WorldWideScience

Sample records for network approach applied

  1. Applying a social network analysis (SNA) approach to understanding radiologists' performance in reading mammograms

    Science.gov (United States)

    Tavakoli Taba, Seyedamir; Hossain, Liaquat; Heard, Robert; Brennan, Patrick; Lee, Warwick; Lewis, Sarah

    2017-03-01

    Rationale and objectives: Observer performance has been widely studied through examining the characteristics of individuals. Applying a systems perspective, while understanding of the system's output, requires a study of the interactions between observers. This research explains a mixed methods approach to applying a social network analysis (SNA), together with a more traditional approach of examining personal/ individual characteristics in understanding observer performance in mammography. Materials and Methods: Using social networks theories and measures in order to understand observer performance, we designed a social networks survey instrument for collecting personal and network data about observers involved in mammography performance studies. We present the results of a study by our group where 31 Australian breast radiologists originally reviewed 60 mammographic cases (comprising of 20 abnormal and 40 normal cases) and then completed an online questionnaire about their social networks and personal characteristics. A jackknife free response operating characteristic (JAFROC) method was used to measure performance of radiologists. JAFROC was tested against various personal and network measures to verify the theoretical model. Results: The results from this study suggest a strong association between social networks and observer performance for Australian radiologists. Network factors accounted for 48% of variance in observer performance, in comparison to 15.5% for the personal characteristics for this study group. Conclusion: This study suggest a strong new direction for research into improving observer performance. Future studies in observer performance should consider social networks' influence as part of their research paradigm, with equal or greater vigour than traditional constructs of personal characteristics.

  2. Applied Learning Networks (ALN)

    National Research Council Canada - National Science Library

    Bannister, Joseph; Shen, Wei-Min; Touch, Joseph; Hou, Feili; Pingali, Venkata

    2007-01-01

    Applied Learning Networks (ALN) demonstrates that a network protocol can learn to improve its performance over time, showing how to incorporate learning methods into a general class of network protocols...

  3. Equivalent electrical network model approach applied to a double acting low temperature differential Stirling engine

    International Nuclear Information System (INIS)

    Formosa, Fabien; Badel, Adrien; Lottin, Jacques

    2014-01-01

    Highlights: • An equivalent electrical network modeling of Stirling engine is proposed. • This model is applied to a membrane low temperate double acting Stirling engine. • The operating conditions (self-startup and steady state behavior) are defined. • An experimental engine is presented and tested. • The model is validated against experimental results. - Abstract: This work presents a network model to simulate the periodic behavior of a double acting free piston type Stirling engine. Each component of the engine is considered independently and its equivalent electrical circuit derived. When assembled in a global electrical network, a global model of the engine is established. Its steady behavior can be obtained by the analysis of the transfer function for one phase from the piston to the expansion chamber. It is then possible to simulate the dynamic (steady state stroke and operation frequency) as well as the thermodynamic performances (output power and efficiency) for given mean pressure, heat source and heat sink temperatures. The motion amplitude especially can be determined by the spring-mass properties of the moving parts and the main nonlinear effects which are taken into account in the model. The thermodynamic features of the model have then been validated using the classical isothermal Schmidt analysis for a given stroke. A three-phase low temperature differential double acting free membrane architecture has been built and tested. The experimental results are compared with the model and a satisfactory agreement is obtained. The stroke and operating frequency are predicted with less than 2% error whereas the output power discrepancy is of about 30%. Finally, some optimization routes are suggested to improve the design and maximize the performances aiming at waste heat recovery applications

  4. Applying Distributed Constraint Optimization Approach to the User Association Problem in Heterogeneous Networks.

    Science.gov (United States)

    Duan, Peibo; Zhang, Changsheng; Mao, Guoqiang; Zhang, Bin

    2017-09-22

    User association has emerged as a distributed resource allocation problem in the heterogeneous networks (HetNets). Although an approximate solution is obtainable using the approaches like combinatorial optimization and game theory-based schemes, these techniques can be easily trapped in local optima. Furthermore, the lack of exploring the relation between the quality of the solution and the parameters in the HetNet [e.g., the number of users and base stations (BSs)], at what levels, impairs the practicability of deploying these approaches in a real world environment. To address these issues, this paper investigates how to model the problem as a distributed constraint optimization problem (DCOP) from the point of the view of the multiagent system. More specifically, we develop two models named each connection as variable (ECAV) and each BS and user as variable (EBUAV). Hereinafter, we propose a DCOP solver which not only sets up the model in a distributed way but also enables us to efficiently obtain the solution by means of a complete DCOP algorithm based on distributed message-passing. Naturally, both theoretical analysis and simulation show that different qualitative solutions can be obtained in terms of an introduced parameter η which has a close relation with the parameters in the HetNet. It is also apparent that there is 6% improvement on the throughput by the DCOP solver comparing with other counterparts when η=3. Particularly, it demonstrates up to 18% increase in the ability to make BSs service more users when the number of users is above 200 while the available resource blocks (RBs) are limited. In addition, it appears that the distribution of RBs allocated to users by BSs is better with the variation of the volume of RBs at the macro BS.

  5. African American Social Networking Online: Applying a Digital Practice Approach to Understanding Digital Inequalities

    Directory of Open Access Journals (Sweden)

    Danielle Taana Smith

    2013-06-01

    Full Text Available This study develops a framework for systematic examination of information and communication technologies (ICTs usage differences within a group. This framework situates the digital divide and digital inequalities model within a broader conceptual model of digital practice, exemplified by how groups of people use ICTs. I use nationally representative data to examine online activities on social networking sites (SNS for African Americans and other ethnoracial groups. The data for this research comes from the Pew Internet and American Life’s “Spring Tracking Survey 2008”. The results from regression analyses support the digital practice framework which moves discussions of ICT usage beyond social and economic advantages or disadvantages, and addresses individual and group needs in using these technologies.

  6. Advancing Dose-Response Assessment Methods for Environmental Regulatory Impact Analysis: A Bayesian Belief Network Approach Applied to Inorganic Arsenic.

    Science.gov (United States)

    Zabinski, Joseph W; Garcia-Vargas, Gonzalo; Rubio-Andrade, Marisela; Fry, Rebecca C; Gibson, Jacqueline MacDonald

    2016-05-10

    Dose-response functions used in regulatory risk assessment are based on studies of whole organisms and fail to incorporate genetic and metabolomic data. Bayesian belief networks (BBNs) could provide a powerful framework for incorporating such data, but no prior research has examined this possibility. To address this gap, we develop a BBN-based model predicting birthweight at gestational age from arsenic exposure via drinking water and maternal metabolic indicators using a cohort of 200 pregnant women from an arsenic-endemic region of Mexico. We compare BBN predictions to those of prevailing slope-factor and reference-dose approaches. The BBN outperforms prevailing approaches in balancing false-positive and false-negative rates. Whereas the slope-factor approach had 2% sensitivity and 99% specificity and the reference-dose approach had 100% sensitivity and 0% specificity, the BBN's sensitivity and specificity were 71% and 30%, respectively. BBNs offer a promising opportunity to advance health risk assessment by incorporating modern genetic and metabolomic data.

  7. An integrated approach of analytical network process and fuzzy based spatial decision making systems applied to landslide risk mapping

    Science.gov (United States)

    Abedi Gheshlaghi, Hassan; Feizizadeh, Bakhtiar

    2017-09-01

    Landslides in mountainous areas render major damages to residential areas, roads, and farmlands. Hence, one of the basic measures to reduce the possible damage is by identifying landslide-prone areas through landslide mapping by different models and methods. The purpose of conducting this study is to evaluate the efficacy of a combination of two models of the analytical network process (ANP) and fuzzy logic in landslide risk mapping in the Azarshahr Chay basin in northwest Iran. After field investigations and a review of research literature, factors affecting the occurrence of landslides including slope, slope aspect, altitude, lithology, land use, vegetation density, rainfall, distance to fault, distance to roads, distance to rivers, along with a map of the distribution of occurred landslides were prepared in GIS environment. Then, fuzzy logic was used for weighting sub-criteria, and the ANP was applied to weight the criteria. Next, they were integrated based on GIS spatial analysis methods and the landslide risk map was produced. Evaluating the results of this study by using receiver operating characteristic curves shows that the hybrid model designed by areas under the curve 0.815 has good accuracy. Also, according to the prepared map, a total of 23.22% of the area, amounting to 105.38 km2, is in the high and very high-risk class. Results of this research are great of importance for regional planning tasks and the landslide prediction map can be used for spatial planning tasks and for the mitigation of future hazards in the study area.

  8. Facet Approach to Applied Research.

    Science.gov (United States)

    Canter, David

    1982-01-01

    The contribution of facet theory to applied psychological research is shown to be its ability to define problems and the solutions to them in terms relevant to those wishing to make practical use of research findings. Three examples illustrate the use of facet theory in applied research. (Author/CM)

  9. Different approaches in Partial Least Squares and Artificial Neural Network models applied for the analysis of a ternary mixture of Amlodipine, Valsartan and Hydrochlorothiazide

    Science.gov (United States)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2014-03-01

    Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.

  10. Benford's Law Applies to Online Social Networks.

    Directory of Open Access Journals (Sweden)

    Jennifer Golbeck

    Full Text Available Benford's Law states that, in naturally occurring systems, the frequency of numbers' first digits is not evenly distributed. Numbers beginning with a 1 occur roughly 30% of the time, and are six times more common than numbers beginning with a 9. We show that Benford's Law applies to social and behavioral features of users in online social networks. Using social data from five major social networks (Facebook, Twitter, Google Plus, Pinterest, and LiveJournal, we show that the distribution of first significant digits of friend and follower counts for users in these systems follow Benford's Law. The same is true for the number of posts users make. We extend this to egocentric networks, showing that friend counts among the people in an individual's social network also follows the expected distribution. We discuss how this can be used to detect suspicious or fraudulent activity online and to validate datasets.

  11. Social network analysis applied to team sports analysis

    CERN Document Server

    Clemente, Filipe Manuel; Mendes, Rui Sousa

    2016-01-01

    Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.

  12. Applying Physical-Layer Network Coding in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Soung Chang Liew

    2010-01-01

    Full Text Available A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes, simultaneously. Rather than a blessing, this feature is treated more as an interference-inducing nuisance in most wireless networks today (e.g., IEEE 802.11. This paper shows that the concept of network coding can be applied at the physical layer to turn the broadcast property into a capacity-boosting advantage in wireless ad hoc networks. Specifically, we propose a physical-layer network coding (PNC scheme to coordinate transmissions among nodes. In contrast to “straightforward” network coding which performs coding arithmetic on digital bit streams after they have been received, PNC makes use of the additive nature of simultaneously arriving electromagnetic (EM waves for equivalent coding operation. And in doing so, PNC can potentially achieve 100% and 50% throughput increases compared with traditional transmission and straightforward network coding, respectively, in 1D regular linear networks with multiple random flows. The throughput improvements are even larger in 2D regular networks: 200% and 100%, respectively.

  13. Applying Physical-Layer Network Coding in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Liew SoungChang

    2010-01-01

    Full Text Available A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes, simultaneously. Rather than a blessing, this feature is treated more as an interference-inducing nuisance in most wireless networks today (e.g., IEEE 802.11. This paper shows that the concept of network coding can be applied at the physical layer to turn the broadcast property into a capacity-boosting advantage in wireless ad hoc networks. Specifically, we propose a physical-layer network coding (PNC scheme to coordinate transmissions among nodes. In contrast to "straightforward" network coding which performs coding arithmetic on digital bit streams after they have been received, PNC makes use of the additive nature of simultaneously arriving electromagnetic (EM waves for equivalent coding operation. And in doing so, PNC can potentially achieve 100% and 50% throughput increases compared with traditional transmission and straightforward network coding, respectively, in 1D regular linear networks with multiple random flows. The throughput improvements are even larger in 2D regular networks: 200% and 100%, respectively.

  14. Queueing networks a fundamental approach

    CERN Document Server

    Dijk, Nico

    2011-01-01

    This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner.  The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow subnetworks to be aggregated into single nodes to reduce computational burden. Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the proces generators, and comparison results and explicit error bounds based on an underlying Markov r...

  15. Applied network security monitoring collection, detection, and analysis

    CERN Document Server

    Sanders, Chris

    2013-01-01

    Applied Network Security Monitoring is the essential guide to becoming an NSM analyst from the ground up. This book takes a fundamental approach to NSM, complete with dozens of real-world examples that teach you the key concepts of NSM. Network security monitoring is based on the principle that prevention eventually fails. In the current threat landscape, no matter how much you try, motivated attackers will eventually find their way into your network. At that point, it is your ability to detect and respond to that intrusion that can be the difference between a small incident and a major di

  16. An Integrated Numerical Modelling-Discrete Fracture Network Approach Applied to the Characterisation of Rock Mass Strength of Naturally Fractured Pillars

    Science.gov (United States)

    Elmo, Davide; Stead, Doug

    2010-02-01

    Naturally fractured mine pillars provide an excellent example of the importance of accurately determining rock mass strength. Failure in slender pillars is predominantly controlled by naturally occurring discontinuities, their influence diminishing with increasing pillar width, with wider pillars failing through a combination of brittle and shearing processes. To accurately simulate this behaviour by numerical modelling, the current analysis incorporates a more realistic representation of the mechanical behaviour of discrete fracture systems. This involves realistic simulation and representation of fracture networks, either as individual entities or as a collective system of fracture sets, or a combination of both. By using an integrated finite element/discrete element-discrete fracture network approach it is possible to study the failure of rock masses in tension and compression, along both existing pre-existing fractures and through intact rock bridges, and incorporating complex kinematic mechanisms. The proposed modelling approach fully captures the anisotropic and inhomogeneous effects of natural jointing and is considered to be more realistic than methods relying solely on continuum or discontinuum representation. The paper concludes with a discussion on the development of synthetic rock mass properties, with the intention of providing a more robust link between rock mass strength and rock mass classification systems.

  17. Applying neural networks to optimize instrumentation performance

    International Nuclear Information System (INIS)

    Start, S.E.; Peters, G.G.

    1995-01-01

    Well calibrated instrumentation is essential in providing meaningful information about the status of a plant. Signals from plant instrumentation frequently have inherent non-linearities, may be affected by environmental conditions and can therefore cause calibration difficulties for the people who maintain them. Two neural network approaches are described in this paper for improving the accuracy of a non-linear, temperature sensitive level probe ised in Expermental Breeder Reactor II (EBR-II) that was difficult to calibrate

  18. Applying neural networks to optimize instrumentation performance

    Energy Technology Data Exchange (ETDEWEB)

    Start, S.E.; Peters, G.G.

    1995-06-01

    Well calibrated instrumentation is essential in providing meaningful information about the status of a plant. Signals from plant instrumentation frequently have inherent non-linearities, may be affected by environmental conditions and can therefore cause calibration difficulties for the people who maintain them. Two neural network approaches are described in this paper for improving the accuracy of a non-linear, temperature sensitive level probe ised in Expermental Breeder Reactor II (EBR-II) that was difficult to calibrate.

  19. Applying Artificial Neural Networks for Face Recognition

    Directory of Open Access Journals (Sweden)

    Thai Hoang Le

    2011-01-01

    Full Text Available This paper introduces some novel models for all steps of a face recognition system. In the step of face detection, we propose a hybrid model combining AdaBoost and Artificial Neural Network (ABANN to solve the process efficiently. In the next step, labeled faces detected by ABANN will be aligned by Active Shape Model and Multi Layer Perceptron. In this alignment step, we propose a new 2D local texture model based on Multi Layer Perceptron. The classifier of the model significantly improves the accuracy and the robustness of local searching on faces with expression variation and ambiguous contours. In the feature extraction step, we describe a methodology for improving the efficiency by the association of two methods: geometric feature based method and Independent Component Analysis method. In the face matching step, we apply a model combining many Neural Networks for matching geometric features of human face. The model links many Neural Networks together, so we call it Multi Artificial Neural Network. MIT + CMU database is used for evaluating our proposed methods for face detection and alignment. Finally, the experimental results of all steps on CallTech database show the feasibility of our proposed model.

  20. Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach

    Science.gov (United States)

    2016-03-30

    Undergraduate Student Paper Postgraduate Student Paper Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach...monitoring, flight parameter, nonlinear modeling, Artificial Neural Network , typical loadcase. Introduction Aircraft load monitoring is an... Neural Networks (ANN), i.e. the BP network and Kohonen Clustering Network , are applied and revised by Kalman Filter and Genetic Algorithm to build

  1. Computer Networks A Systems Approach

    CERN Document Server

    Peterson, Larry L

    2011-01-01

    This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur

  2. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  3. Applying differential dynamic logic to reconfigurable biological networks.

    Science.gov (United States)

    Figueiredo, Daniel; Martins, Manuel A; Chaves, Madalena

    2017-09-01

    Qualitative and quantitative modeling frameworks are widely used for analysis of biological regulatory networks, the former giving a preliminary overview of the system's global dynamics and the latter providing more detailed solutions. Another approach is to model biological regulatory networks as hybrid systems, i.e., systems which can display both continuous and discrete dynamic behaviors. Actually, the development of synthetic biology has shown that this is a suitable way to think about biological systems, which can often be constructed as networks with discrete controllers, and present hybrid behaviors. In this paper we discuss this approach as a special case of the reconfigurability paradigm, well studied in Computer Science (CS). In CS there are well developed computational tools to reason about hybrid systems. We argue that it is worth applying such tools in a biological context. One interesting tool is differential dynamic logic (dL), which has recently been developed by Platzer and applied to many case-studies. In this paper we discuss some simple examples of biological regulatory networks to illustrate how dL can be used as an alternative, or also as a complement to methods already used. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Top-of-the-Atmosphere Shortwave Flux Estimation from Satellite Observations: An Empirical Neural Network Approach Applied with Data from the A-Train Constellation

    Science.gov (United States)

    Gupta, Pawan; Joiner, Joanna; Vasilkov, Alexander; Bhartia, Pawan K.

    2016-01-01

    Estimates of top-of-the-atmosphere (TOA) radiative flux are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important atmospheric agents impacting the Earth's shortwave (SW) radiation budget. There are several sensors in orbit that provide independent information related to these parameters. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze data from several of these sensors. In this paper, retrievals of cloud/aerosol parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's Radiant Energy System (CERES) estimates of total reflected TOA outgoing SW flux (SWF). We use these data to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data and other ancillary information as inputs and CERES TOA SWF as the output for training purposes. OMI-estimated TOA SWF from the trained neural networks reproduces independent CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is consistently within 1% of CERES throughout the year 2007. Application of our neural network method to other sensors that provide similar retrieved parameters, both past and future, can produce similar estimates TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) series could provide estimates of TOA SWF dating back to late 1978.

  5. Evolution of Terrorist Network using Clustered approach: A Case study

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah

    2011-01-01

    In the paper we present a cluster based approach for terrorist network evolution. We have applied hierarchical agglomerative clustering approach to 9/11 case study. We show that, how individual actors who are initially isolated from each other are converted in small clusters and result in a fully...... evolved network. This method of network evolution can help intelligence security analysts to understand the structure of the network....

  6. Neural Networks Applied to Optimal Flight Control

    OpenAIRE

    McKelvey, Tomas

    1992-01-01

    This paper presents a method for developing control laws for nonlinear systems based on an optimal control formulation. Due to the nonlinearities of the system, no analytical solution exists. The method proposed here uses the 'black box' structure of a neural network to model a feedback control law. The network is trained with the back-propagation learning method by using examples of optimal control produced with a differential dynamic programming technique. Two different optimal control prob...

  7. Artificial Neural Network applied to lightning flashes

    Science.gov (United States)

    Gin, R. B.; Guedes, D.; Bianchi, R.

    2013-05-01

    The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a

  8. Complex network approach for recurrence analysis of time series

    Energy Technology Data Exchange (ETDEWEB)

    Marwan, Norbert, E-mail: marwan@pik-potsdam.d [Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam (Germany); Donges, Jonathan F. [Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam (Germany)] [Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin (Germany); Zou Yong [Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam (Germany); Donner, Reik V. [Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam (Germany)] [Institute for Transport and Economics, Dresden University of Technology, Andreas-Schubert-Str. 23, 01062 Dresden (Germany)] [Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai 599-8531 (Japan); Kurths, Juergen [Potsdam Institute for Climate Impact Research, PO Box 601203, 14412 Potsdam (Germany)] [Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin (Germany)

    2009-11-09

    We propose a novel approach for analysing time series using complex network theory. We identify the recurrence matrix (calculated from time series) with the adjacency matrix of a complex network and apply measures for the characterisation of complex networks to this recurrence matrix. By using the logistic map, we illustrate the potential of these complex network measures for the detection of dynamical transitions. Finally, we apply the proposed approach to a marine palaeo-climate record and identify the subtle changes to the climate regime.

  9. Sensitivity analysis approaches applied to systems biology models.

    Science.gov (United States)

    Zi, Z

    2011-11-01

    With the rising application of systems biology, sensitivity analysis methods have been widely applied to study the biological systems, including metabolic networks, signalling pathways and genetic circuits. Sensitivity analysis can provide valuable insights about how robust the biological responses are with respect to the changes of biological parameters and which model inputs are the key factors that affect the model outputs. In addition, sensitivity analysis is valuable for guiding experimental analysis, model reduction and parameter estimation. Local and global sensitivity analysis approaches are the two types of sensitivity analysis that are commonly applied in systems biology. Local sensitivity analysis is a classic method that studies the impact of small perturbations on the model outputs. On the other hand, global sensitivity analysis approaches have been applied to understand how the model outputs are affected by large variations of the model input parameters. In this review, the author introduces the basic concepts of sensitivity analysis approaches applied to systems biology models. Moreover, the author discusses the advantages and disadvantages of different sensitivity analysis methods, how to choose a proper sensitivity analysis approach, the available sensitivity analysis tools for systems biology models and the caveats in the interpretation of sensitivity analysis results.

  10. A Network Traffic Control Enhancement Approach over Bluetooth Networks

    DEFF Research Database (Denmark)

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun

    2003-01-01

    This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated...... as capacity limitations and flow requirements in the network. Simulation shows that the performance of Bluetooth networks could be improved by applying the adaptive distributed network traffic control scheme...... solution of the stated optimization problem that satisfies quality of service requirements and topologically induced constraints in Bluetooth networks, such as link capacity and node resource limitations. The proposed scheme is decentralized and complies with frequent changes of topology as well...

  11. Applied Ontology Engineering in Cloud Services, Networks and Management Systems

    CERN Document Server

    Serrano Orozco, J Martín

    2012-01-01

    Metadata standards in today’s ICT sector are proliferating at unprecedented levels, while automated information management systems collect and process exponentially increasing quantities of data. With interoperability and knowledge exchange identified as a core challenge in the sector, this book examines the role ontology engineering can play in providing solutions to the problems of information interoperability and linked data. At the same time as introducing basic concepts of ontology engineering, the book discusses methodological approaches to formal representation of data and information models, thus facilitating information interoperability between heterogeneous, complex and distributed communication systems. In doing so, the text advocates the advantages of using ontology engineering in telecommunications systems. In addition, it offers a wealth of guidance and best-practice techniques for instances in which ontology engineering is applied in cloud services, computer networks and management systems. �...

  12. Applying temporal network analysis to the venture capital market

    Science.gov (United States)

    Zhang, Xin; Feng, Ling; Zhu, Rongqian; Stanley, H. Eugene

    2015-10-01

    Using complex network theory to study the investment relationships of venture capital firms has produced a number of significant results. However, previous studies have often neglected the temporal properties of those relationships, which in real-world scenarios play a pivotal role. Here we examine the time-evolving dynamics of venture capital investment in China by constructing temporal networks to represent (i) investment relationships between venture capital firms and portfolio companies and (ii) the syndication ties between venture capital investors. The evolution of the networks exhibits rich variations in centrality, connectivity and local topology. We demonstrate that a temporal network approach provides a dynamic and comprehensive analysis of real-world networks.

  13. Boarding Team Networking on the Move: Applying Unattended Relay Nodes

    Science.gov (United States)

    2014-09-01

    overheads. International/Multinational companies built sophisticated trade networks all over the world based on low transportation costs. Competitive...Africa, China, or Brazil . As Metaparti indicates, companies use registration flags of convenience to circumvent tax evasion and other responsibilities...release; distribution is unlimited BOARDING TEAM NETWORKING ON THE MOVE: APPLYING UNATTENDED RELAY NODES Ercan Aras Lieutenant Junior Grade

  14. Neural network approaches for noisy language modeling.

    Science.gov (United States)

    Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid

    2013-11-01

    Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.

  15. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    Science.gov (United States)

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  16. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  17. Earthquake Complex Network applied along the Chilean Subduction Zone.

    Science.gov (United States)

    Martin, F.; Pasten, D.; Comte, D.

    2017-12-01

    In recent years the earthquake complex networks have been used as a useful tool to describe and characterize the behavior of seismicity. The earthquake complex network is built in space, dividing the three dimensional space in cubic cells. If the cubic cell contains a hypocenter, we call this cell like a node. The connections between nodes follows the time sequence of the occurrence of the seismic events. In this sense, we have a spatio-temporal configuration of a specific region using the seismicity in that zone. In this work, we are applying complex networks to characterize the subduction zone along the coast of Chile using two networks: a directed and an undirected network. The directed network takes in consideration the time-direction of the connections, that is very important for the connectivity of the network: we are considering the connectivity, ki of the i-th node, like the number of connections going out from the node i and we add the self-connections (if two seismic events occurred successive in time in the same cubic cell, we have a self-connection). The undirected network is the result of remove the direction of the connections and the self-connections from the directed network. These two networks were building using seismic data events recorded by CSN (Chilean Seismological Center) in Chile. This analysis includes the last largest earthquakes occurred in Iquique (April 2014) and in Illapel (September 2015). The result for the directed network shows a change in the value of the critical exponent along the Chilean coast. The result for the undirected network shows a small-world behavior without important changes in the topology of the network. Therefore, the complex network analysis shows a new form to characterize the Chilean subduction zone with a simple method that could be compared with another methods to obtain more details about the behavior of the seismicity in this region.

  18. A network approach to orthodontic diagnosis.

    Science.gov (United States)

    Auconi, P; Caldarelli, G; Scala, A; Ierardo, G; Polimeni, A

    2011-11-01

    Network analysis, a recent advancement in complexity science, enables understanding of the properties of complex biological processes characterized by the interaction, adaptive regulation, and coordination of a large number of participating components. We applied network analysis to orthodontics to detect and visualize the most interconnected clinical, radiographic, and functional data pertaining to the orofacial system. The sample consisted of 104 individuals from 7 to 13 years of age in the mixed dentition phase without previous orthodontic intervention. The subjects were divided according to skeletal class; their clinical, radiographic, and functional features were represented as vertices (nodes) and links (edges) connecting them. Class II subjects exhibited few highly connected orthodontic features (hubs), while Class III patients showed a more compact network structure characterized by strong co-occurrence of normal and abnormal clinical, functional, and radiological features. Restricting our analysis to the highest correlations, we identified critical peculiarities of Class II and Class III malocclusions. The topology of the dentofacial system obtained by network analysis could allow orthodontists to visually evaluate and anticipate the co-occurrence of auxological anomalies during individual craniofacial growth and possibly localize reactive sites for a therapeutic approach to malocclusion. © 2011 John Wiley & Sons A/S.

  19. A Constructive Neural-Network Approach to Modeling Psychological Development

    Science.gov (United States)

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  20. Differential network analysis applied to preoperative breast cancer chemotherapy response.

    Directory of Open Access Journals (Sweden)

    Gregor Warsow

    Full Text Available In silico approaches are increasingly considered to improve breast cancer treatment. One of these treatments, neoadjuvant TFAC chemotherapy, is used in cases where application of preoperative systemic therapy is indicated. Estimating response to treatment allows or improves clinical decision-making and this, in turn, may be based on a good understanding of the underlying molecular mechanisms. Ever increasing amounts of high throughput data become available for integration into functional networks. In this study, we applied our software tool ExprEssence to identify specific mechanisms relevant for TFAC therapy response, from a gene/protein interaction network. We contrasted the resulting active subnetwork to the subnetworks of two other such methods, OptDis and KeyPathwayMiner. We could show that the ExprEssence subnetwork is more related to the mechanistic functional principles of TFAC therapy than the subnetworks of the other two methods despite the simplicity of ExprEssence. We were able to validate our method by recovering known mechanisms and as an application example of our method, we identified a mechanism that may further explain the synergism between paclitaxel and doxorubicin in TFAC treatment: Paclitaxel may attenuate MELK gene expression, resulting in lower levels of its target MYBL2, already associated with doxorubicin synergism in hepatocellular carcinoma cell lines. We tested our hypothesis in three breast cancer cell lines, confirming it in part. In particular, the predicted effect on MYBL2 could be validated, and a synergistic effect of paclitaxel and doxorubicin could be demonstrated in the breast cancer cell lines SKBR3 and MCF-7.

  1. ECO INVESTMENT PROJECT MANAGEMENT THROUGH TIME APPLYING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Tamara Gvozdenović

    2007-06-01

    Full Text Available he concept of project management expresses an indispensable approach to investment projects. Time is often the most important factor in these projects. The artificial neural network is the paradigm of data processing, which is inspired by the one used by the biological brain, and it is used in numerous, different fields, among which is the project management. This research is oriented to application of artificial neural networks in managing time of investment project. The artificial neural networks are used to define the optimistic, the most probable and the pessimistic time in PERT method. The program package Matlab: Neural Network Toolbox is used in data simulation. The feed-forward back propagation network is chosen.

  2. A network approach to leadership

    DEFF Research Database (Denmark)

    Lewis, Jenny; Ricard, Lykke Margot

    examine two contradictory leadership strategies using social network theory: structural holes, where ego (the focal individual) benefits from brokering between two disconnected alters (low redundancy); and network closure, where ego is embedded in very dense local structures (high redundancy). Using......Leaders’ ego-networks within an organization are pivotal as focal points that point to other organizational factors such as innovation capacity and leadership effectiveness. The aim of the paper is to provide a framework for exploring leaders’ ego-networks within the boundary of an organization. We...... redundancy and effective size, and the potential for either divide and conquer or distributed leadership strategies. The empirical testing of this framework adds to our knowledge of the micro level role of individuals within networks. This will be used to examine the relationships between leadership, network...

  3. Leaderless Covert Networks : A Quantitative Approach

    NARCIS (Netherlands)

    Husslage, B.G.M.; Lindelauf, R.; Hamers, H.J.M.

    2012-01-01

    Abstract: Lindelauf et al. (2009a) introduced a quantitative approach to investigate optimal structures of covert networks. This approach used an objective function which is based on the secrecy versus information trade-off these organizations face. Sageman (2008) hypothesized that covert networks

  4. Network growth approach to macroevolution

    International Nuclear Information System (INIS)

    Qin Shaomeng; Chen Yong; Zhang Pan

    2007-01-01

    We propose a novel network growth model coupled with the competition interaction to simulate macroevolution. Our work shows that competition plays an important role in macroevolution and it is more rational to describe the interaction between species by network structures. Our model presents a complete picture of the development of phyla and the splitting process. It is found that periodic mass extinction occurred in our networks without any extraterrestrial factors and the lifetime distribution of species is very close to the fossil record. We also perturb networks with two scenarios of mass extinctions on different hierarchic levels in order to study their recovery

  5. The harmonics detection method based on neural network applied ...

    African Journals Online (AJOL)

    The harmonics detection method based on neural network applied to harmonics compensation. R Dehini, A Bassou, B Ferdi. Abstract. Several different methods have been used to sense load currents and extract its harmonic component in order to produce a reference current in shunt active power filters (SAPF), and to ...

  6. Network evolution driven by dynamics applied to graph coloring

    International Nuclear Information System (INIS)

    Wu Jian-She; Li Li-Guang; Yu Xin; Jiao Li-Cheng; Wang Xiao-Hua

    2013-01-01

    An evolutionary network driven by dynamics is studied and applied to the graph coloring problem. From an initial structure, both the topology and the coupling weights evolve according to the dynamics. On the other hand, the dynamics of the network are determined by the topology and the coupling weights, so an interesting structure-dynamics co-evolutionary scheme appears. By providing two evolutionary strategies, a network described by the complement of a graph will evolve into several clusters of nodes according to their dynamics. The nodes in each cluster can be assigned the same color and nodes in different clusters assigned different colors. In this way, a co-evolution phenomenon is applied to the graph coloring problem. The proposed scheme is tested on several benchmark graphs for graph coloring

  7. Maximum Entropy Approaches to Living Neural Networks

    Directory of Open Access Journals (Sweden)

    John M. Beggs

    2010-01-01

    Full Text Available Understanding how ensembles of neurons collectively interact will be a key step in developing a mechanistic theory of cognitive processes. Recent progress in multineuron recording and analysis techniques has generated tremendous excitement over the physiology of living neural networks. One of the key developments driving this interest is a new class of models based on the principle of maximum entropy. Maximum entropy models have been reported to account for spatial correlation structure in ensembles of neurons recorded from several different types of data. Importantly, these models require only information about the firing rates of individual neurons and their pairwise correlations. If this approach is generally applicable, it would drastically simplify the problem of understanding how neural networks behave. Given the interest in this method, several groups now have worked to extend maximum entropy models to account for temporal correlations. Here, we review how maximum entropy models have been applied to neuronal ensemble data to account for spatial and temporal correlations. We also discuss criticisms of the maximum entropy approach that argue that it is not generally applicable to larger ensembles of neurons. We conclude that future maximum entropy models will need to address three issues: temporal correlations, higher-order correlations, and larger ensemble sizes. Finally, we provide a brief list of topics for future research.

  8. The application of network teaching in applied optics teaching

    Science.gov (United States)

    Zhao, Huifu; Piao, Mingxu; Li, Lin; Liu, Dongmei

    2017-08-01

    Network technology has become a creative tool of changing human productivity, the rapid development of it has brought profound changes to our learning, working and life. Network technology has many advantages such as rich contents, various forms, convenient retrieval, timely communication and efficient combination of resources. Network information resources have become the new education resources, get more and more application in the education, has now become the teaching and learning tools. Network teaching enriches the teaching contents, changes teaching process from the traditional knowledge explanation into the new teaching process by establishing situation, independence and cooperation in the network technology platform. The teacher's role has shifted from teaching in classroom to how to guide students to learn better. Network environment only provides a good platform for the teaching, we can get a better teaching effect only by constantly improve the teaching content. Changchun university of science and technology introduced a BB teaching platform, on the platform, the whole optical classroom teaching and the classroom teaching can be improved. Teachers make assignments online, students learn independently offline or the group learned cooperatively, this expands the time and space of teaching. Teachers use hypertext form related knowledge of applied optics, rich cases and learning resources, set up the network interactive platform, homework submission system, message board, etc. The teaching platform simulated the learning interest of students and strengthens the interaction in the teaching.

  9. A new approach in development of data flow control and investigation system for computer networks

    International Nuclear Information System (INIS)

    Frolov, I.; Vaguine, A.; Silin, A.

    1992-01-01

    This paper describes a new approach in development of data flow control and investigation system for computer networks. This approach was developed and applied in the Moscow Radiotechnical Institute for control and investigations of Institute computer network. It allowed us to solve our network current problems successfully. Description of our approach is represented below along with the most interesting results of our work. (author)

  10. Applied Regression Modeling A Business Approach

    CERN Document Server

    Pardoe, Iain

    2012-01-01

    An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a

  11. Applying a gaming approach to IP strategy.

    Science.gov (United States)

    Gasnier, Arnaud; Vandamme, Luc

    2010-02-01

    Adopting an appropriate IP strategy is an important but complex area, particularly in the pharmaceutical and biotechnology sectors, in which aspects such as regulatory submissions, high competitive activity, and public health and safety information requirements limit the amount of information that can be protected effectively through secrecy. As a result, and considering the existing time limits for patent protection, decisions on how to approach IP in these sectors must be made with knowledge of the options and consequences of IP positioning. Because of the specialized nature of IP, it is necessary to impart knowledge regarding the options and impact of IP to decision-makers, whether at the level of inventors, marketers or strategic business managers. This feature review provides some insight on IP strategy, with a focus on the use of a new 'gaming' approach for transferring the skills and understanding needed to make informed IP-related decisions; the game Patentopolis is discussed as an example of such an approach. Patentopolis involves interactive activities with IP-related business decisions, including the exploitation and enforcement of IP rights, and can be used to gain knowledge on the impact of adopting different IP strategies.

  12. Applying a Modified Triad Approach to Investigate Wastewater lines

    International Nuclear Information System (INIS)

    Pawlowicz, R.; Urizar, L.; Blanchard, S.; Jacobsen, K.; Scholfield, J.

    2006-01-01

    Approximately 20 miles of wastewater lines are below grade at an active military Base. This piping network feeds or fed domestic or industrial wastewater treatment plants on the Base. Past wastewater line investigations indicated potential contaminant releases to soil and groundwater. Further environmental assessment was recommended to characterize the lines because of possible releases. A Remedial Investigation (RI) using random sampling or use of sampling points spaced at predetermined distances along the entire length of the wastewater lines, however, would be inefficient and cost prohibitive. To accomplish RI goals efficiently and within budget, a modified Triad approach was used to design a defensible sampling and analysis plan and perform the investigation. The RI task was successfully executed and resulted in a reduced fieldwork schedule, and sampling and analytical costs. Results indicated that no major releases occurred at the biased sampling points. It was reasonably extrapolated that since releases did not occur at the most likely locations, then the entire length of a particular wastewater line segment was unlikely to have contaminated soil or groundwater and was recommended for no further action. A determination of no further action was recommended for the majority of the waste lines after completing the investigation. The modified Triad approach was successful and a similar approach could be applied to investigate wastewater lines on other United States Department of Defense or Department of Energy facilities. (authors)

  13. Applying Trusted Network Technology To Process Control Systems

    Science.gov (United States)

    Okhravi, Hamed; Nicol, David

    Interconnections between process control networks and enterprise networks expose instrumentation and control systems and the critical infrastructure components they operate to a variety of cyber attacks. Several architectural standards and security best practices have been proposed for industrial control systems. However, they are based on older architectures and do not leverage the latest hardware and software technologies. This paper describes new technologies that can be applied to the design of next generation security architectures for industrial control systems. The technologies are discussed along with their security benefits and design trade-offs.

  14. Optimization of Close Range Photogrammetry Network Design Applying Fuzzy Computation

    Science.gov (United States)

    Aminia, A. S.

    2017-09-01

    Measuring object 3D coordinates with optimum accuracy is one of the most important issues in close range photogrammetry. In this context, network design plays an important role in determination of optimum position of imaging stations. This is, however, not a trivial task due to various geometric and radiometric constraints affecting the quality of the measurement network. As a result, most camera stations in the network are defined on a try and error basis based on the user's experience and generic network concept. In this paper, we propose a post-processing task to investigate the quality of camera positions right after image capturing to achieve the best result. To do this, a new fuzzy reasoning approach is adopted, in which the constraints affecting the network design are all modeled. As a result, the position of all camera locations is defined based on fuzzy rules and inappropriate stations are determined. The experiments carried out show that after determination and elimination of the inappropriate images using the proposed fuzzy reasoning system, the accuracy of measurements is improved and enhanced about 17% for the latter network.

  15. A SIMULATION OF THE PENICILLIN G PRODUCTION BIOPROCESS APPLYING NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    A.J.G. da Cruz

    1997-12-01

    Full Text Available The production of penicillin G by Penicillium chrysogenum IFO 8644 was simulated employing a feedforward neural network with three layers. The neural network training procedure used an algorithm combining two procedures: random search and backpropagation. The results of this approach were very promising, and it was observed that the neural network was able to accurately describe the nonlinear behavior of the process. Besides, the results showed that this technique can be successfully applied to control process algorithms due to its long processing time and its flexibility in the incorporation of new data

  16. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  17. A Bayesian Network Approach to Ontology Mapping

    National Research Council Canada - National Science Library

    Pan, Rong; Ding, Zhongli; Yu, Yang; Peng, Yun

    2005-01-01

    .... In this approach, the source and target ontologies are first translated into Bayesian networks (BN); the concept mapping between the two ontologies are treated as evidential reasoning between the two translated BNs...

  18. Adolescent pregnancy: networking and the interdisciplinary approach.

    Science.gov (United States)

    Canada, M J

    1986-01-01

    The networking approach to providing needed services to pregnant and parenting teenagers has numerous merits. An historical overview of the formation of the Brooklyn Teen Pregnancy Network highlights service agency need for information and resource sharing, and improved client referral systems as key factors in the genesis of the Network. The borough-wide approach and its spread as an agency model throughout New York City's other boroughs and several other northeastern cities is also attributed to its positive client impact, including: improved family communication and cooperation; early prenatal care with its concomitant improved pregnancy outcomes; financial support for teens; continued teen education; and parenting skills development. Resource information is provided regarding networks operating in the Greater New York metropolitan area. A planned Eastern Regional network initiative is under development.

  19. Computer networking a top-down approach

    CERN Document Server

    Kurose, James

    2017-01-01

    Unique among computer networking texts, the Seventh Edition of the popular Computer Networking: A Top Down Approach builds on the author’s long tradition of teaching this complex subject through a layered approach in a “top-down manner.” The text works its way from the application layer down toward the physical layer, motivating readers by exposing them to important concepts early in their study of networking. Focusing on the Internet and the fundamentally important issues of networking, this text provides an excellent foundation for readers interested in computer science and electrical engineering, without requiring extensive knowledge of programming or mathematics. The Seventh Edition has been updated to reflect the most important and exciting recent advances in networking.

  20. Approaching human language with complex networks

    Science.gov (United States)

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).

  1. Network reliability assessment using a cellular automata approach

    International Nuclear Information System (INIS)

    Rocco S, Claudio M.; Moreno, Jose Ali

    2002-01-01

    Two cellular automata (CA) models that evaluate the s-t connectedness and shortest path in a network are presented. CA based algorithms enhance the performance of classical algorithms, since they allow a more reliable and straightforward parallel implementation resulting in a dynamic network evaluation, where changes in the connectivity and/or link costs can readily be incorporated avoiding recalculation from scratch. The paper also demonstrates how these algorithms can be applied for network reliability evaluation (based on Monte-Carlo approach) and for finding s-t path with maximal reliability

  2. Kaolin Quality Prediction from Samples: A Bayesian Network Approach

    International Nuclear Information System (INIS)

    Rivas, T.; Taboada, J.; Ordonez, C.; Matias, J. M.

    2009-01-01

    We describe the results of an expert system applied to the evaluation of samples of kaolin for industrial use in paper or ceramic manufacture. Different machine learning techniques - classification trees, support vector machines and Bayesian networks - were applied with the aim of evaluating and comparing their interpretability and prediction capacities. The predictive capacity of these models for the samples analyzed was highly satisfactory, both for ceramic quality and paper quality. However, Bayesian networks generally proved to be the most useful technique for our study, as this approach combines good predictive capacity with excellent interpretability of the kaolin quality structure, as it graphically represents relationships between variables and facilitates what-if analyses.

  3. Collaboration Networks in Applied Conservation Projects across Europe.

    Science.gov (United States)

    Nita, Andreea; Rozylowicz, Laurentiu; Manolache, Steluta; Ciocănea, Cristiana Maria; Miu, Iulia Viorica; Popescu, Viorel Dan

    2016-01-01

    The main funding instrument for implementing EU policies on nature conservation and supporting environmental and climate action is the LIFE Nature programme, established by the European Commission in 1992. LIFE Nature projects (>1400 awarded) are applied conservation projects in which partnerships between institutions are critical for successful conservation outcomes, yet little is known about the structure of collaborative networks within and between EU countries. The aim of our study is to understand the nature of collaboration in LIFE Nature projects using a novel application of social network theory at two levels: (1) collaboration between countries, and (2) collaboration within countries using six case studies: Western Europe (United Kingdom and Netherlands), Eastern Europe (Romania and Latvia) and Southern Europe (Greece and Portugal). Using data on 1261 projects financed between 1996 and 2013, we found that Italy was the most successful country not only in terms of awarded number of projects, but also in terms of overall influence being by far the most influent country in the European LIFE Nature network, having the highest eigenvector (0.989) and degree centrality (0.177). Another key player in the network is Netherlands, which ensures a fast communication flow with other network members (closeness-0.318) by staying connected with the most active countries. Although Western European countries have higher centrality scores than most of the Eastern European countries, our results showed that overall there is a lower tendency to create partnerships between different organization categories. Also, the comparisons of the six case studies indicates significant differences in regards to the pattern of creating partnerships, providing valuable information on collaboration on EU nature conservation. This study represents a starting point in predicting the formation of future partnerships within LIFE Nature programme, suggesting ways to improve transnational

  4. Signed directed social network analysis applied to group conflict

    DEFF Research Database (Denmark)

    Zheng, Quan; Skillicorn, David; Walther, Olivier

    2015-01-01

    Real-world social networks contain relationships of multiple different types, but this richness is often ignored in graph-theoretic modelling. We show how two recently developed spectral embedding techniques, for directed graphs (relationships are asymmetric) and for signed graphs (relationships...... are both positive and negative), can be combined. This combination is particularly appropriate for intelligence, terrorism, and law enforcement applications. We illustrate by applying the novel embedding technique to datasets describing conflict in North-West Africa, and show how unusual interactions can...

  5. A neural network approach to cloud classification

    Science.gov (United States)

    Lee, Jonathan; Weger, Ronald C.; Sengupta, Sailes K.; Welch, Ronald M.

    1990-01-01

    It is shown that, using high-spatial-resolution data, very high cloud classification accuracies can be obtained with a neural network approach. A texture-based neural network classifier using only single-channel visible Landsat MSS imagery achieves an overall cloud identification accuracy of 93 percent. Cirrus can be distinguished from boundary layer cloudiness with an accuracy of 96 percent, without the use of an infrared channel. Stratocumulus is retrieved with an accuracy of 92 percent, cumulus at 90 percent. The use of the neural network does not improve cirrus classification accuracy. Rather, its main effect is in the improved separation between stratocumulus and cumulus cloudiness. While most cloud classification algorithms rely on linear parametric schemes, the present study is based on a nonlinear, nonparametric four-layer neural network approach. A three-layer neural network architecture, the nonparametric K-nearest neighbor approach, and the linear stepwise discriminant analysis procedure are compared. A significant finding is that significantly higher accuracies are attained with the nonparametric approaches using only 20 percent of the database as training data, compared to 67 percent of the database in the linear approach.

  6. Determining Appropriate Buses and Networks for Applying Demand Side Management Programs by Structural Analysis of EENS

    Directory of Open Access Journals (Sweden)

    B. Adineh

    2014-06-01

    Full Text Available The main goal of this paper is to structurally analyze impact of DSM programs on reliability indices. A new approach is presented to structurally decompose reliability index Expected Energy Not Supplied (EENS by using Monte Carlo simulation. EENS is decomposed into two terms. The first term indicates EENS which is caused by generation contingencies. The second term indicates EENS which is caused by transmission and generation contingencies. The proposed approach can be used to indicate appropriate buses for applying DSM. Furthermore, networks are studied at two levels HLI and HLII. Studies show that in some networks reliability indices are affected mostly at the HLI level. While in some other networks, reliability indices are influenced mostly at the HLII level. It means that in these networks, reliability indices are affected by transmission contingencies. Then, it is shown that the implementation of load shifting is effective in some networks and buses. These are the ones which their EENS is more influenced by generation contingencies. However it is not effective in the ones which their EENS is more influenced by transmission contingencies. The simulation results on the IEEE-RTS and Khorasan network show the efficiency of the proposed approach.

  7. Clustering: a neural network approach.

    Science.gov (United States)

    Du, K-L

    2010-01-01

    Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature extraction, vector quantization (VQ), image segmentation, function approximation, and data mining. As an unsupervised classification technique, clustering identifies some inherent structures present in a set of objects based on a similarity measure. Clustering methods can be based on statistical model identification (McLachlan & Basford, 1988) or competitive learning. In this paper, we give a comprehensive overview of competitive learning based clustering methods. Importance is attached to a number of competitive learning based clustering neural networks such as the self-organizing map (SOM), the learning vector quantization (LVQ), the neural gas, and the ART model, and clustering algorithms such as the C-means, mountain/subtractive clustering, and fuzzy C-means (FCM) algorithms. Associated topics such as the under-utilization problem, fuzzy clustering, robust clustering, clustering based on non-Euclidean distance measures, supervised clustering, hierarchical clustering as well as cluster validity are also described. Two examples are given to demonstrate the use of the clustering methods.

  8. A Network Approach to Hypersexuality: Insights and Clinical Implications.

    Science.gov (United States)

    Werner, Marlene; Štulhofer, Aleksandar; Waldorp, Lourens; Jurin, Tanja

    2018-03-01

    In spite of a growing interest in research on hypersexuality, consensus about its etiology and best treatment strategy has not been achieved. To further the empirical and clinical understanding of hypersexuality by exploring the structure of its symptoms using a network analytic approach. In 2014, an online survey advertised as focusing on Internet pornography, sexual health, and relationships was carried out among Croatian men and women aged 18-60 years (M age  = 31.1 years, SD = 9.67). In a sample of 3,028 participants, we applied a network analytic approach to explore the structure of hypersexuality symptoms. In the network, nodes represented hypersexuality symptoms and associated sexual behaviors, while their connections were operationalized as partial correlations. 4 Research questions were addressed: (1) does the hypersexuality network differ between genders; (2) which symptoms are centrally positioned; (3) what is the topological location of pornography use; and (4) are there distinct clusters ("communities") of symptoms in the network? We estimated and plotted hypersexuality networks by gender using items from the Hypersexual Disorder Screening Inventory and the Hypersexual Behavioral Consequences Scale, as well as indicators of sexual desire, pornography use, sexual intercourse, and masturbation frequency. The structure of the hypersexuality network was surprisingly similar in women and men, both in terms of symptom centrality and the clustering of symptoms. Psychological distress and negative emotions triggered by sexual fantasies and/or behaviors, together with a loss of control over sexual feelings, occupied central positions in the networks. Pornography use was located peripherally in both the men's and women's hypersexuality networks. Psychological distress and negative emotions triggered by sexual fantasies and/or behaviors constituted the core of the hypersexuality network, which makes them potential prime targets for clinical intervention and

  9. Classification of brain compartments and head injury lesions by neural networks applied to MRI

    International Nuclear Information System (INIS)

    Kischell, E.R.; Kehtarnavaz, N.; Hillman, G.R.; Levin, H.; Lilly, M.; Kent, T.A.

    1995-01-01

    An automatic, neural network-based approach was applied to segment normal brain compartments and lesions on MR images. Two supervised networks, backpropagation (BPN) and counterpropagation, and two unsupervised networks, Kohonen learning vector quantizer and analog adaptive resonance theory, were trained on registered T2-weighted and proton density images. The classes of interest were background, gray matter, white matter, cerebrospinal fluid, macrocystic encephalomalacia, gliosis, and 'unknown'. A comprehensive feature vector was chosen to discriminate these classes. The BPN combined with feature conditioning, multiple discriminant analysis followed by Hotelling transform, produced the most accurate and consistent classification results. Classifications of normal brain compartments were generally in agreement with expert interpretation of the images. Macrocystic encephalomalacia and gliosis were recognized and, except around the periphery, classified in agreement with the clinician's report used to train the neural network. (orig.)

  10. Classification of brain compartments and head injury lesions by neural networks applied to MRI.

    Science.gov (United States)

    Kischell, E R; Kehtarnavaz, N; Hillman, G R; Levin, H; Lilly, M; Kent, T A

    1995-10-01

    An automatic, neural network-based approach was applied to segment normal brain compartments and lesions on MR images. Two supervised networks, backpropagation (BPN) and counterpropagation, and two unsupervised networks, Kohonen learning vector quantizer and analog adaptive resonance theory, were trained on registered T2-weighted and proton density images. The classes of interest were background, gray matter, white matter, cerebrospinal fluid, macrocystic encephalomalacia, gliosis, and "unknown." A comprehensive feature vector was chosen to discriminate these classes. The BPN combined with feature conditioning, multiple discriminant analysis followed by Hotelling transform, produced the most accurate and consistent classification results. Classification of normal brain compartments were generally in agreement with expert interpretation of the images. Macrocystic encephalomalacia and gliosis were recognized and, except around the periphery, classified in agreement with the clinician's report used to train the neural network.

  11. Classification of brain compartments and head injury lesions by neural networks applied to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kischell, E.R. [Dept. of Electrical Engineering, Texas A and M Univ., College Station, TX (United States); Kehtarnavaz, N. [Dept. of Electrical Engineering, Texas A and M Univ., College Station, TX (United States); Hillman, G.R. [Dept. of Pharmacology, Univ. of Texas Medical Branch, Galveston, TX (United States); Levin, H. [Dept. of Neurosurgery, Univ. of Texas Medical Branch, Galveston, TX (United States); Lilly, M. [Dept. of Neurosurgery, Univ. of Texas Medical Branch, Galveston, TX (United States); Kent, T.A. [Dept. of Neurology and Psychiatry, Univ. of Texas Medical Branch, Galveston, TX (United States)

    1995-10-01

    An automatic, neural network-based approach was applied to segment normal brain compartments and lesions on MR images. Two supervised networks, backpropagation (BPN) and counterpropagation, and two unsupervised networks, Kohonen learning vector quantizer and analog adaptive resonance theory, were trained on registered T2-weighted and proton density images. The classes of interest were background, gray matter, white matter, cerebrospinal fluid, macrocystic encephalomalacia, gliosis, and `unknown`. A comprehensive feature vector was chosen to discriminate these classes. The BPN combined with feature conditioning, multiple discriminant analysis followed by Hotelling transform, produced the most accurate and consistent classification results. Classifications of normal brain compartments were generally in agreement with expert interpretation of the images. Macrocystic encephalomalacia and gliosis were recognized and, except around the periphery, classified in agreement with the clinician`s report used to train the neural network. (orig.)

  12. Applying long short-term memory recurrent neural networks to intrusion detection

    Directory of Open Access Journals (Sweden)

    Ralf C. Staudemeyer

    2015-07-01

    Full Text Available We claim that modelling network traffic as a time series with a supervised learning approach, using known genuine and malicious behaviour, improves intrusion detection. To substantiate this, we trained long short-term memory (LSTM recurrent neural networks with the training data provided by the DARPA / KDD Cup ’99 challenge. To identify suitable LSTM-RNN network parameters and structure we experimented with various network topologies. We found networks with four memory blocks containing two cells each offer a good compromise between computational cost and detection performance. We applied forget gates and shortcut connections respectively. A learning rate of 0.1 and up to 1,000 epochs showed good results. We tested the performance on all features and on extracted minimal feature sets respectively. We evaluated different feature sets for the detection of all attacks within one network and also to train networks specialised on individual attack classes. Our results show that the LSTM classifier provides superior performance in comparison to results previously published results of strong static classifiers. With 93.82% accuracy and 22.13 cost, LSTM outperforms the winning entries of the KDD Cup ’99 challenge by far. This is due to the fact that LSTM learns to look back in time and correlate consecutive connection records. For the first time ever, we have demonstrated the usefulness of LSTM networks to intrusion detection.

  13. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  14. Neural networks (NN applied to the commercial properties valuation

    Directory of Open Access Journals (Sweden)

    J. M. Núñez Tabales

    2017-03-01

    Full Text Available Several agents, such as buyers and sellers, or local or tax authorities need to estimate the value of properties. There are different approaches to obtain the market price of a dwelling. Many papers have been produced in the academic literature for such purposes, but, these are, almost always, oriented to estimate hedonic prices of residential properties, such as houses or apartments. Here these methodologies are used in the field of estimate market price of commercial premises, using AI techniques. A case study is developed in Cordova —city in the South of Spain—. Neural Networks are an attractive alternative to the traditional hedonic modelling approaches, as they are better adapted to non-linearities of causal relationships and they also produce smaller valuation errors. It is also possible, from the NN model, to obtain implicit prices associated to the main attributes that can explain the variability of the market price of commercial properties.

  15. Applying complex networks to evaluate precipitation patterns over South America

    Science.gov (United States)

    Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique; Kurths, Jürgen; Rammig, Anja

    2016-04-01

    The climate of South America exhibits pronounced differences between the wet- and the dry-season, which are accompanied by specific synoptic events like changes in the location of the South American Low Level Jet (SALLJ) and the establishment of the South American Convergence Zone (SACZ). The onset of these events can be related to the presence of typical large-scale precipitation patterns over South America, as previous studies have shown[1,2]. The application of complex network methods to precipitation data recently received increased scientific attention for the special case of extreme events, as it is possible with such methods to analyze the spatiotemporal correlation structure as well as possible teleconnections of these events[3,4]. In these approaches the correlation between precipitation datasets is calculated by means of Event Synchronization which restricts their applicability to extreme precipitation events. In this work, we propose a method which is able to consider not only extreme precipitation but complete time series. A direct application of standard similarity measures in order to correlate precipitation time series is impossible due to their intricate statistical properties as the large amount of zeros. Therefore, we introduced and evaluated a suitable modification of Pearson's correlation coefficient to construct spatial correlation networks of precipitation. By analyzing the characteristics of spatial correlation networks constructed on the basis of this new measure, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections of correlated areas, and detect central regions for precipitation correlation. By analyzing the change of the network over the year[5], we are also able to determine local and global changes in precipitation correlation patterns. Additionally, global network characteristics as the network connectivity yield indications for beginning and end of wet- and dry season. In order to identify

  16. Building a glaucoma interaction network using a text mining approach.

    Science.gov (United States)

    Soliman, Maha; Nasraoui, Olfa; Cooper, Nigel G F

    2016-01-01

    The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of

  17. The Private Lives of Minerals: Social Network Analysis Applied to Mineralogy and Petrology

    Science.gov (United States)

    Hazen, R. M.; Morrison, S. M.; Fox, P. A.; Golden, J. J.; Downs, R. T.; Eleish, A.; Prabhu, A.; Li, C.; Liu, C.

    2016-12-01

    Comprehensive databases of mineral species (rruff.info/ima) and their geographic localities and co-existing mineral assemblages (mindat.org) reveal patterns of mineral association and distribution that mimic social networks, as commonly applied to such varied topics as social media interactions, the spread of disease, terrorism networks, and research collaborations. Applying social network analysis (SNA) to common assemblages of rock-forming igneous and regional metamorphic mineral species, we find patterns of cohesion, segregation, density, and cliques that are similar to those of human social networks. These patterns highlight classic trends in lithologic evolution and are illustrated with sociograms, in which mineral species are the "nodes" and co-existing species form "links." Filters based on chemistry, age, structural group, and other parameters highlight visually both familiar and new aspects of mineralogy and petrology. We quantify sociograms with SNA metrics, including connectivity (based on the frequency of co-occurrence of mineral pairs), homophily (the extent to which co-existing mineral species share compositional and other characteristics), network closure (based on the degree of network interconnectivity), and segmentation (as revealed by isolated "cliques" of mineral species). Exploitation of large and growing mineral data resources with SNA offers promising avenues for discovering previously hidden trends in mineral diversity-distribution systematics, as well as providing new pedagogical approaches to teaching mineralogy and petrology.

  18. Sensitivity of chemical reaction networks: a structural approach. 1. Examples and the carbon metabolic network.

    Science.gov (United States)

    Mochizuki, Atsushi; Fiedler, Bernold

    2015-02-21

    In biological cells, chemical reaction pathways lead to complex network systems like metabolic networks. One experimental approach to the dynamics of such systems examines their "sensitivity": each enzyme mediating a reaction in the system is increased/decreased or knocked out separately, and the responses in the concentrations of chemicals or their fluxes are observed. In this study, we present a mathematical method, named structural sensitivity analysis, to determine the sensitivity of reaction systems from information on the network alone. We investigate how the sensitivity responses of chemicals in a reaction network depend on the structure of the network, and on the position of the perturbed reaction in the network. We establish and prove some general rules which relate the sensitivity response to the structure of the underlying network. We describe a hierarchical pattern in the flux response which is governed by branchings in the network. We apply our method to several hypothetical and real life chemical reaction networks, including the metabolic network of the Escherichia coli TCA cycle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Bayesian network modeling applied to coastal geomorphology: lessons learned from a decade of experimentation and application

    Science.gov (United States)

    Plant, N. G.; Thieler, E. R.; Gutierrez, B.; Lentz, E. E.; Zeigler, S. L.; Van Dongeren, A.; Fienen, M. N.

    2016-12-01

    We evaluate the strengths and weaknesses of Bayesian networks that have been used to address scientific and decision-support questions related to coastal geomorphology. We will provide an overview of coastal geomorphology research that has used Bayesian networks and describe what this approach can do and when it works (or fails to work). Over the past decade, Bayesian networks have been formulated to analyze the multi-variate structure and evolution of coastal morphology and associated human and ecological impacts. The approach relates observable system variables to each other by estimating discrete correlations. The resulting Bayesian-networks make predictions that propagate errors, conduct inference via Bayes rule, or both. In scientific applications, the model results are useful for hypothesis testing, using confidence estimates to gage the strength of tests while applications to coastal resource management are aimed at decision-support, where the probabilities of desired ecosystems outcomes are evaluated. The range of Bayesian-network applications to coastal morphology includes emulation of high-resolution wave transformation models to make oceanographic predictions, morphologic response to storms and/or sea-level rise, groundwater response to sea-level rise and morphologic variability, habitat suitability for endangered species, and assessment of monetary or human-life risk associated with storms. All of these examples are based on vast observational data sets, numerical model output, or both. We will discuss the progression of our experiments, which has included testing whether the Bayesian-network approach can be implemented and is appropriate for addressing basic and applied scientific problems and evaluating the hindcast and forecast skill of these implementations. We will present and discuss calibration/validation tests that are used to assess the robustness of Bayesian-network models and we will compare these results to tests of other models. This will

  20. GMDH and neural networks applied in temperature sensors monitoring

    International Nuclear Information System (INIS)

    Bueno, Elaine Inacio; Pereira, Iraci Martinez; Silva, Antonio Teixeira e

    2009-01-01

    In this work a monitoring system was developed based on the Group Method of Data Handling (GMDH) and Neural Networks (ANNs) methodologies. This methodology was applied to the IEA-R1 research reactor at IPEN by using a database obtained from a theoretical model of the reactor. The IEA-R1 research reactor is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium as reflector. The theoretical model was developed using the Matlab GUIDE toolbox. The equations are based in the IEA-R1 mass and energy inventory balance and physical as well as operational aspects are taken into consideration. This methodology was developed by using the GMDH algorithm as input variables to the ANNs. The results obtained using the GMDH and ANNs were better than that obtained using only ANNs. (author)

  1. Flowshop Scheduling Using a Network Approach | Oladeinde ...

    African Journals Online (AJOL)

    In this paper, a network based formulation of a permutation flow shop problem is presented. Two nuances of flow shop problems with different levels of complexity are solved using different approaches to the linear programming formulation. Key flow shop parameters inclosing makespan of the flow shop problems were ...

  2. Network Modulation: An Algebraic Approach to Enhancing Network Data Persistence

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2010-01-01

    Full Text Available Large-scale distributed systems such as sensor networks usually experience dynamic topology changes, data losses, and node failures in various catastrophic or emergent environments. As such, maintaining data persistence in a scalable fashion has become critical and essential for such systems. The existing major efforts such as coding, routing, and traditional modulation all have their own limitations. In this work, we propose a novel network modulation (NeMo approach to significantly improve the data persistence. Built on algebraic number theory, NeMo operates at the level of modulated symbols (so-called "modulation over modulation". Its core notion is to mix data at intermediate network nodes and meanwhile guarantee the symbol recovery at the sink(s without prestoring or waiting for other symbols. In contrast to the traditional thought that n linearly independent equations are needed to solve for n unknowns, NeMo opens a new regime to boost the convergence speed of achieving persistence. Different performance criteria (e.g., modulation and demodulation complexity, convergence speed, finite-bit representation, and noise robustness have been evaluated in the comprehensive simulations and real experiments to show that the proposed approach is efficient to enhance the network data persistence.

  3. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change.

    Science.gov (United States)

    Albert, Cécile H; Rayfield, Bronwyn; Dumitru, Maria; Gonzalez, Andrew

    2017-12-01

    Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land-use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land-use change projections with the latest developments in network-connectivity research and spatial, multipurpose conservation prioritization. We used land-use change simulations to explore robustness of species' habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land-use change. The application of connectivity criteria alongside habitat-quality criteria for protected-area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade-offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low. © 2017 Society for Conservation Biology.

  5. Focus Groups: A Practical and Applied Research Approach for Counselors

    Science.gov (United States)

    Kress, Victoria E.; Shoffner, Marie F.

    2007-01-01

    Focus groups are becoming a popular research approach that counselors can use as an efficient, practical, and applied method of gathering information to better serve clients. In this article, the authors describe focus groups and their potential usefulness to professional counselors and researchers. Practical implications related to the use of…

  6. Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks

    Directory of Open Access Journals (Sweden)

    Martin Florian

    2012-05-01

    Full Text Available Abstract Background High-throughput measurement technologies produce data sets that have the potential to elucidate the biological impact of disease, drug treatment, and environmental agents on humans. The scientific community faces an ongoing challenge in the analysis of these rich data sources to more accurately characterize biological processes that have been perturbed at the mechanistic level. Here, a new approach is built on previous methodologies in which high-throughput data was interpreted using prior biological knowledge of cause and effect relationships. These relationships are structured into network models that describe specific biological processes, such as inflammatory signaling or cell cycle progression. This enables quantitative assessment of network perturbation in response to a given stimulus. Results Four complementary methods were devised to quantify treatment-induced activity changes in processes described by network models. In addition, companion statistics were developed to qualify significance and specificity of the results. This approach is called Network Perturbation Amplitude (NPA scoring because the amplitudes of treatment-induced perturbations are computed for biological network models. The NPA methods were tested on two transcriptomic data sets: normal human bronchial epithelial (NHBE cells treated with the pro-inflammatory signaling mediator TNFα, and HCT116 colon cancer cells treated with the CDK cell cycle inhibitor R547. Each data set was scored against network models representing different aspects of inflammatory signaling and cell cycle progression, and these scores were compared with independent measures of pathway activity in NHBE cells to verify the approach. The NPA scoring method successfully quantified the amplitude of TNFα-induced perturbation for each network model when compared against NF-κB nuclear localization and cell number. In addition, the degree and specificity to which CDK

  7. Learning about knowledge: A complex network approach

    International Nuclear Information System (INIS)

    Fontoura Costa, Luciano da

    2006-01-01

    An approach to modeling knowledge acquisition in terms of walks along complex networks is described. Each subset of knowledge is represented as a node, and relations between such knowledge are expressed as edges. Two types of edges are considered, corresponding to free and conditional transitions. The latter case implies that a node can only be reached after visiting previously a set of nodes (the required conditions). The process of knowledge acquisition can then be simulated by considering the number of nodes visited as a single agent moves along the network, starting from its lowest layer. It is shown that hierarchical networks--i.e., networks composed of successive interconnected layers--are related to compositions of the prerequisite relationships between the nodes. In order to avoid deadlocks--i.e., unreachable nodes--the subnetwork in each layer is assumed to be a connected component. Several configurations of such hierarchical knowledge networks are simulated and the performance of the moving agent quantified in terms of the percentage of visited nodes after each movement. The Barabasi-Albert and random models are considered for the layer and interconnecting subnetworks. Although all subnetworks in each realization have the same number of nodes, several interconnectivities, defined by the average node degree of the interconnection networks, have been considered. Two visiting strategies are investigated: random choice among the existing edges and preferential choice to so far untracked edges. A series of interesting results are obtained, including the identification of a series of plateaus of knowledge stagnation in the case of the preferential movement strategy in the presence of conditional edges

  8. Neural Networks Applied to Thermal Damage Classification in Grinding Process

    OpenAIRE

    Spadotto, Marcelo M.; Aguiar, Paulo Roberto de; Sousa, Carlos C. P.; Bianchi, Eduardo C.

    2008-01-01

    The utilization of neural network of type multi-layer perceptron using the back-propagation algorithm guaranteed very good results. Tests carried out in order to optimize the learning capacity of neural networks were of utmost importance in the training phase, where the optimum values for the number of neurons of the hidden layer, learning rate and momentum for each structure were determined. Once the architecture of the neural network was established with those optimum values, the mean squar...

  9. Application of Game Theory Approaches in Routing Protocols for Wireless Networks

    Science.gov (United States)

    Javidi, Mohammad M.; Aliahmadipour, Laya

    2011-09-01

    An important and essential issue for wireless networks is routing protocol design that is a major technical challenge due to the function of the network. Game theory is a powerful mathematical tool that analyzes the strategic interactions among multiple decision makers and the results of researches show that applied game theory in routing protocol lead to improvement the network performance through reduce overhead and motivates selfish nodes to collaborate in the network. This paper presents a review and comparison for typical representatives of routing protocols designed that applied game theory approaches for various wireless networks such as ad hoc networks, mobile ad hoc networks and sensor networks that all of them lead to improve the network performance.

  10. How can social network analysis contribute to social behavior research in applied ethology?

    Science.gov (United States)

    Makagon, Maja M; McCowan, Brenda; Mench, Joy A

    2012-05-01

    Social network analysis is increasingly used by behavioral ecologists and primatologists to describe the patterns and quality of interactions among individuals. We provide an overview of this methodology, with examples illustrating how it can be used to study social behavior in applied contexts. Like most kinds of social interaction analyses, social network analysis provides information about direct relationships (e.g. dominant-subordinate relationships). However, it also generates a more global model of social organization that determines how individual patterns of social interaction relate to individual and group characteristics. A particular strength of this approach is that it provides standardized mathematical methods for calculating metrics of sociality across levels of social organization, from the population and group levels to the individual level. At the group level these metrics can be used to track changes in social network structures over time, evaluate the effect of the environment on social network structure, or compare social structures across groups, populations or species. At the individual level, the metrics allow quantification of the heterogeneity of social experience within groups and identification of individuals who may play especially important roles in maintaining social stability or information flow throughout the network.

  11. Applying Bayesian Approach to Combinatorial Problem in Chemistry.

    Science.gov (United States)

    Okamoto, Yasuharu

    2017-05-04

    A Bayesian optimization procedure, in combination with density functional theory calculations, was applied to a combinatorial problem in chemistry. As a specific example, we examined the stable structures of lithium-graphite intercalation compounds (Li-GICs). We found that this approach efficiently identified the stable structure of stage-I and -II Li-GICs by calculating 4-6% of the full search space. We expect that this approach will be helpful in solving problems in chemistry that can be regarded as a kind of combinatorial problem.

  12. Applying the Network Simulation Method for testing chaos in a resistively and capacitively shunted Josephson junction model

    Directory of Open Access Journals (Sweden)

    Fernando Gimeno Bellver

    Full Text Available In this paper, we explore the chaotic behavior of resistively and capacitively shunted Josephson junctions via the so-called Network Simulation Method. Such a numerical approach establishes a formal equivalence among physical transport processes and electrical networks, and hence, it can be applied to efficiently deal with a wide range of differential systems.The generality underlying that electrical equivalence allows to apply the circuit theory to several scientific and technological problems. In this work, the Fast Fourier Transform has been applied for chaos detection purposes and the calculations have been carried out in PSpice, an electrical circuit software.Overall, it holds that such a numerical approach leads to quickly computationally solve Josephson differential models. An empirical application regarding the study of the Josephson model completes the paper. Keywords: Electrical analogy, Network Simulation Method, Josephson junction, Chaos indicator, Fast Fourier Transform

  13. APPLYING ARTIFICIAL NEURAL NETWORK OPTIMIZED BY FIREWORKS ALGORITHM FOR STOCK PRICE ESTIMATION

    Directory of Open Access Journals (Sweden)

    Khuat Thanh Tung

    2016-04-01

    Full Text Available Stock prediction is to determine the future value of a company stock dealt on an exchange. It plays a crucial role to raise the profit gained by firms and investors. Over the past few years, many methods have been developed in which plenty of efforts focus on the machine learning framework achieving the promising results. In this paper, an approach based on Artificial Neural Network (ANN optimized by Fireworks algorithm and data preprocessing by Haar Wavelet is applied to estimate the stock prices. The system was trained and tested with real data of various companies collected from Yahoo Finance. The obtained results are encouraging.

  14. Applying information network analysis to fire-prone landscapes: implications for community resilience

    Directory of Open Access Journals (Sweden)

    Derric B. Jacobs

    2017-03-01

    Full Text Available Resilient communities promote trust, have well-developed networks, and can adapt to change. For rural communities in fire-prone landscapes, current resilience strategies may prove insufficient in light of increasing wildfire risks due to climate change. It is argued that, given the complexity of climate change, adaptations are best addressed at local levels where specific social, cultural, political, and economic conditions are matched with local risks and opportunities. Despite the importance of social networks as key attributes of community resilience, research using social network analysis on coupled human and natural systems is scarce. Furthermore, the extent to which local communities in fire-prone areas understand climate change risks, accept the likelihood of potential changes, and have the capacity to develop collaborative mitigation strategies is underexamined, yet these factors are imperative to community resiliency. We apply a social network framework to examine information networks that affect perceptions of wildfire and climate change in Central Oregon. Data were collected using a mailed questionnaire. Analysis focused on the residents' information networks that are used to gain awareness of governmental activities and measures of community social capital. A two-mode network analysis was used to uncover information exchanges. Results suggest that the general public develops perceptions about climate change based on complex social and cultural systems rather than as patrons of scientific inquiry and understanding. It appears that perceptions about climate change itself may not be the limiting factor in these communities' adaptive capacity, but rather how they perceive local risks. We provide a novel methodological approach in understanding rural community adaptation and resilience in fire-prone landscapes and offer a framework for future studies.

  15. Applying Game Theory in 802.11 Wireless Networks

    Directory of Open Access Journals (Sweden)

    Tomas Cuzanauskas

    2015-07-01

    Full Text Available IEEE 802.11 is one of the most popular wireless technologies in recent days. Due to easiness of adaption and relatively low cost the demand for IEEE 802.11 devices is increasing exponentially. IEEE works in two bands 2.4 GHz and 5 GHz, these bands are known as ISM band. The unlicensed bands are managed by authority which set simple rules to follow when using unlicensed bands, the rules includes requirements as maximum power, out-of-band emissions control as well as interference mitigation. However these rules became outdated as IEEE 802.11 technology is emerging and evolving in hours the rules aren’t well suited for current capabilities of IEEE 802.11 devices. In this article we present game theory based algorithm for IEEE 802.11 wireless devices, we will show that by using game theory it’s possible to achieve better usage of unlicensed spectrum as well as partially decline CSMA/CA. Finally by using this approach we might relax the currently applied maximum power rules for ISM bands, which enable IEEE 802.11 to work on longer distance and have better propagation characteristics.

  16. The hybrid thermography approach applied to architectural structures

    Science.gov (United States)

    Sfarra, S.; Ambrosini, D.; Paoletti, D.; Nardi, I.; Pasqualoni, G.

    2017-07-01

    This work contains an overview of infrared thermography (IRT) method and its applications relating to the investigation of architectural structures. In this method, the passive approach is usually used in civil engineering, since it provides a panoramic view of the thermal anomalies to be interpreted also thanks to the use of photographs focused on the region of interest (ROI). The active approach, is more suitable for laboratory or indoor inspections, as well as for objects having a small size. The external stress to be applied is thermal, coming from non-natural apparatus such as lamps or hot / cold air jets. In addition, the latter permits to obtain quantitative information related to defects not detectable to the naked eyes. Very recently, the hybrid thermography (HIRT) approach has been introduced to the attention of the scientific panorama. It can be applied when the radiation coming from the sun, directly arrives (i.e., possibly without the shadow cast effect) on a surface exposed to the air. A large number of thermograms must be collected and a post-processing analysis is subsequently applied via advanced algorithms. Therefore, an appraisal of the defect depth can be obtained passing through the calculation of the combined thermal diffusivity of the materials above the defect. The approach is validated herein by working, in a first stage, on a mosaic sample having known defects while, in a second stage, on a Church built in L'Aquila (Italy) and covered with a particular masonry structure called apparecchio aquilano. The results obtained appear promising.

  17. Fast frequency hopping codes applied to SAC optical CDMA network

    Science.gov (United States)

    Tseng, Shin-Pin

    2015-06-01

    This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.

  18. THE NETWORKS IN TOURISM: A THEORETICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Maria TĂTĂRUȘANU

    2016-12-01

    Full Text Available The economic world in which tourism companies act today is in a continuous changing process. The most important factor of these changes is the globalization of their environment, both in economic, social, natural and cultural aspects. The tourism companies can benefit from the opportunities brought by globalization, but also could be menaced by the new context. How could react the companies to these changes in order to create and maintain long term competitive advantage for their business? In the present paper we make a literature review of the new tourism companies´ business approach: the networks - a result and/or a reason for exploiting the opportunities or, on the contrary, for keeping their actual position on the market. It’s a qualitative approach and the research methods used are analyses, synthesis, abstraction, which are considered the most appropriate to achieve the objective of the paper.

  19. LVQ and backpropagation neural networks applied to NASA SSME data

    Science.gov (United States)

    Doniere, Timothy F.; Dhawan, Atam P.

    1993-01-01

    Feedfoward neural networks with backpropagation learning have been used as function approximators for modeling the space shuttle main engine (SSME) sensor signals. The modeling of these sensor signals is aimed at the development of a sensor fault detection system that can be used during ground test firings. The generalization capability of a neural network based function approximator depends on the training vectors which in this application may be derived from a number of SSME ground test-firings. This yields a large number of training vectors. Large training sets can cause the time required to train the network to be very large. Also, the network may not be able to generalize for large training sets. To reduce the size of the training sets, the SSME test-firing data is reduced using the learning vector quantization (LVQ) based technique. Different compression ratios were used to obtain compressed data in training the neural network model. The performance of the neural model trained using reduced sets of training patterns is presented and compared with the performance of the model trained using complete data. The LVQ can also be used as a function approximator. The performance of the LVQ as a function approximator using reduced training sets is presented and compared with the performance of the backpropagation network.

  20. Matrix product algorithm for stochastic dynamics on networks applied to nonequilibrium Glauber dynamics

    Science.gov (United States)

    Barthel, Thomas; De Bacco, Caterina; Franz, Silvio

    2018-01-01

    We introduce and apply an efficient method for the precise simulation of stochastic dynamical processes on locally treelike graphs. Networks with cycles are treated in the framework of the cavity method. Such models correspond, for example, to spin-glass systems, Boolean networks, neural networks, or other technological, biological, and social networks. Building upon ideas from quantum many-body theory, our approach is based on a matrix product approximation of the so-called edge messages—conditional probabilities of vertex variable trajectories. Computation costs and accuracy can be tuned by controlling the matrix dimensions of the matrix product edge messages (MPEM) in truncations. In contrast to Monte Carlo simulations, the algorithm has a better error scaling and works for both single instances as well as the thermodynamic limit. We employ it to examine prototypical nonequilibrium Glauber dynamics in the kinetic Ising model. Because of the absence of cancellation effects, observables with small expectation values can be evaluated accurately, allowing for the study of decay processes and temporal correlations.

  1. Integrating network ecology with applied conservation: a synthesis and guide to implementation

    OpenAIRE

    Kaiser-Bunbury, Christopher N.; Blüthgen, Nico

    2015-01-01

    Ecological networks are a useful tool to study the complexity of biotic interactions at a community level. Advances in the understanding of network patterns encourage the application of a network approach in other disciplines than theoretical ecology, such as biodiversity conservation. So far, however, practical applications have been meagre. Here we present a framework for network analysis to be harnessed to advance conservation management by using plant–pollinator networks and islands as mo...

  2. New approach to ECG's features recognition involving neural network

    International Nuclear Information System (INIS)

    Babloyantz, A.; Ivanov, V.V.; Zrelov, P.V.

    2001-01-01

    A new approach for the detection of slight changes in the form of the ECG signal is proposed. It is based on the approximation of raw ECG data inside each RR-interval by the expansion in polynomials of special type and on the classification of samples represented by sets of expansion coefficients using a layered feed-forward neural network. The transformation applied provides significantly simpler data structure, stability to noise and to other accidental factors. A by-product of the method is the compression of ECG data with factor 5

  3. Using the OASES-A to illustrate how network analysis can be applied to understand the experience of stuttering.

    Science.gov (United States)

    Siew, Cynthia S Q; Pelczarski, Kristin M; Yaruss, J Scott; Vitevitch, Michael S

    Network science uses mathematical and computational techniques to examine how individual entities in a system, represented by nodes, interact, as represented by connections between nodes. This approach has been used by Cramer et al. (2010) to make "symptom networks" to examine various psychological disorders. In the present analysis we examined a network created from the items in the Overall Assessment of the Speaker's Experience of Stuttering-Adult (OASES-A), a commonly used measure for evaluating adverse impact in the lives of people who stutter. The items of the OASES-A were represented as nodes in the network. Connections between nodes were placed if responses to those two items in the OASES-A had a correlation coefficient greater than ±0.5. Several network analyses revealed which nodes were "important" in the network. Several centrally located nodes and "key players" in the network were identified. A community detection analysis found groupings of nodes that differed slightly from the subheadings of the OASES-A. Centrally located nodes and "key players" in the network may help clinicians prioritize treatment. The different community structure found for people who stutter suggests that the way people who stutter view stuttering may differ from the way that scientists and clinicians view stuttering. Finally, the present analyses illustrate how the network approach might be applied to other speech, language, and hearing disorders to better understand how those disorders are experienced and to provide insights for their treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Applying neural networks as software sensors for enzyme engineering.

    Science.gov (United States)

    Linko, S; Zhu, Y H; Linko, P

    1999-04-01

    The on-line control of enzyme-production processes is difficult, owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables. For example, intelligent methods to predict the end point of fermentation could be of great economic value. Computer-assisted control based on artificial-neural-network models offers a novel solution in such situations. Well-trained feedforward-backpropagation neural networks can be used as software sensors in enzyme-process control; their performance can be affected by a number of factors.

  5. Applying a rateless code in content delivery networks

    Science.gov (United States)

    Suherman; Zarlis, Muhammad; Parulian Sitorus, Sahat; Al-Akaidi, Marwan

    2017-09-01

    Content delivery network (CDN) allows internet providers to locate their services, to map their coverage into networks without necessarily to own them. CDN is part of the current internet infrastructures, supporting multi server applications especially social media. Various works have been proposed to improve CDN performances. Since accesses on social media servers tend to be short but frequent, providing redundant to the transmitted packets to ensure lost packets not degrade the information integrity may improve service performances. This paper examines the implementation of rateless code in the CDN infrastructure. The NS-2 evaluations show that rateless code is able to reduce packet loss up to 50%.

  6. Applying New Network Security Technologies to SCADA Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Steven A; Stamp, Jason Edwin; Duggan, David P; Chavez, Adrian R.

    2006-11-01

    Supervisory Control and Data Acquisition (SCADA) systems for automation are very important for critical infrastructure and manufacturing operations. They have been implemented to work in a number of physical environments using a variety of hardware, software, networking protocols, and communications technologies, often before security issues became of paramount concern. To offer solutions to security shortcomings in the short/medium term, this project was to identify technologies used to secure "traditional" IT networks and systems, and then assess their efficacy with respect to SCADA systems. These proposed solutions must be relatively simple to implement, reliable, and acceptable to SCADA owners and operators. 4This page intentionally left blank.

  7. Sport, how people choose it: A network analysis approach.

    Science.gov (United States)

    Ferreri, Luca; Ivaldi, Marco; Daolio, Fabio; Giacobini, Mario; Rainoldi, Alberto; Tomassini, Marco

    2015-01-01

    In order to investigate the behaviour of athletes in choosing sports, we analyse data from part of the We-Sport database, a vertical social network that links athletes through sports. In particular, we explore connections between people sharing common sports and the role of age and gender by applying "network science" approaches and methods. The results show a disassortative tendency of athletes in choosing sports, a negative correlation between age and number of chosen sports and a positive correlation between age of connected athletes. Some interesting patterns of connection between age classes are depicted. In addition, we propose a method to classify sports, based on the analyses of the behaviour of people practising them. Thanks to this brand new classifications, we highlight the links of class of sports and their unexpected features. We emphasise some gender dependency affinity in choosing sport classes.

  8. Applying Bayesian networks in practical customer satisfaction studies

    NARCIS (Netherlands)

    Jaronski, W.; Bloemer, J.M.M.; Vanhoof, K.; Wets, G.; Chen Tan, K.; Hiot Lim, M.; Yao, X.; Wang, L.

    2004-01-01

    This chapter presents an application of Bayesian network technology in an empirical customer satisfaction study. The findings of the study should provide insight to the importance of product/service dimensions in terms of the strength of their influence on overall (dis)satisfaction. To this end we

  9. Prediction of fracture toughness temperature dependence applying neural network

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Hadraba, Hynek; Chlup, Zdeněk; Šmída, T.

    2011-01-01

    Roč. 11, č. 1 (2011), s. 9-14 ISSN 1451-3749 R&D Projects: GA ČR(CZ) GAP108/10/0466 Institutional research plan: CEZ:AV0Z20410507 Keywords : brittle to ductile transition * fracture toughness * artificial neural network * steels Subject RIV: JL - Materials Fatigue, Friction Mechanics

  10. Neural networks applied to the classification of remotely sensed data

    NARCIS (Netherlands)

    Mulder, Nanno; Spreeuwers, Lieuwe Jan

    1991-01-01

    A neural network with topology 2-8-8 is evaluated against the standard of supervised non-parametric maximum likelihood classification. The purpose of the evaluation is to compare the performance in terms of training speed and quality of classification. Classification is done on multispectral data

  11. The harmonics detection method based on neural network applied ...

    African Journals Online (AJOL)

    user

    with MATLAB Simulink Power System Toolbox. The simulation study results of this novel technique compared to other similar methods are found quite satisfactory by assuring good filtering characteristics and high system stability. Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total Harmonic ...

  12. Applying Real Options Thinking to Information Security in Networked Organizations

    NARCIS (Netherlands)

    Daneva, Maia

    2006-01-01

    An information security strategy of an organization participating in a networked business sets out the plans for designing a variety of actions that ensure confidentiality, availability, and integrity of company’s key information assets. The actions are concerned with authentication and

  13. NEW TECHNIQUES APPLIED IN ECONOMICS. ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Constantin Ilie

    2009-05-01

    Full Text Available The present paper has the objective to inform the public regarding the use of new techniques for the modeling, simulate and forecast of system from different field of activity. One of those techniques is Artificial Neural Network, one of the artificial in

  14. Training of reverse propagation neural networks applied to neutron dosimetry

    International Nuclear Information System (INIS)

    Hernandez P, C. F.; Martinez B, M. R.; Leon P, A. A.; Espinoza G, J. G.; Castaneda M, V. H.; Solis S, L. O.; Castaneda M, R.; Ortiz R, M.; Vega C, H. R.; Mendez V, R.; Gallego, E.; De Sousa L, M. A.

    2016-10-01

    Neutron dosimetry is of great importance in radiation protection as aims to provide dosimetric quantities to assess the magnitude of detrimental health effects due to exposure of neutron radiation. To quantify detriment to health is necessary to evaluate the dose received by the occupationally exposed personnel using different detection systems called dosimeters, which have very dependent responses to the energy distribution of neutrons. The neutron detection is a much more complex problem than the detection of charged particles, since it does not carry an electric charge, does not cause direct ionization and has a greater penetration power giving the possibility of interacting with matter in a different way. Because of this, various neutron detection systems have been developed, among which the Bonner spheres spectrometric system stands out due to the advantages that possesses, such as a wide range of energy, high sensitivity and easy operation. However, once obtained the counting rates, the problem lies in the neutron spectrum deconvolution, necessary for the calculation of the doses, using different mathematical methods such as Monte Carlo, maximum entropy, iterative methods among others, which present various difficulties that have motivated the development of new technologies. Nowadays, methods based on artificial intelligence technologies are being used to perform neutron dosimetry, mainly using the theory of artificial neural networks. In these new methods the need for spectrum reconstruction can be eliminated for the calculation of the doses. In this work an artificial neural network or reverse propagation was trained for the calculation of 15 equivalent doses from the counting rates of the Bonner spheres spectrometric system using a set of 7 spheres, one of 2 spheres and two of a single sphere of different sizes, testing different error values until finding the most appropriate. The optimum network topology was obtained through the robust design

  15. A Formal Verification Model for Performance Analysis of Reinforcement Learning Algorithms Applied t o Dynamic Networks

    OpenAIRE

    Shrirang Ambaji KULKARNI; Raghavendra G . RAO

    2017-01-01

    Routing data packets in a dynamic network is a difficult and important problem in computer networks. As the network is dynamic, it is subject to frequent topology changes and is subject to variable link costs due to congestion and bandwidth. Existing shortest path algorithms fail to converge to better solutions under dynamic network conditions. Reinforcement learning algorithms posses better adaptation techniques in dynamic environments. In this paper we apply model based Q-Routing technique ...

  16. Radial basis function neural networks applied to NASA SSME data

    Science.gov (United States)

    Wheeler, Kevin R.; Dhawan, Atam P.

    1993-01-01

    This paper presents a brief report on the application of Radial Basis Function Neural Networks (RBFNN) to the prediction of sensor values for fault detection and diagnosis of the Space Shuttle's Main Engines (SSME). The location of the Radial Basis Function (RBF) node centers was determined with a K-means clustering algorithm. A neighborhood operation about these center points was used to determine the variances of the individual processing notes.

  17. Neural network stochastic simulation applied for quantifying uncertainties

    Directory of Open Access Journals (Sweden)

    N Foudil-Bey

    2016-09-01

    Full Text Available Generally the geostatistical simulation methods are used to generate several realizations of physical properties in the sub-surface, these methods are based on the variogram analysis and limited to measures correlation between variables at two locations only. In this paper, we propose a simulation of properties based on supervised Neural network training at the existing drilling data set. The major advantage is that this method does not require a preliminary geostatistical study and takes into account several points. As a result, the geological information and the diverse geophysical data can be combined easily. To do this, we used a neural network with multi-layer perceptron architecture like feed-forward, then we used the back-propagation algorithm with conjugate gradient technique to minimize the error of the network output. The learning process can create links between different variables, this relationship can be used for interpolation of the properties on the one hand, or to generate several possible distribution of physical properties on the other hand, changing at each time and a random value of the input neurons, which was kept constant until the period of learning. This method was tested on real data to simulate multiple realizations of the density and the magnetic susceptibility in three-dimensions at the mining camp of Val d'Or, Québec (Canada.

  18. Applied and computational harmonic analysis on graphs and networks

    Science.gov (United States)

    Irion, Jeff; Saito, Naoki

    2015-09-01

    In recent years, the advent of new sensor technologies and social network infrastructure has provided huge opportunities and challenges for analyzing data recorded on such networks. In the case of data on regular lattices, computational harmonic analysis tools such as the Fourier and wavelet transforms have well-developed theories and proven track records of success. It is therefore quite important to extend such tools from the classical setting of regular lattices to the more general setting of graphs and networks. In this article, we first review basics of graph Laplacian matrices, whose eigenpairs are often interpreted as the frequencies and the Fourier basis vectors on a given graph. We point out, however, that such an interpretation is misleading unless the underlying graph is either an unweighted path or cycle. We then discuss our recent effort of constructing multiscale basis dictionaries on a graph, including the Hierarchical Graph Laplacian Eigenbasis Dictionary and the Generalized Haar-Walsh Wavelet Packet Dictionary, which are viewed as generalizations of the classical hierarchical block DCTs and the Haar-Walsh wavelet packets, respectively, to the graph setting. Finally, we demonstrate the usefulness of our dictionaries by using them to simultaneously segment and denoise 1-D noisy signals sampled on regular lattices, a problem where classical tools have difficulty.

  19. Optical Neural Network Models Applied To Logic Program Execution

    Science.gov (United States)

    Stormon, Charles D.

    1988-05-01

    Logic programming is being used extensively by Artificial Intelligence researchers to solve problems including natural language processing and expert systems. These languages, of which Prolog is the most widely used, promise to revolutionize software engineering, but much greater performance is needed. Researchers have demonstrated the applicability of neural network models to the solution of certain NP-complete problems, but these methods are not obviously applicable to the execution of logic programs. This paper outlines the use of neural networks in four aspects of the logic program execution cycle, and discusses results of a simulation of three of these. Four neural network functional units are described, called the substitution agent, the clause filter, the structure processor, and the heuristics generator, respectively. Simulation results suggest that the system described may provide several orders of magnitude improvement in execution speed for large logic programs. However, practical implementation of the proposed architecture will require the application of optical computing techniques due to the large number of neurons required, and the need for massive, adaptive connectivity.

  20. A Network Coding Approach to Loss Tomography

    DEFF Research Database (Denmark)

    Sattari, Pegah; Markopoulou, Athina; Fragouli, Christina

    2013-01-01

    Network tomography aims at inferring internal network characteristics based on measurements at the edge of the network. In loss tomography, in particular, the characteristic of interest is the loss rate of individual links. There is a significant body of work dedicated to this problem using multi...... and multiple paths between sources and receivers. This work was the first to make the connection between active network tomography and network coding, and thus opened a new research direction....

  1. Network Analysis: A Novel Approach to Understand Suicidal Behaviour

    Directory of Open Access Journals (Sweden)

    Derek de Beurs

    2017-02-01

    Full Text Available Although suicide is a major public health issue worldwide, we understand little of the onset and development of suicidal behaviour. Suicidal behaviour is argued to be the end result of the complex interaction between psychological, social and biological factors. Epidemiological studies resulted in a range of risk factors for suicidal behaviour, but we do not yet understand how their interaction increases the risk for suicidal behaviour. A new approach called network analysis can help us better understand this process as it allows us to visualize and quantify the complex association between many different symptoms or risk factors. A network analysis of data containing information on suicidal patients can help us understand how risk factors interact and how their interaction is related to suicidal thoughts and behaviour. A network perspective has been successfully applied to the field of depression and psychosis, but not yet to the field of suicidology. In this theoretical article, I will introduce the concept of network analysis to the field of suicide prevention, and offer directions for future applications and studies.

  2. Identifying the optimal supply temperature in district heating networks - A modelling approach

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2014-01-01

    dynamically while the flow and pressure are calculated on the basis of steady state conditions. The implicit finite element method is applied to simulate the transient temperature behaviour in the network. Pipe network heat losses, pressure drop in the network and return temperature to the plant...... of this study is to develop a model for thermo-hydraulic calculation of low temperature DH system. The modelling is performed with emphasis on transient heat transfer in pipe networks. The pseudo-dynamic approach is adopted to model the District Heating Network [DHN] behaviour which estimates the temperature...

  3. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  4. A model-guided symbolic execution approach for network protocol implementations and vulnerability detection.

    Directory of Open Access Journals (Sweden)

    Shameng Wen

    Full Text Available Formal techniques have been devoted to analyzing whether network protocol specifications violate security policies; however, these methods cannot detect vulnerabilities in the implementations of the network protocols themselves. Symbolic execution can be used to analyze the paths of the network protocol implementations, but for stateful network protocols, it is difficult to reach the deep states of the protocol. This paper proposes a novel model-guided approach to detect vulnerabilities in network protocol implementations. Our method first abstracts a finite state machine (FSM model, then utilizes the model to guide the symbolic execution. This approach achieves high coverage of both the code and the protocol states. The proposed method is implemented and applied to test numerous real-world network protocol implementations. The experimental results indicate that the proposed method is more effective than traditional fuzzing methods such as SPIKE at detecting vulnerabilities in the deep states of network protocol implementations.

  5. A model-guided symbolic execution approach for network protocol implementations and vulnerability detection.

    Science.gov (United States)

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Formal techniques have been devoted to analyzing whether network protocol specifications violate security policies; however, these methods cannot detect vulnerabilities in the implementations of the network protocols themselves. Symbolic execution can be used to analyze the paths of the network protocol implementations, but for stateful network protocols, it is difficult to reach the deep states of the protocol. This paper proposes a novel model-guided approach to detect vulnerabilities in network protocol implementations. Our method first abstracts a finite state machine (FSM) model, then utilizes the model to guide the symbolic execution. This approach achieves high coverage of both the code and the protocol states. The proposed method is implemented and applied to test numerous real-world network protocol implementations. The experimental results indicate that the proposed method is more effective than traditional fuzzing methods such as SPIKE at detecting vulnerabilities in the deep states of network protocol implementations.

  6. Neural networks-based modeling applied to a process of heavy metals removal from wastewaters.

    Science.gov (United States)

    Suditu, Gabriel D; Curteanu, Silvia; Bulgariu, Laura

    2013-01-01

    This article approaches the problem of environment pollution with heavy metals from disposal of industrial wastewaters, namely removal of these metals by means of biosorbents, particularly with Romanian peat (from Poiana Stampei). The study is carried out by simulation using feed-forward and modular neural networks with one or two hidden layers, pursuing the influence of certain operating parameters (metal nature, sorbent dose, pH, temperature, initial concentration of metal ion, contact time) on the amount of metal ions retained on the unit mass of sorbent. In neural network modeling, a consistent data set was used, including five metals: lead, mercury, cadmium, nickel and cobalt, the quantification of the metal nature being done by its electronegativity. Even if based on successive trials, the method of designing neural models was systematically conducted, recording and comparing the errors obtained with different types of neural networks, having various numbers of hidden layers and neurons, number of training epochs, or using various learning methods. The errors with values under 5% make clear the efficiency of the applied method.

  7. Neural networks applied to discriminate botanical origin of honeys.

    Science.gov (United States)

    Anjos, Ofélia; Iglesias, Carla; Peres, Fátima; Martínez, Javier; García, Ángela; Taboada, Javier

    2015-05-15

    The aim of this work is develop a tool based on neural networks to predict the botanical origin of honeys using physical and chemical parameters. The managed database consists of 49 honey samples of 2 different classes: monofloral (almond, holm oak, sweet chestnut, eucalyptus, orange, rosemary, lavender, strawberry trees, thyme, heather, sunflower) and multifloral. The moisture content, electrical conductivity, water activity, ashes content, pH, free acidity, colorimetric coordinates in CIELAB space (L(∗), a(∗), b(∗)) and total phenols content of the honey samples were evaluated. Those properties were considered as input variables of the predictive model. The neural network is optimised through several tests with different numbers of neurons in the hidden layer and also with different input variables. The reduced error rates (5%) allow us to conclude that the botanical origin of honey can be reliably and quickly known from the colorimetric information and the electrical conductivity of honey. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Applying fuzzy analytic network process in quality function deployment model

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Afsharkazemi

    2012-08-01

    Full Text Available In this paper, we propose an empirical study of QFD implementation when fuzzy numbers are used to handle the uncertainty associated with different components of the proposed model. We implement fuzzy analytical network to find the relative importance of various criteria and using fuzzy numbers we calculate the relative importance of these factors. The proposed model of this paper uses fuzzy matrix and house of quality to study the products development in QFD and also the second phase i.e. part deployment. In most researches, the primary objective is only on CRs to implement the quality function deployment and some other criteria such as production costs, manufacturing costs etc were disregarded. The results of using fuzzy analysis network process based on the QFD model in Daroupat packaging company to develop PVDC show that the most important indexes are being waterproof, resistant pill packages, and production cost. In addition, the PVDC coating is the most important index in terms of company experts’ point of view.

  9. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.

  10. Open home networks: the TEAHA approach

    NARCIS (Netherlands)

    van Dijk, H.W.; Scholten, Johan; Tobalina, Alvaro; García Muñoz, Victor; Milanini, Stephane; Kung, Antonio

    2006-01-01

    The current trend for home appliances is networking. Although more and more of these appliances are networked, there is not a standard way of interaction, which restrains the development of services for in-home networks. The lack of standardisation is partly due to a legacy of business interests;

  11. Open Home Networks: the TEAHA Approach

    NARCIS (Netherlands)

    van Dijk, H.W.; Scholten, Johan; Tobalina, Alvaro; García Muñoz, Victor; Milanini, Stephane; Kung, Antonio; Dini, C.; Smekal, Z.; Lochin, E.; Verma, P.

    2007-01-01

    The current trend for home appliances is networking. Although more and more of these appliances are networked, there is not a standard way of interaction, which restrains the development of services for in-home networks. The lack of standardisation is partly due to a legacy of business interests;

  12. A network approach to analyzing highly recombinant malaria parasite genes.

    Directory of Open Access Journals (Sweden)

    Daniel B Larremore

    Full Text Available The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs, and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  13. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    Science.gov (United States)

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474

  14. Neural network applied to elemental archaeological Marajoara ceramic compositions

    International Nuclear Information System (INIS)

    Toyota, Rosimeiri G.; Munita, Casimiro S.; Boscarioli, Clodis

    2009-01-01

    In the last decades several analytical techniques have been used in archaeological ceramics studies. However, instrumental neutron activation analysis, INAA, employing gamma-ray spectrometry seems to be the most suitable technique because it is a simple analytical method in its purely instrumental form. The purpose of this work was to determine the concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb, and Zn in 160 original marajoara ceramic fragments by INAA. Marajoara ceramics culture was sophisticated and well developed. This culture reached its peak during the V and XIV centuries in Marajo Island located on the Amazon River delta area in Brazil. The purpose of the quantitative data was to identify compositionally homogeneous groups within the database. Having this in mind, the data set was first converted to base-10 logarithms to compensate for the differences in magnitude between major elements and trace elements, and also to yield a closer to normal distribution for several trace elements. After that, the data were analyzed using the Mahalanobis distance and using the lambda Wilks as critical value to identify the outliers. The similarities among the samples were studied by means of cluster analysis, principal components analysis and discriminant analysis. Additional confirmation of these groups was made by using elemental concentration bivariate plots. The results showed that there were two very well defined groups in the data set. In addition, the database was studied using artificial neural network with unsupervised learning strategy known as self-organizing maps to classify the marajoara ceramics. The experiments carried out showed that self-organizing maps artificial neural network is capable of discriminating ceramic fragments like multivariate statistical methods, and, again the results showed that the database was formed by two groups. (author)

  15. Neural network applied to elemental archaeological Marajoara ceramic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Toyota, Rosimeiri G.; Munita, Casimiro S., E-mail: rosimeiritoy@yahoo.com.b, E-mail: camunita@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Boscarioli, Clodis, E-mail: boscarioli@gmail.co [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas. Colegiado de Informatica; Hernandez, Emilio D.M., E-mail: boscarioli@gmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica; Neves, Eduardo G.; Demartini, Celia C., E-mail: eduardo@pq.cnpq.b [Museu de Arqueologia e Etnologia (MAE/USP), Sao Paulo, SP (Brazil)

    2009-07-01

    In the last decades several analytical techniques have been used in archaeological ceramics studies. However, instrumental neutron activation analysis, INAA, employing gamma-ray spectrometry seems to be the most suitable technique because it is a simple analytical method in its purely instrumental form. The purpose of this work was to determine the concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb, and Zn in 160 original marajoara ceramic fragments by INAA. Marajoara ceramics culture was sophisticated and well developed. This culture reached its peak during the V and XIV centuries in Marajo Island located on the Amazon River delta area in Brazil. The purpose of the quantitative data was to identify compositionally homogeneous groups within the database. Having this in mind, the data set was first converted to base-10 logarithms to compensate for the differences in magnitude between major elements and trace elements, and also to yield a closer to normal distribution for several trace elements. After that, the data were analyzed using the Mahalanobis distance and using the lambda Wilks as critical value to identify the outliers. The similarities among the samples were studied by means of cluster analysis, principal components analysis and discriminant analysis. Additional confirmation of these groups was made by using elemental concentration bivariate plots. The results showed that there were two very well defined groups in the data set. In addition, the database was studied using artificial neural network with unsupervised learning strategy known as self-organizing maps to classify the marajoara ceramics. The experiments carried out showed that self-organizing maps artificial neural network is capable of discriminating ceramic fragments like multivariate statistical methods, and, again the results showed that the database was formed by two groups. (author)

  16. Review of Artificial Neural Networks (ANN) applied to corrosion monitoring

    International Nuclear Information System (INIS)

    Mabbutt, S; Picton, P; Shaw, P; Black, S

    2012-01-01

    The assessment of corrosion within an engineering system often forms an important aspect of condition monitoring but it is a parameter that is inherently difficult to measure and predict. The electrochemical nature of the corrosion process allows precise measurements to be made. Advances in instruments, techniques and software have resulted in devices that can gather data and perform various analysis routines that provide parameters to identify corrosion type and corrosion rate. Although corrosion rates are important they are only useful where general or uniform corrosion dominates. However, pitting, inter-granular corrosion and environmentally assisted cracking (stress corrosion) are examples of corrosion mechanisms that can be dangerous and virtually invisible to the naked eye. Electrochemical noise (EN) monitoring is a very useful technique for detecting these types of corrosion and it is the only non-invasive electrochemical corrosion monitoring technique commonly available. Modern instrumentation is extremely sensitive to changes in the system and new experimental configurations for gathering EN data have been proven. In this paper the identification of localised corrosion by different data analysis routines has been reviewed. In particular the application of Artificial Neural Network (ANN) analysis to corrosion data is of key interest. In most instances data needs to be used with conventional theory to obtain meaningful information and relies on expert interpretation. Recently work has been carried out using artificial neural networks to investigate various types of corrosion data in attempts to predict corrosion behaviour with some success. This work aims to extend this earlier work to identify reliable electrochemical indicators of localised corrosion onset and propagation stages.

  17. A network dynamics approach to chemical reaction networks

    NARCIS (Netherlands)

    van der Schaft, Abraham; Rao, S.; Jayawardhana, B.

    2016-01-01

    A treatment of chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a

  18. An artificial immune system algorithm approach for reconfiguring distribution network

    Science.gov (United States)

    Syahputra, Ramadoni; Soesanti, Indah

    2017-08-01

    This paper proposes an artificial immune system (AIS) algorithm approach for reconfiguring distribution network with the presence distributed generators (DG). The distribution network with high-performance is a network that has a low power loss, better voltage profile, and loading balance among feeders. The task for improving the performance of the distribution network is optimization of network configuration. The optimization has become a necessary study with the presence of DG in entire networks. In this work, optimization of network configuration is based on an AIS algorithm. The methodology has been tested in a model of 33 bus IEEE radial distribution networks with and without DG integration. The results have been showed that the optimal configuration of the distribution network is able to reduce power loss and to improve the voltage profile of the distribution network significantly.

  19. Computer networks ISE a systems approach

    CERN Document Server

    Peterson, Larry L

    2007-01-01

    Computer Networks, 4E is the only introductory computer networking book written by authors who have had first-hand experience with many of the protocols discussed in the book, who have actually designed some of them as well, and who are still actively designing the computer networks today. This newly revised edition continues to provide an enduring, practical understanding of networks and their building blocks through rich, example-based instruction. The authors' focus is on the why of network design, not just the specifications comprising today's systems but how key technologies and p

  20. Bayesian networks applied to process diagnostics. Applications in energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Widarsson, Bjoern (ed.); Karlsson, Christer; Dahlquist, Erik [Maelardalen Univ., Vaesteraas (Sweden); Nielsen, Thomas D.; Jensen, Finn V. [Aalborg Univ. (Denmark)

    2004-10-01

    Uncertainty in process operation occurs frequently in heat and power industry. This makes it hard to find the occurrence of an abnormal process state from a number of process signals (measurements) or find the correct cause to an abnormality. Among several other methods, Bayesian Networks (BN) is a method to build a model which can handle uncertainty in both process signals and the process itself. The purpose of this project is to investigate the possibilities to use BN for fault detection and diagnostics in combined heat and power industries through execution of two different applications. Participants from Aalborg University represent the knowledge of BN and participants from Maelardalen University have the experience from modelling heat and power applications. The co-operation also includes two energy companies; Elsam A/S (Nordjyllandsverket) and Maelarenergi AB (Vaesteraas CHP-plant), where the two applications are made with support from the plant personnel. The project ended out in two quite different applications. At Nordjyllandsverket, an application based (due to the lack of process knowledge) on pure operation data is build with capability to detect an abnormal process state in a coal mill. Detection is made through a conflict analysis when entering process signals into a model built by analysing the operation database. The application at Maelarenergi is built with a combination of process knowledge and operation data and can detect various faults caused by the fuel. The process knowledge is used to build a causal network structure and the structure is then trained by data from the operation database. Both applications are made as off-online applications, but they are ready for being run on-line. The performance of fault detection and diagnostics are good, but a lack of abnormal process states with known cause reduces the evaluation possibilities. Advantages with combining expert knowledge of the process with operation data are the possibility to represent

  1. Applying deep neural networks to HEP job classification

    International Nuclear Information System (INIS)

    Wang, L; Shi, J; Yan, X

    2015-01-01

    The cluster of IHEP computing center is a middle-sized computing system which provides 10 thousands CPU cores, 5 PB disk storage, and 40 GB/s IO throughput. Its 1000+ users come from a variety of HEP experiments. In such a system, job classification is an indispensable task. Although experienced administrator can classify a HEP job by its IO pattern, it is unpractical to classify millions of jobs manually. We present how to solve this problem with deep neural networks in a supervised learning way. Firstly, we built a training data set of 320K samples by an IO pattern collection agent and a semi-automatic process of sample labelling. Then we implemented and trained DNNs models with Torch. During the process of model training, several meta-parameters was tuned with cross-validations. Test results show that a 5- hidden-layer DNNs model achieves 96% precision on the classification task. By comparison, it outperforms a linear model by 8% precision. (paper)

  2. [Methodological novelties applied to the anthropology of food: agent-based models and social networks analysis].

    Science.gov (United States)

    Díaz Córdova, Diego

    2016-01-01

    The aim of this article is to introduce two methodological strategies that have not often been utilized in the anthropology of food: agent-based models and social networks analysis. In order to illustrate these methods in action, two cases based in materials typical of the anthropology of food are presented. For the first strategy, fieldwork carried out in Quebrada de Humahuaca (province of Jujuy, Argentina) regarding meal recall was used, and for the second, elements of the concept of "domestic consumption strategies" applied by Aguirre were employed. The underlying idea is that, given that eating is recognized as a "total social fact" and, therefore, as a complex phenomenon, the methodological approach must also be characterized by complexity. The greater the number of methods utilized (with the appropriate rigor), the better able we will be to understand the dynamics of feeding in the social environment.

  3. Metabolic Network Discovery by Top-Down and Bottom-Up Approaches and Paths for Reconciliation

    International Nuclear Information System (INIS)

    Çakır, Tunahan; Khatibipour, Mohammad Jafar

    2014-01-01

    The primary focus in the network-centric analysis of cellular metabolism by systems biology approaches is to identify the active metabolic network for the condition of interest. Two major approaches are available for the discovery of the condition-specific metabolic networks. One approach starts from genome-scale metabolic networks, which cover all possible reactions known to occur in the related organism in a condition-independent manner, and applies methods such as the optimization-based Flux-Balance Analysis to elucidate the active network. The other approach starts from the condition-specific metabolome data, and processes the data with statistical or optimization-based methods to extract information content of the data such that the active network is inferred. These approaches, termed bottom-up and top-down, respectively, are currently employed independently. However, considering that both approaches have the same goal, they can both benefit from each other paving the way for the novel integrative analysis methods of metabolome data- and flux-analysis approaches in the post-genomic era. This study reviews the strengths of constraint-based analysis and network inference methods reported in the metabolic systems biology field; then elaborates on the potential paths to reconcile the two approaches to shed better light on how the metabolism functions.

  4. Patterns of work attitudes: A neural network approach

    Science.gov (United States)

    Mengov, George D.; Zinovieva, Irina L.; Sotirov, George R.

    2000-05-01

    In this paper we introduce a neural networks based approach to analyzing empirical data and models from work and organizational psychology (WOP), and suggest possible implications for the practice of managers and business consultants. With this method it becomes possible to have quantitative answers to a bunch of questions like: What are the characteristics of an organization in terms of its employees' motivation? What distinct attitudes towards the work exist? Which pattern is most desirable from the standpoint of productivity and professional achievement? What will be the dynamics of behavior as quantified by our method, during an ongoing organizational change or consultancy intervention? Etc. Our investigation is founded on the theoretical achievements of Maslow (1954, 1970) in human motivation, and of Hackman & Oldham (1975, 1980) in job diagnostics, and applies the mathematical algorithm of the dARTMAP variation (Carpenter et al., 1998) of the Adaptive Resonance Theory (ART) neural networks introduced by Grossberg (1976). We exploit the ART capabilities to visualize the knowledge accumulated in the network's long-term memory in order to interpret the findings in organizational research.

  5. Harnessing systems biology approaches to engineer functional microvascular networks.

    Science.gov (United States)

    Sefcik, Lauren S; Wilson, Jennifer L; Papin, Jason A; Botchwey, Edward A

    2010-06-01

    Microvascular remodeling is a complex process that includes many cell types and molecular signals. Despite a continued growth in the understanding of signaling pathways involved in the formation and maturation of new blood vessels, approximately half of all compounds entering clinical trials will fail, resulting in the loss of much time, money, and resources. Most pro-angiogenic clinical trials to date have focused on increasing neovascularization via the delivery of a single growth factor or gene. Alternatively, a focus on the concerted regulation of whole networks of genes may lead to greater insight into the underlying physiology since the coordinated response is greater than the sum of its parts. Systems biology offers a comprehensive network view of the processes of angiogenesis and arteriogenesis that might enable the prediction of drug targets and whether or not activation of the targets elicits the desired outcome. Systems biology integrates complex biological data from a variety of experimental sources (-omics) and analyzes how the interactions of the system components can give rise to the function and behavior of that system. This review focuses on how systems biology approaches have been applied to microvascular growth and remodeling, and how network analysis tools can be utilized to aid novel pro-angiogenic drug discovery.

  6. A network-based approach for predicting missing pathway interactions.

    Directory of Open Access Journals (Sweden)

    Saket Navlakha

    Full Text Available Embedded within large-scale protein interaction networks are signaling pathways that encode response cascades in the cell. Unfortunately, even for well-studied species like S. cerevisiae, only a fraction of all true protein interactions are known, which makes it difficult to reason about the exact flow of signals and the corresponding causal relations in the network. To help address this problem, we introduce a framework for predicting new interactions that aid connectivity between upstream proteins (sources and downstream transcription factors (targets of a particular pathway. Our algorithms attempt to globally minimize the distance between sources and targets by finding a small set of shortcut edges to add to the network. Unlike existing algorithms for predicting general protein interactions, by focusing on proteins involved in specific responses our approach homes-in on pathway-consistent interactions. We applied our method to extend pathways in osmotic stress response in yeast and identified several missing interactions, some of which are supported by published reports. We also performed experiments that support a novel interaction not previously reported. Our framework is general and may be applicable to edge prediction problems in other domains.

  7. The Network Analysis of Urban Streets: A Dual Approach

    OpenAIRE

    Porta, Sergio; Crucitti, Paolo; Latora, Vito

    2004-01-01

    The application of the network approach to the urban case poses several questions in terms of how to deal with metric distances, what kind of graph representation to use, what kind of measures to investigate, how to deepen the correlation between measures of the structure of the network and measures of the dynamics on the network, what are the possible contributions from the GIS community. In this paper, the authors addresses a study of six cases of urban street networks characterised by diff...

  8. Mobile social networking an innovative approach

    CERN Document Server

    Zhang, Daqing

    2014-01-01

    The use of contextually aware, pervasive, distributed computing, and sensor networks to bridge the gap between the physical and online worlds is the basis of mobile social networking. This book shows how applications can be built to provide mobile social networking, the research issues that need to be solved to enable this vision, and how mobile social networking can be used to provide computational intelligence that will improve daily life. With contributions from the fields of sociology, computer science, human-computer interaction and design, this book demonstrates how mobile social networks can be inferred from users' physical interactions both with the environment and with others, as well as how users behave around them and how their behavior differs on mobile vs. traditional online social networks.

  9. Views on Montessori Approach by Teachers Serving at Schools Applying the Montessori Approach

    Science.gov (United States)

    Atli, Sibel; Korkmaz, A. Merve; Tastepe, Taskin; Koksal Akyol, Aysel

    2016-01-01

    Problem Statement: Further studies on Montessori teachers are required on the grounds that the Montessori approach, which, having been applied throughout the world, holds an important place in the alternative education field. Yet it is novel for Turkey, and there are only a limited number of studies on Montessori teachers in Turkey. Purpose of…

  10. Software defined networks a comprehensive approach

    CERN Document Server

    Goransson, Paul

    2014-01-01

    Software Defined Networks discusses the historical networking environment that gave rise to SDN, as well as the latest advances in SDN technology. The book gives you the state of the art knowledge needed for successful deployment of an SDN, including: How to explain to the non-technical business decision makers in your organization the potential benefits, as well as the risks, in shifting parts of a network to the SDN modelHow to make intelligent decisions about when to integrate SDN technologies in a networkHow to decide if your organization should be developing its own SDN applications or

  11. Coordinate transformation and matrix measure approach for synchronization of complex networks.

    Science.gov (United States)

    Juang, Jonq; Liang, Yu-Hao

    2009-09-01

    Global synchronization in complex networks has attracted considerable interest in various fields. There are mainly two analytical approaches for studying such time-varying networks. The first approach is Lyapunov function-based methods. For such an approach, the connected-graph-stability (CGS) method arguably gives the best results. Nevertheless, CGS is limited to the networks with cooperative couplings. The matrix measure approach (MMA) proposed by Chen, although having a wider range of applications in the network topologies than that of CGS, works for smaller numbers of nodes in most network topologies. The approach also has a limitation with networks having partial-state coupling. Other than giving yet another MMA, we introduce a new and, in some cases, optimal coordinate transformation to study such networks. Our approach fixes all the drawbacks of CGS and MMA. In addition, by merely checking the structure of the vector field of the individual oscillator, we shall be able to determine if the system is globally synchronized. In summary, our results can be applied to rather general time-varying networks with a large number of nodes.

  12. Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.

    Directory of Open Access Journals (Sweden)

    Rui Ding

    Full Text Available Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.

  13. Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.

    Science.gov (United States)

    Ding, Rui; Ujang, Norsidah; Hamid, Hussain Bin; Wu, Jianjun

    2015-01-01

    Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.

  14. A perturbation-theoretic approach to Lagrangian flow networks

    Science.gov (United States)

    Fujiwara, Naoya; Kirchen, Kathrin; Donges, Jonathan F.; Donner, Reik V.

    2017-03-01

    Complex network approaches have been successfully applied for studying transport processes in complex systems ranging from road, railway, or airline infrastructures over industrial manufacturing to fluid dynamics. Here, we utilize a generic framework for describing the dynamics of geophysical flows such as ocean currents or atmospheric wind fields in terms of Lagrangian flow networks. In this approach, information on the passive advection of particles is transformed into a Markov chain based on transition probabilities of particles between the volume elements of a given partition of space for a fixed time step. We employ perturbation-theoretic methods to investigate the effects of modifications of transport processes in the underlying flow for three different problem classes: efficient absorption (corresponding to particle trapping or leaking), constant input of particles (with additional source terms modeling, e.g., localized contamination), and shifts of the steady state under probability mass conservation (as arising if the background flow is perturbed itself). Our results demonstrate that in all three cases, changes to the steady state solution can be analytically expressed in terms of the eigensystem of the unperturbed flow and the perturbation itself. These results are potentially relevant for developing more efficient strategies for coping with contaminations of fluid or gaseous media such as ocean and atmosphere by oil spills, radioactive substances, non-reactive chemicals, or volcanic aerosols.

  15. An efficient approach to enhance capacity allocation over Bluetooth network

    DEFF Research Database (Denmark)

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun

    2002-01-01

    issues in Bluetooth network as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. The hybrid distributed capacity allocation scheme HDICA is proposed as an approximated solution of the stated optimization problem that satisfies...... quality of service requirements and topologically induced constraints in the Bluetooth network, such as node and link capacity limitations. The proposed scheme is decentralized and complies with frequent changes of topology as well as capacity limitations and flow requirements in the network. Simulation...... shows that the performance of Bluetooth network could be improved by applying the hybrid distributed iterative capacity allocation scheme....

  16. Scalable Approaches to Control Network Dynamics: Prospects for City Networks

    Science.gov (United States)

    Motter, Adilson E.; Gray, Kimberly A.

    2014-07-01

    A city is a complex, emergent system and as such can be conveniently represented as a network of interacting components. A fundamental aspect of networks is that the systemic properties can depend as much on the interactions as they depend on the properties of the individual components themselves. Another fundamental aspect is that changes to one component can affect other components, in a process that may cause the entire or a substantial part of the system to change behavior. Over the past 2 decades, much research has been done on the modeling of large and complex networks involved in communication and transportation, disease propagation, and supply chains, as well as emergent phenomena, robustness and optimization in such systems...

  17. Retail optimization in Romanian metallurgical industry by applying of fuzzy networks concept

    Directory of Open Access Journals (Sweden)

    Ioana Adrian

    2017-01-01

    Full Text Available Our article presents possibilities of applying the concept Fuzzy Networks for an efficient metallurgical industry in Romania. We also present and analyze Fuzzy Networks complementary concepts, such as Expert Systems (ES, Enterprise Resource Planning (ERP, Analytics and Intelligent Strategies (SAI. The main results of our article are based on a case study of the possibilities of applying these concepts in metallurgy through Fuzzy Networks. Also, it is presented a case study on the application of the FUZZY concept on the Romanian metallurgical industry.

  18. A Layered Approach To Pacs Network Architecture

    Science.gov (United States)

    Hegde, Shankar S.; Prewitt, Judith M.

    1984-08-01

    Although the functions performed by the different nodes on the PACS network are many, it is possible to formulate a minimum set of service primitives such that the application software residing at the nodes can utilize those primitives to perform the functions. These primitives define the framework for the communication interface. The question of how these primitives fit into the concept of a layered network architecture is explored in this paper. The OSI model as applicable to the PACS network is described, the areas that need standardization are briefly mentioned, and the ongoing standardization efforts are addressed from the OSI perspective.

  19. Collaborative Approach to Network Behavior Analysis

    Science.gov (United States)

    Rehak, Martin; Pechoucek, Michal; Grill, Martin; Bartos, Karel; Celeda, Pavel; Krmicek, Vojtech

    Network Behavior Analysis techniques are designed to detect intrusions and other undesirable behavior in computer networks by analyzing the traffic statistics. We present an efficient framework for integration of anomaly detection algorithms working on the identical input data. This framework is based on high-speed network traffic acquisition subsystem and on trust modeling, a well-established set of techniques from the multi-agent system field. Trust-based integration of algorithms results in classification with lower error rate, especially in terms of false positives. The presented framework is suitable for both online and offline processing, and introduces a relatively low computational overhead compared to deployment of isolated anomaly detection algorithms.

  20. Network Routing Using the Network Tasking Order, a Chron Approach

    Science.gov (United States)

    2015-03-26

    OSPFv2) is the most common occurrence of OSPF for IPv4. OSPF version 3 (OSPFv3) was developed to support Internet Protocol version 6 ( IPv6 ...Protocol Version 6 ( IPV6 ) or Internet Protocol Version 4 (IPV4) at the network layer. NTP has three different modes of operation; client/server, symmetric

  1. Mining and Visualizing Research Networks using the Artefact-Actor-Network Approach

    NARCIS (Netherlands)

    Reinhardt, Wolfgang; Wilke, Adrian; Moi, Matthias; Drachsler, Hendrik; Sloep, Peter

    2012-01-01

    Reinhardt, W., Wilke, A., Moi, M., Drachsler, H., & Sloep, P. B. (2012). Mining and Visualizing Research Networks using the Artefact-Actor-Network Approach. In A. Abraham (Ed.), Computational Social Networks. Mining and Visualization (pp. 233-268). Springer. Also available at

  2. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    Science.gov (United States)

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  3. An Intelligent Approach to Observability of Distribution Networks

    DEFF Research Database (Denmark)

    Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte

    2018-01-01

    This paper presents a novel intelligent observability approach for active distribution systems. Observability assessment of the measured power system network, which is a preliminary task in state estimation, is handled via an algebraic method that uses the triangular factors of singular, symmetric...... measurements, network topology, and network parameters. However, since there are large margin of errors exist in the calculation phase, estimated states may be significantly differed from the actual values though network is classified as observable. Hence, an approach based on numerical observability analysis...

  4. Latent Space Approaches to Social Network Analysis

    National Research Council Canada - National Science Library

    Hoff, Peter D; Raftery, Adrian E; Handcock, Mark S

    2001-01-01

    .... In studies of social networks, recent emphasis has been placed on random graph models where the nodes usually represent individual social actors and the edges represent the presence of a specified...

  5. Epidemics in networks: a master equation approach

    Science.gov (United States)

    Cotacallapa, M.; Hase, M. O.

    2016-02-01

    A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network.

  6. Network attacks and defenses a hands-on approach

    CERN Document Server

    Trabelsi, Zouheir; Al Braiki, Arwa; Mathew, Sujith Samuel

    2012-01-01

    The attacks on computers and business networks are growing daily, and the need for security professionals who understand how malfeasants perform attacks and compromise networks is a growing requirement to counter the threat. Network security education generally lacks appropriate textbooks with detailed, hands-on exercises that include both offensive and defensive techniques. Using step-by-step processes to build and generate attacks using offensive techniques, Network Attacks and Defenses: A Hands-on Approach enables students to implement appropriate network security solutions within a laborat

  7. Electrical spectrum & network analyzers a practical approach

    CERN Document Server

    Helfrick, Albert D

    1991-01-01

    This book presents fundamentals and the latest techniques of electrical spectrum analysis. It focuses on instruments and techniques used on spectrum and network analysis, rather than theory. The book covers the use of spectrum analyzers, tracking generators, and network analyzers. Filled with practical examples, the book presents techniques that are widely used in signal processing and communications applications, yet are difficult to find in most literature.Key Features* Presents numerous practical examples, including actual spectrum analyzer circuits* Instruction on how to us

  8. Integrating network ecology with applied conservation: a synthesis and guide to implementation.

    Science.gov (United States)

    Kaiser-Bunbury, Christopher N; Blüthgen, Nico

    2015-07-10

    Ecological networks are a useful tool to study the complexity of biotic interactions at a community level. Advances in the understanding of network patterns encourage the application of a network approach in other disciplines than theoretical ecology, such as biodiversity conservation. So far, however, practical applications have been meagre. Here we present a framework for network analysis to be harnessed to advance conservation management by using plant-pollinator networks and islands as model systems. Conservation practitioners require indicators to monitor and assess management effectiveness and validate overall conservation goals. By distinguishing between two network attributes, the 'diversity' and 'distribution' of interactions, on three hierarchical levels (species, guild/group and network) we identify seven quantitative metrics to describe changes in network patterns that have implications for conservation. Diversity metrics are partner diversity, vulnerability/generality, interaction diversity and interaction evenness, and distribution metrics are the specialization indices d' and [Formula: see text] and modularity. Distribution metrics account for sampling bias and may therefore be suitable indicators to detect human-induced changes to plant-pollinator communities, thus indirectly assessing the structural and functional robustness and integrity of ecosystems. We propose an implementation pathway that outlines the stages that are required to successfully embed a network approach in biodiversity conservation. Most importantly, only if conservation action and study design are aligned by practitioners and ecologists through joint experiments, are the findings of a conservation network approach equally beneficial for advancing adaptive management and ecological network theory. We list potential obstacles to the framework, highlight the shortfall in empirical, mostly experimental, network data and discuss possible solutions. Published by Oxford University

  9. Network Medicine: A Network-based Approach to Human Disease

    Science.gov (United States)

    Barabási, Albert-László; Gulbahce, Natali; Loscalzo, Joseph

    2011-01-01

    Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction are essential to identify new diseases genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases. PMID:21164525

  10. Network security: a survey of modern approaches

    International Nuclear Information System (INIS)

    Zafar, M.F.; Naheed, F.; Ahmad, Z.; Anwar, M.M.

    2008-01-01

    Security is an essential element of information technology (IT) infrastructure and applications. Concerns about security of networks and information systems have been growing along with the rapid increase in the number of network users and the value of their transactions. The hasty security threats have driven the development of security products known as Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) to detect and protect the network, server and desktop infrastructure ahead of the threat. Authentication and signing techniques are used to prevent integrity threats. Users, devices, and applications should always be authenticated and authorized before they are allowed to access networking resources. Though a lot of information is available on the internet about IDS and IPS but it all is spread on so many sites and one has to spend a considerable part of his precious time to search it. In this regard a thorough survey has been conducted to facilitate and assist the researchers. The issues and defend challenges in fighting with cyber attacks have been discussed. A comparison of the categories of network security technologies has been presented. In this paper an effort has been made to gather the scattered information and present it at one place. This survey will provide best available up-to-date advancement in the area. A brief description of open source IPS has also been presented. (author)

  11. Network approach to patterns in stratocumulus clouds.

    Science.gov (United States)

    Glassmeier, Franziska; Feingold, Graham

    2017-10-03

    Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth's climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis's Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav-Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes.

  12. IPTV inter-destination synchronization: A network-based approach

    NARCIS (Netherlands)

    Stokking, H.M.; Deventer, M.O. van; Niamut, O.A.; Walraven, F.A.; Mekuria, R.N.

    2010-01-01

    This paper introduces a novel network-based approach to inter-destination media synchronization. The approach meets the need for synchronization in advanced TV concepts like social TV and offers high scalability, unlike conventional end-point based approaches. The solution for interdestination media

  13. A Complex Network Approach to Distributional Semantic Models.

    Directory of Open Access Journals (Sweden)

    Akira Utsumi

    Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.

  14. Maximizing lifetime of wireless sensor networks using genetic approach

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    the cluster head intelligently using auction data of node i.e. its local battery power, topology strength and external battery support. The network lifetime is the centre focus of the research paper which explores intelligently selection of cluster head using auction based approach. The multi......The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor...... nodes are deployed in an inaccessible location for particular mission, it is difficult to exchange or recharge the nodes battery. Hence the important issues to design the sensor network for maximum time duration of network and also for low power operation of the nodes. The proposal is to select...

  15. Networks and social capital: a relational approach to primary healthcare reform

    Directory of Open Access Journals (Sweden)

    Scott Catherine

    2007-09-01

    Full Text Available Abstract Collaboration among health care providers and across systems is proposed as a strategy to improve health care delivery the world over. Over the past two decades, health care providers have been encouraged to work in partnership and build interdisciplinary teams. More recently, the notion of networks has entered this discourse but the lack of consensus and understanding about what is meant by adopting a network approach in health services limits its use. Also crucial to this discussion is the work of distinguishing the nature and extent of the impact of social relationships – generally referred to as social capital. In this paper, we review the rationale for collaboration in health care systems; provide an overview and synthesis of key concepts; dispel some common misconceptions of networks; and apply the theory to an example of primary healthcare network reform in Alberta (Canada. Our central thesis is that a relational approach to systems change, one based on a synthesis of network theory and social capital can provide the fodation for a multi-focal approach to primary healthcare reform. Action strategies are recommended to move from an awareness of 'networks' to fully translating knowledge from existing theory to guide planning and practice innovations. Decision-makers are encouraged to consider a multi-focal approach that effectively incorporates a network and social capital approach in planning and evaluating primary healthcare reform.

  16. Networks and social capital: a relational approach to primary healthcare reform.

    Science.gov (United States)

    Scott, Catherine; Hofmeyer, Anne

    2007-09-25

    Collaboration among health care providers and across systems is proposed as a strategy to improve health care delivery the world over. Over the past two decades, health care providers have been encouraged to work in partnership and build interdisciplinary teams. More recently, the notion of networks has entered this discourse but the lack of consensus and understanding about what is meant by adopting a network approach in health services limits its use. Also crucial to this discussion is the work of distinguishing the nature and extent of the impact of social relationships - generally referred to as social capital. In this paper, we review the rationale for collaboration in health care systems; provide an overview and synthesis of key concepts; dispel some common misconceptions of networks; and apply the theory to an example of primary healthcare network reform in Alberta (Canada). Our central thesis is that a relational approach to systems change, one based on a synthesis of network theory and social capital can provide the fodation for a multi-focal approach to primary healthcare reform. Action strategies are recommended to move from an awareness of 'networks' to fully translating knowledge from existing theory to guide planning and practice innovations. Decision-makers are encouraged to consider a multi-focal approach that effectively incorporates a network and social capital approach in planning and evaluating primary healthcare reform.

  17. Outline of a multilevel approach of the network society

    NARCIS (Netherlands)

    van Dijk, Johannes A.G.M.

    2005-01-01

    Social and media networks, the Internet in particular, increasingly link interpersonal, organizational and mass communication. It is argued that this gives a cause for an interdisciplinary and multilevel approach of the network society. This will have to link traditional micro- and meso-level

  18. FLOWSHOP SCHEDULING USING A NETWORK APPROACH ...

    African Journals Online (AJOL)

    eobe

    problems considered were solved using LINGO 7.0. The present technique has been shown to be very effective and efficient efficient. Keywords: Flow shop, network, linear programming, makespan, Gantt Chart, LINGO. 1. INTRODUCTION. INTRODUCTION. INTRODUCTION. The traditional flow shop scheduling problem, in.

  19. A complex network approach to cloud computing

    International Nuclear Information System (INIS)

    Travieso, Gonzalo; Ruggiero, Carlos Antônio; Bruno, Odemir Martinez; Costa, Luciano da Fontoura

    2016-01-01

    Cloud computing has become an important means to speed up computing. One problem influencing heavily the performance of such systems is the choice of nodes as servers responsible for executing the clients’ tasks. In this article we report how complex networks can be used to model such a problem. More specifically, we investigate the performance of the processing respectively to cloud systems underlaid by Erdős–Rényi (ER) and Barabási-Albert (BA) topology containing two servers. Cloud networks involving two communities not necessarily of the same size are also considered in our analysis. The performance of each configuration is quantified in terms of the cost of communication between the client and the nearest server, and the balance of the distribution of tasks between the two servers. Regarding the latter, the ER topology provides better performance than the BA for smaller average degrees and opposite behaviour for larger average degrees. With respect to cost, smaller values are found in the BA topology irrespective of the average degree. In addition, we also verified that it is easier to find good servers in ER than in BA networks. Surprisingly, balance and cost are not too much affected by the presence of communities. However, for a well-defined community network, we found that it is important to assign each server to a different community so as to achieve better performance. (paper: interdisciplinary statistical mechanics )

  20. Dobrushin's approach to queueing network theory

    Directory of Open Access Journals (Sweden)

    F. I. Karpelevich

    1996-01-01

    Full Text Available R.L. Dobrushin (1929-1995 made substantial contributions to Queueing Network Theory (QNT. A review of results from QNT which arose from his ideas or were connected to him in other ways is given. We also comment on various related open problems.

  1. Insomnia and Personality-A Network Approach

    NARCIS (Netherlands)

    Dekker, Kim; Blanken, Tessa F; Van Someren, Eus J W

    2017-01-01

    Studies on personality traits and insomnia have remained inconclusive about which traits show the most direct associations with insomnia severity. It has moreover hardly been explored how traits relate to specific characteristics of insomnia. We here used network analysis in a large sample (N =

  2. Insomnia and Personality-A Network Approach

    NARCIS (Netherlands)

    Dekker, Kim; Blanken, Tessa F; Van Someren, Eus J W

    2017-01-01

    Studies on personality traits and insomnia have remained inconclusive about which traits show the most direct associations with insomnia severity. It has moreover hardly been explored how traits relate to specific characteristics of insomnia. We here used network analysis in a large sample (N= 2089)

  3. A Gaussian graphical model approach to climate networks

    Energy Technology Data Exchange (ETDEWEB)

    Zerenner, Tanja, E-mail: tanjaz@uni-bonn.de [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Friederichs, Petra; Hense, Andreas [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany); Lehnertz, Klaus [Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany)

    2014-06-15

    Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.

  4. A Gaussian graphical model approach to climate networks

    International Nuclear Information System (INIS)

    Zerenner, Tanja; Friederichs, Petra; Hense, Andreas; Lehnertz, Klaus

    2014-01-01

    Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately

  5. Applying the concept of network enabled capabilities to incident management in the Netherlands

    NARCIS (Netherlands)

    Immers, L.H.; Huisken, G.

    2008-01-01

    The application of Incident Management to the Dutch road network suffers from serious problems in terms of availability of accurate and up-to-date information. In this paper we present an approach aimed at diminishing the occurrence of misunderstandings. This approach is based on the concept of

  6. A Formal Verification Model for Performance Analysis of Reinforcement Learning Algorithms Applied t o Dynamic Networks

    Directory of Open Access Journals (Sweden)

    Shrirang Ambaji KULKARNI

    2017-04-01

    Full Text Available Routing data packets in a dynamic network is a difficult and important problem in computer networks. As the network is dynamic, it is subject to frequent topology changes and is subject to variable link costs due to congestion and bandwidth. Existing shortest path algorithms fail to converge to better solutions under dynamic network conditions. Reinforcement learning algorithms posses better adaptation techniques in dynamic environments. In this paper we apply model based Q-Routing technique for routing in dynamic network. To analyze the correctness of Q-Routing algorithms mathematically, we provide a proof and also implement a SPIN based verification model. We also perform simulation based analysis of Q-Routing for given metrics.

  7. An Appraisal of Social Network Theory and Analysis as Applied to Public Health: Challenges and Opportunities.

    Science.gov (United States)

    Valente, Thomas W; Pitts, Stephanie R

    2017-03-20

    The use of social network theory and analysis methods as applied to public health has expanded greatly in the past decade, yielding a significant academic literature that spans almost every conceivable health issue. This review identifies several important theoretical challenges that confront the field but also provides opportunities for new research. These challenges include (a) measuring network influences, (b) identifying appropriate influence mechanisms, (c) the impact of social media and computerized communications, (d) the role of networks in evaluating public health interventions, and (e) ethics. Next steps for the field are outlined and the need for funding is emphasized. Recently developed network analysis techniques, technological innovations in communication, and changes in theoretical perspectives to include a focus on social and environmental behavioral influences have created opportunities for new theory and ever broader application of social networks to public health topics.

  8. Applying Digital Sensor Technology: A Problem-Solving Approach

    Science.gov (United States)

    Seedhouse, Paul; Knight, Dawn

    2016-01-01

    There is currently an explosion in the number and range of new devices coming onto the technology market that use digital sensor technology to track aspects of human behaviour. In this article, we present and exemplify a three-stage model for the application of digital sensor technology in applied linguistics that we have developed, namely,…

  9. Networks for Social Enterprise: Applying a systems perspective to case studies in Latin America

    Directory of Open Access Journals (Sweden)

    Christine Nielsen

    2013-07-01

    Full Text Available The purpose of this research is to enhance understanding of social enterprise in emerging markets, highlighting key success factors. A general systems perspective is applied to comparative case studies in the Dominican Republic and Mexico, revealing interrelationships among social entrepreneurs, international development organizations, government agencies, and other institutions. Results support the value of Actor Network Theory as a means of understanding social entrepreneurship processes. We conclude that the interorganizational networks among these partners play a vital role in the scale and scope of social benefits achieved. The social entrepreneur’s network of learning process enablers, knowledge providers and co-creators emerges as an essential key success factor.

  10. A Network Design Approach to Countering Terrorism

    Science.gov (United States)

    2015-09-01

    of the eyes ; that is shapes, colors and animations with the language of the mind; such as the concepts of relationships, processes, models and...Religion became a way to regain dignity, find a spiritual call, and promote self - esteem (Bramadat & Dawson, 2014). Terrorism researchers have often...result was a flexible, self -forming enemy network with an impressive capability to grow and sustain losses (McChrystal, 2011): In bitter, bloody fights

  11. A Bayesian Networks approach to Operational Risk

    Science.gov (United States)

    Aquaro, V.; Bardoscia, M.; Bellotti, R.; Consiglio, A.; De Carlo, F.; Ferri, G.

    2010-04-01

    A system for Operational Risk management based on the computational paradigm of Bayesian Networks is presented. The algorithm allows the construction of a Bayesian Network targeted for each bank and takes into account in a simple and realistic way the correlations among different processes of the bank. The internal losses are averaged over a variable time horizon, so that the correlations at different times are removed, while the correlations at the same time are kept: the averaged losses are thus suitable to perform the learning of the network topology and parameters; since the main aim is to understand the role of the correlations among the losses, the assessments of domain experts are not used. The algorithm has been validated on synthetic time series. It should be stressed that the proposed algorithm has been thought for the practical implementation in a mid or small sized bank, since it has a small impact on the organizational structure of a bank and requires an investment in human resources which is limited to the computational area.

  12. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.; Bagby, L.; Baller, B.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, L.; Caratelli, D.; Carls, B.; Fernandez, R. Castillo; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anad?n, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Sanchez, L. Escudero; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; James, C.; de Vries, J. Jan; Jen, C. -M.; Jiang, L.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Caicedo, D. A. Martinez; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Snider, E. L.; Soderberg, M.; S?ldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y. -T.; Tufanli, S.; Usher, T.; Van de Water, R. G.; Viren, B.; Weber, M.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2017-03-01

    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.

  13. Optimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach

    Science.gov (United States)

    Chiadamrong, N.; Piyathanavong, V.

    2017-12-01

    Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.

  14. Problems of Applying the Individual Differentiated Approach in Teaching English

    Directory of Open Access Journals (Sweden)

    Madina Zh. Tussupbekova

    2011-12-01

    Full Text Available The transformation into the new multilevel system of higher education in Kazakhstan needs changing and introduction with Individual differentiated approach in teaching English. The goal and task of teaching English in the higher institutions is the practical acquiring colloquial and professional ways of speaking for active using as in real and professional conversation.

  15. Applied approach slab settlement research, design/construction : final report.

    Science.gov (United States)

    2013-08-01

    Approach embankment settlement is a pervasive problem in Oklahoma and many other states. The bump and/or abrupt slope change poses a danger to traffic and can cause increased dynamic loads on the bridge. Frequent and costly maintenance may be needed ...

  16. Applying Socio-Semiotics to Organizational Communication: A New Approach.

    Science.gov (United States)

    Cooren, Francois

    1999-01-01

    Argues that a socio-semiotic approach to organizational communication opens up a middle course leading to a reconciliation of the functionalist and interpretive movements. Outlines and illustrates three premises to show how they enable scholars to reconceptualize the opposition between functionalism and interpretivism. Concludes that organizations…

  17. Dialogical Approach Applied in Group Counselling: Case Study

    Science.gov (United States)

    Koivuluhta, Merja; Puhakka, Helena

    2013-01-01

    This study utilizes structured group counselling and a dialogical approach to develop a group counselling intervention for students beginning a computer science education. The study assesses the outcomes of group counselling from the standpoint of the development of the students' self-observation. The research indicates that group counselling…

  18. Conflicts, development and natural resources : An applied game theoretic approach

    NARCIS (Netherlands)

    Wick, A.K.

    2008-01-01

    This thesis also provides a critical view on a part of preceding resource curse results, namely the negative association between resources and economic performance. Arguing that the empirical literature on the topic up until now has ignored serious econometric concerns, a different approach is

  19. A full bayesian approach for boolean genetic network inference.

    Directory of Open Access Journals (Sweden)

    Shengtong Han

    Full Text Available Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.

  20. Gender, Friendship Networks, and Delinquency: A Dynamic Network Approach**

    Science.gov (United States)

    Haynie, Dana L.; Doogan, Nathan J.; Soller, Brian

    2014-01-01

    Researchers have examined selection and influence processes in shaping delinquency similarity among friends, but little is known about the role of gender in moderating these relationships. Our objective is to examine differences between adolescent boys and girls regarding delinquency-based selection and influence processes. Using longitudinal network data from adolescents attending two large schools in AddHealth (N = 1,857) and stochastic actor-oriented models, we evaluate whether girls are influenced to a greater degree by friends' violence or delinquency than boys (influence hypothesis) and whether girls are more likely to select friends based on violent or delinquent behavior than boys (selection hypothesis). The results indicate that girls are more likely than boys to be influenced by their friends' involvement in violence. Although a similar pattern emerges for nonviolent delinquency, the gender differences are not significant. Some evidence shows that boys are influenced toward increasing their violence or delinquency when exposed to more delinquent or violent friends but are immune to reducing their violence or delinquency when associating with less violent or delinquent friends. In terms of selection dynamics, although both boys and girls have a tendency to select friends based on friends' behavior, girls have a stronger tendency to do so, suggesting that among girls, friends' involvement in violence or delinquency is an especially decisive factor for determining friendship ties. PMID:26097241

  1. Investigation of rotated PCA from the perspective of network communities applied to climate data

    Science.gov (United States)

    Hartman, David; Hlinka, Jaroslav; Vejmelka, Martin; Palus, Milan

    2013-04-01

    Applications of the rotated principal component analysis (RPCA) have a long history in climatology usually due to efforts of finding specific circulation patterns (Barnston and Livezey 1987). Using this approach several well known patterns like the North Atlantic Oscillation (NAO) or the Pacific/North American Pattern (PNA) can be identified (Barnston and Livezey 1987; Feldstein 2000). Applied to the whole globe this method gives several weakly related components that can be suspected of being important modes of climate variability. On the other hand, a relatively new topic in climate research is that of community detection and analysis (Tsonis et al. 2011), although the detection of communities in complex networks is a well established scientific field itself (Fortunato 2010; Girvan and Newman 2002). To analyze community structure one has to consider the climate system as a complex network (Tsonis and Swanson 2012), i.e. as a set of nodes represented by a climate-related variable on specific globe positions and a set of edges mutually connecting these nodes according to chosen measure of coherence (Hlinka et al. preprint). Determination of optimal community structure is well known to be a hard problem and there are several methods excelling in specific situations (Fortunato 2010) and several ways of measuring quality of resulting community structure such as modularity (Newman and Girvan 2004). Following the fact that RPCA gives us a set of components that can be represented as a community structure we investigate the potential of RPCA in community-detection context. For this purpose we use data from global National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis (Kistler et al. 2001), more specifically surface air temperature (SAT) and surface pressure level (SPL). Acknowledgement: This study is supported by the Czech Science Foundation, Project No. P103/11/J068. Barnston, AG; Livezey RE (1987) Classification

  2. Networking for applied field epidemiology - Eastern Mediterranean Public Health Network (EMPHNET) Conference 2011.

    Science.gov (United States)

    Al Nsour, M; Kaiser, R

    2011-12-01

    On the occasion of the second Eastern Mediterranean Public Health Network (EMPHNET) conference that was held from 6-9 December 2011 in Sharm Al Sheikh, Egypt, this article introduces EMPHNET and its role to link Field Epidemiology Training Programs (FETP) in the region. The paper briefly describes the changing epidemiology situation in the region to illustrate the urgent need to strengthen public health systems and to build up the epidemiologist workforce.

  3. A Hybrid Heuristic Optimization Approach for Leak Detection in Pipe Networks Using Ordinal Optimization Approach and the Symbiotic Organism Search

    Directory of Open Access Journals (Sweden)

    Chao-Chih Lin

    2017-10-01

    Full Text Available A new transient-based hybrid heuristic approach is developed to optimize a transient generation process and to detect leaks in pipe networks. The approach couples the ordinal optimization approach (OOA and the symbiotic organism search (SOS to solve the optimization problem by means of iterations. A pipe network analysis model (PNSOS is first used to determine steady-state head distribution and pipe flow rates. The best transient generation point and its relevant valve operation parameters are optimized by maximizing the objective function of transient energy. The transient event is created at the chosen point, and the method of characteristics (MOC is used to analyze the transient flow. The OOA is applied to sift through the candidate pipes and the initial organisms with leak information. The SOS is employed to determine the leaks by minimizing the sum of differences between simulated and computed head at the observation points. Two synthetic leaking scenarios, a simple pipe network and a water distribution network (WDN, are chosen to test the performance of leak detection ordinal symbiotic organism search (LDOSOS. Leak information can be accurately identified by the proposed approach for both of the scenarios. The presented technique makes a remarkable contribution to the success of leak detection in the pipe networks.

  4. Major accident prevention through applying safety knowledge management approach.

    Science.gov (United States)

    Kalatpour, Omid

    2016-01-01

    Many scattered resources of knowledge are available to use for chemical accident prevention purposes. The common approach to management process safety, including using databases and referring to the available knowledge has some drawbacks. The main goal of this article was to devise a new emerged knowledge base (KB) for the chemical accident prevention domain. The scattered sources of safety knowledge were identified and scanned. Then, the collected knowledge was formalized through a computerized program. The Protégé software was used to formalize and represent the stored safety knowledge. The domain knowledge retrieved as well as data and information. This optimized approach improved safety and health knowledge management (KM) process and resolved some typical problems in the KM process. Upgrading the traditional resources of safety databases into the KBs can improve the interaction between the users and knowledge repository.

  5. A network-based approach to classify the three domains of life

    Directory of Open Access Journals (Sweden)

    Mueller Laurin AJ

    2011-10-01

    Full Text Available Abstract Background Identifying group-specific characteristics in metabolic networks can provide better insight into evolutionary developments. Here, we present an approach to classify the three domains of life using topological information about the underlying metabolic networks. These networks have been shown to share domain-independent structural similarities, which pose a special challenge for our endeavour. We quantify specific structural information by using topological network descriptors to classify this set of metabolic networks. Such measures quantify the structural complexity of the underlying networks. In this study, we use such measures to capture domain-specific structural features of the metabolic networks to classify the data set. So far, it has been a challenging undertaking to examine what kind of structural complexity such measures do detect. In this paper, we apply two groups of topological network descriptors to metabolic networks and evaluate their classification performance. Moreover, we combine the two groups to perform a feature selection to estimate the structural features with the highest classification ability in order to optimize the classification performance. Results By combining the two groups, we can identify seven topological network descriptors that show a group-specific characteristic by ANOVA. A multivariate analysis using feature selection and supervised machine learning leads to a reasonable classification performance with a weighted F-score of 83.7% and an accuracy of 83.9%. We further demonstrate that our approach outperforms alternative methods. Also, our results reveal that entropy-based descriptors show the highest classification ability for this set of networks. Conclusions Our results show that these particular topological network descriptors are able to capture domain-specific structural characteristics for classifying metabolic networks between the three domains of life.

  6. The effective action approach applied to nuclear matter (2)

    International Nuclear Information System (INIS)

    Tran Huu Phat; Nguyen Tuan Ahn.

    1997-05-01

    Within the framework of the effective action approach we present the numerical calculations based on the approximation, in which all interacting meson propagators are replaced by their free ones. This is the Hartree-Fock (HF) improved approximation since it contains both the quantum corrections to the mean-field theory and the higher order effects the HF traditional method. (author). 6 refs, 5 figs, 1 tab

  7. A new kinetic biphasic approach applied to biodiesel process intensification

    Energy Technology Data Exchange (ETDEWEB)

    Russo, V.; Tesser, R.; Di Serio, M.; Santacesaria, E. [Naples Univ. (Italy). Dept. of Chemistry

    2012-07-01

    Many different papers have been published on the kinetics of the transesterification of vegetable oil with methanol, in the presence of alkaline catalysts to produce biodiesel. All the proposed approaches are based on the assumption of a pseudo-monophasic system. The consequence of these approaches is that some experimental aspects cannot be described. For the reaction performed in batch conditions, for example, the monophasic approach is not able to reproduce the different plateau obtained by using different amount of catalyst or the induction time observed at low stirring rates. Moreover, it has been observed by operating in continuous reactors that micromixing has a dramatic effect on the reaction rate. At this purpose, we have recently observed that is possible to obtain a complete conversion to biodiesel in less than 10 seconds of reaction time. This observation is confirmed also by other authors using different types of reactors like: static mixers, micro-reactors, oscillatory flow reactors, cavitational reactors, microwave reactors or centrifugal contactors. In this work we will show that a recently proposed biphasic kinetic approach is able to describe all the aspects before mentioned that cannot be described by the monophasic kinetic model. In particular, we will show that the biphasic kinetic model can describe both the induction time observed in the batch reactors, at low stirring rate, and the very high conversions obtainable in a micro-channel reactor. The adopted biphasic kinetic model is based on a reliable reaction mechanism that will be validated by the experimental evidences reported in this work. (orig.)

  8. A Multi-Criterion Evolutionary Approach Applied to Phylogenetic Reconstruction

    OpenAIRE

    Cancino, W.; Delbem, A.C.B.

    2010-01-01

    In this paper, we proposed an MOEA approach, called PhyloMOEA which solves the phylogenetic inference problem using maximum parsimony and maximum likelihood criteria. The PhyloMOEA's development was motivated by several studies in the literature (Huelsenbeck, 1995; Jin & Nei, 1990; Kuhner & Felsenstein, 1994; Tateno et al., 1994), which point out that various phylogenetic inference methods lead to inconsistent solutions. Techniques using parsimony and likelihood criteria yield to different tr...

  9. Applying a Problem Based Learning Approach to Land Management Education

    DEFF Research Database (Denmark)

    Enemark, Stig

    Land management covers a wide range activities associated with the management of land and natural resources that are required to fulfil political objectives and achieve sustainable development. This paper presents an overall understanding of the land management paradigm and the benefits of good...... land governance to society. A land administration system provides a country with the infrastructure to implement land-related policies and land management strategies. By applying this land management profile to surveying education, this paper suggests that there is a need to move away from an exclusive...

  10. Recurrent neural networks with backtrack-points and negative reinforcement applied to cost-based abduction.

    Science.gov (United States)

    Abdelbar, Ashraf M; El-Hemaly, Mostafa A; Andrews, Emad A M; Wunsch, Donald C

    2005-01-01

    Abduction is the process of proceeding from data describing a set of observations or events, to a set of hypotheses which best explains or accounts for the data. Cost-based abduction (CBA) is an AI formalism in which evidence to be explained is treated as a goal to be proven, proofs have costs based on how much needs to be assumed to complete the proof, and the set of assumptions needed to complete the least-cost proof are taken as the best explanation for the given evidence. In this paper, we present two techniques for improving the performance of high order recurrent networks (HORN) applied to cost-based abduction. In the backtrack-points technique, we use heuristics to recognize early that the network trajectory is moving in the wrong direction; we then restore the network state to a previously stored point, and apply heuristic perturbations to nudge the network trajectory in a different direction. In the negative reinforcement technique, we add hyperedges to the network to reduce the attractiveness of local minima. We apply these techniques to a suite of six large CBA instances, systematically generated to be difficult.

  11. Automatic Distribution Network Reconfiguration: An Event-Driven Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fei; Jiang, Huaiguang; Tan, Jin

    2016-11-14

    This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observable and detectable.

  12. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach

    Directory of Open Access Journals (Sweden)

    Guo Shuixia

    2010-06-01

    Full Text Available Abstract Background Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE, Bayesian networks, information theory and Granger Causality. Results Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins. For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. Conclusions The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  13. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2015-08-01

    Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.

  14. The applying stakeholder approach to strategic management of territories development

    Directory of Open Access Journals (Sweden)

    Ilshat Azamatovich Tazhitdinov

    2013-06-01

    Full Text Available In the paper, the aspects of the strategic management of socioeconomic development of territories in terms of stakeholder approach are discussed. The author's interpretation of the concept of stakeholder sub-region is proposed, and their classification into internal and external to the territorial socioeconomic system of sub-regional level is offered. The types of interests and types of resources stakeholders in the sub-region are identified, and at the same time the correlation of interests and resources allows to determine the groups (alliances stakeholders, which ensure the balance of interests depending on the certain objectives of the association. The conceptual stakeholder agent model of management of strategic territorial development within the hierarchical system of «region — sub-region — municipal formation,» is proposed. All stakeholders there are considered as the influence agents directing its own resources to provide a comprehensive approach to management territorial development. The interaction between all the influence agents of the «Region — Sub-region — municipal formation» is provided vertically and horizontally through the initialization of the development and implementation of strategic documents of the sub-region. Vertical interaction occurs between stakeholders such as government and municipal authorities being as a guideline, and the horizontal — between the rests of them being as a partnership. Within the proposed model, the concurrent engineering is implemented, which is a form of inter-municipal strategic cooperation of local government municipalities for the formation and analyzing a set of alternatives of the project activities in the sub-region in order to choose the best options. The proposed approach was tested in the development of medium-term comprehensive program of socioeconomic development of the Zauralye and sub-regions of the North-East of the Republic of Bashkortostan (2011–2015.

  15. Improving the Unreliability of Competence Information: an Argumentation to Apply Information Fusion in Learning Networks

    NARCIS (Netherlands)

    Miao, Yongwu; Sloep, Peter; Hummel, Hans; Koper, Rob

    2009-01-01

    Miao, Y., Sloep, P. B., Hummel, H., & Koper, R. (2009). Improving the Unreliability of Competence Information: an Argumentation to Apply Information Fusion in Learning Networks [Special issue]. International Journal of Continuing Engineering Education and Life-Long Learning (IJCEELL), 19(4/5/6),

  16. Investigation of rotated PCA from the perspective of network communities applied to climate data

    Czech Academy of Sciences Publication Activity Database

    Hartman, David; Hlinka, Jaroslav; Vejmelka, Martin; Paluš, Milan

    2013-01-01

    Roč. 15, - (2013), s. 13124 ISSN 1607-7962. [European Geosciences Union General Assembly 2013. 07.04.2013-12.04.2013, Vienna] R&D Projects: GA ČR GCP103/11/J068 Institutional support: RVO:67985807 Keywords : complex networks * graph theory * climate dynamics Subject RIV: BB - Applied Statistics, Operational Research

  17. A simple network agreement-based approach for combining evidences in a heterogeneous sensor network

    Directory of Open Access Journals (Sweden)

    Raúl Eusebio-Grande

    2015-12-01

    Full Text Available In this research we investigate how the evidences provided by both static and mobile nodes that are part of a heterogenous sensor network can be combined to have trustworthy results. A solution relying on a network agreement-based approach was implemented and tested.

  18. Modeling in applied sciences a kinetic theory approach

    CERN Document Server

    Pulvirenti, Mario

    2000-01-01

    Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...

  19. Cortical complexity in bipolar disorder applying a spherical harmonics approach.

    Science.gov (United States)

    Nenadic, Igor; Yotter, Rachel A; Dietzek, Maren; Langbein, Kerstin; Sauer, Heinrich; Gaser, Christian

    2017-05-30

    Recent studies using surface-based morphometry of structural magnetic resonance imaging data have suggested that some changes in bipolar disorder (BP) might be neurodevelopmental in origin. We applied a novel analysis of cortical complexity based on fractal dimensions in high-resolution structural MRI scans of 18 bipolar disorder patients and 26 healthy controls. Our region-of-interest based analysis revealed increases in fractal dimensions (in patients relative to controls) in left lateral orbitofrontal cortex and right precuneus, and decreases in right caudal middle frontal, entorhinal cortex, and right pars orbitalis, and left fusiform and posterior cingulate cortices. While our analysis is preliminary, it suggests that early neurodevelopmental pathologies might contribute to bipolar disorder, possibly through genetic mechanisms. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. A Neural Network Approach to Muon Triggering in ATLAS

    CERN Document Server

    Livneh, Ran; CERN. Geneva

    2007-01-01

    The extremely high rate of events that will be produced in the future Large Hadron Collider requires the triggering mechanism to make precise decisions in a few nano-seconds. This poses a complicated inverse problem, arising from the inhomogeneous nature of the magnetic fields in ATLAS. This thesis presents a study of an application of Artificial Neural Networks to the muon triggering problem in the ATLAS end-cap. A comparison with realistic results from the ATLAS first level trigger simulation was in favour of the neural network, but this is mainly due to superior resolution available off-line. Other options for applying a neural network to this problem are discussed.

  1. Mental disorders as complex networks : An introduction and overview of a network approach to psychopathology

    NARCIS (Netherlands)

    Nuijten, M.B.; Deserno, M.K.; Cramer, A.O.J.; Borsboom, D.

    2016-01-01

    Mental disorders have traditionally been conceptualized as latent variables, which impact observable symptomatology. Recent alternative approaches, however, view mental disorders as systems of mutually reinforcing symptoms, and utilize network models to analyze the structure of these symptom-symptom

  2. Ant colony optimization and neural networks applied to nuclear power plant monitoring

    International Nuclear Information System (INIS)

    Santos, Gean Ribeiro dos; Andrade, Delvonei Alves de; Pereira, Iraci Martinez

    2015-01-01

    A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the ANNs created to solve this kind of problem are created by taking into account only parameters as the number of inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research reactor at IPEN. (author)

  3. Undiscovered resource evaluation: Towards applying a systematic approach to uranium

    International Nuclear Information System (INIS)

    Fairclough, M.; Katona, L.

    2014-01-01

    Evaluations of potential mineral resource supply range from spatial to aspatial, and everything in between across a range of scales. They also range from qualitative to quantitative with similar hybrid examples across the spectrum. These can compromise detailed deposit-specific reserve and resource calculations, target generative processes and estimates of potential endowments in a broad geographic or geological area. All are estimates until the ore has been discovered and extracted. Contemporary national or provincial scale evaluations of mineral potential are relatively advanced and some include uranium, such as those for South Australia undertaken by the State Geological Survey. These play an important role in land-use planning as well as attracting exploration investment and range from datato knowledge-driven approaches. Studies have been undertaken for the Mt Painter region, as well as for adjacent basins. The process of estimating large-scale potential mineral endowments is critical for national and international planning purposes but is a relatively recent and less common undertaking. In many cases, except at a general level, the data and knowledge for a relatively immature terrain is lacking, requiring assessment by analogy with other areas. Commencing in the 1980s, the United States Geological Survey, and subsequently the Geological Survey of Canada evaluated a range of commodities ranging from copper to hydrocarbons with a view to security of supply. They developed innovative approaches to, as far as practical, reduce the uncertainty and maximise the reproducibility of the calculations in information-poor regions. Yet the approach to uranium was relatively ad hoc and incomplete (such as the US Department of Energy NURE project). Other historic attempts, such as the IAEA-NEA International Uranium Resource Evaluation Project (IUREP) in the 1970s, were mainly qualitative. While there is still no systematic global evaluation of undiscovered uranium resources

  4. Applying artificial intelligence to clinical guidelines: the GLARE approach.

    Science.gov (United States)

    Terenziani, Paolo; Montani, Stefania; Bottrighi, Alessio; Molino, Gianpaolo; Torchio, Mauro

    2008-01-01

    We present GLARE, a domain-independent system for acquiring, representing and executing clinical guidelines (GL). GLARE is characterized by the adoption of Artificial Intelligence (AI) techniques in the definition and implementation of the system. First of all, a high-level and user-friendly knowledge representation language has been designed. Second, a user-friendly acquisition tool, which provides expert physicians with various forms of help, has been implemented. Third, a tool for executing GL on a specific patient has been made available. At all the levels above, advanced AI techniques have been exploited, in order to enhance flexibility and user-friendliness and to provide decision support. Specifically, this chapter focuses on the methods we have developed in order to cope with (i) automatic resource-based adaptation of GL, (ii) representation and reasoning about temporal constraints in GL, (iii) decision making support, and (iv) model-based verification. We stress that, although we have devised such techniques within the GLARE project, they are mostly system-independent, so that they might be applied to other guideline management systems.

  5. Approaching the Capacity of Wireless Networks through Distributed Interference Alignment

    OpenAIRE

    Gomadam, Krishna; Cadambe, Viveck R.; Jafar, Syed A.

    2008-01-01

    Recent results establish the optimality of interference alignment to approach the Shannon capacity of interference networks at high SNR. However, the extent to which interference can be aligned over a finite number of signalling dimensions remains unknown. Another important concern for interference alignment schemes is the requirement of global channel knowledge. In this work we provide examples of iterative algorithms that utilize the reciprocity of wireless networks to achieve interference ...

  6. Seismic Failure Probability of a Curved Bridge Based on Analytical and Neural Network Approaches

    Directory of Open Access Journals (Sweden)

    K. Karimi-Moridani

    2017-01-01

    Full Text Available This study focuses on seismic fragility assessment of horizontal curved bridge, which has been derived by neural network prediction. The objective is the optimization of structural responses of metaheuristic solutions. A regression model for the responses of the horizontal curved bridge with variable coefficients is built in the neural networks simulation environment based on the existing NTHA data. In order to achieve accurate results in a neural network, 1677 seismic analysis was performed in OpenSees. To achieve better performance of neural network and reduce the dimensionality of input data, dimensionality reduction techniques such as factor analysis approach were applied. Different types of neural network training algorithm were used and the best algorithm was adopted. The developed ANN approach is then used to verify the fragility curves of NTHA. The obtained results indicated that neural network approach could be used for predicting the seismic behavior of bridge elements and fragility, with enough feature extraction of ground motion records and response of structure according to the statistical works. Fragility curves extracted from the two approaches generally show proper compliance.

  7. Applying the community partnership approach to human biology research.

    Science.gov (United States)

    Ravenscroft, Julia; Schell, Lawrence M; Cole, Tewentahawih'tha'

    2015-01-01

    Contemporary human biology research employs a unique skillset for biocultural analysis. This skillset is highly appropriate for the study of health disparities because disparities result from the interaction of social and biological factors over one or more generations. Health disparities research almost always involves disadvantaged communities owing to the relationship between social position and health in stratified societies. Successful research with disadvantaged communities involves a specific approach, the community partnership model, which creates a relationship beneficial for researcher and community. Paramount is the need for trust between partners. With trust established, partners share research goals, agree on research methods and produce results of interest and importance to all partners. Results are shared with the community as they are developed; community partners also provide input on analyses and interpretation of findings. This article describes a partnership-based, 20 year relationship between community members of the Akwesasne Mohawk Nation and researchers at the University at Albany. As with many communities facing health disparity issues, research with Native Americans and indigenous peoples generally is inherently politicized. For Akwesasne, the contamination of their lands and waters is an environmental justice issue in which the community has faced unequal exposure to, and harm by environmental toxicants. As human biologists engage in more partnership-type research, it is important to understand the long term goals of the community and what is at stake so the research circle can be closed and 'helicopter' style research avoided. © 2014 Wiley Periodicals, Inc.

  8. Introduction to semiconductor lasers for optical communications an applied approach

    CERN Document Server

    Klotzkin, David J

    2014-01-01

    This textbook provides a thorough and accessible treatment of semiconductor lasers from a design and engineering perspective. It includes both the physics of devices as well as the engineering, designing, and testing of practical lasers. The material is presented clearly with many examples provided. Readers of the book will come to understand the finer aspects of the theory, design, fabrication, and test of these devices and have an excellent background for further study of optoelectronics. This book also: ·         Provides a multi-faceted approach to explaining the theories behind semiconductor lasers, utilizing mathematical examples, illustrations, and written theoretical presentations ·         Offers a balance of relevant optoelectronic topics, with specific attention given to distributed feedback lasers, growth techniques, and waveguide cavity design ·         Provides a summary of every chapter, worked examples, and problems for readers to solve ·         Empasizes...

  9. Neural network approach to text processing

    Science.gov (United States)

    Sunthankar, S.

    1992-08-01

    There is a great need for fast accurate text retrieval systems to support many intelligent activities. The text search problem can be broken down into two main tasks; database searching and message routing. Database searching consists of searching through a large database of text from certain key words, phrases, or other simple functions of strings. Message routing is classifying incoming messages and sending them to the appropriate `mail box.'' These are actually very similar tasks. Both are really just pattern matching tasks. What matters are the methods used. In addition to searching and classifying, it would be nice to perform other tasks such as inferencing and prediction, so these are discussed briefly. We discuss and compare current leading edge solutions to this problem and introduce some new ideas based on recent neural network theories and experiments. All text-search and retrieval technology is predicted on the assumption that the semantic content of text can be predictd from its syntactic properties: specifically, the existence, frequency, or absence of certain character strings or words; the relationship clustering among words and phrases; the occurrence of particular patterns in particular fields within the document.

  10. Contingent approach to Internet-based supply network integration

    Science.gov (United States)

    Ho, Jessica; Boughton, Nick; Kehoe, Dennis; Michaelides, Zenon

    2001-10-01

    The Internet is playing an increasingly important role in enhancing the operations of supply networks as many organizations begin to recognize the benefits of Internet- enabled supply arrangements. However, the developments and applications to-date do not extend significantly beyond the dyadic model, whereas the real advantages are to be made with the external and network models to support a coordinated and collaborative based approach. The DOMAIN research group at the University of Liverpool is currently defining new Internet- enabled approaches to enable greater collaboration across supply chains. Different e-business models and tools are focusing on different applications. Using inappropriate e- business models, tools or techniques will bring negative results instead of benefits to all the tiers in the supply network. Thus there are a number of issues to be considered before addressing Internet based supply network integration, in particular an understanding of supply chain management, the emergent business models and evaluating the effects of deploying e-business to the supply network or a particular tier. It is important to utilize a contingent approach to selecting the right e-business model to meet the specific supply chain requirements. This paper addresses the issues and provides a case study on the indirect materials supply networks.

  11. Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure

    International Nuclear Information System (INIS)

    Xu, Xin; Cui, Qiang

    2017-01-01

    This paper focuses on evaluating airline energy efficiency, which is firstly divided into four stages: Operations Stage, Fleet Maintenance Stage, Services Stage and Sales Stage. The new four-stage network structure of airline energy efficiency is a modification of existing models. A new approach, integrated with Network Epsilon-based Measure and Network Slacks-based Measure, is applied to assess the overall energy efficiency and divisional efficiency of 19 international airlines from 2008 to 2014. The influencing factors of airline energy efficiency are analyzed through the regression analysis. The results indicate the followings: 1. The integrated model can identify the benchmarking airlines in the overall system and stages. 2. Most airlines' energy efficiencies keep steady during the period, except for some sharply fluctuations. The efficiency decreases mainly centralized in the year 2008–2011, affected by the financial crisis in the USA. 3. The average age of fleet is positively correlated with the overall energy efficiency, and each divisional efficiency has different significant influencing factors. - Highlights: • An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure is developed. • 19 airlines' energy efficiencies are evaluated. • Garuda Indonesia has the highest overall energy efficiency.

  12. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles.

    Science.gov (United States)

    Munguia, Rodrigo; Urzua, Sarquis; Grau, Antoni

    2016-01-01

    In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs) more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM) method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time.

  13. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles.

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguia

    Full Text Available In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time.

  14. Applying a Network-Lens to Hospitality Business Research: A New Research Agenda

    Directory of Open Access Journals (Sweden)

    Florian AUBKE

    2014-06-01

    Full Text Available Hospitality businesses are first and foremost places of social interaction. This paper argues for an inclusion of network methodology into the tool kit of hospitality researchers. This methodology focuses on the interaction of people rather than applying an actor-focused view, which currently seems dominant in hospitality research. Outside the field, a solid research basis has been formed, upon which hospitality researchers can build. The paper introduces the foundations of network theory and its applicability to the study of organizations. A brief methodological introduction is provided and potential applications and research topics relevant to the hospitality field are suggested.

  15. A mathematical programming approach for sequential clustering of dynamic networks

    Science.gov (United States)

    Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2016-02-01

    A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.

  16. Intelligent Resource Management for Local Area Networks: Approach and Evolution

    Science.gov (United States)

    Meike, Roger

    1988-01-01

    The Data Management System network is a complex and important part of manned space platforms. Its efficient operation is vital to crew, subsystems and experiments. AI is being considered to aid in the initial design of the network and to augment the management of its operation. The Intelligent Resource Management for Local Area Networks (IRMA-LAN) project is concerned with the application of AI techniques to network configuration and management. A network simulation was constructed employing real time process scheduling for realistic loads, and utilizing the IEEE 802.4 token passing scheme. This simulation is an integral part of the construction of the IRMA-LAN system. From it, a causal model is being constructed for use in prediction and deep reasoning about the system configuration. An AI network design advisor is being added to help in the design of an efficient network. The AI portion of the system is planned to evolve into a dynamic network management aid. The approach, the integrated simulation, project evolution, and some initial results are described.

  17. Integrated design of multivariable hydrometric networks using entropy theory with a multiobjective optimization approach

    Science.gov (United States)

    Keum, J.; Coulibaly, P. D.

    2017-12-01

    Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.

  18. An intelligent wireless sensor network applied research on dynamic physiological data monitoring of athletes

    Science.gov (United States)

    Xie, Ying; Wu, Fei-qing; Li, Lin-gong

    2008-12-01

    A wireless sensor network (WSN) monitoring system was designed, because of the big labour, time-consumption, and non-real-time monitoring of the true physiological data of athlete for wire communication, which were very important for their coach. The coach, who obtained the first material, can know the physiological sports status of althletes according to these data, can intervene on them and formulate a scientific training plan. The system has the characteristic of a random layout, arbitrary additions and combined network nodes. The performance of the system for 24 athletes who were trained has been tested in the system improved LEACH-c protocol and a threshold sensitive energy efficient protocol has been applied. The experimental results showed that, while the interval time of the contact was more than 15 seconds, the network packet loss rate was less than 3 percent. The operation of the network can be considered to be relatively stable. During the test, the MAC network capacity obtained by the actual tests in the implicit terminal mode was three packets per second. Considering the costs of a node sending routing maintenance packet, a network capacity of 2 was reasonable. Based on the performance of the system for testing, the results showed that the system was stable and reliable

  19. Neural Network Approach to Locating Cryptography in Object Code

    Energy Technology Data Exchange (ETDEWEB)

    Jason L. Wright; Milos Manic

    2009-09-01

    Finding and identifying cryptography is a growing concern in the malware analysis community. In this paper, artificial neural networks are used to classify functional blocks from a disassembled program as being either cryptography related or not. The resulting system, referred to as NNLC (Neural Net for Locating Cryptography) is presented and results of applying this system to various libraries are described.

  20. A Strategic Approach to Network Defense: Framing the Cloud

    Science.gov (United States)

    2011-03-10

    apply.54 Securing present day networking architectures with physical infrastructure presents known system environments to defend. However, cloud...There is a perception that migration to the cloud computing environment will also yield cost savings through reduced physical infrastructure and...technical staff. While the reality of reduced physical infrastructure will occur, it is not clear that the technical staff will be significantly reduced

  1. Using artificial neural network approach for modelling rainfall–runoff ...

    Indian Academy of Sciences (India)

    reliable runoff is hardly predicted by applying linear and non-linear regression methods. Therefore, in this study ... propagation network (FFBP) and conventional regression analysis (CRA) were employed to study their performances. From the .... tested ANNs against the regression-based, simple conceptual black box, or ...

  2. Social network approaches to leadership: an integrative conceptual review.

    Science.gov (United States)

    Carter, Dorothy R; DeChurch, Leslie A; Braun, Michael T; Contractor, Noshir S

    2015-05-01

    Contemporary definitions of leadership advance a view of the phenomenon as relational, situated in specific social contexts, involving patterned emergent processes, and encompassing both formal and informal influence. Paralleling these views is a growing interest in leveraging social network approaches to study leadership. Social network approaches provide a set of theories and methods with which to articulate and investigate, with greater precision and rigor, the wide variety of relational perspectives implied by contemporary leadership theories. Our goal is to advance this domain through an integrative conceptual review. We begin by answering the question of why-Why adopt a network approach to study leadership? Then, we offer a framework for organizing prior research. Our review reveals 3 areas of research, which we term: (a) leadership in networks, (b) leadership as networks, and (c) leadership in and as networks. By clarifying the conceptual underpinnings, key findings, and themes within each area, this review serves as a foundation for future inquiry that capitalizes on, and programmatically builds upon, the insights of prior work. Our final contribution is to advance an agenda for future research that harnesses the confluent ideas at the intersection of leadership in and as networks. Leadership in and as networks represents a paradigm shift in leadership research-from an emphasis on the static traits and behaviors of formal leaders whose actions are contingent upon situational constraints, toward an emphasis on the complex and patterned relational processes that interact with the embedding social context to jointly constitute leadership emergence and effectiveness. (c) 2015 APA, all rights reserved.

  3. THE SOCIAL NETWORK OF THE ORTHODOX PARISH COMMUNITY: POSSIBILITIES FOR APPLYING THE ANALYSIS OF SOCIAL NETWORKS TO THE SOCIOLOGY OF RELIGION

    Directory of Open Access Journals (Sweden)

    Elena Prutskova

    2013-08-01

    Full Text Available This article examines the understanding of the social network and lays the foundation for the possibility of applying the social network approach to the sociology of religion. During the last twenty years, Russian sociological circles have been actively discussing the question of whether Orthodoxy exerts any influence on contemporary Russia. Until the present, the amount of influence has been calculated by examining how people identify themselves and by how frequently they practice their religion. With the help of an apparatus of network analysis, an attempt is made in this article to detect still another way religion influences Russian today. The authors suggest a threepart typology of the way a contemporary person relates to religion: conversion, linkage through a social network, linkage through publicly visible marks of religiosity. With the aid of the foregoing, one can hazard the hypothesis that the second factor is of prime importance especially in countries threatened by forced secularization. The authors question the social mechanics gearing the functioning of contemporary Russian society and attempt to calculate the potential outreach of the contemporary Russian Orthodox parish. Data collected by the authors allow one to suppose that the influence of linking oneself to religion through and amid the various facets of life of the average Russian may be just as effective as the conversion experience

  4. Applying Partial Power-Gating to Direction-Sliced Network-on-Chip

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2015-01-01

    Full Text Available Network-on-Chip (NoC is one of critical communication architectures for future many-core systems. As technology is continually scaling down, on-chip network meets the increasing leakage power crisis. As a leakage power mitigation technique, power-gating can be utilized in on-chip network to solve the crisis. However, the network performance is severely affected by the disconnection in the conventional power-gated NoC. In this paper, we propose a novel partial power-gating approach to improve the performance in the power-gated NoC. The approach mainly involves a direction-slicing scheme, an improved routing algorithm, and a deadlock recovery mechanism. In the synthetic traffic simulation, the proposed design shows favorable power-efficiency at low-load range and achieves better performance than the conventional power-gated one. For the application trace simulation, the design in the mesh/torus network consumes 15.2%/18.9% more power on average, whereas it can averagely obtain 45.0%/28.7% performance improvement compared with the conventional power-gated design. On balance, the proposed design with partial power-gating has a better tradeoff between performance and power-efficiency.

  5. Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection.

    Science.gov (United States)

    Guthke, Reinhard; Möller, Ulrich; Hoffmann, Martin; Thies, Frank; Töpfer, Susanne

    2005-04-15

    The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Reinhard.Guthke@hki-jena.de.

  6. Modeling nutrient retention at the watershed scale: Does small stream research apply to the whole river network?

    Science.gov (United States)

    Aguilera, Rosana; Marcé, Rafael; Sabater, Sergi

    2013-06-01

    are conveyed from terrestrial and upstream sources through drainage networks. Streams and rivers contribute to regulate the material exported downstream by means of transformation, storage, and removal of nutrients. It has been recently suggested that the efficiency of process rates relative to available nutrient concentration in streams eventually declines, following an efficiency loss (EL) dynamics. However, most of these predictions are based at the reach scale in pristine streams, failing to describe the role of entire river networks. Models provide the means to study nutrient cycling from the stream network perspective via upscaling to the watershed the key mechanisms occurring at the reach scale. We applied a hybrid process-based and statistical model (SPARROW, Spatially Referenced Regression on Watershed Attributes) as a heuristic approach to describe in-stream nutrient processes in a highly impaired, high stream order watershed (the Llobregat River Basin, NE Spain). The in-stream decay specifications of the model were modified to include a partial saturation effect in uptake efficiency (expressed as a power law) and better capture biological nutrient retention in river systems under high anthropogenic stress. The stream decay coefficients were statistically significant in both nitrate and phosphate models, indicating the potential role of in-stream processing in limiting nutrient export. However, the EL concept did not reliably describe the patterns of nutrient uptake efficiency for the concentration gradient and streamflow values found in the Llobregat River basin, posing in doubt its complete applicability to explain nutrient retention processes in stream networks comprising highly impaired rivers.

  7. An Intelligent Alternative Approach to the efficient Network Management

    Directory of Open Access Journals (Sweden)

    MARTÍN, A.

    2012-12-01

    Full Text Available Due to the increasing complexity and heterogeneity of networks and services, many efforts have been made to develop intelligent techniques for management. Network intelligent management is a key technology for operating large heterogeneous data transmission networks. This paper presents a proposal for an architecture that integrates management object specifications and the knowledge of expert systems. We present a new approach named Integrated Expert Management, for learning objects based on expert management rules and describe the design and implementation of an integrated intelligent management platform based on OSI and Internet management models. The main contributions of our approach is the integration of both expert system and managed models, so we can make use of them to construct more flexible intelligent management network. The prototype SONAP (Software for Network Assistant and Performance is accuracy-aware since it can control and manage a network. We have tested our system on real data to the fault diagnostic in a telecommunication system of a power utility. The results validate the model and show a significant improvement with respect to the number of rules and the error rate in others systems.

  8. Social Network Analyses and Nutritional Behavior: An Integrated Modeling Approach

    Directory of Open Access Journals (Sweden)

    Alistair McNair Senior

    2016-01-01

    Full Text Available Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent advances in nutrition research, combining state-space models of nutritional geometry with agent-based models of systems biology, show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a tangible and practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit agent-based models that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition. Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interaction in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  9. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach.

    Science.gov (United States)

    Senior, Alistair M; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  10. Wavelet neural network applied for prognostication of contact pressure between soil and driving wheel

    Directory of Open Access Journals (Sweden)

    Hamid Taghavifar

    2014-08-01

    Full Text Available This paper describes the measurement of contact pressure in the context of wheel–terrain interaction as affected by wheel load and tire inflation pressure when fusion of the wavelet transform with the back-propagation (BP neural network is applied to construct the wavelet neural network contact pressure prediction model. To this aim, a controlled soil bin testing facility equipped with single-wheel tester was utilized while three levels of velocity, three levels of slippage and three levels of wheel load were applied. Using image processing technique, contact area values were determined which were subsequently used for quantification of contact pressure. Performances of the different predictor models incorporated of various mother wavelets were evaluated using standard statistical evaluation criteria. Root mean square error and coefficient of determination values of 0.1382 and 0.9864 achieved by the optimal wavelet neural network are better than that of BP neural network. The proposed tool typifies a high learning speed, enhanced predicting accuracy, and strong robustness.

  11. An Improved Dynamic Programming Decomposition Approach for Network Revenue Management

    OpenAIRE

    Dan Zhang

    2011-01-01

    We consider a nonlinear nonseparable functional approximation to the value function of a dynamic programming formulation for the network revenue management (RM) problem with customer choice. We propose a simultaneous dynamic programming approach to solve the resulting problem, which is a nonlinear optimization problem with nonlinear constraints. We show that our approximation leads to a tighter upper bound on optimal expected revenue than some known bounds in the literature. Our approach can ...

  12. Approach of Complex Networks for the Determination of Brain Death

    International Nuclear Information System (INIS)

    Sun Wei-Gang; Cao Jian-Ting; Wang Ru-Bin

    2011-01-01

    In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our findings might provide valuable insights on the determination of brain death. (cross-disciplinary physics and related areas of science and technology)

  13. Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE

    International Nuclear Information System (INIS)

    Correa, R.; Chesta, M.A.; Morales, J.R.; Dinator, M.I.; Requena, I.; Vila, I.

    2006-01-01

    An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses

  14. Building an efficient wireless sensor network system for applied indoor research.

    OpenAIRE

    Gaddoni, Massimo

    2010-01-01

    This thesis reasons on dynamic wireless sensor networks (WSN) analyzing different models and architectures. The main goal of all the work is the development of a tool designed to fulfill the needs of real on-field research, especially applied to indoor environment such as houses and hospitals. The idea was born from my last university thesis where alongside the original project of a remote controlled surgical room arose the need to monitor the hospital's patients and surgeon...

  15. Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R. [Universidad Tecnologica Metropolitana, Departamento de Fisica, Av. Jose Pedro Alessandri 1242, Nunoa, Santiago (Chile)]. E-mail: rcorrea@utem.cl; Chesta, M.A. [Universidad Nacional de Cordoba, Facultad de Matematica, Astronomia y Fisica, Medina Allende s/n Ciudad Universitaria, 5000 Cordoba (Argentina)]. E-mail: chesta@famaf.unc.edu.ar; Morales, J.R. [Universidad de Chile, Facultad de Ciencias, Departamento de Fisica, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: rmorales@uchile.cl; Dinator, M.I. [Universidad de Chile, Facultad de Ciencias, Departamento de Fisica, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: mdinator@uchile.cl; Requena, I. [Universidad de Granada, Departamento de Ciencias de la Computacion e Inteligencia Artificial, Daniel Saucedo Aranda s/n, 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es; Vila, I. [Universidad de Chile, Facultad de Ciencias, Departamento de Ecologia, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: limnolog@uchile.cl

    2006-08-15

    An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses.

  16. Innovation Networks New Approaches in Modelling and Analyzing

    CERN Document Server

    Pyka, Andreas

    2009-01-01

    The science of graphs and networks has become by now a well-established tool for modelling and analyzing a variety of systems with a large number of interacting components. Starting from the physical sciences, applications have spread rapidly to the natural and social sciences, as well as to economics, and are now further extended, in this volume, to the concept of innovations, viewed broadly. In an abstract, systems-theoretical approach, innovation can be understood as a critical event which destabilizes the current state of the system, and results in a new process of self-organization leading to a new stable state. The contributions to this anthology address different aspects of the relationship between innovation and networks. The various chapters incorporate approaches in evolutionary economics, agent-based modeling, social network analysis and econophysics and explore the epistemic tension between insights into economics and society-related processes, and the insights into new forms of complex dynamics.

  17. Stochastic approaches for product recovery network design: a case study

    NARCIS (Netherlands)

    O.L. Listes (Ovidiu); R. Dekker (Rommert)

    2001-01-01

    textabstractIncreased uncertainty is one of the characteristics of product recovery networks. In particular the strategic design of their logistic infrastructure has to take uncertain information into account. In this paper we present stochastic programming based approaches by which a deterministic

  18. Governing cruise tourism at Bonaire: a networks and flows approach

    NARCIS (Netherlands)

    Bets, van L.K.J.; Lamers, M.A.J.; Tatenhove, van J.P.M.

    2017-01-01

    Conceptual approaches to thoroughly study governance of cruise tourism are lacking in the literature. Relying on Castells’ network society, we analyze how two interconnected flows of cruise ships and passengers are governed by a marine community of users and policy makers. Bonaire is used as a case

  19. Using artificial neural network approach for modelling rainfall–runoff ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 2. Using artificial neural network approach for modelling ... Nevertheless, water level and flow records are essential in hydrological analysis for designing related water works of flood management. Due to the complexity of the hydrological process, ...

  20. INFLUENCE OF APPLYING ADDITIONAL FORCING FANS FOR THE AIR DISTRIBUTION IN VENTILATION NETWORK

    Directory of Open Access Journals (Sweden)

    Nikodem SZLĄZAK

    2016-07-01

    Full Text Available Mining progress in underground mines cause the ongoing movement of working areas. Consequently, it becomes neces-sary to adapt the ventilation network of a mine to direct airflow into newly-opened districts. For economic reasons, opening new fields is often achieved via underground workings. Length of primary intake and return routes increases and also increases the total resistance of a complex ventilation network. The development of a subsurface structure can make it necessary to change the air distribution in a ventilation network. Increasing airflow into newly-opened districts is necessary. In mines where extraction does not entail gas-related hazards, there is possibility of implementing a push-pull ventilation system in order to supplement airflows to newly developed mining fields. This is achieved by installing sub-surface fan stations with forcing fans at the bottom of downcast shaft. In push-pull systems with multiple main fans, it is vital to select forcing fans with characteristic curves matching those of the existing exhaust fans to prevent undesirable mutual interaction. In complex ventilation networks it is necessary to calculate distribution of airflow (especially in net-works with a large number of installed fans. In the article the influence of applying additional forcing fans for the air distribution in ventilation network for underground mine were considered. There are also analysed the extent of over-pressure caused by the additional forcing fan in branches of the ventilation network (the operating range of additional forcing fan. Possibilities of increasing airflow rate in working areas were conducted.

  1. A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments

    CERN Document Server

    Terzic, Edin; Nagarajah, Romesh; Alamgir, Muhammad

    2012-01-01

    Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions.   In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network base...

  2. A multi-label, semi-supervised classification approach applied to personality prediction in social media.

    Science.gov (United States)

    Lima, Ana Carolina E S; de Castro, Leandro Nunes

    2014-10-01

    Social media allow web users to create and share content pertaining to different subjects, exposing their activities, opinions, feelings and thoughts. In this context, online social media has attracted the interest of data scientists seeking to understand behaviours and trends, whilst collecting statistics for social sites. One potential application for these data is personality prediction, which aims to understand a user's behaviour within social media. Traditional personality prediction relies on users' profiles, their status updates, the messages they post, etc. Here, a personality prediction system for social media data is introduced that differs from most approaches in the literature, in that it works with groups of texts, instead of single texts, and does not take users' profiles into account. Also, the proposed approach extracts meta-attributes from texts and does not work directly with the content of the messages. The set of possible personality traits is taken from the Big Five model and allows the problem to be characterised as a multi-label classification task. The problem is then transformed into a set of five binary classification problems and solved by means of a semi-supervised learning approach, due to the difficulty in annotating the massive amounts of data generated in social media. In our implementation, the proposed system was trained with three well-known machine-learning algorithms, namely a Naïve Bayes classifier, a Support Vector Machine, and a Multilayer Perceptron neural network. The system was applied to predict the personality of Tweets taken from three datasets available in the literature, and resulted in an approximately 83% accurate prediction, with some of the personality traits presenting better individual classification rates than others. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Informal networks and resilience to climate change impacts: A collective approach to index insurance

    DEFF Research Database (Denmark)

    Trærup, Sara Lærke Meltofte

    2012-01-01

    This article contributes to the understanding of how to proceed with the development of index-insurance in order to reach extended population coverage with the insurance. The approach is applied to an example from a region in Tanzania. One of the main coping strategies that resource-poor househol...... the number of covariate shocks is predicted to increase with climate change....... rely on to manage risks related to fluctuations in income flows is risk-sharing in informal networks. An informal network is an ideal way of managing idiosyncratic shocks, but once such shocks become covariate and affect whole communities, as is the case with most climate change impacts, informal...... that targeting households through existing informal networks will remove a number of prevailing barriers to the takeup of insurance and consequently the approach has the potential to increase households’ resilience to climate change impacts. The policy implications of the conclusions are significant since...

  4. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran

    2017-08-17

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset for event detection. The input features used include the average of absolute amplitudes, variance, energy-ratio and polarization rectilinearity. These features are calculated in a moving-window of same length for the entire waveform. The output is set as a user-specified relative probability curve, which provides a robust way of distinguishing between weak and strong events. An optimal network is selected by studying the weight-based saliency and effect of number of neurons on the predicted results. Using synthetic data examples, we demonstrate that this approach is effective in detecting weaker events and reduces the number of false positives.

  5. Applying an Integrated Approach to Vehicle and Crew Scheduling in Practice

    NARCIS (Netherlands)

    R. Freling (Richard); D. Huisman (Dennis); A.P.M. Wagelmans (Albert)

    2000-01-01

    textabstractThis paper deals with a practical application of an integrated approach to vehicle and crew scheduling, that we have developed previously. Computational results have shown that our approach can be applied to problems of practical size. However, application of the approach to the actual

  6. Applying ADLs to Assess Emerging Industry Specifications for Dynamic Discovery of Ad Hoc Network Services

    Science.gov (United States)

    2001-01-31

    0..1 Contains 1 Contains SERVICE MANAGER discov er Network Context() <<not shr>> Cache Manager Discov ery () <<OPT>> Announce Serv ice Processing...Architectural Layers Approach JINI Entities Service Manager Entity Major Functions Lazy Discovery Directed Discovery Client (s,ra) Aggressive...registered-services SCM SM discovered-SCMs (SU NR SCM): (SU,NR) SCM registered-notifications SCM SU discovered-SCMs • SM is Service Manager • SD is

  7. Multi-criteria decision making: AHP method applied for network bridge prioritization

    OpenAIRE

    Allah Bukhsh, Zaharah; Stipanovic, Irina; Klanker, Giel; Hoj, Niels; Imam, Boulent; Xenidis, Yiannis; Mandić Ivanković, Ana

    2017-01-01

    In bridge management systems, multi-objective decision-making has emerged as a decision support technique to integrate various technical information and stakeholder values. Different multicriteria decision making techniques and tools have been developed in the last three decades. This paper presents an overview of different approaches to multi-objective decision making at the object and network level, with the purpose of incorporating different aspects of bridge performance goals, which may v...

  8. Module Anchored Network Inference: A Sequential Module-Based Approach to Novel Gene Network Construction from Genomic Expression Data on Human Disease Mechanism

    Directory of Open Access Journals (Sweden)

    Annamalai Muthiah

    2017-01-01

    Full Text Available Different computational approaches have been examined and compared for inferring network relationships from time-series genomic data on human disease mechanisms under the recent Dialogue on Reverse Engineering Assessment and Methods (DREAM challenge. Many of these approaches infer all possible relationships among all candidate genes, often resulting in extremely crowded candidate network relationships with many more False Positives than True Positives. To overcome this limitation, we introduce a novel approach, Module Anchored Network Inference (MANI, that constructs networks by analyzing sequentially small adjacent building blocks (modules. Using MANI, we inferred a 7-gene adipogenesis network based on time-series gene expression data during adipocyte differentiation. MANI was also applied to infer two 10-gene networks based on time-course perturbation datasets from DREAM3 and DREAM4 challenges. MANI well inferred and distinguished serial, parallel, and time-dependent gene interactions and network cascades in these applications showing a superior performance to other in silico network inference techniques for discovering and reconstructing gene network relationships.

  9. Comparison of time series forecasting with artificial neural network and statistical approach

    Directory of Open Access Journals (Sweden)

    Michael Štencl

    2011-01-01

    Full Text Available In this paper we concentrate on prediction of future values based on the past course of a variable. Traditionally this problem is solved using statistical analysis – first a time-series model is constructed and then statistical prediction algorithms are applied to it in order to obtain future values. The time series modelling is a very powerful method, but it requires knowledge or discovery of initial conditions when constructing the model. The experiment described in this paper consists of a comparison of results computed by Multi-layer perceptron network with different learning algorithms previously published and results computed with different types of ARMA models. For the network configuration an analytical approach has been applied through the cross-validation method. We performed an exact comparison of both approaches on real-world data set. Results of two types of artificial neural network learning algorithms are compared with two algorithms of statistical prediction of future values.The experiment results are later discussed from several different points. First the comparison is focused on output precision of both approaches. The comparison consists of matching neural networks results and real values on few steps of prediction. Then the results of ARMA models are compared with real values and conclusion is made. The conclusion also includes theoretical and practical recommendations.

  10. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least......This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...... squares has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training. Finally, a predictive closed-loop control strategy based on a so-called single-neuron self...

  11. Designing wireless sensor networks for hydrological and water resource applications: A purpose-oriented approach

    Science.gov (United States)

    Mao, F.; Hannah, D. M.; Krause, S.; Clark, J.; Buytaert, W.; Ochoa-Tocachi, B. F.

    2017-12-01

    There have been a growing number of studies using low-cost wireless sensor networks (LCWSNs) in hydrology and water resources fields. By reviewing the development of sensing and wireless communication technologies, as well as the recent relevant projects and applications, we observe that the challenges in applying LCWSNs have been moving beyond technical aspects. The large pool of available low-cost network modules, such as Arduino, Raspberry Pi, Xbee and inexpensive sensors, enable us to assemble networks rather than building them from scratch. With a wide variety of costs, functions and features, these modules support customisation of hydrological monitoring network for different user groups and purposes. Therefore, more attentions are needed to be placed on how to better design tailored LCWSNs with current technologies that create more added value for users. To address this challenge, this research proposes a tool-box for what we term `purpose-oriented' LCWSN. We identify the main LCWSN application scenarios from literature, and compare them from three perspectives including (1) the major stakeholders in each scenario, (2) the purposes for stakeholders, and (3) the network technologies and settings that meet the purposes. Notably, this innovative approach designs LCWSNs for different scenarios with considerations of not only technologies, but also stakeholders and purposes that are related to the usability, maintenance and social sustainability of networks. We conclude that this new, purpose-orientated approach can further release the potential of hydrological and water resources LCWSNs to maximise benefits for users and wider society.

  12. Flow Regime Identification of Co-Current Downward Two-Phase Flow With Neural Network Approach

    International Nuclear Information System (INIS)

    Hiroshi Goda; Seungjin Kim; Ye Mi; Finch, Joshua P.; Mamoru Ishii; Jennifer Uhle

    2002-01-01

    Flow regime identification for an adiabatic vertical co-current downward air-water two-phase flow in the 25.4 mm ID and the 50.8 mm ID round tubes was performed by employing an impedance void meter coupled with the neural network classification approach. This approach minimizes the subjective judgment in determining the flow regimes. The signals obtained by an impedance void meter were applied to train the self-organizing neural network to categorize these impedance signals into a certain number of groups. The characteristic parameters set into the neural network classification included the mean, standard deviation and skewness of impedance signals in the present experiment. The classification categories adopted in the present investigation were four widely accepted flow regimes, viz. bubbly, slug, churn-turbulent, and annular flows. These four flow regimes were recognized based upon the conventional flow visualization approach by a high-speed motion analyzer. The resulting flow regime maps classified by the neural network were compared with the results obtained through the flow visualization method, and consequently the efficiency of the neural network classification for flow regime identification was demonstrated. (authors)

  13. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

    Directory of Open Access Journals (Sweden)

    Christian L Barrett

    2006-05-01

    Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

  14. An automated approach to network features of protein structure ensembles

    Science.gov (United States)

    Bhattacharyya, Moitrayee; Bhat, Chanda R; Vishveshwara, Saraswathi

    2013-01-01

    Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of β2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html. PMID:23934896

  15. A Cognitive Approach to Network Monitoring in Heterogeneous Environments

    DEFF Research Database (Denmark)

    Mihovska, Albena D.

    2007-01-01

    Abstract— Introducing intelligence by means of cognition for managing, protecting, processing, and delivering of information in mobile communication systems is the way towards ubiquitous, converged and secure communications. In this context, this paper introduces the concept of quality...... of information (QoI). QoI means QoS while all the requirements for dependability, security, privacy and trust are satisfied at the highest possible level. This work proposes and describes an approach to network monitoring in a heterogeneous communication environment based on use of cognitive techniques...... is an improved network performance in terms of maximized throughput and faster accessibility to services, minimized transport delay, improved network coverage and simplified security management. This is achieved by introducing an intelligent functionality that entails the use of cognitive learning algorithms...

  16. A Multimetric Approach for Handoff Decision in Heterogeneous Wireless Networks

    Science.gov (United States)

    Kustiawan, I.; Purnama, W.

    2018-02-01

    Seamless mobility and service continuity anywhere at any time are an important issue in the wireless Internet. This research proposes a scheme to make handoff decisions effectively in heterogeneous wireless networks using a fuzzy system. Our design lies in an inference engine which takes RSS (received signal strength), data rate, network latency, and user preference as strategic determinants. The logic of our engine is realized on a UE (user equipment) side in faster reaction to network dynamics while roaming across different radio access technologies. The fuzzy system handles four metrics jointly to deduce a moderate decision about when to initiate handoff. The performance of our design is evaluated by simulating move-out mobility scenarios. Simulation results show that our scheme outperforms other approaches in terms of reducing unnecessary handoff.

  17. EEWES: an energy-efficient wireless sensor network embed-ded system to be applied on industrial environments

    Directory of Open Access Journals (Sweden)

    Felipe Denis Mendonça de Oliveira

    2015-05-01

    Full Text Available Nowadays, the vast majority of information monitoring in industrial plants is still carried out by wired technologies, in which the installation and maintenance cost is high. However, in outdoor applications, such as those used in the oil and gas industry, the use of Wireless Sensor Networks (WSN is increasing due to mobility, reliability, and low cost of the sensor nodes that make up the network. Moreover, this solution reduces the risks of workers in classified areas (regions with high probability of accidents occurrence to the extent that the equipment maintenance is optimized.  This paper proposes the development of the EEWES, an energy efficient wireless sensor network embedded system, which can be applied on industrial environments. This development approach significantly reduces the energy consumption of the sensor nodes by using a method that alternates sleep periods of the transceiver/sensor set with data transmission/reception periods, which reduces the duty cycle while keeping the desirable parameters of the service quality (QoS. The results presented in this paper will be confirmed by field tests.

  18. Network Intrusion Detection System – A Novel Approach

    Directory of Open Access Journals (Sweden)

    Krish Pillai

    2013-08-01

    Full Text Available Network intrusion starts off with a series of unsuccessful breakin attempts and results eventually with the permanent or transient failure of an authentication or authorization system. Due to the current complexity of authentication systems, clandestine attempts at intrusion generally take considerable time before the system gets compromised or damaging change is affected to the system giving administrators a window of opportunity to proactively detect and prevent intrusion. Therefore maintaining a high level of sensitivity to abnormal access patterns is a very effective way of preventing possible break-ins. Under normal circumstances, gross errors on the part of the user can cause authentication and authorization failures on all systems. A normal distribution of failed attempts should be tolerated while abnormal attempts should be recognized as such and flagged. But one cannot manage what one cannot measure. This paper proposes a method that can efficiently quantify the behaviour of users on a network so that transient changes in usage can be detected, categorized based on severity, and closely investigated for possible intrusion. The author proposes the identification of patterns in protocol usage within a network to categorize it for surveillance. Statistical anomaly detection, under which category this approach falls, generally uses simple statistical tests such as mean and standard deviation to detect behavioural changes. The author proposes a novel approach using spectral density as opposed to using time domain data, allowing a clear separation or access patterns based on periodicity. Once a spectral profile has been identified for network, deviations from this profile can be used as an indication of a destabilized or compromised network. Spectral analysis of access patterns is done using the Fast Fourier Transform (FFT, which can be computed in Θ(N log N operations. The paper justifies the use of this approach and presents preliminary

  19. Social Network Analysis Applied to a Historical Ethnographic Study Surrounding Home Birth

    Directory of Open Access Journals (Sweden)

    Elena Andina-Diaz

    2018-04-01

    Full Text Available Safety during birth has improved since hospital delivery became standard practice, but the process has also become increasingly medicalised. Hence, recent years have witnessed a growing interest in home births due to the advantages it offers to mothers and their newborn infants. The aims of the present study were to confirm the transition from a home birth model of care to a scenario in which deliveries began to occur almost exclusively in a hospital setting; to define the social networks surrounding home births; and to determine whether geography exerted any influence on the social networks surrounding home births. Adopting a qualitative approach, we recruited 19 women who had given birth at home in the mid 20th century in a rural area in Spain. We employed a social network analysis method. Our results revealed three essential aspects that remain relevant today: the importance of health professionals in home delivery care, the importance of the mother’s primary network, and the influence of the geographical location of the actors involved in childbirth. All of these factors must be taken into consideration when developing strategies for maternal health.

  20. A distributed multiagent system architecture for body area networks applied to healthcare monitoring.

    Science.gov (United States)

    Felisberto, Filipe; Laza, Rosalía; Fdez-Riverola, Florentino; Pereira, António

    2015-01-01

    In the last years the area of health monitoring has grown significantly, attracting the attention of both academia and commercial sectors. At the same time, the availability of new biomedical sensors and suitable network protocols has led to the appearance of a new generation of wireless sensor networks, the so-called wireless body area networks. Nowadays, these networks are routinely used for continuous monitoring of vital parameters, movement, and the surrounding environment of people, but the large volume of data generated in different locations represents a major obstacle for the appropriate design, development, and deployment of more elaborated intelligent systems. In this context, we present an open and distributed architecture based on a multiagent system for recognizing human movements, identifying human postures, and detecting harmful activities. The proposed system evolved from a single node for fall detection to a multisensor hardware solution capable of identifying unhampered falls and analyzing the users' movement. The experiments carried out contemplate two different scenarios and demonstrate the accuracy of our proposal as a real distributed movement monitoring and accident detection system. Moreover, we also characterize its performance, enabling future analyses and comparisons with similar approaches.

  1. Methodological Approaches to Locating Outlets of the Franchise Retail Network

    Directory of Open Access Journals (Sweden)

    Grygorenko Tetyana M.

    2016-08-01

    Full Text Available Methodical approaches to selecting strategic areas of managing the future location of franchise retail network outlets are presented. The main stages in the assessment of strategic areas of managing the future location of franchise retail network outlets have been determined and the evaluation criteria have been suggested. Since such selection requires consideration of a variety of indicators and directions of the assessment, the author proposes a scale of evaluation, which allows generalizing and organizing the research data and calculations of the previous stages of the analysis. The most important criteria and sequence of the selection of the potential franchisees for the franchise retail network have been identified, the technique for their evaluation has been proposed. The use of the suggested methodological approaches will allow the franchiser making sound decisions on the selection of potential target markets, minimizing expenditures of time and efforts on the selection of franchisees and hence optimizing the process of development of the franchise retail network, which will contribute to the formation of its structure.

  2. Characterization of Genes for Beef Marbling Based on Applying Gene Coexpression Network

    Directory of Open Access Journals (Sweden)

    Dajeong Lim

    2014-01-01

    Full Text Available Marbling is an important trait in characterization beef quality and a major factor for determining the price of beef in the Korean beef market. In particular, marbling is a complex trait and needs a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with marbling, we used a weighted gene coexpression network analysis from the expression value of bovine genes. Hub genes were identified; they were topologically centered with large degree and BC values in the global network. We performed gene expression analysis to detect candidate genes in M. longissimus with divergent marbling phenotype (marbling scores 2 to 7 using qRT-PCR. The results demonstrate that transmembrane protein 60 (TMEM60 and dihydropyrimidine dehydrogenase (DPYD are associated with increasing marbling fat. We suggest that the network-based approach in livestock may be an important method for analyzing the complex effects of candidate genes associated with complex traits like marbling or tenderness.

  3. Assessing Collaboration Networks in Educational Research: A Co-Authorship-Based Social Network Analysis Approach

    Science.gov (United States)

    Munoz, David Andres; Queupil, Juan Pablo; Fraser, Pablo

    2016-01-01

    Purpose: The purpose of this paper is to analyze collaboration networks and their patterns among higher education institutions (HEIs) in Chile and the Latin American region. This will provide evidence to educational managements in order to properly allocate their efforts to improve collaboration. Design/methodology/approach: This quantitative…

  4. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  5. Network approaches to the functional analysis of microbial proteins.

    Science.gov (United States)

    Hallinan, J S; James, K; Wipat, A

    2011-01-01

    Large amounts of detailed biological data have been generated over the past few decades. Much of these data is freely available in over 1000 online databases; an enticing, but frustrating resource for microbiologists interested in a systems-level view of the structure and function of microbial cells. The frustration engendered by the need to trawl manually through hundreds of databases in order to accumulate information about a gene, protein, pathway, or organism of interest can be alleviated by the use of computational data integration to generated network views of the system of interest. Biological networks can be constructed from a single type of data, such as protein-protein binding information, or from data generated by multiple experimental approaches. In an integrated network, nodes usually represent genes or gene products, while edges represent some form of interaction between the nodes. Edges between nodes may be weighted to represent the probability that the edge exists in vivo. Networks may also be enriched with ontological annotations, facilitating both visual browsing and computational analysis via web service interfaces. In this review, we describe the construction, analysis of both single-data source and integrated networks, and their application to the inference of protein function in microbes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Roberts, David

    2013-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  7. INTERPERSONAL COMMUNICATION AND METHODOLOGIES OF INNOVATION. A HEURISTIC EXPERIENCE IN THE CLASSROOM APPLYING SEMANTIC NETWORKS

    Directory of Open Access Journals (Sweden)

    José Manuel Corujeira Gómez

    2014-10-01

    Full Text Available The current definition of creativity gives importance to interpersonal communication in innovation strategies, and allows us to question the profiles of professionals –innovation partners– communication skills in the practice session in which they are applied. This text shows shallow results on the application of some of their tactics with a group of students. We tested structural/procedural descriptions of hypothetical effects of communication using indicators proposed by Network Theory in terms topologies provided by the group. Without a conclusive result, we expect this paper helps to the creativity's investigation in the innovation sessions.

  8. An activities-based approach to network management : An explorative study

    NARCIS (Netherlands)

    Manser, Kristina; Hillebrand, Bas; Klein Woolthuis, R.J.A.; Ziggers, Gerrit Willem; Driessen, Paul H.; Bloemer, Josée

    2016-01-01

    Over the last few decades, the industrial marketing literature and the business network literature have promoted a holistic approach to marketing and provided a framework for understanding interorganizational networks. However, our understanding of how interorganizational networks govern themselves

  9. An activities-based approach to network management: An explorative study

    NARCIS (Netherlands)

    Manser, K.; Hillebrand, B.; Klein Woolthuis, R.J.A.; Ziggers, G.W.; Driessen, P.H.; Bloemer, J.M.M.; Klein Woolthuis, R.

    2016-01-01

    Over the last few decades, the industrial marketing literature and the business network literature have promoted a holistic approach to marketing and provided a framework for understanding interorganizational networks. However, our understanding of how interorganizational networks govern themselves

  10. From Microactions to Macrostructure and Back : A Structurational Approach to the Evolution of Organizational Networks

    NARCIS (Netherlands)

    Whitbred, Robert; Fonti, Fabio; Steglich, Christian; Contractor, Noshir

    Structuration theory (ST) and network analysis are promising approaches for studying the emergence of communication networks. We offer a model that integrates the conceptual richness of structuration with the precision of relevant concepts and mechanisms offered from communication network research.

  11. Applying policy network theory to policy-making in China: the case of urban health insurance reform.

    Science.gov (United States)

    Zheng, Haitao; de Jong, Martin; Koppenjan, Joop

    2010-01-01

    In this article, we explore whether policy network theory can be applied in the People's Republic of China (PRC). We carried out a literature review of how this approach has already been dealt with in the Chinese policy sciences thus far. We then present the key concepts and research approach in policy networks theory in the Western literature and try these on a Chinese case to see the fit. We follow this with a description and analysis of the policy-making process regarding the health insurance reform in China from 1998 until the present. Based on this case study, we argue that this body of theory is useful to describe and explain policy-making processes in the Chinese context. However, limitations in the generic model appear in capturing the fundamentally different political and administrative systems, crucially different cultural values in the applicability of some research methods common in Western countries. Finally, we address which political and cultural aspects turn out to be different in the PRC and how they affect methodological and practical problems that PRC researchers will encounter when studying decision-making processes.

  12. Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms

    OpenAIRE

    YongSeog Kim; W. Nick Street; Gary J. Russell; Filippo Menczer

    2005-01-01

    One of the key problems in database marketing is the identification and profiling of households that are most likely to be interested in a particular product or service. Principal component analysis (PCA) of customer background information followed by logistic regression analysis of response behavior is commonly used by database marketers. In this paper, we propose a new approach that uses artificial neural networks (ANNs) guided by genetic algorithms (GAs) to target households. We show that ...

  13. A measure theoretic approach to traffic flow optimization on networks

    OpenAIRE

    Cacace, Simone; Camilli, Fabio; De Maio, Raul; Tosin, Andrea

    2018-01-01

    We consider a class of optimal control problems for measure-valued nonlinear transport equations describing traffic flow problems on networks. The objective isto minimise/maximise macroscopic quantities, such as traffic volume or average speed,controlling few agents, for example smart traffic lights and automated cars. The measuretheoretic approach allows to study in a same setting local and nonlocal drivers interactionsand to consider the control variables as additional measures interacting ...

  14. Peer-to-Peer Networks: A Mechanism Design Approach

    OpenAIRE

    Oksana Loginova; X. Henry Wang; Haibin Lu

    2006-01-01

    In this paper we use mechanism design approach to find the optimal file-sharing mechanism in a peer-to-peer network. This mechanism improves upon existing incentive schemes. In particular, we show that peer-approved scheme is never optimal and service-quality scheme is optimal only under certain circumstances. Moreover, we find that the optimal mechanism can be implemented by a mixture of peer-approved and service-quality schemes.

  15. Automation of seismic network signal interpolation: an artificial intelligence approach

    International Nuclear Information System (INIS)

    Chiaruttini, C.; Roberto, V.

    1988-01-01

    After discussing the current status of the automation in signal interpretation from seismic networks, a new approach, based on artificial-intelligence tecniques, is proposed. The knowledge of the human expert analyst is examined, with emphasis on its objects, strategies and reasoning techniques. It is argued that knowledge-based systems (or expert systems) provide the most appropriate tools for designing an automatic system, modelled on the expert behaviour

  16. AutoCorrel: a neural network event correlation approach

    Science.gov (United States)

    Dondo, Maxwell G.; Japkowicz, Nathalie; Smith, Reuben

    2006-04-01

    Intrusion detection analysts are often swamped by multitudes of alerts originating from installed intrusion detection systems (IDS) as well as logs from routers and firewalls on the networks. Properly managing these alerts and correlating them to previously seen threats is critical in the ability to effectively protect a network from attacks. Manually correlating events can be a slow tedious task prone to human error. We present a two-stage alert correlation approach involving an artificial neural network (ANN) autoassociator and a single parameter decision threshold-setting unit. By clustering closely matched alerts together, this approach would be beneficial to the analyst. In this approach, alert attributes are extracted from each alert content and used to train an autoassociator. Based on the reconstruction error determined by the autoassociator, closely matched alerts are grouped together. Whenever a new alert is received, it is automatically categorised into one of the alert clusters which identify the type of attack and its severity level as previously known by the analyst. If the attack is entirely new and there is no match to the existing clusters, this would be appropriately reflected to the analyst. There are several advantages to using an ANN based approach. First, ANNs acquire knowledge straight from the data without the need for a human expert to build sets of domain rules and facts. Second, once trained, ANNs can be very fast, accurate and have high precision for near real-time applications. Finally, while learning, ANNs perform a type of dimensionality reduction allowing a user to input large amounts of information without fearing an effciency bottleneck. Thus, rather than storing the data in TCP Quad format (which stores only seven event attributes) and performing a multi-stage query on reduced information, the user can input all the relevant information available and instead allow the neural network to organise and reduce this knowledge in an

  17. Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Liang Jinghang

    2012-08-01

    network inferred from a T cell immune response dataset. An SBN can also implement the function of an asynchronous PBN and is potentially useful in a hybrid approach in combination with a continuous or single-molecule level stochastic model. Conclusions Stochastic Boolean networks (SBNs are proposed as an efficient approach to modelling gene regulatory networks (GRNs. The SBN approach is able to recover biologically-proven regulatory behaviours, such as the oscillatory dynamics of the p53-Mdm2 network and the dynamic attractors in a T cell immune response network. The proposed approach can further predict the network dynamics when the genes are under perturbation, thus providing biologically meaningful insights for a better understanding of the dynamics of GRNs. The algorithms and methods described in this paper have been implemented in Matlab packages, which are attached as Additional files.

  18. State of the (net)work address Developing criteria for applying social networking to the work environment.

    Science.gov (United States)

    Valdez, André Calero; Schaar, Anne Kathrin; Ziefle, Martina

    2012-01-01

    In an increasingly faster paced innovative world, maintaining the ability to innovate in spite of an aging work force will become every company's strongest leverage for success. Tapping the latent knowledge resources and creativity of overlooked employees and persisting crucial information for business conduct are promising results for social networking sites (SNS) in a working context. Usability and usefulness are exponential factors in creating a successful SNS. In order to make a SNS usable for a heterogeneous user group, analyses of user diversity in regard to social media need to be done. Furthermore differences in communication medium and frequency in regard to age, content, hierarchy position, departmental thresholds and company size need to be analyzed. For analysis purposes both qualitative and quantitative research methods were applied. Strong effects of age and communication content were found in survey with 194 participants.

  19. Distance-Based Access Modifiers Applied to Safety in Home Networks

    DEFF Research Database (Denmark)

    Mortensen, Kjeld Høyer; Schougaard, Kari Rye; Schultz, Ulrik Pagh

    2004-01-01

    Home networks and the interconnection of home appliances is a classical theme in ubiquitous computing research. Security is a recurring concern, but there is a lack of awareness of safety: preventing the computerized house from harming the inhabitants, even in a worst-case scenario where...... an unauthorized user gains remote control of the facilities. We address this safety issue at the middleware level by restricting the operations that can be performed on devices according to the physical location of the user initiating the request. Operations that pose a potential safety hazard can only...... be performed within a physical proximity that ensures safety. We use a declarative approach integrated with an IDL language to express location-based restrictions on operations. This model has been implemented in a middleware for home audio-video devices, using infrared communication and a local-area network...

  20. Distance-Based Access Modifiers Applied to Safety in Home Networks

    DEFF Research Database (Denmark)

    Mortensen, Kjeld H.; Schultz, Ulrik Pagh; Nørgaard, Kari Rye Schougaard

    2004-01-01

    an unauthorized user gains remote control of the facilities. We address this safety issue at the middleware level by restricting the operations that can be performed on devices according to the physical location of the user initiating the request. Operations that pose a potential safety hazard can only......Home networks and the interconnection of home appliances is a classical theme in ubiquitous computing research. Security is a recurring concern, but there is a lack of awareness of safety: preventing the computerized house from harming the inhabitants, even in a worst-case scenario where...... be performed within a physical proximity that ensures safety. We use a declarative approach integrated with an IDL language to express location-based restrictions on operations. This model has been implemented in a middleware for home audio-video devices, using infrared communication and a local-area network...

  1. A neural network approach to MR and CT image understanding

    International Nuclear Information System (INIS)

    Caramella, D.; Poli, R.; Rucci, M.; Valli, G.

    1992-01-01

    The problems usually faced in the development of automatic systems for MR and CT image analysis are briefly discussed. Afterward, an approach based on the integration of artificial neural networks and computer vision techniques which should be capable of overcoming the encountered difficulties is described. According to this approach, a system for the construction of 3D descriptions of the organs as imaged by MR or CT slice sequences has been developed. The architecture and preliminary results of this system are reported. (orig.) [de

  2. Hierarchical brain networks active in approach and avoidance goal pursuit

    Directory of Open Access Journals (Sweden)

    Jeffrey Martin Spielberg

    2013-06-01

    Full Text Available Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal pursuit processes (e.g., motivation has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity vital to goal pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures.

  3. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  4. A SYSTEM APPROACH TO ORGANISING PROTECTION FROM TARGETED INFORMATION IN SOCIAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Marina V. Tumbinskaya

    2017-01-01

    Full Text Available Abstract. Objectives The aim of the study is to formalise a generalised algorithm for the distribution of targeted information in social networks, serving as the basis for a methodology for increasing personal information security. Method The research is based on the methodology of protection from unwanted information distributed across social network systems. Results The article presents the formalisation of an algorithm for the distribution of targeted information across social networks: input and output parameters are defined and the algorithm’s internal conditions are described, consisting of parameters for implementing attack scenarios, which variation would allow them to be detailed. A technique for protection from targeted information distributed across social networks is proposed, allowing the level of protection of personal data and information of social networks users to be enhanced, as well as the reliability of information increased. Conclusion The results of the research will help to prevent threats to information security, counteract attacks by intruders who often use methods of competitive intelligence and social engineering through the use of countermeasures. A model for protection against targeted information and implement special software for its integration into online social network social information systems is developed. The system approach will allow external monitoring of events in social networks to be carried out and vulnerabilities identified in the mechanisms of instant messaging, which provide opportunities for attacks by intruders. The results of the research make it possible to apply a network approach to the study of informal communities, which are actively developing today, at a new level. 

  5. Deep Belief Network-Based Approaches for Link Prediction in Signed Social Networks

    Directory of Open Access Journals (Sweden)

    Feng Liu

    2015-04-01

    Full Text Available In some online social network services (SNSs, the members are allowed to label their relationships with others, and such relationships can be represented as the links with signed values (positive or negative. The networks containing such relations are named signed social networks (SSNs, and some real-world complex systems can be also modeled with SSNs. Given the information of the observed structure of an SSN, the link prediction aims to estimate the values of the unobserved links. Noticing that most of the previous approaches for link prediction are based on the members’ similarity and the supervised learning method, however, research work on the investigation of the hidden principles that drive the behaviors of social members are rarely conducted. In this paper, the deep belief network (DBN-based approaches for link prediction are proposed. Including an unsupervised link prediction model, a feature representation method and a DBN-based link prediction method are introduced. The experiments are done on the datasets from three SNSs (social networking services in different domains, and the results show that our methods can predict the values of the links with high performance and have a good generalization ability across these datasets.

  6. ADHD classification using bag of words approach on network features

    Science.gov (United States)

    Solmaz, Berkan; Dey, Soumyabrata; Rao, A. Ravishankar; Shah, Mubarak

    2012-02-01

    Attention Deficit Hyperactivity Disorder (ADHD) is receiving lots of attention nowadays mainly because it is one of the common brain disorders among children and not much information is known about the cause of this disorder. In this study, we propose to use a novel approach for automatic classification of ADHD conditioned subjects and control subjects using functional Magnetic Resonance Imaging (fMRI) data of resting state brains. For this purpose, we compute the correlation between every possible voxel pairs within a subject and over the time frame of the experimental protocol. A network of voxels is constructed by representing a high correlation value between any two voxels as an edge. A Bag-of-Words (BoW) approach is used to represent each subject as a histogram of network features; such as the number of degrees per voxel. The classification is done using a Support Vector Machine (SVM). We also investigate the use of raw intensity values in the time series for each voxel. Here, every subject is represented as a combined histogram of network and raw intensity features. Experimental results verified that the classification accuracy improves when the combined histogram is used. We tested our approach on a highly challenging dataset released by NITRC for ADHD-200 competition and obtained promising results. The dataset not only has a large size but also includes subjects from different demography and edge groups. To the best of our knowledge, this is the first paper to propose BoW approach in any functional brain disorder classification and we believe that this approach will be useful in analysis of many brain related conditions.

  7. An automated data quality control procedure applied to a mesoscale meteorological network

    Science.gov (United States)

    Ranci, M.; Lussana, C.

    2009-09-01

    The mesoscale meteorological networks are composed by hundreds of stations providing continuous measurements of several meteorological variables. The large amount of observations collected at the data acquisition center must be checked using automatic Data Quality Control (DQC) tests. An automated DQC procedure describes the application of each individual test and the related decision making algorithms. The goal of a DQC procedure is to supply an efficient and powerful tool to the meteorological analyst. This work presents an automated DQC procedure and its application to the mesoscale meteorological network of the Lombardia's public weather service (ARPA). In particular, the DQC procedure is applied to hourly average observations of: temperature, relative humidity, wind velocity and direction, global solar radiation, net radiation and hourly cumulated precipitation. The main idea of the DQC procedure is that each observation undergoes simultaneously many different tests and only once obtained all the results a decision about the observation quality is taken. The implemented tests are variable-dependent but can be classified as: plausible values checks, temporal and spatial consistency checks. Finally, a close inspection of the DQC procedure behavior can also be useful to individuate critical parameters that can be used for the network performance monitoring. The application of the DQC procedure to some case-studies is reported in order to show the characteristics of the overall procedure. The procedure is still under development, nevertheless the first results respect to its integration in the DQC operative activities are very encouraging.

  8. Identification of current-carrying part of a random resistor network: electrical approaches vs. graph theory algorithms

    Science.gov (United States)

    Tarasevich, Yu Yu; Burmistrov, A. S.; Goltseva, V. A.; Gordeev, I. I.; Serbin, V. I.; Sizova, A. A.; Vodolazskaya, I. V.; Zholobov, D. A.

    2018-01-01

    A set of current-carrying bonds of a random resistor network (RRN) is called the (effective) backbone. The (geometrical) backbone can be defined as a union of all self-avoiding walks between two given points on a network or between its opposite borders. These two definitions provide two different approaches for identification of backbones. On the one hand, one can treat an arbitrary network as RRN and calculate potentials and currents in this RRN. On the other hand, one can apply to the network some search algorithms on graphs. Each of these approaches are known to have both advantages and drawbacks. We have implemented several different algorithms for backbone identification. The algorithms were applied to backbone identification for different system sizes and concentrations of conducting bonds. Our analysis suggests that a universal algorithm suitable for any problem is hardly possible to offer. Most likely, each particular task needs a specific algorithm.

  9. Applying the Cultural Formulation Approach to Career Counseling with Latinas/os

    Science.gov (United States)

    Flores, Lisa Y.; Ramos, Karina; Kanagui, Marlen

    2010-01-01

    In this article, the authors present two hypothetical cases, one of a Mexican American female college student and one of a Mexican immigrant adult male, and apply a culturally sensitive approach to career assessment and career counseling with each of these clients. Drawing from Leong, Hardin, and Gupta's cultural formulation approach (CFA) to…

  10. A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite

    DEFF Research Database (Denmark)

    Mbamba, Christian Kazadi; Batstone, Damien J.; Flores Alsina, Xavier

    2015-01-01

    , the present study aims to identify a broadly applicable precipitation modelling approach. The study uses two experimental platforms applied to calcite precipitating from synthetic aqueous solutions to identify and validate the model approach. Firstly, dynamic pH titration tests are performed to define...

  11. Modelling the Processes of Maximizing Hotel Revenues, Based on Applying the Linear Programming and the Network Flows

    Directory of Open Access Journals (Sweden)

    Margareta RACOVITA

    2011-11-01

    Full Text Available This work proposes to solve a problem related to maximizing hotels’ revenues through two methods established in operational research domain. In the first part of the paper, the approach involves formulating the objective function and problem’s constraints, as well as the expansion of the model, taking into consideration clients’ preferences and the opportunities of group reservations. In the second part of the paper, the problem is solved with the help of network flows model, which allows optimum allocation of the rooms in real time. At the end of the paper, there are highlighted the advantages of applying those two mathematic methods within the strategies of performances development within hotel industry.

  12. A two-phase copula entropy-based multiobjective optimization approach to hydrometeorological gauge network design

    Science.gov (United States)

    Xu, Pengcheng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi; Liu, Jiufu; Zou, Ying; He, Ruimin

    2017-12-01

    Hydrometeorological data are needed for obtaining point and areal mean, quantifying the spatial variability of hydrometeorological variables, and calibration and verification of hydrometeorological models. Hydrometeorological networks are utilized to collect such data. Since data collection is expensive, it is essential to design an optimal network based on the minimal number of hydrometeorological stations in order to reduce costs. This study proposes a two-phase copula entropy- based multiobjective optimization approach that includes: (1) copula entropy-based directional information transfer (CDIT) for clustering the potential hydrometeorological gauges into several groups, and (2) multiobjective method for selecting the optimal combination of gauges for regionalized groups. Although entropy theory has been employed for network design before, the joint histogram method used for mutual information estimation has several limitations. The copula entropy-based mutual information (MI) estimation method is shown to be more effective for quantifying the uncertainty of redundant information than the joint histogram (JH) method. The effectiveness of this approach is verified by applying to one type of hydrometeorological gauge network, with the use of three model evaluation measures, including Nash-Sutcliffe Coefficient (NSC), arithmetic mean of the negative copula entropy (MNCE), and MNCE/NSC. Results indicate that the two-phase copula entropy-based multiobjective technique is capable of evaluating the performance of regional hydrometeorological networks and can enable decision makers to develop strategies for water resources management.

  13. Spectrum-space-divided spectrum allocation approaches in software-defined elastic optical networks

    Science.gov (United States)

    Chen, Bowen; Yu, Xiaosong; Zhao, Yongli

    2017-08-01

    Recently, the architecture of elastic optical network (EON) has been proposed as a candidate solution to accommodate both huge bandwidth requirements and flexible connections in next generation optical networks. In order to improve the spectrum efficiency, we propose different spectrum-space-divided approaches and develop two integer linear programming (ILP) models and several spectrum-space-divided spectrum allocation approaches with and without dedicated-path protection in software-defined elastic optical networks (SD-EONs). Simulation results show that the ILP models achieve better performance in terms of the number of frequency slots and hop counts than the proposed spectrum-space-divided spectrum allocation approaches with and without dedicated-path protection under the static scenario of connection requests. Furthermore, we apply the spectrum-space-divided spectrum allocation approaches with and without dedicated-path protection to reduce the blocking probability and to improve spectrum efficiency under the dynamic connection requests compared to the traditional first-fit spectrum allocation approach in SD-EONs.

  14. Applying a new ensemble approach to estimating stock status of marine fisheries around the world

    DEFF Research Database (Denmark)

    Rosenberg, Andrew A.; Kleisner, Kristin M.; Afflerbach, Jamie

    2018-01-01

    The exploitation status of marine fisheries stocks worldwide is of critical importance for food security, ecosystem conservation, and fishery sustainability. Applying a suite of data-limited methods to global catch data, combined through an ensemble modeling approach, we provide quantitative...... substantial yield. Our results enable managers to consider more detailed information than simply a categorization of stocks as "fully" or "over" exploited. Our approach is reproducible, allows consistent application to a broad range of stocks, and can be easily updated as new data become available. Applied...... on an ongoing basis, this approach can provide critical, more detailed information for resource management for more exploited fish stocks than currently available....

  15. A Dynamic Resilience Approach for WDM Optical Networks

    Science.gov (United States)

    Garg, Amit Kumar

    2017-12-01

    Optical fibres have been developed as a transmission medium to carry traffic in order to provide various services in telecommunications platform. Failure of this fibre caused loss of data which can interrupt communication services. This paper has been focused only on survivable schemes in order to guarantee both protection and restoration in WDM optical networks. In this paper, a dynamic resilience approach has been proposed whose objective is to route the flows in a way which minimizes the total amount of bandwidth used for working and protection paths. In the proposed approach, path-based protection is utilized because it yields lower overhead and is also suitable for global optimization where, in case of a single link failure, all the flows utilizing the failed link are re-routed to a pre-computed set of paths. The simulation results demonstrate that proposed approach is much more efficient as it provides better quality of services (QoS) in terms of network resource utilization, blocking probability etc. as compared to conventional protection and restoration schemes. The proposed approach seems to offer an attractive combination of features, with both ring like speed and mesh-like efficiency.

  16. A Passive Testing Approach for Protocols in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaoping Che

    2015-11-01

    Full Text Available Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN. However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results.

  17. A Passive Testing Approach for Protocols in Wireless Sensor Networks

    Science.gov (United States)

    Che, Xiaoping; Maag, Stephane; Tan, Hwee-Xian; Tan, Hwee-Pink; Zhou, Zhangbing

    2015-01-01

    Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN). However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results. PMID:26610495

  18. A Geovisual Analytic Approach to Understanding Geo-Social Relationships in the International Trade Network

    Science.gov (United States)

    Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M.

    2014-01-01

    The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social representations. We then apply it to an exploration of international trade networks in terms of the complex interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part hypothesis: international trade network clusters with structural equivalence are strongly ‘balkanized’ (fragmented) according to the geography of trading partners, and the geographical distance weighted by population within each network cluster has a positive relationship with the development level of countries. In addition to demonstrating the potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed above. PMID:24558409

  19. A geovisual analytic approach to understanding geo-social relationships in the international trade network.

    Science.gov (United States)

    Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M

    2014-01-01

    The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social representations. We then apply it to an exploration of international trade networks in terms of the complex interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part hypothesis: international trade network clusters with structural equivalence are strongly 'balkanized' (fragmented) according to the geography of trading partners, and the geographical distance weighted by population within each network cluster has a positive relationship with the development level of countries. In addition to demonstrating the potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed above.

  20. Chemical reaction network approaches to Biochemical Systems Theory.

    Science.gov (United States)

    Arceo, Carlene Perpetua P; Jose, Editha C; Marin-Sanguino, Alberto; Mendoza, Eduardo R

    2015-11-01

    This paper provides a framework to represent a Biochemical Systems Theory (BST) model (in either GMA or S-system form) as a chemical reaction network with power law kinetics. Using this representation, some basic properties and the application of recent results of Chemical Reaction Network Theory regarding steady states of such systems are shown. In particular, Injectivity Theory, including network concordance [36] and the Jacobian Determinant Criterion [43], a "Lifting Theorem" for steady states [26] and the comprehensive results of Müller and Regensburger [31] on complex balanced equilibria are discussed. A partial extension of a recent Emulation Theorem of Cardelli for mass action systems [3] is derived for a subclass of power law kinetic systems. However, it is also shown that the GMA and S-system models of human purine metabolism [10] do not display the reactant-determined kinetics assumed by Müller and Regensburger and hence only a subset of BST models can be handled with their approach. Moreover, since the reaction networks underlying many BST models are not weakly reversible, results for non-complex balanced equilibria are also needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Upon the opportunity to apply ART2 Neural Network for clusterization of biodiesel fuels

    Directory of Open Access Journals (Sweden)

    Petkov T.

    2016-03-01

    Full Text Available A chemometric approach using artificial neural network for clusterization of biodiesels was developed. It is based on artificial ART2 neural network. Gas chromatography (GC and Gas Chromatography - mass spectrometry (GC-MS were used for quantitative and qualitative analysis of biodiesels, produced from different feedstocks, and FAME (fatty acid methyl esters profiles were determined. Totally 96 analytical results for 7 different classes of biofuel plants: sunflower, rapeseed, corn, soybean, palm, peanut, “unknown” were used as objects. The analysis of biodiesels showed the content of five major FAME (C16:0, C18:0, C18:1, C18:2, C18:3 and those components were used like inputs in the model. After training with 6 samples, for which the origin was known, ANN was verified and tested with ninety “unknown” samples. The present research demonstrated the successful application of neural network for recognition of biodiesels according to their feedstock which give information upon their properties and handling.

  2. A Novel Classification Approach through Integration of Rough Sets and Back-Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Lei Si

    2014-01-01

    Full Text Available Classification is an important theme in data mining. Rough sets and neural networks are the most common techniques applied in data mining problems. In order to extract useful knowledge and classify ambiguous patterns effectively, this paper presented a hybrid algorithm based on the integration of rough sets and BP neural network to construct a novel classification system. The attribution values were discretized through PSO algorithm firstly to establish a decision table. The attribution reduction algorithm and rules extraction method based on rough sets were proposed, and the flowchart of proposed approach was designed. Finally, a prototype system was developed and some simulation examples were carried out. Simulation results indicated that the proposed approach was feasible and accurate and was outperforming others.

  3. Description and properties of a resistive network applied to emission tomography detector readouts

    Science.gov (United States)

    Boisson, F.; Bekaert, V.; Sahr, J.; Brasse, D.

    2017-11-01

    Over the last twenty years, PET systems have used discrete crystal detector modules coupled to multi-channel photodetectors, mostly to improve the spatial resolution. Although reading each readout channels individually would be of great interest, costs associated with the electronics would, in most cases, be too expensive. It is therefore essential to propose lower-cost solutions that do not degrade the overall system's performance. One possible solution to reduce the development costs of a PET system without degrading performance is the use of a resistive network which reduces the total number of readout channels. In this study, we present a symmetric charge division resistive network and associated software methods to assess the performance of a PET detector. Our approach consists in keeping the n lines and n columns information provided by a symmetric charge division circuit (SCD). We provided equations relative to output currents of the network, which enable estimation of the charge. We propose a novel approach to reconstruct the charge distribution from the lines and columns projection using a maximum likelihood expectation maximization (MLEM) approach which takes the non-uniformity of the photodetector channel gains into account. We also introduce a mathematical proof of the relation between the sigma of the reconstructed charge distribution and the Ratio between the line of interest (maximum value) and the background signal charges. To the best of our knowledge, this is the first study reporting these equations. Preliminary results obtained with a resistive network used in readout of a monolithic 50 × 50 × 8mm3 LYSO crystal coupled to a H9500 PMT validated the effectiveness of the reconstructed charge distribution to optimize both the x and y spatial resolution and the energy resolution. We obtained a mean x and y spatial resolution of 1.10 mm FWHM and a 14.7% energy resolution by calculating the integral of the reconstructed charge distribution. Finally

  4. A neural network approach to smarter sensor networks for water quality monitoring.

    Science.gov (United States)

    O'Connor, Edel; Smeaton, Alan F; O'Connor, Noel E; Regan, Fiona

    2012-01-01

    Environmental monitoring is evolving towards large-scale and low-cost sensor networks operating reliability and autonomously over extended periods of time. Sophisticated analytical instrumentation such as chemo-bio sensors present inherent limitations because of the number of samples that they can take. In order to maximize their deployment lifetime, we propose the coordination of multiple heterogeneous information sources. We use rainfall radar images and information from a water depth sensor as input to a neural network (NN) to dictate the sampling frequency of a phosphate analyzer at the River Lee in Cork, Ireland. This approach shows varied performance for different times of the year but overall produces output that is very satisfactory for the application context in question. Our study demonstrates that even with limited training data, a system for controlling the sampling rate of the nutrient sensor can be set up and can improve the efficiency of the more sophisticated nodes of the sensor network.

  5. A Neural Network Approach to Smarter Sensor Networks for Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Fiona Regan

    2012-04-01

    Full Text Available Environmental monitoring is evolving towards large-scale and low-cost sensor networks operating reliability and autonomously over extended periods of time. Sophisticated analytical instrumentation such as chemo-bio sensors present inherent limitations because of the number of samples that they can take. In order to maximize their deployment lifetime, we propose the coordination of multiple heterogeneous information sources. We use rainfall radar images and information from a water depth sensor as input to a neural network (NN to dictate the sampling frequency of a phosphate analyzer at the River Lee in Cork, Ireland. This approach shows varied performance for different times of the year but overall produces output that is very satisfactory for the application context in question. Our study demonstrates that even with limited training data, a system for controlling the sampling rate of the nutrient sensor can be set up and can improve the efficiency of the more sophisticated nodes of the sensor network.

  6. Structural Approaches to Sequence Evolution Molecules, Networks, Populations

    CERN Document Server

    Bastolla, Ugo; Roman, H. Eduardo; Vendruscolo, Michele

    2007-01-01

    Structural requirements constrain the evolution of biological entities at all levels, from macromolecules to their networks, right up to populations of biological organisms. Classical models of molecular evolution, however, are focused at the level of the symbols - the biological sequence - rather than that of their resulting structure. Now recent advances in understanding the thermodynamics of macromolecules, the topological properties of gene networks, the organization and mutation capabilities of genomes, and the structure of populations make it possible to incorporate these key elements into a broader and deeply interdisciplinary view of molecular evolution. This book gives an account of such a new approach, through clear tutorial contributions by leading scientists specializing in the different fields involved.

  7. A Novel Approach to Detect Network Attacks Using G-HMM-Based Temporal Relations between Internet Protocol Packets

    Directory of Open Access Journals (Sweden)

    Han Kyusuk

    2011-01-01

    Full Text Available This paper introduces novel attack detection approaches on mobile and wireless device security and network which consider temporal relations between internet packets. In this paper we first present a field selection technique using a Genetic Algorithm and generate a Packet-based Mining Association Rule from an original Mining Association Rule for Support Vector Machine in mobile and wireless network environment. Through the preprocessing with PMAR, SVM inputs can account for time variation between packets in mobile and wireless network. Third, we present Gaussian observation Hidden Markov Model to exploit the hidden relationships between packets based on probabilistic estimation. In our G-HMM approach, we also apply G-HMM feature reduction for better initialization. We demonstrate the usefulness of our SVM and G-HMM approaches with GA on MIT Lincoln Lab datasets and a live dataset that we captured on a real mobile and wireless network. Moreover, experimental results are verified by -fold cross-validation test.

  8. Collaborative Distributed Scheduling Approaches for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhidong Deng

    2009-10-01

    Full Text Available Energy constraints restrict the lifetime of wireless sensor networks (WSNs with battery-powered nodes, which poses great challenges for their large scale application. In this paper, we propose a family of collaborative distributed scheduling approaches (CDSAs based on the Markov process to reduce the energy consumption of a WSN. The family of CDSAs comprises of two approaches: a one-step collaborative distributed approach and a two-step collaborative distributed approach. The approaches enable nodes to learn the behavior information of its environment collaboratively and integrate sleep scheduling with transmission scheduling to reduce the energy consumption. We analyze the adaptability and practicality features of the CDSAs. The simulation results show that the two proposed approaches can effectively reduce nodes’ energy consumption. Some other characteristics of the CDSAs like buffer occupation and packet delay are also analyzed in this paper. We evaluate CDSAs extensively on a 15-node WSN testbed. The test results show that the CDSAs conserve the energy effectively and are feasible for real WSNs.

  9. Substrate independent approach for synthesis of graphene platelet networks

    Science.gov (United States)

    Shashurin, A.; Fang, X.; Zemlyanov, D.; Keidar, M.

    2017-06-01

    Graphene platelet networks (GPNs) comprised of randomly oriented graphene flakes two to three atomic layers thick are synthesized using a novel plasma-based approach. The approach uses a substrate capable of withstanding synthesis temperatures around 800 °C, but is fully independent of the substrate material. The synthesis occurs directly on the substrate surface without the necessity of any additional steps. GPNs were synthesized on various substrate materials including silicon (Si), thermally oxidized Si (SiO2), molybdenum (Mo), nickel (Ni) and copper (Cu), nickel-chromium (NiCr) alloy and alumina ceramics (Al2O3). The mismatch between the atomic structures of sp2 honeycomb carbon networks and the substrate material is fully eliminated shortly after the synthesis initiation, namely when about 100 nm thick deposits are formed on the substrate. GPN structures synthesized on a substrate at a temperature of about 800 °C are significantly more porous in comparison to the much denser packed amorphous carbon deposits synthesized at lower temperatures. The method proposed here can potentially revolutionize the area of electrochemical energy storage by offering a single-step direct approach for the manufacture of graphene-based electrodes for non-Faradaic supercapacitors. Mass production can be achieved using this method if a roll-to-roll system is utilized.

  10. Analyzing energy consumption of wireless networks. A model-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Haidi

    2013-03-04

    During the last decades, wireless networking has been continuously a hot topic both in academy and in industry. Many different wireless networks have been introduced like wireless local area networks, wireless personal networks, wireless ad hoc networks, and wireless sensor networks. If these networks want to have a long term usability, the power consumed by the wireless devices in each of these networks needs to be managed efficiently. Hence, a lot of effort has been carried out for the analysis and improvement of energy efficiency, either for a specific network layer (protocol), or new cross-layer designs. In this thesis, we apply model-based approach for the analysis of energy consumption of different wireless protocols. The protocols under consideration are: one leader election protocol, one routing protocol, and two medium access control protocols. By model-based approach we mean that all these four protocols are formalized as some formal models, more precisely, as discrete-time Markov chains (DTMCs), Markov decision processes (MDPs), or stochastic timed automata (STA). For the first two models, DTMCs and MDPs, we model them in PRISM, a prominent model checker for probabilistic model checking, and apply model checking technique to analyze them. Model checking belongs to the family of formal methods. It discovers exhaustively all possible (reachable) states of the models, and checks whether these models meet a given specification. Specifications are system properties that we want to study, usually expressed by some logics, for instance, probabilistic computer tree logic (PCTL). However, while model checking relies on rigorous mathematical foundations and automatically explores the entire state space of a model, its applicability is also limited by the so-called state space explosion problem -- even systems of moderate size often yield models with an exponentially larger state space that thwart their analysis. Hence for the STA models in this thesis, since there

  11. Modeling of methane emissions using artificial neural network approach

    Directory of Open Access Journals (Sweden)

    Stamenković Lidija J.

    2015-01-01

    Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007

  12. Computational approach in estimating the need of ditch network maintenance

    Science.gov (United States)

    Lauren, Ari; Hökkä, Hannu; Launiainen, Samuli; Palviainen, Marjo; Repo, Tapani; Leena, Finer; Piirainen, Sirpa

    2015-04-01

    Ditch network maintenance (DNM), implemented annually in 70 000 ha area in Finland, is the most controversial of all forest management practices. Nationwide, it is estimated to increase the forest growth by 1…3 million m3 per year, but simultaneously to cause 65 000 tons export of suspended solids and 71 tons of phosphorus (P) to water courses. A systematic approach that allows simultaneous quantification of the positive and negative effects of DNM is required. Excess water in the rooting zone slows the gas exchange and decreases biological activity interfering with the forest growth in boreal forested peatlands. DNM is needed when: 1) the excess water in the rooting zone restricts the forest growth before the DNM, and 2) after the DNM the growth restriction ceases or decreases, and 3) the benefits of DNM are greater than the caused adverse effects. Aeration in the rooting zone can be used as a drainage criterion. Aeration is affected by several factors such as meteorological conditions, tree stand properties, hydraulic properties of peat, ditch depth, and ditch spacing. We developed a 2-dimensional DNM simulator that allows the user to adjust these factors and to evaluate their effect on the soil aeration at different distance from the drainage ditch. DNM simulator computes hydrological processes and soil aeration along a water flowpath between two ditches. Applying daily time step it calculates evapotranspiration, snow accumulation and melt, infiltration, soil water storage, ground water level, soil water content, air-filled porosity and runoff. The model performance in hydrology has been tested against independent high frequency field monitoring data. Soil aeration at different distance from the ditch is computed under steady-state assumption using an empirical oxygen consumption model, simulated air-filled porosity, and diffusion coefficient at different depths in soil. Aeration is adequate and forest growth rate is not limited by poor aeration if the

  13. A stochastic root finding approach: the homotopy analysis method applied to Dyson-Schwinger equations

    Science.gov (United States)

    Pfeffer, Tobias; Pollet, Lode

    2017-04-01

    We present the construction and stochastic summation of rooted-tree diagrams, based on the expansion of a root finding algorithm applied to the Dyson-Schwinger equations. The mathematical formulation shows superior convergence properties compared to the bold diagrammatic Monte Carlo approach and the developed algorithm allows one to tackle generic high-dimensional integral equations, to avoid the curse of dealing explicitly with high-dimensional objects and to access non-perturbative regimes. The sign problem remains the limiting factor, but it is not found to be worse than in other approaches. We illustrate the method for {φ }4 theory but note that it applies in principle to any model.

  14. Artificial neural networks applied for soil class prediction in mountainous landscape of the Serra do Mar¹

    Directory of Open Access Journals (Sweden)

    Braz Calderano Filho

    2014-12-01

    Full Text Available Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+ sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13. Excluding the variable profile curvature (set 12, overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.

  15. Methodological Approach for Optogenetic Manipulation of Neonatal Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Sebastian H. Bitzenhofer

    2017-08-01

    Full Text Available Coordinated patterns of electrical activity are critical for the functional maturation of neuronal networks, yet their interrogation has proven difficult in the developing brain. Optogenetic manipulations strongly contributed to the mechanistic understanding of network activation in the adult brain, but difficulties to specifically and reliably express opsins at neonatal age hampered similar interrogation of developing circuits. Here, we introduce a protocol that enables to control the activity of specific neuronal populations by light, starting from early postnatal development. We show that brain area-, layer- and cell type-specific expression of opsins by in utero electroporation (IUE, as exemplified for the medial prefrontal cortex (PFC and hippocampus (HP, permits the manipulation of neuronal activity in vitro and in vivo. Both individual and population responses to different patterns of light stimulation are monitored by extracellular multi-site recordings in the medial PFC of neonatal mice. The expression of opsins via IUE provides a flexible approach to disentangle the cellular mechanism underlying early rhythmic network activity, and to elucidate the role of early neuronal activity for brain maturation, as well as its contribution to neurodevelopmental disorders.

  16. Methodological Approach for Optogenetic Manipulation of Neonatal Neuronal Networks.

    Science.gov (United States)

    Bitzenhofer, Sebastian H; Ahlbeck, Joachim; Hanganu-Opatz, Ileana L

    2017-01-01

    Coordinated patterns of electrical activity are critical for the functional maturation of neuronal networks, yet their interrogation has proven difficult in the developing brain. Optogenetic manipulations strongly contributed to the mechanistic understanding of network activation in the adult brain, but difficulties to specifically and reliably express opsins at neonatal age hampered similar interrogation of developing circuits. Here, we introduce a protocol that enables to control the activity of specific neuronal populations by light, starting from early postnatal development. We show that brain area-, layer- and cell type-specific expression of opsins by in utero electroporation (IUE), as exemplified for the medial prefrontal cortex (PFC) and hippocampus (HP), permits the manipulation of neuronal activity in vitro and in vivo . Both individual and population responses to different patterns of light stimulation are monitored by extracellular multi-site recordings in the medial PFC of neonatal mice. The expression of opsins via IUE provides a flexible approach to disentangle the cellular mechanism underlying early rhythmic network activity, and to elucidate the role of early neuronal activity for brain maturation, as well as its contribution to neurodevelopmental disorders.

  17. Reliability analysis with linguistic data: An evidential network approach

    International Nuclear Information System (INIS)

    Zhang, Xiaoge; Mahadevan, Sankaran; Deng, Xinyang

    2017-01-01

    In practical applications of reliability assessment of a system in-service, information about the condition of a system and its components is often available in text form, e.g., inspection reports. Estimation of the system reliability from such text-based records becomes a challenging problem. In this paper, we propose a four-step framework to deal with this problem. In the first step, we construct an evidential network with the consideration of available knowledge and data. Secondly, we train a Naive Bayes text classification algorithm based on the past records. By using the trained Naive Bayes algorithm to classify the new records, we build interval basic probability assignments (BPA) for each new record available in text form. Thirdly, we combine the interval BPAs of multiple new records using an evidence combination approach based on evidence theory. Finally, we propagate the interval BPA through the evidential network constructed earlier to obtain the system reliability. Two numerical examples are used to demonstrate the efficiency of the proposed method. We illustrate the effectiveness of the proposed method by comparing with Monte Carlo Simulation (MCS) results. - Highlights: • We model reliability analysis with linguistic data using evidential network. • Two examples are used to demonstrate the efficiency of the proposed method. • We compare the results with Monte Carlo Simulation (MCS).

  18. Mean-field approach to evolving spatial networks, with an application to osteocyte network formation

    Science.gov (United States)

    Taylor-King, Jake P.; Basanta, David; Chapman, S. Jonathan; Porter, Mason A.

    2017-07-01

    We consider evolving networks in which each node can have various associated properties (a state) in addition to those that arise from network structure. For example, each node can have a spatial location and a velocity, or it can have some more abstract internal property that describes something like a social trait. Edges between nodes are created and destroyed, and new nodes enter the system. We introduce a "local state degree distribution" (LSDD) as the degree distribution at a particular point in state space. We then make a mean-field assumption and thereby derive an integro-partial differential equation that is satisfied by the LSDD. We perform numerical experiments and find good agreement between solutions of the integro-differential equation and the LSDD from stochastic simulations of the full model. To illustrate our theory, we apply it to a simple model for osteocyte network formation within bones, with a view to understanding changes that may take place during cancer. Our results suggest that increased rates of differentiation lead to higher densities of osteocytes, but with a smaller number of dendrites. To help provide biological context, we also include an introduction to osteocytes, the formation of osteocyte networks, and the role of osteocytes in bone metastasis.

  19. A Bilevel Scheduling Approach for Modeling Energy Transaction of Virtual Power Plants in Distribution Networks

    Directory of Open Access Journals (Sweden)

    F. Nazari

    2017-03-01

    Full Text Available By increasing the use of distributed generation (DG in the distribution network operation, an entity called virtual power plant (VPP has been introduced to control, dispatch and aggregate the generation of DGs, enabling them to participate either in the electricity market or the distribution network operation. The participation of VPPs in the electricity market has made challenges to fairly allocate payments and benefits between VPPs and distribution network operator (DNO. This paper presents a bilevel scheduling approach to model the energy transaction between VPPs and DNO.  The upper level corresponds to the decision making of VPPs which bid their long- term contract prices so that their own profits are maximized and the lower level represents the DNO decision making to supply electricity demand of the network by minimizing its overall cost. The proposed bilevel scheduling approach is transformed to a single level optimizing problem using its Karush-Kuhn-Tucker (KKT optimality conditions. Several scenarios are applied to scrutinize the effectiveness and usefulness of the proposed model. 

  20. Introductory Approach on Ad-hoc Networks and its Paradigms

    OpenAIRE

    Mehtab Singh Kahlon

    2012-01-01

    An ad-hoc wireless network is a collection of wireless mobile nodes that self-configure to construct a network without the need for any established infrastructure or backbone. Ad hoc networks use mobile nodes to enable communication outside wireless transmission range. With the advancement in wireless communications, more and more wireless networks appear, e.g., Mobile Ad Hoc Network (MANET), Wireless Sensor Network (WSN), etc. So, in this paper we have discussed Ad Hoc Networks along with it...

  1. Multimodal Approach for Automatic Emotion Recognition Applied to the Tension Levels Study in TV Newscasts

    Directory of Open Access Journals (Sweden)

    Moisés Henrique Ramos Pereira

    2015-12-01

    Full Text Available This article addresses a multimodal approach to automatic emotion recognition in participants of TV newscasts (presenters, reporters, commentators and others able to assist the tension levels study in narratives of events in this television genre. The methodology applies state-of-the-art computational methods to process and analyze facial expressions, as well as speech signals. The proposed approach contributes to semiodiscoursive study of TV newscasts and their enunciative praxis, assisting, for example, the identification of the communication strategy of these programs. To evaluate the effectiveness of the proposed approach was applied it in a video related to a report displayed on a Brazilian TV newscast great popularity in the state of Minas Gerais. The experimental results are promising on the recognition of emotions on the facial expressions of tele journalists and are in accordance with the distribution of audiovisual indicators extracted over a TV newscast, demonstrating the potential of the approach to support the TV journalistic discourse analysis.This article addresses a multimodal approach to automatic emotion recognition in participants of TV newscasts (presenters, reporters, commentators and others able to assist the tension levels study in narratives of events in this television genre. The methodology applies state-of-the-art computational methods to process and analyze facial expressions, as well as speech signals. The proposed approach contributes to semiodiscoursive study of TV newscasts and their enunciative praxis, assisting, for example, the identification of the communication strategy of these programs. To evaluate the effectiveness of the proposed approach was applied it in a video related to a report displayed on a Brazilian TV newscast great popularity in the state of Minas Gerais. The experimental results are promising on the recognition of emotions on the facial expressions of tele journalists and are in accordance

  2. Applying a Methodological Approach to the Development of a Natural Interaction System

    Science.gov (United States)

    Del Valle-Agudo, David; Rivero-Espinosa, Jessica; Calle-Gómez, Francisco Javier; Cuadra-Fernández, Dolores

    This work describes the methodology used to design a Natural Interaction System for guiding services. A national research project was the framework where the approach was applied. The aim of that system is interacting with clients of a hotel for providing diverse services. Apart from the description of the methodology, a case study is added to the paper in order to outline strengths of the approach, and limits that should lead to future research.

  3. Next-Generation Mitogenomics: A Comparison of Approaches Applied to Caecilian Amphibian Phylogeny

    OpenAIRE

    Maddock, Simon T.; Briscoe, Andrew G.; Wilkinson, Mark; Waeschenbach, Andrea; San Mauro, Diego; Day, Julia J.; Littlewood, D. Tim J.; Foster, Peter G.; Nussbaum, Ronald A.; Gower, David J.

    2016-01-01

    Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a ‘traditional’ Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing pla...

  4. A combinatorial approach to detect coevolved amino acid networks in protein families of variable divergence.

    Directory of Open Access Journals (Sweden)

    Julie Baussand

    2009-09-01

    Full Text Available Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence.

  5. A new approach for visual identification of orange varieties using neural networks and metaheuristic algorithms

    Directory of Open Access Journals (Sweden)

    Sajad Sabzi

    2018-03-01

    Full Text Available Accurate classification of fruit varieties in processing factories and during post-harvesting applications is a challenge that has been widely studied. This paper presents a novel approach to automatic fruit identification applied to three common varieties of oranges (Citrus sinensis L., namely Bam, Payvandi and Thomson. A total of 300 color images were used for the experiments, 100 samples for each orange variety, which are publicly available. After segmentation, 263 parameters, including texture, color and shape features, were extracted from each sample using image processing. Among them, the 6 most effective features were automatically selected by using a hybrid approach consisting of an artificial neural network and particle swarm optimization algorithm (ANN-PSO. Then, three different classifiers were applied and compared: hybrid artificial neural network – artificial bee colony (ANN-ABC; hybrid artificial neural network – harmony search (ANN-HS; and k-nearest neighbors (kNN. The experimental results show that the hybrid approaches outperform the results of kNN. The average correct classification rate of ANN-HS was 94.28%, while ANN-ABS achieved 96.70% accuracy with the available data, contrasting with the 70.9% baseline accuracy of kNN. Thus, this new proposed methodology provides a fast and accurate way to classify multiple fruits varieties, which can be easily implemented in processing factories. The main contribution of this work is that the method can be directly adapted to other use cases, since the selection of the optimal features and the configuration of the neural network are performed automatically using metaheuristic algorithms.

  6. Predicting Peer Nominations Among Medical Students: A Social Network Approach.

    Science.gov (United States)

    Michalec, Barret; Grbic, Douglas; Veloski, J Jon; Cuddy, Monica M; Hafferty, Frederic W

    2016-06-01

    Minimal attention has been paid to what factors may predict peer nomination or how peer nominations might exhibit a clustering effect. Focusing on the homophily principle that "birds of a feather flock together," and using a social network analysis approach, the authors investigated how certain student- and/or school-based factors might predict the likelihood of peer nomination, and the clusters, if any, that occur among those nominations. In 2013, the Jefferson Longitudinal Study of Medical Education included a special instrument to evaluate peer nominations. A total of 211 (81%) of 260 graduating medical students from the Sidney Kimmel Medical College responded to the peer nomination question. Data were analyzed using a relational contingency table and an ANOVA density model. Although peer nominations did not cluster around gender, age, or class rank, those students within an accelerated program, as well as those entering certain specialties, were more likely to nominate each other. The authors suggest that clerkships in certain specialties, as well as the accelerated program, may provide structured opportunities for students to connect and integrate, and that these opportunities may have an impact on peer nomination. The findings suggest that social network analysis is a useful approach to examine various aspects of peer nomination processes. The authors discuss implications regarding harnessing social cohesion within clinical clerkships, the possible development of siloed departmental identity and in-group favoritism, and future research possibilities.

  7. GMDH and neural networks applied in monitoring and fault detection in sensors in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Elaine Inacio [Instituto Federal de Educacao, Ciencia e Tecnologia, Guarulhos, SP (Brazil); Pereira, Iraci Martinez; Silva, Antonio Teixeira e, E-mail: martinez@ipen.b, E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this work a new monitoring and fault detection methodology was developed using GMDH (Group Method of Data Handling) algorithm and artificial neural networks (ANNs) which was applied in the IEA-R1 research reactor at IPEN. The monitoring and fault detection system was developed in two parts: the first was dedicated to preprocess information, using GMDH algorithm; and the second to the process information using ANNs. The preprocess information was divided in two parts. In the first part, the GMDH algorithm was used to generate a better database estimate, called matrix z, which was used to train the ANNs. In the second part the GMDH was used to study the best set of variables to be used to train the ANNs, resulting in a best monitoring variable estimative. The methodology was developed and tested using five different models: one theoretical model and for models using different sets of reactor variables. After an exhausting study dedicated to the sensors monitoring, the fault detection in sensors was developed by simulating faults in the sensors database using values of +5%, +10%, +15% and +20% in these sensors database. The good results obtained through the present methodology shows the viability of using GMDH algorithm in the study of the best input variables to the ANNs, thus making possible the use of these methods in the implementation of a new monitoring and fault detection methodology applied in sensors. (author)

  8. GMDH and neural networks applied in monitoring and fault detection in sensors in nuclear power plants

    International Nuclear Information System (INIS)

    Bueno, Elaine Inacio; Pereira, Iraci Martinez; Silva, Antonio Teixeira e

    2011-01-01

    In this work a new monitoring and fault detection methodology was developed using GMDH (Group Method of Data Handling) algorithm and artificial neural networks (ANNs) which was applied in the IEA-R1 research reactor at IPEN. The monitoring and fault detection system was developed in two parts: the first was dedicated to preprocess information, using GMDH algorithm; and the second to the process information using ANNs. The preprocess information was divided in two parts. In the first part, the GMDH algorithm was used to generate a better database estimate, called matrix z, which was used to train the ANNs. In the second part the GMDH was used to study the best set of variables to be used to train the ANNs, resulting in a best monitoring variable estimative. The methodology was developed and tested using five different models: one theoretical model and for models using different sets of reactor variables. After an exhausting study dedicated to the sensors monitoring, the fault detection in sensors was developed by simulating faults in the sensors database using values of +5%, +10%, +15% and +20% in these sensors database. The good results obtained through the present methodology shows the viability of using GMDH algorithm in the study of the best input variables to the ANNs, thus making possible the use of these methods in the implementation of a new monitoring and fault detection methodology applied in sensors. (author)

  9. Effective connectivity analysis of default mode network based on the Bayesian network learning approach

    Science.gov (United States)

    Li, Rui; Chen, Kewei; Zhang, Nan; Fleisher, Adam S.; Li, Yao; Wu, Xia

    2009-02-01

    This work proposed to use the linear Gaussian Bayesian network (BN) to construct the effective connectivity model of the brain's default mode network (DMN), a set of regions characterized by more increased neural activity during rest-state than most goal-oriented tasks. In a complete unsupervised data-driven manner, Bayesian information criterion (BIC) based learning approach was utilized to identify a highest scored network whose nodes (brain regions) were selected based on the result from the group independent component analysis (Group ICA) examining the DMN. We put forward to adopt the statistical significance testing method for regression coefficients used in stepwise regression analysis to further refine the network identified by BIC. The final established BN, learned from the functional magnetic resonance imaging (fMRI) data acquired from 12 healthy young subjects during rest-state, revealed that the hippocampus (HC) was the most influential brain region that affected activities in all other regions included in the BN. In contrast, the posterior cingulate cortex (PCC) was influenced by other regions, but had no reciprocal effects on any other region. Overall, the configuration of our BN illustrated that a prominent connection from HC to PCC existed in the DMN.

  10. Geothermal potential assessment for a low carbon strategy: A new systematic approach applied in southern Italy

    NARCIS (Netherlands)

    Trumpy, E.; Botteghi, S.; Caiozzi, F.; Donato, A.; Gola, G.; Montanari, D.; Pluymaekers, M.P.D.; Santilano, A.; Wees, J.D. van; Manzella, A.

    2016-01-01

    In this study a new approach to geothermal potential assessment was set up and applied in four regions in southern Italy. Our procedure, VIGORThermoGIS, relies on the volume method of assessment and uses a 3D model of the subsurface to integrate thermal, geological and petro-physical data. The

  11. Applying Program Theory-Driven Approach to Design and Evaluate a Teacher Professional Development Program

    Science.gov (United States)

    Lin, Su-ching; Wu, Ming-sui

    2016-01-01

    This study was the first year of a two-year project which applied a program theory-driven approach to evaluating the impact of teachers' professional development interventions on students' learning by using a mix of methods, qualitative inquiry, and quasi-experimental design. The current study was to show the results of using the method of…

  12. A Geometric Approach to Diagnosis Applied to A Ship Propulsion Problem

    DEFF Research Database (Denmark)

    Lootsma, T.F.; Izadi-Zamanabadi, Roozbeh; Nijmeijer, H.

    A geometric approach to FDI diagnosis for input-affine nonlinear systems is briefly described and applied to a ship propulsion benchmark. The analysis method is used to examine the possibility of detecting and isolating predefined faults in the system. The considered faults cover sensor, actuator...

  13. Geothermal potential assessment for a low carbon strategy : A new systematic approach applied in southern Italy

    NARCIS (Netherlands)

    Trumpy, E.; Botteghi, S.; Caiozzi, F.; Donato, A.; Gola, G.; Montanari, D.; Pluymaekers, M. P D; Santilano, A.; van Wees, J. D.; Manzella, A.

    2016-01-01

    In this study a new approach to geothermal potential assessment was set up and applied in four regions in southern Italy. Our procedure, VIGORThermoGIS, relies on the volume method of assessment and uses a 3D model of the subsurface to integrate thermal, geological and petro-physical data. The

  14. Analytic network process (ANP approach for product mix planning in railway industry

    Directory of Open Access Journals (Sweden)

    Hadi Pazoki Toroudi

    2016-08-01

    Full Text Available Given the competitive environment in the global market in recent years, organizations need to plan for increased profitability and optimize their performance. Planning for an appropriate product mix plays essential role for the success of most production units. This paper applies analytical network process (ANP approach for product mix planning for a part supplier in Iran. The proposed method uses four criteria including cost of production, sales figures, supply of raw materials and quality of products. In addition, the study proposes different set of products as alternatives for production planning. The preliminary results have indicated that that the proposed study of this paper could increase productivity, significantly.

  15. A spectral approach for the quantitative description of cardiac collagen network from nonlinear optical imaging.

    Science.gov (United States)

    Masè, Michela; Cristoforetti, Alessandro; Avogaro, Laura; Tessarolo, Francesco; Piccoli, Federico; Caola, Iole; Pederzolli, Carlo; Graffigna, Angelo; Ravelli, Flavia

    2015-01-01

    The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component.

  16. Applying Statistical and Complex Network Methods to Explore the Key Signaling Molecules of Acupuncture Regulating Neuroendocrine-Immune Network

    OpenAIRE

    Zhang, Kuo; Guo, Xin-meng; Yan, Ya-wen; Liu, Yang-yang; Xu, Zhi-fang; Zhao, Xue; Wang, Jiang; Guo, Yi; Li, Kai; Ding, Sha-sha

    2018-01-01

    The mechanisms of acupuncture are still unclear. In order to reveal the regulatory effect of manual acupuncture (MA) on the neuroendocrine-immune (NEI) network and identify the key signaling molecules during MA modulating NEI network, we used a rat complete Freund’s adjuvant (CFA) model to observe the analgesic and anti-inflammatory effect of MA, and, what is more, we used statistical and complex network methods to analyze the data about the expression of 55 common signaling molecules of NEI ...

  17. Self organising hypothesis networks: a new approach for representing and structuring SAR knowledge.

    Science.gov (United States)

    Hanser, Thierry; Barber, Chris; Rosser, Edward; Vessey, Jonathan D; Webb, Samuel J; Werner, Stéphane

    2014-01-01

    Combining different sources of knowledge to build improved structure activity relationship models is not easy owing to the variety of knowledge formats and the absence of a common framework to interoperate between learning techniques. Most of the current approaches address this problem by using consensus models that operate at the prediction level. We explore the possibility to directly combine these sources at the knowledge level, with the aim to harvest potentially increased synergy at an earlier stage. Our goal is to design a general methodology to facilitate knowledge discovery and produce accurate and interpretable models. To combine models at the knowledge level, we propose to decouple the learning phase from the knowledge application phase using a pivot representation (lingua franca) based on the concept of hypothesis. A hypothesis is a simple and interpretable knowledge unit. Regardless of its origin, knowledge is broken down into a collection of hypotheses. These hypotheses are subsequently organised into hierarchical network. This unification permits to combine different sources of knowledge into a common formalised framework. The approach allows us to create a synergistic system between different forms of knowledge and new algorithms can be applied to leverage this unified model. This first article focuses on the general principle of the Self Organising Hypothesis Network (SOHN) approach in the context of binary classification problems along with an illustrative application to the prediction of mutagenicity. It is possible to represent knowledge in the unified form of a hypothesis network allowing interpretable predictions with performances comparable to mainstream machine learning techniques. This new approach offers the potential to combine knowledge from different sources into a common framework in which high level reasoning and meta-learning can be applied; these latter perspectives will be explored in future work.

  18. A Technical Approach on Large Data Distributed Over a Network

    Directory of Open Access Journals (Sweden)

    Suhasini G

    2011-12-01

    Full Text Available Data mining is nontrivial extraction of implicit, previously unknown and potential useful information from the data. For a database with number of records and for a set of classes such that each record belongs to one of the given classes, the problem of classification is to decide the class to which the given record belongs. The classification problem is also to generate a model for each class from given data set. We are going to make use of supervised classification in which we have training dataset of record, and for each record the class to which it belongs is known. There are many approaches to supervised classification. Decision tree is attractive in data mining environment as they represent rules. Rules can readily expressed in natural languages and they can be even mapped o database access languages. Now a days classification based on decision trees is one of the important problems in data mining   which has applications in many areas.  Now a days database system have become highly distributed, and we are using many paradigms. we consider the problem of inducing decision trees in a large distributed network of highly distributed databases. The classification based on decision tree can be done on the existence of distributed databases in healthcare and in bioinformatics, human computer interaction and by the view that these databases are soon to contain large amounts of data, characterized by its high dimensionality. Current decision tree algorithms would require high communication bandwidth, memory, and they are less efficient and scalability reduces when executed on such large volume of data. So there are some approaches being developed to improve the scalability and even approaches to analyse the data distributed over a network.[keywords: Data mining, Decision tree, decision tree induction, distributed data, classification

  19. xQuake: A Modern Approach to Seismic Network Analytics

    Science.gov (United States)

    Johnson, C. E.; Aikin, K. E.

    2017-12-01

    While seismic networks have expanded over the past few decades, and social needs for accurate and timely information has increased dramatically, approaches to the operational needs of both global and regional seismic observatories have been slow to adopt new technologies. This presentation presents the xQuake system that provides a fresh approach to seismic network analytics based on complexity theory and an adaptive architecture of streaming connected microservices as diverse data (picks, beams, and other data) flow into a final, curated catalog of events. The foundation for xQuake is the xGraph (executable graph) framework that is essentially a self-organizing graph database. An xGraph instance provides both the analytics as well as the data storage capabilities at the same time. Much of the analytics, such as synthetic annealing in the detection process and an evolutionary programing approach for event evolution, draws from the recent GLASS 3.0 seismic associator developed by and for the USGS National Earthquake Information Center (NEIC). In some respects xQuake is reminiscent of the Earthworm system, in that it comprises processes interacting through store and forward rings; not surprising as the first author was the lead architect of the original Earthworm project when it was known as "Rings and Things". While Earthworm components can easily be integrated into the xGraph processing framework, the architecture and analytics are more current (e.g. using a Kafka Broker for store and forward rings). The xQuake system is being released under an unrestricted open source license to encourage and enable sthe eismic community support in further development of its capabilities.

  20. Blended Risk Approach in Applying PSA Models to Risk-Based Regulations

    International Nuclear Information System (INIS)

    Dimitrijevic, V. B.; Chapman, J. R.

    1996-01-01

    In this paper, the authors will discuss a modern approach in applying PSA models in risk-based regulation. The Blended Risk Approach is a combination of traditional and probabilistic processes. It is receiving increased attention in different industries in the U. S. and abroad. The use of the deterministic regulations and standards provides a proven and well understood basis on which to assess and communicate the impact of change to plant design and operation. Incorporation of traditional values into risk evaluation is working very well in the blended approach. This approach is very application specific. It includes multiple risk attributes, qualitative risk analysis, and basic deterministic principles. In blending deterministic and probabilistic principles, this approach ensures that the objectives of the traditional defense-in-depth concept are not compromised and the design basis of the plant is explicitly considered. (author)

  1. A Game-Theoretical Approach to Multimedia Social Networks Security

    Science.gov (United States)

    Liu, Enqiang; Liu, Zengliang; Shao, Fei; Zhang, Zhiyong

    2014-01-01

    The contents access and sharing in multimedia social networks (MSNs) mainly rely on access control models and mechanisms. Simple adoptions of security policies in the traditional access control model cannot effectively establish a trust relationship among parties. This paper proposed a novel two-party trust architecture (TPTA) to apply in a generic MSN scenario. According to the architecture, security policies are adopted through game-theoretic analyses and decisions. Based on formalized utilities of security policies and security rules, the choice of security policies in content access is described as a game between the content provider and the content requester. By the game method for the combination of security policies utility and its influences on each party's benefits, the Nash equilibrium is achieved, that is, an optimal and stable combination of security policies, to establish and enhance trust among stakeholders. PMID:24977226

  2. Dropping Probability Reduction in OBS Networks: A Simple Approach

    KAUST Repository

    Elrasad, Amr

    2016-08-01

    In this paper, we propose and derive a slotted-time model for analyzing the burst blocking probability in Optical Burst Switched (OBS) networks. We evaluated the immediate and delayed signaling reservation schemes. The proposed model compares the performance of both just-in-time (JIT) and just-enough-time (JET) signaling protocols associated with of void/non-void filling link scheduling schemes. It also considers none and limited range wavelength conversions scenarios. Our model is distinguished by being adaptable to different offset-time and burst length distributions. We observed that applying a limited range of wavelength conversion, burst blocking probability is reduced by several orders of magnitudes and yields a better burst delivery ratio compared with full wavelength conversion.

  3. A game-theoretical approach to multimedia social networks security.

    Science.gov (United States)

    Liu, Enqiang; Liu, Zengliang; Shao, Fei; Zhang, Zhiyong

    2014-01-01

    The contents access and sharing in multimedia social networks (MSNs) mainly rely on access control models and mechanisms. Simple adoptions of security policies in the traditional access control model cannot effectively establish a trust relationship among parties. This paper proposed a novel two-party trust architecture (TPTA) to apply in a generic MSN scenario. According to the architecture, security policies are adopted through game-theoretic analyses and decisions. Based on formalized utilities of security policies and security rules, the choice of security policies in content access is described as a game between the content provider and the content requester. By the game method for the combination of security policies utility and its influences on each party's benefits, the Nash equilibrium is achieved, that is, an optimal and stable combination of security policies, to establish and enhance trust among stakeholders.

  4. Artificial neural networks applied to DNBR calculation in digital core protection systems

    International Nuclear Information System (INIS)

    Lee, H. C.; Chang, S. H.

    2003-01-01

    The nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The digital core protection system calculates on-line real-time DNBR by using a complex subchannel analysis program, and triggers a reliable reactor shutdown if the calculated DNBR approaches the specified limit. However, it takes relatively long calculation time even for a steady state condition, which may have an adverse effect on the operation flexibility. To overcome the drawback, a method using artificial neural networks is studied in this paper. Nonparametric training approach is utilized, which shows dramatic reduction of the training time, no tedious heuristic process for optimizing parameters, and no local minima problem during the training. The test results show that the predicted DNBR is within about ±2% deviation from the target DNBR for the fixed axial flux shape case. For the variable axial flux case including severely skewed shapes appeared during accidents, the deviation is about ±10∼15%. The suggested method could be the alternative that can calculate DNBR very quickly while increasing the plant availability

  5. Radial basis function networks applied to DNBR calculation in digital core protection systems

    International Nuclear Information System (INIS)

    Lee, Gyu-Cheon; Heung Chang, Soon

    2003-01-01

    The nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The digital core protection system calculates on-line real-time DNBR by using a complex subchannel analysis program, and triggers a reliable reactor shutdown if the calculated DNBR approaches the specified limit. However, it takes a relatively long calculation time even for a steady state condition, which may have an adverse effect on the operation flexibility. To overcome the drawback, a new method using a radial basis function network is presented in this paper. Nonparametric training approach is utilized, which shows dramatic reduction of the training time, no tedious heuristic process for optimizing parameters, and no local minima problem during the training. The test results show that the predicted DNBR is within about ±2% deviation from the target DNBR for the fixed axial flux shape case. For the variable axial flux case including severely skewed shapes that appeared during accidents, the deviation is within about ±10%. The suggested method could be the alternative that can calculate DNBR very quickly while guaranteeing the plant safety

  6. A suggested approach toward measuring sorption and applying sorption data to repository performance assessment

    International Nuclear Information System (INIS)

    Rundberg, R.S.

    1992-01-01

    The prediction of radionuclide migration for the purpose of assessing the safety of a nuclear waste repository will be based on a collective knowledge of hydrologic and geochemical properties of the surrounding rock and groundwater. This knowledge along with assumption about the interactions of radionuclides with groundwater and minerals form the scientific basis for a model capable of accurately predicting the repository's performance. Because the interaction of radionuclides in geochemical systems is known to be complicated, several fundamental and empirical approaches to measuring the interaction between radionuclides and the geologic barrier have been developed. The approaches applied to the measurement of sorption involve the use of pure minerals, intact, or crushed rock in dynamic and static experiments. Each approach has its advantages and disadvantages. There is no single best method for providing sorption data for performance assessment models which can be applied without invoking information derived from multiple experiments. 53 refs., 12 figs

  7. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    Science.gov (United States)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  8. An Estimation of QoS for Classified Based Approach and Nonclassified Based Approach of Wireless Agriculture Monitoring Network Using a Network Model

    Directory of Open Access Journals (Sweden)

    Ismail Ahmedy

    2017-01-01

    Full Text Available Wireless Sensor Network (WSN can facilitate the process of monitoring the crops through agriculture monitoring network. However, it is challenging to implement the agriculture monitoring network in large scale and large distributed area. Typically, a large and dense network as a form of multihop network is used to establish communication between source and destination. This network continuously monitors the crops without sensitivity classification that can lead to message collision and packets drop. Retransmissions of drop messages can increase the energy consumption and delay. Therefore, to ensure a high quality of service (QoS, we propose an agriculture monitoring network that monitors the crops based on their sensitivity conditions wherein the crops with higher sensitivity are monitored constantly, while less sensitive crops are monitored occasionally. This approach selects a set of nodes rather than utilizing all the nodes in the network which reduces the power consumption in each node and network delay. The QoS of the proposed classified based approach is compared with the nonclassified approach in two scenarios; the backoff periods are changed in the first scenario while the numbers of nodes are changed in the second scenario. The simulation results demonstrate that the proposed approach outperforms the nonclassified approach on different test scenarios.

  9. Approach to sensor node calibration for efficient localisation in wireless sensor networks in realistic scenarios

    CSIR Research Space (South Africa)

    Mwila, MK

    2014-06-01

    Full Text Available Conference on Ambient Systems, Networks and Technologies (ANT-2014) Approach to Sensor Node Calibration for Efficient Localisation in Wireless Sensor Networks in Realistic Scenarios Martin K. Mwilaa, Karim Djouanib, Anish Kurienc,∗ a...

  10. Internet-Based Approaches to Building Stakeholder Networks for Conservation and Natural Resource Management.

    Science.gov (United States)

    Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing in...

  11. Shakeout: A New Approach to Regularized Deep Neural Network Training.

    Science.gov (United States)

    Kang, Guoliang; Li, Jun; Tao, Dacheng

    2017-05-05

    Recent years have witnessed the success of deep neural networks in dealing with a plenty of practical problems. Dropout has played an essential role in many successful deep neural networks, by inducing regularization in the model training. In this paper, we present a new regularized training approach: Shakeout. Instead of randomly discarding units as Dropout does at the training stage, Shakeout randomly chooses to enhance or reverse each unit's contribution to the next layer. This minor modification of Dropout has the statistical trait: the regularizer induced by Shakeout adaptively combines L0, L1 and L2 regularization terms. Our classification experiments with representative deep architectures on image datasets MNIST, CIFAR-10 and ImageNet show that Shakeout deals with over-fitting effectively and outperforms Dropout. We empirically demonstrate that Shakeout leads to sparser weights under both unsupervised and supervised settings. Shakeout also leads to the grouping effect of the input units in a layer. Considering the weights in reflecting the importance of connections, Shakeout is superior to Dropout, which is valuable for the deep model compression. Moreover, we demonstrate that Shakeout can effectively reduce the instability of the training process of the deep architecture.

  12. Approach on a global HTGR R and D network

    International Nuclear Information System (INIS)

    Lensa, W. von

    1997-01-01

    The present situation of nuclear power in general and of the innovative nuclear reactor systems in particular requires more comprehensive, coordinated R and D efforts on a broad international level to respond to today's requirements with respect to public and economic acceptance as well as to globalization trends and global environmental problems. HTGR technology development has already reached a high degree of maturity that will be complemented by the operation of the two new test reactors in Japan and China, representing technological milestones for the demonstration of HTGR safety characteristics and Nuclear Process Heat generation capabilities. It is proposed by the IAEA 'International Working Group on Gas-Cooled Reactors' to establish a 'Global HTGR R and D Network' on basic HTGR technology for the stable, long-term advancement of the specific HTGR features and as a basis for the future market introduction of this innovative reactor system. The background and the motivation for this approach are illustrated, as well as first proposals on the main objectives, the structure and the further procedures for the implementation of such a multinational working sharing R and D network. Modern telecooperation methods are foreseen as an interactive tool for effective communication and collaboration on a global scale. (author)

  13. Neural networks prediction and fault diagnosis applied to stationary and non stationary ARMA (Autoregressive moving average) modeled time series

    International Nuclear Information System (INIS)

    Marseguerra, M.; Minoggio, S.; Rossi, A.; Zio, E.

    1992-01-01

    The correlated noise affecting many industrial plants under stationary or cyclo-stationary conditions - nuclear reactors included -has been successfully modeled by autoregressive moving average (ARMA) due to the versatility of this technique. The relatively recent neural network methods have similar features and much effort is being devoted to exploring their usefulness in forecasting and control. Identifying a signal by means of an ARMA model gives rise to the problem of selecting its correct order. Similar difficulties must be faced when applying neural network methods and, specifically, particular care must be given to the setting up of the appropriate network topology, the data normalization procedure and the learning code. In the present paper the capability of some neural networks of learning ARMA and seasonal ARMA processes is investigated. The results of the tested cases look promising since they indicate that the neural networks learn the underlying process with relative ease so that their forecasting capability may represent a convenient fault diagnosis tool. (Author)

  14. Neural networks, cellular automata, and robust approach applications for vertex localization in the opera target tracker detector

    International Nuclear Information System (INIS)

    Dmitrievskij, S.G.; Gornushkin, Yu.A.; Ososkov, G.A.

    2005-01-01

    A neural-network (NN) approach for neutrino interaction vertex reconstruction in the OPERA experiment with the help of the Target Tracker (TT) detector is described. A feed-forward NN with the standard back propagation option is used. The energy functional minimization of the network is performed by the method of conjugate gradients. Data preprocessing by means of cellular automaton algorithm is performed. The Hough transform is applied for muon track determination and the robust fitting method is used for shower axis reconstruction. A comparison of the proposed approach with earlier studies, based on the use of the neural network package SNNS, shows their similar performance. The further development of the approach is underway

  15. Traffic networks as information systems a viability approach

    CERN Document Server

    Aubin, Jean-Pierre

    2017-01-01

    This authored monograph covers a viability to approach to traffic management by advising to vehicles circulated on the network the velocity they should follow for satisfying global traffic conditions;. It presents an investigation of three structural innovations: The objective is to broadcast at each instant and at each position the advised celerity to vehicles, which could be read by auxiliary speedometers or used by cruise control devices. Namely, 1. Construct regulation feedback providing at each time and position advised velocities (celerities) for minimizing congestion or other requirements. 2. Taking into account traffic constraints of different type, the first one being to remain on the roads, to stop at junctions, etc. 3. Use information provided by the probe vehicles equipped with GPS to the traffic regulator; 4. Use other global traffic measures of vehicles provided by different types of sensors; These results are based on convex analysis, intertemporal optimization and viability theory as mathemati...

  16. A Social Marketing Approach for Developing a Neighborhood Network

    Directory of Open Access Journals (Sweden)

    Cláudia Sequeira

    2015-09-01

    Full Text Available This paper focuses on a social marketing project proposal for a community in a social housing neighborhood in Faro, in southern Portugal. The aim of the research is to discuss the possibility of the implementation of a neighborhood network, using a social marketing approach with the goal of strengthening the ties of cooperation, solidarity and friendship between the inhabitants of the neighborhood with a view to fostering social cohesion in the city. The paper offers a theoretical and empirical discussion about the characteristics of particular areas designated as social housing neighborhoods. Data collection was performed in loco by giving a questionnaire to the inhabitants of the neighborhood and by direct observation. The results facilitated a balance between the needs of the residents and their ability to help their neighbors. The results are followed by a discussion and a proposal for a social marketing project targeted to the neighborhood under study.

  17. A machine learning approach to automated structural network analysis: application to neonatal encephalopathy.

    Directory of Open Access Journals (Sweden)

    Etay Ziv

    Full Text Available Neonatal encephalopathy represents a heterogeneous group of conditions associated with life-long developmental disabilities and neurological deficits. Clinical measures and current anatomic brain imaging remain inadequate predictors of outcome in children with neonatal encephalopathy. Some studies have suggested that brain development and, therefore, brain connectivity may be altered in the subgroup of patients who subsequently go on to develop clinically significant neurological abnormalities. Large-scale structural brain connectivity networks constructed using diffusion tractography have been posited to reflect organizational differences in white matter architecture at the mesoscale, and thus offer a unique tool for characterizing brain development in patients with neonatal encephalopathy. In this manuscript we use diffusion tractography to construct structural networks for a cohort of patients with neonatal encephalopathy. We systematically map these networks to a high-dimensional space and then apply standard machine learning algorithms to predict neurological outcome in the cohort. Using nested cross-validation we demonstrate high prediction accuracy that is both statistically significant and robust over a broad range of thresholds. Our algorithm offers a novel tool to evaluate neonates at risk for developing neurological deficit. The described approach can be applied to any brain pathology that affects structural connectivity.

  18. Research and Collaboration Overview of Institut Pasteur International Network: A Bibliometric Approach toward Research Funding Decisions

    Directory of Open Access Journals (Sweden)

    Ehsan Mostafavi

    2014-01-01

    Full Text Available Background Institut Pasteur International Network (IPIN, which includes 32 research institutes around the world, is a network of research and expertise to fight against infectious diseases. A scientometric approach was applied to describe research and collaboration activities of IPIN. Methods Publications were identified using a manual search of IPIN member addresses in Science Citation Index Expanded (SCIE between 2006 and 2011. Total publications were then subcategorized by geographic regions. Several scientometric indicators and the H-index were employed to estimate the scientific production of each IPIN member. Subject and geographical overlay maps were also applied to visualize the network activities of the IPIN members. Results A total number of 12667 publications originated from IPIN members. Each author produced an average number of 2.18 papers and each publication received an average of 13.40 citations. European Pasteur Institutes had the largest amount of publications, authored papers, and H-index values. Biochemistry and molecular biology, microbiology, immunology and infectious diseases were the most important research topics, respectively. Geographic mapping of IPIN publications showed wide international collaboration among IPIN members around the world. Conclusion IPIN has strong ties with national and international authorities and organizations to investigate the current and future health issues. It is recommended to use scientometric and collaboration indicators as measures of research performance in IPIN future policies and investment decisions.

  19. A biplex approach to PageRank centrality: From classic to multiplex networks.

    Science.gov (United States)

    Pedroche, Francisco; Romance, Miguel; Criado, Regino

    2016-06-01

    In this paper, we present a new view of the PageRank algorithm inspired by multiplex networks. This new approach allows to introduce a new centrality measure for classic complex networks and a new proposal to extend the usual PageRank algorithm to multiplex networks. We give some analytical relations between these new approaches and the classic PageRank centrality measure, and we illustrate the new parameters presented by computing them on real underground networks.

  20. A biplex approach to PageRank centrality: From classic to multiplex networks

    Science.gov (United States)

    Pedroche, Francisco; Romance, Miguel; Criado, Regino

    2016-06-01

    In this paper, we present a new view of the PageRank algorithm inspired by multiplex networks. This new approach allows to introduce a new centrality measure for classic complex networks and a new proposal to extend the usual PageRank algorithm to multiplex networks. We give some analytical relations between these new approaches and the classic PageRank centrality measure, and we illustrate the new parameters presented by computing them on real underground networks.

  1. A study of penetration test for applying a remote monitoring system for virtual private network

    International Nuclear Information System (INIS)

    Kim, J. S.; Kim, J. S.; Park, I. J.; Min, K. S.; Choi, Y. M.; Jo, D. K.

    2003-01-01

    A penetration test has been performed to verify the vulnerability of Virtual Private Network that is substitute for communication method of an existing remote monitoring system. An existing RMS was used for the private telephone and the RMS was applied of all PWR in Korea. But, due to communication fee, IAEA wanted to replace current telephone line to the internet line to reduce transmission cost in operating remote monitoring system. The communication cost of telephone line was estimated about $66,000/yr. Internet technology would reduce the operating cost up to 1/5. The purpose of the penetration test was to demonstrate the security of the data and system against both various external and internal hacking scenarios. In most cases, hacker could not even identify the VPN system. In any cases, the system did not allow the access of the hacker to the system needless to say the data alteration or system shutdown. Two kinds of test method is chosen; one is external attack and another is internal attack. During the test, the hacking tool was used. The result of test was proved that VPN was secure against internal/external attack

  2. Do deep convolutional neural networks really need to be deep when applied for remote scene classification?

    Science.gov (United States)

    Luo, Chang; Wang, Jie; Feng, Gang; Xu, Suhui; Wang, Shiqiang

    2017-10-01

    Deep convolutional neural networks (CNNs) have been widely used to obtain high-level representation in various computer vision tasks. However, for remote scene classification, there are not sufficient images to train a very deep CNN from scratch. From two viewpoints of generalization power, we propose two promising kinds of deep CNNs for remote scenes and try to find whether deep CNNs need to be deep for remote scene classification. First, we transfer successful pretrained deep CNNs to remote scenes based on the theory that depth of CNNs brings the generalization power by learning available hypothesis for finite data samples. Second, according to the opposite viewpoint that generalization power of deep CNNs comes from massive memorization and shallow CNNs with enough neural nodes have perfect finite sample expressivity, we design a lightweight deep CNN (LDCNN) for remote scene classification. With five well-known pretrained deep CNNs, experimental results on two independent remote-sensing datasets demonstrate that transferred deep CNNs can achieve state-of-the-art results in an unsupervised setting. However, because of its shallow architecture, LDCNN cannot obtain satisfactory performance, regardless of whether in an unsupervised, semisupervised, or supervised setting. CNNs really need depth to obtain general features for remote scenes. This paper also provides baseline for applying deep CNNs to other remote sensing tasks.

  3. Uncharted territory: A complex systems approach as an emerging paradigm in applied linguistics

    Directory of Open Access Journals (Sweden)

    Weideman, Albert J

    2009-12-01

    Full Text Available Developing a theory of applied linguistics is a top priority for the discipline today. The emergence of a new paradigm - a complex systems approach - in applied linguistics presents us with a unique opportunity to give prominence to the development of a foundational framework for this design discipline. Far from being a mere philosophical exercise, such a framework will find application in the training and induction of new entrants into the discipline within the developing context of South Africa, as well as internationally.

  4. A Tensor Decomposition-Based Approach for Detecting Dynamic Network States From EEG.

    Science.gov (United States)

    Mahyari, Arash Golibagh; Zoltowski, David M; Bernat, Edward M; Aviyente, Selin

    2017-01-01

    Functional connectivity (FC), defined as the statistical dependency between distinct brain regions, has been an important tool in understanding cognitive brain processes. Most of the current works in FC have focused on the assumption of temporally stationary networks. However, recent empirical work indicates that FC is dynamic due to cognitive functions. The purpose of this paper is to understand the dynamics of FC for understanding the formation and dissolution of networks of the brain. In this paper, we introduce a two-step approach to characterize the dynamics of functional connectivity networks (FCNs) by first identifying change points at which the network connectivity across subjects shows significant changes and then summarizing the FCNs between consecutive change points. The proposed approach is based on a tensor representation of FCNs across time and subjects yielding a four-mode tensor. The change points are identified using a subspace distance measure on low-rank approximations to the tensor at each time point. The network summarization is then obtained through tensor-matrix projections across the subject and time modes. The proposed framework is applied to electroencephalogram (EEG) data collected during a cognitive control task. The detected change-points are consistent with a priori known ERN interval. The results show significant connectivities in medial-frontal regions which are consistent with widely observed ERN amplitude measures. The tensor-based method outperforms conventional matrix-based methods such as singular value decomposition in terms of both change-point detection and state summarization. The proposed tensor-based method captures the topological structure of FCNs which provides more accurate change-point-detection and state summarization.

  5. Applying an integrated fuzzy gray MCDM approach: A case study on mineral processing plant site selection

    Directory of Open Access Journals (Sweden)

    Ezzeddin Bakhtavar

    2017-12-01

    Full Text Available The accurate selection of a processing plant site can result in decreasing total mining cost. This problem can be solved by multi-criteria decision-making (MCDM methods. This research introduces a new approach by integrating fuzzy AHP and gray MCDM methods to solve all decision-making problems. The approach is applied in the case of a copper mine area. The critical criteria are considered adjacency to the crusher, adjacency to tailing dam, adjacency to a power source, distance from blasting sources, the availability of sufficient land, and safety against floods. After studying the mine map, six feasible alternatives are prioritized using the integrated approach. Results indicated that sites A, B, and E take the first three ranks. The separate results of fuzzy AHP and gray MCDM confirm that alternatives A and B have the first two ranks. Moreover, the field investigations approved the results obtained by the approach.

  6. A neural network approach to the study of internal energy flow in molecular systems

    International Nuclear Information System (INIS)

    Sumpter, B.G.; Getino, C.; Noid, D.W.

    1992-01-01

    Neural networks are used to develop a new technique for efficient analysis of data obtained from molecular-dynamics calculations and is applied to the study of mode energy flow in molecular systems. The methodology is based on teaching an appropriate neural network the relationship between phase-space points along a classical trajectory and mode energies for stretch, bend, and torsion vibrations. Results are discussed for reactive and nonreactive classical trajectories of hydrogen peroxide (H 2 O 2 ) on a semiempirical potential-energy surface. The neural-network approach is shown to produce reasonably accurate values for the mode energies, with average errors between 1% and 12%, and is applicable to any region within the 24-dimensional phase space of H 2 O 2 . In addition, the generic knowledge learned by the neural network allows calculations to be made for other molecular systems. Results are discussed for a series of tetratomic molecules: H 2 X 2 , X=C, N, O, Si, S, or Se, and preliminary results are given for energy flow predictions in macromolecules

  7. An entropy approach for evaluating the maximum information content achievable by an urban rainfall network

    Directory of Open Access Journals (Sweden)

    E. Ridolfi

    2011-07-01

    Full Text Available Hydrological models are the basis of operational flood-forecasting systems. The accuracy of these models is strongly dependent on the quality and quantity of the input information represented by rainfall height. Finer space-time rainfall resolution results in more accurate hazard forecasting. In this framework, an optimum raingauge network is essential in predicting flood events.

    This paper develops an entropy-based approach to evaluate the maximum information content achievable by a rainfall network for different sampling time intervals. The procedure is based on the determination of the coefficients of transferred and nontransferred information and on the relative isoinformation contours.

    The nontransferred information value achieved by the whole network is strictly dependent on the sampling time intervals considered. An empirical curve is defined, to assess the objective of the research: the nontransferred information value is plotted versus the associated sampling time on a semi-log scale. The curve has a linear trend.

    In this paper, the methodology is applied to the high-density raingauge network of the urban area of Rome.

  8. Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Shahin [Purdue Univ., West Lafayette, IN (United States); Gleich, David F. [Purdue Univ., West Lafayette, IN (United States); Kolda, Tamara G. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Grama, Ananth [Purdue Univ., West Lafayette, IN (United States)

    2015-11-01

    Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.

  9. Theory and design of broadband matching networks applied electricity and electronics

    CERN Document Server

    Chen, Wai-Kai

    1976-01-01

    Theory and Design of Broadband Matching Networks centers on the network theory and its applications to the design of broadband matching networks and amplifiers. Organized into five chapters, this book begins with a description of the foundation of network theory. Chapter 2 gives a fairly complete exposition of the scattering matrix associated with an n-port network. Chapter 3 considers the approximation problem along with a discussion of the approximating functions. Chapter 4 explains the Youla's theory of broadband matching by illustrating every phase of the theory with fully worked out examp

  10. Predicting the structural evolution of networks by applying multivariate time series

    Science.gov (United States)

    Huang, Qiangjuan; Zhao, Chengli; Wang, Xiaojie; Zhang, Xue; Yi, Dongyun

    2015-06-01

    In practice, complex systems often change over time, and the temporal characteristics of a complex network make their behavior difficult to predict. Traditional link prediction methods based on structural similarity are good for mining underlying information from static networks, but do not always capture the temporal relevance of dynamic networks. However, time series analysis is an effective tool for examining dynamic evolution. In this paper, we combine link prediction with multivariate time series analysis to describe the structural evolution of dynamic networks using both temporal information and structure information. An empirical analysis demonstrates the effectiveness of our method in predicting undiscovered linkages in two classic networks.

  11. Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach

    Directory of Open Access Journals (Sweden)

    Fan Shengjun

    2012-12-01

    Full Text Available Abstract Background Torcetrapib, a cholesteryl ester transfer protein (CETP inhibitor which raises high-density lipoprotein (HDL cholesterol and reduces low-density lipoprotein (LDL cholesterol level, has been documented to increase mortality and cardiac events associated with adverse effects. However, it is still unclear the underlying mechanisms of the off-target effects of torcetrapib. Results In the present study, we developed a systems biology approach by combining a human reassembled signaling network with the publicly available microarray gene expression data to provide unique insights into the off-target adverse effects for torcetrapib. Cytoscape with three plugins including BisoGenet, NetworkAnalyzer and ClusterONE was utilized to establish a context-specific drug-gene interaction network. The DAVID functional annotation tool was applied for gene ontology (GO analysis, while pathway enrichment analysis was clustered by ToppFun. Furthermore, potential off-targets of torcetrapib were predicted by a reverse docking approach. In general, 10503 nodes were retrieved from the integrative signaling network and 47660 inter-connected relations were obtained from the BisoGenet plugin. In addition, 388 significantly up-regulated genes were detected by Significance Analysis of Microarray (SAM in adrenal carcinoma cells treated with torcetrapib. After constructing the human signaling network, the over-expressed microarray genes were mapped to illustrate the context-specific network. Subsequently, three conspicuous gene regulatory networks (GRNs modules were unearthed, which contributed to the off-target effects of torcetrapib. GO analysis reflected dramatically over-represented biological processes associated with torcetrapib including activation of cell death, apoptosis and regulation of RNA metabolic process. Enriched signaling pathways uncovered that IL-2 Receptor Beta Chain in T cell Activation, Platelet-Derived Growth Factor Receptor (PDGFR beta

  12. An empirical Bayesian approach for model-based inference of cellular signaling networks

    Directory of Open Access Journals (Sweden)

    Klinke David J

    2009-11-01

    Full Text Available Abstract Background A common challenge in systems biology is to infer mechanistic descriptions of biological process given limited observations of a biological system. Mathematical models are frequently used to represent a belief about the causal relationships among proteins within a signaling network. Bayesian methods provide an attractive framework for inferring the validity of those beliefs in the context of the available data. However, efficient sampling of high-dimensional parameter space and appropriate convergence criteria provide barriers for implementing an empirical Bayesian approach. The objective of this study was to apply an Adaptive Markov chain Monte Carlo technique to a typical study of cellular signaling pathways. Results As an illustrative example, a kinetic model for the early signaling events associated with the epidermal growth factor (EGF signaling network was calibrated against dynamic measurements observed in primary rat hepatocytes. A convergence criterion, based upon the Gelman-Rubin potential scale reduction factor, was applied to the model predictions. The posterior distributions of the parameters exhibited complicated structure, including significant covariance between specific parameters and a broad range of variance among the parameters. The model predictions, in contrast, were narrowly distributed and were used to identify areas of agreement among a collection of experimental studies. Conclusion In summary, an empirical Bayesian approach was developed for inferring the confidence that one can place in a particular model that describes signal transduction mechanisms and for inferring inconsistencies in experimental measurements.

  13. The sociocultural perspective applied to mobility and road safety: a case study through social networks

    Directory of Open Access Journals (Sweden)

    Pilar Parra Contreras

    2015-02-01

    Full Text Available This article explores the sociocultural paradigm as a theoretical framework to address mobility and road safety from the social sciences. This approach includes analysis of issues such as the uses and attributes of the car, cultural and social values associated with it, and the implications in processes in structuring and social exclusion. In order to this, we present a case study on alcohol and drugs and driving where we show the demographic, economic and occupational characteristics that mediate the different relation of the people with the car, but also their cultural characteristics, lifestyles and leisure. The research design combines data from a brief online survey with qualitative data such as tastes and preferences, from the social network Facebook. The analysis shows that there are groups of drivers who differ in their patterns of no dissociation in their consumption of alcohol / drugs and driving in terms of classical structural variables and lifestyles that are  reflected in their Facebook likes. The discussion and conclusions examine the need to analyze the social context in which road accident occurs and its usefulness in the design of awareness campaigns and intervention in road safety.

  14. Clutter Suppression by Means of Digital MTI as Applied to Precision Approach Radar

    Science.gov (United States)

    1974-12-01

    and Subtitle) CLUTTER SUPPRESSION BY MEANS OF DIGITAL MTI AS APPLIED TO PRESICION APPROACH RADAR 5. TYPE OF REPORT & PERIOD COVERED 6. PERFORMING...signal, but rather a number related to its amplitude and frequency. A separate digitized number of this type is provided for each range resolution...radar return signals are weighted and summed. This weighting operation corresponded to processing the signals through a non-recursive digital fitler

  15. Network analysis literacy a practical approach to the analysis of networks

    CERN Document Server

    Zweig, Katharina A

    2014-01-01

    Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.

  16. Experience of a Neural Network Imitator Applied to Diagnosis of Pre-pathological Conditions in Humans

    International Nuclear Information System (INIS)

    Belyashov, D.N.; Emelyanova, I.V.; Tichshenko, A.V.; Makarenko, N.G.; Sultanova, B.G.

    1998-01-01

    The Governmental Resolution of the RK 'Program of Medical Rehabilitation for People Influenced by Nuclear Tests at STS in 1949-1990' was published in March 1997. Implementation of the program requires first of all to create the effective methods of operative diagnostics of arid zones' population. To our mind, for this aims systems analysis with elements of neural network classification is more effective. We demonstrate such an approach using the example of the modem diagnostics system creating to detect the pre-pathological states among population by express analysis and personal particulars. The following considerations were used in the base of the training set: 1) any formalism must be based oneself upon wealth of phenomenology (experience, intuition, the presence of symptoms); 2) typical attributes of disease can be divided on 2 groups - subjective and objective. The common state of patient is characterised by the first group and it can have no intercommunication with disease. The second one is obtained by laboratory inspection and it is not connected with patient sensations. Each of the objective at-tributes can be the attribute of several illnesses at once. In this case both the subjective and objective features must be used together; 3) acceptability of any scheme can be substantiated only statistically. The question about justifiability and sufficiency of training set always demands separate discussion. Personal particulars are more available for creating training set. The set must be professionally oriented in order to reduce of selection effects. For our experiment the fully-connected neural network ( computer software, imitating the work of neural computer) 'Multi Neuron' was chosen. Feature space using for the net work was created from the 206 personal particulars. The research aimed to determine pre-pathological states of the urinary system organs among industrial, office and professional workers in the mining industry connected with phosphorus

  17. A geostatistical approach for describing spatial pattern in stream networks

    Science.gov (United States)

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  18. Describing spatial pattern in stream networks: A practical approach

    Science.gov (United States)

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  19. Anomaly Detection in SCADA Systems - A Network Based Approach

    NARCIS (Netherlands)

    Barbosa, R.R.R.

    2014-01-01

    Supervisory Control and Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities, such as water treatment facilities. Historically, these networks were composed by special-purpose embedded devices communicating through proprietary protocols.

  20. A Novel Approach to Fair Routing in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Määttä Juho

    2009-01-01

    Full Text Available Multiradio wireless mesh network (WMN is a feasible choice for several applications, as routers with multiple network interface cards have become cheaper. Routing in any network has a great impact on the overall network performance, thus a routing protocol or algorithm for WMN should be carefully designed taking into account the specific characteristics of the network. In addition, in wireless networks, serious unfairness can occur between users if the issue is not addressed in the network protocols or algorithms. In this paper, we are proposing a novel centralized routing algorithm, called Subscriber Aware Fair Routing in WMN (SAFARI, for multiradio WMN that assures fairness, leads to a feasible scheduling, and does not collapse the aggregate network throughput with a strict fairness criterion. We show that our protocol is feasible and practical, and exhaustive simulations show that the performance is improved compared to traditional routing algorithms.

  1. An analytical approach to optical burst switched networks

    CERN Document Server

    Venkatesh, T

    2010-01-01

    This book presents the latest results on modeling and analysis of OBS networks. It classifies all the literature on the topic, and its scope extends to include discussion of high-speed communication networks with limited or no buffers.

  2. Anomaly detection in SCADA systems: a network based approach

    NARCIS (Netherlands)

    Barbosa, R.R.R.

    2014-01-01

    Supervisory Control and Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities, such as water treatment facilities. Historically, these networks were composed by special-purpose embedded devices communicating through proprietary protocols.

  3. Personalized translational epilepsy research - Novel approaches and future perspectives: Part I: Clinical and network analysis approaches.

    Science.gov (United States)

    Rosenow, Felix; van Alphen, Natascha; Becker, Albert; Chiocchetti, Andreas; Deichmann, Ralf; Deller, Thomas; Freiman, Thomas; Freitag, Christine M; Gehrig, Johannes; Hermsen, Anke M; Jedlicka, Peter; Kell, Christian; Klein, Karl Martin; Knake, Susanne; Kullmann, Dimitri M; Liebner, Stefan; Norwood, Braxton A; Omigie, Diana; Plate, Karlheinz; Reif, Andreas; Reif, Philipp S; Reiss, Yvonne; Roeper, Jochen; Ronellenfitsch, Michael W; Schorge, Stephanie; Schratt, Gerhard; Schwarzacher, Stephan W; Steinbach, Joachim P; Strzelczyk, Adam; Triesch, Jochen; Wagner, Marlies; Walker, Matthew C; von Wegner, Frederic; Bauer, Sebastian

    2017-11-01

    Despite the availability of more than 15 new "antiepileptic drugs", the proportion of patients with pharmacoresistant epilepsy has remained constant at about 20-30%. Furthermore, no disease-modifying treatments shown to prevent the development of epilepsy following an initial precipitating brain injury or to reverse established epilepsy have been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which in turn requires personalized medicine approaches. Recent advances in imaging, pathology, genetics and epigenetics have led to new pathophysiological concepts and the identification of monogenic causes of epilepsy. In the context of these advances, the First International Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in Frankfurt on September 8, 2016, to discuss novel approaches and future perspectives for personalized translational research. These included new developments and ideas in a range of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, EEG/MEG-based analysis of network dysfunction, tissue-based translational studies, innate immunity mechanisms, microRNA as treatment targets, functional characterization of genetic variants in human cell models and rodent organotypic slice cultures, personalized treatment approaches for monogenic epilepsies, blood-brain barrier dysfunction, therapeutic focal tissue modification, computational modeling for target and biomarker identification, and cost analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is aimed at stimulating much needed investments of time and resources in personalized translational epilepsy research. Part I includes the clinical phenotyping and diagnostic methods, EEG network-analysis, biomarkers, and personalized treatment approaches. In Part II, experimental and translational approaches will be discussed (Bauer et al., 2017) [1]. Copyright © 2017 Elsevier Inc

  4. Bridging the Gap in Port Security; Network Centric Theory Applied to Public/Private Collaboration

    National Research Council Canada - National Science Library

    Wright, Candice L

    2007-01-01

    ...." Admiral Thad Allen, 2007 The application of Network Centric Warfare theory enables all port stakeholders to better prepare for a disaster through increased information sharing and collaboration...

  5. A geometrical approach to control and controllability of nonlinear dynamical networks.

    Science.gov (United States)

    Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2016-04-14

    In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control.

  6. A New Artificial Network Approach for Membrane Filtration Simulation

    OpenAIRE

    Vivier, J.; Mehablia, A.

    2012-01-01

    To improve traditional neural networks, the present research used the wavelet network, a special feedforward neural network with a single hidden layer supported by the wavelet theory. Prediction performance and efficiency of the proposed network were examined with a published experimental dataset of cross-flow membrane filtration. The dataset was divided into two parts: 70 samples for training data and 330 samples for testing data. Various combinations of transmembrane pressure, filtration...

  7. Energy-efficient virtual optical network mapping approaches over converged flexible bandwidth optical networks and data centers.

    Science.gov (United States)

    Chen, Bowen; Zhao, Yongli; Zhang, Jie

    2015-09-21

    In this paper, we develop a virtual link priority mapping (LPM) approach and a virtual node priority mapping (NPM) approach to improve the energy efficiency and to reduce the spectrum usage over the converged flexible bandwidth optical networks and data centers. For comparison, the lower bound of the virtual optical network mapping is used for the benchmark solutions. Simulation results show that the LPM approach achieves the better performance in terms of power consumption, energy efficiency, spectrum usage, and the number of regenerators compared to the NPM approach.

  8. An approach to a transparent self-healing meshed network

    DEFF Research Database (Denmark)

    Larsen, Claus Popp; Limal, Emmanuel

    1997-01-01

    A method of implementing a transparent self-healing meshed network is described here. In case of a cable break or signal detoriation, this network will perform protection switching without needing direct correspondance with the overlaying management system. This causes simpler network management...

  9. Network analysis as a tool for assessing environmental sustainability: applying the ecosystem perspective to a Danish water management system

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Scotti, Marco; Thomsen, Marianne

    2013-01-01

    New insights into the sustainable use of natural resources in human systems can be gained through comparison with ecosystems via common indices. In both kinds of system, resources are processed by a number of users within a network, but we consider ecosystems as the only ones displaying sustainable...... patterns of growth and development. We applied Network Analysis (NA) for assessing the sustainability of a Danish municipal Water Management System (WMS). We identified water users within the WMS and represented their interactions as a network of water flows. We computed intensive and extensive indices...... of system-level performance for seven different network configurations illustrating past conditions (2004-2008) and future scenarios (2015 and 2020). These indices allowed comparing the WMS with 24 human systems and 12 ecosystems. The results of the NA reveal that the WMS differs from ecosystems...

  10. Identifying the Critical Links in Road Transportation Networks: Centrality-based approach utilizing structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Supriya [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) and the criticality index is found to be effective for one test network to identify the vulnerable nodes.

  11. Applying the flow-capturing location-allocation model to an authentic network: Edmonton, Canada

    NARCIS (Netherlands)

    M.J. Hodgson (John); K.E. Rosing (Kenneth); A.L.G. Storrier (Leontien)

    1996-01-01

    textabstractTraditional location-allocation models aim to locate network facilities to optimally serve demand expressed as weights at nodes. For some types of facilities demand is not expressed at nodes, but as passing network traffic. The flow-capturing location-allocation model responds to this

  12. Distributed MPC Applied to a Network of Households With Micro-CHP and Heat Storage

    NARCIS (Netherlands)

    Larsen, G.K. H.; van Foreest, N.D.; Scherpen, J.M.A.

    This paper considers heat and power production from micro Combined Heat and Power systems and heat storage in a network of households. The goal is to balance the local heat demand and supply in combination with balancing the power supply and demand in the network. The on-off decisions of the local

  13. Spatial-data sharing: Applying social-network analysis to study individual and collective behaviour

    NARCIS (Netherlands)

    Omran, E.S.E.; Etten, van J.

    2007-01-01

    Spatial-Data Sharing (SDS) is a crucial aspect of spatial-data infrastructures. This paper introduces Social-Network Analysis to research on SDS. By mapping out relationships among social actors using Social-Network Analysis, the collective properties of SDS in organizations can be investigated.

  14. Privacy and Generation Y: Applying Library Values to Social Networking Sites

    Science.gov (United States)

    Fernandez, Peter

    2010-01-01

    Librarians face many challenges when dealing with issues of privacy within the mediated space of social networking sites. Conceptually, social networking sites differ from libraries on privacy as a value. Research about Generation Y students, the primary clientele of undergraduate libraries, can inform librarians' relationship to this important…

  15. Dynamic aggregation of traffic flows in SDN Applied to backhaul networks

    DEFF Research Database (Denmark)

    Kentis, Angelos Mimidis; Caba, Cosmin Marius; Soler, José

    2016-01-01

    A challenge in the adoption of the OpenFlow (OF)-based SDN paradigm is related to the limited number of OF rules supported by the network devices. The technology used to implement the OF rules is TCAM, which is expensive and power demanding. Due to this, the network devices are either very costly...

  16. A Network Inference Workflow Applied to Virulence-Related Processes in Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Singhal, Mudita; Weller, Jennifer B.; Khoshnevis, Saeed; Shi, Liang; McDermott, Jason E.

    2009-04-20

    Inference of the structure of mRNA transcriptional regulatory networks, protein regulatory or interaction networks, and protein activation/inactivation-based signal transduction networks are critical tasks in systems biology. In this article we discuss a workflow for the reconstruction of parts of the transcriptional regulatory network of the pathogenic bacterium Salmonella typhimurium based on the information contained in sets of microarray gene expression data now available for that organism, and describe our results obtained by following this workflow. The primary tool is one of the network inference algorithms deployed in the Software Environment for BIological Network Inference (SEBINI). Specifically, we selected the algorithm called Context Likelihood of Relatedness (CLR), which uses the mutual information contained in the gene expression data to infer regulatory connections. The associated analysis pipeline automatically stores the inferred edges from the CLR runs within SEBINI and, upon request, transfers the inferred edges into either Cytoscape or the plug-in Collective Analysis of Biological of Biological Interaction Networks (CABIN) tool for further post-analysis of the inferred regulatory edges. The following article presents the outcome of this workflow, as well as the protocols followed for microarray data collection, data cleansing, and network inference. Our analysis revealed several interesting interactions, functional groups, metabolic pathways, and regulons in S. typhimurium.

  17. Multi-objective transportation network design: Accelerating search by applying ε-NSGAII

    NARCIS (Netherlands)

    Brands, Ties; Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Coello, C.C.

    2014-01-01

    The optimization of infrastructure planning in a multimodal passenger transportation network is formulated as a multi-objective network design problem, with accessibility, use of urban space by parking, operating deficit and climate impact as objectives. Decision variables are the location of park

  18. A social network analysis approach to alcohol use and co-occurring addictive behavior in young adults.

    Science.gov (United States)

    Meisel, Matthew K; Clifton, Allan D; MacKillop, James; Goodie, Adam S

    2015-12-01

    The current study applied egocentric social network analysis (SNA) to investigate the prevalence of addictive behavior and co-occurring substance use in college students' networks. Specifically, we examined individuals' perceptions of the frequency of network members' co-occurring addictive behavior and investigated whether co-occurring addictive behavior is spread evenly throughout networks or is more localized in clusters. We also examined differences in network composition between individuals with varying levels of alcohol use. The study utilized an egocentric SNA approach in which respondents ("egos") enumerated 30 of their closest friends, family members, co-workers, and significant others ("alters") and the relations among alters listed. Participants were 281 undergraduates at a large university in the Southeastern United States. Robust associations were observed among the frequencies of gambling, smoking, drinking, and using marijuana by network members. We also found that alters tended to cluster together into two distinct groups: one cluster moderate-to-high on co-occurring addictive behavior and the other low on co-occurring addictive behavior. Lastly, significant differences were present when examining egos' perceptions of alters' substance use between the networks of at-risk, light, and nondrinkers. These findings provide empirical evidence of distinct clustering of addictive behavior among young adults and suggest the promise of social network-based interventions for this cohort. Copyright © 2015. Published by Elsevier Ltd.

  19. Semantic Parameters to Manage an Innovation Network Using Managing as Designing Approach: The Virtual Innovation Society Network Case

    Directory of Open Access Journals (Sweden)

    Cristiane Chaves Gattaz

    2014-06-01

    Full Text Available The most recent operations and management frameworks in innovation have not been complete to explicit required knowledge to manage the cooperation of its networked open innovation value chain in the knowledge economy and open enterprise. Strategic actors from the Virtual Innovation Society network were interviewed to identify critical semantic parameters that address this issue. As a result, this study suggests the characterization of inter-dependent added-values and its performance metrics, under the “managing as designing” approach, as input for managing the externalities, the integration of the articulation between business operations, strategy and information technology, and waste of innovation. In this context, the identification of the main managerial indicators for future command and control of existing innovation network operations under the “managing as designing” approach becomes a new challenge for future research.   Keywords: Managing as Designing; Innovation Management; Network Managament; Operations Management; Virtual Networks.

  20. A Computational Analysis of Psychopathy Based on a Network-Oriented Modeling Approach

    NARCIS (Netherlands)

    van Dijk, Freke; Treur, J.

    2018-01-01

    In this paper a way to analyse psychopathy computationally is explored. This is done by creating and analysing a temporal-causal network model using a Network-Oriented Modeling approach. The network model was designed using knowledge from the field of Cognitive and Social Neuroscience and simulates

  1. A quantitative approach to static sensor network design

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Burgess, Greg; Weng, Kevin C.

    2014-01-01

    Static sensor networks to observe animals are widely used in ecological, management and conservation research, but quantitative methods for designing these networks are underdeveloped. In the context of aquatic systems, we present a method for quasi-optimal network design, which accounts for bloc......Static sensor networks to observe animals are widely used in ecological, management and conservation research, but quantitative methods for designing these networks are underdeveloped. In the context of aquatic systems, we present a method for quasi-optimal network design, which accounts...... for blocking of detections by obstacles, horizontal and vertical movement behaviour of the target animals, and type of research question (is the network intended for estimation of detailed movement or home range?). Optimal design is defined as the sensor configuration that maximizes the expected number...

  2. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    Science.gov (United States)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  3. Addressing dependability by applying an approach for model-based risk assessment

    International Nuclear Information System (INIS)

    Gran, Bjorn Axel; Fredriksen, Rune; Thunem, Atoosa P.-J.

    2007-01-01

    This paper describes how an approach for model-based risk assessment (MBRA) can be applied for addressing different dependability factors in a critical application. Dependability factors, such as availability, reliability, safety and security, are important when assessing the dependability degree of total systems involving digital instrumentation and control (I and C) sub-systems. In order to identify risk sources their roles with regard to intentional system aspects such as system functions, component behaviours and intercommunications must be clarified. Traditional risk assessment is based on fault or risk models of the system. In contrast to this, MBRA utilizes success-oriented models describing all intended system aspects, including functional, operational and organizational aspects of the target. The EU-funded CORAS project developed a tool-supported methodology for the application of MBRA in security-critical systems. The methodology has been tried out within the telemedicine and e-commerce areas, and provided through a series of seven trials a sound basis for risk assessments. In this paper the results from the CORAS project are presented, and it is discussed how the approach for applying MBRA meets the needs of a risk-informed Man-Technology-Organization (MTO) model, and how methodology can be applied as a part of a trust case development

  4. Addressing dependability by applying an approach for model-based risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Gran, Bjorn Axel [Institutt for energiteknikk, OECD Halden Reactor Project, NO-1751 Halden (Norway)]. E-mail: bjorn.axel.gran@hrp.no; Fredriksen, Rune [Institutt for energiteknikk, OECD Halden Reactor Project, NO-1751 Halden (Norway)]. E-mail: rune.fredriksen@hrp.no; Thunem, Atoosa P.-J. [Institutt for energiteknikk, OECD Halden Reactor Project, NO-1751 Halden (Norway)]. E-mail: atoosa.p-j.thunem@hrp.no

    2007-11-15

    This paper describes how an approach for model-based risk assessment (MBRA) can be applied for addressing different dependability factors in a critical application. Dependability factors, such as availability, reliability, safety and security, are important when assessing the dependability degree of total systems involving digital instrumentation and control (I and C) sub-systems. In order to identify risk sources their roles with regard to intentional system aspects such as system functions, component behaviours and intercommunications must be clarified. Traditional risk assessment is based on fault or risk models of the system. In contrast to this, MBRA utilizes success-oriented models describing all intended system aspects, including functional, operational and organizational aspects of the target. The EU-funded CORAS project developed a tool-supported methodology for the application of MBRA in security-critical systems. The methodology has been tried out within the telemedicine and e-commerce areas, and provided through a series of seven trials a sound basis for risk assessments. In this paper the results from the CORAS project are presented, and it is discussed how the approach for applying MBRA meets the needs of a risk-informed Man-Technology-Organization (MTO) model, and how methodology can be applied as a part of a trust case development.

  5. An unbiased Bayesian approach to functional connectomics implicates social-communication networks in autism

    Science.gov (United States)

    Venkataraman, Archana; Duncan, James S.; Yang, Daniel Y.-J.; Pelphrey, Kevin A.

    2015-01-01

    Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of “language” and “comprehension” as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes “social” and “person”. The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder. PMID:26106561

  6. A social network analysis of alcohol-impaired drivers in Maryland : an egocentric approach.

    Science.gov (United States)

    2011-04-01

    This study examined the personal, household, and social structural attributes of alcoholimpaired : drivers in Maryland. The study used an egocentric approach of social network : analysis. This approach concentrated on specific actors (alcohol-impaire...

  7. Solution of the neutron point kinetics equations with temperature feedback effects applying the polynomial approach method

    Energy Technology Data Exchange (ETDEWEB)

    Tumelero, Fernanda, E-mail: fernanda.tumelero@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana, E-mail: claudiopeteren@yahoo.com.br, E-mail: gleniogoncalves@yahoo.com.br, E-mail: luana-lazzari@hotmail.com [Universidade Federal de Pelotas (DME/UFPEL), Capao do Leao, RS (Brazil). Instituto de Fisica e Matematica

    2015-07-01

    In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)

  8. Network-based approaches to climate knowledge discovery

    Science.gov (United States)

    Budich, Reinhard; Nyberg, Per; Weigel, Tobias

    2011-11-01

    Climate Knowledge Discovery Workshop; Hamburg, Germany, 30 March to 1 April 2011 Do complex networks combined with semantic Web technologies offer the next generation of solutions in climate science? To address this question, a first Climate Knowledge Discovery (CKD) Workshop, hosted by the German Climate Computing Center (Deutsches Klimarechenzentrum (DKRZ)), brought together climate and computer scientists from major American and European laboratories, data centers, and universities, as well as representatives from industry, the broader academic community, and the semantic Web communities. The participants, representing six countries, were concerned with large-scale Earth system modeling and computational data analysis. The motivation for the meeting was the growing problem that climate scientists generate data faster than it can be interpreted and the need to prepare for further exponential data increases. Current analysis approaches are focused primarily on traditional methods, which are best suited for large-scale phenomena and coarse-resolution data sets. The workshop focused on the open discussion of ideas and technologies to provide the next generation of solutions to cope with the increasing data volumes in climate science.

  9. Modern Adaptive Analytics Approach to Lowering Seismic Network Detection Thresholds

    Science.gov (United States)

    Johnson, C. E.

    2017-12-01

    Modern seismic networks present a number of challenges, but perhaps most notably are those related to 1) extreme variation in station density, 2) temporal variation in station availability, and 3) the need to achieve detectability for much smaller events of strategic importance. The first of these has been reasonably addressed in the development of modern seismic associators, such as GLASS 3.0 by the USGS/NEIC, though some work still remains to be done in this area. However, the latter two challenges demand special attention. Station availability is impacted by weather, equipment failure or the adding or removing of stations, and while thresholds have been pushed to increasingly smaller magnitudes, new algorithms are needed to achieve even lower thresholds. Station availability can be addressed by a modern, adaptive architecture that maintains specified performance envelopes using adaptive analytics coupled with complexity theory. Finally, detection thresholds can be lowered using a novel approach that tightly couples waveform analytics with the event detection and association processes based on a principled repicking algorithm that uses particle realignment for enhanced phase discrimination.

  10. A multicriteria decision making approach applied to improving maintenance policies in healthcare organizations.

    Science.gov (United States)

    Carnero, María Carmen; Gómez, Andrés

    2016-04-23

    Healthcare organizations have far greater maintenance needs for their medical equipment than other organization, as many are used directly with patients. However, the literature on asset management in healthcare organizations is very limited. The aim of this research is to provide more rational application of maintenance policies, leading to an increase in quality of care. This article describes a multicriteria decision-making approach which integrates Markov chains with the multicriteria Measuring Attractiveness by a Categorical Based Evaluation Technique (MACBETH), to facilitate the best choice of combination of maintenance policies by using the judgements of a multi-disciplinary decision group. The proposed approach takes into account the level of acceptance that a given alternative would have among professionals. It also takes into account criteria related to cost, quality of care and impact of care cover. This multicriteria approach is applied to four dialysis subsystems: patients infected with hepatitis C, infected with hepatitis B, acute and chronic; in all cases, the maintenance strategy obtained consists of applying corrective and preventive maintenance plus two reserve machines. The added value in decision-making practices from this research comes from: (i) integrating the use of Markov chains to obtain the alternatives to be assessed by a multicriteria methodology; (ii) proposing the use of MACBETH to make rational decisions on asset management in healthcare organizations; (iii) applying the multicriteria approach to select a set or combination of maintenance policies in four dialysis subsystems of a health care organization. In the multicriteria decision making approach proposed, economic criteria have been used, related to the quality of care which is desired for patients (availability), and the acceptance that each alternative would have considering the maintenance and healthcare resources which exist in the organization, with the inclusion of a

  11. Applying NGS Data to Find Evolutionary Network Biomarkers from the Early and Late Stages of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Yung-Hao Wong

    2015-01-01

    Full Text Available Hepatocellular carcinoma (HCC is a major liver tumor (~80%, besides hepatoblastomas, angiosarcomas, and cholangiocarcinomas. In this study, we used a systems biology approach to construct protein-protein interaction networks (PPINs for early-stage and late-stage liver cancer. By comparing the networks of these two stages, we found that the two networks showed some common mechanisms and some significantly different mechanisms. To obtain differential network structures between cancer and noncancer PPINs, we constructed cancer PPIN and noncancer PPIN network structures for the two stages of liver cancer by systems biology method using NGS data from cancer cells and adjacent noncancer cells. Using carcinogenesis relevance values (CRVs, we identified 43 and 80 significant proteins and their PPINs (network markers for early-stage and late-stage liver cancer. To investigate the evolution of network biomarkers in the carcinogenesis process, a primary pathway analysis showed that common pathways of the early and late stages were those related to ordinary cancer mechanisms. A pathway specific to the early stage was the mismatch repair pathway, while pathways specific to the late stage were the spliceosome pathway, lysine degradation pathway, and progesterone-mediated oocyte maturation pathway. This study provides a new direction for cancer-targeted therapies at different stages.

  12. Adverse event assessment of antimuscarinics for treating overactive bladder: a network meta-analytic approach.

    Directory of Open Access Journals (Sweden)

    Thomas M Kessler

    Full Text Available BACKGROUND: Overactive bladder (OAB affects the lives of millions of people worldwide and antimuscarinics are the pharmacological treatment of choice. Meta-analyses of all currently used antimuscarinics for treating OAB found similar efficacy, making the choice dependent on their adverse event profiles. However, conventional meta-analyses often fail to quantify and compare adverse events across different drugs, dosages, formulations, and routes of administration. In addition, the assessment of the broad variety of adverse events is dissatisfying. Our aim was to compare adverse events of antimuscarinics using a network meta-analytic approach that overcomes shortcomings of conventional analyses. METHODS: Cochrane Incontinence Group Specialized Trials Register, previous systematic reviews, conference abstracts, book chapters, and reference lists of relevant articles were searched. Eligible studies included randomized controlled trials comparing at least one antimuscarinic for treating OAB with placebo or with another antimuscarinic, and adverse events as outcome measures. Two authors independently extracted data. A network meta-analytic approach was applied allowing for joint assessment of all adverse events of all currently used antimuscarinics while fully maintaining randomization. RESULTS: 69 trials enrolling 26'229 patients were included. Similar overall adverse event profiles were found for darifenacin, fesoterodine, transdermal oxybutynin, propiverine, solifenacin, tolterodine, and trospium chloride but not for oxybutynin orally administered when currently used starting dosages were compared. CONCLUSIONS: The proposed generally applicable transparent network meta-analytic approach summarizes adverse events in an easy to grasp way allowing straightforward benchmarking of antimuscarinics for treating OAB in clinical practice. Most currently used antimuscarinics seem to be equivalent first choice drugs to start the treatment of OAB except for

  13. Inter-organisational communication networks in healthcare: centralised versus decentralised approaches

    Directory of Open Access Journals (Sweden)

    Habibollah Pirnejad

    2007-05-01

    Full Text Available Background: To afford efficient and high quality care, healthcare providers increasingly need to exchange patient data. The existence of a communication network amongst care providers will help them to exchange patient data more efficiently. Information and communication technology (ICT has much potential to facilitate the development of such a communication network. Moreover, in order to offer integrated care interoperability of healthcare organizations based upon the exchanged data is of crucial importance. However, complications around such a development are beyond technical impediments. Objectives: To determine the challenges and complexities involved in building an Inter-organisational Communication network (IOCN in healthcare and the appropriations in the strategies. Case study: Interviews, literature review, and document analysis were conducted to analyse the developments that have taken place toward building a countrywide electronic patient record and its challenges in The Netherlands. Due to the interrelated nature of technical and non-technical problems, a socio-technical approach was used to analyse the data and define the challenges. Results: Organisational and cultural changes are necessary before technical solutions can be applied. There are organisational, financial, political, and ethicolegal challenges that have to be addressed appropriately. Two different approaches, one “centralised” and the other “decentralised” have been used by Dutch healthcare providers to adopt the necessary changes and cope with these challenges. Conclusion: The best solutions in building an IOCN have to be drawn from both the centralised and the decentralised approaches. Local communication initiatives have to be supervised and supported centrally and incentives at the organisations' interest level have to be created to encourage the stakeholder organisations to adopt the necessary changes.

  14. Applying 4-regular grid structures in large-scale access networks

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Knudsen, Thomas P.; Patel, Ahmed

    2006-01-01

    networks, but concerning protection and restoration these demands have been met only to a limited extent by the commonly used ring and tree structures. To deal with the fact that classical 4-regular grid structures are not directly applicable in such networks, this paper proposes a number of extensions...... concerning restoration, protection, scalability, embeddability, flexibility, and cost. The extensions are presented as a tool case, which can be used for implementing semi-automatic and in the longer term full automatic network planning tools....

  15. Identification of important nodes in directed biological networks: a network motif approach.

    Directory of Open Access Journals (Sweden)

    Pei Wang

    Full Text Available Identification of important nodes in complex networks has attracted an increasing attention over the last decade. Various measures have been proposed to characterize the importance of nodes in complex networks, such as the degree, betweenness and PageRank. Different measures consider different aspects of complex networks. Although there are numerous results reported on undirected complex networks, few results have been reported on directed biological networks. Based on network motifs and principal component analysis (PCA, this paper aims at introducing a new measure to characterize node importance in directed biological networks. Investigations on five real-world biological networks indicate that the proposed method can robustly identify actually important nodes in different networks, such as finding command interneurons, global regulators and non-hub but evolutionary conserved actually important nodes in biological networks. Receiver Operating Characteristic (ROC curves for the five networks indicate remarkable prediction accuracy of the proposed measure. The proposed index provides an alternative complex network metric. Potential implications of the related investigations include identifying network control and regulation targets, biological networks modeling and analysis, as well as networked medicine.

  16. Restorative outcomes for endodontically treated teeth in the Practitioners Engaged in Applied Research and Learning network.

    Science.gov (United States)

    Spielman, Howard; Schaffer, Scott B; Cohen, Mitchell G; Wu, Hongyu; Vena, Donald A; Collie, Damon; Curro, Frederick A; Thompson, Van P; Craig, Ronald G

    2012-07-01

    The authors aimed to determine the outcome of and factors associated with success and failure of restorations in endodontically treated teeth in patients in practices participating in the Practitioners Engaged in Applied Research and Learning (PEARL) Network. Practitioner-investigators (P-Is) invited the enrollment of all patients seeking care at participating practices who had undergone primary endodontic therapy and restoration in a permanent tooth three to five years earlier. P-Is classified endodontically reated teeth as restorative failures if the restoration was replaced, the restoration needed replacement or the tooth was cracked or fractured. P-Is from 64 practices enrolled in the study 1,298 eligible patients who had endodontically treated teeth that had been restored. The mean (standard deviation) time to follow-up was 3.9 (0.6) years. Of the 1,298 enrolled teeth, P-Is classified 181 (13.9 percent; 95 percent confidence interval [CI], 12.1-15.8 percent) as restorative failures: 44 (3.4 percent) due to cracks or fractures, 57 (4.4 percent) due to replacement of the original restoration for reasons other than fracture and 80 (6.2 percent) due to need for a new restoration. When analyzing the results by means of multivariate logistic regression, the authors found a greater risk of restorative failure to be associated with canines or incisors and premolars (P = .04), intracoronal restorations (P < .01), lack of preoperative proximal contacts (P < .01), presence of periodontal connective-tissue attachment loss (P < .01), younger age (P = .01), Hispanic/Latino ethnicity (P = .04) and endodontic therapy not having been performed by a specialist (P = .04). These results suggest that molars (as opposed to other types of teeth), full-coverage restorations, preoperative proximal contacts, good periodontal health, non-Hispanic/Latino ethnicity, endodontic therapy performed by a specialist and older patient age are associated with restorative success for

  17. Restorative outcomes for endodontically treated teeth in the Practitioners Engaged in Applied Research and Learning Network

    Science.gov (United States)

    Spielman, Howard; Schaffer, Scott B.; Cohen, Mitchell G.; Wu, Hongyu; Vena, Donald A.; Collie, Damon; Curro, Frederick A.; Thompson, Van P.; Craig, Ronald G.

    2014-01-01

    Background The authors aimed to determine the outcome of and factors associated with success and failure of restorations in endodontically treated teeth in patients in practices participating in the Practitioners Engaged in Applied Research and Learning (PEARL) Network. Methods Practitioner-investigators (P-Is) invited the enrollment of all patients seeking care at participating practices who had undergone primary endodontic therapy and restoration in a permanent tooth three to five years earlier. P-Is classified endodontically reated teeth as restorative failures if the restoration was replaced, the restoration needed replacement or the tooth was cracked or fractured. Results P-Is from 64 practices enrolled in the study 1,298 eligible patients who had endodontically treated teeth that had been restored. The mean (standard deviation) time to follow-up was 3.9 (0.6) years. Of the 1,298 enrolled teeth, P-Is classified 181 (13.9 percent; 95 percent confidence interval [CI], 12.1–15.8 percent) as restorative failures: 44 (3.4 percent) due to cracks or fractures, 57 (4.4 percent) due to replacement of the original restoration for reasons other than fracture and 80 (6.2 percent) due to need for a new restoration. When analyzing the results by means of multivariate logistic regression, the authors found a greater risk of restorative failure to be associated with canines or incisors and premolars (P = .04), intracoronal restorations (P < .01), lack of preoperative proximal contacts (P < .01), presence of periodontal connective-tissue attachment loss (P < .01), younger age (P = .01), Hispanic/Latino ethnicity (P = .04) and endodontic therapy not having been performed by a specialist (P = .04). Conclusions These results suggest that molars (as opposed to other types of teeth), full-coverage restorations, preoperative proximal contacts, good periodontal health, non-Hispanic/Latino ethnicity, endodontic therapy performed by a specialist and older patient age are associated

  18. Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach

    Directory of Open Access Journals (Sweden)

    Oliveira Rui

    2010-09-01

    Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.

  19. RBF Neural Network Approach for Identification and Control of DC Motors

    Directory of Open Access Journals (Sweden)

    EA Feilat

    2012-12-01

    Full Text Available In this paper, a neural network approach for the identification and control of a separately excited direct (DC motor (SEDCM driving a centrifugal pump load is applied. In this application, two radial basis function neural networks (RBFNN are used: The first is a RBFNN identifier trained offline to emulate the dynamic performance of the DC motor-load system. The second is a RBFNN controller, which is trained to make the motor speed follow a selected reference signal. Two RBFNN control schemes are proposed using direct inverse and internal model control schemes. The performance of the RBFNN identifier and controller is investigated in terms of step response, sharp changes in speed trajectory, and sudden load change, as well as changes in motor parameters. The performance of RBFNN in system identification and control has been compared with the performance of the well-known back-propagation neural network (BPNN. The simulation results show that both of the BPNN and RBFNN controllers exhibit excellent dynamic response, adapt well to changes in speed trajectory and load connected to the motor, and adapt to the variations of motor parameters. Furthermore, the simulation results show that the step response of RBFNN internal model and direct inverse controllers are identical.

  20. Cross-Layer Design Approach for Power Control in Mobile Ad Hoc Networks

    OpenAIRE

    A. Sarfaraz Ahmed; T. Senthil Kumaran; S. Syed Abdul Syed; S. Subburam

    2015-01-01

    In mobile ad hoc networks, communication among mobile nodes occurs through wireless medium The design of ad hoc network protocol, generally based on a traditional “layered approach”, has been found ineffective to deal with receiving signal strength (RSS)-related problems, affecting the physical layer, the network layer and transport layer. This paper proposes a design approach, deviating from the traditional network design, toward enhancing the cross-layer interaction among different layers, ...

  1. Pure and Applied: Christopher Clavius’s Unifying Approach to Jesuit Mathematics Pedagogy

    OpenAIRE

    Price, Audrey

    2017-01-01

    This dissertation examines the pedagogical project of Christopher Clavius (1538-1612) as a key step in the development of modern mathematics. In it, I show that Clavius united two contemporary approaches to mathematics: one that saw the field as an abstract way of discovering universal truths, and one that saw the field as an art, that is a tool for practical purposes. To do so, he combined pure and applied mathematics throughout his textbooks. The union of mathematics as a science and mat...

  2. Applying the health action process approach (HAPA) to the choice of health products: An exploratory study

    DEFF Research Database (Denmark)

    Krutulyte, Rasa; Grunert, Klaus G.; Scholderer, Joachim

    on the role of the behavioural intention predictors such as risk perception, outcome expectations and self-efficacy. The model has been proved to be a useful framework for understanding consumer choosing health food and is substantial in the further application of dietary choice issues.......This paper presents the results of a qualitative pilot study that aimed to uncovering Danish consumers' motives for choosing health food. Schwarzer's (1992) health action process approach (HAPA) was applied to understand the process by which people chose health products. The research focused...

  3. An Approach to Data Analysis in 5G Networks

    Directory of Open Access Journals (Sweden)

    Lorena Isabel Barona López

    2017-02-01

    Full Text Available 5G networks expect to provide significant advances in network management compared to traditional mobile infrastructures by leveraging intelligence capabilities such as data analysis, prediction, pattern recognition and artificial intelligence. The key idea behind these actions is to facilitate the decision-making process in order to solve or mitigate common network problems in a dynamic and proactive way. In this context, this paper presents the design of Self-Organized Network Management in Virtualized and Software Defined Networks (SELFNET Analyzer Module, which main objective is to identify suspicious or unexpected situations based on metrics provided by different network components and sensors. The SELFNET Analyzer Module provides a modular architecture driven by use cases where analytic functions can be easily extended. This paper also proposes the data specification to define the data inputs to be taking into account in diagnosis process. This data specification has been implemented with different use cases within SELFNET Project, proving its effectiveness.

  4. Nationwide Network of TalentPoints: The Hungarian Approach to Talent Support

    Science.gov (United States)

    Csermely, Peter; Rajnai, Gabor; Sulyok, Katalin

    2013-01-01

    In 2006 a novel approach to talent support was promoted by several talent support programmes in Hungary. The new idea was a network approach. The nationwide network of so-called TalentPoints and its framework, the Hungarian Genius Program, gained substantial European Union funding in 2009, and today it is growing rapidly. A novel concept of talent…

  5. Effects produced by oscillations applied to nonlinear dynamic systems: a general approach and examples

    DEFF Research Database (Denmark)

    Blekhman, I. I.; Sorokin, V. S.

    2016-01-01

    A general approach to study effects produced by oscillations applied to nonlinear dynamic systems is developed. It implies a transition from initial governing equations of motion to much more simple equations describing only the main slow component of motions (the vibro-transformed dynamics...... equations). The approach is named as the oscillatory strobodynamics, since motions are perceived as under a stroboscopic light. The vibro-transformed dynamics equations comprise terms that capture the averaged effect of oscillations. The method of direct separation of motions appears to be an efficient...... and simple tool to derive these equations. A modification of the method applicable to study problems that do not imply restrictions on the spectrum of excitation frequencies is proposed. It allows also to abandon other restrictions usually introduced when employing the classical asymptotic methods, e...

  6. A Belief Network Decision Support Method Applied to Aerospace Surveillance and Battle Management Projects

    National Research Council Canada - National Science Library

    Staker, R

    2003-01-01

    This report demonstrates the application of a Bayesian Belief Network decision support method for Force Level Systems Engineering to a collection of projects related to Aerospace Surveillance and Battle Management...

  7. Applying a synthetic approach to the resilience of Finnish reindeer herding as a changing livelihood

    Directory of Open Access Journals (Sweden)

    Simo Sarkki

    2016-12-01

    Full Text Available Reindeer herding is an emblematic livelihood for Northern Finland, culturally important for local people and valuable in tourism marketing. We examine the livelihood resilience of Finnish reindeer herding by narrowing the focus of general resilience on social-ecological systems (SESs to a specific livelihood while also acknowledging wider contexts in which reindeer herding is embedded. The questions for specified resilience can be combined with the applied DPSIR approach (Drivers; Pressures: resilience to what; State: resilience of what; Impacts: resilience for whom; Responses: resilience by whom and how. This paper is based on a synthesis of the authors' extensive anthropological fieldwork on reindeer herding and other land uses in Northern Finland. Our objective is to synthesize various opportunities and challenges that underpin the resilience of reindeer herding as a viable livelihood. The DPSIR approach, applied here as a three step procedure, helps focus the analysis on different components of SES and their dynamic interactions. First, various land use-related DPSIR factors and their relations (synergies and trade-offs to reindeer herding are mapped. Second, detailed DPSIR factors underpinning the resilience of reindeer herding are identified. Third, examples of interrelations between DPSIR factors are explored, revealing the key dynamics between Pressures, State, Impacts, and Responses related to the livelihood resilience of reindeer herding. In the Discussion section, we recommend that future applications of the DPSIR approach in examining livelihood resilience should (1 address cumulative pressures, (2 consider the state dimension as more tuned toward the social side of SES, (3 assess both the negative and positive impacts of environmental change on the examined livelihood by a combination of science led top-down and participatory bottom-up approaches, and (4 examine and propose governance solutions as well as local adaptations by

  8. Optimization-Based Approaches to Control of Probabilistic Boolean Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2017-02-01

    Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.

  9. Handover management in dense cellular networks: A stochastic geometry approach

    KAUST Repository

    Arshad, Rabe

    2016-07-26

    Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations\\' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users\\' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios. © 2016 IEEE.

  10. Network analysis and synthesis a modern systems theory approach

    CERN Document Server

    Anderson, Brian D O

    2006-01-01

    Geared toward upper-level undergraduates and graduate students, this book offers a comprehensive look at linear network analysis and synthesis. It explores state-space synthesis as well as analysis, employing modern systems theory to unite the classical concepts of network theory. The authors stress passive networks but include material on active networks. They avoid topology in dealing with analysis problems and discuss computational techniques. The concepts of controllability, observability, and degree are emphasized in reviewing the state-variable description of linear systems. Explorations

  11. A network approach to the geometric structure of shallow cloud fields

    Science.gov (United States)

    Glassmeier, F.; Feingold, G.

    2017-12-01

    . As an outlook, we discuss how a similar network approach can be applied to describe and quantify the geometric structure of shallow cumulus cloud fields.

  12. Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems.

    Science.gov (United States)

    Etxaniz, Josu; Aranguren, Gerardo

    2017-04-30

    Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks.

  13. Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems

    Directory of Open Access Journals (Sweden)

    Josu Etxaniz

    2017-04-01

    Full Text Available Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks.

  14. A suggested approach to applying IAEA safeguards to plutonium in weapons components

    International Nuclear Information System (INIS)

    Lu, M.S.; Allentuck, J.

    1998-01-01

    It is the announced policy of the United States to make fissile material removed from its nuclear weapons stockpile subject to the US-IAEA voluntary safeguards agreement. Much of this material is plutonium in the form of pits. The application of traditional IAEA safeguards would reveal Restricted Data to unauthorized persons which is prohibited by US law and international treaties. Prior to the availability of a facility for the conversion of the plutonium in the pits to a non-sensitive form this obvious long-term solution to the problem is foreclosed. An alternative near-term approach to applying IAEA safeguards while preserving the necessary degree of confidentiality is required. This paper identifies such an approach. It presents in detail the form of the US declaration; the safeguards objectives which are met; inspection techniques which are utilized and the conclusion which the IAEA could reach concerning the contents of each item and the aggregate of all items. The approach would reveal the number of containers and the aggregate mass of plutonium in a set of n containers presented to the IAEA for verification while protecting data of the isotopic composition and plutonium mass of individual components. The suggested approach provides for traceability from the time the containers are sealed until the conversion of the plutonium to a non-sensitive form

  15. Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Directory of Open Access Journals (Sweden)

    Gidrol Xavier

    2008-02-01

    Full Text Available Abstract Background Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge. Results We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC devoted to BN structure learning. Conclusion We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.

  16. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework

    Directory of Open Access Journals (Sweden)

    Xiangmin Guan

    2015-01-01

    Full Text Available Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology.

  17. Prediction of Protein Thermostability by an Efficient Neural Network Approach

    Directory of Open Access Journals (Sweden)

    Jalal Rezaeenour

    2016-10-01

    Full Text Available Introduction: Manipulation of protein stability is important for understanding the principles that govern protein thermostability, both in basic research and industrial applications. Various data mining techniques exist for prediction of thermostable proteins. Furthermore, ANN methods have attracted significant attention for prediction of thermostability, because they constitute an appropriate approach to mapping the non-linear input-output relationships and massive parallel computing. Method: An Extreme Learning Machine (ELM was applied to estimate thermal behavior of 1289 proteins. In the proposed algorithm, the parameters of ELM were optimized using a Genetic Algorithm (GA, which tuned a set of input variables, hidden layer biases, and input weights, to and enhance the prediction performance. The method was executed on a set of amino acids, yielding a total of 613 protein features. A number of feature selection algorithms were used to build subsets of the features. A total of 1289 protein samples and 613 protein features were calculated from UniProt database to understand features contributing to the enzymes’ thermostability and find out the main features that influence this valuable characteristic. Results:At the primary structure level, Gln, Glu and polar were the features that mostly contributed to protein thermostability. At the secondary structure level, Helix_S, Coil, and charged_Coil were the most important features affecting protein thermostability. These results suggest that the thermostability of proteins is mainly associated with primary structural features of the protein. According to the results, the influence of primary structure on the thermostabilty of a protein was more important than that of the secondary structure. It is shown that prediction accuracy of ELM (mean square error can improve dramatically using GA with error rates RMSE=0.004 and MAPE=0.1003. Conclusion: The proposed approach for forecasting problem

  18. multi-scale data assimilation approaches and error characterisation applied to the inverse modelling of atmospheric constituent emission fields

    International Nuclear Information System (INIS)

    Koohkan, Mohammad Reza

    2012-01-01

    Data assimilation in geophysical sciences aims at optimally estimating the state of the system or some parameters of the system's physical model. To do so, data assimilation needs three types of information: observations and background information, a physical/numerical model, and some statistical description that prescribes uncertainties to each component of the system. In my dissertation, new methodologies of data assimilation are used in atmospheric chemistry and physics: the joint use of a 4D-Var with a sub-grid statistical model to consistently account for representativeness errors, accounting for multiple scale in the BLUE estimation principle, and a better estimation of prior errors using objective estimation of hyper-parameters. These three approaches will be specifically applied to inverse modelling problems focusing on the emission fields of tracers or pollutants. First, in order to estimate the emission inventories of carbon monoxide over France, in-situ stations which are impacted by the representativeness errors are used. A sub-grid model is introduced and coupled with a 4D-Var to reduce the representativeness error. Indeed, the results of inverse modelling showed that the 4D-Var routine was not fit to handle the representativeness issues. The coupled data assimilation system led to a much better representation of the CO concentration variability, with a significant improvement of statistical indicators, and more consistent estimation of the CO emission inventory. Second, the evaluation of the potential of the IMS (International Monitoring System) radionuclide network is performed for the inversion of an accidental source. In order to assess the performance of the global network, a multi-scale adaptive grid is optimised using a criterion based on degrees of freedom for the signal (DFS). The results show that several specific regions remain poorly observed by the IMS network. Finally, the inversion of the surface fluxes of Volatile Organic Compounds

  19. Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity.

    Directory of Open Access Journals (Sweden)

    J R Managbanag

    Full Text Available BACKGROUND: Identification of genes that modulate longevity is a major focus of aging-related research and an area of intense public interest. In addition to facilitating an improved understanding of the basic mechanisms of aging, such genes represent potential targets for therapeutic intervention in multiple age-associated diseases, including cancer, heart disease, diabetes, and neurodegenerative disorders. To date, however, targeted efforts at identifying longevity-associated genes have been limited by a lack of predictive power, and useful algorithms for candidate gene-identification have also been lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have utilized a shortest-path network analysis to identify novel genes that modulate longevity in Saccharomyces cerevisiae. Based on a set of previously reported genes associated with increased life span, we applied a shortest-path network algorithm to a pre-existing protein-protein interaction dataset in order to construct a shortest-path longevity network. To validate this network, the replicative aging potential of 88 single-gene deletion strains corresponding to predicted components of the shortest-path longevity network was determined. Here we report that the single-gene deletion strains identified by our shortest-path longevity analysis are significantly enriched for mutations conferring either increased or decreased replicative life span, relative to a randomly selected set of 564 single-gene deletion strains or to the current data set available for the entire haploid deletion collection. Further, we report the identification of previously unknown longevity genes, several of which function in a conserved longevity pathway believed to mediate life span extension in response to dietary restriction. CONCLUSIONS/SIGNIFICANCE: This work demonstrates that shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity and represents the first application of

  20. Applying theory-driven approaches to understanding and modifying clinicians' behavior: what do we know?

    Science.gov (United States)

    Perkins, Matthew B; Jensen, Peter S; Jaccard, James; Gollwitzer, Peter; Oettingen, Gabriele; Pappadopulos, Elizabeth; Hoagwood, Kimberly E

    2007-03-01

    Despite major recent research advances, large gaps exist between accepted mental health knowledge and clinicians' real-world practices. Although hundreds of studies have successfully utilized basic behavioral science theories to understand, predict, and change patients' health behaviors, the extent to which these theories-most notably the theory of reasoned action (TRA) and its extension, the theory of planned behavior (TPB)-have been applied to understand and change clinician behavior is unclear. This article reviews the application of theory-driven approaches to understanding and changing clinician behaviors. MEDLINE and PsycINFO databases were searched, along with bibliographies, textbooks on health behavior or public health, and references from experts, to find article titles that describe theory-driven approaches (TRA or TPB) to understanding and modifying health professionals' behavior. A total of 19 articles that detailed 20 studies described the use of TRA or TPB and clinicians' behavior. Eight articles describe the use of TRA or TPB with physicians, four relate to nurses, three relate to pharmacists, and two relate to health workers. Only two articles applied TRA or TPB to mental health clinicians. The body of work shows that different constructs of TRA or TPB predict intentions and behavior among different groups of clinicians and for different behaviors and guidelines. The number of studies on this topic is extremely limited, but they offer a rationale and a direction for future research as well as a theoretical basis for increasing the specificity and efficiency of clinician-targeted interventions.

  1. Challenges and Limitations of Applying an Emotion-driven Design Approach on Elderly Users

    DEFF Research Database (Denmark)

    Andersen, Casper L.; Gudmundsson, Hjalte P.; Achiche, Sofiane

    2011-01-01

    Population ageing is without parallel in human history and the twenty-first century will witness even more rapid ageing than did the century just past. Understanding the user needs of the elderly and how to design better products for this segment of the population is crucial, as it can offer a co...... related to the participants’ age and cognitive abilities. The challenges encountered are discussed and guidelines on what should be taken into account to facilitate an emotion-driven design approach for elderly people are proposed....... a competitive advantage for companies. In this paper, challenges of applying an emotion-driven design approach applied on elderly people, in order to identify their user needs towards walking frames, are discussed. The discussion will be based on the experiences and results obtained from the case study....... To measure the emotional responses of the elderly, a questionnaire was designed and adapted from P.M.A. Desmet’s product-emotion measurement instrument: PrEmo. During the case study it was observed that there were several challenges when carrying out the user survey, and that those challenges particularly...

  2. Modelling the permeability of polymers: a neural network approach

    NARCIS (Netherlands)

    Wessling, Matthias; Mulder, M.H.V.; Bos, A.; Bos, A.; van der Linden, M.K.T.; Bos, M.; van der Linden, W.E.

    1994-01-01

    In this short communication, the prediction of the permeability of carbon dioxide through different polymers using a neural network is studied. A neural network is a numeric-mathematical construction that can model complex non-linear relationships. Here it is used to correlate the IR spectrum of a

  3. An Empirical Approach Towards Zero Energy Networks (ZEN)

    NARCIS (Netherlands)

    Tamma, V.P.

    2012-01-01

    Information and Communication Technology (ICT) is changing the way we live and has become an essential part of our life. With the advent of Internet of Things (IoT), and Wireless Sensor Networks (WSN) in particular, the number of devices that are networked is increasing exponentially over the years.

  4. The formation of economic networks : a proximity approach

    NARCIS (Netherlands)

    Boschma, R.; Balland, P.A.; de Vaan, M.

    2014-01-01

    Over the last two decades, scholars from different scientific fields have increasingly acknowledged that network structures play a crucial role in economic activities (Granovetter, 1985; Powell et al., 2005; Cowan et al., 2007; Jackson, 2008). Network structures refer to the particular way relations

  5. A Bayesian Approach to Measurement Bias in Networking Studies

    NARCIS (Netherlands)

    Zhu, Ling; Robinson, Scott E.; Torenvlied, René

    2014-01-01

    The study of managerial networking has been growing in the field of public administration; a field that analyzes how managers in open system organizations interact with different external actors and organizations. Coincident with this interest in managerial networking is the use of self-reported

  6. A Neural Network Approach to the Classification of Autism.

    Science.gov (United States)

    Cohen, Ira L.; And Others

    1993-01-01

    Neural network technology was compared with simultaneous and stepwise linear discriminant analysis in terms of their ability to classify and predict persons (n=138) as having autism or mental retardation. The neural network methodology was superior in both classifying groups and in generalizing to new cases that were not part of the training…

  7. A Graph Oriented Approach for Network Forensic Analysis

    Science.gov (United States)

    Wang, Wei

    2010-01-01

    Network forensic analysis is a process that analyzes intrusion evidence captured from networked environment to identify suspicious entities and stepwise actions in an attack scenario. Unfortunately, the overwhelming amount and low quality of output from security sensors make it difficult for analysts to obtain a succinct high-level view of complex…

  8. Cluster Approach to Network Interaction in Pedagogical University

    Science.gov (United States)

    Chekaleva, Nadezhda V.; Makarova, Natalia S.; Drobotenko, Yulia B.

    2016-01-01

    The study presented in the article is devoted to the analysis of theory and practice of network interaction within the framework of education clusters. Education clusters are considered to be a novel form of network interaction in pedagogical education in Russia. The aim of the article is to show the advantages and disadvantages of the cluster…

  9. Artificial neural network based approach to transmission lines protection

    International Nuclear Information System (INIS)

    Joorabian, M.

    1999-05-01

    The aim of this paper is to present and accurate fault detection technique for high speed distance protection using artificial neural networks. The feed-forward multi-layer neural network with the use of supervised learning and the common training rule of error back-propagation is chosen for this study. Information available locally at the relay point is passed to a neural network in order for an assessment of the fault location to be made. However in practice there is a large amount of information available, and a feature extraction process is required to reduce the dimensionality of the pattern vectors, whilst retaining important information that distinguishes the fault point. The choice of features is critical to the performance of the neural networks learning and operation. A significant feature in this paper is that an artificial neural network has been designed and tested to enhance the precision of the adaptive capabilities for distance protection

  10. Complex network approach to classifying classical piano compositions

    Science.gov (United States)

    Xin, Chen; Zhang, Huishu; Huang, Jiping

    2016-10-01

    Complex network has been regarded as a useful tool handling systems with vague interactions. Hence, numerous applications have arised. In this paper we construct complex networks for 770 classical piano compositions of Mozart, Beethoven and Chopin based on musical note pitches and lengths. We find prominent distinctions among network edges of different composers. Some stylized facts can be explained by such parameters of network structures and topologies. Further, we propose two classification methods for music styles and genres according to the discovered distinctions. These methods are easy to implement and the results are sound. This work suggests that complex network could be a decent way to analyze the characteristics of musical notes, since it could provide a deep view into understanding of the relationships among notes in musical compositions and evidence for classification of different composers, styles and genres of music.

  11. Connecting the Disconnected: Social Work and Social Network Analysis. A Methodological Approach to Identifying Network Peer Leaders

    Directory of Open Access Journals (Sweden)

    del Fresno García, Miguel

    2015-02-01

    Full Text Available Social network theory and analysis (SNA offers a useful conceptual framework and a robust set of methods for understanding, analysing, and representing the pattern of social interactions that surround individuals forming an overall network of ties. SNA provides both insights and applications regarding relational structures that may be consequential for individual and collective agency. Despite the fact that both SNA and social work focus on relationships and behaviour, and that each discipline could substantively inform the other, there remains a significant lack of intersection between the two disciplines. In response to this gap, SNA applied to social work can provide additional ways to both diagnose and intervene behaviourally through the following approaches: a by identifying key players in promoting the dissemination of behavioral changes in networks; b by segmenting and identifying groups, cliques and communities; c by supporting behavioural change through social ties surrounding the individual; and d by aligning and applying specific interventions that draw on mutually interactive processes in terms of individual influences on networks, as well as network influences on individuals. SNA provides social work with an additional lens and set of tools based on the constellation of interactions surrounding individuals, families, groups or communities that supports understanding, diagnosis, and intervention.La Teoría y Análisis de Redes Sociales (SNA ofrece un conjunto de métodos de análisis de las interacciones sociales de los seres humanos, que permiten de forma específica investigar las estructuras relacionales y la representación de éstas como redes. SNA proporciona tanto acceso a nuevo conocimiento como la representación de las estructuras relacionales y como éstas pueden ser consecuencia de la acción individual y colectiva. A pesar de que tanto el SNA como el Trabajo Social tienen su foco en las relaciones y el comportamiento, de

  12. A Very Large Area Network (VLAN) knowledge-base applied to space communication problems

    Science.gov (United States)

    Zander, Carol S.

    1988-01-01

    This paper first describes a hierarchical model for very large area networks (VLAN). Space communication problems whose solution could profit by the model are discussed and then an enhanced version of this model incorporating the knowledge needed for the missile detection-destruction problem is presented. A satellite network or VLAN is a network which includes at least one satellite. Due to the complexity, a compromise between fully centralized and fully distributed network management has been adopted. Network nodes are assigned to a physically localized group, called a partition. Partitions consist of groups of cell nodes with one cell node acting as the organizer or master, called the Group Master (GM). Coordinating the group masters is a Partition Master (PM). Knowledge is also distributed hierarchically existing in at least two nodes. Each satellite node has a back-up earth node. Knowledge must be distributed in such a way so as to minimize information loss when a node fails. Thus the model is hierarchical both physically and informationally.

  13. Discovering complex interrelationships between socioeconomic status and health in Europe: A case study applying Bayesian Networks.

    Science.gov (United States)

    Alvarez-Galvez, Javier

    2016-03-01

    Studies assume that socioeconomic status determines individuals' states of health, but how does health determine socioeconomic status? And how does this association vary depending on contextual differences? To answer this question, our study uses an additive Bayesian Networks model to explain the interrelationships between health and socioeconomic determinants using complex and messy data. This model has been used to find the most probable structure in a network to describe the interdependence of these factors in five European welfare state regimes. The advantage of this study is that it offers a specific picture to describe the complex interrelationship between socioeconomic determinants and health, producing a network that is controlled by socio-demographic factors such as gender and age. The present work provides a general framework to describe and understand the complex association between socioeconomic determinants and health. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Information theoretical methods to deconvolute genetic regulatory networks applied to thyroid neoplasms

    Science.gov (United States)

    Hernández-Lemus, Enrique; Velázquez-Fernández, David; Estrada-Gil, Jesús K.; Silva-Zolezzi, Irma; Herrera-Hernández, Miguel F.; Jiménez-Sánchez, Gerardo

    2009-12-01

    Most common pathologies in humans are not caused by the mutation of a single gene, rather they are complex diseases that arise due to the dynamic interaction of many genes and environmental factors. This plethora of interacting genes generates a complexity landscape that masks the real effects associated with the disease. To construct dynamic maps of gene interactions (also called genetic regulatory networks) we need to understand the interplay between thousands of genes. Several issues arise in the analysis of experimental data related to gene function: on the one hand, the nature of measurement processes generates highly noisy signals; on the other hand, there are far more variables involved (number of genes and interactions among them) than experimental samples. Another source of complexity is the highly nonlinear character of the underlying biochemical dynamics. To overcome some of these limitations, we generated an optimized method based on the implementation of a Maximum Entropy Formalism (MaxEnt) to deconvolute a genetic regulatory network based on the most probable meta-distribution of gene-gene interactions. We tested the methodology using experimental data for Papillary Thyroid Cancer (PTC) and Thyroid Goiter tissue samples. The optimal MaxEnt regulatory network was obtained from a pool of 25,593,993 different probability distributions. The group of observed interactions was validated by several (mostly in silico) means and sources. For the associated Papillary Thyroid Cancer Gene Regulatory Network (PTC-GRN) the majority of the nodes (genes) have very few links (interactions) whereas a small number of nodes are highly connected. PTC-GRN is also characterized by high clustering coefficients and network heterogeneity. These properties have been recognized as characteristic of topological robustness, and they have been largely described in relation to biological networks. A number of biological validity outcomes are discussed with regard to both the

  15. Investigating meta-approaches for reconstructing gene networks in a mammalian cellular context.

    Directory of Open Access Journals (Sweden)

    Azree Nazri

    Full Text Available The output of state-of-the-art reverse-engineering methods for biological networks is often based on the fitting of a mathematical model to the data. Typically, different datasets do not give single consistent network predictions but rather an ensemble of inconsistent networks inferred under the same reverse-engineering method that are only consistent with the specific experimentally measured data. Here, we focus on an alternative approach for combining the information contained within such an ensemble of inconsistent gene networks called meta-analysis, to make more accurate predictions and to estimate the reliability of these predictions. We review two existing meta-analysis approaches; the Fisher transformation combined coefficient test (FTCCT and Fisher's inverse combined probability test (FICPT; and compare their performance with five well-known methods, ARACNe, Context Likelihood or Relatedness network (CLR, Maximum Relevance Minimum Redundancy (MRNET, Relevance Network (RN and Bayesian Network (BN. We conducted in-depth numerical ensemble simulations and demonstrated for biological expression data that the meta-analysis approaches consistently outperformed the best gene regulatory network inference (GRNI methods in the literature. Furthermore, the meta-analysis approaches have a low computational complexity. We conclude that the meta-analysis approaches are a powerful tool for integrating different datasets to give more accurate and reliable predictions for biological networks.

  16. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Lee, J.; Gunter, D.; Tierney, B.; Allcock, B.; Bester, J.; Bresnahan, J.; Tuecke, S.

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. From their work developing a scalable distributed network cache, the authors have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). The authors discuss several hardware and software design techniques, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. The authors describe results from the Supercomputing 2000 conference

  17. Teaching strategies applied to teaching computer networks in Engineering in Telecommunications and Electronics

    Directory of Open Access Journals (Sweden)

    Elio Manuel Castañeda-González

    2016-07-01

    Full Text Available Because of the large impact that today computer networks, their study in related fields such as Telecommunications Engineering and Electronics is presented to the student with great appeal. However, by digging in content, lacking a strong practical component, you can make this interest decreases considerably. This paper proposes the use of teaching strategies and analogies, media and interactive applications that enhance the teaching of discipline networks and encourage their study. It is part of an analysis of how the teaching of the discipline process is performed and then a description of each of these strategies is done with their respective contribution to student learning.

  18. The GRADE approach for assessing new technologies as applied to apheresis devices in ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Cabriada-Nuño Jose

    2010-06-01

    Full Text Available Abstract Background In the last few years, a new non-pharmacological treatment, termed apheresis, has been developed to lessen the burden of ulcerative colitis (UC. Several methods can be used to establish treatment recommendations, but over the last decade an informal collaboration group of guideline developers, methodologists, and clinicians has developed a more sensible and transparent approach known as the Grading of Recommendations, Assessment, Development and Evaluation (GRADE. GRADE has mainly been used in clinical practice guidelines and systematic reviews. The aim of the present study is to describe the use of this approach in the development of recommendations for a new health technology, and to analyse the strengths, weaknesses, opportunities, and threats found when doing so. Methods A systematic review of the use of apheresis for UC treatment was performed in June 2004 and updated in May 2008. Two related clinical questions were selected, the outcomes of interest defined, and the quality of the evidence assessed. Finally, the overall quality of each question was taken into account to formulate recommendations following the GRADE approach. To evaluate this experience, a SWOT (strengths, weaknesses, opportunities and threats analysis was performed to enable a comparison with our previous experience with the SIGN (Scottish Intercollegiate Guidelines Network method. Results Application of the GRADE approach allowed recommendations to be formulated and the method to be clarified and made more explicit and transparent. Two weak recommendations were proposed to answer to the formulated questions. Some challenges, such as the limited number of studies found for the new technology and the difficulties encountered when searching for the results for the selected outcomes, none of which are specific to GRADE, were identified. GRADE was considered to be a more time-consuming method, although it has the advantage of taking into account patient

  19. The GRADE approach for assessing new technologies as applied to apheresis devices in ulcerative colitis

    Science.gov (United States)

    2010-01-01

    Background In the last few years, a new non-pharmacological treatment, termed apheresis, has been developed to lessen the burden of ulcerative colitis (UC). Several methods can be used to establish treatment recommendations, but over the last decade an informal collaboration group of guideline developers, methodologists, and clinicians has developed a more sensible and transparent approach known as the Grading of Recommendations, Assessment, Development and Evaluation (GRADE). GRADE has mainly been used in clinical practice guidelines and systematic reviews. The aim of the present study is to describe the use of this approach in the development of recommendations for a new health technology, and to analyse the strengths, weaknesses, opportunities, and threats found when doing so. Methods A systematic review of the use of apheresis for UC treatment was performed in June 2004 and updated in May 2008. Two related clinical questions were selected, the outcomes of interest defined, and the quality of the evidence assessed. Finally, the overall quality of each question was taken into account to formulate recommendations following the GRADE approach. To evaluate this experience, a SWOT (strengths, weaknesses, opportunities and threats) analysis was performed to enable a comparison with our previous experience with the SIGN (Scottish Intercollegiate Guidelines Network) method. Results Application of the GRADE approach allowed recommendations to be formulated and the method to be clarified and made more explicit and transparent. Two weak recommendations were proposed to answer to the formulated questions. Some challenges, such as the limited number of studies found for the new technology and the difficulties encountered when searching for the results for the selected outcomes, none of which are specific to GRADE, were identified. GRADE was considered to be a more time-consuming method, although it has the advantage of taking into account patient values when defining and

  20. The GRADE approach for assessing new technologies as applied to apheresis devices in ulcerative colitis.

    Science.gov (United States)

    Ibargoyen-Roteta, Nora; Gutiérrez-Ibarluzea, Iñaki; Rico-Iturrioz, Rosa; López-Argumedo, Marta; Reviriego-Rodrigo, Eva; Cabriada-Nuño, Jose Luis; Schünemann, Holger J

    2010-06-16

    In the last few years, a new non-pharmacological treatment, termed apheresis, has been developed to lessen the burden of ulcerative colitis (UC). Several methods can be used to establish treatment recommendations, but over the last decade an informal collaboration group of guideline developers, methodologists, and clinicians has developed a more sensible and transparent approach known as the Grading of Recommendations, Assessment, Development and Evaluation (GRADE). GRADE has mainly been used in clinical practice guidelines and systematic reviews. The aim of the present study is to describe the use of this approach in the development of recommendations for a new health technology, and to analyse the strengths, weaknesses, opportunities, and threats found when doing so. A systematic review of the use of apheresis for UC treatment was performed in June 2004 and updated in May 2008. Two related clinical questions were selected, the outcomes of interest defined, and the quality of the evidence assessed. Finally, the overall quality of each question was taken into account to formulate recommendations following the GRADE approach. To evaluate this experience, a SWOT (strengths, weaknesses, opportunities and threats) analysis was performed to enable a comparison with our previous experience with the SIGN (Scottish Intercollegiate Guidelines Network) method. Application of the GRADE approach allowed recommendations to be formulated and the method to be clarified and made more explicit and transparent. Two weak recommendations were proposed to answer to the formulated questions. Some challenges, such as the limited number of studies found for the new technology and the difficulties encountered when searching for the results for the selected outcomes, none of which are specific to GRADE, were identified. GRADE was considered to be a more time-consuming method, although it has the advantage of taking into account patient values when defining and grading the relevant outcomes

  1. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Sayiter [Engineering Faculty, Cumhuriyet University, Sivas (Turkmenistan)

    2017-09-15

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R{sup 2} value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R{sup 2} values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  2. Neural network approaches versus statistical methods in classification of multisource remote sensing data

    Science.gov (United States)

    Benediktsson, Jon A.; Swain, Philip H.; Ersoy, Okan K.

    1990-01-01

    Neural network learning procedures and statistical classificaiton methods are applied and compared empirically in classification of multisource remote sensing and geographic data. Statistical multisource classification by means of a method based on Bayesian classification theory is also investigated and modified. The modifications permit control of the influence of the data sources involved in the classification process. Reliability measures are introduced to rank the quality of the data sources. The data sources are then weighted according to these rankings in the statistical multisource classification. Four data sources are used in experiments: Landsat MSS data and three forms of topographic data (elevation, slope, and aspect). Experimental results show that two different approaches have unique advantages and disadvantages in this classification application.

  3. A systems biology approach identifies molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Nil Turan

    2011-09-01

    Full Text Available Chronic Obstructive Pulmonary Disease (COPD is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients.

  4. The Intensive Dysphagia Rehabilitation Approach Applied to Patients With Neurogenic Dysphagia: A Case Series Design Study.

    Science.gov (United States)

    Malandraki, Georgia A; Rajappa, Akila; Kantarcigil, Cagla; Wagner, Elise; Ivey, Chandra; Youse, Kathleen

    2016-04-01

    To examine the effects of the Intensive Dysphagia Rehabilitation approach on physiological and functional swallowing outcomes in adults with neurogenic dysphagia. Intervention study; before-after trial with 4-week follow-up through an online survey. Outpatient university clinics. A consecutive sample of subjects (N=10) recruited from outpatient university clinics. All subjects were diagnosed with adult-onset neurologic injury or disease. Dysphagia diagnosis was confirmed through clinical and endoscopic swallowing evaluations. No subjects withdrew from the study. Participants completed the 4-week Intensive Dysphagia Rehabilitation protocol, including 2 oropharyngeal exercise regimens, a targeted swallowing routine using salient stimuli, and caregiver participation. Treatment included hourly sessions twice per week and home practice for approximately 45 min/d. Outcome measures assessed pre- and posttreatment included airway safety using an 8-point Penetration Aspiration Scale, lingual isometric pressures, self-reported swallowing-related quality of life (QOL), and level of oral intake. Also, patients were monitored for adverse dysphagia-related effects. QOL and adverse effects were also assessed at the 4-week follow-up (online survey). The Intensive Dysphagia Rehabilitation approach was effective in improving maximum and mean Penetration Aspiration Scale scores (PDysphagia Rehabilitation approach was safe and improved physiological and some functional swallowing outcomes in our sample; however, further investigation is needed before it can be widely applied. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Prediction models in the design of neural network based ECG classifiers: A neural network and genetic programming approach

    Directory of Open Access Journals (Sweden)

    Smith Ann E

    2002-01-01

    Full Text Available Abstract Background Classification of the electrocardiogram using Neural Networks has become a widely used method in recent years. The efficiency of these classifiers depends upon a number of factors including network training. Unfortunately, there is a shortage of evidence available to enable specific design choices to be made and as a consequence, many designs are made on the basis of trial and error. In this study we develop prediction models to indicate the point at which training should stop for Neural Network based Electrocardiogram classifiers in order to ensure maximum generalisation. Methods Two prediction models have been presented; one based on Neural Networks and the other on Genetic Programming. The inputs to the models were 5 variable training parameters and the output indicated the point at which training should stop. Training and testing of the models was based on the results from 44 previously developed bi-group Neural Network classifiers, discriminating between Anterior Myocardial Infarction and normal patients. Results Our results show that both approaches provide close fits to the training data; p = 0.627 and p = 0.304 for the Neural Network and Genetic Programming methods respectively. For unseen data, the Neural Network exhibited no significant differences between actual and predicted outputs (p = 0.306 while the Genetic Programming method showed a marginally significant difference (p = 0.047. Conclusions The approaches provide reverse engineering solutions to the development of Neural Network based Electrocardiogram classifiers. That is given the network design and architecture, an indication can be given as to when training should stop to obtain maximum network generalisation.

  6. Data Storage for Social Networks A Socially Aware Approach

    CERN Document Server

    Tran, Duc A

    2012-01-01

    Evidenced by the success of Facebook, Twitter, and LinkedIn, online social networks (OSNs) have become ubiquitous, offering novel ways for people to access information and communicate with each other. As the increasing popularity of social networking is undeniable, scalability is an important issue for any OSN that wants to serve a large number of users. Storing user data for the entire network on a single server can quickly lead to a bottleneck, and, consequently, more servers are needed to expand storage capacity and lower data request traffic per server. Adding more servers is just one step

  7. A Collaborative Learning Network Approach to Improvement: The CUSP Learning Network.

    Science.gov (United States)

    Weaver, Sallie J; Lofthus, Jennifer; Sawyer, Melinda; Greer, Lee; Opett, Kristin; Reynolds, Catherine; Wyskiel, Rhonda; Peditto, Stephanie; Pronovost, Peter J

    2015-04-01

    Collaborative improvement networks draw on the science of collaborative organizational learning and communities of practice to facilitate peer-to-peer learning, coaching, and local adaption. Although significant improvements in patient safety and quality have been achieved through collaborative methods, insight regarding how collaborative networks are used by members is needed. Improvement Strategy: The Comprehensive Unit-based Safety Program (CUSP) Learning Network is a multi-institutional collaborative network that is designed to facilitate peer-to-peer learning and coaching specifically related to CUSP. Member organizations implement all or part of the CUSP methodology to improve organizational safety culture, patient safety, and care quality. Qualitative case studies developed by participating members examine the impact of network participation across three levels of analysis (unit, hospital, health system). In addition, results of a satisfaction survey designed to evaluate member experiences were collected to inform network development. Common themes across case studies suggest that members found value in collaborative learning and sharing strategies across organizational boundaries related to a specific improvement strategy. The CUSP Learning Network is an example of network-based collaborative learning in action. Although this learning network focuses on a particular improvement methodology-CUSP-there is clear potential for member-driven learning networks to grow around other methods or topic areas. Such collaborative learning networks may offer a way to develop an infrastructure for longer-term support of improvement efforts and to more quickly diffuse creative sustainment strategies.

  8. Modeling of ammonia emission in the USA and EU countries using an artificial neural network approach.

    Science.gov (United States)

    Stamenković, Lidija J; Antanasijević, Davor Z; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Pocajt, Viktor V

    2015-12-01

    Ammonia emissions at the national level are frequently estimated by applying the emission inventory approach, which includes the use of emission factors, which are difficult and expensive to determine. Emission factors are therefore the subject of estimation, and as such they contribute to inherent uncertainties in the estimation of ammonia emissions. This paper presents an alternative approach for the prediction of ammonia emissions at the national level based on artificial neural networks and broadly available sustainability and economical/agricultural indicators as model inputs. The Multilayer Perceptron (MLP) architecture was optimized using a trial-and-error procedure, including the number of hidden neurons, activation function, and a back-propagation algorithm. Principal component analysis (PCA) was applied to reduce mutual correlation between the inputs. The obtained results demonstrate that the MLP model created using the PCA transformed inputs (PCA-MLP) provides a more accurate prediction than the MLP model based on the original inputs. In the validation stage, the MLP and PCA-MLP models were tested for ammonia emission predictions for up to 2 years and compared with a principal component regression model. Among the three models, the PCA-MLP demonstrated the best performance, providing predictions for the USA and the majority of EU countries with a relative error of less than 20%.

  9. Applying Object Oriented Bayesian Networks to Large Medical Decision Support Systems

    DEFF Research Database (Denmark)

    Bangsø, Olav; Olesen, Kristian Grønborg

    2003-01-01

    in the construction of such models. The other application is the MUNIN system for diagnosis of perioheral muscle and nerve diseases, that is characterized by a number of (almost) identical anatomical structures. The modeling of such structures benefit drom inheritance properties of object oriented Bayesian networks...... systems...

  10. Advancing the State of the Art in Applying Network Science to C2

    Science.gov (United States)

    2014-06-01

    models, and to identify which organizational problems benefit best from self-synchronization. In the tenth contribution, Complex Adaptive Information... eCommerce to support CMI) – Offensive cyber operations: • Integrating kinetic & cyber ops – Incorporating network science into C2 theory: • Editing

  11. Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation.

    Science.gov (United States)

    B.G. Marcot; J.D. Steventon; G.D. Sutherland; R.K. McCann

    2006-01-01

    We provide practical guidelines for developing, testing, and revising Bayesian belief networks (BBNs). Primary steps in this process include creating influence diagrams of the hypothesized "causal web" of key factors affecting a species or ecological outcome of interest; developing a first, alpha-level BBN model from the influence diagram; revising the model...

  12. Distributed Control using Decompositions applied to a network of houses with µCHP’s

    NARCIS (Netherlands)

    Larsen, Gunn; Scherpen, Jacquelien M.A.; van Foreest, Nicolaas; Meinsma, Gjerrit; Stigter, Han

    2010-01-01

    In this project a network of households which are both producers and consumers of electricity, is assumed. We investigate how pricing mechanisms can be used to control the electricity supply of micro Combined Heat Power (µCHP) systems to the electricity grid. Such systems produce at the same time

  13. The Evaluation of Rekeying Protocols Within the Hubenko Architecture as Applied to Wireless Sensor Networks

    Science.gov (United States)

    2009-03-01

    10 II. Background and Literature Review ..............................................................................11 2.1 Mobile Ad Hoc Networks...Group Management Protocol (IGMP)........................................................19 2.6 Gothic Group Membership Authentication...areas for future research. 11 II. Background and Literature Review This chapter presents fundamental concepts and recent research in the areas

  14. Comparison of canny and V1 neural network based edge detectors applied to road extraction

    CSIR Research Space (South Africa)

    Hauptfleisch, AC

    2006-11-01

    Full Text Available The Anti-parallel edge Centerline Extractor (ACE) algorithm is designed to extract road networks from high resolution satellite images. The primary mechanism used by the algorithm to detect the presence of roads is a filter that detects parallel...

  15. Oriented multicast routing algorithm applied to network-level agent search

    Directory of Open Access Journals (Sweden)

    Damien Magoni

    2001-12-01

    Full Text Available Many protocols need a discovery mechanism to enable a given node to locate one or several nodes involved in the same communication. However, there is no protocol ready to fulfill this service at the network-layer. Every protocol usually implements its own solution. In particular, multicast protocols often use a searching technique based on an algorithm called expanding rings search. This algorithm searches for nodes in all directions and thus uses much bandwidth. However a typical search can usually restrict its scan in a specific direction. To enable this broadcast restriction, we propose an oriented multicast routing algorithm. The algorithm's principle is to direct the multicast of packets towards a special node, involved in the communication, in order to search only in a limited area. The area must be as small as possible to reduce network flooding but still has to contain many nodes satisfying the search criteria. This new algorithm is the core part of a network-level node search framework also defined herein. A search protocol based on this framework could provide a network-level agent discovery service to current protocols. We have simulated an agent search with our algorithm on one side and with the expanding rings' algorithm on the other side and we give comparative results.

  16. Incorporating social network data in mobility studies : Benefits and takeaways from an applied survey methodology

    NARCIS (Netherlands)

    Pritchard, John P.; Moura, Filipe; de Abreu e Silva, João

    2016-01-01

    The importance of social networks in counteracting mobility limitations is often overlooked despite allowing individuals to remain included under otherwise adverse conditions. Living in poor accessibility areas and having low mobility is associated with a higher risk for social exclusion; that is,

  17. SIGNATURES OF ILLICIT NUCLEAR PROCUREMENT NETWORKS: AN OVERVIEW OF PRELIMINARY APPROACHES AND RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Webster, Jennifer B.; Erikson, Luke E.; Gastelum, Zoe N.; Lewis, Valerie A.; Best, Daniel M.; Hogan, Emilie A.; Chikkagoudar, Satish

    2014-05-12

    The illicit trafficking of strategic nuclear commodities (defined here as the goods needed for a covert nuclear program excluding special nuclear materials) poses a significant challenge to the international nuclear nonproliferation community. Export control regulations, both domestically and internationally, seek to inhibit the spread of strategic nuclear commodities by restricting their sale to parties that may use them for nefarious purposes. However, export controls alone are not sufficient for preventing the illicit transfer of strategic nuclear goods. There are two major pitfalls to relying solely on export control regulations for the deterrence of proliferation of strategic goods. First, export control enforcement today relies heavily on the honesty and willingness of participants to adhere to the legal framework already in place. Secondly, current practices focus on the evaluation of single records which allow for the necessary goods to be purchased separately and hidden within the thousands of legitimate commerce transactions that occur each day, disregarding strategic information regarding several purchases. Our research presents two preliminary data-centric approaches for investigating procurement networks of strategic nuclear commodities. Pacific Northwest National Laboratory (PNNL) has been putting significant effort into nonproliferation activities as an institution, both in terms of the classical nuclear material focused approach and in the examination of other strategic goods necessary to implement a nuclear program. In particular, the PNNL Signature Discovery Initiative (SDI) has codified several scientific methodologies for the detection, characterization, and prediction of signatures that are indicative of a phenomenon of interest. The methodologies and tools developed under SDI have already been applied successfully to problems in bio-forensics, cyber security and power grid balancing efforts and they have now made the nonproliferation of

  18. Synthesis of biorefinery networks using a superstructure optimization based approach

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Anaya-Reza, Omar; Lopez-Arenas, Maria Teresa

    into account the available technologies, geographical location, future technological developments and global market changes. The problem of optimal design of biorefinery networks is solved in this work through three different stages: (i) synthesis stage, (ii) design stage, and (iii) innovation stage......, the selected processing network is simulated and analyzed and targets for improvement are identified. Finally, a more sustainable design is achieved at the innovation stage by generating innovative solutions that satisfy the targets from the design stage. This work is concerned with the first stage......]. The optimal synthesis of biorefinery networks problem is defined as: given a set of biomass derived feedstock and a set of desired final products and specifications, determine a flexible, sustainable and innovative processing network with the targets of minimum cost and sustainable development taking...

  19. Heuristic approach to the passive optical network with fibre duct ...

    African Journals Online (AJOL)

    PON) planning problem necessitates the search for a subset of deployed facilities (splitters) and their allocated demand points (optical network units) to minimise the overall deployment cost. A mixed integer linear programming formulation ...

  20. An Efficient Approach for Node Localisation and Tracking in Wireless Sensor Networks

    CSIR Research Space (South Africa)

    Mwila, Martin K

    2014-08-01

    Full Text Available nodes in WSN. Some localisation techniques for stationary WSN, such as Multidimensional Scaling (MDS) and Curvilinear Component Analysis (CCA), reported to be accurate in some network topologies, cannot be applied in their current formats for accurate...