introduced by Blondel et al. (2008). The computational efficiency of our algorithm makes it possible to perform community detection in networks with tens of millions of nodes and hundreds of millions of edges. Our smart local moving algorithm also performs well in small and medium-sized networks. In short computing times, it identifies community structures with modularity values equ...

  13. Comparison of evolutionary algorithms in gene regulatory network model inference.

    LENUS (Irish Health Repository)

    2010-01-01

    ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

  14. Finite-Size Geometric Entanglement from Tensor Network Algorithms

    OpenAIRE

    Shi, Qian-Qian; Orus, Roman; Fjaerestad, John Ove; Zhou, Huan-Qiang

    2009-01-01

    The global geometric entanglement is studied in the context of newly-developed tensor network algorithms for finite systems. For one-dimensional quantum spin systems it is found that, at criticality, the leading finite-size correction to the global geometric entanglement per site behaves as $b/n$, where $n$ is the size of the system and $b$ a given coefficient. Our conclusion is based on the computation of the geometric entanglement per spin for the quantum Ising model in a transverse magneti...

  15. Multidimensional Scaling Localization Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-02-01

    Full Text Available Due to the localization algorithm in large-scale wireless sensor network exists shortcomings both in positioning accuracy and time complexity compared to traditional localization algorithm, this paper presents a fast multidimensional scaling location algorithm. By positioning algorithm for fast multidimensional scaling, fast mapping initialization, fast mapping and coordinate transform can get schematic coordinates of node, coordinates Initialize of MDS algorithm, an accurate estimate of the node coordinates and using the PRORUSTES to analysis alignment of the coordinate and final position coordinates of nodes etc. There are four steps, and the thesis gives specific implementation steps of the algorithm. Finally, compared with stochastic algorithms and classical MDS algorithm experiment, the thesis takes application of specific examples. Experimental results show that: the proposed localization algorithm has fast multidimensional scaling positioning accuracy in ensuring certain circumstances, but also greatly improves the speed of operation.

  16. APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Musson, John C. [JLAB; Seaton, Chad [JLAB; Spata, Mike F. [JLAB; Yan, Jianxun [JLAB

    2012-11-01

    Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.

  17. The Forward-Reverse Algorithm for Stochastic Reaction Networks

    KAUST Repository

    Bayer, Christian

    2015-01-07

    In this work, we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem of approximating the reaction coefficients based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which we solve a set of deterministic optimization problems where the SRNs are replaced by the classical ODE rates; then, during the second phase, the Monte Carlo version of the EM algorithm is applied starting from the output of the previous phase. Starting from a set of over-dispersed seeds, the output of our two-phase method is a cluster of maximum likelihood estimates obtained by using convergence assessment techniques from the theory of Markov chain Monte Carlo.

  18. Projection learning algorithm for threshold - controlled neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Reznik, A.M.

    1995-03-01

    The projection learning algorithm proposed in [1, 2] and further developed in [3] substantially improves the efficiency of memorizing information and accelerates the learning process in neural networks. This algorithm is compatible with the completely connected neural network architecture (the Hopfield network [4]), but its application to other networks involves a number of difficulties. The main difficulties include constraints on interconnection structure and the need to eliminate the state uncertainty of latent neurons if such are present in the network. Despite the encouraging preliminary results of [3], further extension of the applications of the projection algorithm therefore remains problematic. In this paper, which is a continuation of the work begun in [3], we consider threshold-controlled neural networks. Networks of this type are quite common. They represent the receptor neuron layers in some neurocomputer designs. A similar structure is observed in the lower divisions of biological sensory systems [5]. In multilayer projection neural networks with lateral interconnections, the neuron layers or parts of these layers may also have the structure of a threshold-controlled completely connected network. Here the thresholds are the potentials delivered through the projection connections from other parts of the network. The extension of the projection algorithm to the class of threshold-controlled networks may accordingly prove to be useful both for extending its technical applications and for better understanding of the operation of the nervous system in living organisms.

  19. A topology visualization early warning distribution algorithm for large-scale network security incidents.

    Science.gov (United States)

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  20. A Topology Visualization Early Warning Distribution Algorithm for Large-Scale Network Security Incidents

    Science.gov (United States)

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology. PMID:24191145

  1. DISTRIBUTION NETWORK RECONFIGURATION FOR POWER LOSS MINIMIZATION AND VOLTAGE PROFILE ENHANCEMENT USING ANT LION ALGORITHM

    Directory of Open Access Journals (Sweden)

    Maryam Shokouhi

    2017-06-01

    Full Text Available Distribution networks are designed as a ring and operated as a radial form. Therefore, the reconfiguration is a simple and cost-effective way to use existing facilities without the need for any new equipment in distribution networks to achieve various objectives such as: power loss reduction, feeder overload reduction, load balancing, voltage profile improvement, reducing the number of switching considering constraints that ultimately result in the power loss reduction. In this paper, a new method based on the Ant Lion algorithm (a modern meta-heuristic algorithm is provided for the reconfiguration of distribution networks. Considering the extension of the distribution networks and complexity of their communications networks, and the various parameters, using smart techniques is inevitable. The proposed approach is tested on the IEEE 33 & 69-bus radial standard distribution networks. The Evaluation of results in MATLAB software shows the effectiveness of the Ant Lion algorithm in the distribution network reconfiguration.

  2. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.

    Science.gov (United States)

    Garro, Beatriz A; Vázquez, Roberto A

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.

  3. Comprehensive Weighted Clique Degree Ranking Algorithms and Evolutionary Model of Complex Network

    Directory of Open Access Journals (Sweden)

    Xu Jie

    2016-01-01

    Full Text Available This paper analyses the degree ranking (DR algorithm, and proposes a new comprehensive weighted clique degree ranking (CWCDR algorithms for ranking importance of nodes in complex network. Simulation results show that CWCDR algorithms not only can overcome the limitation of degree ranking algorithm, but also can find important nodes in complex networks more precisely and effectively. To the shortage of small-world model and BA model, this paper proposes an evolutionary model of complex network based on CWCDR algorithms, named CWCDR model. Simulation results show that the CWCDR model accords with power-law distribution. And compare with the BA model, this model has better average shortest path length, and clustering coefficient. Therefore, the CWCDR model is more consistent with the real network.

  4. Local Community Detection Algorithm Based on Minimal Cluster

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2016-01-01

    Full Text Available In order to discover the structure of local community more effectively, this paper puts forward a new local community detection algorithm based on minimal cluster. Most of the local community detection algorithms begin from one node. The agglomeration ability of a single node must be less than multiple nodes, so the beginning of the community extension of the algorithm in this paper is no longer from the initial node only but from a node cluster containing this initial node and nodes in the cluster are relatively densely connected with each other. The algorithm mainly includes two phases. First it detects the minimal cluster and then finds the local community extended from the minimal cluster. Experimental results show that the quality of the local community detected by our algorithm is much better than other algorithms no matter in real networks or in simulated networks.

  5. Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network.

    Science.gov (United States)

    Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun

    2017-03-08

    Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links.

  6. Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection.

    Science.gov (United States)

    Franco, Vanina G; Perín, Juan C; Mantovani, Víctor E; Goicoechea, Héctor C

    2006-01-15

    An experiment was developed as a simple alternative to existing analytical methods for the simultaneous quantitation of glucose (substrate) and glucuronic acid (main product) in the bioprocesses Kombucha by using FTIR spectroscopy coupled to multivariate calibration (partial least-squares, PLS-1 and artificial neural networks, ANNs). Wavelength selection through a novel ranked regions genetic algorithm (RRGA) was used to enhance the predictive ability of the chemometric models. Acceptable results were obtained by using the ANNs models considering the complexity of the sample and the speediness and simplicity of the method. The accuracy on the glucuronic acid determination was calculated by analysing spiked real fermentation samples (recoveries ca. 115%).

  7. A study on the performance comparison of metaheuristic algorithms on the learning of neural networks

    Science.gov (United States)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2017-08-01

    The learning or training process of neural networks entails the task of finding the most optimal set of parameters, which includes translation vectors, dilation parameter, synaptic weights, and bias terms. Apart from the traditional gradient descent-based methods, metaheuristic methods can also be used for this learning purpose. Since the inception of genetic algorithm half a century ago, the last decade witnessed the explosion of a variety of novel metaheuristic algorithms, such as harmony search algorithm, bat algorithm, and whale optimization algorithm. Despite the proof of the no free lunch theorem in the discipline of optimization, a survey in the literature of machine learning gives contrasting results. Some researchers report that certain metaheuristic algorithms are superior to the others, whereas some others argue that different metaheuristic algorithms give comparable performance. As such, this paper aims to investigate if a certain metaheuristic algorithm will outperform the other algorithms. In this work, three metaheuristic algorithms, namely genetic algorithms, particle swarm optimization, and harmony search algorithm are considered. The algorithms are incorporated in the learning of neural networks and their classification results on the benchmark UCI machine learning data sets are compared. It is found that all three metaheuristic algorithms give similar and comparable performance, as captured in the average overall classification accuracy. The results corroborate the findings reported in the works done by previous researchers. Several recommendations are given, which include the need of statistical analysis to verify the results and further theoretical works to support the obtained empirical results.

  8. Optical network unit placement in Fiber-Wireless (FiWi) access network by Moth-Flame optimization algorithm

    Science.gov (United States)

    Singh, Puja; Prakash, Shashi

    2017-07-01

    Hybrid wireless-optical broadband access network (WOBAN) or Fiber-Wireless (FiWi) is the integration of wireless access network and optical network. This hybrid multi-domain network adopts the advantages of wireless and optical domains and serves the demand of technology savvy users. FiWi exhibits the properties of cost effectiveness, robustness, flexibility, high capacity, reliability and is self organized. Optical Network Unit (ONU) placement problem in FiWi contributes in simplifying the network design and enhances the performance in terms of cost efficiency and increased throughput. Several individual-based algorithms, such as Simulated Annealing (SA), Tabu Search, etc. have been suggested for ONU placement, but these algorithms suffer from premature convergence (trapping in a local optima). The present research work undertakes the deployment of FiWi and proposes a novel nature-inspired heuristic paradigm called Moth-Flame optimization (MFO) algorithm for multiple optical network units' placement. MFO is a population based algorithm. Population-based algorithms are better in handling local optima avoidance. The simulation results are compared with the existing Greedy and Simulated Annealing algorithms to optimize the position of ONUs. To the best of our knowledge, MFO algorithm has been used for the first time in this domain, moreover it has been able to provide very promising and competitive results. The performance of MFO algorithm has been analyzed by varying the 'b' parameter. MFO algorithm results in faster convergence than the existing strategies of Greedy and SA and returns a lower value of overall cost function. The results exhibit the dependence of the objective function on the distribution of wireless users also.

  9. Congestion Relief of Contingent Power Network with Evolutionary Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Abhinandan De

    2012-03-01

    Full Text Available This paper presents a differential evolution optimization technique based methodology for congestion management cost optimization of contingent power networks. In Deregulated systems, line congestion apart from causing stability problems can increase the cost of electricity. Restraining line flow to a particular level of congestion is quite imperative from stability as well as economy point of view. Employing Congestion Sensitivity Index proposed in this paper, the algorithm proposed can be adopted for selecting the congested lines in a power networks and then to search for a congestion constrained optimal generation schedule at the cost of a minimum congestion management charge without any load curtailment and installation of FACTS devices. It has been depicted that the methodology on application can provide better operating conditions in terms of improvement of bus voltage and loss profile of the system. The efficiency of the proposed methodology has been tested on an IEEE 30 bus benchmark system and the results look promising.

  10. Neural Network Algorithm for Prediction of Secondary Protein Structure

    National Research Council Canada - National Science Library

    Zikrija Avdagic; Elvir Purisevic; Emir Buza; Zlatan Coralic

    2009-01-01

    .... In this paper we describe the method and results of using CB513 as a dataset suitable for development of artificial neural network algorithms for prediction of secondary protein structure with MATLAB...

  11. A Modularity Degree Based Heuristic Community Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Dongming Chen

    2014-01-01

    Full Text Available A community in a complex network can be seen as a subgroup of nodes that are densely connected. Discovery of community structures is a basic problem of research and can be used in various areas, such as biology, computer science, and sociology. Existing community detection methods usually try to expand or collapse the nodes partitions in order to optimize a given quality function. These optimization function based methods share the same drawback of inefficiency. Here we propose a heuristic algorithm (MDBH algorithm based on network structure which employs modularity degree as a measure function. Experiments on both synthetic benchmarks and real-world networks show that our algorithm gives competitive accuracy with previous modularity optimization methods, even though it has less computational complexity. Furthermore, due to the use of modularity degree, our algorithm naturally improves the resolution limit in community detection.

  12. Handoff Triggering and Network Selection Algorithms for Load-Balancing Handoff in CDMA-WLAN Integrated Networks

    Directory of Open Access Journals (Sweden)

    Kim Jang-Sub

    2008-01-01

    Full Text Available This paper proposes a novel vertical handoff algorithm between WLAN and CDMA networks to enable the integration of these networks. The proposed vertical handoff algorithm assumes a handoff decision process (handoff triggering and network selection. The handoff trigger is decided based on the received signal strength (RSS. To reduce the likelihood of unnecessary false handoffs, the distance criterion is also considered. As a network selection mechanism, based on the wireless channel assignment algorithm, this paper proposes a context-based network selection algorithm and the corresponding communication algorithms between WLAN and CDMA networks. This paper focuses on a handoff triggering criterion which uses both the RSS and distance information, and a network selection method which uses context information such as the dropping probability, blocking probability, GoS (grade of service, and number of handoff attempts. As a decision making criterion, the velocity threshold is determined to optimize the system performance. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations using four handoff strategies. The four handoff strategies are evaluated and compared with each other in terms of GOS. Finally, the proposed scheme is validated by computer simulations.

  13. Handoff Triggering and Network Selection Algorithms for Load-Balancing Handoff in CDMA-WLAN Integrated Networks

    Directory of Open Access Journals (Sweden)

    Khalid Qaraqe

    2008-10-01

    Full Text Available This paper proposes a novel vertical handoff algorithm between WLAN and CDMA networks to enable the integration of these networks. The proposed vertical handoff algorithm assumes a handoff decision process (handoff triggering and network selection. The handoff trigger is decided based on the received signal strength (RSS. To reduce the likelihood of unnecessary false handoffs, the distance criterion is also considered. As a network selection mechanism, based on the wireless channel assignment algorithm, this paper proposes a context-based network selection algorithm and the corresponding communication algorithms between WLAN and CDMA networks. This paper focuses on a handoff triggering criterion which uses both the RSS and distance information, and a network selection method which uses context information such as the dropping probability, blocking probability, GoS (grade of service, and number of handoff attempts. As a decision making criterion, the velocity threshold is determined to optimize the system performance. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations using four handoff strategies. The four handoff strategies are evaluated and compared with each other in terms of GOS. Finally, the proposed scheme is validated by computer simulations.

  14. Optimization of neural network algorithm of the land market description

    Directory of Open Access Journals (Sweden)

    M. A. Karpovich

    2016-01-01

    Full Text Available The advantages of neural network technology is shown in comparison of traditional descriptions of dynamically changing systems, which include a modern land market. The basic difficulty arising in the practical implementation of neural network models of the land market and construction products is revealed It is the formation of a representative set of training and test examples. The requirements which are necessary for the correct description of the current economic situation has been determined, it consists in the fact that Train-paid-set in the feature space should not has the ranges with a low density of observations. The methods of optimization of empirical array, which allow to avoid the long-range extrapolation of data from range of concentration of the set of examples are formulated. It is shown that a radical method of optimization a set of training and test examples enclosing to collect supplemantary information, is associated with significant costs time and resources for the economic problems and the ratio of cost / efficiency is less efficient than an algorithm optimization neural network models the earth market fixed set of empirical data. Algorithm of optimization based on the transformation of arrays of information which represents the expansion of the ranges of concentration of the set of examples and compression the ranges of low density of observations is analyzed in details. The significant reduction in the relative error of land price description is demonstrated on the specific example of Voronezh region market of lands which intend for road construction, it makes the using of radical method of empirical optimization of the array costeffective with accounting the significant absolute value of the land. The high economic efficiency of the proposed algorithms is demonstrated.

  15. Development and implementation of an algorithm for detection of protein complexes in large interaction networks

    Directory of Open Access Journals (Sweden)

    Kanaya Shigehiko

    2006-04-01

    Full Text Available Abstract Background After complete sequencing of a number of genomes the focus has now turned to proteomics. Advanced proteomics technologies such as two-hybrid assay, mass spectrometry etc. are producing huge data sets of protein-protein interactions which can be portrayed as networks, and one of the burning issues is to find protein complexes in such networks. The enormous size of protein-protein interaction (PPI networks warrants development of efficient computational methods for extraction of significant complexes. Results This paper presents an algorithm for detection of protein complexes in large interaction networks. In a PPI network, a node represents a protein and an edge represents an interaction. The input to the algorithm is the associated matrix of an interaction network and the outputs are protein complexes. The complexes are determined by way of finding clusters, i. e. the densely connected regions in the network. We also show and analyze some protein complexes generated by the proposed algorithm from typical PPI networks of Escherichia coli and Saccharomyces cerevisiae. A comparison between a PPI and a random network is also performed in the context of the proposed algorithm. Conclusion The proposed algorithm makes it possible to detect clusters of proteins in PPI networks which mostly represent molecular biological functional units. Therefore, protein complexes determined solely based on interaction data can help us to predict the functions of proteins, and they are also useful to understand and explain certain biological processes.

  16. GMDH-type neural network modeling and genetic algorithm-based multi-objective optimization of thermal and friction characteristics in heat exchanger tubes with wire-rod bundles

    Science.gov (United States)

    Rahimi, Masoud; Beigzadeh, Reza; Parvizi, Mehdi; Eiamsa-ard, Smith

    2016-08-01

    The group method of data handling (GMDH) technique was used to predict heat transfer and friction characteristics in heat exchanger tubes equipped with wire-rod bundles. Nusselt number and friction factor were determined as functions of wire-rod bundle geometric parameters and Reynolds number. The performance of the developed GMDH-type neural networks was found to be superior in comparison with the proposed empirical correlations. For optimization, the genetic algorithm-based multi-objective optimization was applied.

  17. A Topology Visualization Early Warning Distribution Algorithm for Large-Scale Network Security Incidents

    Directory of Open Access Journals (Sweden)

    Hui He

    2013-01-01

    Full Text Available It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system’s emergency response capabilities, alleviate the cyber attacks’ damage, and strengthen the system’s counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system’s plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks’ topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  18. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment

    Science.gov (United States)

    2014-01-01

    Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel

  19. An algorithm for link restoration in wavwlength translating networks

    DEFF Research Database (Denmark)

    Limal, Emmanuel; Gliese, Ulrik Bo

    1999-01-01

    We propose the BONRA, a new and innovative algorithm for dynamic allocation of working and spare channel capacity for single link restoration in wavelength translating optical networks. The BONRA has very low calculation complexity yet gives high capacity utilisation.......We propose the BONRA, a new and innovative algorithm for dynamic allocation of working and spare channel capacity for single link restoration in wavelength translating optical networks. The BONRA has very low calculation complexity yet gives high capacity utilisation....

  20. Engineering Algorithms for Route Planning in Multimodal Transportation Networks

    OpenAIRE

    Dibbelt, Julian Matthias

    2016-01-01

    Practical algorithms for route planning in transportation networks are a showpiece of successful Algorithm Engineering. This has produced many speedup techniques, varying in preprocessing time, space, query performance, simplicity, and ease of implementation. This thesis explores solutions to more realistic scenarios, taking into account, e.g., traffic, user preferences, public transit schedules, and the options offered by the many modalities of modern transportation networks.

  1. A Formal Verification Model for Performance Analysis of Reinforcement Learning Algorithms Applied t o Dynamic Networks

    Directory of Open Access Journals (Sweden)

    Shrirang Ambaji KULKARNI

    2017-04-01

    Full Text Available Routing data packets in a dynamic network is a difficult and important problem in computer networks. As the network is dynamic, it is subject to frequent topology changes and is subject to variable link costs due to congestion and bandwidth. Existing shortest path algorithms fail to converge to better solutions under dynamic network conditions. Reinforcement learning algorithms posses better adaptation techniques in dynamic environments. In this paper we apply model based Q-Routing technique for routing in dynamic network. To analyze the correctness of Q-Routing algorithms mathematically, we provide a proof and also implement a SPIN based verification model. We also perform simulation based analysis of Q-Routing for given metrics.

  2. Adaptive algorithm for mobile user positioning based on environment estimation

    Directory of Open Access Journals (Sweden)

    Grujović Darko

    2014-01-01

    Full Text Available This paper analyzes the challenges to realize an infrastructure independent and a low-cost positioning method in cellular networks based on RSS (Received Signal Strength parameter, auxiliary timing parameter and environment estimation. The proposed algorithm has been evaluated using field measurements collected from GSM (Global System for Mobile Communications network, but it is technology independent and can be applied in UMTS (Universal Mobile Telecommunication Systems and LTE (Long-Term Evolution networks, also.

  3. A generalized clustering algorithm for dynamic wireless sensor networks

    NARCIS (Netherlands)

    Marin Perianu, Raluca; Hurink, Johann L.; Hartel, Pieter H.

    We propose a general clustering algorithm for dynamic sensor networks, that makes localized decisions (1-hop neighbourhood) and produces disjoint clusters. The purpose is to extract and emphasise the essential clustering mechanisms common for a set of state-of-the-art algorithms, which allows for a

  4. A Generalized Clustering Algorithm for Dynamic Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin Perianu, Raluca; Hurink, Johann L.; Hartel, Pieter H.

    2008-01-01

    We propose a general clustering algorithm for dynamic sensor networks, that makes localized decisions (1-hop neighbourhood) and produces disjoint clusters. The purpose is to extract and emphasise the essential clustering mechanisms common for a set of state-of-the-art algorithms, which allows for a

  5. Practical Algorithms for Subgroup Detection in Covert Networks

    DEFF Research Database (Denmark)

    Memon, Nasrullah; Wiil, Uffe Kock; Qureshi, Pir Abdul Rasool

    2010-01-01

    In this paper, we present algorithms for subgroup detection and demonstrated them with a real-time case study of USS Cole bombing terrorist network. The algorithms are demonstrated in an application by a prototype system. The system finds associations between terrorist and terrorist organisations...

  6. Scalable software-defined optical networking with high-performance routing and wavelength assignment algorithms.

    Science.gov (United States)

    Lee, Chankyun; Cao, Xiaoyuan; Yoshikane, Noboru; Tsuritani, Takehiro; Rhee, June-Koo Kevin

    2015-10-19

    The feasibility of software-defined optical networking (SDON) for a practical application critically depends on scalability of centralized control performance. The paper, highly scalable routing and wavelength assignment (RWA) algorithms are investigated on an OpenFlow-based SDON testbed for proof-of-concept demonstration. Efficient RWA algorithms are proposed to achieve high performance in achieving network capacity with reduced computation cost, which is a significant attribute in a scalable centralized-control SDON. The proposed heuristic RWA algorithms differ in the orders of request processes and in the procedures of routing table updates. Combined in a shortest-path-based routing algorithm, a hottest-request-first processing policy that considers demand intensity and end-to-end distance information offers both the highest throughput of networks and acceptable computation scalability. We further investigate trade-off relationship between network throughput and computation complexity in routing table update procedure by a simulation study.

  7. A Hybrid Constructive Algorithm for Single-Layer Feedforward Networks Learning.

    Science.gov (United States)

    Wu, Xing; Rózycki, Paweł; Wilamowski, Bogdan M

    2015-08-01

    Single-layer feedforward networks (SLFNs) have been proven to be a universal approximator when all the parameters are allowed to be adjustable. It is widely used in classification and regression problems. The SLFN learning involves two tasks: determining network size and training the parameters. Most current algorithms could not be satisfactory to both sides. Some algorithms focused on construction and only tuned part of the parameters, which may not be able to achieve a compact network. Other gradient-based optimization algorithms focused on parameters tuning while the network size has to be preset by the user. Therefore, trial-and-error approach has to be used to search the optimal network size. Because results of each trial cannot be reused in another trial, it costs much computation. In this paper, a hybrid constructive (HC)algorithm is proposed for SLFN learning, which can train all the parameters and determine the network size simultaneously. At first, by combining Levenberg-Marquardt algorithm and least-square method, a hybrid algorithm is presented for training SLFN with fixed network size. Then,with the hybrid algorithm, an incremental constructive scheme is proposed. A new randomly initialized neuron is added each time when the training entrapped into local minima. Because the training continued on previous results after adding new neurons, the proposed HC algorithm works efficiently. Several practical problems were given for comparison with other popular algorithms. The experimental results demonstrated that the HC algorithm worked more efficiently than those optimization methods with trial and error, and could achieve much more compact SLFN than those construction algorithms.

  8. Multi-Objective Optimization Algorithm to Discover Condition-Specific Modules in Multiple Networks

    Directory of Open Access Journals (Sweden)

    Xiaoke Ma

    2017-12-01

    Full Text Available The advances in biological technologies make it possible to generate data for multiple conditions simultaneously. Discovering the condition-specific modules in multiple networks has great merit in understanding the underlying molecular mechanisms of cells. The available algorithms transform the multiple networks into a single objective optimization problem, which is criticized for its low accuracy. To address this issue, a multi-objective genetic algorithm for condition-specific modules in multiple networks (MOGA-CSM is developed to discover the condition-specific modules. By using the artificial networks, we demonstrate that the MOGA-CSM outperforms state-of-the-art methods in terms of accuracy. Furthermore, MOGA-CSM discovers stage-specific modules in breast cancer networks based on The Cancer Genome Atlas (TCGA data, and these modules serve as biomarkers to predict stages of breast cancer. The proposed model and algorithm provide an effective way to analyze multiple networks.

  9. Un Algoritmo Genético Especializado en Planeamiento de Redes de Distribución. Parte I. Fundamentos Técnicos del Algoritmo; A specialized Genetic Algorithm in Distribution Network planning. Part I. Algorithm Bases

    Directory of Open Access Journals (Sweden)

    Raúl Nicolás Carvajal Pérez

    2011-05-01

    Full Text Available La planificación de redes eléctricas de distribución utilizando técnicas naturales es un tema de actualidad científica. Se destacan entre estas técnicas los algoritmos genéticos. El problema del planeamiento se representa mediante modelos matemáticos de gran cantidad de restricciones. Su solución aconseja la utilización de algoritmos genéticos especializados. Aquí se presenta un algoritmo genético de este tipo elaborado por el autor para realizar estudios de expansión y reconfiguracion de redes. Se explican los procedimientos elaborados y la magnitud de los parámetros generales a partir del trabajo experimental.  The distribution network planning using natural techniques is an actual scientific thematic; specially Genetic Algorithms. The representative mathematical model in this case has a lot of restrictions. In this paper is presented a specialized genetic algorithm to realize distribution network expansion studies. The author explains the basic procedures and experimental work to determine the general parameters magnitude.

  10. Evaluation of clustering algorithms for protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    van Helden Jacques

    2006-11-01

    Full Text Available Abstract Background Protein interactions are crucial components of all cellular processes. Recently, high-throughput methods have been developed to obtain a global description of the interactome (the whole network of protein interactions for a given organism. In 2002, the yeast interactome was estimated to contain up to 80,000 potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass spectrometry, two-hybrid methods, genetic studies. High-throughput methods are known, however, to yield a non-negligible rate of false positives, and to miss a fraction of existing interactions. The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise interactions. In recent years clustering methods have been developed and applied in order to extract relevant modules from such graphs. These algorithms require the specification of parameters that may drastically affect the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL, Restricted Neighborhood Search Clustering (RNSC, Super Paramagnetic Clustering (SPC, and Molecular Complex Detection (MCODE. Results A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from or adding edges to the test graph in various proportions. Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were compared with the annotated complexes. We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values. We also evaluated their robustness to alterations of the test graph. We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the resulting clusters with the annotated complexes. Conclusion This

  11. Non-divergence of stochastic discrete time algorithms for PCA neural networks.

    Science.gov (United States)

    Lv, Jian Cheng; Yi, Zhang; Li, Yunxia

    2015-02-01

    Learning algorithms play an important role in the practical application of neural networks based on principal component analysis, often determining the success, or otherwise, of these applications. These algorithms cannot be divergent, but it is very difficult to directly study their convergence properties, because they are described by stochastic discrete time (SDT) algorithms. This brief analyzes the original SDT algorithms directly, and derives some invariant sets that guarantee the nondivergence of these algorithms in a stochastic environment by selecting proper learning parameters. Our theoretical results are verified by a series of simulation examples.

  12. Network-based functional enrichment

    Directory of Open Access Journals (Sweden)

    Poirel Christopher L

    2011-11-01

    Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are

  13. Combining neural networks and genetic algorithms for hydrological flow forecasting

    Science.gov (United States)

    Neruda, Roman; Srejber, Jan; Neruda, Martin; Pascenko, Petr

    2010-05-01

    We present a neural network approach to rainfall-runoff modeling for small size river basins based on several time series of hourly measured data. Different neural networks are considered for short time runoff predictions (from one to six hours lead time) based on runoff and rainfall data observed in previous time steps. Correlation analysis shows that runoff data, short time rainfall history, and aggregated API values are the most significant data for the prediction. Neural models of multilayer perceptron and radial basis function networks with different numbers of units are used and compared with more traditional linear time series predictors. Out of possible 48 hours of relevant history of all the input variables, the most important ones are selected by means of input filters created by a genetic algorithm. The genetic algorithm works with population of binary encoded vectors defining input selection patterns. Standard genetic operators of two-point crossover, random bit-flipping mutation, and tournament selection were used. The evaluation of objective function of each individual consists of several rounds of building and testing a particular neural network model. The whole procedure is rather computational exacting (taking hours to days on a desktop PC), thus a high-performance mainframe computer has been used for our experiments. Results based on two years worth data from the Ploucnice river in Northern Bohemia suggest that main problems connected with this approach to modeling are ovetraining that can lead to poor generalization, and relatively small number of extreme events which makes it difficult for a model to predict the amplitude of the event. Thus, experiments with both absolute and relative runoff predictions were carried out. In general it can be concluded that the neural models show about 5 per cent improvement in terms of efficiency coefficient over liner models. Multilayer perceptrons with one hidden layer trained by back propagation algorithm and

  14. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xin Guan

    2012-04-01

    Full Text Available Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs. Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR.We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  15. A network coding based routing protocol for underwater sensor networks.

    Science.gov (United States)

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  16. Validating module network learning algorithms using simulated data.

    Science.gov (United States)

    Michoel, Tom; Maere, Steven; Bonnet, Eric; Joshi, Anagha; Saeys, Yvan; Van den Bulcke, Tim; Van Leemput, Koenraad; van Remortel, Piet; Kuiper, Martin; Marchal, Kathleen; Van de Peer, Yves

    2007-05-03

    In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators. We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing and improving module network

  17. Insertion algorithms for network model database management systems

    Science.gov (United States)

    Mamadolimov, Abdurashid; Khikmat, Saburov

    2017-12-01

    The network model is a database model conceived as a flexible way of representing objects and their relationships. Its distinguishing feature is that the schema, viewed as a graph in which object types are nodes and relationship types are arcs, forms partial order. When a database is large and a query comparison is expensive then the efficiency requirement of managing algorithms is minimizing the number of query comparisons. We consider updating operation for network model database management systems. We develop a new sequantial algorithm for updating operation. Also we suggest a distributed version of the algorithm.

  18. New Heuristic Algorithm for Dynamic Traffic in WDM Optical Networks

    Directory of Open Access Journals (Sweden)

    Arturo Benito Rodríguez Garcia

    2015-12-01

    Full Text Available The results and comparison of the simulation of a new heuristic algorithm called Snake One are presented. The comparison is made with three heuristic algorithms, Genetic Algorithms, Simulated Annealing, and Tabu Search, using blocking probability and network utilization as standard indicators. The simulation was made on the WDM NSFNET under dynamic traffic conditions. The results show a substantial decrease of blocking, but this causes a relative growth of network utilization. There are also load intervals at which its performance improves, decreasing the number of blocked requests.

  19. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    African Journals Online (AJOL)

    Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous spectrophotometric multicomponent analysis are suggested, with a study on the estimation of the components of an antihypertensive combination, namely, atenolol and losartan potassium.

  20. Research on Routing Algorithm Based on Limitation Arrangement Principle in Mathematics

    Directory of Open Access Journals (Sweden)

    Jianhui Lv

    2014-01-01

    Full Text Available Since the research on information consistency of the whole network under OSPF protocol has been insufficient in recent years, an algorithm based on limitation arrangement principle for routing decision is proposed and it is a permutation and combination problem in mathematical area. The most fundamental function of this algorithm is to accomplish the information consistency of the whole network at a relatively fast speed. Firstly, limitation arrangement principle algorithm is proposed and proved. Secondly, LAP routing algorithm in single link network and LAP routing algorithm in single link network with multiloops are designed. Finally, simulation experiments are worked by VC6.0 and NS2, which proves that LAPSN algorithm and LAPSNM algorithm can solve the problem of information consistency of the whole network under OSPF protocol and LAPSNM algorithm is superior to Dijkstra algorithm.

  1. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...

  2. A Practical Algorithm for Reconstructing Level-1 Phylogenetic Networks

    NARCIS (Netherlands)

    K.T. Huber; L.J.J. van Iersel (Leo); S.M. Kelk (Steven); R. Suchecki

    2010-01-01

    htmlabstractRecently much attention has been devoted to the construction of phylogenetic networks which generalize phylogenetic trees in order to accommodate complex evolutionary processes. Here we present an efficient, practical algorithm for reconstructing level-1 phylogenetic networks - a type of

  3. A computational study of routing algorithms for realistic transportation networks

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, R.; Marathe, M.V.; Nagel, K.

    1998-12-01

    The authors carry out an experimental analysis of a number of shortest path (routing) algorithms investigated in the context of the TRANSIMS (Transportation Analysis and Simulation System) project. The main focus of the paper is to study how various heuristic and exact solutions, associated data structures affected the computational performance of the software developed especially for realistic transportation networks. For this purpose the authors have used Dallas Fort-Worth road network with very high degree of resolution. The following general results are obtained: (1) they discuss and experimentally analyze various one-one shortest path algorithms, which include classical exact algorithms studied in the literature as well as heuristic solutions that are designed to take into account the geometric structure of the input instances; (2) they describe a number of extensions to the basic shortest path algorithm. These extensions were primarily motivated by practical problems arising in TRANSIMS and ITS (Intelligent Transportation Systems) related technologies. Extensions discussed include--(i) time dependent networks, (ii) multi-modal networks, (iii) networks with public transportation and associated schedules. Computational results are provided to empirically compare the efficiency of various algorithms. The studies indicate that a modified Dijkstra`s algorithm is computationally fast and an excellent candidate for use in various transportation planning applications as well as ITS related technologies.

  4. Hybrid employment recommendation algorithm based on Spark

    Science.gov (United States)

    Li, Zuoquan; Lin, Yubei; Zhang, Xingming

    2017-08-01

    Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.

  5. Seamless Vertical Handoff using Invasive Weed Optimization (IWO algorithm for heterogeneous wireless networks

    Directory of Open Access Journals (Sweden)

    T. Velmurugan

    2016-03-01

    Full Text Available Heterogeneous wireless networks are an integration of two different networks. For better performance, connections are to be exchanged among the different networks using seamless Vertical Handoff. The evolutionary algorithm of invasive weed optimization algorithm popularly known as the IWO has been used in this paper, to solve the Vertical Handoff (VHO and Horizontal Handoff (HHO problems. This integer coded algorithm is based on the colonizing behavior of weed plants and has been developed to optimize the system load and reduce the battery power consumption of the Mobile Node (MN. Constraints such as Receiver Signal Strength (RSS, battery lifetime, mobility, load and so on are taken into account. Individual as well as a combination of a number of factors are considered during decision process to make it more effective. This paper brings out the novel method of IWO algorithm for decision making during Vertical Handoff. Therefore the proposed VHO decision making algorithm is compared with the existing SSF and OPTG methods.

  6. Opposition-Based Adaptive Fireworks Algorithm

    Directory of Open Access Journals (Sweden)

    Chibing Gong

    2016-07-01

    Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.

  7. Optimizing of Passive Optical Network Deployment Using Algorithm with Metrics

    Directory of Open Access Journals (Sweden)

    Tomas Pehnelt

    2017-01-01

    Full Text Available Various approaches and methods are used for designing of optimum deployment of Passive Optical Networks (PON according to selected optimization criteria, such as optimal trenching distance, endpoint attenuation and overall installed fibre length. This article describes the ideas and possibilities for an algorithm with the application of graph algorithms for finding the shortest path from Optical Line Termination to Optical Network Terminal unit. This algorithm uses a combination of different methods for generating of an optimal metric, thus creating the optimized tree topology mainly focused on summary trenching distance. Furthermore, it deals with algorithms for finding an optimal placement of optical splitter with the help of K-Means clustering method and hierarchical clustering technique. The results of the proposed algorithm are compared with existing methods.

  8. A Distributed Algorithm for Energy Optimization in Hydraulic Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Wisniewski, Rafal; Jensen, Tom Nørgaard

    2014-01-01

    An industrial case study in the form of a large-scale hydraulic network underlying a district heating system is considered. A distributed control is developed that minimizes the aggregated electrical energy consumption of the pumps in the network without violating the control demands. The algorithm...... a Plug & Play control system as most commissioning can be done during the manufacture of the pumps. Only information on the graph-structure of the hydraulic network is needed during installation....

  9. Aggregation algorithm towards large-scale Boolean network analysis

    OpenAIRE

    Zhao, Y.; Kim, J.; Filippone, M.

    2013-01-01

    The analysis of large-scale Boolean network dynamics is of great importance in understanding complex phenomena where systems are characterized by a large number of components. The computational cost to reveal the number of attractors and the period of each attractor increases exponentially as the number of nodes in the networks increases. This paper presents an efficient algorithm to find attractors for medium to large-scale networks. This is achieved by analyzing subnetworks within the netwo...

  10. Elements of an algorithm for optimizing a parameter-structural neural network

    Directory of Open Access Journals (Sweden)

    Mrówczyńska Maria

    2016-06-01

    Full Text Available The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH, which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.

  11. Accelerated Gillespie Algorithm for Gas–Grain Reaction Network Simulations Using Quasi-steady-state Assumption

    Science.gov (United States)

    Chang, Qiang; Lu, Yang; Quan, Donghui

    2017-12-01

    Although the Gillespie algorithm is accurate in simulating gas–grain reaction networks, so far its computational cost is so expensive that it cannot be used to simulate chemical reaction networks that include molecular hydrogen accretion or the chemical evolution of protoplanetary disks. We present an accelerated Gillespie algorithm that is based on a quasi-steady-state assumption with the further approximation that the population distribution of transient species depends only on the accretion and desorption processes. The new algorithm is tested against a few reaction networks that are simulated by the regular Gillespie algorithm. We found that the less likely it is that transient species are formed and destroyed on grain surfaces, the more accurate the new method is. We also apply the new method to simulate reaction networks that include molecular hydrogen accretion. The results show that surface chemical reactions involving molecular hydrogen are not important for the production of surface species under standard physical conditions of dense molecular clouds.

  12. Online Algorithms for Adaptive Optimization in Heterogeneous Delay Tolerant Networks

    Directory of Open Access Journals (Sweden)

    Wissam Chahin

    2013-12-01

    Full Text Available Delay Tolerant Networks (DTNs are an emerging type of networks which do not need a predefined infrastructure. In fact, data forwarding in DTNs relies on the contacts among nodes which may possess different features, radio range, battery consumption and radio interfaces. On the other hand, efficient message delivery under limited resources, e.g., battery or storage, requires to optimize forwarding policies. We tackle optimal forwarding control for a DTN composed of nodes of different types, forming a so-called heterogeneous network. Using our model, we characterize the optimal policies and provide a suitable framework to design a new class of multi-dimensional stochastic approximation algorithms working for heterogeneous DTNs. Crucially, our proposed algorithms drive online the source node to the optimal operating point without requiring explicit estimation of network parameters. A thorough analysis of the convergence properties and stability of our algorithms is presented.

  13. Real-world experimentation of distributed DSA network algorithms

    DEFF Research Database (Denmark)

    Tonelli, Oscar; Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão

    2013-01-01

    of the available spectrum by nodes in a network, without centralized coordination. While proof-of-concept and statistical validation of such algorithms is typically achieved by using system level simulations, experimental activities are valuable contributions for the investigation of particular aspects......The problem of spectrum scarcity in uncoordinated and/or heterogeneous wireless networks is the key aspect driving the research in the field of flexible management of frequency resources. In particular, distributed dynamic spectrum access (DSA) algorithms enable an efficient sharing...... such as a dynamic propagation environment, human presence impact and terminals mobility. This chapter focuses on the practical aspects related to the real world-experimentation with distributed DSA network algorithms over a testbed network. Challenges and solutions are extensively discussed, from the testbed design...

  14. Properties of healthcare teaming networks as a function of network construction algorithms.

    Science.gov (United States)

    Zand, Martin S; Trayhan, Melissa; Farooq, Samir A; Fucile, Christopher; Ghoshal, Gourab; White, Robert J; Quill, Caroline M; Rosenberg, Alexander; Barbosa, Hugo Serrano; Bush, Kristen; Chafi, Hassan; Boudreau, Timothy

    2017-01-01

    Network models of healthcare systems can be used to examine how providers collaborate, communicate, refer patients to each other, and to map how patients traverse the network of providers. Most healthcare service network models have been constructed from patient claims data, using billing claims to link a patient with a specific provider in time. The data sets can be quite large (106-108 individual claims per year), making standard methods for network construction computationally challenging and thus requiring the use of alternate construction algorithms. While these alternate methods have seen increasing use in generating healthcare networks, there is little to no literature comparing the differences in the structural properties of the generated networks, which as we demonstrate, can be dramatically different. To address this issue, we compared the properties of healthcare networks constructed using different algorithms from 2013 Medicare Part B outpatient claims data. Three different algorithms were compared: binning, sliding frame, and trace-route. Unipartite networks linking either providers or healthcare organizations by shared patients were built using each method. We find that each algorithm produced networks with substantially different topological properties, as reflected by numbers of edges, network density, assortativity, clustering coefficients and other structural measures. Provider networks adhered to a power law, while organization networks were best fit by a power law with exponential cutoff. Censoring networks to exclude edges with less than 11 shared patients, a common de-identification practice for healthcare network data, markedly reduced edge numbers and network density, and greatly altered measures of vertex prominence such as the betweenness centrality. Data analysis identified patterns in the distance patients travel between network providers, and a striking set of teaming relationships between providers in the Northeast United States and

  15. DARAL: A Dynamic and Adaptive Routing Algorithm for Wireless Sensor Networks.

    Science.gov (United States)

    Estévez, Francisco José; Glösekötter, Peter; González, Jesús

    2016-06-24

    The evolution of Smart City projects is pushing researchers and companies to develop more efficient embedded hardware and also more efficient communication technologies. These communication technologies are the focus of this work, presenting a new routing algorithm based on dynamically-allocated sub-networks and node roles. Among these features, our algorithm presents a fast set-up time, a reduced overhead and a hierarchical organization, which allows for the application of complex management techniques. This work presents a routing algorithm based on a dynamically-allocated hierarchical clustering, which uses the link quality indicator as a reference parameter, maximizing the network coverage and minimizing the control message overhead and the convergence time. The present work based its test scenario and analysis in the density measure, considered as a node degree. The routing algorithm is compared with some of the most well known routing algorithms for different scenario densities.

  16. Fast Parallel Algorithms for Graphs and Networks

    Science.gov (United States)

    1987-12-01

    loosing the nth game of badminton to him. Valerie King and .Joel Friedman showed me the wonders of cross-country skiing in Yosemite. Steven Rudich was...2), both W(u) and L(v) have no more than 7s/8 vertices. Let x be some ver- tex. We can describe the history of x throughout the algorithm by a zero

  17. Incremental Centrality Algorithms for Dynamic Network Analysis

    Science.gov (United States)

    2013-08-01

    Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware...run-time of O(m + nlogn) can be achieved by implementing the priority queue using a Fibonacci heap [127]. When Dijsktra’s algorithm is invoked

  18. Genetic Algorithm Optimization of Artificial Neural Networks for Hydrological Modelling

    Science.gov (United States)

    Abrahart, R. J.

    2004-05-01

    This paper will consider the case for genetic algorithm optimization in the development of an artificial neural network model. It will provide a methodological evaluation of reported investigations with respect to hydrological forecasting and prediction. The intention in such operations is to develop a superior modelling solution that will be: \\begin{itemize} more accurate in terms of output precision and model estimation skill; more tractable in terms of personal requirements and end-user control; and/or more robust in terms of conceptual and mechanical power with respect to adverse conditions. The genetic algorithm optimization toolbox could be used to perform a number of specific roles or purposes and it is the harmonious and supportive relationship between neural networks and genetic algorithms that will be highlighted and assessed. There are several neural network mechanisms and procedures that could be enhanced and potential benefits are possible at different stages in the design and construction of an operational hydrological model e.g. division of inputs; identification of structure; initialization of connection weights; calibration of connection weights; breeding operations between successful models; and output fusion associated with the development of ensemble solutions. Each set of opportunities will be discussed and evaluated. Two strategic questions will also be considered: [i] should optimization be conducted as a set of small individual procedures or as one large holistic operation; [ii] what specific function or set of weighted vectors should be optimized in a complex software product e.g. timings, volumes, or quintessential hydrological attributes related to the 'problem situation' - that might require the development flood forecasting, drought estimation, or record infilling applications. The paper will conclude with a consideration of hydrological forecasting solutions developed on the combined methodologies of co-operative co-evolution and

  19. Performance Enhancement of Distribution Network with DG Integration Using Modified PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Ramadoni Syahputra

    2016-03-01

    Full Text Available This paper addresses performance enhancement of distribution network with distributed generator (DG integration using modified particle swarm optimization (PSO algorithm. The effort of performance enhancement is done by using optimization of distribution network configuration. The objective of the optimization is minimizing active power loss and improving voltage profile while the distribution network is maintained in the radial structure. In this study, configuration optimization method is based on a modified PSO algorithm. The method has been tested in an IEEE model of 33-bus radial distribution network test system and a reallife radial distribution network of 60-bus Bantul distribution system, Indonesia. The simulation results show the importance of reconfiguring the network for enhancing the distribution network performance in the presence of DG.

  20. Social-Stratification Probabilistic Routing Algorithm in Delay-Tolerant Network

    Science.gov (United States)

    Alnajjar, Fuad; Saadawi, Tarek

    Routing in mobile ad hoc networks (MANET) is complicated due to the fact that the network graph is episodically connected. In MANET, topology is changing rapidly because of weather, terrain and jamming. A key challenge is to create a mechanism that can provide good delivery performance and low end-to-end delay in an intermittent network graph where nodes may move freely. Delay-Tolerant Networking (DTN) architecture is designed to provide communication in intermittently connected networks, by moving messages towards destination via ”store, carry and forward” technique that supports multi-routing algorithms to acquire best path towards destination. In this paper, we propose the use of probabilistic routing in DTN architecture using the concept of social-stratification network. We use the Opportunistic Network Environment (ONE) simulator as a simulation tool to compare the proposed Social- stratification Probabilistic Routing Algorithm (SPRA) with the common DTN-based protocols. Our results show that SPRA outperforms the other protocols.