WorldWideScience

Sample records for network based adaptive

  1. Using Granular-Evidence-Based Adaptive Networks for Sensitivity Analysis

    OpenAIRE

    Vališevskis, A.

    2002-01-01

    This paper considers the possibility of using adaptive networks for sensitivity analysis. Adaptive network that processes fuzzy granules is described. The adaptive network training algorithm can be used for sensitivity analysis of decision making models. Furthermore, a case study concerning sensitivity analysis is described, which shows in what way the adaptive network can be used for sensitivity analysis.

  2. Neural network based adaptive control for nonlinear dynamic regimes

    Science.gov (United States)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  3. Coupled interference based rate adaptation in ad hoc networks

    CSIR Research Space (South Africa)

    Awuor, F

    2011-09-01

    Full Text Available since the channel condition is time variant [5], [6]. Hence CIN considers link adaptation based on SINR performance to derive transmit power that minimizes coupled interference in the network. In [5], an algorithm is proposed where an average value... channel condition variance for proper choice of PHY mode. In [7], rate adaptation scheme is proposed wherein nodes select the power-rate pair to maximize their utility based on the previous measured SINRs. The values of SINR employed by [5],[6] and [7...

  4. Adaptive PID control based on orthogonal endocrine neural networks.

    Science.gov (United States)

    Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D

    2016-12-01

    A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Development of quantum-based adaptive neuro-fuzzy networks.

    Science.gov (United States)

    Kim, Sung-Suk; Kwak, Keun-Chang

    2010-02-01

    In this study, we are concerned with a method for constructing quantum-based adaptive neuro-fuzzy networks (QANFNs) with a Takagi-Sugeno-Kang (TSK) fuzzy type based on the fuzzy granulation from a given input-output data set. For this purpose, we developed a systematic approach in producing automatic fuzzy rules based on fuzzy subtractive quantum clustering. This clustering technique is not only an extension of ideas inherent to scale-space and support-vector clustering but also represents an effective prototype that exhibits certain characteristics of the target system to be modeled from the fuzzy subtractive method. Furthermore, we developed linear-regression QANFN (LR-QANFN) as an incremental model to deal with localized nonlinearities of the system, so that all modeling discrepancies can be compensated. After adopting the construction of the linear regression as the first global model, we refined it through a series of local fuzzy if-then rules in order to capture the remaining localized characteristics. The experimental results revealed that the proposed QANFN and LR-QANFN yielded a better performance in comparison with radial basis function networks and the linguistic model obtained in previous literature for an automobile mile-per-gallon prediction, Boston Housing data, and a coagulant dosing process in a water purification plant.

  6. Neural network based adaptive output feedback control: Applications and improvements

    Science.gov (United States)

    Kutay, Ali Turker

    Application of recently developed neural network based adaptive output feedback controllers to a diverse range of problems both in simulations and experiments is investigated in this thesis. The purpose is to evaluate the theory behind the development of these controllers numerically and experimentally, identify the needs for further development in practical applications, and to conduct further research in directions that are identified to ultimately enhance applicability of adaptive controllers to real world problems. We mainly focus our attention on adaptive controllers that augment existing fixed gain controllers. A recently developed approach holds great potential for successful implementations on real world applications due to its applicability to systems with minimal information concerning the plant model and the existing controller. In this thesis the formulation is extended to the multi-input multi-output case for distributed control of interconnected systems and successfully tested on a formation flight wind tunnel experiment. The command hedging method is formulated for the approach to further broaden the class of systems it can address by including systems with input nonlinearities. Also a formulation is adopted that allows the approach to be applied to non-minimum phase systems for which non-minimum phase characteristics are modeled with sufficient accuracy and treated properly in the design of the existing controller. It is shown that the approach can also be applied to augment nonlinear controllers under certain conditions and an example is presented where the nonlinear guidance law of a spinning projectile is augmented. Simulation results on a high fidelity 6 degrees-of-freedom nonlinear simulation code are presented. The thesis also presents a preliminary adaptive controller design for closed loop flight control with active flow actuators. Behavior of such actuators in dynamic flight conditions is not known. To test the adaptive controller design in

  7. Event-driven approach of layered multicast to network adaptation in RED-based IP networks

    Science.gov (United States)

    Nahm, Kitae; Li, Qing; Kuo, C.-C. J.

    2003-11-01

    In this work, we investigate the congestion control problem for layered video multicast in IP networks of active queue management (AQM) using a simple random early detection (RED) queue model. AQM support from networks improves the visual quality of video streaming but makes network adaptation more di+/-cult for existing layered video multicast proticols that use the event-driven timer-based approach. We perform a simplified analysis on the response of the RED algorithm to burst traffic. The analysis shows that the primary problem lies in the weak correlation between the network feedback and the actual network congestion status when the RED queue is driven by burst traffic. Finally, a design guideline of the layered multicast protocol is proposed to overcome this problem.

  8. Cooperative and Adaptive Network Coding for Gradient Based Routing in Wireless Sensor Networks with Multiple Sinks

    Directory of Open Access Journals (Sweden)

    M. E. Migabo

    2017-01-01

    Full Text Available Despite its low computational cost, the Gradient Based Routing (GBR broadcast of interest messages in Wireless Sensor Networks (WSNs causes significant packets duplications and unnecessary packets transmissions. This results in energy wastage, traffic load imbalance, high network traffic, and low throughput. Thanks to the emergence of fast and powerful processors, the development of efficient network coding strategies is expected to enable efficient packets aggregations and reduce packets retransmissions. For multiple sinks WSNs, the challenge consists of efficiently selecting a suitable network coding scheme. This article proposes a Cooperative and Adaptive Network Coding for GBR (CoAdNC-GBR technique which considers the network density as dynamically defined by the average number of neighbouring nodes, to efficiently aggregate interest messages. The aggregation is performed by means of linear combinations of random coefficients of a finite Galois Field of variable size GF(2S at each node and the decoding is performed by means of Gaussian elimination. The obtained results reveal that, by exploiting the cooperation of the multiple sinks, the CoAdNC-GBR not only improves the transmission reliability of links and lowers the number of transmissions and the propagation latency, but also enhances the energy efficiency of the network when compared to the GBR-network coding (GBR-NC techniques.

  9. [Robustness analysis of adaptive neural network model based on spike timing-dependent plasticity].

    Science.gov (United States)

    Chen, Yunzhi; Xu, Guizhi; Zhou, Qian; Guo, Miaomiao; Guo, Lei; Wan, Xiaowei

    2015-02-01

    To explore the self-organization robustness of the biological neural network, and thus to provide new ideas and methods for the electromagnetic bionic protection, we studied both the information transmission mechanism of neural network and spike timing-dependent plasticity (STDP) mechanism, and then investigated the relationship between synaptic plastic and adaptive characteristic of biology. Then a feedforward neural network with the Izhikevich model and the STDP mechanism was constructed, and the adaptive robust capacity of the network was analyzed. Simulation results showed that the neural network based on STDP mechanism had good rubustness capacity, and this characteristics is closely related to the STDP mechanisms. Based on this simulation work, the cell circuit with neurons and synaptic circuit which can simulate the information processing mechanisms of biological nervous system will be further built, then the electronic circuits with adaptive robustness will be designed based on the cell circuit.

  10. Profile-based adaptive anomaly detection for network security.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengchu C. (Sandia National Laboratories, Albuquerque, NM); Durgin, Nancy Ann

    2005-11-01

    As information systems become increasingly complex and pervasive, they become inextricably intertwined with the critical infrastructure of national, public, and private organizations. The problem of recognizing and evaluating threats against these complex, heterogeneous networks of cyber and physical components is a difficult one, yet a solution is vital to ensuring security. In this paper we investigate profile-based anomaly detection techniques that can be used to address this problem. We focus primarily on the area of network anomaly detection, but the approach could be extended to other problem domains. We investigate using several data analysis techniques to create profiles of network hosts and perform anomaly detection using those profiles. The ''profiles'' reduce multi-dimensional vectors representing ''normal behavior'' into fewer dimensions, thus allowing pattern and cluster discovery. New events are compared against the profiles, producing a quantitative measure of how ''anomalous'' the event is. Most network intrusion detection systems (IDSs) detect malicious behavior by searching for known patterns in the network traffic. This approach suffers from several weaknesses, including a lack of generalizability, an inability to detect stealthy or novel attacks, and lack of flexibility regarding alarm thresholds. Our research focuses on enhancing current IDS capabilities by addressing some of these shortcomings. We identify and evaluate promising techniques for data mining and machine-learning. The algorithms are ''trained'' by providing them with a series of data-points from ''normal'' network traffic. A successful algorithm can be trained automatically and efficiently, will have a low error rate (low false alarm and miss rates), and will be able to identify anomalies in ''pseudo real-time'' (i.e., while the intrusion is still in progress

  11. An OCP Compliant Network Adapter for GALS-based SoC Design Using the MANGO Network-on-Chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Mahadevan, Shankar; Olsen, Rasmus Grøndahl

    2005-01-01

    The demand for IP reuse and system level scalability in System-on-Chip (SoC) designs is growing. Network-onchip (NoC) constitutes a viable solution space to emerging SoC design challenges. In this paper we describe an OCP compliant network adapter (NA) architecture for the MANGO NoC. The NA...... decouples communication and computation, providing memory-mapped OCP transactions based on primitive message-passing services of the network. Also, it facilitates GALS-type systems, by adapting to the clockless network. This helps leverage a modular SoC design flow. We evaluate performance and cost of 0...

  12. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  13. Location-Based Self-Adaptive Routing Algorithm for Wireless Sensor Networks in Home Automation

    Directory of Open Access Journals (Sweden)

    Hong SeungHo

    2011-01-01

    Full Text Available The use of wireless sensor networks in home automation (WSNHA is attractive due to their characteristics of self-organization, high sensing fidelity, low cost, and potential for rapid deployment. Although the AODVjr routing algorithm in IEEE 802.15.4/ZigBee and other routing algorithms have been designed for wireless sensor networks, not all are suitable for WSNHA. In this paper, we propose a location-based self-adaptive routing algorithm for WSNHA called WSNHA-LBAR. It confines route discovery flooding to a cylindrical request zone, which reduces the routing overhead and decreases broadcast storm problems in the MAC layer. It also automatically adjusts the size of the request zone using a self-adaptive algorithm based on Bayes' theorem. This makes WSNHA-LBAR more adaptable to the changes of the network state and easier to implement. Simulation results show improved network reliability as well as reduced routing overhead.

  14. Adaptive Security Architecture based on EC-MQV Algorithm in Personal Network (PN)

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Prasad, Neeli R.

    2007-01-01

    Abstract — Personal Networks (PNs) have been focused on in order to support the user’s business and private activities without jeopardizing privacy and security of the users and their data. In such a network, it is necessary to produce a proper key agreement method according to the feature...... of the network. One of the features of the network is that the personal devices have deferent capabilities such as computational ability, memory size, transmission power, processing speed and implementation cost. Therefore an adaptive security mechanism should be contrived for such a network of various device...... combinations based on user’s location and device’s capability. The paper proposes new adaptive security architecture with three levels of asymmetric key agreement scheme by using context-aware security manager (CASM) based on elliptic curve cryptosystem (EC-MQV)....

  15. An adaptive failure detector based on quality of service in peer-to-peer networks.

    Science.gov (United States)

    Dong, Jian; Ren, Xiao; Zuo, Decheng; Liu, Hongwei

    2014-09-05

    The failure detector is one of the fundamental components that maintain high availability of Peer-to-Peer (P2P) networks. Under different network conditions, the adaptive failure detector based on quality of service (QoS) can achieve the detection time and accuracy required by upper applications with lower detection overhead. In P2P systems, complexity of network and high churn lead to high message loss rate. To reduce the impact on detection accuracy, baseline detection strategy based on retransmission mechanism has been employed widely in many P2P applications; however, Chen's classic adaptive model cannot describe this kind of detection strategy. In order to provide an efficient service of failure detection in P2P systems, this paper establishes a novel QoS evaluation model for the baseline detection strategy. The relationship between the detection period and the QoS is discussed and on this basis, an adaptive failure detector (B-AFD) is proposed, which can meet the quantitative QoS metrics under changing network environment. Meanwhile, it is observed from the experimental analysis that B-AFD achieves better detection accuracy and time with lower detection overhead compared to the traditional baseline strategy and the adaptive detectors based on Chen's model. Moreover, B-AFD has better adaptability to P2P network.

  16. An Adaptive Failure Detector Based on Quality of Service in Peer-to-Peer Networks

    Directory of Open Access Journals (Sweden)

    Jian Dong

    2014-09-01

    Full Text Available The failure detector is one of the fundamental components that maintain high availability of Peer-to-Peer (P2P networks. Under different network conditions, the adaptive failure detector based on quality of service (QoS can achieve the detection time and accuracy required by upper applications with lower detection overhead. In P2P systems, complexity of network and high churn lead to high message loss rate. To reduce the impact on detection accuracy, baseline detection strategy based on retransmission mechanism has been employed widely in many P2P applications; however, Chen’s classic adaptive model cannot describe this kind of detection strategy. In order to provide an efficient service of failure detection in P2P systems, this paper establishes a novel QoS evaluation model for the baseline detection strategy. The relationship between the detection period and the QoS is discussed and on this basis, an adaptive failure detector (B-AFD is proposed, which can meet the quantitative QoS metrics under changing network environment. Meanwhile, it is observed from the experimental analysis that B-AFD achieves better detection accuracy and time with lower detection overhead compared to the traditional baseline strategy and the adaptive detectors based on Chen’s model. Moreover, B-AFD has better adaptability to P2P network.

  17. Adaptive, Tactical Mesh Networking: Control Base MANET Model

    Science.gov (United States)

    2010-09-01

    pp. 316–320 Available: IEEE Xplore , http://ieeexplore.ieee.org [Accessed: June 9, 2010]. [5] N. Sidiropoulos, “Multiuser Transmit Beamforming...Mobile Mesh Segments of TNT Testbed .......... 11 Figure 5. Infrastructure and Ad Hoc Mode of IEEE 802.11................................ 13 Figure...6. The Power Spectral Density of OFDM................................................ 14 Figure 7. A Typical IEEE 802.16 Network

  18. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    Science.gov (United States)

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  19. Adaptive dynamical networks

    Science.gov (United States)

    Maslennikov, O. V.; Nekorkin, V. I.

    2017-10-01

    Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.

  20. EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation.

    Science.gov (United States)

    Jirayucharoensak, Suwicha; Pan-Ngum, Setha; Israsena, Pasin

    2014-01-01

    Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers.

  1. EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation

    Directory of Open Access Journals (Sweden)

    Suwicha Jirayucharoensak

    2014-01-01

    Full Text Available Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers.

  2. Rate adaptation in ad hoc networks based on pricing

    CSIR Research Space (South Africa)

    Awuor, F

    2011-09-01

    Full Text Available that incorporates penalty (pricing) obtruded to users’ choices of transmission parameters to curb the self-interest behaviour. Therefore users determine their data rates and transmit power based on the perceived coupled interference at the intended receiver...

  3. Modelling of Apple Scab Using Adaptive Network -Based Fuzzy ...

    African Journals Online (AJOL)

    Furkan

    2013-08-28

    Aug 28, 2013 ... based on artificial intelligence and time series prediction. The infection ... intelligence. INTRODUCTION. The plant protection activities against apple pest are very important for growers. Meteorological conditions directly affect the .... correlations among the determined apple scab values and mea- surement ...

  4. Adaptive Robust Control for Space Robot with Ucertainty base on Neural Network

    Directory of Open Access Journals (Sweden)

    Zhang Wenhui

    2013-11-01

    Full Text Available The trajectory tracking problems of a class of space robot manipulators with parameters and non-parameters uncertainty are considered. An adaptive robust control algorithm based on neural network is proposed by the paper. Neutral network is used to adaptive learn and compensate the unknown system for parameters uncertainties? the weight adaptive laws are designed by the paper? System stability base on Lyapunov theory is analysised to ensure the convergence of the algorithm. Non-parameters uncertainties are estimated and compensated by robust controller. It is proven that the designed controller can guarantee the asymptotic convergence of tracking error. The controller could guarantee good robust and the stability of closed-loop system. The simulation results show that the presented method is effective.

  5. Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.

    Science.gov (United States)

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.

  6. Wavelet-Based MPNLMS Adaptive Algorithm for Network Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Hongyang Deng

    2007-03-01

    Full Text Available The μ-law proportionate normalized least mean square (MPNLMS algorithm has been proposed recently to solve the slow convergence problem of the proportionate normalized least mean square (PNLMS algorithm after its initial fast converging period. But for the color input, it may become slow in the case of the big eigenvalue spread of the input signal's autocorrelation matrix. In this paper, we use the wavelet transform to whiten the input signal. Due to the good time-frequency localization property of the wavelet transform, a sparse impulse response in the time domain is also sparse in the wavelet domain. By applying the MPNLMS technique in the wavelet domain, fast convergence for the color input is observed. Furthermore, we show that some nonsparse impulse responses may become sparse in the wavelet domain. This motivates the usage of the wavelet-based MPNLMS algorithm. Advantages of this approach are documented.

  7. Wavelet-Based MPNLMS Adaptive Algorithm for Network Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Doroslovački Miloš

    2007-01-01

    Full Text Available The μ-law proportionate normalized least mean square (MPNLMS algorithm has been proposed recently to solve the slow convergence problem of the proportionate normalized least mean square (PNLMS algorithm after its initial fast converging period. But for the color input, it may become slow in the case of the big eigenvalue spread of the input signal's autocorrelation matrix. In this paper, we use the wavelet transform to whiten the input signal. Due to the good time-frequency localization property of the wavelet transform, a sparse impulse response in the time domain is also sparse in the wavelet domain. By applying the MPNLMS technique in the wavelet domain, fast convergence for the color input is observed. Furthermore, we show that some nonsparse impulse responses may become sparse in the wavelet domain. This motivates the usage of the wavelet-based MPNLMS algorithm. Advantages of this approach are documented.

  8. Distance-Based and Low Energy Adaptive Clustering Protocol for Wireless Sensor Networks.

    Science.gov (United States)

    Liaqat, Misbah; Gani, Abdullah; Anisi, Mohammad Hossein; Ab Hamid, Siti Hafizah; Akhunzada, Adnan; Khan, Muhammad Khurram; Ali, Rana Liaqat

    A wireless sensor network (WSN) comprises small sensor nodes with limited energy capabilities. The power constraints of WSNs necessitate efficient energy utilization to extend the overall network lifetime of these networks. We propose a distance-based and low-energy adaptive clustering (DISCPLN) protocol to streamline the green issue of efficient energy utilization in WSNs. We also enhance our proposed protocol into the multi-hop-DISCPLN protocol to increase the lifetime of the network in terms of high throughput with minimum delay time and packet loss. We also propose the mobile-DISCPLN protocol to maintain the stability of the network. The modelling and comparison of these protocols with their corresponding benchmarks exhibit promising results.

  9. Adaptive parallel logic networks

    Science.gov (United States)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  10. Adaptive Critic Neural Network-Based Terminal Area Energy Management and Approach and Landing Guidance

    Science.gov (United States)

    Grantham, Katie

    2003-01-01

    Reusable Launch Vehicles (RLVs) have different mission requirements than the Space Shuttle, which is used for benchmark guidance design. Therefore, alternative Terminal Area Energy Management (TAEM) and Approach and Landing (A/L) Guidance schemes can be examined in the interest of cost reduction. A neural network based solution for a finite horizon trajectory optimization problem is presented in this paper. In this approach the optimal trajectory of the vehicle is produced by adaptive critic based neural networks, which were trained off-line to maintain a gradual glideslope.

  11. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  12. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    Science.gov (United States)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  13. TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

    DEFF Research Database (Denmark)

    Yao, Wei; Fang, Jiakun; Zhao, Ping

    2013-01-01

    In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency...

  14. Diffusion Adaptation Over Clustered Multitask Networks Based on the Affine Projection Algorithm

    OpenAIRE

    Gogineni, Vinay Chakravarthi; Chakraborty, Mrityunjoy

    2015-01-01

    Distributed adaptive networks achieve better estimation performance by exploiting temporal and as well spatial diversity while consuming few resources. Recent works have studied the single task distributed estimation problem, in which the nodes estimate a single optimum parameter vector collaboratively. However, there are many important applications where the multiple vectors have to estimated simultaneously, in a collaborative manner. This paper presents multi-task diffusion strategies based...

  15. An adaptive handover prediction scheme for seamless mobility based wireless networks.

    Science.gov (United States)

    Sadiq, Ali Safa; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime

    2014-01-01

    We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches.

  16. An Adaptive Handover Prediction Scheme for Seamless Mobility Based Wireless Networks

    Directory of Open Access Journals (Sweden)

    Ali Safa Sadiq

    2014-01-01

    Full Text Available We propose an adaptive handover prediction (AHP scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches.

  17. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jinsong Gui

    2016-09-01

    Full Text Available Multi-Input Multi-Output (MIMO can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs, clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO, which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.

  18. Adaptive Sliding Mode Control of MEMS Gyroscope Based on Neural Network Approximation

    Directory of Open Access Journals (Sweden)

    Yuzheng Yang

    2014-01-01

    Full Text Available An adaptive sliding controller using radial basis function (RBF network to approximate the unknown system dynamics microelectromechanical systems (MEMS gyroscope sensor is proposed. Neural controller is proposed to approximate the unknown system model and sliding controller is employed to eliminate the approximation error and attenuate the model uncertainties and external disturbances. Online neural network (NN weight tuning algorithms, including correction terms, are designed based on Lyapunov stability theory, which can guarantee bounded tracking errors as well as bounded NN weights. The tracking error bound can be made arbitrarily small by increasing a certain feedback gain. Numerical simulation for a MEMS angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive neural control scheme and demonstrate the satisfactory tracking performance and robustness.

  19. Users’ classification-based call admission control with adaptive resource reservation for LTE-A networks

    Directory of Open Access Journals (Sweden)

    Salman Ali AlQahtani

    2017-01-01

    In this paper, we introduce the user’s privileges and traffic maximum delay tolerance as additional dimensions in the call admission control processes to efficiently control the utilization of LTE-A network resources. Based on this idea, we propose an efficient call admission control scheme named “delay aware and user categorizing-based CAC with adaptive resource reservation (DA–UC-ARR”, where the user priority is adjusted dynamically based on the current network conditions and the users’ categorizations and traffic delay tolerances, to increase the network’s resource utilization and at the same time to maximize the operators’ revenue. In this proposed scheme, the users are classified into Golden users and Silver users, and the type of service per user is classified as real time (RT and non-real time (NRT services. We compare the performance of the proposed scheme with the corresponding results of previous schemes, referred to as the adaptive resource reservation-based call admission control (ARR-CAC (Andrews et al., 2010; AlQahtani, 2014, where user categorization and delay were not taken into consideration in the call admission control process. Simulation results indicate the superiority of the proposed scheme because it is able to achieve a better balance between system utilization, users’ privileges provided by network operators and QoS provisioning compared to the ARR-CAC scheme.

  20. Adaptive Steganalysis Based on Selection Region and Combined Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Donghui Hu

    2017-01-01

    Full Text Available Digital image steganalysis is the art of detecting the presence of information hiding in carrier images. When detecting recently developed adaptive image steganography methods, state-of-art steganalysis methods cannot achieve satisfactory detection accuracy, because the adaptive steganography methods can adaptively embed information into regions with rich textures via the guidance of distortion function and thus make the effective steganalysis features hard to be extracted. Inspired by the promising success which convolutional neural network (CNN has achieved in the fields of digital image analysis, increasing researchers are devoted to designing CNN based steganalysis methods. But as for detecting adaptive steganography methods, the results achieved by CNN based methods are still far from expected. In this paper, we propose a hybrid approach by designing a region selection method and a new CNN framework. In order to make the CNN focus on the regions with complex textures, we design a region selection method by finding a region with the maximal sum of the embedding probabilities. To evolve more diverse and effective steganalysis features, we design a new CNN framework consisting of three separate subnets with independent structure and configuration parameters and then merge and split the three subnets repeatedly. Experimental results indicate that our approach can lead to performance improvement in detecting adaptive steganography.

  1. Neural network based adaptive control of nonlinear plants using random search optimization algorithms

    Science.gov (United States)

    Boussalis, Dhemetrios; Wang, Shyh J.

    1992-01-01

    This paper presents a method for utilizing artificial neural networks for direct adaptive control of dynamic systems with poorly known dynamics. The neural network weights (controller gains) are adapted in real time using state measurements and a random search optimization algorithm. The results are demonstrated via simulation using two highly nonlinear systems.

  2. Adaptive Reliable Routing Based on Cluster Hierarchy for Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2010-01-01

    Full Text Available As a multimedia information acquisition and processing method, wireless multimedia sensor network(WMSN has great application potential in military and civilian areas. Compared with traditional wireless sensor network, the routing design of WMSN should obtain more attention on the quality of transmission. This paper proposes an adaptive reliable routing based on clustering hierarchy named ARCH, which includes energy prediction and power allocation mechanism. To obtain a better performance, the cluster structure is formed based on cellular topology. The introduced prediction mechanism makes the sensor nodes predict the remaining energy of other nodes, which dramatically reduces the overall information needed for energy balancing. ARCH can dynamically balance the energy consumption of nodes based on the predicted results provided by power allocation. The simulation results prove the efficiency of the proposed ARCH routing.

  3. Demography-based adaptive network model reproduces the spatial organization of human linguistic groups.

    Science.gov (United States)

    Capitán, José A; Manrubia, Susanna

    2015-12-01

    The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.

  4. A Least Square-Based Self-Adaptive Localization Method for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Baoguo Yu

    2016-01-01

    Full Text Available In the wireless sensor network (WSN localization methods based on Received Signal Strength Indicator (RSSI, it is usually required to determine the parameters of the radio signal propagation model before estimating the distance between the anchor node and an unknown node with reference to their communication RSSI value. And finally we use a localization algorithm to estimate the location of the unknown node. However, this localization method, though high in localization accuracy, has weaknesses such as complex working procedure and poor system versatility. Concerning these defects, a self-adaptive WSN localization method based on least square is proposed, which uses the least square criterion to estimate the parameters of radio signal propagation model, which positively reduces the computation amount in the estimation process. The experimental results show that the proposed self-adaptive localization method outputs a high processing efficiency while satisfying the high localization accuracy requirement. Conclusively, the proposed method is of definite practical value.

  5. Reward and Punishment based Cooperative Adaptive Sampling in Wireless Sensor Networks

    NARCIS (Netherlands)

    Masoum, Alireza; Meratnia, Nirvana; Taghikhaki, Zahra; Havinga, Paul J.M.

    2010-01-01

    Energy conservation is one of the main concerns in wireless sensor networks. One of the mechanisms to better manage energy in wireless sensor networks is adaptive sampling, by which instead of using a fixed frequency interval for sensing and data transmission, the wireless sensor network employs a

  6. Adaptive-Compression Based Congestion Control Technique for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Joa-Hyoung Lee

    2010-03-01

    Full Text Available Congestion in a wireless sensor network causes an increase in the amount of data loss and delays in data transmission. In this paper, we propose a new congestion control technique (ACT, Adaptive Compression-based congestion control Technique based on an adaptive compression scheme for packet reduction in case of congestion. The compression techniques used in the ACT are Discrete Wavelet Transform (DWT, Adaptive Differential Pulse Code Modulation (ADPCM, and Run-Length Coding (RLC. The ACT first transforms the data from the time domain to the frequency domain, reduces the range of data by using ADPCM, and then reduces the number of packets with the help of RLC before transferring the data to the source node. It introduces the DWT for priority-based congestion control because the DWT classifies the data into four groups with different frequencies. The ACT assigns priorities to these data groups in an inverse proportion to the respective frequencies of the data groups and defines the quantization step size of ADPCM in an inverse proportion to the priorities. RLC generates a smaller number of packets for a data group with a low priority. In the relaying node, the ACT reduces the amount of packets by increasing the quantization step size of ADPCM in case of congestion. Moreover, in order to facilitate the back pressure, the queue is controlled adaptively according to the congestion state. We experimentally demonstrate that the ACT increases the network efficiency and guarantees fairness to sensor nodes, as compared with the existing methods. Moreover, it exhibits a very high ratio of the available data in the sink.

  7. Protection lightpath-based hitless spectrum defragmentation for distance adaptive elastic optical networks.

    Science.gov (United States)

    Wang, Chao; Shen, Gangxiang; Peng, Limei

    2016-03-07

    Spectrum defragmentation can improve spectrum utilization for an elastic optical network (EON). However, most of the existing studies have focused on defragmentation for working lightpaths, which may affect upper-layer network services. This paper considers protection lightpath-based hitless spectrum defragmentation for distance adaptive elastic optical networks. Without affecting working lightpaths, but defragmenting spectra for protection lightpaths, we expect to achieve truly hitless spectrum defragmentation for an EON. Shared backup path protection (SBPP) technique is employed as a representative network protection technique to evaluate the benefit of the proposed defragmentation scheme. To smooth the network spectra for future arriving lightpath requests so as to reduce bandwidth blocking probability (BBP), we propose two defragmentation triggering mechanisms, namely, defragmentation upon blocking (BTD) and batch defragmentation (BD). For each of them, we also propose two spectrum defragmentation algorithms, namely, defragmentation with sequentially releasing and re-establishing protection lightpaths (SR-D) and defragmentation with jointly releasing and re-establishing protection lightpaths (JR-D). The performances of these proposed algorithms are evaluated from perspectives of BBP and average number of reconfigurations per successfully established lightpath service (ANR). Simulation results show that compared to the case without defragmentation, the proposed scheme is effective to reduce BBP, which trades off with ANR.

  8. Adaptive Predistortions Based on Neural Networks Associated with Levenberg-Marquardt Algorithm for Satellite Down Links

    Directory of Open Access Journals (Sweden)

    Roviras Daniel

    2008-01-01

    Full Text Available Abstract This paper presents adaptive predistortion techniques based on a feed-forward neural network (NN to linearize power amplifiers such as those used in satellite communications. Indeed, it presents the suitable NN structures which give the best performances for three satellite down links. The first link is a stationary memoryless travelling wave tube amplifier (TWTA, the second one is a nonstationary memoryless TWT amplifier while the third is an amplifier with memory modeled by a memoryless amplifier followed by a linear filter. Equally important, it puts forward the studies concerning the application of different NN training algorithms in order to determine the most prefermant for adaptive predistortions. This comparison examined through computer simulation for 64 carriers and 16-QAM OFDM system, with a Saleh's TWT amplifier, is based on some quality measure (mean square error, the required training time to reach a particular quality level, and computation complexity. The chosen adaptive predistortions (NN structures associated with an adaptive algorithm have a low complexity, fast convergence, and best performance.

  9. Adaptive Predistortions Based on Neural Networks Associated with Levenberg-Marquardt Algorithm for Satellite Down Links

    Directory of Open Access Journals (Sweden)

    Daniel Roviras

    2008-08-01

    Full Text Available This paper presents adaptive predistortion techniques based on a feed-forward neural network (NN to linearize power amplifiers such as those used in satellite communications. Indeed, it presents the suitable NN structures which give the best performances for three satellite down links. The first link is a stationary memoryless travelling wave tube amplifier (TWTA, the second one is a nonstationary memoryless TWT amplifier while the third is an amplifier with memory modeled by a memoryless amplifier followed by a linear filter. Equally important, it puts forward the studies concerning the application of different NN training algorithms in order to determine the most prefermant for adaptive predistortions. This comparison examined through computer simulation for 64 carriers and 16-QAM OFDM system, with a Saleh's TWT amplifier, is based on some quality measure (mean square error, the required training time to reach a particular quality level, and computation complexity. The chosen adaptive predistortions (NN structures associated with an adaptive algorithm have a low complexity, fast convergence, and best performance.

  10. Adaptive Square-Shaped Trajectory-Based Service Location Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hwa-Jung Lim

    2010-04-01

    Full Text Available In this paper we propose an adaptive square-shaped trajectory (ASST-based service location method to ensure load scalability in wireless sensor networks. This first establishes a square-shaped trajectory over the nodes that surround a target point computed by the hash function and any user can access it, using the hash. Both the width and the size of the trajectory are dynamically adjustable, depending on the number of queries made to the service information on the trajectory. The number of sensor nodes on the trajectory varies in proportion to the changing trajectory shape, allowing high loads to be distributed around the hot spot area.

  11. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    Abubakar Muhammad Umaru

    2014-01-01

    Full Text Available The optical burst switching (OBS paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT burst assembly algorithm via simulation. Simulation results show that the proposed algorithm outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.

  12. Visual evoked potential estimation by adaptive noise cancellation with neural-network-based fuzzy inference system.

    Science.gov (United States)

    Zeng, Y; Zhang, J; Yin, H; Pan, Y

    2007-01-01

    Visual evoked potentials (VEPs) are time-varying signals typically buried in relatively large background noise known as the electroencephalogram (EEG). In this paper, an adaptive noise cancellation with neural network-based fuzzy inference system (NNFIS) was used and the NNFIS was carefully designed to model the VEP signal. It is assumed that VEP responses can be modelled by NNFIS with the centres of its membership functions evenly distributed over time. The weights of NNFIS are adaptively determined by minimizing the variance of the error signal using the least mean squares (LMS) algorithm. As the NNFIS is dynamic to any change of VEP, the non-stationary characteristics of VEP can be tracked. Thus, this method should be able to track the VEP. Four sets of simulated data indicate that the proposed method is appropriate to estimate VEP. A total of 150 trials are processed to demonstrate the superior performance of the proposed method.

  13. QoE-Driven In-Network Optimization for Adaptive Video Streaming Based on Packet Sampling Measurements

    NARCIS (Netherlands)

    Bouten, Niels; de Oliveira Schmidt, R.; Famaey, Jeroen; Latré, Steven; Pras, Aiko; De Turck, Filip

    2015-01-01

    HTTP Adaptive Streaming (HAS) is becoming the de-facto standard for adaptive streaming solutions. In HAS, a video is temporally split into segments which are encoded at different quality rates. The client can then autonomously decide, based on the current buffer filling and network conditions, which

  14. Respiratory signal prediction based on adaptive boosting and multi-layer perceptron neural network

    Science.gov (United States)

    Sun, W. Z.; Jiang, M. Y.; Ren, L.; Dang, J.; You, T.; Yin, F.-F.

    2017-09-01

    To improve the prediction accuracy of respiratory signals using adaptive boosting and multi-layer perceptron neural network (ADMLP-NN) for gated treatment of moving target in radiation therapy. The respiratory signals acquired using a real-time position management (RPM) device from 138 previous 4DCT scans were retrospectively used in this study. The ADMLP-NN was composed of several artificial neural networks (ANNs) which were used as weaker predictors to compose a stronger predictor. The respiratory signal was initially smoothed using a Savitzky-Golay finite impulse response smoothing filter (S-G filter). Then, several similar multi-layer perceptron neural networks (MLP-NNs) were configured to estimate future respiratory signal position from its previous positions. Finally, an adaptive boosting (Adaboost) decision algorithm was used to set weights for each MLP-NN based on the sample prediction error of each MLP-NN. Two prediction methods, MLP-NN and ADMLP-NN (MLP-NN plus adaptive boosting), were evaluated by calculating correlation coefficient and root-mean-square-error between true and predicted signals. For predicting 500 ms ahead of prediction, average correlation coefficients were improved from 0.83 (MLP-NN method) to 0.89 (ADMLP-NN method). The average of root-mean-square-error (relative unit) for 500 ms ahead of prediction using ADMLP-NN were reduced by 27.9%, compared to those using MLP-NN. The preliminary results demonstrate that the ADMLP-NN respiratory prediction method is more accurate than the MLP-NN method and can improve the respiration prediction accuracy.

  15. Dynamic identifying protein functional modules based on adaptive density modularity in protein-protein interaction networks.

    Science.gov (United States)

    Shen, Xianjun; Yi, Li; Yi, Yang; Yang, Jincai; He, Tingting; Hu, Xiaohua

    2015-01-01

    The identification of protein functional modules would be a great aid in furthering our knowledge of the principles of cellular organization. Most existing algorithms for identifying protein functional modules have a common defect -- once a protein node is assigned to a functional module, there is no chance to move the protein to the other functional modules during the follow-up processes, which lead the erroneous partitioning occurred at previous step to accumulate till to the end. In this paper, we design a new algorithm ADM (Adaptive Density Modularity) to detect protein functional modules based on adaptive density modularity. In ADM algorithm, according to the comparison between external closely associated degree and internal closely associated degree, the partitioning of a protein-protein interaction network into functional modules always evolves quickly to increase the density modularity of the network. The integration of density modularity into the new algorithm not only overcomes the drawback mentioned above, but also contributes to identifying protein functional modules more effectively. The experimental result reveals that the performance of ADM algorithm is superior to many state-of-the-art protein functional modules detection techniques in aspect of the accuracy of prediction. Moreover, the identified protein functional modules are statistically significant in terms of "Biological Process" annotated in Gene Ontology, which provides substantial support for revealing the principles of cellular organization.

  16. An Adaptive Connectivity-based Centroid Algorithm for Node Positioning in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Aries Pratiarso

    2015-06-01

    Full Text Available In wireless sensor network applications, the position of nodes is randomly distributed following the contour of the observation area. A simple solution without any measurement tools is provided by range-free method. However, this method yields the coarse estimating position of the nodes. In this paper, we propose Adaptive Connectivity-based (ACC algorithm. This algorithm is a combination of Centroid as range-free based algorithm, and hop-based connectivity algorithm. Nodes have a possibility to estimate their own position based on the connectivity level between them and their reference nodes. Each node divides its communication range into several regions where each of them has a certain weight depends on the received signal strength. The weighted value is used to obtain the estimated position of nodes. Simulation result shows that the proposed algorithm has up to 3 meter error of estimated position on 100x100 square meter observation area, and up to 3 hop counts for 80 meters' communication range. The proposed algorithm performs an average error positioning up to 10 meters better than Weighted Centroid algorithm. Keywords: adaptive, connectivity, centroid, range-free.

  17. An Adaptive-PSO-Based Self-Organizing RBF Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Lu, Wei; Hou, Ying; Qiao, Jun-Fei

    2018-01-01

    In this paper, a self-organizing radial basis function (SORBF) neural network is designed to improve both accuracy and parsimony with the aid of adaptive particle swarm optimization (APSO). In the proposed APSO algorithm, to avoid being trapped into local optimal values, a nonlinear regressive function is developed to adjust the inertia weight. Furthermore, the APSO algorithm can optimize both the network size and the parameters of an RBF neural network simultaneously. As a result, the proposed APSO-SORBF neural network can effectively generate a network model with a compact structure and high accuracy. Moreover, the analysis of convergence is given to guarantee the successful application of the APSO-SORBF neural network. Finally, multiple numerical examples are presented to illustrate the effectiveness of the proposed APSO-SORBF neural network. The results demonstrate that the proposed method is more competitive in solving nonlinear problems than some other existing SORBF neural networks.

  18. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    Science.gov (United States)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  19. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    Science.gov (United States)

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-01-01

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942

  20. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    Directory of Open Access Journals (Sweden)

    Pardeep Kumar

    2014-02-01

    Full Text Available Robust security is highly coveted in real wireless sensor network (WSN applications since wireless sensors’ sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring. The proposed framework offers: (i key initialization; (ii secure network (cluster formation (i.e., mutual authentication and dynamic key establishment; (iii key revocation; and (iv new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.

  1. An efficient and adaptive mutual authentication framework for heterogeneous wireless sensor network-based applications.

    Science.gov (United States)

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-02-11

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.

  2. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    Science.gov (United States)

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-08

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  3. Nitrate leaching from a potato field using adaptive network-based fuzzy inference system

    DEFF Research Database (Denmark)

    Shekofteh, Hosein; Afyuni, Majid M; Hajabbasi, Mohammad-Ali

    2013-01-01

    The conventional methods of application of nitrogen fertilizers might be responsible for the increased nitrate concentration in groundwater of areas dominated by irrigated agriculture. Appropriate water and nutrient management strategies are required to minimize groundwater pollution...... of nitrate (NO3) leaching from a potato field under a drip fertigation system. In the first part of the study, a two-dimensional solute transport model was used to simulate nitrate leaching from a sandy soil with varying emitter discharge rates and fertilizer doses. The results from the modeling were used...... to train and validate an adaptive network-based fuzzy inference system (ANFIS) in order to estimate nitrate leaching. Two performance functions, namely mean absolute percentage error (MAPE) and correlation coefficient (R), were used to evaluate the adequacy of the ANFIS. Results showed that ANFIS can...

  4. Adaptive EWMA Method Based on Abnormal Network Traffic for LDoS Attacks

    Directory of Open Access Journals (Sweden)

    Dan Tang

    2014-01-01

    Full Text Available The low-rate denial of service (LDoS attacks reduce network services capabilities by periodically sending high intensity pulse data flows. For their concealed performance, it is more difficult for traditional DoS detection methods to detect LDoS attacks; at the same time the accuracy of the current detection methods for LDoS attacks is relatively low. As the fact that LDoS attacks led to abnormal distribution of the ACK traffic, LDoS attacks can be detected by analyzing the distribution characteristics of ACK traffic. Then traditional EWMA algorithm which can smooth the accidental error while being the same as the exceptional mutation may cause some misjudgment; therefore a new LDoS detection method based on adaptive EWMA (AEWMA algorithm is proposed. The AEWMA algorithm which uses an adaptive weighting function instead of the constant weighting of EWMA algorithm can smooth the accidental error and retain the exceptional mutation. So AEWMA method is more beneficial than EWMA method for analyzing and measuring the abnormal distribution of ACK traffic. The NS2 simulations show that AEWMA method can detect LDoS attacks effectively and has a low false negative rate and a false positive rate. Based on DARPA99 datasets, experiment results show that AEWMA method is more efficient than EWMA method.

  5. Traffic Adaptive Synchronized Cluster Based MAC Protocol for Cognitive Radio Ad Hoc Network

    Directory of Open Access Journals (Sweden)

    Sultana Sahelee

    2017-01-01

    Full Text Available In wireless communication, Cognitive Radio Network (CRN is the contemporary research area to improve efficiency and spectrum utilization. It is structured with both licensed users and unlicensed users. In CRN, unlicensed users also called Cognitive Radio (CR users are permitted to utilize the free/idle of licensed channels without harmful interference to licensed users. However, accessing idle channels is the big challenging issue due to licensed users’ activities. A large number of cluster based MAC protocol have been proposed to solve this issue. In this paper, we have come up with a Traffic Adaptive Synchronized Cluster Based MAC Protocol for Cognitive Radio Ad Hoc Network, with the target of creating cluster structure more vigorous to the licensed users’ channel re-occupancy actions, maximize throughput, and minimize switching delay, so that CR users be able to use the idle spectrum more efficiently. In our protocol, clusters are formed according to Cluster Identification Channel (CIC and inter-communication is completed without gateway nodes. Finally, we have analysed and implemented our protocol through simulation and it provides better performance in terms of different performance metrics.

  6. Adaptive learning in tracking control based on the dual critic network design.

    Science.gov (United States)

    Ni, Zhen; He, Haibo; Wen, Jinyu

    2013-06-01

    In this paper, we present a new adaptive dynamic programming approach by integrating a reference network that provides an internal goal representation to help the systems learning and optimization. Specifically, we build the reference network on top of the critic network to form a dual critic network design that contains the detailed internal goal representation to help approximate the value function. This internal goal signal, working as the reinforcement signal for the critic network in our design, is adaptively generated by the reference network and can also be adjusted automatically. In this way, we provide an alternative choice rather than crafting the reinforcement signal manually from prior knowledge. In this paper, we adopt the online action-dependent heuristic dynamic programming (ADHDP) design and provide the detailed design of the dual critic network structure. Detailed Lyapunov stability analysis for our proposed approach is presented to support the proposed structure from a theoretical point of view. Furthermore, we also develop a virtual reality platform to demonstrate the real-time simulation of our approach under different disturbance situations. The overall adaptive learning performance has been tested on two tracking control benchmarks with a tracking filter. For comparative studies, we also present the tracking performance with the typical ADHDP, and the simulation results justify the improved performance with our approach.

  7. Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks.

    Science.gov (United States)

    Dao, Nhu-Ngoc; Kim, Joongheon; Park, Minho; Cho, Sungrae

    2016-01-01

    The convergent communication network will play an important role as a single platform to unify heterogeneous networks and integrate emerging technologies and existing legacy networks. Although there have been proposed many feasible solutions, they could not become convergent frameworks since they mainly focused on converting functions between various protocols and interfaces in edge networks, and handling functions for multiple services in core networks, e.g., the Multi-protocol Label Switching (MPLS) technique. Software-defined networking (SDN), on the other hand, is expected to be the ideal future for the convergent network since it can provide a controllable, dynamic, and cost-effective network. However, SDN has an original structural vulnerability behind a lot of advantages, which is the centralized control plane. As the brains of the network, a controller manages the whole network, which is attractive to attackers. In this context, we proposes a novel solution called adaptive suspicious prevention (ASP) mechanism to protect the controller from the Denial of Service (DoS) attacks that could incapacitate an SDN. The ASP is integrated with OpenFlow protocol to detect and prevent DoS attacks effectively. Our comprehensive experimental results show that the ASP enhances the resilience of an SDN network against DoS attacks by up to 38%.

  8. Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks.

    Directory of Open Access Journals (Sweden)

    Nhu-Ngoc Dao

    Full Text Available The convergent communication network will play an important role as a single platform to unify heterogeneous networks and integrate emerging technologies and existing legacy networks. Although there have been proposed many feasible solutions, they could not become convergent frameworks since they mainly focused on converting functions between various protocols and interfaces in edge networks, and handling functions for multiple services in core networks, e.g., the Multi-protocol Label Switching (MPLS technique. Software-defined networking (SDN, on the other hand, is expected to be the ideal future for the convergent network since it can provide a controllable, dynamic, and cost-effective network. However, SDN has an original structural vulnerability behind a lot of advantages, which is the centralized control plane. As the brains of the network, a controller manages the whole network, which is attractive to attackers. In this context, we proposes a novel solution called adaptive suspicious prevention (ASP mechanism to protect the controller from the Denial of Service (DoS attacks that could incapacitate an SDN. The ASP is integrated with OpenFlow protocol to detect and prevent DoS attacks effectively. Our comprehensive experimental results show that the ASP enhances the resilience of an SDN network against DoS attacks by up to 38%.

  9. Adaptive-network-based fuzzy inference system (ANFIS modelbased prediction of the surface ozone concentration

    Directory of Open Access Journals (Sweden)

    Savić Marija

    2014-01-01

    Full Text Available This paper presents the results of the tropospheric ozone concentration modeling as the dependence on volatile organic compounds - VOCs (Benzene, Toluene, m,p-Xylene, o-Xylene, Ethylbenzene; nonorganic compounds - NOx (NO, NO2, NOx, CO, H2S, SO2 and PM10 in the ambient air in parallel with the meteorological parameters: temperature, solar radiation, relative humidity, wind speed and direction. Modeling is based on measured results obtained during the year 2009. The measurements were performed at the measuring station located within an agricultural area, in vicinity of city of Zrenjanin (Serbian Banat, Serbia. Statistical analysis of obtained data, based on bivariate correlation analysis indicated that accurate modeling cannot be performed using linear statistics approach. Also, considering that almost all input variables have wide range of relative change (ratio of variance compared to range, nonlinear statistic analysis method based on only one rule describing the behavior of input variable, most certainly wouldn’t present accurate enough results. From that reason, modeling approach was based on Adaptive-Network-Based Fuzzy Inference System (ANFIS. Model obtained using ANFIS methodology resulted with high accuracy, with prediction potential of above 80%, considering that obtained determination coefficient for the final model was R2=0.802.

  10. Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network

    Science.gov (United States)

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production. PMID:22778587

  11. Nonlinear adaptive PID control for greenhouse environment based on RBF network.

    Science.gov (United States)

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.

  12. A Neural-Network-Based Nonlinear Adaptive State-Observer for Pressurized Water Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-10-01

    Full Text Available Although there have been some severe nuclear accidents such as Three Mile Island (USA, Chernobyl (Ukraine and Fukushima (Japan, nuclear fission energy is still a source of clean energy that can substitute for fossil fuels in a centralized way and in a great amount with commercial availability and economic competitiveness. Since the pressurized water reactor (PWR is the most widely used nuclear fission reactor, its safe, stable and efficient operation is meaningful to the current rebirth of the nuclear fission energy industry. Power-level regulation is an important technique which can deeply affect the operation stability and efficiency of PWRs. Compared with the classical power-level controllers, the advanced power-level regulators could strengthen both the closed-loop stability and control performance by feeding back the internal state-variables. However, not all of the internal state variables of a PWR can be obtained directly by measurements. To implement advanced PWR power-level control law, it is necessary to develop a state-observer to reconstruct the unmeasurable state-variables. Since a PWR is naturally a complex nonlinear system with parameters varying with power-level, fuel burnup, xenon isotope production, control rod worth and etc., it is meaningful to design a nonlinear observer for the PWR with adaptability to system uncertainties. Due to this and the strong learning capability of the multi-layer perceptron (MLP neural network, an MLP-based nonlinear adaptive observer is given for PWRs. Based upon Lyapunov stability theory, it is proved theoretically that this newly-built observer can provide bounded and convergent state-observation. This observer is then applied to the state-observation of a special PWR, i.e., the nuclear heating reactor (NHR, and numerical simulation results not only verify its feasibility but also give the relationship between the observation performance and observer parameters.

  13. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Directory of Open Access Journals (Sweden)

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  14. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...... history of their successful use in revealing the importance of various members of the network. However, modeling of covert, terrorist or criminal networks through social graph dose not really provide the hierarchical structure which exist in these networks as these networks are composed of leaders...... and followers etc. In this research we analyze and predict the most likely role a particular node can adapt once a member of the network is either killed or caught. The adaptation is based on computing Bayes posteriori probability of each node and the level of the said node in the network structure....

  15. Model-based design of self-Adapting networked signal processing systems

    NARCIS (Netherlands)

    Oliveira Filho, J.A. de; Papp, Z.; Djapic, R.; Oostveen, J.C.

    2013-01-01

    The paper describes a model based approach for architecture design of runtime reconfigurable, large-scale, networked signal processing applications. A graph based modeling formalism is introduced to describe all relevant aspects of the design (functional, concurrency, hardware, communication,

  16. Transcoding-Based Error-Resilient Video Adaptation for 3G Wireless Networks

    Directory of Open Access Journals (Sweden)

    Dogan Safak

    2007-01-01

    Full Text Available Transcoding is an effective method to provide video adaptation for heterogeneous internetwork video access and communication environments, which require the tailoring (i.e., repurposing of coded video properties to channel conditions, terminal capabilities, and user preferences. This paper presents a video transcoding system that is capable of applying a suite of error resilience tools on the input compressed video streams while controlling the output rates to provide robust communications over error-prone and bandwidth-limited 3G wireless networks. The transcoder is also designed to employ a new adaptive intra-refresh algorithm, which is responsive to the detected scene activity inherently embedded into the video content and the reported time-varying channel error conditions of the wireless network. Comprehensive computer simulations demonstrate significant improvements in the received video quality performances using the new transcoding architecture without an extra computational cost.

  17. Transcoding-Based Error-Resilient Video Adaptation for 3G Wireless Networks

    Science.gov (United States)

    Eminsoy, Sertac; Dogan, Safak; Kondoz, Ahmet M.

    2007-12-01

    Transcoding is an effective method to provide video adaptation for heterogeneous internetwork video access and communication environments, which require the tailoring (i.e., repurposing) of coded video properties to channel conditions, terminal capabilities, and user preferences. This paper presents a video transcoding system that is capable of applying a suite of error resilience tools on the input compressed video streams while controlling the output rates to provide robust communications over error-prone and bandwidth-limited 3G wireless networks. The transcoder is also designed to employ a new adaptive intra-refresh algorithm, which is responsive to the detected scene activity inherently embedded into the video content and the reported time-varying channel error conditions of the wireless network. Comprehensive computer simulations demonstrate significant improvements in the received video quality performances using the new transcoding architecture without an extra computational cost.

  18. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.

    Science.gov (United States)

    Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan; Marchal, Kathleen

    2017-11-01

    Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus.

    Science.gov (United States)

    Ferguson, K A; Njap, F; Nicola, W; Skinner, F K; Campbell, S A

    2015-12-01

    Determining the biological details and mechanisms that are essential for the generation of population rhythms in the mammalian brain is a challenging problem. This problem cannot be addressed either by experimental or computational studies in isolation. Here we show that computational models that are carefully linked with experiment provide insight into this problem. Using the experimental context of a whole hippocampus preparation in vitro that spontaneously expresses theta frequency (3-12 Hz) population bursts in the CA1 region, we create excitatory network models to examine whether cellular adaptation bursting mechanisms could critically contribute to the generation of this rhythm. We use biologically-based cellular models of CA1 pyramidal cells and network sizes and connectivities that correspond to the experimental context. By expanding our mean field analyses to networks with heterogeneity and non all-to-all coupling, we allow closer correspondence with experiment, and use these analyses to greatly extend the range of parameter values that are explored. We find that our model excitatory networks can produce theta frequency population bursts in a robust fashion.Thus, even though our networks are limited by not including inhibition at present, our results indicate that cellular adaptation in pyramidal cells could be an important aspect for the occurrence of theta frequency population bursting in the hippocampus. These models serve as a starting framework for the inclusion of inhibitory cells and for the consideration of additional experimental features not captured in our present network models.

  20. Self-Adapting Routing Overlay Network for Frequently Changing Application Traffic in Content-Based Publish/Subscribe System

    Directory of Open Access Journals (Sweden)

    Meng Chi

    2014-01-01

    Full Text Available In the large-scale distributed simulation area, the topology of the overlay network cannot always rapidly adapt to frequently changing application traffic to reduce the overall traffic cost. In this paper, we propose a self-adapting routing strategy for frequently changing application traffic in content-based publish/subscribe system. The strategy firstly trains the traffic information and then uses this training information to predict the application traffic in the future. Finally, the strategy reconfigures the topology of the overlay network based on this predicting information to reduce the overall traffic cost. A predicting path is also introduced in this paper to reduce the reconfiguration numbers in the process of the reconfigurations. Compared to other strategies, the experimental results show that the strategy proposed in this paper could reduce the overall traffic cost of the publish/subscribe system in less reconfigurations.

  1. Leuconostoc Mesenteroides Growth in Food Products: Prediction and Sensitivity Analysis by Adaptive-Network-Based Fuzzy Inference Systems

    OpenAIRE

    Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien

    2013-01-01

    BACKGROUND: An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. METHODS: THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED B...

  2. Learning Bayesian network structure using a cloud-based adaptive immune genetic algorithm

    Science.gov (United States)

    Song, Qin; Lin, Feng; Sun, Wei; Chang, KC

    2011-06-01

    A new BN structure learning method using a cloud-based adaptive immune genetic algorithm (CAIGA) is proposed. Since the probabilities of crossover and mutation in CAIGA are adaptively varied depending on X-conditional cloud generator, it could improve the diversity of the structure population and avoid local optimum. This is due to the stochastic nature and stable tendency of the cloud model. Moreover, offspring structure population is simplified by using immune theory to reduce its computational complexity. The experiment results reveal that this method can be effectively used for BN structure learning.

  3. Research on Fuzzy Immune Self-Adaptive PID Algorithm Based on New Smith Predictor for Networked Control System

    Directory of Open Access Journals (Sweden)

    Haitao Zhang

    2015-01-01

    Full Text Available We first analyze the effect of network-induced delay on the stability of networked control systems (NCSs. Then, aiming at stochastic characteristics of the time delay, we introduce a new Smith predictor to remove the exponential function with the time delay in the closed-loop characteristic equation of the NCS. Furthermore, we combine the fuzzy PID algorithm with the fuzzy immune control algorithm and present a fuzzy immune self-adaptive PID algorithm to compensate the influence of the model deviation of the controlled object. At last, a kind of fuzzy immune self-adaptive PID algorithm based on new Smith predictor is presented to apply to the NCS. The simulation research on a DC motor is given to show the effectiveness of the proposed algorithm.

  4. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    Science.gov (United States)

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2013-01-01

    Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.

  6. Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network

    Directory of Open Access Journals (Sweden)

    Cheng-Ming Lee

    2016-11-01

    Full Text Available A reinforcement learning algorithm is proposed to improve the accuracy of short-term load forecasting (STLF in this article. The proposed model integrates radial basis function neural network (RBFNN, support vector regression (SVR, and adaptive annealing learning algorithm (AALA. In the proposed methodology, firstly, the initial structure of RBFNN is determined by using an SVR. Then, an AALA with time-varying learning rates is used to optimize the initial parameters of SVR-RBFNN (AALA-SVR-RBFNN. In order to overcome the stagnation for searching optimal RBFNN, a particle swarm optimization (PSO is applied to simultaneously find promising learning rates in AALA. Finally, the short-term load demands are predicted by using the optimal RBFNN. The performance of the proposed methodology is verified on the actual load dataset from the Taiwan Power Company (TPC. Simulation results reveal that the proposed AALA-SVR-RBFNN can achieve a better load forecasting precision compared to various RBFNNs.

  7. Adaptive Sampling-Based Information Collection for Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Xiaobin Xu

    2016-08-01

    Full Text Available To collect important health information, WBAN applications typically sense data at a high frequency. However, limited by the quality of wireless link, the uploading of sensed data has an upper frequency. To reduce upload frequency, most of the existing WBAN data collection approaches collect data with a tolerable error. These approaches can guarantee precision of the collected data, but they are not able to ensure that the upload frequency is within the upper frequency. Some traditional sampling based approaches can control upload frequency directly, however, they usually have a high loss of information. Since the core task of WBAN applications is to collect health information, this paper aims to collect optimized information under the limitation of upload frequency. The importance of sensed data is defined according to information theory for the first time. Information-aware adaptive sampling is proposed to collect uniformly distributed data. Then we propose Adaptive Sampling-based Information Collection (ASIC which consists of two algorithms. An adaptive sampling probability algorithm is proposed to compute sampling probabilities of different sensed values. A multiple uniform sampling algorithm provides uniform samplings for values in different intervals. Experiments based on a real dataset show that the proposed approach has higher performance in terms of data coverage and information quantity. The parameter analysis shows the optimized parameter settings and the discussion shows the underlying reason of high performance in the proposed approach.

  8. SMR-Based Adaptive Mobility Management Scheme in Hierarchical SIP Networks

    Directory of Open Access Journals (Sweden)

    KwangHee Choi

    2014-10-01

    Full Text Available In hierarchical SIP networks, paging is performed to reduce location update signaling cost for mobility management. However, the cost efficiency largely depends on each mobile node’s session-to-mobility-ratio (SMR, which is defined as a ratio of the session arrival rate to the movement rate. In this paper, we propose the adaptive mobility management scheme that can determine the policy regarding to each mobile node’s SMR. Each mobile node determines whether the paging is applied or not after comparing its SMR with the threshold. In other words, the paging is applied to a mobile node when a mobile node’s SMR is less than the threshold. Therefore, the proposed scheme provides a way to minimize signaling costs according to each mobile node’s SMR. We find out the optimal threshold through performance analysis, and show that the proposed scheme can reduce signaling cost than the existing SIP and paging schemes in hierarchical SIP networks.

  9. Adaptive Power Allocation and Splitting with Imperfect Channel Estimation in Energy Harvesting Based Self-Organizing Networks

    Directory of Open Access Journals (Sweden)

    Kisong Lee

    2016-01-01

    Full Text Available As miniature-sized embedded computing platforms are ubiquitously deployed to our everyday environments, the issue of managing their power usage becomes important, especially when they are used in energy harvesting based self-organizing networks. One way to provide these devices with continuous power is to utilize RF-based energy transfer. Previous research in RF-based information and energy transfer builds up on the assumption that perfect channel estimation is easily achievable. However, as our preliminary experiments and many previous literature in wireless network systems show, making perfect estimations of the wireless channel is extremely challenging due to their quality fluctuations. To better reflect reality, in this work, we introduce an adaptive power allocation and splitting (APAS scheme which takes imperfect channel estimations into consideration. Our evaluation results show that the proposed APAS scheme achieves near-optimal performances for transferring energy and data over a single RF transmission.

  10. Adaptive Networks Theory, Models and Applications

    CERN Document Server

    Gross, Thilo

    2009-01-01

    With adaptive, complex networks, the evolution of the network topology and the dynamical processes on the network are equally important and often fundamentally entangled. Recent research has shown that such networks can exhibit a plethora of new phenomena which are ultimately required to describe many real-world networks. Some of those phenomena include robust self-organization towards dynamical criticality, formation of complex global topologies based on simple, local rules, and the spontaneous division of "labor" in which an initially homogenous population of network nodes self-organizes into functionally distinct classes. These are just a few. This book is a state-of-the-art survey of those unique networks. In it, leading researchers set out to define the future scope and direction of some of the most advanced developments in the vast field of complex network science and its applications.

  11. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    Directory of Open Access Journals (Sweden)

    Zhijia Chen

    2015-01-01

    Full Text Available In IaaS (infrastructure as a service cloud environment, users are provisioned with virtual machines (VMs. To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN. We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands.

  12. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    Science.gov (United States)

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896

  13. Decentralized clustering over adaptive networks

    OpenAIRE

    Khawatmi, Sahar; Zoubir, Abdelhak M.; Sayed, Ali H.

    2015-01-01

    Cooperation among agents across the network leads to better estimation accuracy. However, in many network applications the agents infer and track different models of interest in an environment where agents do not know beforehand which models are being observed by their neighbors. In this work, we propose an adaptive and distributed clustering technique that allows agents to learn and form clusters from streaming data in a robust manner. Once clusters are formed, cooperation among agents with ...

  14. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks.

    Science.gov (United States)

    Hernández Díaz, Vicente; Martínez, José-Fernán; Lucas Martínez, Néstor; del Toro, Raúl M

    2015-09-18

    The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

  15. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks

    Directory of Open Access Journals (Sweden)

    Vicente Hernández Díaz

    2015-09-01

    Full Text Available The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT and Cyber-Physical Systems (CPS are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container, and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

  16. The Social Relationship Based Adaptive Multi-Spray-and-Wait Routing Algorithm for Disruption Tolerant Network

    Directory of Open Access Journals (Sweden)

    Jianfeng Guan

    2017-01-01

    Full Text Available The existing spray-based routing algorithms in DTN cannot dynamically adjust the number of message copies based on actual conditions, which results in a waste of resource and a reduction of the message delivery rate. Besides, the existing spray-based routing protocols may result in blind spots or dead end problems due to the limitation of various given metrics. Therefore, this paper proposes a social relationship based adaptive multiple spray-and-wait routing algorithm (called SRAMSW which retransmits the message copies based on their residence times in the node via buffer management and selects forwarders based on the social relationship. By these means, the proposed algorithm can remove the plight of the message congestion in the buffer and improve the probability of replicas to reach their destinations. The simulation results under different scenarios show that the SRAMSW algorithm can improve the message delivery rate and reduce the messages’ dwell time in the cache and further improve the buffer effectively.

  17. An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox

    Directory of Open Access Journals (Sweden)

    Luyang Jing

    2017-02-01

    Full Text Available A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1 the feature extraction from various types of sensory data and (2 the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN and a support vector machine (SVM, are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment.

  18. An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox.

    Science.gov (United States)

    Jing, Luyang; Wang, Taiyong; Zhao, Ming; Wang, Peng

    2017-02-21

    A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment.

  19. An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox

    Science.gov (United States)

    Jing, Luyang; Wang, Taiyong; Zhao, Ming; Wang, Peng

    2017-01-01

    A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment. PMID:28230767

  20. A new and accurate fault location algorithm for combined transmission lines using Adaptive Network-Based Fuzzy Inference System

    Energy Technology Data Exchange (ETDEWEB)

    Sadeh, Javad; Afradi, Hamid [Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box: 91775-1111, Mashhad (Iran)

    2009-11-15

    This paper presents a new and accurate algorithm for locating faults in a combined overhead transmission line with underground power cable using Adaptive Network-Based Fuzzy Inference System (ANFIS). The proposed method uses 10 ANFIS networks and consists of 3 stages, including fault type classification, faulty section detection and exact fault location. In the first part, an ANFIS is used to determine the fault type, applying four inputs, i.e., fundamental component of three phase currents and zero sequence current. Another ANFIS network is used to detect the faulty section, whether the fault is on the overhead line or on the underground cable. Other eight ANFIS networks are utilized to pinpoint the faults (two for each fault type). Four inputs, i.e., the dc component of the current, fundamental frequency of the voltage and current and the angle between them, are used to train the neuro-fuzzy inference systems in order to accurately locate the faults on each part of the combined line. The proposed method is evaluated under different fault conditions such as different fault locations, different fault inception angles and different fault resistances. Simulation results confirm that the proposed method can be used as an efficient means for accurate fault location on the combined transmission lines. (author)

  1. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    Science.gov (United States)

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  2. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    Science.gov (United States)

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.

  3. Design and Evaluation of the User-Adapted Program Scheduling system based on Bayesian Network and Constraint Satisfaction

    Science.gov (United States)

    Iwasaki, Hirotoshi; Sega, Shinichiro; Hiraishi, Hironori; Mizoguchi, Fumio

    In recent years, lots of music content can be stored in mobile computing devices, such as a portable digital music player and a car navigation system. Moreover, various information content like news or traffic information can be acquired always anywhere by a cellular communication and a wireless LAN. However, usability issues arise from the simple interfaces of mobile computing devices. Moreover, retrieving and selecting such content poses safety issues, especially while driving. Thus, it is important for the mobile system to recommend content automatically adapted to user's preference and situation. In this paper, we present the user-adapted program scheduling that generates sequences of content (Program) suiting user's preference and situation based on the Bayesian network and the Constraint Satisfaction Problem (CSP) technique. We also describe the design and evaluation of its realization system, the Personal Program Producer (P3). First, preference such as a genre ratio of content in a program is learned as a Bayesian network model using simple operations such as a skip behavior. A model including each content tends to become large-scale. In order to make it small, we present the model separation method that carries out losslessly compression of the model. Using the model, probabilistic distributions of preference to generate constraints are inferred. Finally satisfying the constraints, a program is produced. This kind of CSP has an issue of which the number of variables is not fixedness. In order to make it variable, we propose a method using metavariables. To evaluate the above methods, we applied them to P3 on a car navigation system. User evaluations helped us clarify that the P3 can produce the program that a user prefers and adapt it to the user.

  4. An Artificial Measurements-Based Adaptive Filter for Energy-Efficient Target Tracking via Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Chen, Huayan; Zhang, Senlin; Liu, Meiqin; Zhang, Qunfei

    2017-04-27

    We study the problem of energy-efficient target tracking in underwater wireless sensor networks (UWSNs). Since sensors of UWSNs are battery-powered, it is impracticable to replace the batteries when exhausted. This means that the battery life affects the lifetime of the whole network. In order to extend the network lifetime, it is worth reducing the energy consumption on the premise of sufficient tracking accuracy. This paper proposes an energy-efficient filter that implements the tradeoff between communication cost and tracking accuracy. Under the distributed fusion framework, local sensors should not send their weak information to the fusion center if their measurement residuals are smaller than the pre-given threshold. In order to guarantee the target tracking accuracy, artificial measurements are generated to compensate for those unsent real measurements. Then, an adaptive scheme is derived to take full advantages of the artificial measurements-based filter in terms of energy-efficiency. Furthermore, a computationally efficient optimal sensor selection scheme is proposed to improve tracking accuracy on the premise of employing the same number of sensors. Simulation demonstrates that our scheme has superior advantages in the tradeoff between communication cost and tracking accuracy. It saves much energy while loosing little tracking accuracy or improves tracking performance with less additional energy cost.

  5. An Artificial Measurements-Based Adaptive Filter for Energy-Efficient Target Tracking via Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Huayan Chen

    2017-04-01

    Full Text Available We study the problem of energy-efficient target tracking in underwater wireless sensor networks (UWSNs. Since sensors of UWSNs are battery-powered, it is impracticable to replace the batteries when exhausted. This means that the battery life affects the lifetime of the whole network. In order to extend the network lifetime, it is worth reducing the energy consumption on the premise of sufficient tracking accuracy. This paper proposes an energy-efficient filter that implements the tradeoff between communication cost and tracking accuracy. Under the distributed fusion framework, local sensors should not send their weak information to the fusion center if their measurement residuals are smaller than the pre-given threshold. In order to guarantee the target tracking accuracy, artificial measurements are generated to compensate for those unsent real measurements. Then, an adaptive scheme is derived to take full advantages of the artificial measurements-based filter in terms of energy-efficiency. Furthermore, a computationally efficient optimal sensor selection scheme is proposed to improve tracking accuracy on the premise of employing the same number of sensors. Simulation demonstrates that our scheme has superior advantages in the tradeoff between communication cost and tracking accuracy. It saves much energy while loosing little tracking accuracy or improves tracking performance with less additional energy cost.

  6. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network

    Science.gov (United States)

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-01-01

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control. PMID:28556817

  7. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.

    Science.gov (United States)

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-05-30

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

  8. Distributed Multi-task APA over Adaptive Networks Based on Partial Diffusion

    OpenAIRE

    Gogineni, Vinay Chakravarthi; Chakraborty, Mrityunjoy

    2015-01-01

    Distributed multi-task adaptive strategies are useful to estimate multiple parameter vectors simultaneously in a collaborative manner. The existed distributed multi-task strategies use diffusion mode of cooperation in which during adaptation step each node gets the cooperation from it neighborhood nodes but not in the same cluster and during combining step each node combines the intermediate estimates of it neighboring nodes that belong to the same cluster. For this the nodes need to transmit...

  9. Research on Adaptive Neural Network Control System Based on Nonlinear U-Model with Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Fengxia Xu

    2014-01-01

    Full Text Available U-model can approximate a large class of smooth nonlinear time-varying delay system to any accuracy by using time-varying delay parameters polynomial. This paper proposes a new approach, namely, U-model approach, to solving the problems of analysis and synthesis for nonlinear systems. Based on the idea of discrete-time U-model with time-varying delay, the identification algorithm of adaptive neural network is given for the nonlinear model. Then, the controller is designed by using the Newton-Raphson formula and the stability analysis is given for the closed-loop nonlinear systems. Finally, illustrative examples are given to show the validity and applicability of the obtained results.

  10. Generalized synchronization in complex dynamical networks via adaptive couplings

    NARCIS (Netherlands)

    Liu, Hui; Chen, Juan; Lu, Jun-an; Cao, Ming

    2010-01-01

    This paper investigates generalized synchronization of three typical classes of complex dynamical networks: scale-free networks, small-world networks. and interpolating networks. The proposed synchronization strategy is to adjust adaptively a node's coupling strength based oil the node's local

  11. Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries

    Science.gov (United States)

    Dai, Haifeng; Zhu, Letao; Zhu, Jiangong; Wei, Xuezhe; Sun, Zechang

    2015-10-01

    The accurate monitoring of battery cell temperature is indispensible to the design of battery thermal management system. To obtain the internal temperature of a battery cell online, an adaptive temperature estimation method based on Kalman filtering and an equivalent time-variant electrical network thermal (EENT) model is proposed. The EENT model uses electrical components to simulate the battery thermodynamics, and the model parameters are obtained with a least square algorithm. With a discrete state-space description of the EENT model, a Kalman filtering (KF) based internal temperature estimator is developed. Moreover, considering the possible time-varying external heat exchange coefficient, a joint Kalman filtering (JKF) based estimator is designed to simultaneously estimate the internal temperature and the external thermal resistance. Several experiments using the hard-cased LiFePO4 cells with embedded temperature sensors have been conducted to validate the proposed method. Validation results show that, the EENT model expresses the battery thermodynamics well, the KF based temperature estimator tracks the real central temperature accurately even with a poor initialization, and the JKF based estimator can simultaneously estimate both central temperature and external thermal resistance precisely. The maximum estimation errors of the KF- and JKF-based estimators are less than 1.8 °C and 1 °C respectively.

  12. Evaluation of a Neural-Network-Based adaptive Beamforming Scheme with Magnitude-Only Constraints

    NARCIS (Netherlands)

    Castaldi, G.; Galdi, V.; Gerini, G.

    2009-01-01

    In this paper, we present an adaptive beamforming scheme for smart antenna arrays in the presence of several desired and interfering signals, and additive white Gaussian noise. As compared with standard schemes, the proposed algorithm minimizes the noise and interference contributions, but enforces

  13. Network Condition Based Adaptive Control and its Application to Power Balancing in Electrical Grids

    DEFF Research Database (Denmark)

    Pedersen, Rasmus; Findrik, Mislav; Sloth, Christoffer

    2017-01-01

    To maintain a reliable and stable power grid there must be balance between consumption and production. To achieve power balance in a system with high penetration of distributed renewable resources and flexible assets, these individual system can be coordinated through a control unit to become part...... of the power balancing effort. Such control strategies require communication networks for exchange of control loop information. In this work, we show how a congested communication network can have a dramatic impact on the control performance of such a power balancing controller. To alleviate potential...

  14. Multitask Diffusion Adaptation Over Networks

    Science.gov (United States)

    Chen, Jie; Richard, Cedric; Sayed, Ali H.

    2014-08-01

    Adaptive networks are suitable for decentralized inference tasks, e.g., to monitor complex natural phenomena. Recent research works have intensively studied distributed optimization problems in the case where the nodes have to estimate a single optimum parameter vector collaboratively. However, there are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously, in a collaborative manner, over the area covered by the network. In this paper, we employ diffusion strategies to develop distributed algorithms that address multitask problems by minimizing an appropriate mean-square error criterion with $\\ell_2$-regularization. The stability and convergence of the algorithm in the mean and in the mean-square sense is analyzed. Simulations are conducted to verify the theoretical findings, and to illustrate how the distributed strategy can be used in several useful applications related to spectral sensing, target localization, and hyperspectral data unmixing.

  15. Adaptive Dynamics of Regulatory Networks: Size Matters

    Directory of Open Access Journals (Sweden)

    Martinetz Thomas

    2009-01-01

    Full Text Available To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.

  16. Using Bayesian belief networks in adaptive management.

    Science.gov (United States)

    J.B. Nyberg; B.G. Marcot; R. Sulyma

    2006-01-01

    Bayesian belief and decision networks are relatively new modeling methods that are especially well suited to adaptive-management applications, but they appear not to have been widely used in adaptive management to date. Bayesian belief networks (BBNs) can serve many purposes for practioners of adaptive management, from illustrating system relations conceptually to...

  17. Adaptive eye-gaze tracking using neural-network-based user profiles to assist people with motor disability.

    Science.gov (United States)

    Sesin, Anaelis; Adjouadi, Malek; Cabrerizo, Mercedes; Ayala, Melvin; Barreto, Armando

    2008-01-01

    This study developed an adaptive real-time human-computer interface (HCI) that serves as an assistive technology tool for people with severe motor disability. The proposed HCI design uses eye gaze as the primary computer input device. Controlling the mouse cursor with raw eye coordinates results in sporadic motion of the pointer because of the saccadic nature of the eye. Even though eye movements are subtle and completely imperceptible under normal circumstances, they considerably affect the accuracy of an eye-gaze-based HCI. The proposed HCI system is novel because it adapts to each specific user's different and potentially changing jitter characteristics through the configuration and training of an artificial neural network (ANN) that is structured to minimize the mouse jitter. This task is based on feeding the ANN a user's initially recorded eye-gaze behavior through a short training session. The ANN finds the relationship between the gaze coordinates and the mouse cursor position based on the multilayer perceptron model. An embedded graphical interface is used during the training session to generate user profiles that make up these unique ANN configurations. The results with 12 subjects in test 1, which involved following a moving target, showed an average jitter reduction of 35%; the results with 9 subjects in test 2, which involved following the contour of a square object, showed an average jitter reduction of 53%. For both results, the outcomes led to trajectories that were significantly smoother and apt at reaching fixed or moving targets with relative ease and within a 5% error margin or deviation from desired trajectories. The positive effects of such jitter reduction are presented graphically for visual appreciation.

  18. Understanding Supply Networks from Complex Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Jamur Johnas Marchi

    2014-10-01

    Full Text Available This theoretical paper is based on complex adaptive systems (CAS that integrate dynamic and holistic elements, aiming to discuss supply networks as complex systems and their dynamic and co-evolutionary processes. The CAS approach can give clues to understand the dynamic nature and co-evolution of supply networks because it consists of an approach that incorporates systems and complexity. This paper’s overall contribution is to reinforce the theoretical discussion of studies that have addressed supply chain issues, such as CAS.

  19. A Combination of Central Pattern Generator-based and Reflex-based Neural Networks for Dynamic, Adaptive, Robust Bipedal Locomotion

    DEFF Research Database (Denmark)

    Di Canio, Giuliano; Larsen, Jørgen Christian; Wörgötter, Florentin

    2016-01-01

    Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate the in...... network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based neural network to ensure robust walking behavior......Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate...... the interaction of these systems, implementations with reflexbased or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based neural...

  20. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights.

    Science.gov (United States)

    Luo, Shaohua; Wu, Songli; Gao, Ruizhen

    2015-07-01

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.

  1. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shaohua [School of Automation, Chongqing University, Chongqing 400044 (China); Department of Mechanical Engineering, Chongqing Aerospace Polytechnic, Chongqing, 400021 (China); Wu, Songli [Department of Mechanical Engineering, Chongqing Aerospace Polytechnic, Chongqing, 400021 (China); Gao, Ruizhen [School of Automation, Chongqing University, Chongqing 400044 (China)

    2015-07-15

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.

  2. Leuconostoc mesenteroides growth in food products: prediction and sensitivity analysis by adaptive-network-based fuzzy inference systems.

    Directory of Open Access Journals (Sweden)

    Hue-Yu Wang

    Full Text Available BACKGROUND: An adaptive-network-based fuzzy inference system (ANFIS was compared with an artificial neural network (ANN in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C, pH level (5.5 to 7.5, sodium chloride level (0.25% to 6.25% and sodium nitrite level (0 to 200 ppm on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. METHODS: THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED BY COMPARING THEIR PREDICTION RESULTS WITH ACTUAL DATA: mean absolute percentage error (MAPE, root mean square error (RMSE, standard error of prediction percentage (SEP, bias factor (Bf, accuracy factor (Af, and absolute fraction of variance (R (2. Graphical plots were also used for model comparison. CONCLUSIONS: The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions.

  3. Leuconostoc mesenteroides growth in food products: prediction and sensitivity analysis by adaptive-network-based fuzzy inference systems.

    Science.gov (United States)

    Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien

    2013-01-01

    An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED BY COMPARING THEIR PREDICTION RESULTS WITH ACTUAL DATA: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R (2)). Graphical plots were also used for model comparison. The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions.

  4. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M.S. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Vesovic, B.V. [Inst. Mihajlo Pupin, Belgrade (Yugoslavia). Dept. of Automatic Control; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-01

    This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

  5. RLAM: A Dynamic and Efficient Reinforcement Learning-Based Adaptive Mapping Scheme in Mobile WiMAX Networks

    Directory of Open Access Journals (Sweden)

    M. Louta

    2014-01-01

    Full Text Available WiMAX (Worldwide Interoperability for Microwave Access constitutes a candidate networking technology towards the 4G vision realization. By adopting the Orthogonal Frequency Division Multiple Access (OFDMA technique, the latest IEEE 802.16x amendments manage to provide QoS-aware access services with full mobility support. A number of interesting scheduling and mapping schemes have been proposed in research literature. However, they neglect a considerable asset of the OFDMA-based wireless systems: the dynamic adjustment of the downlink-to-uplink width ratio. In order to fully exploit the supported mobile WiMAX features, we design, develop, and evaluate a rigorous adaptive model, which inherits its main aspects from the reinforcement learning field. The model proposed endeavours to efficiently determine the downlink-to-uplinkwidth ratio, on a frame-by-frame basis, taking into account both the downlink and uplink traffic in the Base Station (BS. Extensive evaluation results indicate that the model proposed succeeds in providing quite accurate estimations, keeping the average error rate below 15% with respect to the optimal sub-frame configurations. Additionally, it presents improved performance compared to other learning methods (e.g., learning automata and notable improvements compared to static schemes that maintain a fixed predefined ratio in terms of service ratio and resource utilization.

  6. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach.

    Directory of Open Access Journals (Sweden)

    Samreen Laghari

    Full Text Available Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT implies an inherent difficulty in modeling problems.It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS. The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC framework to model a Complex communication network problem.We use Exploratory Agent-based Modeling (EABM, as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy.The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.

  7. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach

    Science.gov (United States)

    2016-01-01

    Background Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. Purpose It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. Method We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. Results The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach. PMID:26812235

  8. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach.

    Science.gov (United States)

    Laghari, Samreen; Niazi, Muaz A

    2016-01-01

    Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.

  9. Authentication Mechanism Based on Adaptable Context Management Framework for Secure Network Services

    Directory of Open Access Journals (Sweden)

    Sepczuk Mariusz

    2014-06-01

    Full Text Available A system, which uses context information is a new trend in IT. A lot of researchers create frameworks, which collect some data and perform actions based on them. Recently, there have been observed more and more different security solutions, in which we can use context. But not each works dynamically and ensures a high level of user's quality of experience (QoE. This paper outlines what the context information is and shows a secure and user-friendly authentication mechanism for a mail box in cloud computing, based on using contextual data.

  10. Distributed Estimation in Sensor Networks with Imperfect Model Information: An Adaptive Learning-Based Approach

    Science.gov (United States)

    2012-05-01

    in particular, the mean- squared error (MSE) blows up with the SNR. Other than being inaccurate, since the SNR is unknown apriori , the estimate...requires per- fect knowledge of a, which is unknown apriori . In Section 3, we will introduce a learning-based distributed estimation procedure, the MDE

  11. Single neural adaptive controller and neural network identifier based on PSO algorithm for spherical actuators with 3D magnet array

    Science.gov (United States)

    Yan, Liang; Zhang, Lu; Zhu, Bo; Zhang, Jingying; Jiao, Zongxia

    2017-10-01

    Permanent magnet spherical actuator (PMSA) is a multi-variable featured and inter-axis coupled nonlinear system, which unavoidably compromises its motion control implementation. Uncertainties such as external load and friction torque of ball bearing and manufacturing errors also influence motion performance significantly. Therefore, the objective of this paper is to propose a controller based on a single neural adaptive (SNA) algorithm and a neural network (NN) identifier optimized with a particle swarm optimization (PSO) algorithm to improve the motion stability of PMSA with three-dimensional magnet arrays. The dynamic model and computed torque model are formulated for the spherical actuator, and a dynamic decoupling control algorithm is developed. By utilizing the global-optimization property of the PSO algorithm, the NN identifier is trained to avoid locally optimal solution and achieve high-precision compensations to uncertainties. The employment of the SNA controller helps to reduce the effect of compensation errors and convert the system to a stable one, even if there is difference between the compensations and uncertainties due to external disturbances. A simulation model is established, and experiments are conducted on the research prototype to validate the proposed control algorithm. The amplitude of the parameter perturbation is set to 5%, 10%, and 15%, respectively. The strong robustness of the proposed hybrid algorithm is validated by the abundant simulation data. It shows that the proposed algorithm can effectively compensate the influence of uncertainties and eliminate the effect of inter-axis couplings of the spherical actuator.

  12. Optimization of Indoor Thermal Comfort Parameters with the Adaptive Network-Based Fuzzy Inference System and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-01-01

    Full Text Available The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS model and improved particle swarm optimization (PSO algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output “metamodels” for the subsequent optimization. With the improved PSO algorithm and the stratified sequence method, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.

  13. A network-patch methodology for adapting agent-based models for directly transmitted disease to mosquito-borne disease.

    Science.gov (United States)

    Manore, Carrie A; Hickmann, Kyle S; Hyman, James M; Foppa, Ivo M; Davis, Justin K; Wesson, Dawn M; Mores, Christopher N

    2015-01-01

    Mosquito-borne diseases cause significant public health burden and are widely re-emerging or emerging. Understanding, predicting, and mitigating the spread of mosquito-borne disease in diverse populations and geographies are ongoing modelling challenges. We propose a hybrid network-patch model for the spread of mosquito-borne pathogens that accounts for individual movement through mosquito habitats, extending the capabilities of existing agent-based models (ABMs) to include vector-borne diseases. The ABM are coupled with differential equations representing 'clouds' of mosquitoes in patches accounting for mosquito ecology. We adapted an ABM for humans using this method and investigated the importance of heterogeneity in pathogen spread, motivating the utility of models of individual behaviour. We observed that the final epidemic size is greater in patch models with a high risk patch frequently visited than in a homogeneous model. Our hybrid model quantifies the importance of the heterogeneity in the spread of mosquito-borne pathogens, guiding mitigation strategies.

  14. An Adaptive Measurement Report Period and Handoff Threshold Scheme Based on SINR Variation in LTE-A Networks

    Directory of Open Access Journals (Sweden)

    Jenhui Chen

    2015-01-01

    Full Text Available This paper deals with the problem of triggering handoff procedure at an appropriate point of time to reduce the ping-pong effect problem in the long-term evolution advanced (LTE-A network. In the meantime, we also have studied a dynamic handoff threshold scheme, named adaptive measurement report period and handoff threshold (AMPHT, based on the user equipment’s (UE’s reference signal received quality (RSRQ variation and the moving velocity of UE. AMPHT reduces the probability of unnecessarily premature handoff decision making and also avoids the problem of handoff failure due to too late handoff decision making when the moving velocity of UE is high. AMPHT is achieved by two critical parameters: (1 a dynamic RSRQ threshold for handoff making; (2 a dynamic interval of time for the UE’s RSRQ reporting. The performance of AMPHT is validated by comparing numerical experiments (MATLAB tool with simulation results (the ns-3 LENA module. Our experiments show that AMPHT reduces the premature handoff probability by 34% at most in a low moving velocity and reduces the handoff failure probability by 25% in a high moving velocity. Additionally, AMPHT can reduce a large number of unnecessary handoff overheads and can be easily implemented because it uses the original control messages of 3GPP E-UTRA.

  15. Seasonal rainfall forecasting by adaptive network-based fuzzy inference system (ANFIS) using large scale climate signals

    Science.gov (United States)

    Mekanik, F.; Imteaz, M. A.; Talei, A.

    2016-05-01

    Accurate seasonal rainfall forecasting is an important step in the development of reliable runoff forecast models. The large scale climate modes affecting rainfall in Australia have recently been proven useful in rainfall prediction problems. In this study, adaptive network-based fuzzy inference systems (ANFIS) models are developed for the first time for southeast Australia in order to forecast spring rainfall. The models are applied in east, center and west Victoria as case studies. Large scale climate signals comprising El Nino Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Inter-decadal Pacific Ocean (IPO) are selected as rainfall predictors. Eight models are developed based on single climate modes (ENSO, IOD, and IPO) and combined climate modes (ENSO-IPO and ENSO-IOD). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson correlation coefficient (r) and root mean square error in probability (RMSEP) skill score are used to evaluate the performance of the proposed models. The predictions demonstrate that ANFIS models based on individual IOD index perform superior in terms of RMSE, MAE and r to the models based on individual ENSO indices. It is further discovered that IPO is not an effective predictor for the region and the combined ENSO-IOD and ENSO-IPO predictors did not improve the predictions. In order to evaluate the effectiveness of the proposed models a comparison is conducted between ANFIS models and the conventional Artificial Neural Network (ANN), the Predictive Ocean Atmosphere Model for Australia (POAMA) and climatology forecasts. POAMA is the official dynamic model used by the Australian Bureau of Meteorology. The ANFIS predictions certify a superior performance for most of the region compared to ANN and climatology forecasts. POAMA performs better in regards to RMSE and MAE in east and part of central Victoria, however, compared to ANFIS it shows weaker results in west Victoria in terms of prediction errors and RMSEP skill

  16. Adaptive Networks: the Governance for Sustainable Development

    NARCIS (Netherlands)

    S.G. Nooteboom (Sibout)

    2006-01-01

    textabstractIn this book, I reconstruct how policy makers, working together in what I term adaptive networks, have enabled a breakthrough in thinking about sustainable mobility in certain policy circles. I define the conduct of leading actors in these adaptive networks as sustainable change

  17. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  18. Fault Detection and Location by Static Switches in Microgrids Using Wavelet Transform and Adaptive Network-Based Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2014-04-01

    Full Text Available Microgrids are a highly efficient means of embedding distributed generation sources in a power system. However, if a fault occurs inside or outside the microgrid, the microgrid should be immediately disconnected from the main grid using a static switch installed at the secondary side of the main transformer near the point of common coupling (PCC. The static switch should have a reliable module implemented in a chip to detect/locate the fault and activate the breaker to open the circuit immediately. This paper proposes a novel approach to design this module in a static switch using the discrete wavelet transform (DWT and adaptive network-based fuzzy inference system (ANFIS. The wavelet coefficient of the fault voltage and the inference results of ANFIS with the wavelet energy of the fault current at the secondary side of the main transformer determine the control action (open or close of a static switch. The ANFIS identifies the faulty zones inside or outside the microgrid. The proposed method is applied to the first outdoor microgrid test bed in Taiwan, with a generation capacity of 360.5 kW. This microgrid test bed is studied using the real-time simulator eMegaSim developed by Opal-RT Technology Inc. (Montreal, QC, Canada. The proposed method based on DWT and ANFIS is implemented in a field programmable gate array (FPGA by using the Xilinx System Generator. Simulation results reveal that the proposed method is efficient and applicable in the real-time control environment of a power system.

  19. Adaptive QoS provision for IEEE 802.16e BWA networks based on cross-layer design

    Directory of Open Access Journals (Sweden)

    Kuo GS

    2011-01-01

    Full Text Available Abstract This article proposes an integrated framework for adaptive QoS provision in IEEE 802.16e broadband wireless access networks based on cross-layer design. On one hand, an efficient admission control (AC algorithm is proposed along with a semi-reservation scheme to guarantee the connection-level QoS. First, to guarantee the service continuity for handoff connections and resource efficiency, our semi-reservation scheme considers both users' handoff probability and average resource consumption together, which effectively avoids resource over-reservation and insufficient reservation. For AC, a new/handoff connection is accepted only when the target cell has enough resource to afford both instantaneous and average resource consumption to meet the average source rate request. On the other hand, a joint resource allocation and packet scheduling scheme is designed to provide packet-level QoS guarantee in term of "QoS rate", which can ensure fairness for the services with identical priority level in case of bandwidth shortage. Particularly, an enhanced bandwidth request scheme is designed to reduce unnecessary BR delay and redundant signaling overhead caused by the existing one in IEEE 802.16e, which further improves the packet-level QoS performance and resource efficiency for uplink transmission. Simulation results show that the proposed approach not only balances the tradeoff among connection blocking rate, connection dropping rate, and connection failure rate, but also achieves low mean packet dropping rate (PDR, small deviation of PDR, and low QoS outage rate. Moreover, high resource efficiency is ensured.

  20. Mixed H∞ and passive projective synchronization for fractional-order memristor-based neural networks with time delays via adaptive sliding mode control

    Science.gov (United States)

    Song, Shuai; Song, Xiaona; Balsera, Ines Tejado

    2017-05-01

    This paper investigates the mixed H∞ and passive projective synchronization problem for fractional-order (FO) memristor-based neural networks with time delays. Our aim is to design a controller such that, though the unavoidable phenomena of time delay and external disturbances is fully considered, the resulting closed-loop system is stable with a mixed H∞ and passive performance level. By combining sliding mode control and adaptive control methods, a novel adaptive sliding mode control strategy is designed for the synchronization of time-delayed FO dynamic networks. Via the application of FO system stability theory, the projective synchronization conditions are addressed in terms of linear matrix inequalities. Based on the conditions, a desired controller which can guarantee the stability of the closed-loop system and also ensure a mixed H∞ and passive performance level is designed. Finally, two simulation examples are given to illustrate the effectiveness of the proposed method.

  1. Adaptability in dynamic wireless networks

    NARCIS (Netherlands)

    Iyer, V.G.

    2012-01-01

    Software for networked embedded systems faces several challenges when the deployed network is subject to changing circumstances during operation. Typically, inter-node communication and network connectivity are two crucial aspects that are directly affected by dynamics such as failing wireless links

  2. Designing a delay-based adaptive congestion control mechanism using control theory and system identification for TCP/IP networks

    Science.gov (United States)

    Morita, Mitsushige; Ohsaki, Hiroyuki; Murata, Masayuki

    2002-07-01

    In the Internet, TCP (Transmission Control Protocol) has been used as an end-to-end congestion control mechanism. Of all several TCP implementations, TCP Reno is the most popular implementation. TCP Reno uses a loss-based approach since it estimates the severity of congestion by detecting packet losses in the network. On the contrary, another implementation called TCP Vegas uses a delay-based approach. The main advantage of a delay-based approach is, if it is properly designed, packet losses can be prevented by anticipating impending congestion from increasing packet delays. However, TCP Vegas was designed using not a theoretical approach but an ad hock one. In this paper, we therefore design a delay-based congestion control mechanism by utilizing the classical control theory. Our rate-based congestion control mechanism dynamically adjusts the packet transmission rate to stabilize the round-trip time for utilizing the network resources and also for preventing packet losses in the network. Presenting several simulation results in two network configurations, we quantitatively show the robustness and the effectiveness of our delay-based congestion control mechanism.

  3. Recruitment dynamics in adaptive social networks

    Science.gov (United States)

    Shkarayev, Maxim S.; Schwartz, Ira B.; Shaw, Leah B.

    2013-06-01

    We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).

  4. Modeling and simulation of adaptive Neuro-fuzzy based intelligent system for predictive stabilization in structured overlay networks

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2017-02-01

    Full Text Available Intelligent prediction of neighboring node (k well defined neighbors as specified by the dht protocol dynamism is helpful to improve the resilience and can reduce the overhead associated with topology maintenance of structured overlay networks. The dynamic behavior of overlay nodes depends on many factors such as underlying user’s online behavior, geographical position, time of the day, day of the week etc. as reported in many applications. We can exploit these characteristics for efficient maintenance of structured overlay networks by implementing an intelligent predictive framework for setting stabilization parameters appropriately. Considering the fact that human driven behavior usually goes beyond intermittent availability patterns, we use a hybrid Neuro-fuzzy based predictor to enhance the accuracy of the predictions. In this paper, we discuss our predictive stabilization approach, implement Neuro-fuzzy based prediction in MATLAB simulation and apply this predictive stabilization model in a chord based overlay network using OverSim as a simulation tool. The MATLAB simulation results present that the behavior of neighboring nodes is predictable to a large extent as indicated by the very small RMSE. The OverSim based simulation results also observe significant improvements in the performance of chord based overlay network in terms of lookup success ratio, lookup hop count and maintenance overhead as compared to periodic stabilization approach.

  5. Network-based integration of molecular and physiological data elucidates regulatory mechanisms underlying adaptation to high-fat diet

    NARCIS (Netherlands)

    Derous, D.; Kelder, T.; Schothorst, E.M. van; Erk, M. van; Voigt, A.; Klaus, S.; Keijer, J.; Radonjic, M.

    2015-01-01

    Health is influenced by interplay of molecular, physiological and environmental factors. To effectively maintain health and prevent disease, health-relevant relations need to be understood at multiple levels of biological complexity. Network-based methods provide a powerful platform for integration

  6. Energy-efficient adaptive wireless network design

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Smit, Gerardus Johannes Maria; Bos, M.

    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data link layer protocol for wireless networks that provides quality of service (QoS) support for diverse

  7. Adaptive Learning in Weighted Network Games

    NARCIS (Netherlands)

    Bayer, Péter; Herings, P. Jean-Jacques; Peeters, Ronald; Thuijsman, Frank

    2017-01-01

    This paper studies adaptive learning in the class of weighted network games. This class of games includes applications like research and development within interlinked firms, crime within social networks, the economics of pollution, and defense expenditures within allied nations. We show that for

  8. Lag synchronization of unknown chaotic delayed Yang-Yang-type fuzzy neural networks with noise perturbation based on adaptive control and parameter identification.

    Science.gov (United States)

    Xia, Yonghui; Yang, Zijiang; Han, Maoan

    2009-07-01

    This paper considers the lag synchronization (LS) issue of unknown coupled chaotic delayed Yang-Yang-type fuzzy neural networks (YYFCNN) with noise perturbation. Separate research work has been published on the stability of fuzzy neural network and LS issue of unknown coupled chaotic neural networks, as well as its application in secure communication. However, there have not been any studies that integrate the two. Motivated by the achievements from both fields, we explored the benefits of integrating fuzzy logic theories into the study of LS problems and applied the findings to secure communication. Based on adaptive feedback control techniques and suitable parameter identification, several sufficient conditions are developed to guarantee the LS of coupled chaotic delayed YYFCNN with or without noise perturbation. The problem studied in this paper is more general in many aspects. Various problems studied extensively in the literature can be treated as special cases of the findings of this paper, such as complete synchronization (CS), effect of fuzzy logic, and noise perturbation. This paper presents an illustrative example and uses simulated results of this example to show the feasibility and effectiveness of the proposed adaptive scheme. This research also demonstrates the effectiveness of application of the proposed adaptive feedback scheme in secure communication by comparing chaotic masking with fuzziness with some previous studies. Chaotic signal with fuzziness is more complex, which makes unmasking more difficult due to the added fuzzy logic.

  9. QOS-aware error recovery in wireless body sensor networks using adaptive network coding.

    Science.gov (United States)

    Razzaque, Mohammad Abdur; Javadi, Saeideh S; Coulibaly, Yahaya; Hira, Muta Tah

    2014-12-29

    Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.

  10. Adaptive relaying for ground fault protection of a distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M.S.; Sidhu, T.S.; Talukdar, B.K.

    1995-12-31

    With the advent of digital technology and microprocessor-based relays, it is possible to continuously monitor a power network, analyze it in real time, and change the relay settings to those most suitable at that time, thereby achieving improved protection of the network. This approach, known as adaptive relaying, was applied to the Saskatoon distribution network. This paper describes the software modules developed for setting ground fault overcurrent relays in the adaptive relay protection system. The major task in this system was the on-line coordination of relays, as most faults in a distribution system are of the single-phase to ground type and current unbalance due to single-phase loading contributes to the complexity of relay coordination. The modules served for network topology detection, state estimation, fault analysis, and relay setting and coordination. The paper also presents results of a study of the proposed adaptive ground fault protection scheme using a model distribution network.

  11. A neural network-based design of an on-off adaptive control for Deep Brain Stimulation in movement disorders.

    Science.gov (United States)

    Shukla, Pitamber; Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Slavin, Konstantin V

    2012-01-01

    The current Food and Drug Administration approved system for the treatment of tremor disorders through Deep Brain Stimulation (DBS) of the area of the brain that controls movement, operates open-loop. It does not automatically adapt to the instantaneous patient's needs or to the progression of the disease. This paper demonstrates an adaptive closed-loop controlled DBS that, after switching off stimulation, tracks few physiological signals to predict the reappearance of tremor before the patient experiences discomfort, at which point it instructs the DBS controller to switch on stimulation again. The core of the proposed approach is a Neural Network (NN) which effectively extracts tremor predictive information from non-invasively recorded surface-electromyogram(sEMG) and accelerometer signals measured at the symptomatic extremities. A simple feed-forward back-propagation NN architecture is shown to successfully predict tremor in 31 out of 33 trials in two Parkinson's Disease patients with an overall accuracy of 75.8% and sensitivity of 92.3%. This work therefore shows that closed-loop DBS control is feasible in the near future and that it can be achieved without modifications of the electrodes implanted in the brain, i.e., is backward compatible with approved DBS systems.

  12. In-Network Adaptation of Video Streams Using Network Processors

    Directory of Open Access Journals (Sweden)

    Mohammad Shorfuzzaman

    2009-01-01

    problem can be addressed, near the network edge, by applying dynamic, in-network adaptation (e.g., transcoding of video streams to meet available connection bandwidth, machine characteristics, and client preferences. In this paper, we extrapolate from earlier work of Shorfuzzaman et al. 2006 in which we implemented and assessed an MPEG-1 transcoding system on the Intel IXP1200 network processor to consider the feasibility of in-network transcoding for other video formats and network processor architectures. The use of “on-the-fly” video adaptation near the edge of the network offers the promise of simpler support for a wide range of end devices with different display, and so forth, characteristics that can be used in different types of environments.

  13. Speed Adaptation in Urban Road Network Management

    Directory of Open Access Journals (Sweden)

    Raiyn Jamal

    2016-06-01

    Full Text Available Various forecasting schemes have been proposed to manage traffic data, which is collected by videos cameras, sensors, and mobile phone services. However, these are not sufficient for collecting data because of their limited coverage and high costs for installation and maintenance. To overcome the limitations of these tools, we introduce a hybrid scheme based on intelligent transportation system (ITS and global navigation satellite system (GNSS. Applying the GNSS to calculate travel time has proven efficient in terms of accuracy. In this case, GNSS data is managed to reduce traffic congestion and road accidents. This paper introduces a short-time forecasting model based on real-time travel time for urban heterogeneous road networks. Travel time forecasting has been achieved by predicting travel speeds using an optimized exponential moving Average (EMA model. Furthermore for speed adaptation in heterogeneous road networks, it is necessary to introduce asuitable control strategy for longitude, based on the GNSS. GNSS products provide worldwide and real-time services using precise timing information and, positioning technologies.

  14. RLAM: A Dynamic and Efficient Reinforcement Learning-Based Adaptive Mapping Scheme in Mobile WiMAX Networks

    OpenAIRE

    M. Louta; Sarigiannidis, P.; Misra, S.; P. Nicopolitidis; Papadimitriou, G.

    2014-01-01

    WiMAX (Worldwide Interoperability for Microwave Access) constitutes a candidate networking technology towards the 4G vision realization. By adopting the Orthogonal Frequency Division Multiple Access (OFDMA) technique, the latest IEEE 802.16x amendments manage to provide QoS-aware access services with full mobility support. A number of interesting scheduling and mapping schemes have been proposed in research literature. However, they neglect a considerable asset of the OFDMA-based wireless sys...

  15. QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding

    Directory of Open Access Journals (Sweden)

    Mohammad Abdur Razzaque

    2014-12-01

    Full Text Available Wireless body sensor networks (WBSNs for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS, in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network’s QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.

  16. Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis

    Directory of Open Access Journals (Sweden)

    Zhongrong Zhang

    2016-01-01

    Full Text Available Wind energy has increasingly played a vital role in mitigating conventional resource shortages. Nevertheless, the stochastic nature of wind poses a great challenge when attempting to find an accurate forecasting model for wind power. Therefore, precise wind power forecasts are of primary importance to solve operational, planning and economic problems in the growing wind power scenario. Previous research has focused efforts on the deterministic forecast of wind power values, but less attention has been paid to providing information about wind energy. Based on an optimal Adaptive-Network-Based Fuzzy Inference System (ANFIS and Singular Spectrum Analysis (SSA, this paper develops a hybrid uncertainty forecasting model, IFASF (Interval Forecast-ANFIS-SSA-Firefly Alogorithm, to obtain the upper and lower bounds of daily average wind power, which is beneficial for the practical operation of both the grid company and independent power producers. To strengthen the practical ability of this developed model, this paper presents a comparison between IFASF and other benchmarks, which provides a general reference for this aspect for statistical or artificially intelligent interval forecast methods. The comparison results show that the developed model outperforms eight benchmarks and has a satisfactory forecasting effectiveness in three different wind farms with two time horizons.

  17. Adaptive Transmission Opportunity Scheme Based on Delay Bound and Network Load in IEEE 802.11e Wireless LANs

    Directory of Open Access Journals (Sweden)

    S. Kim

    2013-08-01

    Full Text Available The IEEE 802.11e EDCA (Enhanced Distributed Channel Access is able to provide QoS (Quality of Service by adjusting the transmission opportunities (TXOPs, which control the period to access the medium. The EDCA has a fairness problem among competing stations, which support multimedia applications with different delay bounds. In this paper, we propose a simple and effective scheme for alleviating the fairness problem. The proposed scheme dynamically allocates the TXOP value based on the delay bounds of the data packets in a queue and the traffic load of network. Performance of the proposed scheme is investigated by simulation. Our results show that compared to conventional scheme, the proposed scheme significantly improves network performance, and achieves a high degree of fairness among stations with different multimedia applications.

  18. A new method based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for recognition of urine cells from microscopic images independent of rotation and scaling.

    Science.gov (United States)

    Avci, Derya; Leblebicioglu, Mehmet Kemal; Poyraz, Mustafa; Dogantekin, Esin

    2014-02-01

    So far, analysis and classification of urine cells number has become an important topic for medical diagnosis of some diseases. Therefore, in this study, we suggest a new technique based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for Recognition of Urine Cells from Microscopic Images Independent of Rotation and Scaling. Some digital image processing methods such as noise reduction, contrast enhancement, segmentation, and morphological process are used for feature extraction stage of this ADWEENN in this study. Nowadays, the image processing and pattern recognition topics have come into prominence. The image processing concludes operation and design of systems that recognize patterns in data sets. In the past years, very difficulty in classification of microscopic images was the deficiency of enough methods to characterize. Lately, it is seen that, multi-resolution image analysis methods such as Gabor filters, discrete wavelet decompositions are superior to other classic methods for analysis of these microscopic images. In this study, the structure of the ADWEENN method composes of four stages. These are preprocessing stage, feature extraction stage, classification stage and testing stage. The Discrete Wavelet Transform (DWT) and adaptive wavelet entropy and energy is used for adaptive feature extraction in feature extraction stage to strengthen the premium features of the Artificial Neural Network (ANN) classifier in this study. Efficiency of the developed ADWEENN method was tested showing that an avarage of 97.58% recognition succes was obtained.

  19. Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks

    Science.gov (United States)

    Sbarufatti, Claudio; Corbetta, Matteo; Giglio, Marco; Cadini, Francesco

    2017-03-01

    Lithium-Ion rechargeable batteries are widespread power sources with applications to consumer electronics, electrical vehicles, unmanned aerial and spatial vehicles, etc. The failure to supply the required power levels may lead to severe safety and economical consequences. Thus, in view of the implementation of adequate maintenance strategies, the development of diagnostic and prognostic tools for monitoring the state of health of the batteries and predicting their remaining useful life is becoming a crucial task. Here, we propose a method for predicting the end of discharge of Li-Ion batteries, which stems from the combination of particle filters with radial basis function neural networks. The major innovation lies in the fact that the radial basis function model is adaptively trained on-line, i.e., its parameters are identified in real time by the particle filter as new observations of the battery terminal voltage become available. By doing so, the prognostic algorithm achieves the flexibility needed to provide sound end-of-discharge time predictions as the charge-discharge cycles progress, even in presence of anomalous behaviors due to failures or unforeseen operating conditions. The method is demonstrated with reference to actual Li-Ion battery discharge data contained in the prognostics data repository of the NASA Ames Research Center database.

  20. An adaptive complex network model for brain functional networks.

    Directory of Open Access Journals (Sweden)

    Ignacio J Gomez Portillo

    Full Text Available Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution.

  1. Pedestrian Detection Based on Adaptive Selection of Visible Light or Far-Infrared Light Camera Image by Fuzzy Inference System and Convolutional Neural Network-Based Verification.

    Science.gov (United States)

    Kang, Jin Kyu; Hong, Hyung Gil; Park, Kang Ryoung

    2017-07-08

    A number of studies have been conducted to enhance the pedestrian detection accuracy of intelligent surveillance systems. However, detecting pedestrians under outdoor conditions is a challenging problem due to the varying lighting, shadows, and occlusions. In recent times, a growing number of studies have been performed on visible light camera-based pedestrian detection systems using a convolutional neural network (CNN) in order to make the pedestrian detection process more resilient to such conditions. However, visible light cameras still cannot detect pedestrians during nighttime, and are easily affected by shadows and lighting. There are many studies on CNN-based pedestrian detection through the use of far-infrared (FIR) light cameras (i.e., thermal cameras) to address such difficulties. However, when the solar radiation increases and the background temperature reaches the same level as the body temperature, it remains difficult for the FIR light camera to detect pedestrians due to the insignificant difference between the pedestrian and non-pedestrian features within the images. Researchers have been trying to solve this issue by inputting both the visible light and the FIR camera images into the CNN as the input. This, however, takes a longer time to process, and makes the system structure more complex as the CNN needs to process both camera images. This research adaptively selects a more appropriate candidate between two pedestrian images from visible light and FIR cameras based on a fuzzy inference system (FIS), and the selected candidate is verified with a CNN. Three types of databases were tested, taking into account various environmental factors using visible light and FIR cameras. The results showed that the proposed method performs better than the previously reported methods.

  2. Adaptation of AMO-FBMC-OQAM in optical access network for accommodating asynchronous multiple access in OFDM-based uplink transmission

    Science.gov (United States)

    Jung, Sun-Young; Jung, Sang-Min; Han, Sang-Kook

    2015-01-01

    Exponentially expanding various applications in company with proliferation of mobile devices make mobile traffic exploded annually. For future access network, bandwidth efficient and asynchronous signals converged transmission technique is required in optical network to meet a huge bandwidth demand, while integrating various services and satisfying multiple access in perceived network resource. Orthogonal frequency division multiplexing (OFDM) is highly bandwidth efficient parallel transmission technique based on orthogonal subcarriers. OFDM has been widely studied in wired-/wireless communication and became a Long term evolution (LTE) standard. Consequently, OFDM also has been actively researched in optical network. However, OFDM is vulnerable frequency and phase offset essentially because of its sinc-shaped side lobes, therefore tight synchronism is necessary to maintain orthogonality. Moreover, redundant cyclic prefix (CP) is required in dispersive channel. Additionally, side lobes act as interference among users in multiple access. Thus, it practically hinders from supporting integration of various services and multiple access based on OFDM optical transmission In this paper, adaptively modulated optical filter bank multicarrier system with offset QAM (AMO-FBMC-OQAM) is introduced and experimentally investigated in uplink optical transmission to relax multiple access interference (MAI), while improving bandwidth efficiency. Side lobes are effectively suppressed by using FBMC, therefore the system becomes robust to path difference and imbalance among optical network units (ONUs), which increase bandwidth efficiency by reducing redundancy. In comparison with OFDM, a signal performance and an efficiency of frequency utilization are improved in the same experimental condition. It enables optical network to effectively support heterogeneous services and multiple access.

  3. ADAPTIVE NETWORK CODING IN WIRELESS COMMUNICATIONS

    DEFF Research Database (Denmark)

    2017-01-01

    A first network node (eNB) is configured to receive (404), from a second network node (UE), channel performance indicator values regarding a serving cell, and estimate (404) a number of network-coded packets based on the received channel performance indicator values, such that the estimated numbe...

  4. Usage of case-based reasoning, neural network and adaptive neuro-fuzzy inference system classification techniques in breast cancer dataset classification diagnosis.

    Science.gov (United States)

    Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, Wen-Ming; Li, R K; Wang, Tzu-Hao

    2012-04-01

    Breast cancer is a common to females worldwide. Today, technological advancements in cancer treatment innovations have increased the survival rates. Many theoretical and experimental studies have shown that a multiple classifier system is an effective technique for reducing prediction errors. This study compared the particle swarm optimizer (PSO) based artificial neural network (ANN), the adaptive neuro-fuzzy inference system (ANFIS), and a case-based reasoning (CBR) classifier with a logistic regression model and decision tree model. It also applied three classification techniques to the Mammographic Mass Data Set, and measured its improvements in accuracy and classification errors. The experimental results showed that, the best CBR-based classification accuracy is 83.60%, and the classification accuracies of the PSO-based ANN classifier and ANFIS are 91.10% and 92.80%, respectively.

  5. Adaptive Capacity Management in Bluetooth Networks

    DEFF Research Database (Denmark)

    Son, L.T.

    With the Internet and mobile wireless development, accelerated by high-speed and low cost VLSI device evolution, short range wireless communications have become more and more popular, especially Bluetooth. Bluetooth is a new short range radio technology that promises to be very convenient, low...... of Bluetooth devices is increasing, a larger-scale ad hoc network, scatternet, is formed, as well as the booming of Internet has demanded for large bandwidth and low delay mobile access. This dissertation is to address the capacity management issues in Bluetooth networks. The main goals of the network capacity...... resource constraints in Bluetooth networks and adapt to mobility and frequent changes of the network topology, as well as to bursty traffic of Internet data applications, which are supposedly very common in Bluetooth. Some performance characteristics of these approaches are illustrated by analysis as well...

  6. Supporting Dynamic Adaptive Streaming over HTTP in Wireless Meshed Networks using Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani

    2014-01-01

    This work studies the potential and impact of the FRANC network coding protocol for delivering high quality Dynamic Adaptive Streaming over HTTP (DASH) in wireless networks. Although DASH aims to tailor the video quality rate based on the available throughput to the destination, it relies...

  7. Short-term wind speed forecasting by an adaptive network-based fuzzy inference system (ANFIS: an attempt towards an ensemble forecasting method

    Directory of Open Access Journals (Sweden)

    Moslem Yousefi

    2015-12-01

    Full Text Available Accurate Wind speed forecasting has a vital role in efficient utilization of wind farms. Wind forecasting could be performed for long or short time horizons. Given the volatile nature of wind and its dependent on many geographical parameters, it is difficult for traditional methods to provide a reliable forecast of wind speed time series. In this study, an attempt is made to establish an efficient adaptive network-based fuzzy interference (ANFIS for short-term wind speed forecasting. Using the available data sets in the literature, the ANFIS network is constructed, tested and the results are compared with that of a regular neural network, which has been forecasted the same set of dataset in previous studies. To avoid trial-and-error process for selection of the ANFIS input data, the results of autocorrelation factor (ACF and partial auto correlation factor (PACF on the historical wind speed data are employed. The available data set is divided into two parts. 50% for training and 50% for testing and validation. The testing part of data set will be merely used for assessing the performance of the neural network which guarantees that only unseen data is used to evaluate the forecasting performance of the network. On the other hand, validation data could be used for parameter-setting of the network if required. The results indicate that ANFIS could not outperform ANN in short-term wind speed forecasting though its results are competitive. The two methods are hybridized, though simply by weightage, and the hybrid methods shows slight improvement comparing to both ANN and ANFIS results. Therefore, the goal of future studies could be implementing ANFIS and ANNs in a more comprehensive ensemble method which could be ultimately more robust and accurate

  8. A Self-Adaptive Back-off Optimization Scheme Based on Beacons Probability Prediction for Vehicle Ad-Hoc Networks

    Institute of Scientific and Technical Information of China (English)

    Haitao Zhao; Aiqian Du; Hongbo Zhu; Dapeng Li; Nanjie Liu

    2016-01-01

    In order to improve the broadcast reception rates of beacon messages in vehicle ad-hoc networks,a conclusion that the relationship between collision probability and minimum contention window size and the relationship between expiration probability and minimum window size was reached by building a Markov model. According to this conclusion,a back-off algorithm based on adjusting the size of minimum contention window called CEB is proposed, and this algorithm is on the basis of the differential size between the number of expiration beacons and preset threshold.Simulations were done to compare the performance of CEB with that of RBEB and BEB,and the results show that the performance of the new proposed algorithm is better than that of RBEB and BEB.

  9. Radio propagation and adaptive antennas for wireless communication networks

    CERN Document Server

    Blaunstein, Nathan

    2014-01-01

    Explores novel wireless networks beyond 3G, and advanced 4G technologies, such as MIMO, via propagation phenomena and the fundamentals of adapted antenna usage.Explains how adaptive antennas can improve GoS and QoS for any wireless channel, with specific examples and applications in land, aircraft and satellite communications.Introduces new stochastic approach based on several multi-parametric models describing various terrestrial scenarios, which have been experimentally verified in different environmental conditionsNew chapters on fundamentals of wireless networks, cellular and non-cellular,

  10. Adaptive dynamic capacity borrowing in road-covering mobile networks

    NARCIS (Netherlands)

    Ule, A.; Boucherie, Richardus J.; Li, W.; Pan, Y.

    2006-01-01

    This paper introduces adaptive dynamic capacity borrowing strategies for wireless networks covering a road. In a F/TDMA-based model, road traffic prediction models are used to characterise the movement of hot spots, such as traffic jams, and subsequently to predict the teletraffic load offered to

  11. In-network adaptation of SHVC video in software-defined networks

    Science.gov (United States)

    Awobuluyi, Olatunde; Nightingale, James; Wang, Qi; Alcaraz Calero, Jose Maria; Grecos, Christos

    2016-04-01

    Software Defined Networks (SDN), when combined with Network Function Virtualization (NFV) represents a paradigm shift in how future networks will behave and be managed. SDN's are expected to provide the underpinning technologies for future innovations such as 5G mobile networks and the Internet of Everything. The SDN architecture offers features that facilitate an abstracted and centralized global network view in which packet forwarding or dropping decisions are based on application flows. Software Defined Networks facilitate a wide range of network management tasks, including the adaptation of real-time video streams as they traverse the network. SHVC, the scalable extension to the recent H.265 standard is a new video encoding standard that supports ultra-high definition video streams with spatial resolutions of up to 7680×4320 and frame rates of 60fps or more. The massive increase in bandwidth required to deliver these U-HD video streams dwarfs the bandwidth requirements of current high definition (HD) video. Such large bandwidth increases pose very significant challenges for network operators. In this paper we go substantially beyond the limited number of existing implementations and proposals for video streaming in SDN's all of which have primarily focused on traffic engineering solutions such as load balancing. By implementing and empirically evaluating an SDN enabled Media Adaptation Network Entity (MANE) we provide a valuable empirical insight into the benefits and limitations of SDN enabled video adaptation for real time video applications. The SDN-MANE is the video adaptation component of our Video Quality Assurance Manager (VQAM) SDN control plane application, which also includes an SDN monitoring component to acquire network metrics and a decision making engine using algorithms to determine the optimum adaptation strategy for any real time video application flow given the current network conditions. Our proposed VQAM application has been implemented and

  12. Opportunistic Adaptive Transmission for Network Coding Using Nonbinary LDPC Codes

    Directory of Open Access Journals (Sweden)

    Cocco Giuseppe

    2010-01-01

    Full Text Available Network coding allows to exploit spatial diversity naturally present in mobile wireless networks and can be seen as an example of cooperative communication at the link layer and above. Such promising technique needs to rely on a suitable physical layer in order to achieve its best performance. In this paper, we present an opportunistic packet scheduling method based on physical layer considerations. We extend channel adaptation proposed for the broadcast phase of asymmetric two-way bidirectional relaying to a generic number of sinks and apply it to a network context. The method consists of adapting the information rate for each receiving node according to its channel status and independently of the other nodes. In this way, a higher network throughput can be achieved at the expense of a slightly higher complexity at the transmitter. This configuration allows to perform rate adaptation while fully preserving the benefits of channel and network coding. We carry out an information theoretical analysis of such approach and of that typically used in network coding. Numerical results based on nonbinary LDPC codes confirm the effectiveness of our approach with respect to previously proposed opportunistic scheduling techniques.

  13. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  14. Evolving RBF neural networks for adaptive soft-sensor design.

    Science.gov (United States)

    Alexandridis, Alex

    2013-12-01

    This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.

  15. An Adaptive Clustering Approach Based on Minimum Travel Route Planning for Wireless Sensor Networks with a Mobile Sink

    Directory of Open Access Journals (Sweden)

    Jiqiang Tang

    2017-04-01

    Full Text Available In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA, the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate.

  16. An Adaptive Clustering Approach Based on Minimum Travel Route Planning for Wireless Sensor Networks with a Mobile Sink.

    Science.gov (United States)

    Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin

    2017-04-26

    In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate.

  17. Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case.

    Science.gov (United States)

    Boada, Yadira; Reynoso-Meza, Gilberto; Picó, Jesús; Vignoni, Alejandro

    2016-03-11

    Model based design plays a fundamental role in synthetic biology. Exploiting modularity, i.e. using biological parts and interconnecting them to build new and more complex biological circuits is one of the key issues. In this context, mathematical models have been used to generate predictions of the behavior of the designed device. Designers not only want the ability to predict the circuit behavior once all its components have been determined, but also to help on the design and selection of its biological parts, i.e. to provide guidelines for the experimental implementation. This is tantamount to obtaining proper values of the model parameters, for the circuit behavior results from the interplay between model structure and parameters tuning. However, determining crisp values for parameters of the involved parts is not a realistic approach. Uncertainty is ubiquitous to biology, and the characterization of biological parts is not exempt from it. Moreover, the desired dynamical behavior for the designed circuit usually results from a trade-off among several goals to be optimized. We propose the use of a multi-objective optimization tuning framework to get a model-based set of guidelines for the selection of the kinetic parameters required to build a biological device with desired behavior. The design criteria are encoded in the formulation of the objectives and optimization problem itself. As a result, on the one hand the designer obtains qualitative regions/intervals of values of the circuit parameters giving rise to the predefined circuit behavior; on the other hand, he obtains useful information for its guidance in the implementation process. These parameters are chosen so that they can effectively be tuned at the wet-lab, i.e. they are effective biological tuning knobs. To show the proposed approach, the methodology is applied to the design of a well known biological circuit: a genetic incoherent feed-forward circuit showing adaptive behavior. The proposed multi

  18. A Novel Adaptive Modulation Based on Nondata-Aided Error Vector Magnitude in Non-Line-Of-Sight Condition of Wireless Sensor Network.

    Science.gov (United States)

    Yang, Fan; Zeng, Xiaoping; Mao, Haiwei; Jian, Xin; Tan, Xiaoheng; Du, Derong

    2018-01-15

    The high demand for multimedia applications in environmental monitoring, invasion detection, and disaster aid has led to the rise of wireless sensor network (WSN). With the increase of reliability and diversity of information streams, the higher requirements on throughput and quality of service (QoS) have been put forward in data transmission between two sensor nodes. However, lower spectral efficiency becomes a bottleneck in non-line-of-sight (NLOS) transmission of WSN. This paper proposes a novel nondata-aided error vector magnitude based adaptive modulation (NDA-EVM-AM) to solve the problem. NDA-EVM is considered as a new metric to evaluate the quality of NLOS link for adaptive modulation in WSN. By modeling the NLOS scenario as the η - μ fading channel, a closed-form expression for the NDA-EVM of multilevel quadrature amplitude modulation (MQAM) signals over the η - μ fading channel is derived, and the relationship between SER and NDA-EVM is also formulated. Based on these results, NDA-EVM state machine is designed for adaptation strategy. The algorithmic complexity of NDA-EVM-AM is analyzed and the outage capacity of NDA-EVM-AM in an NLOS scenario is also given. The performances of NDA-EVM-AM are compared by simulation, and the results show that NDA-EVM-AM is an effective technique to be used in the NLOS scenarios of WSN. This technique can accurately reflect the channel variations and efficiently adjust modulation order to better match the channel conditions, hence, obtaining better performance in average spectral efficiency.

  19. Adaptive Regularization of Neural Networks Using Conjugate Gradient

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost......Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique...

  20. Social networks as embedded complex adaptive systems.

    Science.gov (United States)

    Benham-Hutchins, Marge; Clancy, Thomas R

    2010-09-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.

  1. SVC VIDEO STREAM ALLOCATION AND ADAPTATION IN HETEROGENEOUS NETWORK

    Directory of Open Access Journals (Sweden)

    E. A. Pakulova

    2016-07-01

    Full Text Available The paper deals with video data transmission in format H.264/SVC standard with QoS requirements satisfaction. The Sender-Side Path Scheduling (SSPS algorithm and Sender-Side Video Adaptation (SSVA algorithm were developed. SSPS algorithm gives the possibility to allocate video traffic among several interfaces while SSVA algorithm dynamically changes the quality of video sequence in relation to QoS requirements. It was shown that common usage of two developed algorithms enables to aggregate throughput of access networks, increase parameters of Quality of Experience and decrease losses in comparison with Round Robin algorithm. For evaluation of proposed solution, the set-up was made. The trace files with throughput of existing public networks were used in experiments. Based on this information the throughputs of networks were limited and losses for paths were set. The results of research may be used for study and transmission of video data in heterogeneous wireless networks.

  2. Exploring complex networks by means of adaptive walkers.

    Science.gov (United States)

    Prignano, Luce; Moreno, Yamir; Díaz-Guilera, Albert

    2012-12-01

    Finding efficient algorithms to explore large networks with the aim of recovering information about their structure is an open problem. Here, we investigate this challenge by proposing a model in which random walkers with previously assigned home nodes navigate through the network during a fixed amount of time. We consider that the exploration is successful if the walker gets the information gathered back home, otherwise no data are retrieved. Consequently, at each time step, the walkers, with some probability, have the choice to either go backward approaching their home or go farther away. We show that there is an optimal solution to this problem in terms of the average information retrieved and the degree of the home nodes and design an adaptive strategy based on the behavior of the random walker. Finally, we compare different strategies that emerge from the model in the context of network reconstruction. Our results could be useful for the discovery of unknown connections in large-scale networks.

  3. Improving link prediction in complex networks by adaptively exploiting multiple structural features of networks

    Science.gov (United States)

    Ma, Chuang; Bao, Zhong-Kui; Zhang, Hai-Feng

    2017-10-01

    So far, many network-structure-based link prediction methods have been proposed. However, these methods only highlight one or two structural features of networks, and then use the methods to predict missing links in different networks. The performances of these existing methods are not always satisfied in all cases since each network has its unique underlying structural features. In this paper, by analyzing different real networks, we find that the structural features of different networks are remarkably different. In particular, even in the same network, their inner structural features are utterly different. Therefore, more structural features should be considered. However, owing to the remarkably different structural features, the contributions of different features are hard to be given in advance. Inspired by these facts, an adaptive fusion model regarding link prediction is proposed to incorporate multiple structural features. In the model, a logistic function combing multiple structural features is defined, then the weight of each feature in the logistic function is adaptively determined by exploiting the known structure information. Last, we use the "learnt" logistic function to predict the connection probabilities of missing links. According to our experimental results, we find that the performance of our adaptive fusion model is better than many similarity indices.

  4. Organisational adaptation in an activist network: social networks, leadership, and change in al-Muhajiroun.

    Science.gov (United States)

    Kenney, Michael; Horgan, John; Horne, Cale; Vining, Peter; Carley, Kathleen M; Bigrigg, Michael W; Bloom, Mia; Braddock, Kurt

    2013-09-01

    Social networks are said to facilitate learning and adaptation by providing the connections through which network nodes (or agents) share information and experience. Yet, our understanding of how this process unfolds in real-world networks remains underdeveloped. This paper explores this gap through a case study of al-Muhajiroun, an activist network that continues to call for the establishment of an Islamic state in Britain despite being formally outlawed by British authorities. Drawing on organisation theory and social network analysis, we formulate three hypotheses regarding the learning capacity and social network properties of al-Muhajiroun (AM) and its successor groups. We then test these hypotheses using mixed methods. Our methods combine quantitative analysis of three agent-based networks in AM measured for structural properties that facilitate learning, including connectedness, betweenness centrality and eigenvector centrality, with qualitative analysis of interviews with AM activists focusing organisational adaptation and learning. The results of these analyses confirm that al-Muhajiroun activists respond to government pressure by changing their operations, including creating new platforms under different names and adjusting leadership roles among movement veterans to accommodate their spiritual leader's unwelcome exodus to Lebanon. Simple as they are effective, these adaptations have allowed al-Muhajiroun and its successor groups to continue their activism in an increasingly hostile environment. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  5. Using Artificial Intelligence to Retrieve the Optimal Parameters and Structures of Adaptive Network-Based Fuzzy Inference System for Typhoon Precipitation Forecast Modeling

    Directory of Open Access Journals (Sweden)

    Chien-Lin Huang

    2015-01-01

    Full Text Available This study aims to construct a typhoon precipitation forecast model providing forecasts one to six hours in advance using optimal model parameters and structures retrieved from a combination of the adaptive network-based fuzzy inference system (ANFIS and artificial intelligence. To enhance the accuracy of the precipitation forecast, two structures were then used to establish the precipitation forecast model for a specific lead-time: a single-model structure and a dual-model hybrid structure where the forecast models of higher and lower precipitation were integrated. In order to rapidly, automatically, and accurately retrieve the optimal parameters and structures of the ANFIS-based precipitation forecast model, a tabu search was applied to identify the adjacent radius in subtractive clustering when constructing the ANFIS structure. The coupled structure was also employed to establish a precipitation forecast model across short and long lead-times in order to improve the accuracy of long-term precipitation forecasts. The study area is the Shimen Reservoir, and the analyzed period is from 2001 to 2009. Results showed that the optimal initial ANFIS parameters selected by the tabu search, combined with the dual-model hybrid method and the coupled structure, provided the favors in computation efficiency and high-reliability predictions in typhoon precipitation forecasts regarding short to long lead-time forecasting horizons.

  6. Exponential Antisynchronization Control of Stochastic Memristive Neural Networks with Mixed Time-Varying Delays Based on Novel Delay-Dependent or Delay-Independent Adaptive Controller

    Directory of Open Access Journals (Sweden)

    Minghui Yu

    2017-01-01

    Full Text Available The global exponential antisynchronization in mean square of memristive neural networks with stochastic perturbation and mixed time-varying delays is studied in this paper. Then, two kinds of novel delay-dependent and delay-independent adaptive controllers are designed. With the ability of adapting to environment changes, the proposed controllers can modify their behaviors to achieve the best performance. In particular, on the basis of the differential inclusions theory, inequality theory, and stochastic analysis techniques, several sufficient conditions are obtained to guarantee the exponential antisynchronization between the drive system and response system. Furthermore, two numerical simulation examples are provided to the validity of the derived criteria.

  7. LAMAN: Load Adaptable MAC for Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Realp Marc

    2005-01-01

    Full Text Available In mobile ad hoc radio networks, mechanisms on how to access the radio channel are extremely important in order to improve network efficiency. In this paper, the load adaptable medium access control for ad hoc networks (LAMAN protocol is described. LAMAN is a novel decentralized multipacket MAC protocol designed following a cross-layer approach. Basically, this protocol is a hybrid CDMA-TDMA-based protocol that aims at throughput maximization in multipacket communication environments by efficiently combining contention and conflict-free protocol components. Such combination of components is used to adapt the nodes' access priority to changes on the traffic load while, at the same time, accounting for the multipacket reception (MPR capability of the receivers. A theoretical analysis of the system is developed presenting closed expressions of network throughput and packet delay. By simulations the validity of our analysis is shown and the performances of a LAMAN-based system and an Aloha-CDMA-based one are compared.

  8. Integrated Adaptive Analysis and Visualization of Satellite Network Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a system that enables integrated and adaptive analysis and visualization of satellite network management data. Integrated analysis and...

  9. Effects of Adaptive Wormhole Routing in Event Builder Networks

    CERN Document Server

    Moser, R; Branson, J; Brett, A; Cano, E; Carboni, A; Ciganek, M; Cittolin, S; Erhan, S; Gigi, D; Glege, F; Gómez-Reino, Robert; Gulmini, M; Gutiérrez-Mlot, E; Gutleber, J; Jacobs, C; Kim, J C; Klute, M; Lipeles, E; Lopez-Perez, Juan Antonio; Maron, G; Meijers, F; Meschi, E; Murray, S; Oh, A; Orsini, L; Paus, C; Petrucci, A; Pieri, M; Pollet, L; Rácz, A; Sakulin, H; Sani, M; Schieferdecker, P; Schwick, C; Sumorok, K; Suzuki, I; Tsirigkas, D; Varela, J; Bauer, G

    2007-01-01

    The data acquisition system of the CMS experiment at the Large Hadron Collider features a two-stage event builder, which combines data from about 500 sources into full events at an aggregate throughput of 100 GByte/s. To meet the requirements, several architectures and interconnect technologies have been quantitatively evaluated. Both Gigabit Ethernet and Myrinet networks will be employed during the first run. Nearly full bi-section throughput can be obtained using a custom software driver for Myrinet based on barrel shifter traffic shaping. This paper discusses the use of Myrinet dual-port network interface cards supporting channel bonding to achieve virtual 5GBit/s links with adaptive routing to alleviate the throughput limitations associated with wormhole routing. Adaptive routing is not expected to be suitable for high-throughput event builder applications in high-energy physics. To corroborate this claim, results from the CMS event builder preseries installation at CERN are presented and the problems of ...

  10. Optimization Models for Flexible and Adaptive SDN Network Virtualization Layers

    OpenAIRE

    Zerwas, Johannes; Blenk, Andreas; Kellerer, Wolfgang

    2016-01-01

    Network hypervisors provide the network virtualization layer for Software Defined Networking (SDN). They enable virtual network (VN) tenants to bring their SDN controllers to program their logical networks individually according to their demands. In order to make use of the high flexibility of virtual SDN networks and to provide high performance, the deployment of the virtualization layer needs to adapt to changing VN demands. This paper initializes the study of the optimization of dynamic SD...

  11. Modeling multiple time scale firing rate adaptation in a neural network of local field potentials.

    Science.gov (United States)

    Lundstrom, Brian Nils

    2015-02-01

    In response to stimulus changes, the firing rates of many neurons adapt, such that stimulus change is emphasized. Previous work has emphasized that rate adaptation can span a wide range of time scales and produce time scale invariant power law adaptation. However, neuronal rate adaptation is typically modeled using single time scale dynamics, and constructing a conductance-based model with arbitrary adaptation dynamics is nontrivial. Here, a modeling approach is developed in which firing rate adaptation, or spike frequency adaptation, can be understood as a filtering of slow stimulus statistics. Adaptation dynamics are modeled by a stimulus filter, and quantified by measuring the phase leads of the firing rate in response to varying input frequencies. Arbitrary adaptation dynamics are approximated by a set of weighted exponentials with parameters obtained by fitting to a desired filter. With this approach it is straightforward to assess the effect of multiple time scale adaptation dynamics on neural networks. To demonstrate this, single time scale and power law adaptation were added to a network model of local field potentials. Rate adaptation enhanced the slow oscillations of the network and flattened the output power spectrum, dampening intrinsic network frequencies. Thus, rate adaptation may play an important role in network dynamics.

  12. Adaptive training of feedforward neural networks by Kalman filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ciftcioglu, Oe. [Istanbul Technical Univ. (Turkey). Dept. of Electrical Engineering; Tuerkcan, E. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1995-02-01

    Adaptive training of feedforward neural networks by Kalman filtering is described. Adaptive training is particularly important in estimation by neural network in real-time environmental where the trained network is used for system estimation while the network is further trained by means of the information provided by the experienced/exercised ongoing operation. As result of this, neural network adapts itself to a changing environment to perform its mission without recourse to re-training. The performance of the training method is demonstrated by means of actual process signals from a nuclear power plant. (orig.).

  13. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation

    Directory of Open Access Journals (Sweden)

    Ramin Jaberi

    2017-12-01

    Full Text Available Purpose : Intra-fractional organs at risk (OARs deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT. The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Material and methods : Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. Results : A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in ‘organs-applicators’, while maintaining target dose at the original level. Conclusions : There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients’ plans to be able to serve as a clinical tool.

  14. Prediction of cyclosporine A blood levels: an application of the adaptive-network-based fuzzy inference system (ANFIS) in assisting drug therapy.

    Science.gov (United States)

    Gören, Sezer; Karahoca, Adem; Onat, Filiz Y; Gören, M Zafer

    2008-08-01

    Therapeutic drug monitoring (TDM) is a procedure in which the levels of drugs are assayed in various body fluids with the aim of individualizing the dose of critical drugs, such as cyclosporine A. Cyclosporine A assays are performed in blood. We proposed the use of the Takagi and Sugeno-type "adaptive-network-based fuzzy inference system" (ANFIS) to predict the concentration of cyclosporine A in blood samples taken from renal transplantation patients. We implemented the ANFIS model using TDM data collected from 138 patients and 20 input parameters. Input parameters for the model consisted of concurrent use of drugs, blood levels, sampling time, age, gender, and dosing intervals. Fuzzy modeling produced eight rules. The developed ANFIS model exhibited a root mean square error (RMSE) of 0.045 with respect to the training data and an error of 0.057 with respect to the checking data in the MATLAB: environment. ANFIS can effectively assist physicians in choosing best therapeutic drug dose in the clinical setting.

  15. arXiv The prototype of the HL-LHC magnets monitoring system based on Recurrent Neural Networks and adaptive quantization

    CERN Document Server

    Wielgosz, Maciej; Skoczeń, Andrzej

    This paper focuses on an examination of an applicability of Recurrent Neural Network models for detecting anomalous behavior of the CERN superconducting magnets. In order to conduct the experiments, the authors designed and implemented an adaptive signal quantization algorithm and a custom GRU-based detector and developed a method for the detector parameters selection. Three different datasets were used for testing the detector. Two artificially generated datasets were used to assess the raw performance of the system whereas the 231 MB dataset composed of the signals acquired from HiLumi magnets was intended for real-life experiments and model training. Several different setups of the developed anomaly detection system were evaluated and compared with state-of-the-art OC-SVM reference model operating on the same data. The OC-SVM model was equipped with a rich set of feature extractors accounting for a range of the input signal properties. It was determined in the course of the experiments that the detector, a...

  16. Adaptive Gain Scheduled Semiactive Vibration Control Using a Neural Network

    Directory of Open Access Journals (Sweden)

    Kazuhiko Hiramoto

    2018-01-01

    Full Text Available We propose an adaptive gain scheduled semiactive control method using an artificial neural network for structural systems subject to earthquake disturbance. In order to design a semiactive control system with high control performance against earthquakes with different time and/or frequency properties, multiple semiactive control laws with high performance for each of multiple earthquake disturbances are scheduled with an adaptive manner. Each semiactive control law to be scheduled is designed based on the output emulation approach that has been proposed by the authors. As the adaptive gain scheduling mechanism, we introduce an artificial neural network (ANN. Input signals of the ANN are the measured earthquake disturbance itself, for example, the acceleration, velocity, and displacement. The output of the ANN is the parameter for the scheduling of multiple semiactive control laws each of which has been optimized for a single disturbance. Parameters such as weight and bias in the ANN are optimized by the genetic algorithm (GA. The proposed design method is applied to semiactive control design of a base-isolated building with a semiactive damper. With simulation study, the proposed adaptive gain scheduling method realizes control performance exceeding single semiactive control optimizing the average of the control performance subject to various earthquake disturbances.

  17. Adaptive nonlinear control of missiles using neural networks

    Science.gov (United States)

    McFarland, Michael Bryan

    Research has shown that neural networks can be used to improve upon approximate dynamic inversion for control of uncertain nonlinear systems. In one architecture, the neural network adaptively cancels inversion errors through on-line learning. Such learning is accomplished by a simple weight update rule derived from Lyapunov theory, thus assuring stability of the closed-loop system. In this research, previous results using linear-in-parameters neural networks were reformulated in the context of a more general class of composite nonlinear systems, and the control scheme was shown to possess important similarities and major differences with established methods of adaptive control. The neural-adaptive nonlinear control methodology in question has been used to design an autopilot for an anti-air missile with enhanced agile maneuvering capability, and simulation results indicate that this approach is a feasible one. There are, however, certain difficulties associated with choosing the proper network architecture which make it difficult to achieve the rapid learning required in this application. Accordingly, this technique has been further extended to incorporate the important class of feedforward neural networks with a single hidden layer. These neural networks feature well-known approximation capabilities and provide an effective, although nonlinear, parameterization of the adaptive control problem. Numerical results from a six-degree-of-freedom nonlinear agile anti-air missile simulation demonstrate the effectiveness of the autopilot design based on multilayer networks. Previous work in this area has implicitly assumed precise knowledge of the plant order, and made no allowances for unmodeled dynamics. This thesis describes an approach to the problem of controlling a class of nonlinear systems in the face of both unknown nonlinearities and unmodeled dynamics. The proposed methodology is similar to robust adaptive control techniques derived for control of linear

  18. Public goods games on adaptive coevolutionary networks

    Science.gov (United States)

    Pichler, Elgar; Shapiro, Avi M.

    2017-07-01

    Productive societies feature high levels of cooperation and strong connections between individuals. Public Goods Games (PGGs) are frequently used to study the development of social connections and cooperative behavior in model societies. In such games, contributions to the public good are made only by cooperators, while all players, including defectors, reap public goods benefits, which are shares of the contributions amplified by a synergy factor. Classic results of game theory show that mutual defection, as opposed to cooperation, is the Nash Equilibrium of PGGs in well-mixed populations, where each player interacts with all others. In this paper, we explore the coevolutionary dynamics of a low information public goods game on a complex network in which players adapt to their environment in order to increase individual payoffs relative to past payoffs parameterized by greediness. Players adapt by changing their strategies, either to cooperate or to defect, and by altering their social connections. We find that even if players do not know other players' strategies and connectivity, cooperation can arise and persist despite large short-term fluctuations.

  19. Adaptive Synchronization of Fractional Neural Networks with Unknown Parameters and Time Delays

    Directory of Open Access Journals (Sweden)

    Weiyuan Ma

    2014-12-01

    Full Text Available In this paper, the parameters identification and synchronization problem of fractional-order neural networks with time delays are investigated. Based on some analytical techniques and an adaptive control method, a simple adaptive synchronization controller and parameter update laws are designed to synchronize two uncertain complex networks with time delays. Besides, the system parameters in the uncertain network can be identified in the process of synchronization. To demonstrate the validity of the proposed method, several illustrative examples are presented.

  20. Distributed estimation for adaptive sensor selection in wireless sensor networks

    Science.gov (United States)

    Mahmoud, Magdi S.; Hassan Hamid, Matasm M.

    2014-05-01

    Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.

  1. Congestion Control Based on Multiple Model Adaptive Control

    Directory of Open Access Journals (Sweden)

    Xinhao Yang

    2013-01-01

    Full Text Available The congestion controller based on the multiple model adaptive control is designed for the network congestion in TCP/AQM network. As the conventional congestion control is sensitive to the variable network condition, the adaptive control method is adopted in our congestion control. The multiple model adaptive control is introduced in this paper based on the weight calculation instead of the parameter estimation in past adaptive control. The model set is composed by the dynamic model based on the fluid flow. And three “local” congestion controllers are nonlinear output feedback controller based on variable RTT, H2 output feedback controller, and proportional-integral controller, respectively. Ns-2 simulation results in section 4 indicate that the proposed algorithm restrains the congestion in variable network condition and maintains a high throughput together with a low packet drop ratio.

  2. Traffic Adaptive MAC Protocols in Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Farhan Masud

    2017-01-01

    Full Text Available In Wireless Body Area Networks (WBANs, every healthcare application that is based on physical sensors is responsible for monitoring the vital signs data of patient. WBANs applications consist of heterogeneous and dynamic traffic loads. Routine patient’s observation is described as low-load traffic while an alarming situation that is unpredictable by nature is referred to as high-load traffic. This paper offers a thematic review of traffic adaptive Medium Access Control (MAC protocols in WBANs. First, we have categorized them based on their goals, methods, and metrics of evaluation. The Zigbee standard IEEE 802.15.4 and the baseline MAC IEEE 802.15.6 are also reviewed in terms of traffic adaptive approaches. Furthermore, a comparative analysis of the protocols is made and their performances are analyzed in terms of delay, packet delivery ratio (PDR, and energy consumption. The literature shows that no review work has been done on traffic adaptive MAC protocols in WBANs. This review work, therefore, could add enhancement to traffic adaptive MAC protocols and will stimulate a better way of solving the traffic adaptivity problem.

  3. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ... (extended from Leavitt, 1965). This text identifies aspects of network-based effectiveness that can benefit from a better understanding of leadership and management development of people, procedures, technology, and organizations...

  4. A Bayesian regularized artificial neural network for adaptive optics forecasting

    Science.gov (United States)

    Sun, Zhi; Chen, Ying; Li, Xinyang; Qin, Xiaolin; Wang, Huiyong

    2017-01-01

    Real-time adaptive optics is a technology for enhancing the resolution of ground-based optical telescopes and overcoming the disturbance of atmospheric turbulence. The performance of the system is limited by delay errors induced by the servo system and photoelectrons noise of wavefront sensor. In order to cut these delay errors, this paper proposes a novel model to forecast the future control voltages of the deformable mirror. The predictive model is constructed by a multi-layered back propagation network with Bayesian regularization (BRBP). For the purpose of parallel computation and less disturbance, we adopt a number of sub-BP neural networks to substitute the whole network. The Bayesian regularized network assigns a probability to the network weights, allowing the network to automatically and optimally penalize excessively complex models. The simulation results show that the BRBP introduces smaller mean absolute percentage error (MAPE) and mean square errors (MSE) than other typical algorithms. Meanwhile, real data analysis results show that the BRBP model has strong generalization capability and parallelism.

  5. Epidemics in Adaptive Social Networks with Temporary Link Deactivation

    Science.gov (United States)

    Tunc, Ilker; Shkarayev, Maxim S.; Shaw, Leah B.

    2013-04-01

    Disease spread in a society depends on the topology of the network of social contacts. Moreover, individuals may respond to the epidemic by adapting their contacts to reduce the risk of infection, thus changing the network structure and affecting future disease spread. We propose an adaptation mechanism where healthy individuals may choose to temporarily deactivate their contacts with sick individuals, allowing reactivation once both individuals are healthy. We develop a mean-field description of this system and find two distinct regimes: slow network dynamics, where the adaptation mechanism simply reduces the effective number of contacts per individual, and fast network dynamics, where more efficient adaptation reduces the spread of disease by targeting dangerous connections. Analysis of the bifurcation structure is supported by numerical simulations of disease spread on an adaptive network. The system displays a single parameter-dependent stable steady state and non-monotonic dependence of connectivity on link deactivation rate.

  6. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    Science.gov (United States)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  7. ADAPTIVE SERVICE PROVISIONING FOR MOBILE AD HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    Cynthia Jayapal

    2010-09-01

    Full Text Available Providing efficient and scalable service provisioning in Mobile Ad Hoc Network (MANET is a big research challenge. In adaptive service provisioning mechanism an adaptive election procedure is used to select a coordinator node. The role of a service coordinator is crucial in any distributed directory based service provisioning scheme. The existing coordinator election schemes use either the nodeID or a hash function to choose the coordinator. In these schemes, the leader changes are more frequent due to node mobility. We propose an adaptive scheme that makes use of an eligibility factor that is calculated based on the distance to the zone center, remaining battery power and average speed to elect a core node that change according to the network dynamics. We also retain the node with the second highest priority as a backup node. Our algorithm is compared with the existing solution by simulation and the result shows that the core node selected by us is more stable and hence reduces the number of handoffs. This in turn improves the service delivery performance by increasing the packet delivery ratio and decreasing the delay, the overhead and the forwarding cost.

  8. Adaptive NetworkProfiler for Identifying Cancer Characteristic-Specific Gene Regulatory Networks.

    Science.gov (United States)

    Park, Heewon; Shimamura, Teppei; Imoto, Seiya; Miyano, Satoru

    2017-10-20

    There is currently much discussion about sample (patient)-specific gene regulatory network identification, since the efficiently constructed sample-specific gene networks lead to effective personalized cancer therapy. Although statistical approaches have been proposed for inferring gene regulatory networks, the methods cannot reveal sample-specific characteristics because the existing methods, such as an L1-type regularization, provide averaged results for all samples. Thus, we cannot reveal sample-specific characteristics in transcriptional regulatory networks. To settle on this issue, the NetworkProfiler was proposed based on the kernel-based L1-type regularization. The NetworkProfiler imposes a weight on each sample based on the Gaussian kernal function for controlling effect of samples on modeling a target sample, where the amount of weight depends on similarity of cancer characteristics between samples. The method, however, cannot perform gene regulatory network identification well for a target sample in a sparse region (i.e., for a target sample, there are only a few samples having a similar characteristic of the target sample, where the characteristic is considered as a modulator in sample-specific gene network construction), since a constant bandwidth in the Gaussian kernel function cannot effectively group samples for modeling a target sample in sparse region. The cancer characteristics, such as an anti-cancer drug sensitivity, are usually nonuniformly distributed, and thus modeling for samples in a sparse region is also a crucial issue. We propose a novel kernel-based L1-type regularization method based on a modified k-nearest neighbor (KNN)-Gaussian kernel function, called an adaptive NetworkProfiler. By using the modified KNN-Gaussian kernel function, our method provides robust results against the distribution of modulators, and properly groups samples according to a cancer characteristic for sample-specific analysis. Furthermore, we propose a sample

  9. Adaptive Management of Computing and Network Resources for Spacecraft Systems

    Science.gov (United States)

    Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.

  10. LTE Adaptation for Mobile Broadband Satellite Networks

    Directory of Open Access Journals (Sweden)

    Bastia Francesco

    2009-01-01

    Full Text Available One of the key factors for the successful deployment of mobile satellite systems in 4G networks is the maximization of the technology commonalities with the terrestrial systems. An effective way of achieving this objective consists in considering the terrestrial radio interface as the baseline for the satellite radio interface. Since the 3GPP Long Term Evolution (LTE standard will be one of the main players in the 4G scenario, along with other emerging technologies, such as mobile WiMAX; this paper analyzes the possible applicability of the 3GPP LTE interface to satellite transmission, presenting several enabling techniques for this adaptation. In particular, we propose the introduction of an inter-TTI interleaving technique that exploits the existing H-ARQ facilities provided by the LTE physical layer, the use of PAPR reduction techniques to increase the resilience of the OFDM waveform to non linear distortion, and the design of the sequences for Random Access, taking into account the requirements deriving from the large round trip times. The outcomes of this analysis show that, with the required proposed enablers, it is possible to reuse the existing terrestrial air interface to transmit over the satellite link.

  11. Adaptive Mobile Positioning in WCDMA Networks

    Directory of Open Access Journals (Sweden)

    Dong B.

    2005-01-01

    Full Text Available We propose a new technique for mobile tracking in wideband code-division multiple-access (WCDMA systems employing multiple receive antennas. To achieve a high estimation accuracy, the algorithm utilizes the time difference of arrival (TDOA measurements in the forward link pilot channel, the angle of arrival (AOA measurements in the reverse-link pilot channel, as well as the received signal strength. The mobility dynamic is modelled by a first-order autoregressive (AR vector process with an additional discrete state variable as the motion offset, which evolves according to a discrete-time Markov chain. It is assumed that the parameters in this model are unknown and must be jointly estimated by the tracking algorithm. By viewing a nonlinear dynamic system such as a jump-Markov model, we develop an efficient auxiliary particle filtering algorithm to track both the discrete and continuous state variables of this system as well as the associated system parameters. Simulation results are provided to demonstrate the excellent performance of the proposed adaptive mobile positioning algorithm in WCDMA networks.

  12. Adaptive and ubiquitous video streaming over Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Malik Mubashir Hassan

    2016-10-01

    Full Text Available In recent years, with the dramatic improvement on scalability of H.264/MPEG-4 standard and growing demand for new multimedia services have spurred the research on scalable video streaming over wireless networks in both industry and academia. Video streaming applications are increasingly being deployed in Wireless Mesh Networks (WMNs. However, robust streaming of video over WMNs poses many challenges due to varying nature of wireless networks. Bit-errors, packet-losses and burst-packet-losses are very common in such type of networks, which severely influence the perceived video quality at receiving end. Therefore, a carefully-designed error recovery scheme must be employed. In this paper, we propose an interactive and ubiquitous video streaming scheme for Scalable Video Coding (SVC based video streaming over WMNs towards heterogeneous receivers. Intelligently taking the benefit of path diversity, the proposed scheme initially calculates the quality of all candidate paths and then based on quality of path it decides adaptively the size and level of error protection for all packets in order to combat the effect of losses on perceived quality of reconstructed video at receiving end. Our experimental results show that the proposed streaming approach can react to varying channel conditions with less degradation in video quality.

  13. Information Theoretic Adaptive Tracking of Epidemics in Complex Networks

    CERN Document Server

    Harrington, Patrick L

    2013-01-01

    Adaptively monitoring the states of nodes in a large complex network is of interest in domains such as national security, public health, and energy grid management. Here, we present an information theoretic adaptive tracking and sampling framework that recursively selects measurements using the feedback from performing inference on a dynamic Bayesian Network. We also present conditions for the existence of a network specific, observation dependent, phase transition in the updated posterior of hidden node states resulting from actively monitoring the network. Since traditional epidemic thresholds are derived using observation independent Markov chains, the threshold of the posterior should more accurately model the true phase transition of a network. The adaptive tracking framework and epidemic threshold should provide insight into modeling the dynamic response of the updated posterior to active intervention and control policies while monitoring modern complex networks.

  14. Adaptive Dynamics, Control, and Extinction in Networked Populations

    Science.gov (United States)

    2015-07-09

    Adaptive Dynamics, Control, and Extinction in Networked Populations Ira B. Schwartz US Naval Research Laboratory Code 6792 Nonlinear System Dynamics...theory of large deviations to stochastic network extinction to predict extinction times. In particular, we use the theory to find the most probable...paths leading to extinction . We then apply the methodology to network models and discover how mean extinction times scale with network parameters in Erdos

  15. Particle Swarm Optimization for Adaptive Resource Allocation in Communication Networks

    Directory of Open Access Journals (Sweden)

    Gheitanchi Shahin

    2010-01-01

    Full Text Available A generalized model of particle swarm optimization (PSO technique is proposed as a low complexity method for adaptive centralized and distributed resource allocation in communication networks. The proposed model is applied to adaptive multicarrier cooperative communications (MCCC technique which utilizes the subcarriers in deep fade using a relay node in order to improve the bandwidth efficiency. Centralized PSO, based on virtual particles (VPs, is introduced for single layer and cross-layer subcarrier allocation to improve the bit error rate performance in multipath frequency selective fading channels. In the single layer strategy, the subcarriers are allocated based on the channel gains. In the cross-layer strategy, the subcarriers are allocated based on a joint measure of channel gains and distance provided by the physical layer and network layer to mitigate the effect of path loss. The concept of training particles in distributed PSO is proposed and then is applied for relay node selection. The computational complexity and traffic of the proposed techniques are investigated, and it is shown that using PSO for subcarrier allocation has a lower complexity than the techniques in the literature. Significant reduction in the traffic overhead of PSO is demonstrated when using trained particles in distributed optimizations.

  16. Adaptive Information Access on Multiple Applications Support Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2014-01-01

    is used for safety and security monitoring purposes. In this paper, we evaluate different access strategies to remote dynamic information and compare between achieving information reliability (mismatch probability) and the associated power consumption. Lastly, based on the models, we propose an adaptive......Accessing information remotely to dynamically changing information elements cannot be avoided and has become a required functionality for various network services. Most applications require up-to-date information which is reliable and accurate. The information reliability in terms of using correct...... information is challenged by dynamic nature of information elements. These challenges are more prominent in case of wireless sensor network (WSN) applications, as the information that the sensor node collects are mostly dynamic in nature (say, temperature). Therefore, it is likely that there can be a mismatch...

  17. Collaborative Trust Networks in Engineering Design Adaptation

    DEFF Research Database (Denmark)

    Atkinson, Simon Reay; Maier, Anja; Caldwell, Nicholas

    2011-01-01

    ); applying the Change Prediction Method (CPM) tool. It posits the idea of the ‘Networks-in-Being’ with varying individual and collective characteristics. [Social] networks are considered to facilitate information exchange between actors. At the same time, networks failing to provide trusted-information can...... collaboration and decision-making by using the change prediction method as a way of scoping information propagation between actors within a network....... hinder effective communication and collaboration. Different combinations of trust may therefore improve or impair the likelihood of information flow, transfer and subsequent action (cause and effect). This paper investigates how analysing different types of network-structures-in-being can support...

  18. Adaptive control of call acceptance in WCDMA network

    Directory of Open Access Journals (Sweden)

    Milan Manojle Šunjevarić

    2013-10-01

    Full Text Available In this paper, an overview of the algorithms for access control in mobile wireless networks is presented. A review of adaptive control methods of accepting a call in WCDMA networks is discussed, based on the overview of the algorithms used for this purpose, and their comparison. Appropriate comments and conculsions in comparison with the basic characteristics of these algorithms are given. The OVSF codes are explained as well as how the allocation method influences the capacity and probability of blocking.. Introduction We are witnessing a steady increase in the number of demands placed upon modern wireless networks. New applications and an increasing number of users as well as user activities growth in recent years reinforce the need for an efficient use of the spectrum and its proper distribution among different applications and classes of services. Besides humans, the last few years saw different computers, machines, applications, and, in the future, many other devices, RFID applications, and finally networked objects, as a new kind of wireless networks "users". Because of the exceptional rise in the number of users, the demands placed upon modern wireless networks are becoming larger, and spectrum management plays an important role. For these reasons, choosing an appropriate call admission control algorithm is of great importance. Multiple access and resource management in wireless networks Radio resource management of mobile networks is a set of algorithms to manage the use of radio resources with the aim is to maximize the total capacity of wireless systems with equal distribution of resources to users. Management of radio resources in cellular networks is usually located in the base station controller, the base station and the mobile terminal, and is based on decisions made on appropriate measurement and feedback. It is often defined as the maximum volume of traffic load that the system can provide for some of the requirements for the

  19. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical...

  20. Adaptive Charging Algorithms for a Network of Electric Vehicles

    OpenAIRE

    Low, Zhi H.; Low, Steven H.

    2017-01-01

    Electric vehicle node controllers in accordance with embodiments of the invention enable adaptive charging. One embodiment includes one or more centralized computing systems; a communications network; a plurality of electric vehicle node controllers, where each electric vehicle node controller in the plurality of node controllers contains: a network interface; a processor; a memory containing: an adaptive charging application; a plurality of electric vehicle node parameters describing chargin...

  1. Adapting Bayes Network Structures to Non-stationary Domains

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre

    2006-01-01

    When an incremental structural learning method gradually modifies a Bayesian network (BN) structure to fit observations, as they are read from a database, we call the process structural adaptation. Structural adaptation is useful when the learner is set to work in an unknown environment, where a BN...

  2. Adapting Bayes Network Structures to Non-stationary Domains

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre

    2008-01-01

    When an incremental structural learning method gradually modifies a Bayesian network (BN) structure to fit a sequential stream of observations, we call the process structural adaptation. Structural adaptation is useful when the learner is set to work in an unknown environment, where a BN...

  3. Implementation of an Adaptive Learning System Using a Bayesian Network

    Science.gov (United States)

    Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki

    2015-01-01

    An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…

  4. Networked Airbourne Communications Using Adaptive Multi Beam Directional Links

    Science.gov (United States)

    2016-03-05

    January 8, 2009. works introduce more sophisticated channel models, and route selection by a method called percolation [7], [8]. For these examples ...Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can

  5. Adaptive Neurons For Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  6. Compensation for unmatched uncertainty with adaptive RBF network

    African Journals Online (AJOL)

    user

    3 Control Systems Research Group, School of Engineering, Liverpool John Moores University, Liverpool, UK ... Introduction ... new integral sliding surface that includes an additional design matrix with an adaptive RBF neural network. In addition to ... This may be tackled by neural network modeling in on-line mode but the.

  7. Mobilization and Adaptation of a Rural Cradle-to-Career Network

    Directory of Open Access Journals (Sweden)

    Sarah J. Zuckerman

    2016-10-01

    Full Text Available This case study explored the development of a rural cradle-to-career network with a dual focus on the initial mobilization of network members and subsequent adaptations made to maintain mobilization, while meeting local needs. Data sources included interviews with network members, observations of meetings, and documentary evidence. Network-based social capital facilitated mobilization. Where networks were absent and where distrust and different values were evident, mobilization faltered. Three network adaptations were discovered: Special rural community organizing strategies, district-level action planning, and a theory of action focused on out-of-school factors. All three were attributable to the composition of mobilized stakeholders and this network’s rural social geography. These findings illuminate the importance of social geography in the development and advancement of rural cradle-to-career networks.

  8. Adaptive Data Broadcast in Hybrid Networks

    National Research Council Canada - National Science Library

    Stathatos, Konstantinos; Roussopoulos, Nick; Baras, John S

    1997-01-01

    .... The goal is to build highly scalable systems with small response time. In this paper, we describe a technique that continuously adapts the broadcast content to match the hot-spot of the workload...

  9. Adaptation Methods in Mobile Communication Networks

    National Research Council Canada - National Science Library

    Vladimir Wieser

    2003-01-01

    Adaptation methods are the main tool for transmission rate maximization through the mobile channel and today the great attention is directed to them not only in theoretical domain but in standardization process, too...

  10. Adaptation Methods in Mobile Communication Networks

    National Research Council Canada - National Science Library

    Vladimir Wieser

    2003-01-01

      Adaptation methods are the main tool for transmission rate maximization through the mobile channel and today the great attention is directed to them not only in theoretical domain but in standardization process, too...

  11. Dynamic Virtual LANs for Adaptive Network Security

    National Research Council Canada - National Science Library

    Merani, Diego; Berni, Alessandro; Leonard, Michel

    2004-01-01

    The development of Network-Enabled capabilities in support of undersea research requires architectures for the interconnection and data sharing that are flexible, scalable, and built on open standards...

  12. Engineering Issues for an Adaptive Defense Network

    National Research Council Canada - National Science Library

    Piszcz, Alan; Orlans, Nicholas; Eyler-Walker, Zachary; Moore, David

    2001-01-01

    .... The primary issue was the capability to detect and defend against DDoS. Experimentation was performed with a packet filtering firewall, a network Quality of Service manager, multiple DDoS tools, and traffic generation tools...

  13. Adaptive Influence Maximization in Dynamic Social Networks

    OpenAIRE

    Tong, Guangmo; Wu, Weili; Tang, Shaojie; Du, Ding-Zhu

    2015-01-01

    For the purpose of propagating information and ideas through a social network, a seeding strategy aims to find a small set of seed users that are able to maximize the spread of the influence, which is termed as influence maximization problem. Despite a large number of works have studied this problem, the existing seeding strategies are limited to the static social networks. In fact, due to the high speed data transmission and the large population of participants, the diffusion processes in re...

  14. Adaptive Capacity Management in Bluetooth Networks

    OpenAIRE

    Son, L.T.

    2004-01-01

    With the Internet and mobile wireless development, accelerated by high-speed and low cost VLSI device evolution, short range wireless communications have become more and more popular, especially Bluetooth. Bluetooth is a new short range radio technology that promises to be very convenient, low power, and low cost mobile ad hoc solution for the global interconnection of all mobile devices. To implement Bluetooth network as a true mobile ad hoc wireless network operating in short radio range, h...

  15. Connection adaption for control of networked mobile chaotic agents.

    Science.gov (United States)

    Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Xiao, Gaoxi; Boccaletti, S

    2017-11-22

    In this paper, we propose a strategy for the control of mobile chaotic oscillators by adaptively rewiring connections between nearby agents with local information. In contrast to the dominant adaptive control schemes where coupling strength is adjusted continuously according to the states of the oscillators, our method does not request adaption of coupling strength. As the resulting interaction structure generated by this proposed strategy is strongly related to unidirectional chains, by investigating synchronization property of unidirectional chains, we reveal that there exists a certain coupling range in which the agents could be controlled regardless of the length of the chain. This feature enables the adaptive strategy to control the mobile oscillators regardless of their moving speed. Compared with existing adaptive control strategies for networked mobile agents, our proposed strategy is simpler for implementation where the resulting interaction networks are kept unweighted at all time.

  16. Adaptive Sliding Mode Control of Chaos in Permanent Magnet Synchronous Motor via Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Tat-Bao-Thien Nguyen

    2014-01-01

    Full Text Available In this paper, based on fuzzy neural networks, we develop an adaptive sliding mode controller for chaos suppression and tracking control in a chaotic permanent magnet synchronous motor (PMSM drive system. The proposed controller consists of two parts. The first is an adaptive sliding mode controller which employs a fuzzy neural network to estimate the unknown nonlinear models for constructing the sliding mode controller. The second is a compensational controller which adaptively compensates estimation errors. For stability analysis, the Lyapunov synthesis approach is used to ensure the stability of controlled systems. Finally, simulation results are provided to verify the validity and superiority of the proposed method.

  17. Consensus-Based Cooperative Control Based on Pollution Sensing and Traffic Information for Urban Traffic Networks

    National Research Council Canada - National Science Library

    Antonio Artuñedo; Raúl M del Toro; Rodolfo E Haber

    2017-01-01

    .... The interconnected traffic lights controller (TLC) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks...

  18. Robust adaptive synchronization of general dynamical networks ...

    Indian Academy of Sciences (India)

    1School of Information Science & Engineering, Northeastern University, Shenyang,. Liaoning, 110819, People's ... Introduction. Complex networks exist extensively in ecosystems, power grids, food webs and in many other spheres in our daily lives. Over the course of the past 30 years, technological revolu- tions of complex ...

  19. Designing Networked Adaptive Interactive Hybrid Systems

    NARCIS (Netherlands)

    Kester, L.J.H.M.

    2008-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. In these systems humans and intelligent machines will, in close interaction, be able to reach their goals under

  20. Adaptive Importance Sampling Simulation of Queueing Networks

    NARCIS (Netherlands)

    de Boer, Pieter-Tjerk; Nicola, V.F.; Rubinstein, N.; Rubinstein, Reuven Y.

    2000-01-01

    In this paper, a method is presented for the efficient estimation of rare-event (overflow) probabilities in Jackson queueing networks using importance sampling. The method differs in two ways from methods discussed in most earlier literature: the change of measure is state-dependent, i.e., it is a

  1. Adaptive traffic control systems for urban networks

    Directory of Open Access Journals (Sweden)

    Radivojević Danilo

    2017-01-01

    Full Text Available Adaptive traffic control systems represent complex, but powerful tool for improvement of traffic flow conditions in locations or zones where applied. Many traffic agencies, especially those that have a large number of signalized intersections with high variability of the traffic demand, choose to apply some of the adaptive traffic control systems. However, those systems are manufactured and offered by multiple vendors (companies that are competing for the market share. Due to that fact, besides the information available from the vendors themselves, or the information from different studies conducted on different continents, very limited amount of information is available about the details how those systems are operating. The reason for that is the protecting of the intellectual property from plagiarism. The primary goal of this paper is to make a brief analysis of the functionalities, characteristics, abilities and results of the most recognized, but also less known adaptive traffic control systems to the professional public and other persons with interest in this subject.

  2. Adaptive relaying for ground fault protection of a distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M.S.; Sidhu, T.S.; Talukdar, B.K. [Saskatchewan Univ., Saskatoon, SK (Canada)

    1995-12-31

    Adaptive protection was used for designing a protection system for the City of Saskatoon`s distribution network. The software and hardware were developed and the protection system was implemented in the laboratory at the University of Saskatchewan. In the first phase of the project, phase overcurrent relays were coordinated on the basis of three-phase faults. Most faults in distribution networks were single-phase to ground faults. Ground fault currents varied due to different grounding practices, changes in operating conditions and system topology. In the second phase of the project, adaptive capabilities for ground overcurrent and directional ground overcurrent protection were added. Software modules developed for achieving adaptive ground fault protection were described. Results from system studies carried out using the City of Saskatoon`s distribution network were also analyzed. 7 refs., 8 figs.

  3. Smart social adaptation prevents catastrophic ecological regime shifts in networks of myopic harvesters

    Science.gov (United States)

    Donges, Jonathan; Lucht, Wolfgang; Wiedermann, Marc; Heitzig, Jobst; Kurths, Jürgen

    2015-04-01

    In the anthropocene, the rise of global social and economic networks with ever increasing connectivity and speed of interactions, e.g., the internet or global financial markets, is a key challenge for sustainable development. The spread of opinions, values or technologies on these networks, in conjunction with the coevolution of the network structures themselves, underlies nexuses of current concern such as anthropogenic climate change, biodiversity loss or global land use change. To isolate and quantitatively study the effects and implications of network dynamics for sustainable development, we propose an agent-based model of information flow on adaptive networks between myopic harvesters that exploit private renewable resources. In this conceptual model of a network of socio-ecological systems, information on management practices flows between agents via boundedly rational imitation depending on the state of the resource stocks involved in an interaction. Agents can also adapt the structure of their social network locally by preferentially connecting to culturally similar agents with identical management practices and, at the same time, disconnecting from culturally dissimilar agents. Investigating in detail the statistical mechanics of this model, we find that an increasing rate of information flow through faster imitation dynamics or growing density of network connectivity leads to a marked increase in the likelihood of environmental resource collapse. However, we show that an optimal rate of social network adaptation can mitigate this negative effect without loss of social cohesion through network fragmentation. Our results highlight that seemingly immaterial network dynamics of spreading opinions or values can be of large relevance for the sustainable management of socio-ecological systems and suggest smartly conservative network adaptation as a strategy for mitigating environmental collapse. Hence, facing the great acceleration, these network dynamics should

  4. A candidate multimodal functional genetic network for thermal adaptation

    Directory of Open Access Journals (Sweden)

    Katharina C. Wollenberg Valero

    2014-09-01

    Full Text Available Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1, affect genes with different cellular functions, namely (2 lipoprotein metabolism, (3 membrane channels, (4 stress response, (5 response to oxidative stress, (6 muscle contraction and relaxation, and (7 vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and

  5. Feedback in Videogame-Based Adaptive Training

    Science.gov (United States)

    Rivera, Iris Daliz

    2010-01-01

    The field of training has been changing rapidly due to advances in technology such as videogame-based adaptive training. Videogame-based adaptive training has provided flexibility and adaptability for training in cost-effective ways. Although this method of training may have many benefits for the trainee, current research has not kept up to pace…

  6. Topology detection for adaptive protection of distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M.S.; Sidhu, T.S.; Talukdar, B.K. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Power System Research Group

    1995-12-31

    A general purpose network topology detection technique suitable for use in adaptive relaying applications is presented in this paper. Three test systems were used to check the performance of the proposed technique. Results obtained from the tests are included. The proposed technique was implemented in the laboratory as a part of the implementation of the adaptive protection scheme. The execution times of the topology detection software were monitored and were found to be acceptable.

  7. Scalable Harmonization of Complex Networks With Local Adaptive Controllers

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav; Herzallah, R.

    2017-01-01

    Roč. 47, č. 3 (2017), s. 394-404 ISSN 2168-2216 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Adaptive control * Adaptive estimation * Bayes methods * Complex networks * Decentralized control * Feedback * Feedforward systems * Recursive estimation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.350, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0457337.pdf

  8. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    Science.gov (United States)

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  9. Adaptive thresholds for neural networks with synaptic noise.

    Science.gov (United States)

    Bollé, D; Heylen, R

    2007-08-01

    The inclusion of a macroscopic adaptive threshold is studied for the retrieval dynamics of both layered feedforward and fully connected neural network models with synaptic noise. These two types of architectures require a different method to be solved numerically. In both cases it is shown that, if the threshold is chosen appropriately as a function of the cross-talk noise and of the activity of the stored patterns, adapting itself automatically in the course of the recall process, an autonomous functioning of the network is guaranteed. This self-control mechanism considerably improves the quality of retrieval, in particular the storage capacity, the basins of attraction and the mutual information content.

  10. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  11. Adaptive bridge control strategy for opinion evolution on social networks.

    Science.gov (United States)

    Qian, Cheng; Cao, Jinde; Lu, Jianquan; Kurths, Jürgen

    2011-06-01

    In this paper, we present an efficient opinion control strategy for complex networks, in particular, for social networks. The proposed adaptive bridge control (ABC) strategy calls for controlling a special kind of nodes named bridge and requires no knowledge of the node degrees or any other global or local knowledge, which are necessary for some other immunization strategies including targeted immunization and acquaintance immunization. We study the efficiency of the proposed ABC strategy on random networks, small-world networks, scale-free networks, and the random networks adjusted by the edge exchanging method. Our results show that the proposed ABC strategy is efficient for all of these four kinds of networks. Through an adjusting clustering coefficient by the edge exchanging method, it is found out that the efficiency of our ABC strategy is closely related with the clustering coefficient. The main contributions of this paper can be listed as follows: (1) A new high-order social network is proposed to describe opinion dynamic. (2) An algorithm, which does not require the knowledge of the nodes' degree and other global∕local network structure information, is proposed to control the "bridges" more accurately and further control the opinion dynamics of the social networks. The efficiency of our ABC strategy is illustrated by numerical examples. (3) The numerical results indicate that our ABC strategy is more efficient for networks with higher clustering coefficient.

  12. Shaping embodied neural networks for adaptive goal-directed behavior.

    Directory of Open Access Journals (Sweden)

    Zenas C Chao

    2008-03-01

    Full Text Available The acts of learning and memory are thought to emerge from the modifications of synaptic connections between neurons, as guided by sensory feedback during behavior. However, much is unknown about how such synaptic processes can sculpt and are sculpted by neuronal population dynamics and an interaction with the environment. Here, we embodied a simulated network, inspired by dissociated cortical neuronal cultures, with an artificial animal (an animat through a sensory-motor loop consisting of structured stimuli, detailed activity metrics incorporating spatial information, and an adaptive training algorithm that takes advantage of spike timing dependent plasticity. By using our design, we demonstrated that the network was capable of learning associations between multiple sensory inputs and motor outputs, and the animat was able to adapt to a new sensory mapping to restore its goal behavior: move toward and stay within a user-defined area. We further showed that successful learning required proper selections of stimuli to encode sensory inputs and a variety of training stimuli with adaptive selection contingent on the animat's behavior. We also found that an individual network had the flexibility to achieve different multi-task goals, and the same goal behavior could be exhibited with different sets of network synaptic strengths. While lacking the characteristic layered structure of in vivo cortical tissue, the biologically inspired simulated networks could tune their activity in behaviorally relevant manners, demonstrating that leaky integrate-and-fire neural networks have an innate ability to process information. This closed-loop hybrid system is a useful tool to study the network properties intermediating synaptic plasticity and behavioral adaptation. The training algorithm provides a stepping stone towards designing future control systems, whether with artificial neural networks or biological animats themselves.

  13. Building the Multi-agent Based Adaptive Security System

    Directory of Open Access Journals (Sweden)

    Sergey Andreevich Petrov

    2013-06-01

    Full Text Available This article is concerned with security of information system. Multi-agent based adaptive security system is offered. Advantages of the system and its potential architecture are presented. The author describes requirements for agents’ functionality and possible variants of agents’ operability. The suggested approach is intended to use for building adaptive security system in accordance with network structure, required safety level and available compute resources.

  14. Adaptive Neural Network Nonparametric Identifier With Normalized Learning Laws.

    Science.gov (United States)

    Chairez, Isaac

    2017-05-01

    This paper addresses the design of a normalized convergent learning law for neural networks (NNs) with continuous dynamics. The NN is used here to obtain a nonparametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties is the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on normalized algorithms was used to adjust the weights of the NN. The adaptive algorithm was derived by means of a nonstandard logarithmic Lyapunov function (LLF). Two identifiers were designed using two variations of LLFs leading to a normalized learning law for the first identifier and a variable gain normalized learning law. In the case of the second identifier, the inclusion of normalized learning laws yields to reduce the size of the convergence region obtained as solution of the practical stability analysis. On the other hand, the velocity of convergence for the learning laws depends on the norm of errors in inverse form. This fact avoids the peaking transient behavior in the time evolution of weights that accelerates the convergence of identification error. A numerical example demonstrates the improvements achieved by the algorithm introduced in this paper compared with classical schemes with no-normalized continuous learning methods. A comparison of the identification performance achieved by the no-normalized identifier and the ones developed in this paper shows the benefits of the learning law proposed in this paper.

  15. Social Networking Adapted for Distributed Scientific Collaboration

    Science.gov (United States)

    Karimabadi, Homa

    2012-01-01

    Share is a social networking site with novel, specially designed feature sets to enable simultaneous remote collaboration and sharing of large data sets among scientists. The site will include not only the standard features found on popular consumer-oriented social networking sites such as Facebook and Myspace, but also a number of powerful tools to extend its functionality to a science collaboration site. A Virtual Observatory is a promising technology for making data accessible from various missions and instruments through a Web browser. Sci-Share augments services provided by Virtual Observatories by enabling distributed collaboration and sharing of downloaded and/or processed data among scientists. This will, in turn, increase science returns from NASA missions. Sci-Share also enables better utilization of NASA s high-performance computing resources by providing an easy and central mechanism to access and share large files on users space or those saved on mass storage. The most common means of remote scientific collaboration today remains the trio of e-mail for electronic communication, FTP for file sharing, and personalized Web sites for dissemination of papers and research results. Each of these tools has well-known limitations. Sci-Share transforms the social networking paradigm into a scientific collaboration environment by offering powerful tools for cooperative discourse and digital content sharing. Sci-Share differentiates itself by serving as an online repository for users digital content with the following unique features: a) Sharing of any file type, any size, from anywhere; b) Creation of projects and groups for controlled sharing; c) Module for sharing files on HPC (High Performance Computing) sites; d) Universal accessibility of staged files as embedded links on other sites (e.g. Facebook) and tools (e.g. e-mail); e) Drag-and-drop transfer of large files, replacing awkward e-mail attachments (and file size limitations); f) Enterprise-level data and

  16. Robust Adaptive Exponential Synchronization of Stochastic Perturbed Chaotic Delayed Neural Networks with Parametric Uncertainties

    Directory of Open Access Journals (Sweden)

    Yang Fang

    2014-01-01

    Full Text Available This paper investigates the robust adaptive exponential synchronization in mean square of stochastic perturbed chaotic delayed neural networks with nonidentical parametric uncertainties. A robust adaptive feedback controller is proposed based on Gronwally’s inequality, drive-response concept, and adaptive feedback control technique with the update laws of nonidentical parametric uncertainties as well as linear matrix inequality (LMI approach. The sufficient conditions for robust adaptive exponential synchronization in mean square of uncoupled uncertain stochastic chaotic delayed neural networks are derived in terms of linear matrix inequalities (LMIs. The effect of nonidentical uncertain parameter uncertainties is suppressed by the designed robust adaptive feedback controller rapidly. A numerical example is provided to validate the effectiveness of the proposed method.

  17. Social adaptation in multi-agent model of linguistic categorization is affected by network information flow.

    Science.gov (United States)

    Zubek, Julian; Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz

    2017-01-01

    This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.

  18. Comprehensive heat transfer correlation for water/ethylene glycol-based graphene (nitrogen-doped graphene) nanofluids derived by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)

    Science.gov (United States)

    Savari, Maryam; Moghaddam, Amin Hedayati; Amiri, Ahmad; Shanbedi, Mehdi; Ayub, Mohamad Nizam Bin

    2017-10-01

    Herein, artificial neural network and adaptive neuro-fuzzy inference system are employed for modeling the effects of important parameters on heat transfer and fluid flow characteristics of a car radiator and followed by comparing with those of the experimental results for testing data. To this end, two novel nanofluids (water/ethylene glycol-based graphene and nitrogen-doped graphene nanofluids) were experimentally synthesized. Then, Nusselt number was modeled with respect to the variation of inlet temperature, Reynolds number, Prandtl number and concentration, which were defined as the input (design) variables. To reach reliable results, we divided these data into train and test sections to accomplish modeling. Artificial networks were instructed by a major part of experimental data. The other part of primary data which had been considered for testing the appropriateness of the models was entered into artificial network models. Finally, predictad results were compared to the experimental data to evaluate validity. Confronted with high-level of validity confirmed that the proposed modeling procedure by BPNN with one hidden layer and five neurons is efficient and it can be expanded for all water/ethylene glycol-based carbon nanostructures nanofluids. Finally, we expanded our data collection from model and could present a fundamental correlation for calculating Nusselt number of the water/ethylene glycol-based nanofluids including graphene or nitrogen-doped graphene.

  19. KNOWBOT; An adaptive data base interface

    Energy Technology Data Exchange (ETDEWEB)

    Heger, A.S.; Koen, B.U. (Texas Univ., Austin, TX (United States). Dept. of Mechanical Engineering)

    1991-02-01

    This paper reports on an adaptive interface KNOWBOT designed to solve some of the problems that face the users of large centralized data bases. The interface applies the neural network approach to information retrieval from a data base. The data base is a subset of the Nuclear Plant Reliability Data System. The interface KNOWBOT preempts an existing data base interface and works in conjunction with it. By design, KNOWBOT starts as a tabula rasa but acquires knowledge through its interactions with the user and the data base. The interface uses its gained knowledge to personalize the data base retrieval process and to induce new queries. The interface also forgets the information that is no longer needed by the user. These self-organizing features of the interface reduce the scope of the data base to the subsets that are highly relevant to the user needs. A proof-of-principal version of this interface has been implemented in Common LISP on a Texas Instruments Explorer I workstation. Experiments with KNOWBOT have been successful in demonstrating the robustness of the model especially with induction and self-organization. This paper describes the design of KNOWBOT and presents some of the experimental results.

  20. Quantification of biophysical adaptation benefits from Climate-Smart Agriculture using a Bayesian Belief Network.

    Science.gov (United States)

    de Nijs, Patrick J; Berry, Nicholas J; Wells, Geoff J; Reay, Dave S

    2014-10-20

    The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance.

  1. Emergence of local synchronization in neuronal networks with adaptive couplings.

    Directory of Open Access Journals (Sweden)

    Shilpa Chakravartula

    Full Text Available Local synchronization, both prolonged and transient, of oscillatory neuronal behavior in cortical networks plays a fundamental role in many aspects of perception and cognition. Here we study networks of Hindmarsh-Rose neurons with a new type of adaptive coupling, and show that these networks naturally produce both permanent and transient synchronization of local clusters of neurons. These deterministic systems exhibit complex dynamics with 1/fη power spectra, which appears to be a consequence of a novel form of self-organized criticality.

  2. Emergence of local synchronization in neuronal networks with adaptive couplings.

    Science.gov (United States)

    Chakravartula, Shilpa; Indic, Premananda; Sundaram, Bala; Killingback, Timothy

    2017-01-01

    Local synchronization, both prolonged and transient, of oscillatory neuronal behavior in cortical networks plays a fundamental role in many aspects of perception and cognition. Here we study networks of Hindmarsh-Rose neurons with a new type of adaptive coupling, and show that these networks naturally produce both permanent and transient synchronization of local clusters of neurons. These deterministic systems exhibit complex dynamics with 1/fη power spectra, which appears to be a consequence of a novel form of self-organized criticality.

  3. Compensation for unmatched uncertainty with adaptive RBF network

    African Journals Online (AJOL)

    Robust control for nonlinear uncertain systems has been solved for matched uncertainty but has not been completely solved yet for unmatched uncertainty. This paper developed a new method in which an adaptive radial basis function neural network is used to compensate for the effects of unmatched uncertainty in the ...

  4. Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2015-01-01

    Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

  5. Adaptive Media Access Control for Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Dragoni, Nicola

    2012-01-01

    ODMAC (On-Demand Media Access Control) is a recently proposed MAC protocol designed to support individual duty cycles for Energy Harvesting — Wireless Sensor Networks (EH-WSNs). Individual duty cycles are vital for EH-WSNs, because they allow nodes to adapt their energy consumption to the ever...

  6. Adaptive clustering algorithm for community detection in complex networks

    Science.gov (United States)

    Ye, Zhenqing; Hu, Songnian; Yu, Jun

    2008-10-01

    Community structure is common in various real-world networks; methods or algorithms for detecting such communities in complex networks have attracted great attention in recent years. We introduced a different adaptive clustering algorithm capable of extracting modules from complex networks with considerable accuracy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular structure can emerge from a collection of these active nodes during a self-organization process where vertices constantly regroup. In addition, we show that our algorithm appears advantageous over other competing methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate organization in reality.

  7. Adaptation-Based Programming in Haskell

    Directory of Open Access Journals (Sweden)

    Tim Bauer

    2011-09-01

    Full Text Available We present an embedded DSL to support adaptation-based programming (ABP in Haskell. ABP is an abstract model for defining adaptive values, called adaptives, which adapt in response to some associated feedback. We show how our design choices in Haskell motivate higher-level combinators and constructs and help us derive more complicated compositional adaptives. We also show an important specialization of ABP is in support of reinforcement learning constructs, which optimize adaptive values based on a programmer-specified objective function. This permits ABP users to easily define adaptive values that express uncertainty anywhere in their programs. Over repeated executions, these adaptive values adjust to more efficient ones and enable the user's programs to self optimize. The design of our DSL depends significantly on the use of type classes. We will illustrate, along with presenting our DSL, how the use of type classes can support the gradual evolution of DSLs.

  8. A Prediction-Driven Adaptation Approach for Self-Adaptive Sensor Networks

    OpenAIRE

    Paez Anaya, Ivan Dario; Simko, Viliam; Bourcier, Johann; Plouzeau, Noël; Jézéquel, Jean-Marc

    2014-01-01

    International audience; Engineering self-adaptive software in unpredictable environments such as pervasive systems, where network's ability, remaining battery power and environmental conditions may vary over the lifetime of the system is a very challenging task. Many current software engineering approaches leverage run-time architectural models to ease the design of the autonomic control loop of these self-adaptive systems. While these approaches perform well in reacting to various evolutions...

  9. Designing an Adaptive Web-Based Learning System Based on Students' Cognitive Styles Identified Online

    Science.gov (United States)

    Lo, Jia-Jiunn; Chan, Ya-Chen; Yeh, Shiou-Wen

    2012-01-01

    This study developed an adaptive web-based learning system focusing on students' cognitive styles. The system is composed of a student model and an adaptation model. It collected students' browsing behaviors to update the student model for unobtrusively identifying student cognitive styles through a multi-layer feed-forward neural network (MLFF).…

  10. Adaptive relaying for ground fault protection of distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M. S.; Sidhu, T. S.; Talukdar, B. K.

    1995-06-01

    In consequence of the increasing complexity of power distribution networks frequent changes in relay settings to achieve effective protection against ground faults is essential. The principal focus of this paper was adaptive relaying which makes use of digital technology and microprocessors to design systems which can provide protection of complex distribution networks under all operating conditions. Specifically, the paper described software modules that were developed to achieve this capability, developed for the City of Saskatoon`s distribution network. The system provides reliable, fast and selective protection of all components of the distribution system by constantly monitoring all the buses and currents in the circuit by substation computers, which are under the control of a central control computer. In addition to adaptive protection, the system can also provide optimal control of feeder loads, transformers, reactors, and capacitors, cold load pick up and reclosing of circuit breakers and reclosers. 2 refs., 8 figs.

  11. Dual adaptive dynamic control of mobile robots using neural networks.

    Science.gov (United States)

    Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato

    2009-02-01

    This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.

  12. GAUSSIAN MIXTURE MODELS FOR ADAPTATION OF DEEP NEURAL NETWORK ACOUSTIC MODELS IN AUTOMATIC SPEECH RECOGNITION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Natalia A. Tomashenko

    2016-11-01

    Full Text Available Subject of Research. We study speaker adaptation of deep neural network (DNN acoustic models in automatic speech recognition systems. The aim of speaker adaptation techniques is to improve the accuracy of the speech recognition system for a particular speaker. Method. A novel method for training and adaptation of deep neural network acoustic models has been developed. It is based on using an auxiliary GMM (Gaussian Mixture Models model and GMMD (GMM-derived features. The principle advantage of the proposed GMMD features is the possibility of performing the adaptation of a DNN through the adaptation of the auxiliary GMM. In the proposed approach any methods for the adaptation of the auxiliary GMM can be used, hence, it provides a universal method for transferring adaptation algorithms developed for GMMs to DNN adaptation.Main Results. The effectiveness of the proposed approach was shown by means of one of the most common adaptation algorithms for GMM models – MAP (Maximum A Posteriori adaptation. Different ways of integration of the proposed approach into state-of-the-art DNN architecture have been proposed and explored. Analysis of choosing the type of the auxiliary GMM model is given. Experimental results on the TED-LIUM corpus demonstrate that, in an unsupervised adaptation mode, the proposed adaptation technique can provide, approximately, a 11–18% relative word error reduction (WER on different adaptation sets, compared to the speaker-independent DNN system built on conventional features, and a 3–6% relative WER reduction compared to the SAT-DNN trained on fMLLR adapted features.

  13. Adaptive Synchronization of Memristor-based Chaotic Neural Systems

    Directory of Open Access Journals (Sweden)

    Xiaofang Hu

    2014-11-01

    Full Text Available Chaotic neural networks consisting of a great number of chaotic neurons are able to reproduce the rich dynamics observed in biological nervous systems. In recent years, the memristor has attracted much interest in the efficient implementation of artificial synapses and neurons. This work addresses adaptive synchronization of a class of memristor-based neural chaotic systems using a novel adaptive backstepping approach. A systematic design procedure is presented. Simulation results have demonstrated the effectiveness of the proposed adaptive synchronization method and its potential in practical application of memristive chaotic oscillators in secure communication.

  14. Network Experiences Lead to the Adaption of a Firm’s Network Competence

    Directory of Open Access Journals (Sweden)

    Bianka Kühne

    2011-12-01

    Full Text Available Networks become increasingly important as external sources of innovation for firms. Through networks firms get incontact with different actors with whom they can exchange information and collaborate. A firm’s ability to be asuccessful network actor depends on its network competence. This term can be defined as having the necessaryknowledge, skills and qualifications for networking as well as using them effectively. In this paper we investigate thelink between a firm’s network competence and the benefits resulting from it in a two‐way direction. First, thenetwork competence of the firm facilitates the adoption of information from other network actors which may leadto innovation success. Second the perceived network benefits shall in their turn influence the network competenceof the firm. Consequently, firms will adapt their network strategy corresponding their experiences. The objective ofthis paper is to investigate the dynamics of networking and its influence on the firm’s network competence. For thisexploratory research 3 Belgian networks are examined. In‐depth interviews are used in combination with semistructuredinterview guides to conduct the research. Our results indicate that some firms perceive benefits fromtheir network efforts, for others it is more a burden. Furthermore, in some of our cases we found that positiveexperiences with clear benefits motivate the firm to enhance its network competence. This is illustrated by the factthat collaborations are more frequently initiated, trust is more easily build, firms are more open to communicateinformation and the confidentiality threshold is overcome.

  15. Adaptive Synchronization of Complex Dynamical Networks Governed by Local Lipschitz Nonlinearlity on Switching Topology

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2013-01-01

    Full Text Available This paper investigates the adaptive synchronization of complex dynamical networks satisfying the local Lipschitz condition with switching topology. Based on differential inclusion and nonsmooth analysis, it is proved that all nodes can converge to the synchronous state, even though only one node is informed by the synchronous state via introducing decentralized adaptive strategies to the coupling strengths and feedback gains. Finally, some numerical simulations are worked out to illustrate the analytical results.

  16. An Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-ion Batteries

    Science.gov (United States)

    2010-10-01

    application for RUL prediction. We compare its performance with the classical recurrent neural network (RNN) and the recurrent neural fuzzy system ...Jang (1993). ANFIS: adaptive-network-based fuzzy inference system , IEEE Transactions on Systems , Man, and Cybernetics-Part B: Cybernetics, vol. 23...pp. 665-685, 1993. J. Jang, C. T. Sun, and E. Mizutani (1997). Neuro - Fuzzy and Soft Computing: A computational approach to learning and machine

  17. Adaptive moment closure for parameter inference of biochemical reaction networks.

    Science.gov (United States)

    Schilling, Christian; Bogomolov, Sergiy; Henzinger, Thomas A; Podelski, Andreas; Ruess, Jakob

    2016-11-01

    Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze. The parameter inference methods that tend to scale best in the dimension of the CTMC are based on so-called moment closure approximations. However, there exists a large number of different moment closure approximations and it is typically hard to say a priori which of the approximations is the most suitable for the inference procedure. Here, we propose a moment-based parameter inference method that automatically chooses the most appropriate moment closure method. Accordingly, contrary to existing methods, the user is not required to be experienced in moment closure techniques. In addition to that, our method adaptively changes the approximation during the parameter inference to ensure that always the best approximation is used, even in cases where different approximations are best in different regions of the parameter space. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao-Li Li

    2014-01-01

    Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.

  19. Adaptive Synchronization for a Class of Uncertain Fractional-Order Neural Networks

    Directory of Open Access Journals (Sweden)

    Heng Liu

    2015-10-01

    Full Text Available In this paper, synchronization for a class of uncertain fractional-order neural networks subject to external disturbances and disturbed system parameters is studied. Based on the fractional-order extension of the Lyapunov stability criterion, an adaptive synchronization controller is designed, and fractional-order adaptation law is proposed to update the controller parameter online. The proposed controller can guarantee that the synchronization errors between two uncertain fractional-order neural networks converge to zero asymptotically. By using some proposed lemmas, the quadratic Lyapunov functions are employed in the stability analysis. Finally, numerical simulations are presented to confirm the effectiveness of the proposed method.

  20. Adaptive synchronization of the complex dynamical network with non-derivative and derivative coupling

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teachers' College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Sun Wen [School of Mathematics and Information, Yangtze University, Hubei Jingzhou 434023 (China)

    2010-04-05

    This Letter investigates the synchronization of a general complex dynamical network with non-derivative and derivative coupling. Based on LaSalle's invariance principle, adaptive synchronization criteria are obtained. Analytical result shows that under the designed adaptive controllers, a general complex dynamical network with non-derivative and derivative coupling can asymptotically synchronize to a given trajectory, and several useful criteria for synchronization are given. What is more, the coupling matrix is not assumed to be symmetric or irreducible. Finally, simulations results show the method is effective.

  1. Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Yundi Chu

    2015-01-01

    Full Text Available An adaptive global sliding mode control (AGSMC using RBF neural network (RBFNN is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.

  2. Spontaneous formation of dynamical groups in an adaptive networked system

    Science.gov (United States)

    Li, Menghui; Guan, Shuguang; Lai, C.-H.

    2010-10-01

    In this work, we investigate a model of an adaptive networked dynamical system, where the coupling strengths among phase oscillators coevolve with the phase states. It is shown that in this model the oscillators can spontaneously differentiate into two dynamical groups after a long time evolution. Within each group, the oscillators have similar phases, while oscillators in different groups have approximately opposite phases. The network gradually converts from the initial random structure with a uniform distribution of connection strengths into a modular structure that is characterized by strong intra-connections and weak inter-connections. Furthermore, the connection strengths follow a power-law distribution, which is a natural consequence of the coevolution of the network and the dynamics. Interestingly, it is found that if the inter-connections are weaker than a certain threshold, the two dynamical groups will almost decouple and evolve independently. These results are helpful in further understanding the empirical observations in many social and biological networks.

  3. An Adaptive Relocation Strategy for heterogeneous sensor networks

    Directory of Open Access Journals (Sweden)

    Salah Abdel-Mageid

    2011-07-01

    Full Text Available Heterogeneous sensor networks (HSNs have grown to be familiar in recent years due to their capabilities to increase network lifetime and reliability without a significant increase in the cost. Deploying sensor nodes in large-scale applications (i.e., battlefields and environmental monitoring requires decentralized solutions. In this paper, we propose a novel decentralized approach enabling us to consider the heterogeneous characteristics of sensor nodes. In the Adaptive Relocation Strategy, new geometric approaches are designed to perfectly deal with the most heterogeneous sensor characteristics. The simulation results are presented to show that the proposed solution achieves the high coverage performance in few rounds with minimum energy consumption and minimum computations. The performance comparison is also introduced to study how the designed parameters affect the network performance in terms of the network cost, the coverage enhancement, and the total energy consumption measured by the computational complexity and the average moving distance.

  4. Leadership within regional climate change adaptation networks: the case of climate adaptation officers in Northern Hesse, Germany

    NARCIS (Netherlands)

    Stiller, S.J.; Meijerink, S.V.

    2016-01-01

    In the climate adaptation literature, leadership tends to be an understudied factor, although it may be crucial for regional adaptation governance. This article shows how leadership can be usefully conceptualized and operationalized within regional governance networks dealing with climate

  5. Neural network L1 adaptive control of MIMO systems with nonlinear uncertainty.

    Science.gov (United States)

    Zhen, Hong-tao; Qi, Xiao-hui; Li, Jie; Tian, Qing-min

    2014-01-01

    An indirect adaptive controller is developed for a class of multiple-input multiple-output (MIMO) nonlinear systems with unknown uncertainties. This control system is comprised of an L 1 adaptive controller and an auxiliary neural network (NN) compensation controller. The L 1 adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary compensation controller is designed to approximate the unknown nonlinear functions by MIMO RBF neural networks to suppress the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights bounded. The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.

  6. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system

    Science.gov (United States)

    Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.

    2000-01-01

    Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  7. Social adaptation in multi-agent model of linguistic categorization is affected by network information flow

    National Research Council Canada - National Science Library

    Julian Zubek; Michał Denkiewicz; Juliusz Barański; Przemysław Wróblewski; Joanna Rączaszek-Leonardi; Dariusz Plewczynski

    2017-01-01

    ... network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions...

  8. A note on "Multicriteria adaptive paths in stochastic, time-varying networks"

    DEFF Research Database (Denmark)

    Pretolani, Daniele; Nielsen, Lars Relund; Andersen, Kim Allan

    In a recent paper, Opasanon and Miller-Hooks study multicriteria adaptive paths in stochastic time-varying networks. They propose a label correcting algorithm for finding the full set of efficient strategies. In this note we show that their algorithm is not correct, since it is based on a property...

  9. Cluster-based adaptive metric classification

    NARCIS (Netherlands)

    Giotis, Ioannis; Petkov, Nicolai

    2012-01-01

    Introducing adaptive metric has been shown to improve the results of distance-based classification algorithms. Existing methods are often computationally intensive, either in the training or in the classification phase. We present a novel algorithm that we call Cluster-Based Adaptive Metric (CLAM)

  10. Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem

    Directory of Open Access Journals (Sweden)

    Jiao-Hong Yi

    2016-01-01

    Full Text Available Probabilistic neural network has successfully solved all kinds of engineering problems in various fields since it is proposed. In probabilistic neural network, Spread has great influence on its performance, and probabilistic neural network will generate bad prediction results if it is improperly selected. It is difficult to select the optimal manually. In this article, a variant of probabilistic neural network with self-adaptive strategy, called self-adaptive probabilistic neural network, is proposed. In self-adaptive probabilistic neural network, Spread can be self-adaptively adjusted and selected and then the best selected Spread is used to guide the self-adaptive probabilistic neural network train and test. In addition, two simplified strategies are incorporated into the proposed self-adaptive probabilistic neural network with the aim of further improving its performance and then two versions of simplified self-adaptive probabilistic neural network (simplified self-adaptive probabilistic neural networks 1 and 2 are proposed. The variants of self-adaptive probabilistic neural networks are further applied to solve the transformer fault diagnosis problem. By comparing them with basic probabilistic neural network, and the traditional back propagation, extreme learning machine, general regression neural network, and self-adaptive extreme learning machine, the results have experimentally proven that self-adaptive probabilistic neural networks have a more accurate prediction and better generalization performance when addressing the transformer fault diagnosis problem.

  11. DNA sequence analysis using hierarchical ART-based classification networks

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, C.; Hruska, S.I. [Florida State Univ., Tallahassee, FL (United States); Katholi, C.R.; Unnasch, T.R. [Univ. of Alabama, Birmingham, AL (United States)

    1994-12-31

    Adaptive resonance theory (ART) describes a class of artificial neural network architectures that act as classification tools which self-organize, work in real-time, and require no retraining to classify novel sequences. We have adapted ART networks to provide support to scientists attempting to categorize tandem repeat DNA fragments from Onchocerca volvulus. In this approach, sequences of DNA fragments are presented to multiple ART-based networks which are linked together into two (or more) tiers; the first provides coarse sequence classification while the sub- sequent tiers refine the classifications as needed. The overall rating of the resulting classification of fragments is measured using statistical techniques based on those introduced to validate results from traditional phylogenetic analysis. Tests of the Hierarchical ART-based Classification Network, or HABclass network, indicate its value as a fast, easy-to-use classification tool which adapts to new data without retraining on previously classified data.

  12. Adaptive Reference Control for Pressure Management in Water Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Jensen, Tom Nørgaard; Wisniewski, Rafal

    2015-01-01

    Water scarcity is an increasing problem worldwide and at the same time a huge amount of water is lost through leakages in the distribution network. It is well known that improved pressure control can lower the leakage problems. In this work water networks with a single pressure actuator and several....... Subsequently, these relations are exploited in an adaptive reference control scheme for the actuator pressure that ensures constant pressure at the critical points. Numerical experiments underpin the results. © Copyright IEEE - All rights reserved....

  13. Adaptation and beyond: Lessons from community based adaptation ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    25 avr. 2016 ... It is not just about responding to climate shocks, but is a learning process that empowers communities to solve problems and plan for climate events. ... These briefs resulted from a pilot project carried out as part of the Community Based Adaptation to Climate Change in Africa (CBAA) initiative, with support ...

  14. A symmetry perceiving adaptive neural network and facial image recognition.

    Science.gov (United States)

    Sinha, P

    1998-11-30

    The paper deals with the forensic problem of comparing nearly from view and facial images for personal identification. The human recognition process for such problems, is primarily based on both holistic as well as feature-wise symmetry perception aided by subjective analysis for detecting ill-defined features. It has been attempted to approach the modelling of such a process by designing a robust symmetry perceiving adaptive neural network. The pair of images to be compared should be presented to the proposed neural network (NN) as source (input) and target images. The NN learns about the symmetry between the pair of images by analysing examples of associated feature pairs belonging to the source and the target images. In order to prepare a paired example of associated features for training purpose, when we select one particular feature on the source image as a unique pixel, we must associate it with the corresponding feature on the target image also. But, in practice, it is not always possible to fix the latter feature also as a unique pixel due to pictorial ambiguity. The robust or fault tolerant NN takes care of such a situation and allows fixing the associated target feature as a rectangular array of pixels, rather than fixing it as a unique pixel, which is pretty difficult to be done with certainty. From such a pair of sets of associated features, the NN searches out proper locations of the target features from the sets of ambiguous target features by a fuzzy analysis during its learning. If any of target features, searched out by the NN, lies outside the prespecified zone, the training of the NN is unsuccessful. This amounts to non-existence of symmetry between the pair of images and confirms non-identity. In case of a successful training, the NN gets adapted with appropriate symmetry relation between the pair of images and when the source image is input to the trained NN, it responds by outputting a processed source image which is superimposable over the

  15. A Novel Architecture for Adaptive Traffic Control in Network on Chip using Code Division Multiple Access Technique

    OpenAIRE

    Fatemeh. Dehghani; Shahram. Darooei

    2016-01-01

    Network on chip has emerged as a long-term and effective method in Multiprocessor System-on-Chip communications in order to overcome the bottleneck in bus based communication architectures. Efficiency and performance of network on chip is so dependent on the architecture and structure of the network. In this paper a new structure and architecture for adaptive traffic control in network on chip using Code Division Multiple Access technique is presented. To solve the problem of synchronous acce...

  16. Predictor-Based Model Reference Adaptive Control

    Science.gov (United States)

    Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.

    2009-01-01

    This paper is devoted to robust, Predictor-based Model Reference Adaptive Control (PMRAC) design. The proposed adaptive system is compared with the now-classical Model Reference Adaptive Control (MRAC) architecture. Simulation examples are presented. Numerical evidence indicates that the proposed PMRAC tracking architecture has better than MRAC transient characteristics. In this paper, we presented a state-predictor based direct adaptive tracking design methodology for multi-input dynamical systems, with partially known dynamics. Efficiency of the design was demonstrated using short period dynamics of an aircraft. Formal proof of the reported PMRAC benefits constitute future research and will be reported elsewhere.

  17. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  18. An Adaptive Amplifier System for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Mónica Lovay

    2012-01-01

    Full Text Available This paper presents an adaptive amplifier that is part of a sensor node in a wireless sensor network. The system presents a target gain that has to be maintained without direct human intervention despite the presence of faults. In addition, its bandwidth must be as large as possible. The system is composed of a software-based built-in self-test scheme implemented in the node that checks all the available gains in the amplifiers, a reconfigurable amplifier, and a genetic algorithm (GA for reconfiguring the node resources that runs on a host computer. We adopt a PSoC device from Cypress for the node implementation. The performance evaluation of the scheme presented is made by adopting four different types of fault models in the amplifier gains. The fault simulation results show that GA finds the target gain with low error, maintains the bandwidth above the minimum tolerable bandwidth, and presents a runtime lower than exhaustive search method.

  19. Epidemic spreading on networks based on stress response

    Science.gov (United States)

    Nian, Fuzhong; Yao, Shuanglong

    2017-06-01

    Based on the stress responses of individuals, the susceptible-infected-susceptible epidemic model was improved on the small-world networks and BA scale-free networks and the simulations were implemented and analyzed. Results indicate that the behaviors of individual’s stress responses could induce the epidemic spreading resistance and adaptation at the network level. This phenomenon showed that networks were learning how to adapt to the disease and the evolution process could improve their immunization to future infectious diseases and would effectively prevent the spreading of infectious diseases.

  20. Naming game with biased assimilation over adaptive networks

    Science.gov (United States)

    Fu, Guiyuan; Zhang, Weidong

    2018-01-01

    The dynamics of two-word naming game incorporating the influence of biased assimilation over adaptive network is investigated in this paper. Firstly an extended naming game with biased assimilation (NGBA) is proposed. The hearer in NGBA accepts the received information in a biased manner, where he may refuse to accept the conveyed word from the speaker with a predefined probability, if the conveyed word is different from his current memory. Secondly, the adaptive network is formulated by rewiring the links. Theoretical analysis is developed to show that the population in NGBA will eventually reach global consensus on either A or B. Numerical simulation results show that the larger strength of biased assimilation on both words, the slower convergence speed, while larger strength of biased assimilation on only one word can slightly accelerate the convergence; larger population size can make the rate of convergence slower to a large extent when it increases from a relatively small size, while such effect becomes minor when the population size is large; the behavior of adaptively reconnecting the existing links can greatly accelerate the rate of convergence especially on the sparse connected network.

  1. Robustness of non-interdependent and interdependent networks against dependent and adaptive attacks

    Science.gov (United States)

    Tyra, Adam; Li, Jingtao; Shang, Yilun; Jiang, Shuo; Zhao, Yanjun; Xu, Shouhuai

    2017-09-01

    Robustness of complex networks has been extensively studied via the notion of site percolation, which typically models independent and non-adaptive attacks (or disruptions). However, real-life attacks are often dependent and/or adaptive. This motivates us to characterize the robustness of complex networks, including non-interdependent and interdependent ones, against dependent and adaptive attacks. For this purpose, dependent attacks are accommodated by L-hop percolation where the nodes within some L-hop (L ≥ 0) distance of a chosen node are all deleted during one attack (with L = 0 degenerating to site percolation). Whereas, adaptive attacks are launched by attackers who can make node-selection decisions based on the network state in the beginning of each attack. The resulting characterization enriches the body of knowledge with new insights, such as: (i) the Achilles' Heel phenomenon is only valid for independent attacks, but not for dependent attacks; (ii) powerful attack strategies (e.g., targeted attacks and dependent attacks, dependent attacks and adaptive attacks) are not compatible and cannot help the attacker when used collectively. Our results shed some light on the design of robust complex networks.

  2. Supervised Learning in Adaptive DNA Strand Displacement Networks.

    Science.gov (United States)

    Lakin, Matthew R; Stefanovic, Darko

    2016-08-19

    The development of engineered biochemical circuits that exhibit adaptive behavior is a key goal of synthetic biology and molecular computing. Such circuits could be used for long-term monitoring and control of biochemical systems, for instance, to prevent disease or to enable the development of artificial life. In this article, we present a framework for developing adaptive molecular circuits using buffered DNA strand displacement networks, which extend existing DNA strand displacement circuit architectures to enable straightforward storage and modification of behavioral parameters. As a proof of concept, we use this framework to design and simulate a DNA circuit for supervised learning of a class of linear functions by stochastic gradient descent. This work highlights the potential of buffered DNA strand displacement as a powerful circuit architecture for implementing adaptive molecular systems.

  3. Adaptive comanagement of a marine protected area network in Fiji.

    Science.gov (United States)

    Weeks, Rebecca; Jupiter, Stacy D

    2013-12-01

    Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9-year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well-defined resource-access rights; community respect for a flexible system of customary governance; long-term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district-wide coordination, which provided a broader spatial context for adaptive-management decision making. Co-Manejo Adaptativo de una Red de Áreas Marinas Protegidas en Fiyi. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  4. Sparse gamma rhythms arising through clustering in adapting neuronal networks.

    Directory of Open Access Journals (Sweden)

    Zachary P Kilpatrick

    2011-11-01

    Full Text Available Gamma rhythms (30-100 Hz are an extensively studied synchronous brain state responsible for a number of sensory, memory, and motor processes. Experimental evidence suggests that fast-spiking interneurons are responsible for carrying the high frequency components of the rhythm, while regular-spiking pyramidal neurons fire sparsely. We propose that a combination of spike frequency adaptation and global inhibition may be responsible for this behavior. Excitatory neurons form several clusters that fire every few cycles of the fast oscillation. This is first shown in a detailed biophysical network model and then analyzed thoroughly in an idealized model. We exploit the fact that the timescale of adaptation is much slower than that of the other variables. Singular perturbation theory is used to derive an approximate periodic solution for a single spiking unit. This is then used to predict the relationship between the number of clusters arising spontaneously in the network as it relates to the adaptation time constant. We compare this to a complementary analysis that employs a weak coupling assumption to predict the first Fourier mode to destabilize from the incoherent state of an associated phase model as the external noise is reduced. Both approaches predict the same scaling of cluster number with respect to the adaptation time constant, which is corroborated in numerical simulations of the full system. Thus, we develop several testable predictions regarding the formation and characteristics of gamma rhythms with sparsely firing excitatory neurons.

  5. Selective adaptation in networks of heterogeneous populations: model, simulation, and experiment.

    Directory of Open Access Journals (Sweden)

    Avner Wallach

    2008-02-01

    Full Text Available Biological systems often change their responsiveness when subject to persistent stimulation, a phenomenon termed adaptation. In neural systems, this process is often selective, allowing the system to adapt to one stimulus while preserving its sensitivity to another. In some studies, it has been shown that adaptation to a frequent stimulus increases the system's sensitivity to rare stimuli. These phenomena were explained in previous work as a result of complex interactions between the various subpopulations of the network. A formal description and analysis of neuronal systems, however, is hindered by the network's heterogeneity and by the multitude of processes taking place at different time-scales. Viewing neural networks as populations of interacting elements, we develop a framework that facilitates a formal analysis of complex, structured, heterogeneous networks. The formulation developed is based on an analysis of the availability of activity dependent resources, and their effects on network responsiveness. This approach offers a simple mechanistic explanation for selective adaptation, and leads to several predictions that were corroborated in both computer simulations and in cultures of cortical neurons developing in vitro. The framework is sufficiently general to apply to different biological systems, and was demonstrated in two different cases.

  6. Adaptive Neural Network Sliding Mode Control for Quad Tilt Rotor Aircraft

    Directory of Open Access Journals (Sweden)

    Yanchao Yin

    2017-01-01

    Full Text Available A novel neural network sliding mode control based on multicommunity bidirectional drive collaborative search algorithm (M-CBDCS is proposed to design a flight controller for performing the attitude tracking control of a quad tilt rotors aircraft (QTRA. Firstly, the attitude dynamic model of the QTRA concerning propeller tension, channel arm, and moment of inertia is formulated, and the equivalent sliding mode control law is stated. Secondly, an adaptive control algorithm is presented to eliminate the approximation error, where a radial basis function (RBF neural network is used to online regulate the equivalent sliding mode control law, and the novel M-CBDCS algorithm is developed to uniformly update the unknown neural network weights and essential model parameters adaptively. The nonlinear approximation error is obtained and serves as a novel leakage term in the adaptations to guarantee the sliding surface convergence and eliminate the chattering phenomenon, which benefit the overall attitude control performance for QTRA. Finally, the appropriate comparisons among the novel adaptive neural network sliding mode control, the classical neural network sliding mode control, and the dynamic inverse PID control are examined, and comparative simulations are included to verify the efficacy of the proposed control method.

  7. An adaptive neural swarm approach for intrusion defense in ad hoc networks

    Science.gov (United States)

    Cannady, James

    2011-06-01

    Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.

  8. Adaptive multi-resolution Modularity for detecting communities in networks

    Science.gov (United States)

    Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He

    2018-02-01

    Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.

  9. Adaptive Decision-Making Scheme for Cognitive Radio Networks

    KAUST Repository

    Alqerm, Ismail

    2014-05-01

    Radio resource management becomes an important aspect of the current wireless networks because of spectrum scarcity and applications heterogeneity. Cognitive radio is a potential candidate for resource management because of its capability to satisfy the growing wireless demand and improve network efficiency. Decision-making is the main function of the radio resources management process as it determines the radio parameters that control the use of these resources. In this paper, we propose an adaptive decision-making scheme (ADMS) for radio resources management of different types of network applications including: power consuming, emergency, multimedia, and spectrum sharing. ADMS exploits genetic algorithm (GA) as an optimization tool for decision-making. It consists of the several objective functions for the decision-making process such as minimizing power consumption, packet error rate (PER), delay, and interference. On the other hand, maximizing throughput and spectral efficiency. Simulation results and test bed evaluation demonstrate ADMS functionality and efficiency.

  10. Network and adaptive system of systems modeling and analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Craig R.; Campbell, James E. Dr. (.; .); Anderson, Dennis James; Eddy, John P.

    2007-05-01

    This report documents the results of an LDRD program entitled ''Network and Adaptive System of Systems Modeling and Analysis'' that was conducted during FY 2005 and FY 2006. The purpose of this study was to determine and implement ways to incorporate network communications modeling into existing System of Systems (SoS) modeling capabilities. Current SoS modeling, particularly for the Future Combat Systems (FCS) program, is conducted under the assumption that communication between the various systems is always possible and occurs instantaneously. A more realistic representation of these communications allows for better, more accurate simulation results. The current approach to meeting this objective has been to use existing capabilities to model network hardware reliability and adding capabilities to use that information to model the impact on the sustainment supply chain and operational availability.

  11. Assortative and modular networks are shaped by adaptive synchronization processes.

    Science.gov (United States)

    Avalos-Gaytán, Vanesa; Almendral, Juan A; Papo, David; Schaeffer, Satu Elisa; Boccaletti, Stefano

    2012-07-01

    Modular organization and degree-degree correlations are ubiquitous in the connectivity structure of biological, technological, and social interacting systems. So far most studies have concentrated on unveiling both features in real world networks, but a model that succeeds in generating them simultaneously is needed. We consider a network of interacting phase oscillators, and an adaptation mechanism for the coupling that promotes the connection strengths between those elements that are dynamically correlated. We show that, under these circumstances, the dynamical organization of the oscillators shapes the topology of the graph in such a way that modularity and assortativity features emerge spontaneously and simultaneously. In turn, we prove that such an emergent structure is associated with an asymptotic arrangement of the collective dynamical state of the network into cluster synchronization.

  12. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    DEFF Research Database (Denmark)

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin

    2015-01-01

    dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural...... mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online...... correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking...

  13. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1999-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  14. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1998-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  15. Behavior based adaptive call predictor

    OpenAIRE

    Phithakkitnukoon, Santi; Dantu, Ram; Claxton, Rob; Eagle, Nathan

    2011-01-01

    Predicting future calls can be the next advanced feature of the next-generation telecommunication networks as the service providers are looking to offer new services to their customers. Call prediction can be useful to many applications such as planning daily schedules, avoiding unwanted communications (e.g. voice spam), and resource planning in call centers. Predicting calls is a very challenging task. We believe that this is an emerging area of research in ambient intelligence where the ele...

  16. TCP adaptation with network coding and opportunistic data forwarding in multi-hop wireless networks

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2016-10-01

    Full Text Available Opportunistic data forwarding significantly increases the throughput in multi-hop wireless mesh networks by utilizing the broadcast nature of wireless transmissions and the fluctuation of link qualities. Network coding strengthens the robustness of data transmissions over unreliable wireless links. However, opportunistic data forwarding and network coding are rarely incorporated with TCP because the frequent occurrences of out-of-order packets in opportunistic data forwarding and long decoding delay in network coding overthrow TCP’s congestion control. In this paper, we propose a solution dubbed TCPFender, which supports opportunistic data forwarding and network coding in TCP. Our solution adds an adaptation layer to mask the packet loss caused by wireless link errors and provides early positive feedbacks to trigger a larger congestion window for TCP. This adaptation layer functions over the network layer and reduces the delay of ACKs for each coded packet. The simulation results show that TCPFender significantly outperforms TCP/IP in terms of the network throughput in different topologies of wireless networks.

  17. Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control

    Science.gov (United States)

    Ding, Da-Wei; Yan, Jie; Wang, Nian; Liang, Dong

    2017-09-01

    In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fractional order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more practical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective. Supported by National Natural Science Foundation of China under Grant No. 61201227, National Natural Science Foundation of China Guangdong Joint Fund under Grant No. U1201255, the Natural Science Foundation of Anhui Province under Grant No. 1208085MF93, 211 Innovation Team of Anhui University under Grant Nos. KJTD007A and KJTD001B, and also supported by Chinese Scholarship Council

  18. Rescue of endemic states in interconnected networks with adaptive coupling

    CERN Document Server

    Vazquez, F; Miguel, M San

    2015-01-01

    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads only if the two layers are interconnected, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network, the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that finite-size effects are amplified by the rewiring, as the...

  19. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems.

    Science.gov (United States)

    González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier

    2017-06-02

    Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named "CARMEN" are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances.

  20. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    Science.gov (United States)

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    DEFF Research Database (Denmark)

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements...... correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking...... robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables...

  2. Covalent Adaptable Networks (CANs): A Unique Paradigm in Crosslinked Polymers.

    Science.gov (United States)

    Kloxin, Christopher J; Scott, Timothy F; Adzima, Brian J; Bowman, Christopher N

    2010-03-23

    Polymer networks possessing reversible covalent crosslinks constitute a novel material class with the capacity for adapting to an externally applied stimulus. These covalent adaptable networks (CANs) represent a trend in polymer network fabrication towards the rational design of structural materials possessing dynamic characteristics for specialty applications. Herein, we discuss the unique attributes of CANs that must be considered when designing, fabricating, and characterizing these smart materials that respond to either thermal or photochemical stimuli. While there are many reversible reactions which to consider as possible crosslink candidates in CANs, there are very few that are readily and repeatedly reversible. Furthermore, characterization of the mechanical properties of CANs requires special consideration owing to their unique attributes. Ultimately, these attributes are what lead to the advantageous properties displayed by CANs, such as recyclability, healability, tunability, shape changes, and low polymerization stress. Throughout this perspective, we identify several trends and future directions in the emerging field of CANs that demonstrate the progress to date as well as the essential elements that are needed for further advancement.

  3. Understanding the Generation of Network Bursts by Adaptive Oscillatory Neurons

    Directory of Open Access Journals (Sweden)

    Tanguy Fardet

    2018-02-01

    Full Text Available Experimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation. We provide an analytic model to analyze network bursts generated by coupled adaptive exponential integrate-and-fire neurons. We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve to reach a synchronized intermittent bursting state. The presence of inhibitory neurons or plastic synapses can then modulate this dynamics in many ways but is not necessary for its appearance. Thanks to a simple self-consistent equation, our model gives an intuitive and semi-quantitative tool to understand the bursting behavior. Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain bursting termination. Through a thorough mapping between the theoretical parameters and ion-channel properties, we discuss the biological mechanisms that could be involved and the relevance of the explored parameter-space. Such an insight enables us to propose experimentally-testable predictions regarding how blocking fast, medium or slow after-hyperpolarization channels would affect the firing rate and burst duration, as well as the interburst interval.

  4. ADAPTIVE SUBSYSTEM FOR DETECTING AND PREVENTING ANOMALIES AS A PROTECTION MEANS AGAINST NETWORK ATTACKS

    OpenAIRE

    Simankov V. S.; Kolodiy A. S.; Kucher V. A.; Trofimov V. M.

    2015-01-01

    This article describes the results of networks anomalies detection system based on modular adaptive approach practical implementation. The list of specific modules used in the practical implementation of IPS, their architecture, algorithms, software, organizational and technical support determined at technical working design based on the results of the audit, evaluation and risk analysis. In the general list of modules (subsystems) we may include: intrusion detection and prevention (IPS / IDS...

  5. Optimal Channel Width Adaptation, Logical Topology Design, and Routing in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Li Li

    2009-01-01

    Full Text Available Radio frequency spectrum is a finite and scarce resource. How to efficiently use the spectrum resource is one of the fundamental issues for multi-radio multi-channel wireless mesh networks. However, past research efforts that attempt to exploit multiple channels always assume channels of fixed predetermined width, which prohibits the further effective use of the spectrum resource. In this paper, we address how to optimally adapt channel width to more efficiently utilize the spectrum in IEEE802.11-based multi-radio multi-channel mesh networks. We mathematically formulate the channel width adaptation, logical topology design, and routing as a joint mixed 0-1 integer linear optimization problem, and we also propose our heuristic assignment algorithm. Simulation results show that our method can significantly improve spectrum use efficiency and network performance.

  6. LPTA: Location Predictive and Time Adaptive Data Gathering Scheme with Mobile Sink for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chuan Zhu

    2014-01-01

    Full Text Available This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes.

  7. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Science.gov (United States)

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  8. Breast image feature learning with adaptive deconvolutional networks

    Science.gov (United States)

    Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.

    2012-03-01

    Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).

  9. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Directory of Open Access Journals (Sweden)

    Claudia Casellato

    Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  10. Network-based functional enrichment

    Directory of Open Access Journals (Sweden)

    Poirel Christopher L

    2011-11-01

    Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are

  11. Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Abbas Ajorkar

    2015-04-01

    Full Text Available In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control has been designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, a multilayer neural network with back-propagation law is designed. In this structure, the parameters of the moment of inertia matrix and external disturbances are estimated and used in feedback linearization control law. Finally, the performance of the designed attitude controller is investigated by several simulations.

  12. Community detection in complex networks via adapted Kuramoto dynamics

    Science.gov (United States)

    Maia, Daniel M. N.; de Oliveira, João E. M.; Quiles, Marcos G.; Macau, Elbert E. N.

    2017-12-01

    Based on the Kuramoto model, a new network model, namely, the generalized Kuramoto model with Fourier term, is introduced for studying community detection in complex networks. In particular, the Fourier term provides a natural phase locking of the trajectories into a pre-defined number of clusters. A mathematical approach is used to study the behavior of the solutions and its properties. Conditions for properly choosing the coupling parameters so that phase locking takes place are presented and a quality function called clustering density is introduced to measure the effectiveness of the communities identification. Illustrations with real and synthetic networks with community structure are presented.

  13. An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks.

    Science.gov (United States)

    Abba, Sani; Lee, Jeong-A

    2015-08-18

    We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network.

  14. Unsupervised Remote Sensing Domain Adaptation Method with Adversarial Network and Auxiliary Task

    Directory of Open Access Journals (Sweden)

    XU Suhui

    2017-12-01

    Full Text Available An important prerequisite when annotating the remote sensing images by machine learning is that there are enough training samples for training, but labeling the samples is very time-consuming. In this paper, we solve the problem of unsupervised learning with small sample size in remote sensing image scene classification by domain adaptation method. A new domain adaptation framework is proposed which combines adversarial network and auxiliary task. Firstly, a novel remote sensing scene classification framework is established based on deep convolution neural networks. Secondly, a domain classifier is added to the network, in order to learn the domain-invariant features. The gradient direction of the domain loss is opposite to the label loss during the back propagation, which makes the domain predictor failed to distinguish the sample's domain. Lastly, we introduce an auxiliary task for the network, which augments the training samples and improves the generalization ability of the network. The experiments demonstrate better results in unsupervised classification with small sample sizes of remote sensing images compared to the baseline unsupervised domain adaptation approaches.

  15. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  16. The emergence of complexity and restricted pleiotropy in adapting networks

    Directory of Open Access Journals (Sweden)

    Le Nagard Hervé

    2011-11-01

    Full Text Available Abstract Background The emergence of organismal complexity has been a difficult subject for researchers because it is not readily amenable to investigation by experimental approaches. Complexity has a myriad of untested definitions and our understanding of its evolution comes primarily from static snapshots gleaned from organisms ranked on an intuitive scale. Fisher's geometric model of adaptation, which defines complexity as the number of phenotypes an organism exposes to natural selection, provides a theoretical framework to study complexity. Yet investigations of this model reveal phenotypic complexity as costly and therefore unlikely to emerge. Results We have developed a computational approach to study the emergence of complexity by subjecting neural networks to adaptive evolution in environments exacting different levels of demands. We monitored complexity by a variety of metrics. Top down metrics derived from Fisher's geometric model correlated better with the environmental demands than bottom up ones such as network size. Phenotypic complexity was found to increase towards an environment-dependent level through the emergence of restricted pleiotropy. Such pleiotropy, which confined the action of mutations to only a subset of traits, better tuned phenotypes in challenging environments. However, restricted pleiotropy also came at a cost in the form of a higher genetic load, as it required the maintenance by natural selection of more independent traits. Consequently, networks of different sizes converged in complexity when facing similar environment. Conclusions Phenotypic complexity evolved as a function of the demands of the selective pressures, rather than the physical properties of the network architecture, such as functional size. Our results show that complexity may be more predictable, and understandable, if analyzed from the perspective of the integrated task the organism performs, rather than the physical architecture used to

  17. Adaptive elastic networks as models of supercooled liquids

    Science.gov (United States)

    Yan, Le; Wyart, Matthieu

    2015-08-01

    The thermodynamics and dynamics of supercooled liquids correlate with their elasticity. In particular for covalent networks, the jump of specific heat is small and the liquid is strong near the threshold valence where the network acquires rigidity. By contrast, the jump of specific heat and the fragility are large away from this threshold valence. In a previous work [Proc. Natl. Acad. Sci. USA 110, 6307 (2013), 10.1073/pnas.1300534110], we could explain these behaviors by introducing a model of supercooled liquids in which local rearrangements interact via elasticity. However, in that model the disorder characterizing elasticity was frozen, whereas it is itself a dynamic variable in supercooled liquids. Here we study numerically and theoretically adaptive elastic network models where polydisperse springs can move on a lattice, thus allowing for the geometry of the elastic network to fluctuate and evolve with temperature. We show numerically that our previous results on the relationship between structure and thermodynamics hold in these models. We introduce an approximation where redundant constraints (highly coordinated regions where the frustration is large) are treated as an ideal gas, leading to analytical predictions that are accurate in the range of parameters relevant for real materials. Overall, these results lead to a description of supercooled liquids, in which the distance to the rigidity transition controls the number of directions in phase space that cost energy and the specific heat.

  18. ARBITER: Adaptive rate-based intelligent HTTP streaming algorithm

    OpenAIRE

    Zahran, Ahmed H.; Sreenan, Cormac J.

    2016-01-01

    Dynamic Adaptive streaming over HTTP (DASH) is widely used by content providers for video delivery and dominates traffic on cellular networks. The inherent variability in both video bitrate and network bandwidth negatively impacts the user Quality of Experience (QoE), motivating the design of better DASH-compliant adaptation algorithms. In this paper we present ARBITER, a novel streaming adaptation algorithm that explicitly integrates the variations in both video and network dynamics in its a...

  19. Opposition-Based Adaptive Fireworks Algorithm

    Directory of Open Access Journals (Sweden)

    Chibing Gong

    2016-07-01

    Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.

  20. Adaptive Beamforming Based on Complex Quaternion Processes

    Directory of Open Access Journals (Sweden)

    Jian-wu Tao

    2014-01-01

    Full Text Available Motivated by the benefits of array signal processing in quaternion domain, we investigate the problem of adaptive beamforming based on complex quaternion processes in this paper. First, a complex quaternion least-mean squares (CQLMS algorithm is proposed and its performance is analyzed. The CQLMS algorithm is suitable for adaptive beamforming of vector-sensor array. The weight vector update of CQLMS algorithm is derived based on the complex gradient, leading to lower computational complexity. Because the complex quaternion can exhibit the orthogonal structure of an electromagnetic vector-sensor in a natural way, a complex quaternion model in time domain is provided for a 3-component vector-sensor array. And the normalized adaptive beamformer using CQLMS is presented. Finally, simulation results are given to validate the performance of the proposed adaptive beamformer.

  1. From epidemics to information propagation : Striking differences in structurally similar adaptive network models

    NARCIS (Netherlands)

    Trajanovski, S.; Guo, D.; Van Mieghem, P.F.A.

    2015-01-01

    The continuous-time adaptive susceptible-infected-susceptible (ASIS) epidemic model and the adaptive information diffusion (AID) model are two adaptive spreading processes on networks, in which a link in the network changes depending on the infectious state of its end nodes, but in opposite ways:

  2. ENERGY OPTIMIZATION IN CLUSTER BASED WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    T. SHANKAR

    2014-04-01

    Full Text Available Wireless sensor networks (WSN are made up of sensor nodes which are usually battery-operated devices, and hence energy saving of sensor nodes is a major design issue. To prolong the networks lifetime, minimization of energy consumption should be implemented at all layers of the network protocol stack starting from the physical to the application layer including cross-layer optimization. Optimizing energy consumption is the main concern for designing and planning the operation of the WSN. Clustering technique is one of the methods utilized to extend lifetime of the network by applying data aggregation and balancing energy consumption among sensor nodes of the network. This paper proposed new version of Low Energy Adaptive Clustering Hierarchy (LEACH, protocols called Advanced Optimized Low Energy Adaptive Clustering Hierarchy (AOLEACH, Optimal Deterministic Low Energy Adaptive Clustering Hierarchy (ODLEACH, and Varying Probability Distance Low Energy Adaptive Clustering Hierarchy (VPDL combination with Shuffled Frog Leap Algorithm (SFLA that enables selecting best optimal adaptive cluster heads using improved threshold energy distribution compared to LEACH protocol and rotating cluster head position for uniform energy dissipation based on energy levels. The proposed algorithm optimizing the life time of the network by increasing the first node death (FND time and number of alive nodes, thereby increasing the life time of the network.

  3. Understanding Homophily and More-Becomes-More Through Adaptive Temporal-Causal Network Models

    NARCIS (Netherlands)

    Beukel, Sven van den; Goos, Simon; Treur, J.; De la Prieta, F

    2017-01-01

    This study describes the use of adaptive temporal-causal networks to model and simulate the development of mutually interacting opinion states and connections between individuals in social networks. The focus is on adaptive networks combining the homophily principle with the more becomes more

  4. A Context-Aware Adaptive Streaming Media Distribution System in a Heterogeneous Network with Multiple Terminals

    Directory of Open Access Journals (Sweden)

    Yepeng Ni

    2016-01-01

    Full Text Available We consider the problem of streaming media transmission in a heterogeneous network from a multisource server to home multiple terminals. In wired network, the transmission performance is limited by network state (e.g., the bandwidth variation, jitter, and packet loss. In wireless network, the multiple user terminals can cause bandwidth competition. Thus, the streaming media distribution in a heterogeneous network becomes a severe challenge which is critical for QoS guarantee. In this paper, we propose a context-aware adaptive streaming media distribution system (CAASS, which implements the context-aware module to perceive the environment parameters and use the strategy analysis (SA module to deduce the most suitable service level. This approach is able to improve the video quality for guarantying streaming QoS. We formulate the optimization problem of QoS relationship with the environment parameters based on the QoS testing algorithm for IPTV in ITU-T G.1070. We evaluate the performance of the proposed CAASS through 12 types of experimental environments using a prototype system. Experimental results show that CAASS can dynamically adjust the service level according to the environment variation (e.g., network state and terminal performances and outperforms the existing streaming approaches in adaptive streaming media distribution according to peak signal-to-noise ratio (PSNR.

  5. Development of an Adaptive Routing Mechanism in Software-Defined Networks

    Directory of Open Access Journals (Sweden)

    A. N. Noskov

    2015-01-01

    Full Text Available The purpose of this work is to develop a unitary mechanism of adaptive routing of different kinds, basing on the current requirements on the quality of service. The software configuration of a network is the technology of the future. The trend in communication systems constantly confirms this fact. However, the application of this technology in its current form is justified only in large networks of technology giants and telecom operators. Today we have a large number of dynamic routing protocols to route big volume traffic in communication networks. Our task is to create the solution that can use the opportunities of each node to make a decision on the transmission of information by all possible means for each type of traffic. Achieving this goal is possible by solving the problem of the development of generalized metrics, which details the links between devices in the network, and the problem of establishing a framework of adaptive logical network topology (route management to ensure the quality of the whole network in order to meet the current requirements on the quality of a particular type service.

  6. Identification and adaptive neural network control of a DC motor system with dead-zone characteristics.

    Science.gov (United States)

    Peng, Jinzhu; Dubay, Rickey

    2011-10-01

    In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  7. A Traffic Prediction Model for Self-Adapting Routing Overlay Network in Publish/Subscribe System

    Directory of Open Access Journals (Sweden)

    Meng Chi

    2017-01-01

    Full Text Available In large-scale location-based service, an ideal situation is that self-adapting routing strategies use future traffic data as input to generate a topology which could adapt to the changing traffic well. In the paper, we propose a traffic prediction model for the broker in publish/subscribe system, which can predict the traffic of the link in future by neural network. We first introduced our traffic prediction model and then described the model integration. Finally, the experimental results show that our traffic prediction model could predict the traffic of link well.

  8. Content-Adaptive Packetization and Streaming of Wavelet Video over IP Networks

    Directory of Open Access Journals (Sweden)

    Chien-Peng Ho

    2007-03-01

    Full Text Available This paper presents a framework of content-adaptive packetization scheme for streaming of 3D wavelet-based video content over lossy IP networks. The tradeoff between rate and distortion is controlled by jointly adapting scalable source coding rate and level of forward error correction (FEC protection. A content dependent packetization mechanism with data-interleaving and Reed-Solomon protection for wavelet-based video codecs is proposed to provide unequal error protection. This paper also tries to answer an important question for scalable video streaming systems: given extra bandwidth, should one increase the level of channel protection for the most important packets, or transmit more scalable source data? Experimental results show that the proposed framework achieves good balance between quality of the received video and level of error protection under bandwidth-varying lossy IP networks.

  9. Content-Adaptive Packetization and Streaming of Wavelet Video over IP Networks

    Directory of Open Access Journals (Sweden)

    Ho Chien-Peng

    2007-01-01

    Full Text Available This paper presents a framework of content-adaptive packetization scheme for streaming of 3D wavelet-based video content over lossy IP networks. The tradeoff between rate and distortion is controlled by jointly adapting scalable source coding rate and level of forward error correction (FEC protection. A content dependent packetization mechanism with data-interleaving and Reed-Solomon protection for wavelet-based video codecs is proposed to provide unequal error protection. This paper also tries to answer an important question for scalable video streaming systems: given extra bandwidth, should one increase the level of channel protection for the most important packets, or transmit more scalable source data? Experimental results show that the proposed framework achieves good balance between quality of the received video and level of error protection under bandwidth-varying lossy IP networks.

  10. Adaptive Forward Error Correction for Energy Efficient Optical Transport Networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert

    2013-01-01

    In this paper we propose a novel scheme for on the fly code rate adjustment for forward error correcting (FEC) codes on optical links. The proposed scheme makes it possible to adjust the code rate independently for each optical frame. This allows for seamless rate adaption based on the link state...

  11. Towards a Framework for Self-Adaptive Reliable Network Services in Highly-Uncertain Environments

    DEFF Research Database (Denmark)

    Grønbæk, Lars Jesper; Schwefel, Hans-Peter; Ceccarelli, Andrea

    2010-01-01

    to improve resilience of end-node services. In this paper we present a framework, called ODDR (Observation, Diagnosis, Decision, Remediation), for improving resilience of network based services through integration of self-adaptive monitoring services, network diagnosis, decision actions, and finally......In future inhomogeneous, pervasive and highly dynamic networks, end-nodes may often only rely on unreliable and uncertain observations to diagnose hidden network states and decide upon possible remediation actions. Inherent challenges exists to identify good and timely decision strategies...... execution (and monitoring) of remediation actions. We detail the motivations to the ODDR design, then we present its architecture, and finally we describe our current activities towards the realization and assessment of the framework services and the main results currently achieved....

  12. Computation emerges from adaptive synchronization of networking neurons.

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    Full Text Available The activity of networking neurons is largely characterized by the alternation of synchronous and asynchronous spiking sequences. One of the most relevant challenges that scientists are facing today is, then, relating that evidence with the fundamental mechanisms through which the brain computes and processes information, as well as with the arousal (or progress of a number of neurological illnesses. In other words, the problem is how to associate an organized dynamics of interacting neural assemblies to a computational task. Here we show that computation can be seen as a feature emerging from the collective dynamics of an ensemble of networking neurons, which interact by means of adaptive dynamical connections. Namely, by associating logical states to synchronous neuron's dynamics, we show how the usual Boolean logics can be fully recovered, and a universal Turing machine can be constructed. Furthermore, we show that, besides the static binary gates, a wider class of logical operations can be efficiently constructed as the fundamental computational elements interact within an adaptive network, each operation being represented by a specific motif. Our approach qualitatively differs from the past attempts to encode information and compute with complex systems, where computation was instead the consequence of the application of control loops enforcing a desired state into the specific system's dynamics. Being the result of an emergent process, the computation mechanism here described is not limited to a binary Boolean logic, but it can involve a much larger number of states. As such, our results can enlighten new concepts for the understanding of the real computing processes taking place in the brain.

  13. Intelligent Electric Power Systems with Active-Adaptive Electric Networks: Challenges for Simulation Tools

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2015-01-01

    Full Text Available The motivation of the presented research is based on the needs for development of new methods and tools for adequate simulation of intelligent electric power systems with active-adaptive electric networks (IES including Flexible Alternating Current Transmission System (FACTS devices. The key requirements for the simulation were formed. The presented analysis of simulation results of IES confirms the need to use a hybrid modelling approach.

  14. Cooperative UAV-Based Communications Backbone for Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs are used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.

  15. A Self-Driven and Adaptive Adjusting Teaching Learning Method for Optimizing Optical Multicast Network Throughput

    Science.gov (United States)

    Liu, Huanlin; Xu, Yifan; Chen, Yong; Zhang, Mingjia

    2016-09-01

    With the development of one point to multiple point applications, network resources become scarcer and wavelength channels become more crowded in optical networks. To improve the bandwidth utilization, the multicast routing algorithm based on network coding can greatly increase the resource utilization, but it is most difficult to maximize the network throughput owing to ignoring the differences between the multicast receiving nodes. For making full use of the destination nodes' receives ability to maximize optical multicast's network throughput, a new optical multicast routing algorithm based on teaching-learning-based optimization (MR-iTLBO) is proposed in the paper. In order to increase the diversity of learning, a self-driven learning method is adopted in MR-iTLBO algorithm, and the mutation operator of genetic algorithm is introduced to prevent the algorithm into a local optimum. For increasing learner's learning efficiency, an adaptive learning factor is designed to adjust the learning process. Moreover, the reconfiguration scheme based on probability vector is devised to expand its global search capability in MR-iTLBO algorithm. The simulation results show that performance in terms of network throughput and convergence rate has been improved significantly with respect to the TLBO and the variant TLBO.

  16. Epidemic Dynamics On Information-Driven Adaptive Networks

    CERN Document Server

    Zhan, Xiu-Xiu; Sun, Gui-Quan; Zhang, Zi-Ke

    2015-01-01

    can evolve simultaneously. For the information-driven adaptive process, susceptible (infected) individuals who have abilities to recognize the disease would break the links of their infected (susceptible) neighbors to prevent the epidemic from further spreading. Simulation results and numerical analyses based on the pairwise approach indicate that the information-driven adaptive process can not only slow down the speed of epidemic spreading, but can also diminish the epidemic prevalence at the final state significantly. In addition, the disease spreading and information diffusion pattern on the lattice give a visual representation about how the disease is trapped into an isolated field with the information-driven adaptive process. Furthermore, we perform the local bifurcation analysis on four types of dynamical regions, including healthy, oscillatory, bistable and endemic, to understand the evolution of the observed dynamical behaviors. This work may shed some lights on understanding how information affects h...

  17. Adaptative synchronization in multi-output fractional-order complex dynamical networks and secure communications

    Science.gov (United States)

    Mata-Machuca, Juan L.; Aguilar-López, Ricardo

    2018-01-01

    This work deals with the adaptative synchronization of complex dynamical networks with fractional-order nodes and its application in secure communications employing chaotic parameter modulation. The complex network is composed of multiple fractional-order systems with mismatch parameters and the coupling functions are given to realize the network synchronization. We introduce a fractional algebraic synchronizability condition (FASC) and a fractional algebraic identifiability condition (FAIC) which are used to know if the synchronization and parameters estimation problems can be solved. To overcome these problems, an adaptative synchronization methodology is designed; the strategy consists in proposing multiple receiver systems which tend to follow asymptotically the uncertain transmitters systems. The coupling functions and parameters of the receiver systems are adjusted continually according to a convenient sigmoid-like adaptative controller (SLAC), until the measurable output errors converge to zero, hence, synchronization between transmitter and receivers is achieved and message signals are recovered. Indeed, the stability analysis of the synchronization error is based on the fractional Lyapunov direct method. Finally, numerical results corroborate the satisfactory performance of the proposed scheme by means of the synchronization of a complex network consisting of several fractional-order unified chaotic systems.

  18. Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers.

    Science.gov (United States)

    Carrillo, Snaider; Harkin, Jim; McDaid, Liam; Pande, Sandeep; Cawley, Seamus; McGinley, Brian; Morgan, Fearghal

    2012-09-01

    The brain is highly efficient in how it processes information and tolerates faults. Arguably, the basic processing units are neurons and synapses that are interconnected in a complex pattern. Computer scientists and engineers aim to harness this efficiency and build artificial neural systems that can emulate the key information processing principles of the brain. However, existing approaches cannot provide the dense interconnect for the billions of neurons and synapses that are required. Recently a reconfigurable and biologically inspired paradigm based on network-on-chip (NoC) and spiking neural networks (SNNs) has been proposed as a new method of realising an efficient, robust computing platform. However, the use of the NoC as an interconnection fabric for large-scale SNNs demands a good trade-off between scalability, throughput, neuron/synapse ratio and power consumption. This paper presents a novel traffic-aware, adaptive NoC router, which forms part of a proposed embedded mixed-signal SNN architecture called EMBRACE (EMulating Biologically-inspiRed ArChitectures in hardwarE). The proposed adaptive NoC router provides the inter-neuron connectivity for EMBRACE, maintaining router communication and avoiding dropped router packets by adapting to router traffic congestion. Results are presented on throughput, power and area performance analysis of the adaptive router using a 90 nm CMOS technology which outperforms existing NoCs in this domain. The adaptive behaviour of the router is also verified on a Stratix II FPGA implementation of a 4 × 2 router array with real-time traffic congestion. The presented results demonstrate the feasibility of using the proposed adaptive NoC router within the EMBRACE architecture to realise large-scale SNNs on embedded hardware. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks.

    Science.gov (United States)

    Lin, Chuan-Kai

    2005-04-01

    A new adaptive critic autopilot design for bank-to-turn missiles is presented. In this paper, the architecture of adaptive critic learning scheme contains a fuzzy-basis-function-network based associative search element (ASE), which is employed to approximate nonlinear and complex functions of bank-to-turn missiles, and an adaptive critic element (ACE) generating the reinforcement signal to tune the associative search element. In the design of the adaptive critic autopilot, the control law receives signals from a fixed gain controller, an ASE and an adaptive robust element, which can eliminate approximation errors and disturbances. Traditional adaptive critic reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment, however, the proposed tuning algorithm can significantly shorten the learning time by online tuning all parameters of fuzzy basis functions and weights of ASE and ACE. Moreover, the weight updating law derived from the Lyapunov stability theory is capable of guaranteeing both tracking performance and stability. Computer simulation results confirm the effectiveness of the proposed adaptive critic autopilot.

  20. Institutional networks and adaptive water governance in the Klamath River Basin, USA.

    Science.gov (United States)

    Polycentric networks of formal organizations and informal stakeholder groups, as opposed to centralized institutional hierarchies, can be critically important for strengthening the capacity of governance systems to adapt to unexpected social and biophysical change. Adaptive gover...

  1. Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Xueling Jiang

    2014-01-01

    Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.

  2. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    Science.gov (United States)

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  3. Secure Adaptive Topology Control for Wireless Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yen-Chieh Ouyang

    2010-02-01

    Full Text Available This paper presents a secure decentralized clustering algorithm for wireless ad-hoc sensor networks. The algorithm operates without a centralized controller, operates asynchronously, and does not require that the location of the sensors be known a priori. Based on the cluster-based topology, secure hierarchical communication protocols and dynamic quarantine strategies are introduced to defend against spam attacks, since this type of attacks can exhaust the energy of sensor nodes and will shorten the lifetime of a sensor network drastically. By adjusting the threshold of infected percentage of the cluster coverage, our scheme can dynamically coordinate the proportion of the quarantine region and adaptively achieve the cluster control and the neighborhood control of attacks. Simulation results show that the proposed approach is feasible and cost effective for wireless sensor networks.

  4. New communication schemes based on adaptive synchronization.

    Science.gov (United States)

    Yu, Wenwu; Cao, Jinde; Wong, Kwok-Wo; Lü, Jinhu

    2007-09-01

    In this paper, adaptive synchronization with unknown parameters is discussed for a unified chaotic system by using the Lyapunov method and the adaptive control approach. Some communication schemes, including chaotic masking, chaotic modulation, and chaotic shift key strategies, are then proposed based on the modified adaptive method. The transmitted signal is masked by chaotic signal or modulated into the system, which effectively blurs the constructed return map and can resist this return map attack. The driving system with unknown parameters and functions is almost completely unknown to the attackers, so it is more secure to apply this method into the communication. Finally, some simulation examples based on the proposed communication schemes and some cryptanalysis works are also given to verify the theoretical analysis in this paper.

  5. Command Filtered Adaptive Fuzzy Neural Network Backstepping Control for Marine Power System

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.

  6. Reconfigurable and adaptive photonic networks for high-performance computing systems.

    Science.gov (United States)

    Kodi, Avinash; Louri, Ahmed

    2009-08-01

    As feature sizes decrease to the submicrometer regime and clock rates increase to the multigigahertz range, the limited bandwidth at higher bit rates and longer communication distances in electrical interconnects will create a major bandwidth imbalance in future high-performance computing (HPC) systems. We explore the application of an optoelectronic interconnect for the design of flexible, high-bandwidth, reconfigurable and adaptive interconnection architectures for chip-to-chip and board-to-board HPC systems. Reconfigurability is realized by interconnecting arrays of optical transmitters, and adaptivity is implemented by a dynamic bandwidth reallocation (DBR) technique that balances the load on each communication channel. We evaluate a DBR technique, the lockstep (LS) protocol, that monitors traffic intensities, reallocates bandwidth, and adapts to changes in communication patterns. We incorporate this DBR technique into a detailed discrete-event network simulator to evaluate the performance for uniform, nonuniform, and permutation communication patterns. Simulation results indicate that, without reconfiguration techniques being applied, optical based system architecture shows better performance than electrical interconnects for uniform and nonuniform patterns; with reconfiguration techniques being applied, the dynamically reconfigurable optoelectronic interconnect provides much better performance for all communication patterns. Based on the performance study, the reconfigured architecture shows 30%-50% increased throughput and 50%-75% reduced network latency compared with HPC electrical networks.

  7. QPSO-Based Adaptive DNA Computing Algorithm

    Directory of Open Access Journals (Sweden)

    Mehmet Karakose

    2013-01-01

    Full Text Available DNA (deoxyribonucleic acid computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO. Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1 parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2 adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3 numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm.

  8. Robust adaptive learning of feedforward neural networks via LMI optimizations.

    Science.gov (United States)

    Jing, Xingjian

    2012-07-01

    Feedforward neural networks (FNNs) have been extensively applied to various areas such as control, system identification, function approximation, pattern recognition etc. A novel robust control approach to the learning problems of FNNs is further investigated in this study in order to develop efficient learning algorithms which can be implemented with optimal parameter settings and considering noise effect in the data. To this aim, the learning problem of a FNN is cast into a robust output feedback control problem of a discrete time-varying linear dynamic system. New robust learning algorithms with adaptive learning rate are therefore developed, using linear matrix inequality (LMI) techniques to find the appropriate learning rates and to guarantee the fast and robust convergence. Theoretical analysis and examples are given to illustrate the theoretical results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Scalable Lunar Surface Networks and Adaptive Orbit Access Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative network architecture, protocols, and algorithms are proposed for both lunar surface networks and orbit access networks. Firstly, an overlaying...

  10. Adaptive exponential synchronization of complex-valued Cohen-Grossberg neural networks with known and unknown parameters.

    Science.gov (United States)

    Hu, Jin; Zeng, Chunna

    2017-02-01

    The complex-valued Cohen-Grossberg neural network is a special kind of complex-valued neural network. In this paper, the synchronization problem of a class of complex-valued Cohen-Grossberg neural networks with known and unknown parameters is investigated. By using Lyapunov functionals and the adaptive control method based on parameter identification, some adaptive feedback schemes are proposed to achieve synchronization exponentially between the drive and response systems. The results obtained in this paper have extended and improved some previous works on adaptive synchronization of Cohen-Grossberg neural networks. Finally, two numerical examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mobilization and Adaptation of a Rural Cradle-to-Career Network

    Science.gov (United States)

    Zuckerman, Sarah J.

    2016-01-01

    This case study explored the development of a rural cradle-to-career network with a dual focus on the initial mobilization of network members and subsequent adaptations made to maintain mobilization, while meeting local needs. Data sources included interviews with network members, observations of meetings, and documentary evidence. Network-based…

  12. Modeling and adaptive pinning synchronization control for a chaotic-motion motor in complex network

    Science.gov (United States)

    Zhu, Darui; Liu, Chongxin; Yan, Bingnan

    2014-01-01

    We introduce a chaos model for a permanent-magnet synchronous motor and construct a coupled chaotic motor in a complex dynamic network using the Newman-Watts small-world network algorithm. We apply adaptive pinning control theory for complex networks to obtain suitable adaptive feedback gain and the number of nodes to be pinned. Nodes of low degree are pinned to realize global asymptotic synchronization in the complex network. The proposed adaptive pinning controller is added to the complex motor network for simulation and verification.

  13. Ecosystem based approaches to climate adaptation

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Jensen, Anne; Termansen, Mette

    This report analyses the prospects and barriers of applying ecosystem based approaches systematically to climate adaptation in urban areas, taking the case of green roofs in Copenhagen Municipality. It looks at planning aspects of green roofs in Copenhagen as well as citizen views and preferences...... regarding green roofs using policy document analysis, interviews with city planners and deliberative valuation methods....

  14. Domain Adaption Based on ELM Autoencoder

    National Research Council Canada - National Science Library

    Wan-Yu Deng; Yu-Tao Qu; Qian Zhang

    2017-01-01

      We propose a new ELM Autoencoder (ELM-AE) based domain adaption algorithm which describes the subspaces of source and target domain by ELM-AE and then carries out subspace alignment to project different domains into a common new space...

  15. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    Directory of Open Access Journals (Sweden)

    Eduard eGrinke

    2015-10-01

    Full Text Available Walking animals, like insects, with little neural computing can effectively perform complex behaviors. They can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a walking robot is a challenging task. In this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors in the network to generate different turning angles with short-term memory for a biomechanical walking robot. The turning information is transmitted as descending steering signals to the locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations as well as escaping from sharp corners or deadlocks. Using backbone joint control embedded in the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments.

  16. Multiagent Based Information Dissemination in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    S.S. Manvi

    2009-01-01

    Full Text Available Vehicular Ad hoc Networks (VANETs are a compelling application of ad hoc networks, because of the potential to access specific context information (e.g. traffic conditions, service updates, route planning and deliver multimedia services (Voice over IP, in-car entertainment, instant messaging, etc.. This paper proposes an agent based information dissemination model for VANETs. A two-tier agent architecture is employed comprising of the following: 1 'lightweight', network-facing, mobile agents; 2 'heavyweight', application-facing, norm-aware agents. The limitations of VANETs lead us to consider a hybrid wireless network architecture that includes Wireless LAN/Cellular and ad hoc networking for analyzing the proposed model. The proposed model provides flexibility, adaptability and maintainability for traffic information dissemination in VANETs as well as supports robust and agile network management. The proposed model has been simulated in various network scenarios to evaluate the effectiveness of the approach.

  17. Adaptive pinning control of deteriorated nonlinear coupling networks with circuit realization.

    Science.gov (United States)

    Jin, Xiao-Zheng; Yang, Guang-Hong; Che, Wei-Wei

    2012-09-01

    This paper deals with a class of complex networks with nonideal coupling networks, and addresses the problem of asymptotic synchronization of the complex network through designing adaptive pinning control and coupling adjustment strategies. A more general coupled nonlinearity is considered as perturbations of the network, while a serious faulty network named deteriorated network is also proposed to be further study. For the sake of eliminating these adverse impacts for synchronization, indirect adaptive schemes are designed to construct controllers and adjusters on pinned nodes and nonuniform couplings of un-pinned nodes, respectively. According to Lyapunov stability theory, the proposed adaptive strategies are successful in ensuring the achievement of asymptotic synchronization of the complex network even in the presence of perturbed and deteriorated networks. The proposed schemes are physically implemented by circuitries and tested by simulation on a Chua's circuit network.

  18. Community-Based Adaptation: A vital approach to the threat climate change poses to the poor

    Energy Technology Data Exchange (ETDEWEB)

    Huq, Saleemul; Reid, Hannah

    2007-05-15

    Helping the millions of poor people at greatest risk from climate change to adapt to its impacts is a daunting task. One new approach that deserves greater support is community-based adaptation (CBA). This briefing paper outlines the concepts behind CBA, shares some early lessons learned, and calls for greater networking, information sharing and support for CBA activities.

  19. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    Science.gov (United States)

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  20. Adaptive Neural Network Control for the Trajectory Tracking of the Furuta Pendulum.

    Science.gov (United States)

    Moreno-Valenzuela, Javier; Aguilar-Avelar, Carlos; Puga-Guzman, Sergio A; Santibanez, Victor

    2016-12-01

    The purpose of this paper is to introduce a novel adaptive neural network-based control scheme for the Furuta pendulum, which is a two degree-of-freedom underactuated system. Adaptation laws for the input and output weights are also provided. The proposed controller is able to guarantee tracking of a reference signal for the arm while the pendulum remains in the upright position. The key aspect of the derivation of the controller is the definition of an output function that depends on the position and velocity errors. The internal and external dynamics are rigorously analyzed, thereby proving the uniform ultimate boundedness of the error trajectories. By using real-time experiments, the new scheme is compared with other control methodologies, therein demonstrating the improved performance of the proposed adaptive algorithm.

  1. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    Science.gov (United States)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  2. Deblurring adaptive optics retinal images using deep convolutional neural networks.

    Science.gov (United States)

    Fei, Xiao; Zhao, Junlei; Zhao, Haoxin; Yun, Dai; Zhang, Yudong

    2017-12-01

    The adaptive optics (AO) can be used to compensate for ocular aberrations to achieve near diffraction limited high-resolution retinal images. However, many factors such as the limited aberration measurement and correction accuracy with AO, intraocular scatter, imaging noise and so on will degrade the quality of retinal images. Image post processing is an indispensable and economical method to make up for the limitation of AO retinal imaging procedure. In this paper, we proposed a deep learning method to restore the degraded retinal images for the first time. The method directly learned an end-to-end mapping between the blurred and restored retinal images. The mapping was represented as a deep convolutional neural network that was trained to output high-quality images directly from blurry inputs without any preprocessing. This network was validated on synthetically generated retinal images as well as real AO retinal images. The assessment of the restored retinal images demonstrated that the image quality had been significantly improved.

  3. Disruption and adaptation of urban transport networks from flooding

    Directory of Open Access Journals (Sweden)

    Pregnolato Maria

    2016-01-01

    Full Text Available Transport infrastructure networks are increasingly vulnerable to disruption from extreme rainfall events due to increasing surface water runoff from urbanization and changes in climate. Impacts from such disruptions typically extend far beyond the flood footprint, because of the interconnection and spatial extent of modern infrastructure. An integrated flood risk assessment couples high resolution information on depth and velocity from the CityCAT urban flood model with empirical analysis of vehicle speeds in different depths of flood water, to perturb a transport accessibility model and determine the impact of a given event on journey times across the urban area. A case study in Newcastle-upon-Tyne (UK shows that even minor flooding associate with a 1 in 10 year event can cause traffic disruptions of nearly half an hour. Two adaptation scenarios are subsequently tested (i hardening (i.e. flood protection a single major junction, (ii introduction of green roofs across all buildings. Both options have benefits in terms of reduced disruption, but for a 1 in 200 year event greening all roofs in the city provided only three times the benefit of protecting one critical road junction, highlighting the importance of understanding network attributes such as capacity and flows.

  4. Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior.

    Science.gov (United States)

    Romano, Sebastián A; Pietri, Thomas; Pérez-Schuster, Verónica; Jouary, Adrien; Haudrechy, Mathieu; Sumbre, Germán

    2015-03-04

    Spontaneous neuronal activity is spatiotemporally structured, influencing brain computations. Nevertheless, the neuronal interactions underlying these spontaneous activity patterns, and their biological relevance, remain elusive. Here, we addressed these questions using two-photon calcium imaging of intact zebrafish larvae to monitor the neuron-to-neuron spontaneous activity fine structure in the tectum, a region involved in visual spatial detection. Spontaneous activity was organized in topographically compact assemblies, grouping functionally similar neurons rather than merely neighboring ones, reflecting the tectal retinotopic map despite being independent of retinal drive. Assemblies represent all-or-none-like sub-networks shaped by competitive dynamics, mechanisms advantageous for visual detection in noisy natural environments. Notably, assemblies were tuned to the same angular sizes and spatial positions as prey-detection performance in behavioral assays, and their spontaneous activation predicted directional tail movements. Therefore, structured spontaneous activity represents "preferred" network states, tuned to behaviorally relevant features, emerging from the circuit's intrinsic non-linear dynamics, adapted for its functional role. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Discrete rate and variable power adaptation for underlay cognitive networks

    KAUST Repository

    Abdallah, Mohamed M.

    2010-01-01

    We consider the problem of maximizing the average spectral efficiency of a secondary link in underlay cognitive networks. In particular, we consider the network setting whereby the secondary transmitter employs discrete rate and variable power adaptation under the constraints of maximum average transmit power and maximum average interference power allowed at the primary receiver due to the existence of an interference link between the secondary transmitter and the primary receiver. We first find the optimal discrete rates assuming a predetermined partitioning of the signal-to-noise ratio (SNR) of both the secondary and interference links. We then present an iterative algorithm for finding a suboptimal partitioning of the SNR of the interference link assuming a fixed partitioning of the SNR of secondary link selected for the case where no interference link exists. Our numerical results show that the average spectral efficiency attained by using the iterative algorithm is close to that achieved by the computationally extensive exhaustive search method for the case of Rayleigh fading channels. In addition, our simulations show that selecting the optimal partitioning of the SNR of the secondary link assuming no interference link exists still achieves the maximum average spectral efficiency for the case where the average interference constraint is considered. © 2010 IEEE.

  6. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  7. Modeling and Design of Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded Systems

    Directory of Open Access Journals (Sweden)

    Jürgen Teich

    2006-06-01

    Full Text Available Automotive, avionic, or body-area networks are systems that consist of several communicating control units specialized for certain purposes. Typically, different constraints regarding fault tolerance, availability and also flexibility are imposed on these systems. In this article, we will present a novel framework for increasing fault tolerance and flexibility by solving the problem of hardware/software codesign online. Based on field-programmable gate arrays (FPGAs in combination with CPUs, we allow migrating tasks implemented in hardware or software from one node to another. Moreover, if not enough hardware/software resources are available, the migration of functionality from hardware to software or vice versa is provided. Supporting such flexibility through services integrated in a distributed operating system for networked embedded systems is a substantial step towards self-adaptive systems. Beside the formal definition of methods and concepts, we describe in detail a first implementation of a reconfigurable networked embedded system running automotive applications.

  8. Modeling and Design of Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded Systems

    Directory of Open Access Journals (Sweden)

    Streichert Thilo

    2006-01-01

    Full Text Available Automotive, avionic, or body-area networks are systems that consist of several communicating control units specialized for certain purposes. Typically, different constraints regarding fault tolerance, availability and also flexibility are imposed on these systems. In this article, we will present a novel framework for increasing fault tolerance and flexibility by solving the problem of hardware/software codesign online. Based on field-programmable gate arrays (FPGAs in combination with CPUs, we allow migrating tasks implemented in hardware or software from one node to another. Moreover, if not enough hardware/software resources are available, the migration of functionality from hardware to software or vice versa is provided. Supporting such flexibility through services integrated in a distributed operating system for networked embedded systems is a substantial step towards self-adaptive systems. Beside the formal definition of methods and concepts, we describe in detail a first implementation of a reconfigurable networked embedded system running automotive applications.

  9. Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Al-Medhwahi, Mohammed; Hashim, Fazirulhisyam; Ali, Borhanuddin Mohd; Sali, Aduwati

    2016-01-01

    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications.

  10. Effects of Implementing Adaptable Channelization in Wi-Fi Networks

    Directory of Open Access Journals (Sweden)

    Abid Hussain

    2016-01-01

    Full Text Available The unprecedented increase of wireless devices is now facing a serious threat of spectrum scarcity. The situation becomes even worse due to inefficient frequency distribution protocols, deployed in trivial Wi-Fi networks. The primary source of this inefficiency is static channelization used in wireless networks. In this work, we investigate the use of dynamic and flexible channelization, for optimal spectrum utilization in Wi-Fi networks. We propose optimal spectrum sharing algorithm (OSSA and analyze its effect on exhaustive list of essential network performance measuring parameters. The elementary concept of the proposed algorithm lies in the fact that frequency spectrum should be assigned to any access point (AP based on its current requirement. The OSSA algorithm assigns channels with high granularity, thus maximizing spectrum utilization by more than 20% as compared to static width channel allocation. This optimum spectrum utilization, in turn, increases throughput by almost 30% in many deployment scenarios. The achieved results depict considerable decrease in interference, while simultaneously increasing range. Similarly signal strength values at relatively longer distances improve significantly at narrower channel widths while simultaneously decreasing bit error rates. We found that almost 25% reduction in interference is possible in certain scenarios through proposed algorithm.

  11. CNEM: Cluster Based Network Evolution Model

    Directory of Open Access Journals (Sweden)

    Sarwat Nizamani

    2015-01-01

    Full Text Available This paper presents a network evolution model, which is based on the clustering approach. The proposed approach depicts the network evolution, which demonstrates the network formation from individual nodes to fully evolved network. An agglomerative hierarchical clustering method is applied for the evolution of network. In the paper, we present three case studies which show the evolution of the networks from the scratch. These case studies include: terrorist network of 9/11 incidents, terrorist network of WMD (Weapons Mass Destruction plot against France and a network of tweets discussing a topic. The network of 9/11 is also used for evaluation, using other social network analysis methods which show that the clusters created using the proposed model of network evolution are of good quality, thus the proposed method can be used by law enforcement agencies in order to further investigate the criminal networks

  12. An Adaptive Computational Network Model for Multi-Emotional Social Interaction

    NARCIS (Netherlands)

    Roller, Ramona; Blommestijn, Suzan Q.; Treur, J.

    2017-01-01

    The study reported in this paper investigates an adaptive temporal-causal network-model for emotion contagion. The dynamic network principles of emotion contagion and the adaptive principles of homophily and Hebbian learning were used to simulate the change in multiple emotions and social

  13. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    model, etc.) might be too complex to study. In this paper, we use a comparatively simple mechanical system, the nonholonomic vehicle referred to as the Roller-Racer, as a means towards testing different learning strategies for an Recurrent Neural Network-based (RNN) controller/guidance system. After...... a brief description of the Roller-Racer, we present as a preliminary study an RNN-based feed-forward controller whose parameters are obtained through the well-known teacher forcing learning algorithm, extended to learn signals with a continuous component....

  14. Creep-induced anisotropy in covalent adaptable network polymers.

    Science.gov (United States)

    Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai

    2017-10-11

    Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.

  15. Intelligent Broadcasting in Mobile Ad Hoc Networks: Three Classes of Adaptive Protocols

    Directory of Open Access Journals (Sweden)

    Colagrosso Michael D

    2007-01-01

    Full Text Available Because adaptability greatly improves the performance of a broadcast protocol, we identify three ways in which machine learning can be applied to broadcasting in a mobile ad hoc network (MANET. We chose broadcasting because it functions as a foundation of MANET communication. Unicast, multicast, and geocast protocols utilize broadcasting as a building block, providing important control and route establishment functionality. Therefore, any improvements to the process of broadcasting can be immediately realized by higher-level MANET functionality and applications. While efficient broadcast protocols have been proposed, no single broadcasting protocol works well in all possible MANET conditions. Furthermore, protocols tend to fail catastrophically in severe network environments. Our three classes of adaptive protocols are pure machine learning, intra-protocol learning, and inter-protocol learning. In the pure machine learning approach, we exhibit a new approach to the design of a broadcast protocol: the decision of whether to rebroadcast a packet is cast as a classification problem. Each mobile node (MN builds a classifier and trains it on data collected from the network environment. Using intra-protocol learning, each MN consults a simple machine model for the optimal value of one of its free parameters. Lastly, in inter-protocol learning, MNs learn to switch between different broadcasting protocols based on network conditions. For each class of learning method, we create a prototypical protocol and examine its performance in simulation.

  16. Intelligent Broadcasting in Mobile Ad Hoc Networks: Three Classes of Adaptive Protocols

    Directory of Open Access Journals (Sweden)

    Michael D. Colagrosso

    2006-11-01

    Full Text Available Because adaptability greatly improves the performance of a broadcast protocol, we identify three ways in which machine learning can be applied to broadcasting in a mobile ad hoc network (MANET. We chose broadcasting because it functions as a foundation of MANET communication. Unicast, multicast, and geocast protocols utilize broadcasting as a building block, providing important control and route establishment functionality. Therefore, any improvements to the process of broadcasting can be immediately realized by higher-level MANET functionality and applications. While efficient broadcast protocols have been proposed, no single broadcasting protocol works well in all possible MANET conditions. Furthermore, protocols tend to fail catastrophically in severe network environments. Our three classes of adaptive protocols are pure machine learning, intra-protocol learning, and inter-protocol learning. In the pure machine learning approach, we exhibit a new approach to the design of a broadcast protocol: the decision of whether to rebroadcast a packet is cast as a classification problem. Each mobile node (MN builds a classifier and trains it on data collected from the network environment. Using intra-protocol learning, each MN consults a simple machine model for the optimal value of one of its free parameters. Lastly, in inter-protocol learning, MNs learn to switch between different broadcasting protocols based on network conditions. For each class of learning method, we create a prototypical protocol and examine its performance in simulation.

  17. Adaptive synchronization of drive-response fractional-order complex dynamical networks with uncertain parameters

    Science.gov (United States)

    Yang, Li-xin; Jiang, Jun

    2014-05-01

    This paper investigates the adaptive synchronization in the drive-response fractional-order dynamical networks with uncertain parameters. By means of both the stability theory of fractional-order differential system and the adaptive control technique, a novel adaptive synchronization controller is developed with a more general and simpler analytical expression, which does not contain the parameters of the complex network, and effective adaptive laws of parameters. Furthermore, the very strong and conservative uniformly Lipschitz condition on the node dynamics of complex network is released. To demonstrate the validity of the proposed method, the examples for the synchronization of systems with the chaotic and hyper-chaotic node dynamics are presented.

  18. Dynamic recurrent neural networks for stable adaptive control of wing rock motion

    Science.gov (United States)

    Kooi, Steven Boon-Lam

    Wing rock is a self-sustaining limit cycle oscillation (LCO) which occurs as the result of nonlinear coupling between the dynamic response of the aircraft and the unsteady aerodynamic forces. In this thesis, dynamic recurrent RBF (Radial Basis Function) network control methodology is proposed to control the wing rock motion. The concept based on the properties of the Presiach hysteresis model is used in the design of dynamic neural networks. The structure and memory mechanism in the Preisach model is analogous to the parallel connectivity and memory formation in the RBF neural networks. The proposed dynamic recurrent neural network has a feature for adding or pruning the neurons in the hidden layer according to the growth criteria based on the properties of ensemble average memory formation of the Preisach model. The recurrent feature of the RBF network deals with the dynamic nonlinearities and endowed temporal memories of the hysteresis model. The control of wing rock is a tracking problem, the trajectory starts from non-zero initial conditions and it tends to zero as time goes to infinity. In the proposed neural control structure, the recurrent dynamic RBF network performs identification process in order to approximate the unknown non-linearities of the physical system based on the input-output data obtained from the wing rock phenomenon. The design of the RBF networks together with the network controllers are carried out in discrete time domain. The recurrent RBF networks employ two separate adaptation schemes where the RBF's centre and width are adjusted by the Extended Kalman Filter in order to give a minimum networks size, while the outer networks layer weights are updated using the algorithm derived from Lyapunov stability analysis for the stable closed loop control. The issue of the robustness of the recurrent RBF networks is also addressed. The effectiveness of the proposed dynamic recurrent neural control methodology is demonstrated through simulations to

  19. Text-independent speaker identification system based on adaptive wavelets

    Science.gov (United States)

    Kadambe, Shubha L.; Srinivasan, Pramila

    1994-03-01

    In this paper, we describe a text-independent phoneme-based speaker identification system that uses adaptive wavelets to model the phonemes. This system identifies a speaker by modeling a very short segment of phonemes and then by clustering all the phonemes belonging to the same speaker into one class. The classification is achieved by using a two layer feed forward neural network classifier. The performance of this speaker identification system is demonstrated by considering the phonemes that were extracted from various sentences spoken by three speakers in the TIMIT acoustic-phonetic speech corpus.

  20. Scalable and Media Aware Adaptive Video Streaming over Wireless Networks

    Science.gov (United States)

    Tizon, Nicolas; Pesquet-Popescu, Béatrice

    2008-12-01

    This paper proposes an advanced video streaming system based on scalable video coding in order to optimize resource utilization in wireless networks with retransmission mechanisms at radio protocol level. The key component of this system is a packet scheduling algorithm which operates on the different substreams of a main scalable video stream and which is implemented in a so-called media aware network element. The concerned type of transport channel is a dedicated channel subject to parameters (bitrate, loss rate) variations on the long run. Moreover, we propose a combined scalability approach in which common temporal and SNR scalability features can be used jointly with a partitioning of the image into regions of interest. Simulation results show that our approach provides substantial quality gain compared to classical packet transmission methods and they demonstrate how ROI coding combined with SNR scalability allows to improve again the visual quality.

  1. Adaptive Timer-Based Countermeasures against TCP SYN Flood Attacks

    Science.gov (United States)

    Tanabe, Masao; Akaike, Hirofumi; Aida, Masaki; Murata, Masayuki; Imase, Makoto

    As a result of the rapid development of the Internet in recent years, network security has become an urgent issue. Distributed denial of service (DDoS) attacks are one of the most serious security issues. In particular, 60 percent of the DDoS attacks found on the Internet are TCP attacks, including SYN flood attacks. In this paper, we propose adaptive timer-based countermeasures against SYN flood attacks. Our proposal utilizes the concept of soft-state protocols that are widely used for resource management on the Internet. In order to avoid deadlock, a server releases resources using a time-out mechanism without any explicit requests from its clients. If we change the value of the timer in accordance with the network conditions, we can add more flexibility to the soft-state protocols. The timer is used to manage the resources assigned to half-open connections in a TCP 3-way handshake mechanism, and its value is determined adaptively according to the network conditions. In addition, we report our simulation results to show the effectiveness of our approach.

  2. Adaptive Noise Parameter Determination Based on a Particle Filter Algorithm

    Directory of Open Access Journals (Sweden)

    Hyun-Tae Cho

    2016-01-01

    Full Text Available Due to the growing number of vehicles using the national road networks that link major urban centers, traffic noise is becoming a major issue in relation to the transportation system. Thus, it is important to determine noise model parameters to predict road traffic noise levels as part of an environmental assessment, according to traffic volume and pavement surface type. To determine the parameters of a noise prediction model, statistical pass-by and close proximity tests are required. This paper provides a parameter determination procedure for noise prediction models through an adaptive particle filter (PF algorithm, based on using a weigh-in-motion system, which obtains vehicle velocities and types, as well as step-up microphones, which measure the combined noises emitted by various vehicle types. Finally, an evaluation of the adaptive noise parameter determination algorithm was carried out to assess the agreement between predictions and measurements.

  3. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.

    Science.gov (United States)

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  4. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    Science.gov (United States)

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  5. Implementation Issues of Adaptive Energy Detection in Heterogeneous Wireless Networks.

    Science.gov (United States)

    Sobron, Iker; Eizmendi, Iñaki; Martins, Wallace A; Diniz, Paulo S R; Ordiales, Juan Luis; Velez, Manuel

    2017-04-23

    Spectrum sensing (SS) enables the coexistence of non-coordinated heterogeneous wireless systems operating in the same band. Due to its computational simplicity, energy detection (ED) technique has been widespread employed in SS applications; nonetheless, the conventional ED may be unreliable under environmental impairments, justifying the use of ED-based variants. Assessing ED algorithms from theoretical and simulation viewpoints relies on several assumptions and simplifications which, eventually, lead to conclusions that do not necessarily meet the requirements imposed by real propagation environments. This work addresses those problems by dealing with practical implementation issues of adaptive least mean square (LMS)-based ED algorithms. The paper proposes a new adaptive ED algorithm that uses a variable step-size guaranteeing the LMS convergence in time-varying environments. Several implementation guidelines are provided and, additionally, an empirical assessment and validation with a software defined radio-based hardware is carried out. Experimental results show good performance in terms of probabilities of detection ( P d > 0 . 9 ) and false alarm ( P f ∼ 0 . 05 ) in a range of low signal-to-noise ratios around [ - 4 , 1 ] dB, in both single-node and cooperative modes. The proposed sensing methodology enables a seamless monitoring of the radio electromagnetic spectrum in order to provide band occupancy information for an efficient usage among several wireless communications systems.

  6. Implementation Issues of Adaptive Energy Detection in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Iker Sobron

    2017-04-01

    Full Text Available Spectrum sensing (SS enables the coexistence of non-coordinated heterogeneous wireless systems operating in the same band. Due to its computational simplicity, energy detection (ED technique has been widespread employed in SS applications; nonetheless, the conventional ED may be unreliable under environmental impairments, justifying the use of ED-based variants. Assessing ED algorithms from theoretical and simulation viewpoints relies on several assumptions and simplifications which, eventually, lead to conclusions that do not necessarily meet the requirements imposed by real propagation environments. This work addresses those problems by dealing with practical implementation issues of adaptive least mean square (LMS-based ED algorithms. The paper proposes a new adaptive ED algorithm that uses a variable step-size guaranteeing the LMS convergence in time-varying environments. Several implementation guidelines are provided and, additionally, an empirical assessment and validation with a software defined radio-based hardware is carried out. Experimental results show good performance in terms of probabilities of detection ( P d > 0 . 9 and false alarm ( P f ∼ 0 . 05 in a range of low signal-to-noise ratios around [ - 4 , 1 ] dB, in both single-node and cooperative modes. The proposed sensing methodology enables a seamless monitoring of the radio electromagnetic spectrum in order to provide band occupancy information for an efficient usage among several wireless communications systems.

  7. On adaptive control of mobile slotted aloha networks

    Directory of Open Access Journals (Sweden)

    Lim J.-T.

    1995-01-01

    Full Text Available An adaptive control scheme for mobile slotted ALOHA is presented and the effect of capture on the adaptive control scheme is investigated. It is shown that with the proper choice of adaptation parameters the adaptive control scheme can be made independent of the effect of capture.

  8. Adaptation of the oral health version of an instrument for diagnosing the healthcare network?s stage of development

    National Research Council Canada - National Science Library

    Leal, Daniele Lopes; Paiva, Saul Martins; Werneck, Marcos Azeredo Furquim; Oliveira, Ana Cristina Borges de

    2014-01-01

    .... The current study aimed to describe the stages in the adaptation of the oral healthcare version of an instrument to evaluate the stage of development in the healthcare network under the Unified National Health System (SUS...

  9. Modeling and adaptive control of a camless engine using neural networks and estimation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-08-09

    A system to control the cylinder air charge (CAC) in a camless internal combustion (IC) engine was recently developed. The performance of an IC engine connected to an adaptive artificial neural network (ANN) based feedback controller was then investigated. A control oriented model for the engine intake process was created based on thermodynamics laws and was validated against engine experimental data. Input-output data at a speed of 1500 RPM was generated and used to train an ANN model for the engine. The inputs were the intake valve lift (IVL) and closing timing (IVC). The output was the CAC. The controller consisted of a feedforward controller, CAC estimator, and on-line ANN parameter estimator. The feedforward controller provided IVL and IVC that satisfied the driver's torque demand and was the inverse of the engine ANN model. The on-line ANN used the error between the CAC measurement from the CAC estimator and its predicted value from the ANN to update the network's parameters. The feedforward controller was therefore adapted since its operation depended on the ANN model. The adaptation scheme improved the ANN prediction accuracy when the engine parts degraded, the speed changed or when modeling errors occurred. The engine controller exhibited good CAC tracking performance. Computer simulation demonstrated the capability of the camless engine controller. 17 refs., 5 figs.

  10. Location-Based Services in Vehicular Networks

    Science.gov (United States)

    Wu, Di

    2013-01-01

    Location-based services have been identified as a promising communication paradigm in highly mobile and dynamic vehicular networks. However, existing mobile ad hoc networking cannot be directly applied to vehicular networking due to differences in traffic conditions, mobility models and network topologies. On the other hand, hybrid architectures…

  11. Adaptive autonomous Communications Routing Optimizer for Network Efficiency Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Maximizing network efficiency for NASA's Space Networking resources is a large, complex, distributed problem, requiring substantial collaboration. We propose the...

  12. Stochastic Optimal Regulation of Nonlinear Networked Control Systems by Using Event-Driven Adaptive Dynamic Programming.

    Science.gov (United States)

    Sahoo, Avimanyu; Jagannathan, Sarangapani

    2017-02-01

    In this paper, an event-driven stochastic adaptive dynamic programming (ADP)-based technique is introduced for nonlinear systems with a communication network within its feedback loop. A near optimal control policy is designed using an actor-critic framework and ADP with event sampled state vector. First, the system dynamics are approximated by using a novel neural network (NN) identifier with event sampled state vector. The optimal control policy is generated via an actor NN by using the NN identifier and value function approximated by a critic NN through ADP. The stochastic NN identifier, actor, and critic NN weights are tuned at the event sampled instants leading to aperiodic weight tuning laws. Above all, an adaptive event sampling condition based on estimated NN weights is designed by using the Lyapunov technique to ensure ultimate boundedness of all the closed-loop signals along with the approximation accuracy. The net result is event-driven stochastic ADP technique that can significantly reduce the computation and network transmissions. Finally, the analytical design is substantiated with simulation results.

  13. Prescribed performance synchronization controller design of fractional-order chaotic systems: An adaptive neural network control approach

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-03-01

    Full Text Available In this study, an adaptive neural network synchronization (NNS approach, capable of guaranteeing prescribed performance (PP, is designed for non-identical fractional-order chaotic systems (FOCSs. For PP synchronization, we mean that the synchronization error converges to an arbitrary small region of the origin with convergence rate greater than some function given in advance. Neural networks are utilized to estimate unknown nonlinear functions in the closed-loop system. Based on the integer-order Lyapunov stability theorem, a fractional-order adaptive NNS controller is designed, and the PP can be guaranteed. Finally, simulation results are presented to confirm our results.

  14. Prescribed performance synchronization controller design of fractional-order chaotic systems: An adaptive neural network control approach

    Science.gov (United States)

    Li, Yuan; Lv, Hui; Jiao, Dongxiu

    2017-03-01

    In this study, an adaptive neural network synchronization (NNS) approach, capable of guaranteeing prescribed performance (PP), is designed for non-identical fractional-order chaotic systems (FOCSs). For PP synchronization, we mean that the synchronization error converges to an arbitrary small region of the origin with convergence rate greater than some function given in advance. Neural networks are utilized to estimate unknown nonlinear functions in the closed-loop system. Based on the integer-order Lyapunov stability theorem, a fractional-order adaptive NNS controller is designed, and the PP can be guaranteed. Finally, simulation results are presented to confirm our results.

  15. User-Adapted Recommendation of Content on Mobile Devices Using Bayesian Networks

    Science.gov (United States)

    Iwasaki, Hirotoshi; Mizuno, Nobuhiro; Hara, Kousuke; Motomura, Yoichi

    Mobile devices, such as cellular phones and car navigation systems, are essential to daily life. People acquire necessary information and preferred content over communication networks anywhere, anytime. However, usability issues arise from the simplicity of user interfaces themselves. Thus, a recommendation of content that is adapted to a user's preference and situation will help the user select content. In this paper, we describe a method to realize such a system using Bayesian networks. This user-adapted mobile system is based on a user model that provides recommendation of content (i.e., restaurants, shops, and music that are suitable to the user and situation) and that learns incrementally based on accumulated usage history data. However, sufficient samples are not always guaranteed, since a user model would require combined dependency among users, situations, and contents. Therefore, we propose the LK method for modeling, which complements incomplete and insufficient samples using knowledge data, and CPT incremental learning for adaptation based on a small number of samples. In order to evaluate the methods proposed, we applied them to restaurant recommendations made on car navigation systems. The evaluation results confirmed that our model based on the LK method can be expected to provide better generalization performance than that of the conventional method. Furthermore, our system would require much less operation than current car navigation systems from the beginning of use. Our evaluation results also indicate that learning a user's individual preference through CPT incremental learning would be beneficial to many users, even with only a few samples. As a result, we have developed the technology of a system that becomes more adapted to a user the more it is used.

  16. Distributed reinforcement learning for adaptive and robust network intrusion response

    Science.gov (United States)

    Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel

    2015-07-01

    Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.

  17. Composite learning from adaptive backstepping neural network control.

    Science.gov (United States)

    Pan, Yongping; Sun, Tairen; Liu, Yiqi; Yu, Haoyong

    2017-11-01

    In existing neural network (NN) learning control methods, the trajectory of NN inputs must be recurrent to satisfy a stringent condition termed persistent excitation (PE) so that NN parameter convergence is obtainable. This paper focuses on command-filtered backstepping adaptive control for a class of strict-feedback nonlinear systems with functional uncertainties, where an NN composite learning technique is proposed to guarantee convergence of NN weights to their ideal values without the PE condition. In the NN composite learning, spatially localized NN approximation is employed to handle functional uncertainties, online historical data together with instantaneous data are exploited to generate prediction errors, and both tracking errors and prediction errors are employed to update NN weights. The influence of NN approximation errors on the control performance is also clearly shown. The distinctive feature of the proposed NN composite learning is that NN parameter convergence is guaranteed without the requirement of the trajectory of NN inputs being recurrent. Illustrative results have verified effectiveness and superiority of the proposed method compared with existing NN learning control methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Fuzzy-adaptive-thresholding-based exon prediction.

    Science.gov (United States)

    Agrawal, Ankit; Mittal, Ankush; Jain, Rahul; Takkar, Raghav

    2010-01-01

    Thresholding is always critical and decisive in many bioinformatics problems. In this paper, we propose and apply a fuzzy-logic-based adaptive thresholding approach to a well-known solution for the exon prediction problem, which uses a threshold on the frequency component at f = 1/3 in the nucleotide sequence. The proposed approach allows the thresholds to vary along the data set based on the local statistical properties. Experiments and results on the nucleotide data of Saccharomyces cerevisiae (Bakers yeast) illustrate the advantage of our approach. A user-friendly GUI in MATLAB is freely available for academic use at www.cs.iastate.edu/˜ankitag/FATBEP.html.

  19. Efficient Vector-Based Forwarding for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2010-01-01

    Full Text Available Underwater Sensor Networks (UWSNs are significantly different from terrestrial sensor networks in the following aspects: low bandwidth, high latency, node mobility, high error probability, and 3-dimensional space. These new features bring many challenges to the network protocol design of UWSNs. In this paper, we tackle one fundamental problem in UWSNs: robust, scalable, and energy efficient routing. We propose vector-based forwarding (VBF, a geographic routing protocol. In VBF, the forwarding path is guided by a vector from the source to the target, no state information is required on the sensor nodes, and only a small fraction of the nodes is involved in routing. To improve the robustness, packets are forwarded in redundant and interleaved paths. Further, a localized and distributed self-adaptation algorithm allows the nodes to reduce energy consumption by discarding redundant packets. VBF performs well in dense networks. For sparse networks, we propose a hop-by-hop vector-based forwarding (HH-VBF protocol, which adapts the vector-based approach at every hop. We evaluate the performance of VBF and HH-VBF through extensive simulations. The simulation results show that VBF achieves high packet delivery ratio and energy efficiency in dense networks and HH-VBF has high packet delivery ratio even in sparse networks.

  20. Testlet-based Multidimensional Adaptive Testing

    Directory of Open Access Journals (Sweden)

    Andreas Frey

    2016-11-01

    Full Text Available Multidimensional adaptive testing (MAT is a highly efficient method for the simultaneous measurement of several latent traits. Currently, no psychometrically sound approach is available for the use of MAT in testlet-based tests. Testlets are sets of items sharing a common stimulus such as a graph or a text. They are frequently used in large operational testing programs like TOEFL, PISA, PIRLS, or NAEP. To make MAT accessible for such testing programs, we present a novel combination of MAT with a multidimensional generalization of the random effects testlet model (MAT-MTIRT. MAT-MTIRT compared to non-adaptive testing is examined for several combinations of testlet effect variances (0.0, 0.5, 1.0, 1.5 and testlet sizes (3 items, 6 items, 9 items with a simulation study considering three ability dimensions with simple loading structure. MAT-MTIRT outperformed non-adaptive testing regarding the measurement precision of the ability estimates. Further, the measurement precision decreased when testlet effect variances and testlet sizes increased. The suggested combination of the MTIRT model therefore provides a solution to the substantial problems of testlet-based tests while keeping the length of the test within an acceptable range.

  1. Entropy-based adaptive attitude estimation

    Science.gov (United States)

    Kiani, Maryam; Barzegar, Aylin; Pourtakdoust, Seid H.

    2018-03-01

    Gaussian approximation filters have increasingly been developed to enhance the accuracy of attitude estimation in space missions. The effective employment of these algorithms demands accurate knowledge of system dynamics and measurement models, as well as their noise characteristics, which are usually unavailable or unreliable. An innovation-based adaptive filtering approach has been adopted as a solution to this problem; however, it exhibits two major challenges, namely appropriate window size selection and guaranteed assurance of positive definiteness for the estimated noise covariance matrices. The current work presents two novel techniques based on relative entropy and confidence level concepts in order to address the abovementioned drawbacks. The proposed adaptation techniques are applied to two nonlinear state estimation algorithms of the extended Kalman filter and cubature Kalman filter for attitude estimation of a low earth orbit satellite equipped with three-axis magnetometers and Sun sensors. The effectiveness of the proposed adaptation scheme is demonstrated by means of comprehensive sensitivity analysis on the system and environmental parameters by using extensive independent Monte Carlo simulations.

  2. Testlet-Based Multidimensional Adaptive Testing.

    Science.gov (United States)

    Frey, Andreas; Seitz, Nicki-Nils; Brandt, Steffen

    2016-01-01

    Multidimensional adaptive testing (MAT) is a highly efficient method for the simultaneous measurement of several latent traits. Currently, no psychometrically sound approach is available for the use of MAT in testlet-based tests. Testlets are sets of items sharing a common stimulus such as a graph or a text. They are frequently used in large operational testing programs like TOEFL, PISA, PIRLS, or NAEP. To make MAT accessible for such testing programs, we present a novel combination of MAT with a multidimensional generalization of the random effects testlet model (MAT-MTIRT). MAT-MTIRT compared to non-adaptive testing is examined for several combinations of testlet effect variances (0.0, 0.5, 1.0, and 1.5) and testlet sizes (3, 6, and 9 items) with a simulation study considering three ability dimensions with simple loading structure. MAT-MTIRT outperformed non-adaptive testing regarding the measurement precision of the ability estimates. Further, the measurement precision decreased when testlet effect variances and testlet sizes increased. The suggested combination of the MTIRT model therefore provides a solution to the substantial problems of testlet-based tests while keeping the length of the test within an acceptable range.

  3. Adaptive control of space based robot manipulators

    Science.gov (United States)

    Walker, Michael W.; Wee, Liang-Boon

    1991-01-01

    For space based robots in which the base is free to move, motion planning and control is complicated by uncertainties in the inertial properties of the manipulator and its load. A new adaptive control method is presented for space based robots which achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. A partition is made of the fifteen degree of freedom system dynamics into two parts: a nine degree of freedom invertible portion and a six degree of freedom noninvertible portion. The controller is then designed to achieve trajectory tracking of the invertible portion of the system. This portion consist of the manipulator joint positions and the orientation of the base. The motion of the noninvertible portion is bounded, but unpredictable. This portion consist of the position of the robot's base and the position of the reaction wheel.

  4. Motion adaptive vertical handoff in cellular/WLAN heterogeneous wireless network.

    Science.gov (United States)

    Li, Limin; Ma, Lin; Xu, Yubin; Fu, Yunhai

    2014-01-01

    In heterogeneous wireless network, vertical handoff plays an important role for guaranteeing quality of service and overall performance of network. Conventional vertical handoff trigger schemes are mostly developed from horizontal handoff in homogeneous cellular network. Basically, they can be summarized as hysteresis-based and dwelling-timer-based algorithms, which are reliable on avoiding unnecessary handoff caused by the terminals dwelling at the edge of WLAN coverage. However, the coverage of WLAN is much smaller compared with cellular network, while the motion types of terminals can be various in a typical outdoor scenario. As a result, traditional algorithms are less effective in avoiding unnecessary handoff triggered by vehicle-borne terminals with various speeds. Besides that, hysteresis and dwelling-timer thresholds usually need to be modified to satisfy different channel environments. For solving this problem, a vertical handoff algorithm based on Q-learning is proposed in this paper. Q-learning can provide the decider with self-adaptive ability for handling the terminals' handoff requests with different motion types and channel conditions. Meanwhile, Neural Fuzzy Inference System (NFIS) is embedded to retain a continuous perception of the state space. Simulation results verify that the proposed algorithm can achieve lower unnecessary handoff probability compared with the other two conventional algorithms.

  5. Discrete-time adaptive backstepping nonlinear control via high-order neural networks.

    Science.gov (United States)

    Alanis, Alma Y; Sanchez, Edgar N; Loukianov, Alexander G

    2007-07-01

    This paper deals with adaptive tracking for discrete-time multiple-input-multiple-output (MIMO) nonlinear systems in presence of bounded disturbances. In this paper, a high-order neural network (HONN) structure is used to approximate a control law designed by the backstepping technique, applied to a block strict feedback form (BSFF). This paper also includes the respective stability analysis, on the basis of the Lyapunov approach, for the whole controlled system, including the extended Kalman filter (EKF)-based NN learning algorithm. Applicability of the scheme is illustrated via simulation for a discrete-time nonlinear model of an electric induction motor.

  6. Performance assessment of electric power generations using an adaptive neural network algorithm and fuzzy DEA

    Energy Technology Data Exchange (ETDEWEB)

    Javaheri, Zahra

    2010-09-15

    Modeling, evaluating and analyzing performance of Iranian thermal power plants is the main goal of this study which is based on multi variant methods analysis. These methods include fuzzy DEA and adaptive neural network algorithm. At first, we determine indicators, then data is collected, next we obtained values of ranking and efficiency by Fuzzy DEA, Case study is thermal power plants In view of the fact that investment to establish on power plant is very high, and maintenance of power plant causes an expensive expenditure, moreover using fossil fuel effected environment hence optimum produce of current power plants is important.

  7. Adaptive CGFs Based on Grammatical Evolution

    Directory of Open Access Journals (Sweden)

    Jian Yao

    2015-01-01

    Full Text Available Computer generated forces (CGFs play blue or red units in military simulations for personnel training and weapon systems evaluation. Traditionally, CGFs are controlled through rule-based scripts, despite the doctrine-driven behavior of CGFs being rigid and predictable. Furthermore, CGFs are often tricked by trainees or fail to adapt to new situations (e.g., changes in battle field or update in weapon systems, and, in most cases, the subject matter experts (SMEs review and redesign a large amount of CGF scripts for new scenarios or training tasks, which is both challenging and time-consuming. In an effort to overcome these limitations and move toward more true-to-life scenarios, a study using grammatical evolution (GE to generate adaptive CGFs for air combat simulations has been conducted. Expert knowledge is encoded with modular behavior trees (BTs for compatibility with the operators in genetic algorithm (GA. GE maps CGFs, represented with BTs to binary strings, and uses GA to evolve CGFs with performance feedback from the simulation. Beyond-visual-range air combat experiments between adaptive CGFs and nonadaptive baseline CGFs have been conducted to observe and study this evolutionary process. The experimental results show that the GE is an efficient framework to generate CGFs in BTs formalism and evolve CGFs via GA.

  8. Cross-Layer Techniques for Adaptive Video Streaming over Wireless Networks

    Directory of Open Access Journals (Sweden)

    Yufeng Shan

    2005-02-01

    Full Text Available Real-time streaming media over wireless networks is a challenging proposition due to the characteristics of video data and wireless channels. In this paper, we propose a set of cross-layer techniques for adaptive real-time video streaming over wireless networks. The adaptation is done with respect to both channel and data. The proposed novel packetization scheme constructs the application layer packet in such a way that it is decomposed exactly into an integer number of equal-sized radio link protocol (RLP packets. FEC codes are applied within an application packet at the RLP packet level rather than across different application packets and thus reduce delay at the receiver. A priority-based ARQ, together with a scheduling algorithm, is applied at the application layer to retransmit only the corrupted RLP packets within an application layer packet. Our approach combines the flexibility and programmability of application layer adaptations, with low delay and bandwidth efficiency of link layer techniques. Socket-level simulations are presented to verify the effectiveness of our approach.

  9. Cross-Layer Techniques for Adaptive Video Streaming over Wireless Networks

    Science.gov (United States)

    Shan, Yufeng

    2005-12-01

    Real-time streaming media over wireless networks is a challenging proposition due to the characteristics of video data and wireless channels. In this paper, we propose a set of cross-layer techniques for adaptive real-time video streaming over wireless networks. The adaptation is done with respect to both channel and data. The proposed novel packetization scheme constructs the application layer packet in such a way that it is decomposed exactly into an integer number of equal-sized radio link protocol (RLP) packets. FEC codes are applied within an application packet at the RLP packet level rather than across different application packets and thus reduce delay at the receiver. A priority-based ARQ, together with a scheduling algorithm, is applied at the application layer to retransmit only the corrupted RLP packets within an application layer packet. Our approach combines the flexibility and programmability of application layer adaptations, with low delay and bandwidth efficiency of link layer techniques. Socket-level simulations are presented to verify the effectiveness of our approach.

  10. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  11. Agent-Based Simulation Analysis for Network Formation

    OpenAIRE

    神原, 李佳; 林田, 智弘; 西﨑, 一郎; 片桐, 英樹

    2009-01-01

    In the mathematical models for network formation by Bala and Goyal(2000), it is shown that a star network is the strict Nash equilibrium. However, the result of the experiments in a laboratory using human subjects by Berninghaus et al.(2007) basing on the model of Bala and Goyal indicates that players reach a strict Nash equilibrium and deviate it. In this paper, an agent-based simulation model in which artificial adaptive agents have mechanisms of decision making and learning based on nueral...

  12. Local adaptation in the flowering-time gene network of balsam poplar, Populus balsamifera L.

    Science.gov (United States)

    Keller, Stephen R; Levsen, Nicholas; Olson, Matthew S; Tiffin, Peter

    2012-10-01

    Identifying the signature and targets of local adaptation is an increasingly important goal in empirical population genetics. Using data from 443 balsam poplar Populus balsamifera trees sampled from 31 populations, we tested for evidence of geographically variable selection shaping diversity at 27 homologues of the Arabidopsis flowering-time network. These genes are implicated in the control of seasonal phenology, an important determinant of fitness. Using 335 candidate and 412 reference single nucleotide polymorphisms (SNPs), we tested for evidence of local adaptation by searching for elevated population differentiation using F(ST)-based outlier analyses implemented in BayeScan or a Hierarchical Model in Arelquin and by testing for significant associations between allele frequency and environmental variables using BAYENV. A total of 46 SNPs from 14 candidate genes had signatures of local adaptation-either significantly greater population differentiation or significant covariance with one or more environmental variable relative to reference SNP distributions. Only 11 SNPs from two genes exhibited both elevated population differentiation and covariance with one or more environmental variables. Several genes including the abscisic acid gene ABI1B and the circadian clock genes ELF3 and GI5 harbored a large number of SNPs with signatures of local adaptation-with SNPs in GI5 strongly covarying with both latitude and precipitation and SNPs in ABI1B strongly covarying with temperature. In contrast to several other systems, we find little evidence that photoreceptors, including phytochromes, play an important role in local adaptation. Our results additionally show that detecting local adaptation is sensitive to the analytical approaches used and that model-based significance thresholds should be viewed with caution.

  13. The Adaptive Neural Network Control of Quadrotor Helicopter

    Directory of Open Access Journals (Sweden)

    A. S. Yushenko

    2017-01-01

    Output” system approximating the control signal for the system motion in the immediate vicinity of the sliding surface. The auxiliary neural network approximates the corrective control signal required to smooth out the high-frequency jitter effect near the sliding surface.In the course of the study a quad-copter model was designed in the MATLAB environment according to the dynamic equations as well as a controller for three angles (roll, pitch and yaw. The controller consists of a neural network for approximating the main control signals and three neural networks for approximating corrective control signals (one per the axis. Environmental perturbations are involved in model.Based on the system behavior simulation the effectiveness of the proposed control method is shown. Each of the orientation angles (roll, pitch and yaw follows the desired trajectory with high accuracy. The stability of the system motion in the sliding surface vicinity is proved by Lyapunov method. The simulation results of the neural network controller and a quad-copter dynamic model in the MATLAB environment allow us to draw conclusion that the proposed control method ensures the stable motion along a given trajectory even despite environmental perturbations.

  14. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    The availability of location information in mobile devices, e.g., through built-in GPS receivers in smart phones, has motivated the investigation of the usefulness of location based network optimizations. Since the quality of input information is important for network optimizations, a main focus...... of this work is to evaluate how location based network optimizations are affected by varying quality of input information such as location information and user movements. The first contribution in this thesis concerns cooperative network-based localization systems. The investigations focus on assessing...... the achievable accuracy of future localization system in mobile settings, as well as quantifying the impact of having a realistic model of the required measurement exchanges. Secondly, this work has considered different large scale and small scale location based network optimizations, namely centralized relay...

  15. Bayesian filtering in spiking neural networks: noise, adaptation, and multisensory integration.

    Science.gov (United States)

    Bobrowski, Omer; Meir, Ron; Eldar, Yonina C

    2009-05-01

    A key requirement facing organisms acting in uncertain dynamic environments is the real-time estimation and prediction of environmental states, based on which effective actions can be selected. While it is becoming evident that organisms employ exact or approximate Bayesian statistical calculations for these purposes, it is far less clear how these putative computations are implemented by neural networks in a strictly dynamic setting. In this work, we make use of rigorous mathematical results from the theory of continuous time point process filtering and show how optimal real-time state estimation and prediction may be implemented in a general setting using simple recurrent neural networks. The framework is applicable to many situations of common interest, including noisy observations, non-Poisson spike trains (incorporating adaptation), multisensory integration, and state prediction. The optimal network properties are shown to relate to the statistical structure of the environment, and the benefits of adaptation are studied and explicitly demonstrated. Finally, we recover several existing results as appropriate limits of our general setting.

  16. Adaptive enhancement of learning protocol in hippocampal cultured networks grown on multielectrode arrays.

    Science.gov (United States)

    Pimashkin, Alexey; Gladkov, Arseniy; Mukhina, Irina; Kazantsev, Victor

    2013-01-01

    Learning in neuronal networks can be investigated using dissociated cultures on multielectrode arrays supplied with appropriate closed-loop stimulation. It was shown in previous studies that weakly respondent neurons on the electrodes can be trained to increase their evoked spiking rate within a predefined time window after the stimulus. Such neurons can be associated with weak synaptic connections in nearby culture network. The stimulation leads to the increase in the connectivity and in the response. However, it was not possible to perform the learning protocol for the neurons on electrodes with relatively strong synaptic inputs and responding at higher rates. We proposed an adaptive closed-loop stimulation protocol capable to achieve learning even for the highly respondent electrodes. It means that the culture network can reorganize appropriately its synaptic connectivity to generate a desired response. We introduced an adaptive reinforcement condition accounting for the response variability in control stimulation. It significantly enhanced the learning protocol to a large number of responding electrodes independently on its base response level. We also found that learning effect preserved after 4-6 h after training.

  17. A source-based congestion control strategy for real-time video transport on IP network

    Science.gov (United States)

    Chen, Xia; Cai, Canhui

    2005-07-01

    The goal of this paper is to design a TCP friendly real-time video transport protocol that will not only utilize network resource efficiently, but also prevent network congestion from the real-time video transmitting effectively. To this end, we proposed a source based congestion control scheme to adapt video coding rate to the channel capacity of the IP network, including three stages: rate control, rate-adaptive video encoding, and rate shaping.

  18. Structure identification and adaptive synchronization of uncertain general complex dynamical networks

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Lu Hongqian [Shandong Institute of Light Industry, Shandong Jinan 250353 (China)

    2009-12-28

    This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.

  19. Robust distributed control of spacecraft formation flying with adaptive network topology

    Science.gov (United States)

    Shasti, Behrouz; Alasty, Aria; Assadian, Nima

    2017-07-01

    In this study, the distributed six degree-of-freedom (6-DOF) coordinated control of spacecraft formation flying in low earth orbit (LEO) has been investigated. For this purpose, an accurate coupled translational and attitude relative dynamics model of the spacecraft with respect to the reference orbit (virtual leader) is presented by considering the most effective perturbation acceleration forces on LEO satellites, i.e. the second zonal harmonic and the atmospheric drag. Subsequently, the 6-DOF coordinated control of spacecraft in formation is studied. During the mission, the spacecraft communicate with each other through a switching network topology in which the weights of its graph Laplacian matrix change adaptively based on a distance-based connectivity function between neighboring agents. Because some of the dynamical system parameters such as spacecraft masses and moments of inertia may vary with time, an adaptive law is developed to estimate the parameter values during the mission. Furthermore, for the case that there is no knowledge of the unknown and time-varying parameters of the system, a robust controller has been developed. It is proved that the stability of the closed-loop system coupled with adaptation in network topology structure and optimality and robustness in control is guaranteed by the robust contraction analysis as an incremental stability method for multiple synchronized systems. The simulation results show the effectiveness of each control method in the presence of uncertainties and parameter variations. The adaptive and robust controllers show their superiority in reducing the state error integral as well as decreasing the control effort and settling time.

  20. A Quantum Cryptography Communication Network Based on Software Defined Network

    Directory of Open Access Journals (Sweden)

    Zhang Hongliang

    2018-01-01

    Full Text Available With the development of the Internet, information security has attracted great attention in today’s society, and quantum cryptography communication network based on quantum key distribution (QKD is a very important part of this field, since the quantum key distribution combined with one-time-pad encryption scheme can guarantee the unconditional security of the information. The secret key generated by quantum key distribution protocols is a very valuable resource, so making full use of key resources is particularly important. Software definition network (SDN is a new type of network architecture, and it separates the control plane and the data plane of network devices through OpenFlow technology, thus it realizes the flexible control of the network resources. In this paper, a quantum cryptography communication network model based on SDN is proposed to realize the flexible control of quantum key resources in the whole cryptography communication network. Moreover, we propose a routing algorithm which takes into account both the hops and the end-to-end availible keys, so that the secret key generated by QKD can be used effectively. We also simulate this quantum cryptography communication network, and the result shows that based on SDN and the proposed routing algorithm the performance of this network is improved since the effective use of the quantum key resources.

  1. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xin Guan

    2012-04-01

    Full Text Available Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs. Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR.We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  2. A network coding based routing protocol for underwater sensor networks.

    Science.gov (United States)

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  3. Design and optimisation of a (FA)Q-learning-based HTTP adaptive streaming client

    Science.gov (United States)

    Claeys, Maxim; Latré, Steven; Famaey, Jeroen; Wu, Tingyao; Van Leekwijck, Werner; De Turck, Filip

    2014-01-01

    In recent years, HTTP (Hypertext Transfer Protocol) adaptive streaming (HAS) has become the de facto standard for adaptive video streaming services. A HAS video consists of multiple segments, encoded at multiple quality levels. State-of-the-art HAS clients employ deterministic heuristics to dynamically adapt the requested quality level based on the perceived network conditions. Current HAS client heuristics are, however, hardwired to fit specific network configurations, making them less flexible to fit a vast range of settings. In this article, a (frequency adjusted) Q-learning HAS client is proposed. In contrast to existing heuristics, the proposed HAS client dynamically learns the optimal behaviour corresponding to the current network environment in order to optimise the quality of experience. Furthermore, the client has been optimised both in terms of global performance and convergence speed. Thorough evaluations show that the proposed client can outperform deterministic algorithms by 11-18% in terms of mean opinion score in a wide range of network configurations.

  4. Adaptive Naive Bayes classification for wireless sensor networks

    NARCIS (Netherlands)

    Zwartjes, G.J.

    2017-01-01

    Wireless Sensor Networks are tiny devices equipped with sensors and wireless communication. These devices observe environments and communicatie about these observations. Machine Learning techniques are of interest for Wireless Sensor Network applications since they can reduce the amount of needed

  5. A network security situation prediction model based on wavelet neural network with optimized parameters

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2016-08-01

    Full Text Available The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN with optimized parameters by the Improved Niche Genetic Algorithm (INGA. The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN, Genetic Algorithm-Back Propagation Neural Network (GA-BPNN and WNN.

  6. ARBR: Adaptive reinforcement-based routing for DTN

    KAUST Repository

    Elwhishi, Ahmed

    2010-10-01

    This paper introduces a novel routing protocol in Delay Tolerant Networks (DTNs), aiming to solve the online distributed routing problem. By manipulating a collaborative reinforcement learning technique, a group of nodes can cooperate with each other and make a forwarding decision for the stored messages based on a cost function at each contact with another node. The proposed protocol is characterized by not only considering the contact time statistics under a novel contact model, but also looks into the feedback on user behavior and network conditions, such as congestion and buffer occupancy sampled during each previous contact with any other node. Therefore, the proposed protocol can achieve high efficiency via an adaptive and intelligent routing mechanism according to network conditions. Extensive simulation is conducted to verify the proposed protocol, where a comparison is made with a number of existing encounter-based routing protocols in term of the number of transmissions of each message, message delivery delay, and delivery ratio. The results of the simulation demonstrate the effectiveness of the proposed technique.

  7. Exploring Educational and Cultural Adaptation through Social Networking Sites

    Science.gov (United States)

    Ryan, Sherry D.; Magro, Michael J.; Sharp, Jason H.

    2011-01-01

    Social networking sites have seen tremendous growth and are widely used around the world. Nevertheless, the use of social networking sites in educational contexts is an under explored area. This paper uses a qualitative methodology, autoethnography, to investigate how social networking sites, specifically Facebook[TM], can help first semester…

  8. Adaptive Control Parameters for Dispersal of Multi-Agent Mobile Ad Hoc Network (MANET) Swarms

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Derr; Milos Manic

    2013-11-01

    A mobile ad hoc network is a collection of independent nodes that communicate wirelessly with one another. This paper investigates nodes that are swarm robots with communications and sensing capabilities. Each robot in the swarm may operate in a distributed and decentralized manner to achieve some goal. This paper presents a novel approach to dynamically adapting control parameters to achieve mesh configuration stability. The presented approach to robot interaction is based on spring force laws (attraction and repulsion laws) to create near-optimal mesh like configurations. In prior work, we presented the extended virtual spring mesh (EVSM) algorithm for the dispersion of robot swarms. This paper extends the EVSM framework by providing the first known study on the effects of adaptive versus static control parameters on robot swarm stability. The EVSM algorithm provides the following novelties: 1) improved performance with adaptive control parameters and 2) accelerated convergence with high formation effectiveness. Simulation results show that 120 robots reach convergence using adaptive control parameters more than twice as fast as with static control parameters in a multiple obstacle environment.

  9. Adaptive cyclically dominating game on co-evolving networks: numerical and analytic results

    Science.gov (United States)

    Choi, Chi Wun; Xu, Chen; Hui, Pak Ming

    2017-10-01

    A co-evolving and adaptive Rock (R)-Paper (P)-Scissors (S) game (ARPS) in which an agent uses one of three cyclically dominating strategies is proposed and studied numerically and analytically. An agent takes adaptive actions to achieve a neighborhood to his advantage by rewiring a dissatisfying link with a probability p or switching strategy with a probability 1 - p. Numerical results revealed two phases in the steady state. An active phase for p pc has three separate clusters of agents using only R, P, and S, respectively with terminated adaptive actions. A mean-field theory based on the link densities in co-evolving network is formulated and the trinomial closure scheme is applied to obtain analytical solutions. The analytic results agree with simulation results on ARPS well. In addition, the different probabilities of winning, losing, and drawing a game among the agents are identified as the origin of the small discrepancy between analytic and simulation results. As a result of the adaptive actions, agents of higher degrees are often those being taken advantage of. Agents with a smaller (larger) degree than the mean degree have a higher (smaller) probability of winning than losing. The results are informative for future attempts on formulating more accurate theories.

  10. An Efficient and Self-Adapting Localization in Static Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wei Dong

    2009-08-01

    Full Text Available Localization is one of the most important subjects in Wireless Sensor Networks (WSNs. To reduce the number of beacons and adopt probabilistic methods, some particle filter-based mobile beacon-assisted localization approaches have been proposed, such as Mobile Beacon-assisted Localization (MBL, Adapting MBL (A-MBL, and the method proposed by Hang et al. Some new significant problems arise in these approaches, however. The first question is which probability distribution should be selected as the dynamic model in the prediction stage. The second is whether the unknown node adopts neighbors’ observation in the update stage. The third is how to find a self-adapting mechanism to achieve more flexibility in the adapting stage. In this paper, we give the theoretical analysis and experimental evaluations to suggest which probability distribution in the dynamic model should be adopted to improve the efficiency in the prediction stage. We also give the condition for whether the unknown node should use the observations from its neighbors to improve the accuracy. Finally, we propose a Self-Adapting Mobile Beacon-assisted Localization (SA-MBL approach to achieve more flexibility and achieve almost the same performance with A-MBL.

  11. Adaptive TrimTree: Green Data Center Networks through Resource Consolidation, Selective Connectedness and Energy Proportional Computing

    Directory of Open Access Journals (Sweden)

    Saima Zafar

    2016-10-01

    Full Text Available A data center is a facility with a group of networked servers used by an organization for storage, management and dissemination of its data. The increase in data center energy consumption over the past several years is staggering, therefore efforts are being initiated to achieve energy efficiency of various components of data centers. One of the main reasons data centers have high energy inefficiency is largely due to the fact that most organizations run their data centers at full capacity 24/7. This results into a number of servers and switches being underutilized or even unutilized, yet working and consuming electricity around the clock. In this paper, we present Adaptive TrimTree; a mechanism that employs a combination of resource consolidation, selective connectedness and energy proportional computing for optimizing energy consumption in a Data Center Network (DCN. Adaptive TrimTree adopts a simple traffic-and-topology-based heuristic to find a minimum power network subset called ‘active network subset’ that satisfies the existing network traffic conditions while switching off the residual unused network components. A ‘passive network subset’ is also identified for redundancy which consists of links and switches that can be required in future and this subset is toggled to sleep state. An energy proportional computing technique is applied to the active network subset for adapting link data rates to workload thus maximizing energy optimization. We have compared our proposed mechanism with fat-tree topology and ElasticTree; a scheme based on resource consolidation. Our simulation results show that our mechanism saves 50%–70% more energy as compared to fat-tree and 19.6% as compared to ElasticTree, with minimal impact on packet loss percentage and delay. Additionally, our mechanism copes better with traffic anomalies and surges due to passive network provision.

  12. Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks

    Science.gov (United States)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.

  13. Virtual reality adaptive stimulation of limbic networks in the mental readiness training.

    Science.gov (United States)

    Cosić, Kresimir; Popović, Sinisa; Kostović, Ivica; Judas, Milos

    2010-01-01

    A significant proportion of severe psychological problems in recent large-scale peacekeeping operations underscores the importance of effective methods for strengthening the stress resilience. Virtual reality (VR) adaptive stimulation, based on the estimation of the participant's emotional state from physiological signals, may enhance the mental readiness training (MRT). Understanding neurobiological mechanisms by which the MRT based on VR adaptive stimulation can affect the resilience to stress is important for practical application in the stress resilience management. After the delivery of a traumatic audio-visual stimulus in the VR, the cascade of events occurs in the brain, which evokes various physiological manifestations. In addition to the "limbic" emotional and visceral brain circuitry, other large-scale sensory, cognitive, and memory brain networks participate with less known impact in this physiological response. The MRT based on VR adaptive stimulation may strengthen the stress resilience through targeted brain-body interactions. Integrated interdisciplinary efforts, which would integrate the brain imaging and the proposed approach, may contribute to clarifying the neurobiological foundation of the resilience to stress.

  14. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Chaudhari

    2011-06-01

    Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.

  15. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks

  16. Adaptive Noise Cancellation for speech Employing Fuzzy and Neural Network

    OpenAIRE

    Mohammed Hussein Miry; Ali Hussein Miry; Hussain Kareem Khleaf

    2011-01-01

    Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications such as noise cancellation. Noise cancellation is a common occurrence in today telecommunication systems. The LMS algorithm which is one of the most efficient criteria for determining the values of the adaptive noise cancellation coefficient...

  17. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  18. Adaptation and Fatigue Model for Neuron Networks and Large Time Asymptotics in a Nonlinear Fragmentation Equation

    National Research Council Canada - National Science Library

    Pakdaman, Khashayar; Perthame, Benoît; Salort, Delphine

    2014-01-01

    Motivated by a model for neural networks with adaptation and fatigue, we study a conservative fragmentation equation that describes the density probability of neurons with an elapsed time s after its last...

  19. Adaptive protection coordination scheme for distribution network with distributed generation using ABC

    National Research Council Canada - National Science Library

    Ibrahim, A.M; El-Khattam, W; ElMesallamy, M; Talaat, H.A

    2016-01-01

    This paper presents an adaptive protection coordination scheme for optimal coordination of DOCRs in interconnected power networks with the impact of DG, the used coordination technique is the Artificial Bee Colony (ABC...

  20. Adaptive RBF Neural Network Control for Three-Phase Active Power Filter

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2013-05-01

    Full Text Available Abstract An adaptive radial basis function (RBF neural network control system for three-phase active power filter (APF is proposed to eliminate harmonics. Compensation current is generated to track command current so as to eliminate the harmonic current of non-linear load and improve the quality of the power system. The asymptotical stability of the APF system can be guaranteed with the proposed adaptive neural network strategy. The parameters of the neural network can be adaptively updated to achieve the desired tracking task. The simulation results demonstrate good performance, for example showing small current tracking error, reduced total harmonic distortion (THD, improved accuracy and strong robustness in the presence of parameters variation and nonlinear load. It is shown that the adaptive RBF neural network control system for three-phase APF gives better control than hysteresis control.

  1. Adaptive Multiclient Network-on-Chip Memory Core: Hardware Architecture, Software Abstraction Layer, and Application Exploration

    Directory of Open Access Journals (Sweden)

    Diana Göhringer

    2012-01-01

    Full Text Available This paper presents the hardware architecture and the software abstraction layer of an adaptive multiclient Network-on-Chip (NoC memory core. The memory core supports the flexibility of a heterogeneous FPGA-based runtime adaptive multiprocessor system called RAMPSoC. The processing elements, also called clients, can access the memory core via the Network-on-Chip (NoC. The memory core supports a dynamic mapping of an address space for the different clients as well as different data transfer modes, such as variable burst sizes. Therefore, two main limitations of FPGA-based multiprocessor systems, the restricted on-chip memory resources and that usually only one physical channel to an off-chip memory exists, are leveraged. Furthermore, a software abstraction layer is introduced, which hides the complexity of the memory core architecture and which provides an easy to use interface for the application programmer. Finally, the advantages of the novel memory core in terms of performance, flexibility, and user friendliness are shown using a real-world image processing application.

  2. An adaptive random search for short term generation scheduling with network constraints.

    Directory of Open Access Journals (Sweden)

    J A Marmolejo

    Full Text Available This paper presents an adaptive random search approach to address a short term generation scheduling with network constraints, which determines the startup and shutdown schedules of thermal units over a given planning horizon. In this model, we consider the transmission network through capacity limits and line losses. The mathematical model is stated in the form of a Mixed Integer Non Linear Problem with binary variables. The proposed heuristic is a population-based method that generates a set of new potential solutions via a random search strategy. The random search is based on the Markov Chain Monte Carlo method. The main key of the proposed method is that the noise level of the random search is adaptively controlled in order to exploring and exploiting the entire search space. In order to improve the solutions, we consider coupling a local search into random search process. Several test systems are presented to evaluate the performance of the proposed heuristic. We use a commercial optimizer to compare the quality of the solutions provided by the proposed method. The solution of the proposed algorithm showed a significant reduction in computational effort with respect to the full-scale outer approximation commercial solver. Numerical results show the potential and robustness of our approach.

  3. Understanding Migration as an Adaptation in Deltas Using a Bayesian Network Model

    Science.gov (United States)

    Lázár, A. N.; Adams, H.; de Campos, R. S.; Mortreux, C. C.; Clarke, D.; Nicholls, R. J.; Amisigo, B. A.

    2016-12-01

    Deltas are hotspots of high population density, fertile lands and dramatic environmental and anthropogenic pressures and changes. Amongst other environmental factors, sea level rise, soil salinization, water shortages and erosion threaten people's livelihoods and wellbeing. As a result, there is a growing concern that significant environmental change induced migration might occur from these areas. Migration, however, is already happening for economic, education and other reasons (e.g. livelihood change, marriage, planned relocation, etc.). Migration hence has multiple, interlinked drivers and depending on the perspective, can be considered as a positive or negative phenomenon. The DECCMA project (Deltas, Vulnerability & Climate Change: Migration & Adaptation) studies migration as part of a suite of adaptation options available to the coastal populations in the Ganges delta in Bangladesh, the Mahanadi delta in India and the Volta delta in Ghana. It aims to develop a holistic framework of analysis that assesses the impact of climate and environmental change on the migration patterns of these areas. This assessment framework will couple environmental, socio-economics and governance dimensions in an attempt to synthesise drivers and barriers and allow testing of plausible future scenarios. One of the integrative methods of DECCMA is a Bayesian Belief Network (BBN) model describing the decision-making of a coastal household. BBN models are built on qualitative and quantitative observations/expert knowledge and describe the probability of different events/responses etc. BBN models are especially useful to capture uncertainties of large systems and engaging with stakeholders. The DECCMA BBN model is based on household survey results from delta migrant sending areas. This presentation will describe model elements (livelihood sensitivity to climate change, local and national adaptation options, household characteristics/attitude, social networks, household decision) and

  4. Adaptive Data Gathering in Mobile Sensor Networks Using Speedy Mobile Elements

    Directory of Open Access Journals (Sweden)

    Yongxuan Lai

    2015-09-01

    Full Text Available Data gathering is a key operator for applications in wireless sensor networks; yet it is also a challenging problem in mobile sensor networks when considering that all nodes are mobile and the communications among them are opportunistic. This paper proposes an efficient data gathering scheme called ADG that adopts speedy mobile elements as the mobile data collector and takes advantage of the movement patterns of the network. ADG first extracts the network meta-data at initial epochs, and calculates a set of proxy nodes based on the meta-data. Data gathering is then mapped into the Proxy node Time Slot Allocation (PTSA problem that schedules the time slots and orders, according to which the data collector could gather the maximal amount of data within a limited period. Finally, the collector follows the schedule and picks up the sensed data from the proxy nodes through one hop of message transmissions. ADG learns the period when nodes are relatively stationary, so that the collector is able to pick up the data from them during the limited data gathering period. Moreover, proxy nodes and data gathering points could also be timely updated so that the collector could adapt to the change of node movements. Extensive experimental results show that the proposed scheme outperforms other data gathering schemes on the cost of message transmissions and the data gathering rate, especially under the constraint of limited data gathering period.

  5. Durer-pentagon-based complex network

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2016-04-01

    Full Text Available A novel Durer-pentagon-based complex network was constructed by adding a centre node. The properties of the complex network including the average degree, clustering coefficient, average path length, and fractal dimension were determined. The proposed complex network is small-world and fractal.

  6. Adapting water management to climate change: Institutional involvement, inter-institutional networks and barriers in India

    OpenAIRE

    Azhoni, Adani; Holman, Ian P.; Jude, Simon J.

    2017-01-01

    The capacity of a nation to address the hydrological impacts of climate change depends on the institutions through which water is governed. Inter-institutional networks that enable institutions to adapt and the factors that hinder smooth coordination are poorly understood. Using water governance in India as an example of a complex top-down bureaucratic system that requires effective networks between all key institutions, this research unravels the barriers to adaptation by combining quantitat...

  7. Simulation and experimental testbed for adaptive video streaming in ad hoc networks

    OpenAIRE

    Gonzalez-Martinez, Santiago Renan; Castellanos Hernández, Wilder Eduardo; Guzman Castillo, Paola Fernanda; Arce Vila, Pau; Guerri Cebollada, Juan Carlos

    2016-01-01

    This paper presents a performance evaluation of the scalable video streaming over mobile ad hoc networks. In particular, we focus on the rate-adaptive method for streaming scalable video (H.264/SVC). For effective adaptation a new cross-layer routing protocol is introduced. This protocol provides an efficient algorithm for available bandwidth estimation. With this information, the video source adjusts its bit rate during the video transmission according to the network state. We also propose a...

  8. Adaptive BCI based on software agents.

    Science.gov (United States)

    Castillo-Garcia, Javier; Cotrina, Anibal; Benevides, Alessandro; Delisle-Rodriguez, Denis; Longo, Berthil; Caicedo, Eduardo; Ferreira, Andre; Bastos, Teodiano

    2014-01-01

    The selection of features is generally the most difficult field to model in BCIs. Therefore, time and effort are invested in individual feature selection prior to data set training. Another great difficulty regarding the model of the BCI topology is the brain signal variability between users. How should this topology be in order to implement a system that can be used by large number of users with an optimal set of features? The proposal presented in this paper allows for obtaining feature reduction and classifier selection based on software agents. The software agents contain Genetic Algorithms (GA) and a cost function. GA used entropy and mutual information to choose the number of features. For the classifier selection a cost function was defined. Success rate and Cohen's Kappa coefficient are used as parameters to evaluate the classifiers performance. The obtained results allow finding a topology represented as a neural model for an adaptive BCI, where the number of the channels, features and the classifier are interrelated. The minimal subset of features and the optimal classifier were obtained with the adaptive BCI. Only three EEG channels were needed to obtain a success rate of 93% for the BCI competition III data set IVa.

  9. Finding Robust Adaptation Gene Regulatory Networks Using Multi-Objective Genetic Algorithm.

    Science.gov (United States)

    Ren, Hai-Peng; Huang, Xiao-Na; Hao, Jia-Xuan

    2016-01-01

    Robust adaptation plays a key role in gene regulatory networks, and it is thought to be an important attribute for the organic or cells to survive in fluctuating conditions. In this paper, a simplified three-node enzyme network is modeled by the Michaelis-Menten rate equations for all possible topologies, and a family of topologies and the corresponding parameter sets of the network with satisfactory adaptation are obtained using the multi-objective genetic algorithm. The proposed approach improves the computation efficiency significantly as compared to the time consuming exhaustive searching method. This approach provides a systemic way for searching the feasible topologies and the corresponding parameter sets to make the gene regulatory networks have robust adaptation. The proposed methodology, owing to its universality and simplicity, can be used to address more complex issues in biological networks.

  10. TRICALCAR : Weaving Community Based Wireless Networks in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This grant will support a capacity-building and applied research project on community wireless networking in Latin America and the Caribbean (LAC). Researchers will review, update and adapt 18 existing online thematic modules, and design seven new ones. A group of wireless experts with expertise in the social impacts ...

  11. A conceptual model for the development process of confirmatory adaptive clinical trials within an emergency research network.

    Science.gov (United States)

    Mawocha, Samkeliso C; Fetters, Michael D; Legocki, Laurie J; Guetterman, Timothy C; Frederiksen, Shirley; Barsan, William G; Lewis, Roger J; Berry, Donald A; Meurer, William J

    2017-06-01

    Adaptive clinical trials use accumulating data from enrolled subjects to alter trial conduct in pre-specified ways based on quantitative decision rules. In this research, we sought to characterize the perspectives of key stakeholders during the development process of confirmatory-phase adaptive clinical trials within an emergency clinical trials network and to build a model to guide future development of adaptive clinical trials. We used an ethnographic, qualitative approach to evaluate key stakeholders' views about the adaptive clinical trial development process. Stakeholders participated in a series of multidisciplinary meetings during the development of five adaptive clinical trials and completed a Strengths-Weaknesses-Opportunities-Threats questionnaire. In the analysis, we elucidated overarching themes across the stakeholders' responses to develop a conceptual model. Four major overarching themes emerged during the analysis of stakeholders' responses to questioning: the perceived statistical complexity of adaptive clinical trials and the roles of collaboration, communication, and time during the development process. Frequent and open communication and collaboration were viewed by stakeholders as critical during the development process, as were the careful management of time and logistical issues related to the complexity of planning adaptive clinical trials. The Adaptive Design Development Model illustrates how statistical complexity, time, communication, and collaboration are moderating factors in the adaptive design development process. The intensity and iterative nature of this process underscores the need for funding mechanisms for the development of novel trial proposals in academic settings.

  12. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  13. Neural network adapted to wound cell analysis in surgical patients.

    Science.gov (United States)

    Viljanto, Jouko; Koski, Antti

    2011-01-01

    Assessment of the real state of wound healing of closed surgical wounds is uncertain both clinically and from conventional laboratory tests. Therefore, a novel approach based on early analysis of exactly timed wound cells, computerized further with an artificial neural network, was developed. At the end of routine surgery performed on 481 children under 18 years of age, a specific wound drain Cellstick™ was inserted subcutaneously between the wound edges to harvest wound cells. The Cellsticks™ were removed from 1 to 50 hours, mainly at hour 3 or 24 postsurgery. Immediately, the cellular contents were washed out using a pump constructed for the purpose. After cytocentrifugation, the cells were stained and counted differentially. Based on their relative proportions at selected time intervals, an artificial self-organizing neural map was developed. This was further transformed to a unidirectional linear graph where each node represents one set of relative cell quantities. As early as 3 hours, but more precisely 24 hours after surgery, the location of the nodes on this graph showed individually the patients' initial speed of wound inflammatory cell response. Similarly, timed Cellstick™ specimens from new surgical patients could be analyzed, computerized, and compared with these node values to assess their initial speed in wound inflammatory cell response. Location of the node on the graph does not express the time lapse after surgery but the speed of wound inflammatory cell response in relation to that of other patients. © 2011 by the Wound Healing Society.

  14. Network Adaptability from WMD Disruption and Cascading Failures

    Science.gov (United States)

    2016-04-01

    and this will cause a traffic flood which may cause blocking or congestion of services required for rescue operations. After the post-attack period...Transparent Optical Networks (ICTON), Stockholm, Sweden ; June 27, 2011. 4. B. Mukherjee, "Panorama of Optical Network Survivability," Keynote Talk...Design and Modeling Conference, Kista, Sweden , May 22, 2014. 8. B. Mukherjee, “Disaster preparedness for network and information infrastructures

  15. Almost Sure Asymptotical Adaptive Synchronization for Neutral-Type Neural Networks with Stochastic Perturbation and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Wuneng Zhou

    2014-01-01

    Full Text Available The problem of almost sure (a.s. asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching is researched. Firstly, we proposed a new criterion of a.s. asymptotic stability for a general neutral-type stochastic differential equation which extends the existing results. Secondly, based upon this stability criterion, by making use of Lyapunov functional method and designing an adaptive controller, we obtained a condition of a.s. asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching. The synchronization condition is expressed as linear matrix inequality which can be easily solved by Matlab. Finally, we introduced a numerical example to illustrate the effectiveness of the method and result obtained in this paper.

  16. Data systems and computer science: Neural networks base R/T program overview

    Science.gov (United States)

    Gulati, Sandeep

    1991-01-01

    The research base, in the U.S. and abroad, for the development of neural network technology is discussed. The technical objectives are to develop and demonstrate adaptive, neural information processing concepts. The leveraging of external funding is also discussed.

  17. Incongruity-Based Adaptive Game Balancing

    Science.gov (United States)

    van Lankveld, Giel; Spronck, Pieter; van den Herik, H. Jaap; Rauterberg, Matthias

    Commercial games possess various methods of game balancing. Each of them modifies the game's entertainment value for players of different skill levels. This paper deals with one of them, viz. a way of automatically adapting a game's balance which is based on the theory of incongruity. We tested our approach on a group of subjects, who played a game with three difficulty settings. The idea is to maintain a specific difference in incongruity automatically. We tested our idea extensively and may report that the results coincide with the theory of incongruity as far as positive incongruity is concerned. The main conclusion is that, owing to our automatically maintained balanced difficulty setting, we can avoid that a game becomes boring or frustrating.

  18. Social-based autonomic routing in opportunistic networks

    Science.gov (United States)

    Boldrini, Chiara; Conti, Marco; Passarella, Andrea

    In opportunistic networks end-to-end communication between users does not require a continuous end-to-end path between source and destination. Network protocols are designed to be extremely resilient to events such as long partitions, node disconnections, etc, which are very features of this type of self-organizing ad hoc networks. This is achieved by temporarily storing messages at intermediate nodes, waiting for future opportunities to forward them towards the destination. The mobility of users plays a key role in opportunistic networks. Thus, providing accurate models of mobility patterns is one of the key research areas. In this chapter we firstly focus on this issue, with special emphasis on a class of social-aware models. These models are based on the observation that people move because they are attracted towards other people they have social relationships with, or towards physical places that have special meaning with respect to their social behavior. Another key research area in opportunistic networks is clearly designing routing and forwarding schemes. In this chapter we provide a survey of the main approaches to routing in purely infrastructure-less opportunistic networks, by classifying protocols based on the amount of context information they exploit.We then provide an extensive quantitative comparison between representatives of protocols that do not use any context information, and protocols that manage and exploit a rich set of context information. We mainly focus on the suitability of protocols to adapt to the dynamically changing network features, as resulting from the user movement patterns that are driven by their social behavior. Our results show that context-aware routing is extremely adaptive to dynamic networking scenarios, and, with respect to protocols that do not use any context information, is able to provide similar performance in terms of delay and loss rate, by using just a small fraction of the network resources.

  19. Artificial organic networks artificial intelligence based on carbon networks

    CERN Document Server

    Ponce-Espinosa, Hiram; Molina, Arturo

    2014-01-01

    This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: ·        approximation; ·        inference; ·        clustering; ·        control; ·        class...

  20. Process Network Approach to Understanding How Forest Ecosystems Adapt to Changes

    Science.gov (United States)

    Kim, J.; Yun, J.; Hong, J.; Kwon, H.; Chun, J.

    2011-12-01

    Sustainability challenges are transforming science and its role in society. Complex systems science has emerged as an inevitable field of education and research, which transcends disciplinary boundaries and focuses on understanding of the dynamics of complex social-ecological systems (SES). SES is a combined system of social and ecological components and drivers that interact and give rise to results, which could not be understood on the basis of sociological or ecological considerations alone. However, both systems may be viewed as a network of processes, and such a network hierarchy may serve as a hinge to bridge social and ecological systems. As a first step toward such effort, we attempted to delineate and interpret such process networks in forest ecosystems, which play a critical role in the cycles of carbon and water from local to global scales. These cycles and their variability, in turn, play an important role in the emergent and self-organizing interactions between forest ecosystems and their environment. Ruddell and Kumar (2009) define a process network as a network of feedback loops and the related time scales, which describe the magnitude and direction of the flow of energy, matter, and information between the different variables in a complex system. Observational evidence, based on micrometeorological eddy covariance measurements, suggests that heterogeneity and disturbances in forest ecosystems in monsoon East Asia may facilitate to build resilience for adaptation to change. Yet, the principles that characterize the role of variability in these interactions remain elusive. In this presentation, we report results from the analysis of multivariate ecohydrologic and biogeochemical time series data obtained from temperate forest ecosystems in East Asia based on information flow statistics.

  1. Adaptive protection coordination scheme for distribution network with distributed generation using ABC

    Directory of Open Access Journals (Sweden)

    A.M. Ibrahim

    2016-09-01

    Full Text Available This paper presents an adaptive protection coordination scheme for optimal coordination of DOCRs in interconnected power networks with the impact of DG, the used coordination technique is the Artificial Bee Colony (ABC. The scheme adapts to system changes; new relays settings are obtained as generation-level or system-topology changes. The developed adaptive scheme is applied on the IEEE 30-bus test system for both single- and multi-DG existence where results are shown and discussed.

  2. AES based secure low energy adaptive clustering hierarchy for WSNs

    Science.gov (United States)

    Kishore, K. R.; Sarma, N. V. S. N.

    2013-01-01

    Wireless sensor networks (WSNs) provide a low cost solution in diversified application areas. The wireless sensor nodes are inexpensive tiny devices with limited storage, computational capability and power. They are being deployed in large scale in both military and civilian applications. Security of the data is one of the key concerns where large numbers of nodes are deployed. Here, an energy-efficient secure routing protocol, secure-LEACH (Low Energy Adaptive Clustering Hierarchy) for WSNs based on the Advanced Encryption Standard (AES) is being proposed. This crypto system is a session based one and a new session key is assigned for each new session. The network (WSN) is divided into number of groups or clusters and a cluster head (CH) is selected among the member nodes of each cluster. The measured data from the nodes is aggregated by the respective CH's and then each CH relays this data to another CH towards the gateway node in the WSN which in turn sends the same to the Base station (BS). In order to maintain confidentiality of data while being transmitted, it is necessary to encrypt the data before sending at every hop, from a node to the CH and from the CH to another CH or to the gateway node.

  3. Network Medicine: A Network-based Approach to Human Diseases

    Science.gov (United States)

    Ghiassian, Susan Dina

    With the availability of large-scale data, it is now possible to systematically study the underlying interaction maps of many complex systems in multiple disciplines. Statistical physics has a long and successful history in modeling and characterizing systems with a large number of interacting individuals. Indeed, numerous approaches that were first developed in the context of statistical physics, such as the notion of random walks and diffusion processes, have been applied successfully to study and characterize complex systems in the context of network science. Based on these tools, network science has made important contributions to our understanding of many real-world, self-organizing systems, for example in computer science, sociology and economics. Biological systems are no exception. Indeed, recent studies reflect the necessity of applying statistical and network-based approaches in order to understand complex biological systems, such as cells. In these approaches, a cell is viewed as a complex network consisting of interactions among cellular components, such as genes and proteins. Given the cellular network as a platform, machinery, functionality and failure of a cell can be studied with network-based approaches, a field known as systems biology. Here, we apply network-based approaches to explore human diseases and their associated genes within the cellular network. This dissertation is divided in three parts: (i) A systematic analysis of the connectivity patterns among disease proteins within the cellular network. The quantification of these patterns inspires the design of an algorithm which predicts a disease-specific subnetwork containing yet unknown disease associated proteins. (ii) We apply the introduced algorithm to explore the common underlying mechanism of many complex diseases. We detect a subnetwork from which inflammatory processes initiate and result in many autoimmune diseases. (iii) The last chapter of this dissertation describes the

  4. Methodology for Simulation and Analysis of Complex Adaptive Supply Network Structure and Dynamics Using Information Theory

    Directory of Open Access Journals (Sweden)

    Joshua Rodewald

    2016-10-01

    Full Text Available Supply networks existing today in many industries can behave as complex adaptive systems making them more difficult to analyze and assess. Being able to fully understand both the complex static and dynamic structures of a complex adaptive supply network (CASN are key to being able to make more informed management decisions and prioritize resources and production throughout the network. Previous efforts to model and analyze CASN have been impeded by the complex, dynamic nature of the systems. However, drawing from other complex adaptive systems sciences, information theory provides a model-free methodology removing many of those barriers, especially concerning complex network structure and dynamics. With minimal information about the network nodes, transfer entropy can be used to reverse engineer the network structure while local transfer entropy can be used to analyze the network structure’s dynamics. Both simulated and real-world networks were analyzed using this methodology. Applying the methodology to CASNs allows the practitioner to capitalize on observations from the highly multidisciplinary field of information theory which provides insights into CASN’s self-organization, emergence, stability/instability, and distributed computation. This not only provides managers with a more thorough understanding of a system’s structure and dynamics for management purposes, but also opens up research opportunities into eventual strategies to monitor and manage emergence and adaption within the environment.

  5. An Information Theoretic Investigation Of Complex Adaptive Supply Networks With Organizational Topologies

    Science.gov (United States)

    2016-12-22

    trains of organizational elements, just as in neuroscience , one can determine the information flow patterns through the organization . [9] 6 Transfer...many service industries. Organizations have been noted to behave as complex adaptive systems or information supply networks with both formal and...informal structures. Thoroughly understanding supply network structure and behavior are critical to managing such organizations effectively, but their

  6. FUZZY LOGIC BASED ENERGY EFFICIENT PROTOCOL IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Zhan Wei Siew

    2012-12-01

    Full Text Available Wireless sensor networks (WSNs have been vastly developed due to the advances in microelectromechanical systems (MEMS using WSN to study and monitor the environments towards climates changes. In environmental monitoring, sensors are randomly deployed over the interest area to periodically sense the physical environments for a few months or even a year. Therefore, to prolong the network lifetime with limited battery capacity becomes a challenging issue. Low energy adaptive cluster hierarchical (LEACH is the common clustering protocol that aim to reduce the energy consumption by rotating the heavy workload cluster heads (CHs. The CHs election in LEACH is based on probability model which will lead to inefficient in energy consumption due to least desired CHs location in the network. In WSNs, the CHs location can directly influence the network energy consumption and further affect the network lifetime. In this paper, factors which will affect the network lifetime will be presented and the demonstration of fuzzy logic based CH selection conducted in base station (BS will also be carried out. To select suitable CHs that will prolong the network first node dies (FND round and consistent throughput to the BS, energy level and distance to the BS are selected as fuzzy inputs.

  7. Network repair based on community structure

    Science.gov (United States)

    Wang, Tianyu; Zhang, Jun; Sun, Xiaoqian; Wandelt, Sebastian

    2017-06-01

    Real-world complex systems are often fragile under disruptions. Accordingly, research on network repair has been studied intensively. Recently proposed efficient strategies for network disruption, based on collective influence, call for more research on efficient network repair strategies. Existing strategies are often designed to repair networks with local information only. However, the absence of global information impedes the creation of efficient repairs. Motivated by this limitation, we propose a concept of community-level repair, which leverages the community structure of the network during the repair process. Moreover, we devise a general framework of network repair, with in total six instances. Evaluations on real-world and random networks show the effectiveness and efficiency of the community-level repair approaches, compared to local and random repairs. Our study contributes to a better understanding of repair processes, and reveals that exploitation of the community structure improves the repair process on a disrupted network significantly.

  8. Community Based Networks and 5G

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2016-01-01

    is hinged on a research aimed at understanding how and why Community Based Networks deploy telecom and Broadband infrastructure. The study was a qualitative study carried out inductively using Grounded Theory. Six cases were investigated.Two Community Based Network Mobilization models were identified......The deployment of previous wireless standards has provided more benefits for urban dwellers than rural dwellers. 5G deployment may not be different. This paper identifies that Community Based Networks as carriers that deserve recognition as potential 5G providers may change this. The argument....... The findings indicate that 5G connectivity can be extended to rural areas by these networks, via heterogenous networks. Hence the delivery of 5G data rates delivery via Wireless WAN in rural areas can be achieved by utilizing the causal factors of the identified models for Community Based Networks....

  9. Projection-based adaptive neurocontrol with switching logic deadzone tuning.

    Science.gov (United States)

    Psillakis, Haris E

    2009-09-01

    In this brief, an adaptive neural network (NN) controller is proposed for multiple-input-multiple-output (MIMO) nonlinear systems with triangular control structure and unknown control directions. Deadzones are employed in the projection-based NN weight learning laws and the Nussbaum parameter update laws with levels tuned by an innovative switching logic tuning mechanism. Detailed analysis using a family of Lyapunov-like integral functions and the function approximation capability of NNs proves that all the tracking errors are semiglobal uniform ultimate bounded in small neighborhoods of the origin while the closed-loop system variables (state vector, NN weights, Nussbaum parameters) and the control law remain bounded. A simulation study confirms the theoretical results and verifies the effectiveness of the proposed design.

  10. Optimal inverse magnetorheological damper modeling using shuffled frog-leaping algorithm–based adaptive neuro-fuzzy inference system approach

    Directory of Open Access Journals (Sweden)

    Xiufang Lin

    2016-08-01

    Full Text Available Magnetorheological dampers have become prominent semi-active control devices for vibration mitigation of structures which are subjected to severe loads. However, the damping force cannot be controlled directly due to the inherent nonlinear characteristics of the magnetorheological dampers. Therefore, for fully exploiting the capabilities of the magnetorheological dampers, one of the challenging aspects is to develop an accurate inverse model which can appropriately predict the input voltage to control the damping force. In this article, a hybrid modeling strategy combining shuffled frog-leaping algorithm and adaptive-network-based fuzzy inference system is proposed to model the inverse dynamic characteristics of the magnetorheological dampers for improving the modeling accuracy. The shuffled frog-leaping algorithm is employed to optimize the premise parameters of the adaptive-network-based fuzzy inference system while the consequent parameters are tuned by a least square estimation method, here known as shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system approach. To evaluate the effectiveness of the proposed approach, the inverse modeling results based on the shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system approach are compared with those based on the adaptive-network-based fuzzy inference system and genetic algorithm–based adaptive-network-based fuzzy inference system approaches. Analysis of variance test is carried out to statistically compare the performance of the proposed methods and the results demonstrate that the shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system strategy outperforms the other two methods in terms of modeling (training accuracy and checking accuracy.

  11. Architecture Analysis of an FPGA-Based Hopfield Neural Network

    Directory of Open Access Journals (Sweden)

    Miguel Angelo de Abreu de Sousa

    2014-01-01

    Full Text Available Interconnections between electronic circuits and neural computation have been a strongly researched topic in the machine learning field in order to approach several practical requirements, including decreasing training and operation times in high performance applications and reducing cost, size, and energy consumption for autonomous or embedded developments. Field programmable gate array (FPGA hardware shows some inherent features typically associated with neural networks, such as, parallel processing, modular executions, and dynamic adaptation, and works on different types of FPGA-based neural networks were presented in recent years. This paper aims to address different aspects of architectural characteristics analysis on a Hopfield Neural Network implemented in FPGA, such as maximum operating frequency and chip-area occupancy according to the network capacity. Also, the FPGA implementation methodology, which does not employ multipliers in the architecture developed for the Hopfield neural model, is presented, in detail.

  12. Active random noise control using adaptive learning rate neural networks with an immune feedback law

    Science.gov (United States)

    Sasaki, Minoru; Kuribayashi, Takumi; Ito, Satoshi

    2005-12-01

    In this paper an active random noise control using adaptive learning rate neural networks with an immune feedback law is presented. The adaptive learning rate strategy increases the learning rate by a small constant if the current partial derivative of the objective function with respect to the weight and the exponential average of the previous derivatives have the same sign, otherwise the learning rate is decreased by a proportion of its value. The use of an adaptive learning rate attempts to keep the learning step size as large as possible without leading to oscillation. In the proposed method, because of the immune feedback law change a learning rate of the neural networks individually and adaptively, it is expected that a cost function minimize rapidly and training time is decreased. Numerical simulations and experiments of active random noise control with the transfer function of the error path will be performed, to validate the convergence properties of the adaptive learning rate Neural Networks with the immune feedback law. Control results show that adaptive learning rate Neural Networks control structure can outperform linear controllers and conventional neural network controller for the active random noise control.

  13. Ultra-Reliable Link Adaptation for Downlink MISO Transmission in 5G Cellular Networks

    Directory of Open Access Journals (Sweden)

    Udesh Oruthota

    2016-03-01

    Full Text Available This paper discusses robust link adaptation for a downlink precoded multiple input single output system, for guaranteeing ultra-reliable (99.999% transmissions to mobile users (e.g., slowly moving machines in a factory served by a small cell network. The proposed technique compensates the effect of inaccurate channel state information (CSI caused by user mobility, as well as the variation of precoders in the interfering cells. Both of these impairments translate into instability of the received signal-to-noise plus interference ratios (SINRs, and may lead to CSI mispredictions and potentially erroneous transmissions. We show that, by knowing the statistics of the propagation channels and the precoders variations, it is possible to compute a backoff that guarantees robust link adaptation. The backoff value is based on the statistics of realized SINR, and is consequently used to adapt the transmissions according to current channel state. Theoretical analysis accompanied by simulation results show that the proposed approach is suitable for attaining 5G ultra-reliability targets in realistic settings.

  14. Joint Subcarrier Pairing and Resource Allocation for Cognitive Network and Adaptive Relaying Strategy

    KAUST Repository

    Soury, Hamza

    2012-05-01

    Recent measurements show that the spectrum is under-utilized by licensed users in wireless communication. Cognitive radio (CR) has been proposed as a suitable solution to manage the inefficient usage of the spectrum and increase coverage area of wireless networks. The concept is based on allowing a group of secondary users (SUs) to share the unused radio spectrum originally owned by the primary user (PUs). The operation of CR should not cause harmful interference to the PUs. In the other hand, relayed transmission increases the coverage and achievable capacity of communication systems and in particular in CR systems. In fact there are many types of cooperative communications, however the two main ones are decode-and-forward (DAF) and amplify-and-forward (AAF). Adaptive relaying scheme is a relaying technique by which the benefits of the amplifying or decode and forward techniques can be achieved by switching the forwarding technique according to the quality of the signal. In this dissertation, we investigate the power allocation for an adaptive relaying protocol (ARP) scheme in cognitive system by maximizing the end-to-end rate and searching the best carriers pairing distribution. The optimization problem is under the interference and power budget constraints. The simulation results confirm the efficiency of the proposed adaptive relaying protocol in comparison to other relaying techniques, and the consequence of the choice of the pairing strategy.

  15. On subjective quality assessment of adaptive video streaming via crowdsourcing and laboratory based experiments

    DEFF Research Database (Denmark)

    Søgaard, Jacob; Shahid, Muhammad; Pokhrel, Jeevan

    2017-01-01

    Video streaming services are offered over the Internet and since the service providers do not have full control over the network conditions all the way to the end user, streaming technologies have been developed to maintain the quality of service in these varying network conditions i.e. so called...... adaptive video streaming. In order to cater for users' Quality of Experience (QoE) requirements, HTTP based adaptive streaming solutions of video services have become popular. However, the keys to ensure the users a good QoE with this technology is still not completely understood. User QoE feedback...

  16. Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis

    Science.gov (United States)

    Tang, Ming; Wang, Mingjie; Shi, Changji; Iglesias, Pablo A.; Devreotes, Peter N.; Huang, Chuan-Hsiang

    2014-10-01

    Numerous models explain how cells sense and migrate towards shallow chemoattractant gradients. Studies show that an excitable signal transduction network acts as a pacemaker that controls the cytoskeleton to drive motility. Here we show that this network is required to link stimuli to actin polymerization and chemotactic motility and we distinguish the various models of chemotaxis. First, signalling activity is suppressed towards the low side in a gradient or following removal of uniform chemoattractant. Second, signalling activities display a rapid shut off and a slower adaptation during which responsiveness to subsequent test stimuli decline. Simulations of various models indicate that these properties require coupled adaptive and excitable networks. Adaptation involves a G-protein-independent inhibitor, as stimulation of cells lacking G-protein function suppresses basal activities. The salient features of the coupled networks were observed for different chemoattractants in Dictyostelium and in human neutrophils, suggesting an evolutionarily conserved mechanism for eukaryotic chemotaxis.

  17. Macroscopic description of complex adaptive networks co-evolving with dynamic node states

    CERN Document Server

    Wiedermann, Marc; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-01-01

    In many real-world complex systems, the time-evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here, we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the co-evolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we show that in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability play a crucial role for the sustainability of the system's equilibrium state. We derive a macroscopic description of the system which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network and is applicable to many fields of study, such as epidemic spreading or social modeling.

  18. Online Algorithms for Adaptive Optimization in Heterogeneous Delay Tolerant Networks

    Directory of Open Access Journals (Sweden)

    Wissam Chahin

    2013-12-01

    Full Text Available Delay Tolerant Networks (DTNs are an emerging type of networks which do not need a predefined infrastructure. In fact, data forwarding in DTNs relies on the contacts among nodes which may possess different features, radio range, battery consumption and radio interfaces. On the other hand, efficient message delivery under limited resources, e.g., battery or storage, requires to optimize forwarding policies. We tackle optimal forwarding control for a DTN composed of nodes of different types, forming a so-called heterogeneous network. Using our model, we characterize the optimal policies and provide a suitable framework to design a new class of multi-dimensional stochastic approximation algorithms working for heterogeneous DTNs. Crucially, our proposed algorithms drive online the source node to the optimal operating point without requiring explicit estimation of network parameters. A thorough analysis of the convergence properties and stability of our algorithms is presented.

  19. Method for designing networking adaptive interactive hybrid systems

    NARCIS (Netherlands)

    Kester, L. J.H.M.

    2010-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to co-ordinate their activities over larger areas within shorter time intervals. Some envisioned application domains for such systems are defence, crisis management, traffic management and public

  20. Networked Adaptive Interactive Hybrid Systems (NAIHS) for multiplatform engagement capability

    NARCIS (Netherlands)

    Kester, L.J.H.M.

    2008-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. Some envisioned application domains for such systems are defence, crisis management, traffic management and public