WorldWideScience

Sample records for network approach applied

  1. Applying a social network analysis (SNA) approach to understanding radiologists' performance in reading mammograms

    Science.gov (United States)

    Tavakoli Taba, Seyedamir; Hossain, Liaquat; Heard, Robert; Brennan, Patrick; Lee, Warwick; Lewis, Sarah

    2017-03-01

    Rationale and objectives: Observer performance has been widely studied through examining the characteristics of individuals. Applying a systems perspective, while understanding of the system's output, requires a study of the interactions between observers. This research explains a mixed methods approach to applying a social network analysis (SNA), together with a more traditional approach of examining personal/ individual characteristics in understanding observer performance in mammography. Materials and Methods: Using social networks theories and measures in order to understand observer performance, we designed a social networks survey instrument for collecting personal and network data about observers involved in mammography performance studies. We present the results of a study by our group where 31 Australian breast radiologists originally reviewed 60 mammographic cases (comprising of 20 abnormal and 40 normal cases) and then completed an online questionnaire about their social networks and personal characteristics. A jackknife free response operating characteristic (JAFROC) method was used to measure performance of radiologists. JAFROC was tested against various personal and network measures to verify the theoretical model. Results: The results from this study suggest a strong association between social networks and observer performance for Australian radiologists. Network factors accounted for 48% of variance in observer performance, in comparison to 15.5% for the personal characteristics for this study group. Conclusion: This study suggest a strong new direction for research into improving observer performance. Future studies in observer performance should consider social networks' influence as part of their research paradigm, with equal or greater vigour than traditional constructs of personal characteristics.

  2. Equivalent electrical network model approach applied to a double acting low temperature differential Stirling engine

    International Nuclear Information System (INIS)

    Formosa, Fabien; Badel, Adrien; Lottin, Jacques

    2014-01-01

    Highlights: • An equivalent electrical network modeling of Stirling engine is proposed. • This model is applied to a membrane low temperate double acting Stirling engine. • The operating conditions (self-startup and steady state behavior) are defined. • An experimental engine is presented and tested. • The model is validated against experimental results. - Abstract: This work presents a network model to simulate the periodic behavior of a double acting free piston type Stirling engine. Each component of the engine is considered independently and its equivalent electrical circuit derived. When assembled in a global electrical network, a global model of the engine is established. Its steady behavior can be obtained by the analysis of the transfer function for one phase from the piston to the expansion chamber. It is then possible to simulate the dynamic (steady state stroke and operation frequency) as well as the thermodynamic performances (output power and efficiency) for given mean pressure, heat source and heat sink temperatures. The motion amplitude especially can be determined by the spring-mass properties of the moving parts and the main nonlinear effects which are taken into account in the model. The thermodynamic features of the model have then been validated using the classical isothermal Schmidt analysis for a given stroke. A three-phase low temperature differential double acting free membrane architecture has been built and tested. The experimental results are compared with the model and a satisfactory agreement is obtained. The stroke and operating frequency are predicted with less than 2% error whereas the output power discrepancy is of about 30%. Finally, some optimization routes are suggested to improve the design and maximize the performances aiming at waste heat recovery applications

  3. Classification by a neural network approach applied to non destructive testing

    International Nuclear Information System (INIS)

    Lefevre, M.; Preteux, F.; Lavayssiere, B.

    1995-01-01

    Radiography is used by EDF for pipe inspection in nuclear power plants in order to detect defects. The radiographs obtained are then digitized in a well-defined protocol. The aim of EDF consists of developing a non destructive testing system for recognizing defects. In this paper, we describe the recognition procedure of areas with defects. We first present the digitization protocol, specifies the poor quality of images under study and propose a procedure to enhance defects. We then examine the problem raised by the choice of good features for classification. After having proved that statistical or standard textural features such as homogeneity, entropy or contrast are not relevant, we develop a geometrical-statistical approach based on the cooperation between signal correlations study and regional extrema analysis. The principle consists of analysing and comparing for areas with defects and without any defect, the evolution of conditional probabilities matrices for increasing neighborhood sizes, the shape of variograms and the location of regional minima. We demonstrate that anisotropy and surface of series of 'comet tails' associated with probability matrices, variograms slope and statistical indices, regional extrema location, are features able to discriminate areas with defects from areas without any. The classification is then realized by a neural network, which structure, properties and learning mechanisms are detailed. Finally we discuss the results. (authors). 21 refs., 5 figs

  4. African American Social Networking Online: Applying a Digital Practice Approach to Understanding Digital Inequalities

    Directory of Open Access Journals (Sweden)

    Danielle Taana Smith

    2013-06-01

    Full Text Available This study develops a framework for systematic examination of information and communication technologies (ICTs usage differences within a group. This framework situates the digital divide and digital inequalities model within a broader conceptual model of digital practice, exemplified by how groups of people use ICTs. I use nationally representative data to examine online activities on social networking sites (SNS for African Americans and other ethnoracial groups. The data for this research comes from the Pew Internet and American Life’s “Spring Tracking Survey 2008”. The results from regression analyses support the digital practice framework which moves discussions of ICT usage beyond social and economic advantages or disadvantages, and addresses individual and group needs in using these technologies.

  5. Applying the Analog Configurability Test Approach in a Wireless Sensor Network Application

    Directory of Open Access Journals (Sweden)

    Agustín Laprovitta

    2014-01-01

    Full Text Available This work addresses the application of the analog configurability test (ACT approach for an embedded analog configurable circuit (EACC, composed of operational amplifiers and interconnection resources that are embedded in the MSP430xG461x microcontrollers family. This test strategy is particularly useful for in-field application requiring reliability, safe operation, or fault tolerance characteristics. Our test proposal consists of programming a reduced set of available configurations for the EACC and testing its functionality by measuring only a few key parameters. The processor executes an embedded test routine that sequentially programs selected configurations, sets the test stimulus, acquires data from the internal ADC, and performs required calculations. The test approach is experimentally evaluated using an embedded system-based real application board. Our experimental results show very good repeatability, with very low errors. These results show that the ACT proposed here is useful for testing the functionality of the circuit under test in a real application context by using a simple strategy at a very low cost.

  6. Abductive networks applied to electronic combat

    Science.gov (United States)

    Montgomery, Gerard J.; Hess, Paul; Hwang, Jong S.

    1990-08-01

    A practical approach to dealing with combinatorial decision problems and uncertainties associated with electronic combat through the use of networks of high-level functional elements called abductive networks is presented. It describes the application of the Abductory Induction Mechanism (AIMTM) a supervised inductive learning tool for synthesizing polynomial abductive networks to the electronic combat problem domain. From databases of historical expert-generated or simulated combat engagements AIM can often induce compact and robust network models for making effective real-time electronic combat decisions despite significant uncertainties or a combinatorial explosion of possible situations. The feasibility of applying abductive networks to realize advanced combat decision aiding capabilities was demonstrated by applying AIM to a set of electronic combat simulations. The networks synthesized by AIM generated accurate assessments of the intent lethality and overall risk associated with a variety of simulated threats and produced reasonable estimates of the expected effectiveness of a group of electronic countermeasures for a large number of simulated combat scenarios. This paper presents the application of abductive networks to electronic combat summarizes the results of experiments performed using AIM discusses the benefits and limitations of applying abductive networks to electronic combat and indicates why abductive networks can often result in capabilities not attainable using alternative approaches. 1. ELECTRONIC COMBAT. UNCERTAINTY. AND MACHINE LEARNING Electronic combat has become an essential part of the ability to make war and has become increasingly complex since

  7. Advancing Dose-Response Assessment Methods for Environmental Regulatory Impact Analysis: A Bayesian Belief Network Approach Applied to Inorganic Arsenic.

    Science.gov (United States)

    Zabinski, Joseph W; Garcia-Vargas, Gonzalo; Rubio-Andrade, Marisela; Fry, Rebecca C; Gibson, Jacqueline MacDonald

    2016-05-10

    Dose-response functions used in regulatory risk assessment are based on studies of whole organisms and fail to incorporate genetic and metabolomic data. Bayesian belief networks (BBNs) could provide a powerful framework for incorporating such data, but no prior research has examined this possibility. To address this gap, we develop a BBN-based model predicting birthweight at gestational age from arsenic exposure via drinking water and maternal metabolic indicators using a cohort of 200 pregnant women from an arsenic-endemic region of Mexico. We compare BBN predictions to those of prevailing slope-factor and reference-dose approaches. The BBN outperforms prevailing approaches in balancing false-positive and false-negative rates. Whereas the slope-factor approach had 2% sensitivity and 99% specificity and the reference-dose approach had 100% sensitivity and 0% specificity, the BBN's sensitivity and specificity were 71% and 30%, respectively. BBNs offer a promising opportunity to advance health risk assessment by incorporating modern genetic and metabolomic data.

  8. Following the moving and changing attachments and assemblages of 'addiction': Applying the actor network approach to autobiographies.

    Science.gov (United States)

    Törrönen, Jukka; Tigerstedt, Christoffer

    2018-04-01

    The article applies actor network theory (ANT) to autobiographical data on alcohol dependence to explore what ANT can offer to the analysis of 'addiction stories'. By defining 'addiction' as a relational achievement, as the effect of elements acting together as a configuration of human and non-human actors, the article demonstrates how the moving and changing attachments of addiction can be dynamically analyzed with concepts of 'assemblage', 'mediator', 'tendency', 'translation', 'trajectory', 'immutable mobile', 'fluid' and 'bush fire'. The article shows how the reduction of alcohol dependence simply to genetic factors, neurobiological causes, personality disorders and self-medication constitutes an inadequate explanation. As 'meta theories', they illuminate addiction one-sidedly. Instead, as ANT pays attention to multiple heterogeneous mediators, it specifies in what way the causes identified in 'meta theories' may together with other actors participate in addiction assemblages. When following the development of addiction assemblages, we focus on situational sequences of action, in which human and non-human elements are linked to each other, and we trace how the relational shape of addiction changes from one sequence to another as a transforming assemblage of heterogeneous attachments that either maintain healthy subjectivities or destabilize them. The more attachments assemblages of addiction are able to make that are flexible and durable from one event to another, the stronger also the addiction-based subjectivities. Similarly, the fewer attachments that assemblages of addiction are able to keep in their various translations, the weaker the addiction-based subjectivities also become. An ANT-inspired analysis has a number of implications for the prevention and treatment of addiction: it suggests that in the prevention and treatment of addiction, the aim should hardly be to get rid of dependencies. Rather, the ambition should be the identification of attachments

  9. Applied data communications and networks

    CERN Document Server

    Buchanan, W

    1996-01-01

    The usage of data communications and computer networks are ever in­ creasing. It is one of the few technological areas which brings benefits to most of the countries and the peoples of the world. Without it many industries could not exist. It is the objective of this book to discuss data communications in a readable form that students and professionals all over the world can understand. As much as possible the text uses dia­ grams to illustrate key points. Most currently available data communications books take their view­ point from either a computer scientists top-down approach or from an electronic engineers bottom-up approach. This book takes a practical ap­ proach and supports it with a theoretical background to create a textbook which can be used by electronic engineers, computer engineers, computer scientists and industry professionals. It discusses most of the current and future key data communications technologies, including: • Data Communications Standards and Models; • Local Area Networks (...

  10. An integrated approach of analytical network process and fuzzy based spatial decision making systems applied to landslide risk mapping

    Science.gov (United States)

    Abedi Gheshlaghi, Hassan; Feizizadeh, Bakhtiar

    2017-09-01

    Landslides in mountainous areas render major damages to residential areas, roads, and farmlands. Hence, one of the basic measures to reduce the possible damage is by identifying landslide-prone areas through landslide mapping by different models and methods. The purpose of conducting this study is to evaluate the efficacy of a combination of two models of the analytical network process (ANP) and fuzzy logic in landslide risk mapping in the Azarshahr Chay basin in northwest Iran. After field investigations and a review of research literature, factors affecting the occurrence of landslides including slope, slope aspect, altitude, lithology, land use, vegetation density, rainfall, distance to fault, distance to roads, distance to rivers, along with a map of the distribution of occurred landslides were prepared in GIS environment. Then, fuzzy logic was used for weighting sub-criteria, and the ANP was applied to weight the criteria. Next, they were integrated based on GIS spatial analysis methods and the landslide risk map was produced. Evaluating the results of this study by using receiver operating characteristic curves shows that the hybrid model designed by areas under the curve 0.815 has good accuracy. Also, according to the prepared map, a total of 23.22% of the area, amounting to 105.38 km2, is in the high and very high-risk class. Results of this research are great of importance for regional planning tasks and the landslide prediction map can be used for spatial planning tasks and for the mitigation of future hazards in the study area.

  11. Applying a supervised ANN (artificial neural network) approach to the prognostication of driven wheel energy efficiency indices

    International Nuclear Information System (INIS)

    Taghavifar, Hamid; Mardani, Aref

    2014-01-01

    This paper examines the prediction of energy efficiency indices of driven wheels (i.e. traction coefficient and tractive power efficiency) as affected by wheel load, slippage and forward velocity at three different levels with three replicates to form a total of 162 data points. The pertinent experiments were carried out in the soil bin testing facility. A feed-forward ANN (artificial neural network) with standard BP (back propagation) algorithm was practiced to construct a supervised representation to predict the energy efficiency indices of driven wheels. It was deduced, in view of the statistical performance criteria (i.e. MSE (mean squared error) and R 2 ), that a supervised ANN with 3-8-10-2 topology and Levenberg–Marquardt training algorithm represented the optimal model. Modeling implementations indicated that ANN is a powerful technique to prognosticate the stochastic energy efficiency indices as affected by soil-wheel interactions with MSE of 0.001194 and R 2 of 0.987 and 0.9772 for traction coefficient and tractive power efficiency. It was found that traction coefficient and tractive power efficiency increase with increased slippage. A similar trend is valid for the influence of wheel load on the objective parameters. Wherein increase of velocity led to an increment of tractive power efficiency, velocity had no significant effect on traction coefficient. - Highlights: • Energy efficiency indexes were assessed as affected by tire parameters. • ANN was applied for prognostication of the objective parameters. • A 3-8-10-2 ANN with MSE of 0.001194 and R 2 of 0.987 and 0.9772 was designated as optimal model. • Optimal values of learning rate and momentum were found 0.9 and 0.5, respectively

  12. Different approaches in Partial Least Squares and Artificial Neural Network models applied for the analysis of a ternary mixture of Amlodipine, Valsartan and Hydrochlorothiazide

    Science.gov (United States)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2014-03-01

    Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.

  13. Corporate Social Networks Applied in the Classroom

    Directory of Open Access Journals (Sweden)

    Hugo de Juan-Jordán

    2016-10-01

    This study also tries to propose some guidelines and best practices obtained as a result of the experience of use and the adoption of social networks in class in order to improve the learning process and innovate in the methodology applied to education.

  14. Benford's Law Applies to Online Social Networks.

    Science.gov (United States)

    Golbeck, Jennifer

    2015-01-01

    Benford's Law states that, in naturally occurring systems, the frequency of numbers' first digits is not evenly distributed. Numbers beginning with a 1 occur roughly 30% of the time, and are six times more common than numbers beginning with a 9. We show that Benford's Law applies to social and behavioral features of users in online social networks. Using social data from five major social networks (Facebook, Twitter, Google Plus, Pinterest, and LiveJournal), we show that the distribution of first significant digits of friend and follower counts for users in these systems follow Benford's Law. The same is true for the number of posts users make. We extend this to egocentric networks, showing that friend counts among the people in an individual's social network also follows the expected distribution. We discuss how this can be used to detect suspicious or fraudulent activity online and to validate datasets.

  15. Benford's Law Applies to Online Social Networks.

    Directory of Open Access Journals (Sweden)

    Jennifer Golbeck

    Full Text Available Benford's Law states that, in naturally occurring systems, the frequency of numbers' first digits is not evenly distributed. Numbers beginning with a 1 occur roughly 30% of the time, and are six times more common than numbers beginning with a 9. We show that Benford's Law applies to social and behavioral features of users in online social networks. Using social data from five major social networks (Facebook, Twitter, Google Plus, Pinterest, and LiveJournal, we show that the distribution of first significant digits of friend and follower counts for users in these systems follow Benford's Law. The same is true for the number of posts users make. We extend this to egocentric networks, showing that friend counts among the people in an individual's social network also follows the expected distribution. We discuss how this can be used to detect suspicious or fraudulent activity online and to validate datasets.

  16. Social network analysis applied to team sports analysis

    CERN Document Server

    Clemente, Filipe Manuel; Mendes, Rui Sousa

    2016-01-01

    Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.

  17. Applying Physical-Layer Network Coding in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Liew SoungChang

    2010-01-01

    Full Text Available A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes, simultaneously. Rather than a blessing, this feature is treated more as an interference-inducing nuisance in most wireless networks today (e.g., IEEE 802.11. This paper shows that the concept of network coding can be applied at the physical layer to turn the broadcast property into a capacity-boosting advantage in wireless ad hoc networks. Specifically, we propose a physical-layer network coding (PNC scheme to coordinate transmissions among nodes. In contrast to "straightforward" network coding which performs coding arithmetic on digital bit streams after they have been received, PNC makes use of the additive nature of simultaneously arriving electromagnetic (EM waves for equivalent coding operation. And in doing so, PNC can potentially achieve 100% and 50% throughput increases compared with traditional transmission and straightforward network coding, respectively, in 1D regular linear networks with multiple random flows. The throughput improvements are even larger in 2D regular networks: 200% and 100%, respectively.

  18. Queueing networks a fundamental approach

    CERN Document Server

    Dijk, Nico

    2011-01-01

    This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner.  The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow subnetworks to be aggregated into single nodes to reduce computational burden. Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the proces generators, and comparison results and explicit error bounds based on an underlying Markov r...

  19. Applied network security monitoring collection, detection, and analysis

    CERN Document Server

    Sanders, Chris

    2013-01-01

    Applied Network Security Monitoring is the essential guide to becoming an NSM analyst from the ground up. This book takes a fundamental approach to NSM, complete with dozens of real-world examples that teach you the key concepts of NSM. Network security monitoring is based on the principle that prevention eventually fails. In the current threat landscape, no matter how much you try, motivated attackers will eventually find their way into your network. At that point, it is your ability to detect and respond to that intrusion that can be the difference between a small incident and a major di

  20. Applying neural networks to optimize instrumentation performance

    Energy Technology Data Exchange (ETDEWEB)

    Start, S.E.; Peters, G.G.

    1995-06-01

    Well calibrated instrumentation is essential in providing meaningful information about the status of a plant. Signals from plant instrumentation frequently have inherent non-linearities, may be affected by environmental conditions and can therefore cause calibration difficulties for the people who maintain them. Two neural network approaches are described in this paper for improving the accuracy of a non-linear, temperature sensitive level probe ised in Expermental Breeder Reactor II (EBR-II) that was difficult to calibrate.

  1. Applying neural networks to optimize instrumentation performance

    International Nuclear Information System (INIS)

    Start, S.E.; Peters, G.G.

    1995-01-01

    Well calibrated instrumentation is essential in providing meaningful information about the status of a plant. Signals from plant instrumentation frequently have inherent non-linearities, may be affected by environmental conditions and can therefore cause calibration difficulties for the people who maintain them. Two neural network approaches are described in this paper for improving the accuracy of a non-linear, temperature sensitive level probe ised in Expermental Breeder Reactor II (EBR-II) that was difficult to calibrate

  2. Computer Networks A Systems Approach

    CERN Document Server

    Peterson, Larry L

    2011-01-01

    This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur

  3. Wireless Sensor Networks Approach

    Science.gov (United States)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  4. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  5. Applying differential dynamic logic to reconfigurable biological networks.

    Science.gov (United States)

    Figueiredo, Daniel; Martins, Manuel A; Chaves, Madalena

    2017-09-01

    Qualitative and quantitative modeling frameworks are widely used for analysis of biological regulatory networks, the former giving a preliminary overview of the system's global dynamics and the latter providing more detailed solutions. Another approach is to model biological regulatory networks as hybrid systems, i.e., systems which can display both continuous and discrete dynamic behaviors. Actually, the development of synthetic biology has shown that this is a suitable way to think about biological systems, which can often be constructed as networks with discrete controllers, and present hybrid behaviors. In this paper we discuss this approach as a special case of the reconfigurability paradigm, well studied in Computer Science (CS). In CS there are well developed computational tools to reason about hybrid systems. We argue that it is worth applying such tools in a biological context. One interesting tool is differential dynamic logic (dL), which has recently been developed by Platzer and applied to many case-studies. In this paper we discuss some simple examples of biological regulatory networks to illustrate how dL can be used as an alternative, or also as a complement to methods already used. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Applying a Health Network approach to translate evidence-informed policy into practice: a review and case study on musculoskeletal health.

    Science.gov (United States)

    Briggs, Andrew M; Bragge, Peter; Slater, Helen; Chan, Madelynn; Towler, Simon C B

    2012-11-14

    While translation of evidence into health policy and practice is recognised as critical to optimising health system performance and health-related outcomes for consumers, mechanisms to effectively achieve these goals are neither well understood, nor widely communicated. Health Networks represent a framework which offers a possible solution to this dilemma, particularly in light of emerging evidence regarding the importance of establishing relationships between stakeholders and identifying clinical leaders to drive evidence integration and translation into policy. This is particularly important for service delivery related to chronic diseases. In Western Australia (WA), disease and population-specific Health Networks are comprised of cross-discipline stakeholders who work collaboratively to develop evidence-informed policies and drive their implementation. Since establishment of the Health Networks in WA, over 50 evidence-informed Models of Care (MoCs) have been produced across 18 condition or population-focused Networks. The aim of this paper is to provide an overview of the Health Network framework in facilitating the translation of evidence into policy and practice with a particular focus on musculoskeletal health. A review of activities of the WA Musculoskeletal Health Network was undertaken, focussing on outcomes and the processes used to achieve them in the context of: development of policy, procurement of funding, stakeholder engagement, publications, and projects undertaken by the Network which aligned to implementation of MoCs.The Musculoskeletal Health Network has developed four MoCs which reflect Australian National Health Priority Areas. Establishment of community-based services for consumers with musculoskeletal health conditions is a key recommendation from these MoCs. Through mapping barriers and enablers to policy implementation, working groups, led by local clinical leaders and supported by the broader Network and government officers, have

  7. Applying a Health Network approach to translate evidence-informed policy into practice: A review and case study on musculoskeletal health

    Directory of Open Access Journals (Sweden)

    Briggs Andrew M

    2012-11-01

    Full Text Available Abstract Background While translation of evidence into health policy and practice is recognised as critical to optimising health system performance and health-related outcomes for consumers, mechanisms to effectively achieve these goals are neither well understood, nor widely communicated. Health Networks represent a framework which offers a possible solution to this dilemma, particularly in light of emerging evidence regarding the importance of establishing relationships between stakeholders and identifying clinical leaders to drive evidence integration and translation into policy. This is particularly important for service delivery related to chronic diseases. In Western Australia (WA, disease and population-specific Health Networks are comprised of cross-discipline stakeholders who work collaboratively to develop evidence-informed policies and drive their implementation. Since establishment of the Health Networks in WA, over 50 evidence-informed Models of Care (MoCs have been produced across 18 condition or population-focused Networks. The aim of this paper is to provide an overview of the Health Network framework in facilitating the translation of evidence into policy and practice with a particular focus on musculoskeletal health. Case presentation A review of activities of the WA Musculoskeletal Health Network was undertaken, focussing on outcomes and the processes used to achieve them in the context of: development of policy, procurement of funding, stakeholder engagement, publications, and projects undertaken by the Network which aligned to implementation of MoCs. The Musculoskeletal Health Network has developed four MoCs which reflect Australian National Health Priority Areas. Establishment of community-based services for consumers with musculoskeletal health conditions is a key recommendation from these MoCs. Through mapping barriers and enablers to policy implementation, working groups, led by local clinical leaders and supported by

  8. Applying Gradient Descent in Convolutional Neural Networks

    Science.gov (United States)

    Cui, Nan

    2018-04-01

    With the development of the integrated circuit and computer science, people become caring more about solving practical issues via information technologies. Along with that, a new subject called Artificial Intelligent (AI) comes up. One popular research interest of AI is about recognition algorithm. In this paper, one of the most common algorithms, Convolutional Neural Networks (CNNs) will be introduced, for image recognition. Understanding its theory and structure is of great significance for every scholar who is interested in this field. Convolution Neural Network is an artificial neural network which combines the mathematical method of convolution and neural network. The hieratical structure of CNN provides it reliable computer speed and reasonable error rate. The most significant characteristics of CNNs are feature extraction, weight sharing and dimension reduction. Meanwhile, combining with the Back Propagation (BP) mechanism and the Gradient Descent (GD) method, CNNs has the ability to self-study and in-depth learning. Basically, BP provides an opportunity for backwardfeedback for enhancing reliability and GD is used for self-training process. This paper mainly discusses the CNN and the related BP and GD algorithms, including the basic structure and function of CNN, details of each layer, the principles and features of BP and GD, and some examples in practice with a summary in the end.

  9. Sensitivity analysis approaches applied to systems biology models.

    Science.gov (United States)

    Zi, Z

    2011-11-01

    With the rising application of systems biology, sensitivity analysis methods have been widely applied to study the biological systems, including metabolic networks, signalling pathways and genetic circuits. Sensitivity analysis can provide valuable insights about how robust the biological responses are with respect to the changes of biological parameters and which model inputs are the key factors that affect the model outputs. In addition, sensitivity analysis is valuable for guiding experimental analysis, model reduction and parameter estimation. Local and global sensitivity analysis approaches are the two types of sensitivity analysis that are commonly applied in systems biology. Local sensitivity analysis is a classic method that studies the impact of small perturbations on the model outputs. On the other hand, global sensitivity analysis approaches have been applied to understand how the model outputs are affected by large variations of the model input parameters. In this review, the author introduces the basic concepts of sensitivity analysis approaches applied to systems biology models. Moreover, the author discusses the advantages and disadvantages of different sensitivity analysis methods, how to choose a proper sensitivity analysis approach, the available sensitivity analysis tools for systems biology models and the caveats in the interpretation of sensitivity analysis results.

  10. Artificial Neural Network applied to lightning flashes

    Science.gov (United States)

    Gin, R. B.; Guedes, D.; Bianchi, R.

    2013-05-01

    The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a

  11. Network Approach in Political Communication Studies

    Directory of Open Access Journals (Sweden)

    Нина Васильевна Опанасенко

    2013-12-01

    Full Text Available The article is devoted to issues of network approach application in political communication studies. The author considers communication in online and offline areas and gives the definition of rhizome, its characteristics, identifies links between rhizome and network approach. The author also analyses conditions and possibilities of the network approach in modern political communication. Both positive and negative features of the network approach are emphasized.

  12. Autocorrel I: A Neural Network Based Network Event Correlation Approach

    National Research Council Canada - National Science Library

    Japkowicz, Nathalie; Smith, Reuben

    2005-01-01

    .... We use the autoassociator to build prototype software to cluster network alerts generated by a Snort intrusion detection system, and discuss how the results are significant, and how they can be applied to other types of network events.

  13. Delayed switching applied to memristor neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Frank Z.; Yang Xiao; Lim Guan [Future Computing Group, School of Computing, University of Kent, Canterbury (United Kingdom); Helian Na [School of Computer Science, University of Hertfordshire, Hatfield (United Kingdom); Wu Sining [Xyratex, Havant (United Kingdom); Guo Yike [Department of Computing, Imperial College, London (United Kingdom); Rashid, Md Mamunur [CERN, Geneva (Switzerland)

    2012-04-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  14. Delayed switching applied to memristor neural networks

    International Nuclear Information System (INIS)

    Wang, Frank Z.; Yang Xiao; Lim Guan; Helian Na; Wu Sining; Guo Yike; Rashid, Md Mamunur

    2012-01-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  15. A Network Traffic Control Enhancement Approach over Bluetooth Networks

    DEFF Research Database (Denmark)

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun

    2003-01-01

    This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated solu...... as capacity limitations and flow requirements in the network. Simulation shows that the performance of Bluetooth networks could be improved by applying the adaptive distributed network traffic control scheme...... solution of the stated optimization problem that satisfies quality of service requirements and topologically induced constraints in Bluetooth networks, such as link capacity and node resource limitations. The proposed scheme is decentralized and complies with frequent changes of topology as well......This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated...

  16. Applied Ontology Engineering in Cloud Services, Networks and Management Systems

    CERN Document Server

    Serrano Orozco, J Martín

    2012-01-01

    Metadata standards in today’s ICT sector are proliferating at unprecedented levels, while automated information management systems collect and process exponentially increasing quantities of data. With interoperability and knowledge exchange identified as a core challenge in the sector, this book examines the role ontology engineering can play in providing solutions to the problems of information interoperability and linked data. At the same time as introducing basic concepts of ontology engineering, the book discusses methodological approaches to formal representation of data and information models, thus facilitating information interoperability between heterogeneous, complex and distributed communication systems. In doing so, the text advocates the advantages of using ontology engineering in telecommunications systems. In addition, it offers a wealth of guidance and best-practice techniques for instances in which ontology engineering is applied in cloud services, computer networks and management systems. �...

  17. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  18. Applying discursive approaches to health psychology.

    Science.gov (United States)

    Seymour-Smith, Sarah

    2015-04-01

    The aim of this paper is to outline the contribution of two strands of discursive research, glossed as 'macro' and 'micro,' to the field of health psychology. A further goal is to highlight some contemporary debates in methodology associated with the use of interview data versus more naturalistic data in qualitative health research. Discursive approaches provide a way of analyzing talk as a social practice that considers how descriptions are put together and what actions they achieve. A selection of recent examples of discursive research from one applied area of health psychology, studies of diet and obesity, are drawn upon in order to illustrate the specifics of both strands. 'Macro' discourse work in psychology incorporates a Foucauldian focus on the way that discourses regulate subjectivities, whereas the concept of interpretative repertoires affords more agency to the individual: both are useful for identifying the cultural context of talk. Both 'macro' and 'micro' strands focus on accountability to varying degrees. 'Micro' Discursive Psychology, however, pays closer attention to the sequential organization of constructions and focuses on naturalistic settings that allow for the inclusion of an analysis of the health professional. Diets are typically depicted as an individual responsibility in mainstream health psychology, but discursive research highlights how discourses are collectively produced and bound up with social practices. (c) 2015 APA, all rights reserved).

  19. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    Science.gov (United States)

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  20. A network approach to orthodontic diagnosis.

    Science.gov (United States)

    Auconi, P; Caldarelli, G; Scala, A; Ierardo, G; Polimeni, A

    2011-11-01

    Network analysis, a recent advancement in complexity science, enables understanding of the properties of complex biological processes characterized by the interaction, adaptive regulation, and coordination of a large number of participating components. We applied network analysis to orthodontics to detect and visualize the most interconnected clinical, radiographic, and functional data pertaining to the orofacial system. The sample consisted of 104 individuals from 7 to 13 years of age in the mixed dentition phase without previous orthodontic intervention. The subjects were divided according to skeletal class; their clinical, radiographic, and functional features were represented as vertices (nodes) and links (edges) connecting them. Class II subjects exhibited few highly connected orthodontic features (hubs), while Class III patients showed a more compact network structure characterized by strong co-occurrence of normal and abnormal clinical, functional, and radiological features. Restricting our analysis to the highest correlations, we identified critical peculiarities of Class II and Class III malocclusions. The topology of the dentofacial system obtained by network analysis could allow orthodontists to visually evaluate and anticipate the co-occurrence of auxological anomalies during individual craniofacial growth and possibly localize reactive sites for a therapeutic approach to malocclusion. © 2011 John Wiley & Sons A/S.

  1. Earthquake Complex Network applied along the Chilean Subduction Zone.

    Science.gov (United States)

    Martin, F.; Pasten, D.; Comte, D.

    2017-12-01

    In recent years the earthquake complex networks have been used as a useful tool to describe and characterize the behavior of seismicity. The earthquake complex network is built in space, dividing the three dimensional space in cubic cells. If the cubic cell contains a hypocenter, we call this cell like a node. The connections between nodes follows the time sequence of the occurrence of the seismic events. In this sense, we have a spatio-temporal configuration of a specific region using the seismicity in that zone. In this work, we are applying complex networks to characterize the subduction zone along the coast of Chile using two networks: a directed and an undirected network. The directed network takes in consideration the time-direction of the connections, that is very important for the connectivity of the network: we are considering the connectivity, ki of the i-th node, like the number of connections going out from the node i and we add the self-connections (if two seismic events occurred successive in time in the same cubic cell, we have a self-connection). The undirected network is the result of remove the direction of the connections and the self-connections from the directed network. These two networks were building using seismic data events recorded by CSN (Chilean Seismological Center) in Chile. This analysis includes the last largest earthquakes occurred in Iquique (April 2014) and in Illapel (September 2015). The result for the directed network shows a change in the value of the critical exponent along the Chilean coast. The result for the undirected network shows a small-world behavior without important changes in the topology of the network. Therefore, the complex network analysis shows a new form to characterize the Chilean subduction zone with a simple method that could be compared with another methods to obtain more details about the behavior of the seismicity in this region.

  2. A network approach to leadership

    DEFF Research Database (Denmark)

    Lewis, Jenny; Ricard, Lykke Margot

    Leaders’ ego-networks within an organization are pivotal as focal points that point to other organizational factors such as innovation capacity and leadership effectiveness. The aim of the paper is to provide a framework for exploring leaders’ ego-networks within the boundary of an organization. We...... a survey of senior administrators and politicians from Copenhagen municipality, we examine strategic information networks. Whole network analysis is used first to identify important individuals on the basis of centrality measures. The ego-networks of these individuals are then analysed to examine...

  3. A Constructive Neural-Network Approach to Modeling Psychological Development

    Science.gov (United States)

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  4. MOBILE CLOUD COMPUTING APPLIED TO HEALTHCARE APPROACH

    OpenAIRE

    Omar AlSheikSalem

    2016-01-01

    In the past few years it was clear that mobile cloud computing was established via integrating both mobile computing and cloud computing to be add in both storage space and processing speed. Integrating healthcare applications and services is one of the vast data approaches that can be adapted to mobile cloud computing. This work proposes a framework of a global healthcare computing based combining both mobile computing and cloud computing. This approach leads to integrate all of ...

  5. ECO INVESTMENT PROJECT MANAGEMENT THROUGH TIME APPLYING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Tamara Gvozdenović

    2007-06-01

    Full Text Available he concept of project management expresses an indispensable approach to investment projects. Time is often the most important factor in these projects. The artificial neural network is the paradigm of data processing, which is inspired by the one used by the biological brain, and it is used in numerous, different fields, among which is the project management. This research is oriented to application of artificial neural networks in managing time of investment project. The artificial neural networks are used to define the optimistic, the most probable and the pessimistic time in PERT method. The program package Matlab: Neural Network Toolbox is used in data simulation. The feed-forward back propagation network is chosen.

  6. Considerations for Software Defined Networking (SDN): Approaches and use cases

    Science.gov (United States)

    Bakshi, K.

    Software Defined Networking (SDN) is an evolutionary approach to network design and functionality based on the ability to programmatically modify the behavior of network devices. SDN uses user-customizable and configurable software that's independent of hardware to enable networked systems to expand data flow control. SDN is in large part about understanding and managing a network as a unified abstraction. It will make networks more flexible, dynamic, and cost-efficient, while greatly simplifying operational complexity. And this advanced solution provides several benefits including network and service customizability, configurability, improved operations, and increased performance. There are several approaches to SDN and its practical implementation. Among them, two have risen to prominence with differences in pedigree and implementation. This paper's main focus will be to define, review, and evaluate salient approaches and use cases of the OpenFlow and Virtual Network Overlay approaches to SDN. OpenFlow is a communication protocol that gives access to the forwarding plane of a network's switches and routers. The Virtual Network Overlay relies on a completely virtualized network infrastructure and services to abstract the underlying physical network, which allows the overlay to be mobile to other physical networks. This is an important requirement for cloud computing, where applications and associated network services are migrated to cloud service providers and remote data centers on the fly as resource demands dictate. The paper will discuss how and where SDN can be applied and implemented, including research and academia, virtual multitenant data center, and cloud computing applications. Specific attention will be given to the cloud computing use case, where automated provisioning and programmable overlay for scalable multi-tenancy is leveraged via the SDN approach.

  7. Leaderless Covert Networks : A Quantitative Approach

    NARCIS (Netherlands)

    Husslage, B.G.M.; Lindelauf, R.; Hamers, H.J.M.

    2012-01-01

    Abstract: Lindelauf et al. (2009a) introduced a quantitative approach to investigate optimal structures of covert networks. This approach used an objective function which is based on the secrecy versus information trade-off these organizations face. Sageman (2008) hypothesized that covert networks

  8. Network evolution driven by dynamics applied to graph coloring

    International Nuclear Information System (INIS)

    Wu Jian-She; Li Li-Guang; Yu Xin; Jiao Li-Cheng; Wang Xiao-Hua

    2013-01-01

    An evolutionary network driven by dynamics is studied and applied to the graph coloring problem. From an initial structure, both the topology and the coupling weights evolve according to the dynamics. On the other hand, the dynamics of the network are determined by the topology and the coupling weights, so an interesting structure-dynamics co-evolutionary scheme appears. By providing two evolutionary strategies, a network described by the complement of a graph will evolve into several clusters of nodes according to their dynamics. The nodes in each cluster can be assigned the same color and nodes in different clusters assigned different colors. In this way, a co-evolution phenomenon is applied to the graph coloring problem. The proposed scheme is tested on several benchmark graphs for graph coloring

  9. Applying a gaming approach to IP strategy.

    Science.gov (United States)

    Gasnier, Arnaud; Vandamme, Luc

    2010-02-01

    Adopting an appropriate IP strategy is an important but complex area, particularly in the pharmaceutical and biotechnology sectors, in which aspects such as regulatory submissions, high competitive activity, and public health and safety information requirements limit the amount of information that can be protected effectively through secrecy. As a result, and considering the existing time limits for patent protection, decisions on how to approach IP in these sectors must be made with knowledge of the options and consequences of IP positioning. Because of the specialized nature of IP, it is necessary to impart knowledge regarding the options and impact of IP to decision-makers, whether at the level of inventors, marketers or strategic business managers. This feature review provides some insight on IP strategy, with a focus on the use of a new 'gaming' approach for transferring the skills and understanding needed to make informed IP-related decisions; the game Patentopolis is discussed as an example of such an approach. Patentopolis involves interactive activities with IP-related business decisions, including the exploitation and enforcement of IP rights, and can be used to gain knowledge on the impact of adopting different IP strategies.

  10. Applied Regression Modeling A Business Approach

    CERN Document Server

    Pardoe, Iain

    2012-01-01

    An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a

  11. A new approach in development of data flow control and investigation system for computer networks

    International Nuclear Information System (INIS)

    Frolov, I.; Vaguine, A.; Silin, A.

    1992-01-01

    This paper describes a new approach in development of data flow control and investigation system for computer networks. This approach was developed and applied in the Moscow Radiotechnical Institute for control and investigations of Institute computer network. It allowed us to solve our network current problems successfully. Description of our approach is represented below along with the most interesting results of our work. (author)

  12. The application of network teaching in applied optics teaching

    Science.gov (United States)

    Zhao, Huifu; Piao, Mingxu; Li, Lin; Liu, Dongmei

    2017-08-01

    Network technology has become a creative tool of changing human productivity, the rapid development of it has brought profound changes to our learning, working and life. Network technology has many advantages such as rich contents, various forms, convenient retrieval, timely communication and efficient combination of resources. Network information resources have become the new education resources, get more and more application in the education, has now become the teaching and learning tools. Network teaching enriches the teaching contents, changes teaching process from the traditional knowledge explanation into the new teaching process by establishing situation, independence and cooperation in the network technology platform. The teacher's role has shifted from teaching in classroom to how to guide students to learn better. Network environment only provides a good platform for the teaching, we can get a better teaching effect only by constantly improve the teaching content. Changchun university of science and technology introduced a BB teaching platform, on the platform, the whole optical classroom teaching and the classroom teaching can be improved. Teachers make assignments online, students learn independently offline or the group learned cooperatively, this expands the time and space of teaching. Teachers use hypertext form related knowledge of applied optics, rich cases and learning resources, set up the network interactive platform, homework submission system, message board, etc. The teaching platform simulated the learning interest of students and strengthens the interaction in the teaching.

  13. Applying a Modified Triad Approach to Investigate Wastewater lines

    International Nuclear Information System (INIS)

    Pawlowicz, R.; Urizar, L.; Blanchard, S.; Jacobsen, K.; Scholfield, J.

    2006-01-01

    Approximately 20 miles of wastewater lines are below grade at an active military Base. This piping network feeds or fed domestic or industrial wastewater treatment plants on the Base. Past wastewater line investigations indicated potential contaminant releases to soil and groundwater. Further environmental assessment was recommended to characterize the lines because of possible releases. A Remedial Investigation (RI) using random sampling or use of sampling points spaced at predetermined distances along the entire length of the wastewater lines, however, would be inefficient and cost prohibitive. To accomplish RI goals efficiently and within budget, a modified Triad approach was used to design a defensible sampling and analysis plan and perform the investigation. The RI task was successfully executed and resulted in a reduced fieldwork schedule, and sampling and analytical costs. Results indicated that no major releases occurred at the biased sampling points. It was reasonably extrapolated that since releases did not occur at the most likely locations, then the entire length of a particular wastewater line segment was unlikely to have contaminated soil or groundwater and was recommended for no further action. A determination of no further action was recommended for the majority of the waste lines after completing the investigation. The modified Triad approach was successful and a similar approach could be applied to investigate wastewater lines on other United States Department of Defense or Department of Energy facilities. (authors)

  14. Critical Applied Linguistics: An Evaluative Interdisciplinary Approach in Criticism and Evaluation of Applied Linguistics’ Disciplines

    OpenAIRE

    H. Davari

    2015-01-01

    The emergence of some significant critical approaches and directions in the field of applied linguistics from the mid-1980s onwards has met with various positive and opposite reactions. On the basis of their strength and significance, such approaches and directions have challenged some of the mainstream approaches’ claims, principles and assumptions. Among them, critical applied linguistics can be highlighted as a new approach, developed by the Australian applied linguist, Alastair Pennycook....

  15. Applying Trusted Network Technology To Process Control Systems

    Science.gov (United States)

    Okhravi, Hamed; Nicol, David

    Interconnections between process control networks and enterprise networks expose instrumentation and control systems and the critical infrastructure components they operate to a variety of cyber attacks. Several architectural standards and security best practices have been proposed for industrial control systems. However, they are based on older architectures and do not leverage the latest hardware and software technologies. This paper describes new technologies that can be applied to the design of next generation security architectures for industrial control systems. The technologies are discussed along with their security benefits and design trade-offs.

  16. Structural factoring approach for analyzing stochastic networks

    Science.gov (United States)

    Hayhurst, Kelly J.; Shier, Douglas R.

    1991-01-01

    The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.

  17. Evaluation of Voltage Control Approaches for Future Smart Distribution Networks

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2017-08-01

    Full Text Available This paper evaluates meta-heuristic and deterministic approaches for distribution network voltage control. As part of this evaluation, a novel meta-heuristic algorithm, Cuckoo Search, is applied for distribution network voltage control and compared with a deterministic voltage control algorithm, the oriented discrete coordinate decent method (ODCDM. ODCDM has been adopted in a state-of-the-art industrial product and applied in real distribution networks. These two algorithms have been evaluated under a set of test cases, which were generated to represent the voltage control problems in current and future distribution networks. Sampled test results have been presented, and findings have been discussed regarding the adoption of different optimization algorithms for current and future distribution networks.

  18. Applying deep bidirectional LSTM and mixture density network for basketball trajectory prediction

    NARCIS (Netherlands)

    Zhao, Yu; Yang, Rennong; Chevalier, Guillaume; Shah, Rajiv C.; Romijnders, Rob

    2018-01-01

    Data analytics helps basketball teams to create tactics. However, manual data collection and analytics are costly and ineffective. Therefore, we applied a deep bidirectional long short-term memory (BLSTM) and mixture density network (MDN) approach. This model is not only capable of predicting a

  19. Deterministic network interdiction optimization via an evolutionary approach

    International Nuclear Information System (INIS)

    Rocco S, Claudio M.; Ramirez-Marquez, Jose Emmanuel

    2009-01-01

    This paper introduces an evolutionary optimization approach that can be readily applied to solve deterministic network interdiction problems. The network interdiction problem solved considers the minimization of the maximum flow that can be transmitted between a source node and a sink node for a fixed network design when there is a limited amount of resources available to interdict network links. Furthermore, the model assumes that the nominal capacity of each network link and the cost associated with their interdiction can change from link to link. For this problem, the solution approach developed is based on three steps that use: (1) Monte Carlo simulation, to generate potential network interdiction strategies, (2) Ford-Fulkerson algorithm for maximum s-t flow, to analyze strategies' maximum source-sink flow and, (3) an evolutionary optimization technique to define, in probabilistic terms, how likely a link is to appear in the final interdiction strategy. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate the approach. In terms of computational effort, the results illustrate that solutions are obtained from a significantly restricted solution search space. Finally, the authors discuss the need for a reliability perspective to network interdiction, so that solutions developed address more realistic scenarios of such problem

  20. Network approaches for expert decisions in sports.

    Science.gov (United States)

    Glöckner, Andreas; Heinen, Thomas; Johnson, Joseph G; Raab, Markus

    2012-04-01

    This paper focuses on a model comparison to explain choices based on gaze behavior via simulation procedures. We tested two classes of models, a parallel constraint satisfaction (PCS) artificial neuronal network model and an accumulator model in a handball decision-making task from a lab experiment. Both models predict action in an option-generation task in which options can be chosen from the perspective of a playmaker in handball (i.e., passing to another player or shooting at the goal). Model simulations are based on a dataset of generated options together with gaze behavior measurements from 74 expert handball players for 22 pieces of video footage. We implemented both classes of models as deterministic vs. probabilistic models including and excluding fitted parameters. Results indicated that both classes of models can fit and predict participants' initially generated options based on gaze behavior data, and that overall, the classes of models performed about equally well. Early fixations were thereby particularly predictive for choices. We conclude that the analyses of complex environments via network approaches can be successfully applied to the field of experts' decision making in sports and provide perspectives for further theoretical developments. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. A SIMULATION OF THE PENICILLIN G PRODUCTION BIOPROCESS APPLYING NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    A.J.G. da Cruz

    1997-12-01

    Full Text Available The production of penicillin G by Penicillium chrysogenum IFO 8644 was simulated employing a feedforward neural network with three layers. The neural network training procedure used an algorithm combining two procedures: random search and backpropagation. The results of this approach were very promising, and it was observed that the neural network was able to accurately describe the nonlinear behavior of the process. Besides, the results showed that this technique can be successfully applied to control process algorithms due to its long processing time and its flexibility in the incorporation of new data

  2. Forecasting Baltic Dirty Tanker Index by Applying Wavelet Neural Networks

    DEFF Research Database (Denmark)

    Fan, Shuangrui; JI, TINGYUN; Bergqvist, Rickard

    2013-01-01

    modeling techniques used in freight rate forecasting. At the same time research in shipping index forecasting e.g. BDTI applying artificial intelligent techniques is scarce. This analyses the possibilities to forecast the BDTI by applying Wavelet Neural Networks (WNN). Firstly, the characteristics...... of traditional and artificial intelligent forecasting techniques are discussed and rationales for choosing WNN are explained. Secondly, the components and features of BDTI will be explicated. After that, the authors delve the determinants and influencing factors behind fluctuations of the BDTI in order to set...

  3. The neural network approach to parton fitting

    International Nuclear Information System (INIS)

    Rojo, Joan; Latorre, Jose I.; Del Debbio, Luigi; Forte, Stefano; Piccione, Andrea

    2005-01-01

    We introduce the neural network approach to global fits of parton distribution functions. First we review previous work on unbiased parametrizations of deep-inelastic structure functions with faithful estimation of their uncertainties, and then we summarize the current status of neural network parton distribution fits

  4. A Transdiagnostic Network Approach to Psychosis

    NARCIS (Netherlands)

    Wigman, Johanna T. W.; de Vos, Stijn; Wichers, Marieke; van Os, Jim; Bartels-Velthuis, Agna A.

    Our ability to accurately predict development and outcome of early expression of psychosis is limited. To elucidate the mechanisms underlying psychopathology, a broader, transdiagnostic approach that acknowledges the complexity of mental illness is required. The upcoming network paradigm may be

  5. Second Law of Thermodynamics Applied to Metabolic Networks

    Science.gov (United States)

    Nigam, R.; Liang, S.

    2003-01-01

    We present a simple algorithm based on linear programming, that combines Kirchoff's flux and potential laws and applies them to metabolic networks to predict thermodynamically feasible reaction fluxes. These law's represent mass conservation and energy feasibility that are widely used in electrical circuit analysis. Formulating the Kirchoff's potential law around a reaction loop in terms of the null space of the stoichiometric matrix leads to a simple representation of the law of entropy that can be readily incorporated into the traditional flux balance analysis without resorting to non-linear optimization. Our technique is new as it can easily check the fluxes got by applying flux balance analysis for thermodynamic feasibility and modify them if they are infeasible so that they satisfy the law of entropy. We illustrate our method by applying it to the network dealing with the central metabolism of Escherichia coli. Due to its simplicity this algorithm will be useful in studying large scale complex metabolic networks in the cell of different organisms.

  6. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  7. A generic service interfacing approach for home networking

    NARCIS (Netherlands)

    Chen, S.; Lukkien, J.J.; Bosman, R.P.; Verhoeven, R.

    2010-01-01

    This paper presents a generic service interfacing approach which enables the interoperability of networked devices and the reusability of services. Services are specified through a set of interfaces which are language and deployment platform independent. External service orchestration is applied to

  8. Artificial neural network applying for justification of tractors undercarriages parameters

    Directory of Open Access Journals (Sweden)

    V. A. Kuz’Min

    2017-01-01

    Full Text Available One of the most important properties that determine undercarriage layout on design stage is the soil compaction effect. Existing domestic standards of undercarriages impact to soil do not meet modern agricultural requirements completely. The authors justify the need for analysis of traction and transportation machines travel systems and recommendations for these parameters applied to machines that are on design or modernization stage. The database of crawler agricultural tractors particularly in such parameters as traction class and basic operational weight, engine power rating, average ground pressure, square of track basic branch surface area was modeled. Meanwhile the considered machines were divided into two groups by producing countries: Europe/North America and Russian Federation/CIS. The main graphical dependences for every group of machines are plotted, and the conforming analytical dependences within the ranges with greatest concentration of machines are generated. To make the procedure of obtaining parameters of the soil panning by tractors easier it is expedient to use the program tool - artificial neural network (or perceptron. It is necessary to apply to the solution of this task multilayered perceptron - neutron network of direct distribution of signals (without feedback. To carry out the analysis of parameters of running systems taking into account parameters of the soil panning by them and to recommend the choice of these parameters for newly created machines. The program code of artificial neural network is developed. On the basis of the created base of tractors the artificial neural network was created and tested. Accumulated error was not more than 5 percent. These data indicate the results accuracy and tool reliability. It is possible by operating initial design-data base and using the designed artificial neural network to define missing parameters.

  9. Network-based Approaches in Pharmacology.

    Science.gov (United States)

    Boezio, Baptiste; Audouze, Karine; Ducrot, Pierre; Taboureau, Olivier

    2017-10-01

    In drug discovery, network-based approaches are expected to spotlight our understanding of drug action across multiple layers of information. On one hand, network pharmacology considers the drug response in the context of a cellular or phenotypic network. On the other hand, a chemical-based network is a promising alternative for characterizing the chemical space. Both can provide complementary support for the development of rational drug design and better knowledge of the mechanisms underlying the multiple actions of drugs. Recent progress in both concepts is discussed here. In addition, a network-based approach using drug-target-therapy data is introduced as an example. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Adolescent pregnancy: networking and the interdisciplinary approach.

    Science.gov (United States)

    Canada, M J

    1986-01-01

    The networking approach to providing needed services to pregnant and parenting teenagers has numerous merits. An historical overview of the formation of the Brooklyn Teen Pregnancy Network highlights service agency need for information and resource sharing, and improved client referral systems as key factors in the genesis of the Network. The borough-wide approach and its spread as an agency model throughout New York City's other boroughs and several other northeastern cities is also attributed to its positive client impact, including: improved family communication and cooperation; early prenatal care with its concomitant improved pregnancy outcomes; financial support for teens; continued teen education; and parenting skills development. Resource information is provided regarding networks operating in the Greater New York metropolitan area. A planned Eastern Regional network initiative is under development.

  11. Computer networking a top-down approach

    CERN Document Server

    Kurose, James

    2017-01-01

    Unique among computer networking texts, the Seventh Edition of the popular Computer Networking: A Top Down Approach builds on the author’s long tradition of teaching this complex subject through a layered approach in a “top-down manner.” The text works its way from the application layer down toward the physical layer, motivating readers by exposing them to important concepts early in their study of networking. Focusing on the Internet and the fundamentally important issues of networking, this text provides an excellent foundation for readers interested in computer science and electrical engineering, without requiring extensive knowledge of programming or mathematics. The Seventh Edition has been updated to reflect the most important and exciting recent advances in networking.

  12. Approaching human language with complex networks

    Science.gov (United States)

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).

  13. Network reliability assessment using a cellular automata approach

    International Nuclear Information System (INIS)

    Rocco S, Claudio M.; Moreno, Jose Ali

    2002-01-01

    Two cellular automata (CA) models that evaluate the s-t connectedness and shortest path in a network are presented. CA based algorithms enhance the performance of classical algorithms, since they allow a more reliable and straightforward parallel implementation resulting in a dynamic network evaluation, where changes in the connectivity and/or link costs can readily be incorporated avoiding recalculation from scratch. The paper also demonstrates how these algorithms can be applied for network reliability evaluation (based on Monte-Carlo approach) and for finding s-t path with maximal reliability

  14. Kaolin Quality Prediction from Samples: A Bayesian Network Approach

    International Nuclear Information System (INIS)

    Rivas, T.; Taboada, J.; Ordonez, C.; Matias, J. M.

    2009-01-01

    We describe the results of an expert system applied to the evaluation of samples of kaolin for industrial use in paper or ceramic manufacture. Different machine learning techniques - classification trees, support vector machines and Bayesian networks - were applied with the aim of evaluating and comparing their interpretability and prediction capacities. The predictive capacity of these models for the samples analyzed was highly satisfactory, both for ceramic quality and paper quality. However, Bayesian networks generally proved to be the most useful technique for our study, as this approach combines good predictive capacity with excellent interpretability of the kaolin quality structure, as it graphically represents relationships between variables and facilitates what-if analyses.

  15. Collaboration Networks in Applied Conservation Projects across Europe.

    Science.gov (United States)

    Nita, Andreea; Rozylowicz, Laurentiu; Manolache, Steluta; Ciocănea, Cristiana Maria; Miu, Iulia Viorica; Popescu, Viorel Dan

    2016-01-01

    The main funding instrument for implementing EU policies on nature conservation and supporting environmental and climate action is the LIFE Nature programme, established by the European Commission in 1992. LIFE Nature projects (>1400 awarded) are applied conservation projects in which partnerships between institutions are critical for successful conservation outcomes, yet little is known about the structure of collaborative networks within and between EU countries. The aim of our study is to understand the nature of collaboration in LIFE Nature projects using a novel application of social network theory at two levels: (1) collaboration between countries, and (2) collaboration within countries using six case studies: Western Europe (United Kingdom and Netherlands), Eastern Europe (Romania and Latvia) and Southern Europe (Greece and Portugal). Using data on 1261 projects financed between 1996 and 2013, we found that Italy was the most successful country not only in terms of awarded number of projects, but also in terms of overall influence being by far the most influent country in the European LIFE Nature network, having the highest eigenvector (0.989) and degree centrality (0.177). Another key player in the network is Netherlands, which ensures a fast communication flow with other network members (closeness-0.318) by staying connected with the most active countries. Although Western European countries have higher centrality scores than most of the Eastern European countries, our results showed that overall there is a lower tendency to create partnerships between different organization categories. Also, the comparisons of the six case studies indicates significant differences in regards to the pattern of creating partnerships, providing valuable information on collaboration on EU nature conservation. This study represents a starting point in predicting the formation of future partnerships within LIFE Nature programme, suggesting ways to improve transnational

  16. Applications of a formal approach to decipher discrete genetic networks.

    Science.gov (United States)

    Corblin, Fabien; Fanchon, Eric; Trilling, Laurent

    2010-07-20

    A growing demand for tools to assist the building and analysis of biological networks exists in systems biology. We argue that the use of a formal approach is relevant and applicable to address questions raised by biologists about such networks. The behaviour of these systems being complex, it is essential to exploit efficiently every bit of experimental information. In our approach, both the evolution rules and the partial knowledge about the structure and the behaviour of the network are formalized using a common constraint-based language. In this article our formal and declarative approach is applied to three biological applications. The software environment that we developed allows to specifically address each application through a new class of biologically relevant queries. We show that we can describe easily and in a formal manner the partial knowledge about a genetic network. Moreover we show that this environment, based on a constraint algorithmic approach, offers a wide variety of functionalities, going beyond simple simulations, such as proof of consistency, model revision, prediction of properties, search for minimal models relatively to specified criteria. The formal approach proposed here deeply changes the way to proceed in the exploration of genetic and biochemical networks, first by avoiding the usual trial-and-error procedure, and second by placing the emphasis on sets of solutions, rather than a single solution arbitrarily chosen among many others. Last, the constraint approach promotes an integration of model and experimental data in a single framework.

  17. Signed directed social network analysis applied to group conflict

    DEFF Research Database (Denmark)

    Zheng, Quan; Skillicorn, David; Walther, Olivier

    2015-01-01

    Real-world social networks contain relationships of multiple different types, but this richness is often ignored in graph-theoretic modelling. We show how two recently developed spectral embedding techniques, for directed graphs (relationships are asymmetric) and for signed graphs (relationships...... are both positive and negative), can be combined. This combination is particularly appropriate for intelligence, terrorism, and law enforcement applications. We illustrate by applying the novel embedding technique to datasets describing conflict in North-West Africa, and show how unusual interactions can...

  18. Critical Applied Linguistics: An Evaluative Interdisciplinary Approach in Criticism and Evaluation of Applied Linguistics’ Disciplines

    Directory of Open Access Journals (Sweden)

    H. Davari

    2015-11-01

    Full Text Available The emergence of some significant critical approaches and directions in the field of applied linguistics from the mid-1980s onwards has met with various positive and opposite reactions. On the basis of their strength and significance, such approaches and directions have challenged some of the mainstream approaches’ claims, principles and assumptions. Among them, critical applied linguistics can be highlighted as a new approach, developed by the Australian applied linguist, Alastair Pennycook. The aspects, domains and concerns of this new approach were introduced in his book in 2001. Due to the undeniable importance of this approach, as well as partial negligence regarding it in Iranian academic setting, this paper first intends to introduce this approach, as an approach that evaluates various disciplines of applied linguistics through its own specific principles and interests. Then, in order to show its step-by-step application in the evaluation of different disciplines of applied linguistics, with a glance at its significance and appropriateness in Iranian society, two domains, namely English language education and language policy and planning, are introduced and evaluated in order to provide readers with a visible and practical picture of its interdisciplinary nature and evaluative functions. The findings indicate the efficacy of applying this interdisciplinary framework in any language-in-education policy and planning in accordance with the political, social and cultural context of the target society.

  19. CellNet: Network Biology Applied to Stem Cell Engineering

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A.; da Rocha, Edroaldo Lummertz; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population, and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. PMID:25126793

  20. Applying lessons from the ecohealth approach to make food ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Applying lessons from the ecohealth approach to make food systems healthier ... the biennial Ecohealth Congress of the International Association for Ecology and ... intersectoral policies that address the notable increase in obesity, diabetes, ...

  1. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  2. Classification of brain compartments and head injury lesions by neural networks applied to MRI

    International Nuclear Information System (INIS)

    Kischell, E.R.; Kehtarnavaz, N.; Hillman, G.R.; Levin, H.; Lilly, M.; Kent, T.A.

    1995-01-01

    An automatic, neural network-based approach was applied to segment normal brain compartments and lesions on MR images. Two supervised networks, backpropagation (BPN) and counterpropagation, and two unsupervised networks, Kohonen learning vector quantizer and analog adaptive resonance theory, were trained on registered T2-weighted and proton density images. The classes of interest were background, gray matter, white matter, cerebrospinal fluid, macrocystic encephalomalacia, gliosis, and 'unknown'. A comprehensive feature vector was chosen to discriminate these classes. The BPN combined with feature conditioning, multiple discriminant analysis followed by Hotelling transform, produced the most accurate and consistent classification results. Classifications of normal brain compartments were generally in agreement with expert interpretation of the images. Macrocystic encephalomalacia and gliosis were recognized and, except around the periphery, classified in agreement with the clinician's report used to train the neural network. (orig.)

  3. Classification of brain compartments and head injury lesions by neural networks applied to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kischell, E R [Dept. of Electrical Engineering, Texas A and M Univ., College Station, TX (United States); Kehtarnavaz, N [Dept. of Electrical Engineering, Texas A and M Univ., College Station, TX (United States); Hillman, G R [Dept. of Pharmacology, Univ. of Texas Medical Branch, Galveston, TX (United States); Levin, H [Dept. of Neurosurgery, Univ. of Texas Medical Branch, Galveston, TX (United States); Lilly, M [Dept. of Neurosurgery, Univ. of Texas Medical Branch, Galveston, TX (United States); Kent, T A [Dept. of Neurology and Psychiatry, Univ. of Texas Medical Branch, Galveston, TX (United States)

    1995-10-01

    An automatic, neural network-based approach was applied to segment normal brain compartments and lesions on MR images. Two supervised networks, backpropagation (BPN) and counterpropagation, and two unsupervised networks, Kohonen learning vector quantizer and analog adaptive resonance theory, were trained on registered T2-weighted and proton density images. The classes of interest were background, gray matter, white matter, cerebrospinal fluid, macrocystic encephalomalacia, gliosis, and `unknown`. A comprehensive feature vector was chosen to discriminate these classes. The BPN combined with feature conditioning, multiple discriminant analysis followed by Hotelling transform, produced the most accurate and consistent classification results. Classifications of normal brain compartments were generally in agreement with expert interpretation of the images. Macrocystic encephalomalacia and gliosis were recognized and, except around the periphery, classified in agreement with the clinician`s report used to train the neural network. (orig.)

  4. Applying long short-term memory recurrent neural networks to intrusion detection

    Directory of Open Access Journals (Sweden)

    Ralf C. Staudemeyer

    2015-07-01

    Full Text Available We claim that modelling network traffic as a time series with a supervised learning approach, using known genuine and malicious behaviour, improves intrusion detection. To substantiate this, we trained long short-term memory (LSTM recurrent neural networks with the training data provided by the DARPA / KDD Cup ’99 challenge. To identify suitable LSTM-RNN network parameters and structure we experimented with various network topologies. We found networks with four memory blocks containing two cells each offer a good compromise between computational cost and detection performance. We applied forget gates and shortcut connections respectively. A learning rate of 0.1 and up to 1,000 epochs showed good results. We tested the performance on all features and on extracted minimal feature sets respectively. We evaluated different feature sets for the detection of all attacks within one network and also to train networks specialised on individual attack classes. Our results show that the LSTM classifier provides superior performance in comparison to results previously published results of strong static classifiers. With 93.82% accuracy and 22.13 cost, LSTM outperforms the winning entries of the KDD Cup ’99 challenge by far. This is due to the fact that LSTM learns to look back in time and correlate consecutive connection records. For the first time ever, we have demonstrated the usefulness of LSTM networks to intrusion detection.

  5. Neural networks (NN applied to the commercial properties valuation

    Directory of Open Access Journals (Sweden)

    J. M. Núñez Tabales

    2017-03-01

    Full Text Available Several agents, such as buyers and sellers, or local or tax authorities need to estimate the value of properties. There are different approaches to obtain the market price of a dwelling. Many papers have been produced in the academic literature for such purposes, but, these are, almost always, oriented to estimate hedonic prices of residential properties, such as houses or apartments. Here these methodologies are used in the field of estimate market price of commercial premises, using AI techniques. A case study is developed in Cordova —city in the South of Spain—. Neural Networks are an attractive alternative to the traditional hedonic modelling approaches, as they are better adapted to non-linearities of causal relationships and they also produce smaller valuation errors. It is also possible, from the NN model, to obtain implicit prices associated to the main attributes that can explain the variability of the market price of commercial properties.

  6. Building a glaucoma interaction network using a text mining approach.

    Science.gov (United States)

    Soliman, Maha; Nasraoui, Olfa; Cooper, Nigel G F

    2016-01-01

    The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of

  7. The Private Lives of Minerals: Social Network Analysis Applied to Mineralogy and Petrology

    Science.gov (United States)

    Hazen, R. M.; Morrison, S. M.; Fox, P. A.; Golden, J. J.; Downs, R. T.; Eleish, A.; Prabhu, A.; Li, C.; Liu, C.

    2016-12-01

    Comprehensive databases of mineral species (rruff.info/ima) and their geographic localities and co-existing mineral assemblages (mindat.org) reveal patterns of mineral association and distribution that mimic social networks, as commonly applied to such varied topics as social media interactions, the spread of disease, terrorism networks, and research collaborations. Applying social network analysis (SNA) to common assemblages of rock-forming igneous and regional metamorphic mineral species, we find patterns of cohesion, segregation, density, and cliques that are similar to those of human social networks. These patterns highlight classic trends in lithologic evolution and are illustrated with sociograms, in which mineral species are the "nodes" and co-existing species form "links." Filters based on chemistry, age, structural group, and other parameters highlight visually both familiar and new aspects of mineralogy and petrology. We quantify sociograms with SNA metrics, including connectivity (based on the frequency of co-occurrence of mineral pairs), homophily (the extent to which co-existing mineral species share compositional and other characteristics), network closure (based on the degree of network interconnectivity), and segmentation (as revealed by isolated "cliques" of mineral species). Exploitation of large and growing mineral data resources with SNA offers promising avenues for discovering previously hidden trends in mineral diversity-distribution systematics, as well as providing new pedagogical approaches to teaching mineralogy and petrology.

  8. Flowshop Scheduling Using a Network Approach | Oladeinde ...

    African Journals Online (AJOL)

    In this paper, a network based formulation of a permutation flow shop problem is presented. Two nuances of flow shop problems with different levels of complexity are solved using different approaches to the linear programming formulation. Key flow shop parameters inclosing makespan of the flow shop problems were ...

  9. GMDH and neural networks applied in temperature sensors monitoring

    International Nuclear Information System (INIS)

    Bueno, Elaine Inacio; Pereira, Iraci Martinez; Silva, Antonio Teixeira e

    2009-01-01

    In this work a monitoring system was developed based on the Group Method of Data Handling (GMDH) and Neural Networks (ANNs) methodologies. This methodology was applied to the IEA-R1 research reactor at IPEN by using a database obtained from a theoretical model of the reactor. The IEA-R1 research reactor is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium as reflector. The theoretical model was developed using the Matlab GUIDE toolbox. The equations are based in the IEA-R1 mass and energy inventory balance and physical as well as operational aspects are taken into consideration. This methodology was developed by using the GMDH algorithm as input variables to the ANNs. The results obtained using the GMDH and ANNs were better than that obtained using only ANNs. (author)

  10. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Neural network approach to radiologic lesion detection

    International Nuclear Information System (INIS)

    Newman, F.D.; Raff, U.; Stroud, D.

    1989-01-01

    An area of artificial intelligence that has gained recent attention is the neural network approach to pattern recognition. The authors explore the use of neural networks in radiologic lesion detection with what is known in the literature as the novelty filter. This filter uses a linear model; images of normal patterns become training vectors and are stored as columns of a matrix. An image of an abnormal pattern is introduced and the abnormality or novelty is extracted. A VAX 750 was used to encode the novelty filter, and two experiments have been examined

  12. A Network Coding Approach to Loss Tomography

    DEFF Research Database (Denmark)

    Sattari, Pegah; Markopoulou, Athina; Fragouli, Christina

    2013-01-01

    network coding capabilities. We design a framework for estimating link loss rates, which leverages network coding capabilities and we show that it improves several aspects of tomography, including the identifiability of links, the tradeoff between estimation accuracy and bandwidth efficiency......, and the complexity of probe path selection. We discuss the cases of inferring the loss rates of links in a tree topology or in a general topology. In the latter case, the benefits of our approach are even more pronounced compared to standard techniques but we also face novel challenges, such as dealing with cycles...

  13. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change.

    Science.gov (United States)

    Albert, Cécile H; Rayfield, Bronwyn; Dumitru, Maria; Gonzalez, Andrew

    2017-12-01

    Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land-use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land-use change projections with the latest developments in network-connectivity research and spatial, multipurpose conservation prioritization. We used land-use change simulations to explore robustness of species' habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land-use change. The application of connectivity criteria alongside habitat-quality criteria for protected-area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade-offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low. © 2017 Society for Conservation Biology.

  14. A Network Thermodynamic Approach to Compartmental Analysis

    Science.gov (United States)

    Mikulecky, D. C.; Huf, E. G.; Thomas, S. R.

    1979-01-01

    We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc. PMID:262387

  15. Applying Fuzzy Artificial Neural Network OSPF to develop Smart ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... Fuzzy Artificial Neural Network to create Smart Routing. Protocol Algorithm. ... manufactured mental aptitude strategy. The capacity to study .... Based Energy Efficiency in Wireless Sensor Networks: A Survey",. International ...

  16. Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks

    Directory of Open Access Journals (Sweden)

    Martin Florian

    2012-05-01

    Full Text Available Abstract Background High-throughput measurement technologies produce data sets that have the potential to elucidate the biological impact of disease, drug treatment, and environmental agents on humans. The scientific community faces an ongoing challenge in the analysis of these rich data sources to more accurately characterize biological processes that have been perturbed at the mechanistic level. Here, a new approach is built on previous methodologies in which high-throughput data was interpreted using prior biological knowledge of cause and effect relationships. These relationships are structured into network models that describe specific biological processes, such as inflammatory signaling or cell cycle progression. This enables quantitative assessment of network perturbation in response to a given stimulus. Results Four complementary methods were devised to quantify treatment-induced activity changes in processes described by network models. In addition, companion statistics were developed to qualify significance and specificity of the results. This approach is called Network Perturbation Amplitude (NPA scoring because the amplitudes of treatment-induced perturbations are computed for biological network models. The NPA methods were tested on two transcriptomic data sets: normal human bronchial epithelial (NHBE cells treated with the pro-inflammatory signaling mediator TNFα, and HCT116 colon cancer cells treated with the CDK cell cycle inhibitor R547. Each data set was scored against network models representing different aspects of inflammatory signaling and cell cycle progression, and these scores were compared with independent measures of pathway activity in NHBE cells to verify the approach. The NPA scoring method successfully quantified the amplitude of TNFα-induced perturbation for each network model when compared against NF-κB nuclear localization and cell number. In addition, the degree and specificity to which CDK

  17. Applying network theory to animal movements to identify properties of landscape space use.

    Science.gov (United States)

    Bastille-Rousseau, Guillaume; Douglas-Hamilton, Iain; Blake, Stephen; Northrup, Joseph M; Wittemyer, George

    2018-04-01

    Network (graph) theory is a popular analytical framework to characterize the structure and dynamics among discrete objects and is particularly effective at identifying critical hubs and patterns of connectivity. The identification of such attributes is a fundamental objective of animal movement research, yet network theory has rarely been applied directly to animal relocation data. We develop an approach that allows the analysis of movement data using network theory by defining occupied pixels as nodes and connection among these pixels as edges. We first quantify node-level (local) metrics and graph-level (system) metrics on simulated movement trajectories to assess the ability of these metrics to pull out known properties in movement paths. We then apply our framework to empirical data from African elephants (Loxodonta africana), giant Galapagos tortoises (Chelonoidis spp.), and mule deer (Odocoileous hemionus). Our results indicate that certain node-level metrics, namely degree, weight, and betweenness, perform well in capturing local patterns of space use, such as the definition of core areas and paths used for inter-patch movement. These metrics were generally applicable across data sets, indicating their robustness to assumptions structuring analysis or strategies of movement. Other metrics capture local patterns effectively, but were sensitive to specified graph properties, indicating case specific applications. Our analysis indicates that graph-level metrics are unlikely to outperform other approaches for the categorization of general movement strategies (central place foraging, migration, nomadism). By identifying critical nodes, our approach provides a robust quantitative framework to identify local properties of space use that can be used to evaluate the effect of the loss of specific nodes on range wide connectivity. Our network approach is intuitive, and can be implemented across imperfectly sampled or large-scale data sets efficiently, providing a

  18. A neural network approach to the orienteering problem

    Energy Technology Data Exchange (ETDEWEB)

    Golden, B.; Wang, Q.; Sun, X.; Jia, J.

    1994-12-31

    In the orienteering problem, we are given a transportation network in which a start point and an end point are specified. Other points have associated scores. Given a fixed amount of time, the goal is to determine a path from start to end through a subset of locations in order to maximize the total path score. This problem has received a considerable amount of attention in the last ten years. The TSP is a variant of the orienteering problem. This paper applies a modified, continuous Hopfield neural network to attack this NP-hard optimization problem. In it, we design an effective energy function and learning algorithm. Unlike some applications of neural networks to optimization problems, this approach is shown to perform quite well.

  19. Learning about knowledge: A complex network approach

    International Nuclear Information System (INIS)

    Fontoura Costa, Luciano da

    2006-01-01

    An approach to modeling knowledge acquisition in terms of walks along complex networks is described. Each subset of knowledge is represented as a node, and relations between such knowledge are expressed as edges. Two types of edges are considered, corresponding to free and conditional transitions. The latter case implies that a node can only be reached after visiting previously a set of nodes (the required conditions). The process of knowledge acquisition can then be simulated by considering the number of nodes visited as a single agent moves along the network, starting from its lowest layer. It is shown that hierarchical networks--i.e., networks composed of successive interconnected layers--are related to compositions of the prerequisite relationships between the nodes. In order to avoid deadlocks--i.e., unreachable nodes--the subnetwork in each layer is assumed to be a connected component. Several configurations of such hierarchical knowledge networks are simulated and the performance of the moving agent quantified in terms of the percentage of visited nodes after each movement. The Barabasi-Albert and random models are considered for the layer and interconnecting subnetworks. Although all subnetworks in each realization have the same number of nodes, several interconnectivities, defined by the average node degree of the interconnection networks, have been considered. Two visiting strategies are investigated: random choice among the existing edges and preferential choice to so far untracked edges. A series of interesting results are obtained, including the identification of a series of plateaus of knowledge stagnation in the case of the preferential movement strategy in the presence of conditional edges

  20. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    Science.gov (United States)

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  1. New approach for simulating groundwater flow in discrete fracture network

    Science.gov (United States)

    Fang, H.; Zhu, J.

    2017-12-01

    In this study, we develop a new approach to calculate groundwater flowrate and hydraulic head distribution in two-dimensional discrete fracture network (DFN) where both laminar and turbulent flows co-exist in individual fractures. The cubic law is used to calculate hydraulic head distribution and flow behaviors in fractures where flow is laminar, while the Forchheimer's law is used to quantify turbulent flow behaviors. Reynolds number is used to distinguish flow characteristics in individual fractures. The combination of linear and non-linear equations is solved iteratively to determine flowrates in all fractures and hydraulic heads at all intersections. We examine potential errors in both flowrate and hydraulic head from the approach of uniform flow assumption. Applying the cubic law in all fractures regardless of actual flow conditions overestimates the flowrate when turbulent flow may exist while applying the Forchheimer's law indiscriminately underestimate the flowrate when laminar flows exist in the network. The contrast of apertures of large and small fractures in the DFN has significant impact on the potential errors of using only the cubic law or the Forchheimer's law. Both the cubic law and Forchheimer's law simulate similar hydraulic head distributions as the main difference between these two approaches lies in predicting different flowrates. Fracture irregularity does not significantly affect the potential errors from using only the cubic law or the Forchheimer's law if network configuration remains similar. Relative density of fractures does not significantly affect the relative performance of the cubic law and Forchheimer's law.

  2. Application of Game Theory Approaches in Routing Protocols for Wireless Networks

    Science.gov (United States)

    Javidi, Mohammad M.; Aliahmadipour, Laya

    2011-09-01

    An important and essential issue for wireless networks is routing protocol design that is a major technical challenge due to the function of the network. Game theory is a powerful mathematical tool that analyzes the strategic interactions among multiple decision makers and the results of researches show that applied game theory in routing protocol lead to improvement the network performance through reduce overhead and motivates selfish nodes to collaborate in the network. This paper presents a review and comparison for typical representatives of routing protocols designed that applied game theory approaches for various wireless networks such as ad hoc networks, mobile ad hoc networks and sensor networks that all of them lead to improve the network performance.

  3. How can social network analysis contribute to social behavior research in applied ethology?

    Science.gov (United States)

    Makagon, Maja M; McCowan, Brenda; Mench, Joy A

    2012-05-01

    Social network analysis is increasingly used by behavioral ecologists and primatologists to describe the patterns and quality of interactions among individuals. We provide an overview of this methodology, with examples illustrating how it can be used to study social behavior in applied contexts. Like most kinds of social interaction analyses, social network analysis provides information about direct relationships (e.g. dominant-subordinate relationships). However, it also generates a more global model of social organization that determines how individual patterns of social interaction relate to individual and group characteristics. A particular strength of this approach is that it provides standardized mathematical methods for calculating metrics of sociality across levels of social organization, from the population and group levels to the individual level. At the group level these metrics can be used to track changes in social network structures over time, evaluate the effect of the environment on social network structure, or compare social structures across groups, populations or species. At the individual level, the metrics allow quantification of the heterogeneity of social experience within groups and identification of individuals who may play especially important roles in maintaining social stability or information flow throughout the network.

  4. Applying the Network Simulation Method for testing chaos in a resistively and capacitively shunted Josephson junction model

    Directory of Open Access Journals (Sweden)

    Fernando Gimeno Bellver

    Full Text Available In this paper, we explore the chaotic behavior of resistively and capacitively shunted Josephson junctions via the so-called Network Simulation Method. Such a numerical approach establishes a formal equivalence among physical transport processes and electrical networks, and hence, it can be applied to efficiently deal with a wide range of differential systems.The generality underlying that electrical equivalence allows to apply the circuit theory to several scientific and technological problems. In this work, the Fast Fourier Transform has been applied for chaos detection purposes and the calculations have been carried out in PSpice, an electrical circuit software.Overall, it holds that such a numerical approach leads to quickly computationally solve Josephson differential models. An empirical application regarding the study of the Josephson model completes the paper. Keywords: Electrical analogy, Network Simulation Method, Josephson junction, Chaos indicator, Fast Fourier Transform

  5. APPLYING ARTIFICIAL NEURAL NETWORK OPTIMIZED BY FIREWORKS ALGORITHM FOR STOCK PRICE ESTIMATION

    Directory of Open Access Journals (Sweden)

    Khuat Thanh Tung

    2016-04-01

    Full Text Available Stock prediction is to determine the future value of a company stock dealt on an exchange. It plays a crucial role to raise the profit gained by firms and investors. Over the past few years, many methods have been developed in which plenty of efforts focus on the machine learning framework achieving the promising results. In this paper, an approach based on Artificial Neural Network (ANN optimized by Fireworks algorithm and data preprocessing by Haar Wavelet is applied to estimate the stock prices. The system was trained and tested with real data of various companies collected from Yahoo Finance. The obtained results are encouraging.

  6. Applying information network analysis to fire-prone landscapes: implications for community resilience

    Directory of Open Access Journals (Sweden)

    Derric B. Jacobs

    2017-03-01

    Full Text Available Resilient communities promote trust, have well-developed networks, and can adapt to change. For rural communities in fire-prone landscapes, current resilience strategies may prove insufficient in light of increasing wildfire risks due to climate change. It is argued that, given the complexity of climate change, adaptations are best addressed at local levels where specific social, cultural, political, and economic conditions are matched with local risks and opportunities. Despite the importance of social networks as key attributes of community resilience, research using social network analysis on coupled human and natural systems is scarce. Furthermore, the extent to which local communities in fire-prone areas understand climate change risks, accept the likelihood of potential changes, and have the capacity to develop collaborative mitigation strategies is underexamined, yet these factors are imperative to community resiliency. We apply a social network framework to examine information networks that affect perceptions of wildfire and climate change in Central Oregon. Data were collected using a mailed questionnaire. Analysis focused on the residents' information networks that are used to gain awareness of governmental activities and measures of community social capital. A two-mode network analysis was used to uncover information exchanges. Results suggest that the general public develops perceptions about climate change based on complex social and cultural systems rather than as patrons of scientific inquiry and understanding. It appears that perceptions about climate change itself may not be the limiting factor in these communities' adaptive capacity, but rather how they perceive local risks. We provide a novel methodological approach in understanding rural community adaptation and resilience in fire-prone landscapes and offer a framework for future studies.

  7. Applying Game Theory in 802.11 Wireless Networks

    Directory of Open Access Journals (Sweden)

    Tomas Cuzanauskas

    2015-07-01

    Full Text Available IEEE 802.11 is one of the most popular wireless technologies in recent days. Due to easiness of adaption and relatively low cost the demand for IEEE 802.11 devices is increasing exponentially. IEEE works in two bands 2.4 GHz and 5 GHz, these bands are known as ISM band. The unlicensed bands are managed by authority which set simple rules to follow when using unlicensed bands, the rules includes requirements as maximum power, out-of-band emissions control as well as interference mitigation. However these rules became outdated as IEEE 802.11 technology is emerging and evolving in hours the rules aren’t well suited for current capabilities of IEEE 802.11 devices. In this article we present game theory based algorithm for IEEE 802.11 wireless devices, we will show that by using game theory it’s possible to achieve better usage of unlicensed spectrum as well as partially decline CSMA/CA. Finally by using this approach we might relax the currently applied maximum power rules for ISM bands, which enable IEEE 802.11 to work on longer distance and have better propagation characteristics.

  8. Environmental investment and firm performance: A network approach

    International Nuclear Information System (INIS)

    Bostian, Moriah; Färe, Rolf; Grosskopf, Shawna; Lundgren, Tommy

    2016-01-01

    This study examines the role of investment in environmental production practices for both environmental performance and energy efficiency over time. We employ a network DEA approach that links successive production technologies through intertemporal investment decisions with a period by period estimation. This allows us to estimate energy efficiency and environmental performance separately, as well as productivity change and its associated decompositions into efficiency change and technology change. Incorporating a network model also allows us to account for both short-term environmental management practices and long-term environmental investments in each of our productivity measures. We apply this framework to a panel of detailed plant-level production data for Swedish manufacturing firms covering the years 2002–2008. - Highlights: • We use a network DEA model to account for intertemporal environmental investment decisionsin measures of firm productivity. • We apply our network technology model to a panel of firms in Sweden's pulp and paperindustry for the years 2002 - 2008. • We model environmental investments and expenditures separately from other productionoriented inputs. • We find evidence of positive relationships between energy efficiency, environmental performance, and firm productivity.

  9. The hybrid thermography approach applied to architectural structures

    Science.gov (United States)

    Sfarra, S.; Ambrosini, D.; Paoletti, D.; Nardi, I.; Pasqualoni, G.

    2017-07-01

    This work contains an overview of infrared thermography (IRT) method and its applications relating to the investigation of architectural structures. In this method, the passive approach is usually used in civil engineering, since it provides a panoramic view of the thermal anomalies to be interpreted also thanks to the use of photographs focused on the region of interest (ROI). The active approach, is more suitable for laboratory or indoor inspections, as well as for objects having a small size. The external stress to be applied is thermal, coming from non-natural apparatus such as lamps or hot / cold air jets. In addition, the latter permits to obtain quantitative information related to defects not detectable to the naked eyes. Very recently, the hybrid thermography (HIRT) approach has been introduced to the attention of the scientific panorama. It can be applied when the radiation coming from the sun, directly arrives (i.e., possibly without the shadow cast effect) on a surface exposed to the air. A large number of thermograms must be collected and a post-processing analysis is subsequently applied via advanced algorithms. Therefore, an appraisal of the defect depth can be obtained passing through the calculation of the combined thermal diffusivity of the materials above the defect. The approach is validated herein by working, in a first stage, on a mosaic sample having known defects while, in a second stage, on a Church built in L'Aquila (Italy) and covered with a particular masonry structure called apparecchio aquilano. The results obtained appear promising.

  10. THE NETWORKS IN TOURISM: A THEORETICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Maria TĂTĂRUȘANU

    2016-12-01

    Full Text Available The economic world in which tourism companies act today is in a continuous changing process. The most important factor of these changes is the globalization of their environment, both in economic, social, natural and cultural aspects. The tourism companies can benefit from the opportunities brought by globalization, but also could be menaced by the new context. How could react the companies to these changes in order to create and maintain long term competitive advantage for their business? In the present paper we make a literature review of the new tourism companies´ business approach: the networks - a result and/or a reason for exploiting the opportunities or, on the contrary, for keeping their actual position on the market. It’s a qualitative approach and the research methods used are analyses, synthesis, abstraction, which are considered the most appropriate to achieve the objective of the paper.

  11. Fast frequency hopping codes applied to SAC optical CDMA network

    Science.gov (United States)

    Tseng, Shin-Pin

    2015-06-01

    This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.

  12. Scatter networks: a new approach for analysing information scatter

    International Nuclear Information System (INIS)

    Adamic, Lada A; Suresh, K; Shi Xiaolin

    2007-01-01

    Information on any given topic is often scattered across the Web. Previously this scatter has been characterized through the inequality of distribution of facts (i.e. pieces of information) across webpages. Such an approach conceals how specific facts (e.g. rare facts) occur in specific types of pages (e.g. fact-rich pages). To reveal such regularities, we construct bipartite networks, consisting of two types of vertices: the facts contained in webpages and the webpages themselves. Such a representation enables the application of a series of network analysis techniques, revealing structural features such as connectivity, robustness and clustering. Not only does network analysis yield new insights into information scatter, but we also illustrate the benefit of applying new and existing analysis techniques directly to a bipartite network as opposed to its one-mode projection. We discuss the implications of each network feature to the users' ability to find comprehensive information online. Finally, we compare the bipartite graph structure of webpages and facts with the hyperlink structure between the webpages

  13. Why common carrier and network neutrality principles apply to the Nationwide Health Information Network (NWHIN).

    Science.gov (United States)

    Gaynor, Mark; Lenert, Leslie; Wilson, Kristin D; Bradner, Scott

    2014-01-01

    The Office of the National Coordinator will be defining the architecture of the Nationwide Health Information Network (NWHIN) together with the proposed HealtheWay public/private partnership as a development and funding strategy. There are a number of open questions--for example, what is the best way to realize the benefits of health information exchange? How valuable are regional health information organizations in comparison with a more direct approach? What is the role of the carriers in delivering this service? The NWHIN is to exist for the public good, and thus shares many traits of the common law notion of 'common carriage' or 'public calling,' the modern term for which is network neutrality. Recent policy debates in Congress and resulting potential regulation have implications for key stakeholders within healthcare that use or provide services, and for those who exchange information. To date, there has been little policy debate or discussion about the implications of a neutral NWHIN. This paper frames the discussion for future policy debate in healthcare by providing a brief education and summary of the modern version of common carriage, of the key stakeholder positions in healthcare, and of the potential implications of the network neutrality debate within healthcare.

  14. Applying a Problem Based Learning Approach to Land Management Education

    DEFF Research Database (Denmark)

    Enemark, Stig

    Land management covers a wide range activities associated with the management of land and natural resources that are required to fulfil political objectives and achieve sustainable development. This paper presents an overall understanding of the land management paradigm and the benefits of good...... land governance to society. A land administration system provides a country with the infrastructure to implement land-related policies and land management strategies. By applying this land management profile to surveying education, this paper suggests that there is a need to move away from an exclusive...... engineering focus toward adopting an interdisciplinary and problem-based approach to ensure that academic programmes can cope with the wide range of land administration functions and challenges. An interdisciplinary approach to surveying education calls for the need to address issues and problems in a real...

  15. Matrix product algorithm for stochastic dynamics on networks applied to nonequilibrium Glauber dynamics

    Science.gov (United States)

    Barthel, Thomas; De Bacco, Caterina; Franz, Silvio

    2018-01-01

    We introduce and apply an efficient method for the precise simulation of stochastic dynamical processes on locally treelike graphs. Networks with cycles are treated in the framework of the cavity method. Such models correspond, for example, to spin-glass systems, Boolean networks, neural networks, or other technological, biological, and social networks. Building upon ideas from quantum many-body theory, our approach is based on a matrix product approximation of the so-called edge messages—conditional probabilities of vertex variable trajectories. Computation costs and accuracy can be tuned by controlling the matrix dimensions of the matrix product edge messages (MPEM) in truncations. In contrast to Monte Carlo simulations, the algorithm has a better error scaling and works for both single instances as well as the thermodynamic limit. We employ it to examine prototypical nonequilibrium Glauber dynamics in the kinetic Ising model. Because of the absence of cancellation effects, observables with small expectation values can be evaluated accurately, allowing for the study of decay processes and temporal correlations.

  16. Artificial neural networks applied to forecasting time series.

    Science.gov (United States)

    Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar

    2011-04-01

    This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.

  17. New approach to ECG's features recognition involving neural network

    International Nuclear Information System (INIS)

    Babloyantz, A.; Ivanov, V.V.; Zrelov, P.V.

    2001-01-01

    A new approach for the detection of slight changes in the form of the ECG signal is proposed. It is based on the approximation of raw ECG data inside each RR-interval by the expansion in polynomials of special type and on the classification of samples represented by sets of expansion coefficients using a layered feed-forward neural network. The transformation applied provides significantly simpler data structure, stability to noise and to other accidental factors. A by-product of the method is the compression of ECG data with factor 5

  18. Using the OASES-A to illustrate how network analysis can be applied to understand the experience of stuttering.

    Science.gov (United States)

    Siew, Cynthia S Q; Pelczarski, Kristin M; Yaruss, J Scott; Vitevitch, Michael S

    Network science uses mathematical and computational techniques to examine how individual entities in a system, represented by nodes, interact, as represented by connections between nodes. This approach has been used by Cramer et al. (2010) to make "symptom networks" to examine various psychological disorders. In the present analysis we examined a network created from the items in the Overall Assessment of the Speaker's Experience of Stuttering-Adult (OASES-A), a commonly used measure for evaluating adverse impact in the lives of people who stutter. The items of the OASES-A were represented as nodes in the network. Connections between nodes were placed if responses to those two items in the OASES-A had a correlation coefficient greater than ±0.5. Several network analyses revealed which nodes were "important" in the network. Several centrally located nodes and "key players" in the network were identified. A community detection analysis found groupings of nodes that differed slightly from the subheadings of the OASES-A. Centrally located nodes and "key players" in the network may help clinicians prioritize treatment. The different community structure found for people who stutter suggests that the way people who stutter view stuttering may differ from the way that scientists and clinicians view stuttering. Finally, the present analyses illustrate how the network approach might be applied to other speech, language, and hearing disorders to better understand how those disorders are experienced and to provide insights for their treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Maximizing lifetime of wireless sensor networks using genetic approach

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor......-objective parameters are considered to solve the problem using genetic algorithm of evolutionary approach.......The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor...

  20. Applying neural networks as software sensors for enzyme engineering.

    Science.gov (United States)

    Linko, S; Zhu, Y H; Linko, P

    1999-04-01

    The on-line control of enzyme-production processes is difficult, owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables. For example, intelligent methods to predict the end point of fermentation could be of great economic value. Computer-assisted control based on artificial-neural-network models offers a novel solution in such situations. Well-trained feedforward-backpropagation neural networks can be used as software sensors in enzyme-process control; their performance can be affected by a number of factors.

  1. Applying a rateless code in content delivery networks

    Science.gov (United States)

    Suherman; Zarlis, Muhammad; Parulian Sitorus, Sahat; Al-Akaidi, Marwan

    2017-09-01

    Content delivery network (CDN) allows internet providers to locate their services, to map their coverage into networks without necessarily to own them. CDN is part of the current internet infrastructures, supporting multi server applications especially social media. Various works have been proposed to improve CDN performances. Since accesses on social media servers tend to be short but frequent, providing redundant to the transmitted packets to ensure lost packets not degrade the information integrity may improve service performances. This paper examines the implementation of rateless code in the CDN infrastructure. The NS-2 evaluations show that rateless code is able to reduce packet loss up to 50%.

  2. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran; Ovcharenko, Oleg; Peter, Daniel

    2017-01-01

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset

  3. Sport, how people choose it: A network analysis approach.

    Science.gov (United States)

    Ferreri, Luca; Ivaldi, Marco; Daolio, Fabio; Giacobini, Mario; Rainoldi, Alberto; Tomassini, Marco

    2015-01-01

    In order to investigate the behaviour of athletes in choosing sports, we analyse data from part of the We-Sport database, a vertical social network that links athletes through sports. In particular, we explore connections between people sharing common sports and the role of age and gender by applying "network science" approaches and methods. The results show a disassortative tendency of athletes in choosing sports, a negative correlation between age and number of chosen sports and a positive correlation between age of connected athletes. Some interesting patterns of connection between age classes are depicted. In addition, we propose a method to classify sports, based on the analyses of the behaviour of people practising them. Thanks to this brand new classifications, we highlight the links of class of sports and their unexpected features. We emphasise some gender dependency affinity in choosing sport classes.

  4. Applying Real Options Thinking to Information Security in Networked Organizations

    NARCIS (Netherlands)

    Daneva, Maia

    2006-01-01

    An information security strategy of an organization participating in a networked business sets out the plans for designing a variety of actions that ensure confidentiality, availability, and integrity of company’s key information assets. The actions are concerned with authentication and

  5. Neural networks applied to the classification of remotely sensed data

    NARCIS (Netherlands)

    Mulder, Nanno; Spreeuwers, Lieuwe Jan

    1991-01-01

    A neural network with topology 2-8-8 is evaluated against the standard of supervised non-parametric maximum likelihood classification. The purpose of the evaluation is to compare the performance in terms of training speed and quality of classification. Classification is done on multispectral data

  6. The harmonics detection method based on neural network applied ...

    African Journals Online (AJOL)

    user

    Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total ..... Genetic algorithm-based self-learning fuzzy PI controller for shunt active filter, ... Verification of global optimality of the OFC active power filters by means of ...

  7. NEW TECHNIQUES APPLIED IN ECONOMICS. ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Constantin Ilie

    2009-05-01

    Full Text Available The present paper has the objective to inform the public regarding the use of new techniques for the modeling, simulate and forecast of system from different field of activity. One of those techniques is Artificial Neural Network, one of the artificial in

  8. Prediction of fracture toughness temperature dependence applying neural network

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Hadraba, Hynek; Chlup, Zdeněk; Šmída, T.

    2011-01-01

    Roč. 11, č. 1 (2011), s. 9-14 ISSN 1451-3749 R&D Projects: GA ČR(CZ) GAP108/10/0466 Institutional research plan: CEZ:AV0Z20410507 Keywords : brittle to ductile transition * fracture toughness * artificial neural network * steels Subject RIV: JL - Materials Fatigue, Friction Mechanics

  9. Setting research priorities by applying the combined approach matrix.

    Science.gov (United States)

    Ghaffar, Abdul

    2009-04-01

    Priority setting in health research is a dynamic process. Different organizations and institutes have been working in the field of research priority setting for many years. In 1999 the Global Forum for Health Research presented a research priority setting tool called the Combined Approach Matrix or CAM. Since its development, the CAM has been successfully applied to set research priorities for diseases, conditions and programmes at global, regional and national levels. This paper briefly explains the CAM methodology and how it could be applied in different settings, giving examples and describing challenges encountered in the process of setting research priorities and providing recommendations for further work in this field. The construct and design of the CAM is explained along with different steps needed, including planning and organization of a priority-setting exercise and how it could be applied in different settings. The application of the CAM are described by using three examples. The first concerns setting research priorities for a global programme, the second describes application at the country level and the third setting research priorities for diseases. Effective application of the CAM in different and diverse environments proves its utility as a tool for setting research priorities. Potential challenges encountered in the process of research priority setting are discussed and some recommendations for further work in this field are provided.

  10. Training of reverse propagation neural networks applied to neutron dosimetry

    International Nuclear Information System (INIS)

    Hernandez P, C. F.; Martinez B, M. R.; Leon P, A. A.; Espinoza G, J. G.; Castaneda M, V. H.; Solis S, L. O.; Castaneda M, R.; Ortiz R, M.; Vega C, H. R.; Mendez V, R.; Gallego, E.; De Sousa L, M. A.

    2016-10-01

    Neutron dosimetry is of great importance in radiation protection as aims to provide dosimetric quantities to assess the magnitude of detrimental health effects due to exposure of neutron radiation. To quantify detriment to health is necessary to evaluate the dose received by the occupationally exposed personnel using different detection systems called dosimeters, which have very dependent responses to the energy distribution of neutrons. The neutron detection is a much more complex problem than the detection of charged particles, since it does not carry an electric charge, does not cause direct ionization and has a greater penetration power giving the possibility of interacting with matter in a different way. Because of this, various neutron detection systems have been developed, among which the Bonner spheres spectrometric system stands out due to the advantages that possesses, such as a wide range of energy, high sensitivity and easy operation. However, once obtained the counting rates, the problem lies in the neutron spectrum deconvolution, necessary for the calculation of the doses, using different mathematical methods such as Monte Carlo, maximum entropy, iterative methods among others, which present various difficulties that have motivated the development of new technologies. Nowadays, methods based on artificial intelligence technologies are being used to perform neutron dosimetry, mainly using the theory of artificial neural networks. In these new methods the need for spectrum reconstruction can be eliminated for the calculation of the doses. In this work an artificial neural network or reverse propagation was trained for the calculation of 15 equivalent doses from the counting rates of the Bonner spheres spectrometric system using a set of 7 spheres, one of 2 spheres and two of a single sphere of different sizes, testing different error values until finding the most appropriate. The optimum network topology was obtained through the robust design

  11. Transport on river networks: A dynamical approach

    OpenAIRE

    Zaliapin, I; Foufoula-Georgiou, E; Ghil, M

    2017-01-01

    This study is motivated by problems related to environmental transport on river networks. We establish statistical properties of a flow along a directed branching network and suggest its compact parameterization. The downstream network transport is treated as a particular case of nearest-neighbor hierarchical aggregation with respect to the metric induced by the branching structure of the river network. We describe the static geometric structure of a drainage network by a tree, referred to as...

  12. What can we learn from the network approach in finance?

    Science.gov (United States)

    Janos, Kertesz

    2005-03-01

    Correlations between variations of stock prices reveal information about relationships between companies. Different methods of analysis have been applied to such data in order to uncover the taxonomy of the market. We use Mantegna's miminum spanning tree (MST) method for daily data in a dynamic way: By introducing a moving window we study the temporal changes in the structure of the network defined by this ``asset tree.'' The MST is scale free with a significantly changing exponent of the degree distribution for crash periods, which demonstrates the restructuring of the network due to the enhancement of correlations. This approach is compared to that based on what we call ``asset graphs:'' We start from an empty graph with no edges where the vertices correspond to stocks and then, one by one, we insert edges between the vertices according to the rank of their correlation strength. We study the properties of the creatred (weighted) networks, such as topologically different growth types, number and size of clusters and clustering coefficient. Furthermore, we define new tools like subgraph intensity and coherence to describe the role of the weights. We also investigate the time shifted cross correlation functions for high frequency data and find a characteristic time delay in many cases representing that some stocks lead the price changes while others follow them. These data can be used to construct a directed network of influence.

  13. Boarding Team Networking on the Move: Applying Unattended Relay Nodes

    Science.gov (United States)

    2014-09-01

    Operations MPU Man Portable Unit NATO North Atlantic Treaty Organization NOC Network Operations Center OSI Open Source Initiative RHIB Rigid Hull...portion of world trade, while by economic value containerized goods form the largest portion [3]. Although economical value containers are most often...back of technological and logistical obstacles to inspect all containers, it is neither feasible nor economical to inspect every container entering

  14. Propagation Analysis for Wireless Sensor Networks Applied to Viticulture

    OpenAIRE

    Correia, Felipe Pinheiro; Alencar, Marcelo Sampaio de; Lopes, Waslon Terllizzie Araújo; Assis, Mauro Soares de; Leal, Brauliro Gonçalves

    2017-01-01

    Wireless sensor networks have been proposed as a solution to obtain soil and environment information in large distributed areas. The main economic activity of the São Francisco Valley region in the Northeast of Brazil is the irrigated fruit production. The region is one of the major agricultural regions of the country. Grape plantations receive large investments and provide good financial return. However, the region still lacks electronic sensing systems to extract adequate information from p...

  15. Applied and computational harmonic analysis on graphs and networks

    Science.gov (United States)

    Irion, Jeff; Saito, Naoki

    2015-09-01

    In recent years, the advent of new sensor technologies and social network infrastructure has provided huge opportunities and challenges for analyzing data recorded on such networks. In the case of data on regular lattices, computational harmonic analysis tools such as the Fourier and wavelet transforms have well-developed theories and proven track records of success. It is therefore quite important to extend such tools from the classical setting of regular lattices to the more general setting of graphs and networks. In this article, we first review basics of graph Laplacian matrices, whose eigenpairs are often interpreted as the frequencies and the Fourier basis vectors on a given graph. We point out, however, that such an interpretation is misleading unless the underlying graph is either an unweighted path or cycle. We then discuss our recent effort of constructing multiscale basis dictionaries on a graph, including the Hierarchical Graph Laplacian Eigenbasis Dictionary and the Generalized Haar-Walsh Wavelet Packet Dictionary, which are viewed as generalizations of the classical hierarchical block DCTs and the Haar-Walsh wavelet packets, respectively, to the graph setting. Finally, we demonstrate the usefulness of our dictionaries by using them to simultaneously segment and denoise 1-D noisy signals sampled on regular lattices, a problem where classical tools have difficulty.

  16. Neural network stochastic simulation applied for quantifying uncertainties

    Directory of Open Access Journals (Sweden)

    N Foudil-Bey

    2016-09-01

    Full Text Available Generally the geostatistical simulation methods are used to generate several realizations of physical properties in the sub-surface, these methods are based on the variogram analysis and limited to measures correlation between variables at two locations only. In this paper, we propose a simulation of properties based on supervised Neural network training at the existing drilling data set. The major advantage is that this method does not require a preliminary geostatistical study and takes into account several points. As a result, the geological information and the diverse geophysical data can be combined easily. To do this, we used a neural network with multi-layer perceptron architecture like feed-forward, then we used the back-propagation algorithm with conjugate gradient technique to minimize the error of the network output. The learning process can create links between different variables, this relationship can be used for interpolation of the properties on the one hand, or to generate several possible distribution of physical properties on the other hand, changing at each time and a random value of the input neurons, which was kept constant until the period of learning. This method was tested on real data to simulate multiple realizations of the density and the magnetic susceptibility in three-dimensions at the mining camp of Val d'Or, Québec (Canada.

  17. System Biology Approach: Gene Network Analysis for Muscular Dystrophy.

    Science.gov (United States)

    Censi, Federica; Calcagnini, Giovanni; Mattei, Eugenio; Giuliani, Alessandro

    2018-01-01

    Phenotypic changes at different organization levels from cell to entire organism are associated to changes in the pattern of gene expression. These changes involve the entire genome expression pattern and heavily rely upon correlation patterns among genes. The classical approach used to analyze gene expression data builds upon the application of supervised statistical techniques to detect genes differentially expressed among two or more phenotypes (e.g., normal vs. disease). The use of an a posteriori, unsupervised approach based on principal component analysis (PCA) and the subsequent construction of gene correlation networks can shed a light on unexpected behaviour of gene regulation system while maintaining a more naturalistic view on the studied system.In this chapter we applied an unsupervised method to discriminate DMD patient and controls. The genes having the highest absolute scores in the discrimination between the groups were then analyzed in terms of gene expression networks, on the basis of their mutual correlation in the two groups. The correlation network structures suggest two different modes of gene regulation in the two groups, reminiscent of important aspects of DMD pathogenesis.

  18. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  19. An efficient approach to enhance capacity allocation over Bluetooth network

    DEFF Research Database (Denmark)

    Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun

    2002-01-01

    quality of service requirements and topologically induced constraints in the Bluetooth network, such as node and link capacity limitations. The proposed scheme is decentralized and complies with frequent changes of topology as well as capacity limitations and flow requirements in the network. Simulation...... shows that the performance of Bluetooth network could be improved by applying the hybrid distributed iterative capacity allocation scheme....

  20. A model-guided symbolic execution approach for network protocol implementations and vulnerability detection.

    Science.gov (United States)

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Formal techniques have been devoted to analyzing whether network protocol specifications violate security policies; however, these methods cannot detect vulnerabilities in the implementations of the network protocols themselves. Symbolic execution can be used to analyze the paths of the network protocol implementations, but for stateful network protocols, it is difficult to reach the deep states of the protocol. This paper proposes a novel model-guided approach to detect vulnerabilities in network protocol implementations. Our method first abstracts a finite state machine (FSM) model, then utilizes the model to guide the symbolic execution. This approach achieves high coverage of both the code and the protocol states. The proposed method is implemented and applied to test numerous real-world network protocol implementations. The experimental results indicate that the proposed method is more effective than traditional fuzzing methods such as SPIKE at detecting vulnerabilities in the deep states of network protocol implementations.

  1. A model-guided symbolic execution approach for network protocol implementations and vulnerability detection.

    Directory of Open Access Journals (Sweden)

    Shameng Wen

    Full Text Available Formal techniques have been devoted to analyzing whether network protocol specifications violate security policies; however, these methods cannot detect vulnerabilities in the implementations of the network protocols themselves. Symbolic execution can be used to analyze the paths of the network protocol implementations, but for stateful network protocols, it is difficult to reach the deep states of the protocol. This paper proposes a novel model-guided approach to detect vulnerabilities in network protocol implementations. Our method first abstracts a finite state machine (FSM model, then utilizes the model to guide the symbolic execution. This approach achieves high coverage of both the code and the protocol states. The proposed method is implemented and applied to test numerous real-world network protocol implementations. The experimental results indicate that the proposed method is more effective than traditional fuzzing methods such as SPIKE at detecting vulnerabilities in the deep states of network protocol implementations.

  2. Applied Knowledge Management to Mitigate Cognitive Load in Network-Enabled Mission Command

    Science.gov (United States)

    2017-11-22

    ARL-TN-0859 ● NOV 2017 US Army Research Laboratory Applied Knowledge Management to Mitigate Cognitive Load in Network-Enabled...Applied Knowledge Management to Mitigate Cognitive Load in Network-Enabled Mission Command by John K Hawley Human Research and Engineering...REPORT TYPE Technical Note 3. DATES COVERED (From - To) 1 May 2016–20 April 2017 4. TITLE AND SUBTITLE Applied Knowledge Management to Mitigate

  3. Applying graphs and complex networks to football metric interpretation.

    Science.gov (United States)

    Arriaza-Ardiles, E; Martín-González, J M; Zuniga, M D; Sánchez-Flores, J; de Saa, Y; García-Manso, J M

    2018-02-01

    This work presents a methodology for analysing the interactions between players in a football team, from the point of view of graph theory and complex networks. We model the complex network of passing interactions between players of a same team in 32 official matches of the Liga de Fútbol Profesional (Spain), using a passing/reception graph. This methodology allows us to understand the play structure of the team, by analysing the offensive phases of game-play. We utilise two different strategies for characterising the contribution of the players to the team: the clustering coefficient, and centrality metrics (closeness and betweenness). We show the application of this methodology by analyzing the performance of a professional Spanish team according to these metrics and the distribution of passing/reception in the field. Keeping in mind the dynamic nature of collective sports, in the future we will incorporate metrics which allows us to analyse the performance of the team also according to the circumstances of game-play and to different contextual variables such as, the utilisation of the field space, the time, and the ball, according to specific tactical situations. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Neural networks applied to discriminate botanical origin of honeys.

    Science.gov (United States)

    Anjos, Ofélia; Iglesias, Carla; Peres, Fátima; Martínez, Javier; García, Ángela; Taboada, Javier

    2015-05-15

    The aim of this work is develop a tool based on neural networks to predict the botanical origin of honeys using physical and chemical parameters. The managed database consists of 49 honey samples of 2 different classes: monofloral (almond, holm oak, sweet chestnut, eucalyptus, orange, rosemary, lavender, strawberry trees, thyme, heather, sunflower) and multifloral. The moisture content, electrical conductivity, water activity, ashes content, pH, free acidity, colorimetric coordinates in CIELAB space (L(∗), a(∗), b(∗)) and total phenols content of the honey samples were evaluated. Those properties were considered as input variables of the predictive model. The neural network is optimised through several tests with different numbers of neurons in the hidden layer and also with different input variables. The reduced error rates (5%) allow us to conclude that the botanical origin of honey can be reliably and quickly known from the colorimetric information and the electrical conductivity of honey. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Applying fuzzy analytic network process in quality function deployment model

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Afsharkazemi

    2012-08-01

    Full Text Available In this paper, we propose an empirical study of QFD implementation when fuzzy numbers are used to handle the uncertainty associated with different components of the proposed model. We implement fuzzy analytical network to find the relative importance of various criteria and using fuzzy numbers we calculate the relative importance of these factors. The proposed model of this paper uses fuzzy matrix and house of quality to study the products development in QFD and also the second phase i.e. part deployment. In most researches, the primary objective is only on CRs to implement the quality function deployment and some other criteria such as production costs, manufacturing costs etc were disregarded. The results of using fuzzy analysis network process based on the QFD model in Daroupat packaging company to develop PVDC show that the most important indexes are being waterproof, resistant pill packages, and production cost. In addition, the PVDC coating is the most important index in terms of company experts’ point of view.

  6. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.

  7. A novel approach to error function minimization for feedforward neural networks

    International Nuclear Information System (INIS)

    Sinkus, R.

    1995-01-01

    Feedforward neural networks with error backpropagation are widely applied to pattern recognition. One general problem encountered with this type of neural networks is the uncertainty, whether the minimization procedure has converged to a global minimum of the cost function. To overcome this problem a novel approach to minimize the error function is presented. It allows to monitor the approach to the global minimum and as an outcome several ambiguities related to the choice of free parameters of the minimization procedure are removed. (orig.)

  8. An approach of optimal sensitivity applied in the tertiary loop of the automatic generation control

    Energy Technology Data Exchange (ETDEWEB)

    Belati, Edmarcio A. [CIMATEC - SENAI, Salvador, BA (Brazil); Alves, Dilson A. [Electrical Engineering Department, FEIS, UNESP - Sao Paulo State University (Brazil); da Costa, Geraldo R.M. [Electrical Engineering Department, EESC, USP - Sao Paulo University (Brazil)

    2008-09-15

    This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (author)

  9. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    Science.gov (United States)

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474

  10. A network approach to analyzing highly recombinant malaria parasite genes.

    Science.gov (United States)

    Larremore, Daniel B; Clauset, Aaron; Buckee, Caroline O

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  11. A network approach to analyzing highly recombinant malaria parasite genes.

    Directory of Open Access Journals (Sweden)

    Daniel B Larremore

    Full Text Available The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs, and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  12. A network dynamics approach to chemical reaction networks

    NARCIS (Netherlands)

    van der Schaft, Abraham; Rao, S.; Jayawardhana, B.

    2016-01-01

    A treatment of chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a

  13. Review of Artificial Neural Networks (ANN) applied to corrosion monitoring

    International Nuclear Information System (INIS)

    Mabbutt, S; Picton, P; Shaw, P; Black, S

    2012-01-01

    The assessment of corrosion within an engineering system often forms an important aspect of condition monitoring but it is a parameter that is inherently difficult to measure and predict. The electrochemical nature of the corrosion process allows precise measurements to be made. Advances in instruments, techniques and software have resulted in devices that can gather data and perform various analysis routines that provide parameters to identify corrosion type and corrosion rate. Although corrosion rates are important they are only useful where general or uniform corrosion dominates. However, pitting, inter-granular corrosion and environmentally assisted cracking (stress corrosion) are examples of corrosion mechanisms that can be dangerous and virtually invisible to the naked eye. Electrochemical noise (EN) monitoring is a very useful technique for detecting these types of corrosion and it is the only non-invasive electrochemical corrosion monitoring technique commonly available. Modern instrumentation is extremely sensitive to changes in the system and new experimental configurations for gathering EN data have been proven. In this paper the identification of localised corrosion by different data analysis routines has been reviewed. In particular the application of Artificial Neural Network (ANN) analysis to corrosion data is of key interest. In most instances data needs to be used with conventional theory to obtain meaningful information and relies on expert interpretation. Recently work has been carried out using artificial neural networks to investigate various types of corrosion data in attempts to predict corrosion behaviour with some success. This work aims to extend this earlier work to identify reliable electrochemical indicators of localised corrosion onset and propagation stages.

  14. Neural network applied to elemental archaeological Marajoara ceramic compositions

    International Nuclear Information System (INIS)

    Toyota, Rosimeiri G.; Munita, Casimiro S.; Boscarioli, Clodis

    2009-01-01

    In the last decades several analytical techniques have been used in archaeological ceramics studies. However, instrumental neutron activation analysis, INAA, employing gamma-ray spectrometry seems to be the most suitable technique because it is a simple analytical method in its purely instrumental form. The purpose of this work was to determine the concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb, and Zn in 160 original marajoara ceramic fragments by INAA. Marajoara ceramics culture was sophisticated and well developed. This culture reached its peak during the V and XIV centuries in Marajo Island located on the Amazon River delta area in Brazil. The purpose of the quantitative data was to identify compositionally homogeneous groups within the database. Having this in mind, the data set was first converted to base-10 logarithms to compensate for the differences in magnitude between major elements and trace elements, and also to yield a closer to normal distribution for several trace elements. After that, the data were analyzed using the Mahalanobis distance and using the lambda Wilks as critical value to identify the outliers. The similarities among the samples were studied by means of cluster analysis, principal components analysis and discriminant analysis. Additional confirmation of these groups was made by using elemental concentration bivariate plots. The results showed that there were two very well defined groups in the data set. In addition, the database was studied using artificial neural network with unsupervised learning strategy known as self-organizing maps to classify the marajoara ceramics. The experiments carried out showed that self-organizing maps artificial neural network is capable of discriminating ceramic fragments like multivariate statistical methods, and, again the results showed that the database was formed by two groups. (author)

  15. Computer networks ISE a systems approach

    CERN Document Server

    Peterson, Larry L

    2007-01-01

    Computer Networks, 4E is the only introductory computer networking book written by authors who have had first-hand experience with many of the protocols discussed in the book, who have actually designed some of them as well, and who are still actively designing the computer networks today. This newly revised edition continues to provide an enduring, practical understanding of networks and their building blocks through rich, example-based instruction. The authors' focus is on the why of network design, not just the specifications comprising today's systems but how key technologies and p

  16. Applying demand side management using a generalised grid supportive approach

    NARCIS (Netherlands)

    Blaauwbroek, N.; Nguyen, H.P.; Slootweg, J.G.

    2017-01-01

    Demand side management is often seen as a promising tool for distribution network operators to mitigate network operation limit violations. Many demand side management applications have been proposed, each with their own objectives and methodology. Quite often, these demand side management

  17. Applying Bayesian belief networks in Sun Tzu's Art of war

    OpenAIRE

    Ang, Kwang Chien

    2004-01-01

    Approved for public release; distribution in unlimited. The principles of Sun Tzu's Art of War have been widely used by business executives and military officers with much success in the realm of competition and conflict. However, when conflict situations arise in a highly stressful environment coupled with the pressure of time, decision makers may not be able to consider all the key concepts when forming their decisions or strategies. Therefore, a structured reasoning approach may be used...

  18. Bayesian networks applied to process diagnostics. Applications in energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Widarsson, Bjoern (ed.); Karlsson, Christer; Dahlquist, Erik [Maelardalen Univ., Vaesteraas (Sweden); Nielsen, Thomas D.; Jensen, Finn V. [Aalborg Univ. (Denmark)

    2004-10-01

    Uncertainty in process operation occurs frequently in heat and power industry. This makes it hard to find the occurrence of an abnormal process state from a number of process signals (measurements) or find the correct cause to an abnormality. Among several other methods, Bayesian Networks (BN) is a method to build a model which can handle uncertainty in both process signals and the process itself. The purpose of this project is to investigate the possibilities to use BN for fault detection and diagnostics in combined heat and power industries through execution of two different applications. Participants from Aalborg University represent the knowledge of BN and participants from Maelardalen University have the experience from modelling heat and power applications. The co-operation also includes two energy companies; Elsam A/S (Nordjyllandsverket) and Maelarenergi AB (Vaesteraas CHP-plant), where the two applications are made with support from the plant personnel. The project ended out in two quite different applications. At Nordjyllandsverket, an application based (due to the lack of process knowledge) on pure operation data is build with capability to detect an abnormal process state in a coal mill. Detection is made through a conflict analysis when entering process signals into a model built by analysing the operation database. The application at Maelarenergi is built with a combination of process knowledge and operation data and can detect various faults caused by the fuel. The process knowledge is used to build a causal network structure and the structure is then trained by data from the operation database. Both applications are made as off-online applications, but they are ready for being run on-line. The performance of fault detection and diagnostics are good, but a lack of abnormal process states with known cause reduces the evaluation possibilities. Advantages with combining expert knowledge of the process with operation data are the possibility to represent

  19. Propagation Analysis for Wireless Sensor Networks Applied to Viticulture

    Directory of Open Access Journals (Sweden)

    Felipe Pinheiro Correia

    2017-01-01

    Full Text Available Wireless sensor networks have been proposed as a solution to obtain soil and environment information in large distributed areas. The main economic activity of the São Francisco Valley region in the Northeast of Brazil is the irrigated fruit production. The region is one of the major agricultural regions of the country. Grape plantations receive large investments and provide good financial return. However, the region still lacks electronic sensing systems to extract adequate information from plantations. Considering these facts, this paper presents a study of path loss in grape plantations for a 2.4 GHz operating frequency. In order to determine the position of the sensor nodes, the research dealt with various environmental factors that influence the intensity of the received signal. It has been noticed that main plantation aisles favor the guided propagation, and the vegetation along the secondary plantation aisles compromises the propagation. Diffraction over the grape trees is the main propagation mechanism in the diagonal propagation path. Transmission carried out above the vineyard showed that reflection on the top of the trees is the main mechanism.

  20. Applying deep neural networks to HEP job classification

    International Nuclear Information System (INIS)

    Wang, L; Shi, J; Yan, X

    2015-01-01

    The cluster of IHEP computing center is a middle-sized computing system which provides 10 thousands CPU cores, 5 PB disk storage, and 40 GB/s IO throughput. Its 1000+ users come from a variety of HEP experiments. In such a system, job classification is an indispensable task. Although experienced administrator can classify a HEP job by its IO pattern, it is unpractical to classify millions of jobs manually. We present how to solve this problem with deep neural networks in a supervised learning way. Firstly, we built a training data set of 320K samples by an IO pattern collection agent and a semi-automatic process of sample labelling. Then we implemented and trained DNNs models with Torch. During the process of model training, several meta-parameters was tuned with cross-validations. Test results show that a 5- hidden-layer DNNs model achieves 96% precision on the classification task. By comparison, it outperforms a linear model by 8% precision. (paper)

  1. [Methodological novelties applied to the anthropology of food: agent-based models and social networks analysis].

    Science.gov (United States)

    Díaz Córdova, Diego

    2016-01-01

    The aim of this article is to introduce two methodological strategies that have not often been utilized in the anthropology of food: agent-based models and social networks analysis. In order to illustrate these methods in action, two cases based in materials typical of the anthropology of food are presented. For the first strategy, fieldwork carried out in Quebrada de Humahuaca (province of Jujuy, Argentina) regarding meal recall was used, and for the second, elements of the concept of "domestic consumption strategies" applied by Aguirre were employed. The underlying idea is that, given that eating is recognized as a "total social fact" and, therefore, as a complex phenomenon, the methodological approach must also be characterized by complexity. The greater the number of methods utilized (with the appropriate rigor), the better able we will be to understand the dynamics of feeding in the social environment.

  2. Metabolic Network Discovery by Top-Down and Bottom-Up Approaches and Paths for Reconciliation

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Tunahan, E-mail: tcakir@gyte.edu.tr [Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University (formerly known as Gebze Institute of Technology), Gebze (Turkey); Khatibipour, Mohammad Jafar [Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University (formerly known as Gebze Institute of Technology), Gebze (Turkey); Department of Chemical Engineering, Gebze Technical University (formerly known as Gebze Institute of Technology), Gebze (Turkey)

    2014-12-03

    The primary focus in the network-centric analysis of cellular metabolism by systems biology approaches is to identify the active metabolic network for the condition of interest. Two major approaches are available for the discovery of the condition-specific metabolic networks. One approach starts from genome-scale metabolic networks, which cover all possible reactions known to occur in the related organism in a condition-independent manner, and applies methods such as the optimization-based Flux-Balance Analysis to elucidate the active network. The other approach starts from the condition-specific metabolome data, and processes the data with statistical or optimization-based methods to extract information content of the data such that the active network is inferred. These approaches, termed bottom-up and top-down, respectively, are currently employed independently. However, considering that both approaches have the same goal, they can both benefit from each other paving the way for the novel integrative analysis methods of metabolome data- and flux-analysis approaches in the post-genomic era. This study reviews the strengths of constraint-based analysis and network inference methods reported in the metabolic systems biology field; then elaborates on the potential paths to reconcile the two approaches to shed better light on how the metabolism functions.

  3. Metabolic Network Discovery by Top-Down and Bottom-Up Approaches and Paths for Reconciliation

    International Nuclear Information System (INIS)

    Çakır, Tunahan; Khatibipour, Mohammad Jafar

    2014-01-01

    The primary focus in the network-centric analysis of cellular metabolism by systems biology approaches is to identify the active metabolic network for the condition of interest. Two major approaches are available for the discovery of the condition-specific metabolic networks. One approach starts from genome-scale metabolic networks, which cover all possible reactions known to occur in the related organism in a condition-independent manner, and applies methods such as the optimization-based Flux-Balance Analysis to elucidate the active network. The other approach starts from the condition-specific metabolome data, and processes the data with statistical or optimization-based methods to extract information content of the data such that the active network is inferred. These approaches, termed bottom-up and top-down, respectively, are currently employed independently. However, considering that both approaches have the same goal, they can both benefit from each other paving the way for the novel integrative analysis methods of metabolome data- and flux-analysis approaches in the post-genomic era. This study reviews the strengths of constraint-based analysis and network inference methods reported in the metabolic systems biology field; then elaborates on the potential paths to reconcile the two approaches to shed better light on how the metabolism functions.

  4. Views on Montessori Approach by Teachers Serving at Schools Applying the Montessori Approach

    Science.gov (United States)

    Atli, Sibel; Korkmaz, A. Merve; Tastepe, Taskin; Koksal Akyol, Aysel

    2016-01-01

    Problem Statement: Further studies on Montessori teachers are required on the grounds that the Montessori approach, which, having been applied throughout the world, holds an important place in the alternative education field. Yet it is novel for Turkey, and there are only a limited number of studies on Montessori teachers in Turkey. Purpose of…

  5. Patterns of work attitudes: A neural network approach

    Science.gov (United States)

    Mengov, George D.; Zinovieva, Irina L.; Sotirov, George R.

    2000-05-01

    In this paper we introduce a neural networks based approach to analyzing empirical data and models from work and organizational psychology (WOP), and suggest possible implications for the practice of managers and business consultants. With this method it becomes possible to have quantitative answers to a bunch of questions like: What are the characteristics of an organization in terms of its employees' motivation? What distinct attitudes towards the work exist? Which pattern is most desirable from the standpoint of productivity and professional achievement? What will be the dynamics of behavior as quantified by our method, during an ongoing organizational change or consultancy intervention? Etc. Our investigation is founded on the theoretical achievements of Maslow (1954, 1970) in human motivation, and of Hackman & Oldham (1975, 1980) in job diagnostics, and applies the mathematical algorithm of the dARTMAP variation (Carpenter et al., 1998) of the Adaptive Resonance Theory (ART) neural networks introduced by Grossberg (1976). We exploit the ART capabilities to visualize the knowledge accumulated in the network's long-term memory in order to interpret the findings in organizational research.

  6. The Network Analysis of Urban Streets: A Dual Approach

    OpenAIRE

    Porta, Sergio; Crucitti, Paolo; Latora, Vito

    2004-01-01

    The application of the network approach to the urban case poses several questions in terms of how to deal with metric distances, what kind of graph representation to use, what kind of measures to investigate, how to deepen the correlation between measures of the structure of the network and measures of the dynamics on the network, what are the possible contributions from the GIS community. In this paper, the authors addresses a study of six cases of urban street networks characterised by diff...

  7. Mobile social networking an innovative approach

    CERN Document Server

    Zhang, Daqing

    2014-01-01

    The use of contextually aware, pervasive, distributed computing, and sensor networks to bridge the gap between the physical and online worlds is the basis of mobile social networking. This book shows how applications can be built to provide mobile social networking, the research issues that need to be solved to enable this vision, and how mobile social networking can be used to provide computational intelligence that will improve daily life. With contributions from the fields of sociology, computer science, human-computer interaction and design, this book demonstrates how mobile social networks can be inferred from users' physical interactions both with the environment and with others, as well as how users behave around them and how their behavior differs on mobile vs. traditional online social networks.

  8. Implementing the Fussy Baby Network[R] Approach

    Science.gov (United States)

    Gilkerson, Linda; Hofherr, Jennifer; Heffron, Mary Claire; Sims, Jennifer Murphy; Jalowiec, Barbara; Bromberg, Stacey R.; Paul, Jennifer J.

    2012-01-01

    Erikson Institute Fussy Baby Network[R] (FBN) developed an approach to engaging parents around their urgent concerns about their baby's crying, sleeping, or feeding in a way which builds their longer-term capacities as parents. This approach, called the FAN, is now in place in new Fussy Baby Network programs around the country and is being infused…

  9. SOCIOLOGICAL UNDERSTANDING OF INTERNET: THEORETICAL APPROACHES TO THE NETWORK ANALYSIS

    Directory of Open Access Journals (Sweden)

    D. E. Dobrinskaya

    2016-01-01

    Full Text Available The network is an efficient way of social structure analysis for contemporary sociologists. It gives broad opportunities for detailed and fruitful research of different patterns of ties and social relations by quantitative analytical methods and visualization of network models. The network metaphor is used as the most representative tool for description of a new type of society. This new type is characterized by flexibility, decentralization and individualization. Network organizational form became the dominant form in modern societies. The network is also used as a mode of inquiry. Actually three theoretical network approaches in the Internet research case are the most relevant: social network analysis, “network society” theory and actor-network theory. Every theoretical approach has got its own notion of network. Their special methodological and theoretical features contribute to the Internet studies in different ways. The article represents a brief overview of these network approaches. This overview demonstrates the absence of a unified semantic space of the notion of “network” category. This fact, in turn, points out the need for detailed analysis of these approaches to reveal their theoretical and empirical possibilities in application to the Internet studies. 

  10. Software defined networks a comprehensive approach

    CERN Document Server

    Goransson, Paul

    2014-01-01

    Software Defined Networks discusses the historical networking environment that gave rise to SDN, as well as the latest advances in SDN technology. The book gives you the state of the art knowledge needed for successful deployment of an SDN, including: How to explain to the non-technical business decision makers in your organization the potential benefits, as well as the risks, in shifting parts of a network to the SDN modelHow to make intelligent decisions about when to integrate SDN technologies in a networkHow to decide if your organization should be developing its own SDN applications or

  11. A neural network approach to burst detection.

    Science.gov (United States)

    Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J

    2002-01-01

    This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.

  12. Overlapping community detection in weighted networks via a Bayesian approach

    Science.gov (United States)

    Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao

    2017-02-01

    Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.

  13. An individual-based approach to SIR epidemics in contact networks.

    Science.gov (United States)

    Youssef, Mina; Scoglio, Caterina

    2011-08-21

    Many approaches have recently been proposed to model the spread of epidemics on networks. For instance, the Susceptible/Infected/Recovered (SIR) compartmental model has successfully been applied to different types of diseases that spread out among humans and animals. When this model is applied on a contact network, the centrality characteristics of the network plays an important role in the spreading process. However, current approaches only consider an aggregate representation of the network structure, which can result in inaccurate analysis. In this paper, we propose a new individual-based SIR approach, which considers the whole description of the network structure. The individual-based approach is built on a continuous time Markov chain, and it is capable of evaluating the state probability for every individual in the network. Through mathematical analysis, we rigorously confirm the existence of an epidemic threshold below which an epidemic does not propagate in the network. We also show that the epidemic threshold is inversely proportional to the maximum eigenvalue of the network. Additionally, we study the role of the whole spectrum of the network, and determine the relationship between the maximum number of infected individuals and the set of eigenvalues and eigenvectors. To validate our approach, we analytically study the deviation with respect to the continuous time Markov chain model, and we show that the new approach is accurate for a large range of infection strength. Furthermore, we compare the new approach with the well-known heterogeneous mean field approach in the literature. Ultimately, we support our theoretical results through extensive numerical evaluations and Monte Carlo simulations. Published by Elsevier Ltd.

  14. Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.

    Directory of Open Access Journals (Sweden)

    Rui Ding

    Full Text Available Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.

  15. Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.

    Science.gov (United States)

    Ding, Rui; Ujang, Norsidah; Hamid, Hussain Bin; Wu, Jianjun

    2015-01-01

    Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.

  16. A network dynamics approach to chemical reaction networks

    Science.gov (United States)

    van der Schaft, A. J.; Rao, S.; Jayawardhana, B.

    2016-04-01

    A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.

  17. Scalable Approaches to Control Network Dynamics: Prospects for City Networks

    Science.gov (United States)

    Motter, Adilson E.; Gray, Kimberly A.

    2014-07-01

    A city is a complex, emergent system and as such can be conveniently represented as a network of interacting components. A fundamental aspect of networks is that the systemic properties can depend as much on the interactions as they depend on the properties of the individual components themselves. Another fundamental aspect is that changes to one component can affect other components, in a process that may cause the entire or a substantial part of the system to change behavior. Over the past 2 decades, much research has been done on the modeling of large and complex networks involved in communication and transportation, disease propagation, and supply chains, as well as emergent phenomena, robustness and optimization in such systems...

  18. An improved advertising CTR prediction approach based on the fuzzy deep neural network.

    Science.gov (United States)

    Jiang, Zilong; Gao, Shu; Li, Mingjiang

    2018-01-01

    Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise.

  19. Discovering the Network Topology: An Efficient Approach for SDN

    Directory of Open Access Journals (Sweden)

    Leonardo OCHOA-ADAY

    2016-11-01

    Full Text Available Network topology is a physical description of the overall resources in the network. Collecting this information using efficient mechanisms becomes a critical task for important network functions such as routing, network management, quality of service (QoS, among many others. Recent technologies like Software-Defined Networks (SDN have emerged as promising approaches for managing the next generation networks. In order to ensure a proficient topology discovery service in SDN, we propose a simple agents-based mechanism. This mechanism improves the overall efficiency of the topology discovery process. In this paper, an algorithm for a novel Topology Discovery Protocol (SD-TDP is described. This protocol will be implemented in each switch through a software agent. Thus, this approach will provide a distributed solution to solve the problem of network topology discovery in a more simple and efficient way.

  20. SNMP-SI: A Network Management Tool Based on Slow Intelligence System Approach

    Science.gov (United States)

    Colace, Francesco; de Santo, Massimo; Ferrandino, Salvatore

    The last decade has witnessed an intense spread of computer networks that has been further accelerated with the introduction of wireless networks. Simultaneously with, this growth has increased significantly the problems of network management. Especially in small companies, where there is no provision of personnel assigned to these tasks, the management of such networks is often complex and malfunctions can have significant impacts on their businesses. A possible solution is the adoption of Simple Network Management Protocol. Simple Network Management Protocol (SNMP) is a standard protocol used to exchange network management information. It is part of the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite. SNMP provides a tool for network administrators to manage network performance, find and solve network problems, and plan for network growth. SNMP has a big disadvantage: its simple design means that the information it deals with is neither detailed nor well organized enough to deal with the expanding modern networking requirements. Over the past years much efforts has been given to improve the lack of Simple Network Management Protocol and new frameworks has been developed: A promising approach involves the use of Ontology. This is the starting point of this paper where a novel approach to the network management based on the use of the Slow Intelligence System methodologies and Ontology based techniques is proposed. Slow Intelligence Systems is a general-purpose systems characterized by being able to improve performance over time through a process involving enumeration, propagation, adaptation, elimination and concentration. Therefore, the proposed approach aims to develop a system able to acquire, according to an SNMP standard, information from the various hosts that are in the managed networks and apply solutions in order to solve problems. To check the feasibility of this model first experimental results in a real scenario are showed.

  1. Retail optimization in Romanian metallurgical industry by applying of fuzzy networks concept

    Directory of Open Access Journals (Sweden)

    Ioana Adrian

    2017-01-01

    Full Text Available Our article presents possibilities of applying the concept Fuzzy Networks for an efficient metallurgical industry in Romania. We also present and analyze Fuzzy Networks complementary concepts, such as Expert Systems (ES, Enterprise Resource Planning (ERP, Analytics and Intelligent Strategies (SAI. The main results of our article are based on a case study of the possibilities of applying these concepts in metallurgy through Fuzzy Networks. Also, it is presented a case study on the application of the FUZZY concept on the Romanian metallurgical industry.

  2. Network Routing Using the Network Tasking Order, a Chron Approach

    Science.gov (United States)

    2015-03-26

    Network traffic decision algorithms have been in place since the creation of the Internet. These algorithms are successful in redirecting...example, the fifth line indicates a location of 29° 42’ 48”N, 47° 31’ 06”E and a time-on target of 1200 Zulu on the 24th of January. A typical ATO is

  3. Public management and policy networks: foundations of a network approach to governance

    NARCIS (Netherlands)

    E-H. Klijn (Erik-Hans); J.F.M. Koppenjan (Joop)

    2006-01-01

    markdownabstract__Abstract__ In this article we address the elaboratlon of the central concepts of a theory of networks and of network management. We suggest that the network approach builds on several theoretical traditions After this we clarify the theoretical concepts and axioms of the policy

  4. Why Failing Terrorist Groups Persist Revisited: A Social Network Approach to AQIM Network Resilience

    Science.gov (United States)

    2017-12-01

    the approach and methods used in this analysis to organize, analyze, and explore the geospatial, statistical , and social network data...requirements for the degree of MASTER OF SCIENCE IN INFORMATION STRATEGY AND POLITICAL WARFARE from the NAVAL POSTGRADUATE SCHOOL December...research utilizes both descriptive statistics and regression analysis of social network data to explore the changes within the AQIM network 2012

  5. The Pediatric Emergency Care Applied Research Network: a history of multicenter collaboration in the United States.

    Science.gov (United States)

    Tzimenatos, Leah; Kim, Emily; Kuppermann, Nathan

    2015-01-01

    In this article, we review the history and progress of a large multicenter research network pertaining to emergency medical services for children. We describe the history, organization, infrastructure, and research agenda of the Pediatric Emergency Care Applied Research Network and highlight some of the important accomplishments since its inception. We also describe the network's strategy to grow its research portfolio, train new investigators, and study how to translate new evidence into practice. This strategy ensures not only the sustainability of the network in the future but the growth of research in emergency medical services for children in general.

  6. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    Science.gov (United States)

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  7. Latent Space Approaches to Social Network Analysis

    National Research Council Canada - National Science Library

    Hoff, Peter D; Raftery, Adrian E; Handcock, Mark S

    2001-01-01

    .... In studies of social networks, recent emphasis has been placed on random graph models where the nodes usually represent individual social actors and the edges represent the presence of a specified...

  8. Epidemics in networks: a master equation approach

    International Nuclear Information System (INIS)

    Cotacallapa, M; Hase, M O

    2016-01-01

    A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network. (paper)

  9. Epidemics in networks: a master equation approach

    Science.gov (United States)

    Cotacallapa, M.; Hase, M. O.

    2016-02-01

    A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network.

  10. Network attacks and defenses a hands-on approach

    CERN Document Server

    Trabelsi, Zouheir; Al Braiki, Arwa; Mathew, Sujith Samuel

    2012-01-01

    The attacks on computers and business networks are growing daily, and the need for security professionals who understand how malfeasants perform attacks and compromise networks is a growing requirement to counter the threat. Network security education generally lacks appropriate textbooks with detailed, hands-on exercises that include both offensive and defensive techniques. Using step-by-step processes to build and generate attacks using offensive techniques, Network Attacks and Defenses: A Hands-on Approach enables students to implement appropriate network security solutions within a laborat

  11. Integrating network ecology with applied conservation: a synthesis and guide to implementation.

    Science.gov (United States)

    Kaiser-Bunbury, Christopher N; Blüthgen, Nico

    2015-07-10

    Ecological networks are a useful tool to study the complexity of biotic interactions at a community level. Advances in the understanding of network patterns encourage the application of a network approach in other disciplines than theoretical ecology, such as biodiversity conservation. So far, however, practical applications have been meagre. Here we present a framework for network analysis to be harnessed to advance conservation management by using plant-pollinator networks and islands as model systems. Conservation practitioners require indicators to monitor and assess management effectiveness and validate overall conservation goals. By distinguishing between two network attributes, the 'diversity' and 'distribution' of interactions, on three hierarchical levels (species, guild/group and network) we identify seven quantitative metrics to describe changes in network patterns that have implications for conservation. Diversity metrics are partner diversity, vulnerability/generality, interaction diversity and interaction evenness, and distribution metrics are the specialization indices d' and [Formula: see text] and modularity. Distribution metrics account for sampling bias and may therefore be suitable indicators to detect human-induced changes to plant-pollinator communities, thus indirectly assessing the structural and functional robustness and integrity of ecosystems. We propose an implementation pathway that outlines the stages that are required to successfully embed a network approach in biodiversity conservation. Most importantly, only if conservation action and study design are aligned by practitioners and ecologists through joint experiments, are the findings of a conservation network approach equally beneficial for advancing adaptive management and ecological network theory. We list potential obstacles to the framework, highlight the shortfall in empirical, mostly experimental, network data and discuss possible solutions. Published by Oxford University

  12. Towards a capability approach to careers: Applying Amartya Sen's thinking

    OpenAIRE

    Robertson, Peter.

    2015-01-01

    Amartya Sen’s capability approach characterizes an individual’s well-being in terms of what they are able to be, and what they are able to do. This framework for thinking has many commonalities with the core ideas in career guidance. Sen’s approach is abstract and not in itself a complete or explanatory theory, but a case can be made that the capability approach has something to offer career theory when combined with a life-career developmental approach. It may also suggest ways of working th...

  13. A modeling approach for district heating systems with focus on transient heat transfer in pipe networks

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2015-01-01

    the temperature in DH systems. The main focus is on modeling transient heat transfer in pipe networks regarding the time delays between the heat supply unit and the consumers, the heat loss in the pipe networks and the consumers’ dynamic heat loads. A pseudo-dynamic approach is adopted and also the implicit...... district heating networks [DHN] characteristics. This paper is presenting a new developed model, which reflects the thermo-dynamic behavior of DHN. It is designed for tree network topologies. The purpose of the model is to serve as a basis for applying a variety of scenarios towards lowering...... finite element method is applied to simulate transient temperature changes in pipe networks. The model is calculating time series data related to supply temperature to the DHN from heat production units, heat loads and return temperature related to each consumer to calculate dynamic temperature changes...

  14. Network approach to patterns in stratocumulus clouds

    Science.gov (United States)

    Glassmeier, Franziska; Feingold, Graham

    2017-10-01

    Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth’s climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis’s Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav-Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes.

  15. Network security: a survey of modern approaches

    International Nuclear Information System (INIS)

    Zafar, M.F.; Naheed, F.; Ahmad, Z.; Anwar, M.M.

    2008-01-01

    Security is an essential element of information technology (IT) infrastructure and applications. Concerns about security of networks and information systems have been growing along with the rapid increase in the number of network users and the value of their transactions. The hasty security threats have driven the development of security products known as Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) to detect and protect the network, server and desktop infrastructure ahead of the threat. Authentication and signing techniques are used to prevent integrity threats. Users, devices, and applications should always be authenticated and authorized before they are allowed to access networking resources. Though a lot of information is available on the internet about IDS and IPS but it all is spread on so many sites and one has to spend a considerable part of his precious time to search it. In this regard a thorough survey has been conducted to facilitate and assist the researchers. The issues and defend challenges in fighting with cyber attacks have been discussed. A comparison of the categories of network security technologies has been presented. In this paper an effort has been made to gather the scattered information and present it at one place. This survey will provide best available up-to-date advancement in the area. A brief description of open source IPS has also been presented. (author)

  16. An iterative approach for the optimization of pavement maintenance management at the network level.

    Science.gov (United States)

    Torres-Machí, Cristina; Chamorro, Alondra; Videla, Carlos; Pellicer, Eugenio; Yepes, Víctor

    2014-01-01

    Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic) and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods) have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach.

  17. An Iterative Approach for the Optimization of Pavement Maintenance Management at the Network Level

    Directory of Open Access Journals (Sweden)

    Cristina Torres-Machí

    2014-01-01

    Full Text Available Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach.

  18. Modular Modelling and Simulation Approach - Applied to Refrigeration Systems

    DEFF Research Database (Denmark)

    Sørensen, Kresten Kjær; Stoustrup, Jakob

    2008-01-01

    This paper presents an approach to modelling and simulation of the thermal dynamics of a refrigeration system, specifically a reefer container. A modular approach is used and the objective is to increase the speed and flexibility of the developed simulation environment. The refrigeration system...

  19. IPTV inter-destination synchronization: A network-based approach

    NARCIS (Netherlands)

    Stokking, H.M.; Deventer, M.O. van; Niamut, O.A.; Walraven, F.A.; Mekuria, R.N.

    2010-01-01

    This paper introduces a novel network-based approach to inter-destination media synchronization. The approach meets the need for synchronization in advanced TV concepts like social TV and offers high scalability, unlike conventional end-point based approaches. The solution for interdestination media

  20. A Networks Approach to Modeling Enzymatic Reactions.

    Science.gov (United States)

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.

  1. A Complex Network Approach to Distributional Semantic Models.

    Directory of Open Access Journals (Sweden)

    Akira Utsumi

    Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.

  2. Multi-modal Social Networks: A MRF Learning Approach

    Science.gov (United States)

    2016-06-20

    Network forensics: random infection vs spreading epidemic , Proceedings of ACM Sigmetrics. 11-JUN-12, London, UK. : , TOTAL: 4 06/09/2016 Received Paper...Multi-modal Social Networks A MRF Learning Approach The work primarily focused on two lines of research. 1. We propose new greedy algorithms...Box 12211 Research Triangle Park, NC 27709-2211 social networks , learning and inference REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT

  3. A distributed predictive control approach for periodic flow-based networks: application to drinking water systems

    Science.gov (United States)

    Grosso, Juan M.; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-10-01

    This paper proposes a distributed model predictive control approach designed to work in a cooperative manner for controlling flow-based networks showing periodic behaviours. Under this distributed approach, local controllers cooperate in order to enhance the performance of the whole flow network avoiding the use of a coordination layer. Alternatively, controllers use both the monolithic model of the network and the given global cost function to optimise the control inputs of the local controllers but taking into account the effect of their decisions over the remainder subsystems conforming the entire network. In this sense, a global (all-to-all) communication strategy is considered. Although the Pareto optimality cannot be reached due to the existence of non-sparse coupling constraints, the asymptotic convergence to a Nash equilibrium is guaranteed. The resultant strategy is tested and its effectiveness is shown when applied to a large-scale complex flow-based network: the Barcelona drinking water supply system.

  4. A multi-criteria decision analysis approach for importance identification and ranking of network components

    International Nuclear Information System (INIS)

    Almoghathawi, Yasser; Barker, Kash; Rocco, Claudio M.; Nicholson, Charles D.

    2017-01-01

    Analyzing network vulnerability is a key element of network planning in order to be prepared for any disruptive event that might impact the performance of the network. Hence, many importance measures have been proposed to identify the important components in a network with respect to vulnerability and rank them accordingly based on individual importance measure. However, in this paper, we propose a new approach to identify the most important network components based on multiple importance measures using a multi criteria decision making (MCDM) method, namely the technique for order performance by similarity to ideal solution (TOPSIS), able to take into account the preferences of decision-makers. We consider multiple edge-specific flow-based importance measures provided as the multiple criteria of a network where the alternatives are the edges. Accordingly, TOPSIS is used to rank the edges of the network based on their importance considering multiple different importance measures. The proposed approach is illustrated through different networks with different densities along with the effects of weighs. - Highlights: • We integrate several perspectives on network vulnerability to generate a component importance ranking. • We apply these measures to determine the importance of edges after disruptions. • Networks of varying size and density are explored.

  5. Outline of a multilevel approach of the network society

    NARCIS (Netherlands)

    van Dijk, Johannes A.G.M.

    2005-01-01

    Social and media networks, the Internet in particular, increasingly link interpersonal, organizational and mass communication. It is argued that this gives a cause for an interdisciplinary and multilevel approach of the network society. This will have to link traditional micro- and meso-level

  6. Networks and social capital: a relational approach to primary healthcare reform

    Directory of Open Access Journals (Sweden)

    Scott Catherine

    2007-09-01

    Full Text Available Abstract Collaboration among health care providers and across systems is proposed as a strategy to improve health care delivery the world over. Over the past two decades, health care providers have been encouraged to work in partnership and build interdisciplinary teams. More recently, the notion of networks has entered this discourse but the lack of consensus and understanding about what is meant by adopting a network approach in health services limits its use. Also crucial to this discussion is the work of distinguishing the nature and extent of the impact of social relationships – generally referred to as social capital. In this paper, we review the rationale for collaboration in health care systems; provide an overview and synthesis of key concepts; dispel some common misconceptions of networks; and apply the theory to an example of primary healthcare network reform in Alberta (Canada. Our central thesis is that a relational approach to systems change, one based on a synthesis of network theory and social capital can provide the fodation for a multi-focal approach to primary healthcare reform. Action strategies are recommended to move from an awareness of 'networks' to fully translating knowledge from existing theory to guide planning and practice innovations. Decision-makers are encouraged to consider a multi-focal approach that effectively incorporates a network and social capital approach in planning and evaluating primary healthcare reform.

  7. A complex network approach to cloud computing

    International Nuclear Information System (INIS)

    Travieso, Gonzalo; Ruggiero, Carlos Antônio; Bruno, Odemir Martinez; Costa, Luciano da Fontoura

    2016-01-01

    Cloud computing has become an important means to speed up computing. One problem influencing heavily the performance of such systems is the choice of nodes as servers responsible for executing the clients’ tasks. In this article we report how complex networks can be used to model such a problem. More specifically, we investigate the performance of the processing respectively to cloud systems underlaid by Erdős–Rényi (ER) and Barabási-Albert (BA) topology containing two servers. Cloud networks involving two communities not necessarily of the same size are also considered in our analysis. The performance of each configuration is quantified in terms of the cost of communication between the client and the nearest server, and the balance of the distribution of tasks between the two servers. Regarding the latter, the ER topology provides better performance than the BA for smaller average degrees and opposite behaviour for larger average degrees. With respect to cost, smaller values are found in the BA topology irrespective of the average degree. In addition, we also verified that it is easier to find good servers in ER than in BA networks. Surprisingly, balance and cost are not too much affected by the presence of communities. However, for a well-defined community network, we found that it is important to assign each server to a different community so as to achieve better performance. (paper: interdisciplinary statistical mechanics )

  8. Dobrushin's approach to queueing network theory

    Directory of Open Access Journals (Sweden)

    F. I. Karpelevich

    1996-01-01

    Full Text Available R.L. Dobrushin (1929-1995 made substantial contributions to Queueing Network Theory (QNT. A review of results from QNT which arose from his ideas or were connected to him in other ways is given. We also comment on various related open problems.

  9. A Network Design Approach to Countering Terrorism

    Science.gov (United States)

    2015-09-01

    2003). More and more scale-free networks have been discovered. How can such diverse systems have the same architecture and properties? Part of the...Rabei Ousmane Sayed Ahmed (a.k.a. the Egyptian ) convinced the group to pursuit jihad at home, where they had the material resources to act (Atran, 2010

  10. Insomnia and Personality-A Network Approach

    NARCIS (Netherlands)

    Dekker, Kim; Blanken, Tessa F; Van Someren, Eus J W

    2017-01-01

    Studies on personality traits and insomnia have remained inconclusive about which traits show the most direct associations with insomnia severity. It has moreover hardly been explored how traits relate to specific characteristics of insomnia. We here used network analysis in a large sample (N= 2089)

  11. Insomnia and Personality-A Network Approach

    NARCIS (Netherlands)

    Dekker, Kim; Blanken, Tessa F; Van Someren, Eus J W

    2017-01-01

    Studies on personality traits and insomnia have remained inconclusive about which traits show the most direct associations with insomnia severity. It has moreover hardly been explored how traits relate to specific characteristics of insomnia. We here used network analysis in a large sample (N =

  12. Economic Institutions and Stability : A Network Approach

    NARCIS (Netherlands)

    Gilles, R.P.; Lazarova, E.A.; Ruys, P.H.M.

    2011-01-01

    We consider a network economy in which economic agents are connected within a structure of value-generating relationships. Agents are assumed to be able to participate in three types of economic activities: autarkic self-provision; binary matching interactions; and multi-person cooperative

  13. A Gaussian graphical model approach to climate networks

    Energy Technology Data Exchange (ETDEWEB)

    Zerenner, Tanja, E-mail: tanjaz@uni-bonn.de [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Friederichs, Petra; Hense, Andreas [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany); Lehnertz, Klaus [Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany)

    2014-06-15

    Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.

  14. A Gaussian graphical model approach to climate networks

    International Nuclear Information System (INIS)

    Zerenner, Tanja; Friederichs, Petra; Hense, Andreas; Lehnertz, Klaus

    2014-01-01

    Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately

  15. Applying Digital Sensor Technology: A Problem-Solving Approach

    Science.gov (United States)

    Seedhouse, Paul; Knight, Dawn

    2016-01-01

    There is currently an explosion in the number and range of new devices coming onto the technology market that use digital sensor technology to track aspects of human behaviour. In this article, we present and exemplify a three-stage model for the application of digital sensor technology in applied linguistics that we have developed, namely,…

  16. An Applied Project-Driven Approach to Undergraduate Research Experiences

    Science.gov (United States)

    Karls, Michael A.

    2017-01-01

    In this paper I will outline the process I have developed for conducting applied mathematics research with undergraduates and give some examples of the projects we have worked on. Several of these projects have led to refereed publications that could be used to illustrate topics taught in the undergraduate curriculum.

  17. Complex network approach to fractional time series

    Energy Technology Data Exchange (ETDEWEB)

    Manshour, Pouya [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2015-10-15

    In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacency matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.

  18. An Appraisal of Social Network Theory and Analysis as Applied to Public Health: Challenges and Opportunities.

    Science.gov (United States)

    Valente, Thomas W; Pitts, Stephanie R

    2017-03-20

    The use of social network theory and analysis methods as applied to public health has expanded greatly in the past decade, yielding a significant academic literature that spans almost every conceivable health issue. This review identifies several important theoretical challenges that confront the field but also provides opportunities for new research. These challenges include (a) measuring network influences, (b) identifying appropriate influence mechanisms, (c) the impact of social media and computerized communications, (d) the role of networks in evaluating public health interventions, and (e) ethics. Next steps for the field are outlined and the need for funding is emphasized. Recently developed network analysis techniques, technological innovations in communication, and changes in theoretical perspectives to include a focus on social and environmental behavioral influences have created opportunities for new theory and ever broader application of social networks to public health topics.

  19. A Multiobjective Approach Applied to the Protein Structure Prediction Problem

    Science.gov (United States)

    2002-03-07

    local conformations [38]. Moreover, all these models have the same theme in trying to define the properties a real protein has when folding. Today , it...attempted to solve the PSP problem with a real valued GA and found better results than a competitor (Scheraga, et al) [50]; however, today we know that...ACM Symposium on Applied computing (SAC01) (March 11-14 2001). Las Vegas, Nevada. [22] Derrida , B. “Random Energy Model: Limit of a Family of

  20. Applied approach slab settlement research, design/construction : final report.

    Science.gov (United States)

    2013-08-01

    Approach embankment settlement is a pervasive problem in Oklahoma and many other states. The bump and/or abrupt slope change poses a danger to traffic and can cause increased dynamic loads on the bridge. Frequent and costly maintenance may be needed ...

  1. Tennis: Applied Examples of a Game-Based Teaching Approach

    Science.gov (United States)

    Crespo, Miguel; Reid, Machar M.; Miley, Dave

    2004-01-01

    In this article, the authors reveal that tennis has been increasingly taught with a tactical model or game-based approach, which emphasizes learning through practice in match-like drills and actual play, rather than in practicing strokes for exact technical execution. Its goal is to facilitate the player's understanding of the tactical, physical…

  2. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber

    International Nuclear Information System (INIS)

    Acciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.

    2017-01-01

    Here, we present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. Lastly, we also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.

  3. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.; Bagby, L.; Baller, B.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, L.; Caratelli, D.; Carls, B.; Fernandez, R. Castillo; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anad?n, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Sanchez, L. Escudero; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; James, C.; de Vries, J. Jan; Jen, C. -M.; Jiang, L.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Caicedo, D. A. Martinez; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Snider, E. L.; Soderberg, M.; S?ldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y. -T.; Tufanli, S.; Usher, T.; Van de Water, R. G.; Viren, B.; Weber, M.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2017-03-01

    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.

  4. Optimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach

    Science.gov (United States)

    Chiadamrong, N.; Piyathanavong, V.

    2017-12-01

    Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.

  5. Gender, Friendship Networks, and Delinquency: A Dynamic Network Approach.

    Science.gov (United States)

    Haynie, Dana L; Doogan, Nathan J; Soller, Brian

    2014-11-01

    Researchers have examined selection and influence processes in shaping delinquency similarity among friends, but little is known about the role of gender in moderating these relationships. Our objective is to examine differences between adolescent boys and girls regarding delinquency-based selection and influence processes. Using longitudinal network data from adolescents attending two large schools in AddHealth ( N = 1,857) and stochastic actor-oriented models, we evaluate whether girls are influenced to a greater degree by friends' violence or delinquency than boys (influence hypothesis) and whether girls are more likely to select friends based on violent or delinquent behavior than boys (selection hypothesis). The results indicate that girls are more likely than boys to be influenced by their friends' involvement in violence. Although a similar pattern emerges for nonviolent delinquency, the gender differences are not significant. Some evidence shows that boys are influenced toward increasing their violence or delinquency when exposed to more delinquent or violent friends but are immune to reducing their violence or delinquency when associating with less violent or delinquent friends. In terms of selection dynamics, although both boys and girls have a tendency to select friends based on friends' behavior, girls have a stronger tendency to do so, suggesting that among girls, friends' involvement in violence or delinquency is an especially decisive factor for determining friendship ties.

  6. Gender, Friendship Networks, and Delinquency: A Dynamic Network Approach**

    Science.gov (United States)

    Haynie, Dana L.; Doogan, Nathan J.; Soller, Brian

    2014-01-01

    Researchers have examined selection and influence processes in shaping delinquency similarity among friends, but little is known about the role of gender in moderating these relationships. Our objective is to examine differences between adolescent boys and girls regarding delinquency-based selection and influence processes. Using longitudinal network data from adolescents attending two large schools in AddHealth (N = 1,857) and stochastic actor-oriented models, we evaluate whether girls are influenced to a greater degree by friends' violence or delinquency than boys (influence hypothesis) and whether girls are more likely to select friends based on violent or delinquent behavior than boys (selection hypothesis). The results indicate that girls are more likely than boys to be influenced by their friends' involvement in violence. Although a similar pattern emerges for nonviolent delinquency, the gender differences are not significant. Some evidence shows that boys are influenced toward increasing their violence or delinquency when exposed to more delinquent or violent friends but are immune to reducing their violence or delinquency when associating with less violent or delinquent friends. In terms of selection dynamics, although both boys and girls have a tendency to select friends based on friends' behavior, girls have a stronger tendency to do so, suggesting that among girls, friends' involvement in violence or delinquency is an especially decisive factor for determining friendship ties. PMID:26097241

  7. Impact of environmental inputs on reverse-engineering approach to network structures.

    Science.gov (United States)

    Wu, Jianhua; Sinfield, James L; Buchanan-Wollaston, Vicky; Feng, Jianfeng

    2009-12-04

    Uncovering complex network structures from a biological system is one of the main topic in system biology. The network structures can be inferred by the dynamical Bayesian network or Granger causality, but neither techniques have seriously taken into account the impact of environmental inputs. With considerations of natural rhythmic dynamics of biological data, we propose a system biology approach to reveal the impact of environmental inputs on network structures. We first represent the environmental inputs by a harmonic oscillator and combine them with Granger causality to identify environmental inputs and then uncover the causal network structures. We also generalize it to multiple harmonic oscillators to represent various exogenous influences. This system approach is extensively tested with toy models and successfully applied to a real biological network of microarray data of the flowering genes of the model plant Arabidopsis Thaliana. The aim is to identify those genes that are directly affected by the presence of the sunlight and uncover the interactive network structures associating with flowering metabolism. We demonstrate that environmental inputs are crucial for correctly inferring network structures. Harmonic causal method is proved to be a powerful technique to detect environment inputs and uncover network structures, especially when the biological data exhibit periodic oscillations.

  8. Major accident prevention through applying safety knowledge management approach.

    Science.gov (United States)

    Kalatpour, Omid

    2016-01-01

    Many scattered resources of knowledge are available to use for chemical accident prevention purposes. The common approach to management process safety, including using databases and referring to the available knowledge has some drawbacks. The main goal of this article was to devise a new emerged knowledge base (KB) for the chemical accident prevention domain. The scattered sources of safety knowledge were identified and scanned. Then, the collected knowledge was formalized through a computerized program. The Protégé software was used to formalize and represent the stored safety knowledge. The domain knowledge retrieved as well as data and information. This optimized approach improved safety and health knowledge management (KM) process and resolved some typical problems in the KM process. Upgrading the traditional resources of safety databases into the KBs can improve the interaction between the users and knowledge repository.

  9. A Multi-Criterion Evolutionary Approach Applied to Phylogenetic Reconstruction

    OpenAIRE

    Cancino, W.; Delbem, A.C.B.

    2010-01-01

    In this paper, we proposed an MOEA approach, called PhyloMOEA which solves the phylogenetic inference problem using maximum parsimony and maximum likelihood criteria. The PhyloMOEA's development was motivated by several studies in the literature (Huelsenbeck, 1995; Jin & Nei, 1990; Kuhner & Felsenstein, 1994; Tateno et al., 1994), which point out that various phylogenetic inference methods lead to inconsistent solutions. Techniques using parsimony and likelihood criteria yield to different tr...

  10. A new kinetic biphasic approach applied to biodiesel process intensification

    Energy Technology Data Exchange (ETDEWEB)

    Russo, V.; Tesser, R.; Di Serio, M.; Santacesaria, E. [Naples Univ. (Italy). Dept. of Chemistry

    2012-07-01

    Many different papers have been published on the kinetics of the transesterification of vegetable oil with methanol, in the presence of alkaline catalysts to produce biodiesel. All the proposed approaches are based on the assumption of a pseudo-monophasic system. The consequence of these approaches is that some experimental aspects cannot be described. For the reaction performed in batch conditions, for example, the monophasic approach is not able to reproduce the different plateau obtained by using different amount of catalyst or the induction time observed at low stirring rates. Moreover, it has been observed by operating in continuous reactors that micromixing has a dramatic effect on the reaction rate. At this purpose, we have recently observed that is possible to obtain a complete conversion to biodiesel in less than 10 seconds of reaction time. This observation is confirmed also by other authors using different types of reactors like: static mixers, micro-reactors, oscillatory flow reactors, cavitational reactors, microwave reactors or centrifugal contactors. In this work we will show that a recently proposed biphasic kinetic approach is able to describe all the aspects before mentioned that cannot be described by the monophasic kinetic model. In particular, we will show that the biphasic kinetic model can describe both the induction time observed in the batch reactors, at low stirring rate, and the very high conversions obtainable in a micro-channel reactor. The adopted biphasic kinetic model is based on a reliable reaction mechanism that will be validated by the experimental evidences reported in this work. (orig.)

  11. A Hybrid Heuristic Optimization Approach for Leak Detection in Pipe Networks Using Ordinal Optimization Approach and the Symbiotic Organism Search

    Directory of Open Access Journals (Sweden)

    Chao-Chih Lin

    2017-10-01

    Full Text Available A new transient-based hybrid heuristic approach is developed to optimize a transient generation process and to detect leaks in pipe networks. The approach couples the ordinal optimization approach (OOA and the symbiotic organism search (SOS to solve the optimization problem by means of iterations. A pipe network analysis model (PNSOS is first used to determine steady-state head distribution and pipe flow rates. The best transient generation point and its relevant valve operation parameters are optimized by maximizing the objective function of transient energy. The transient event is created at the chosen point, and the method of characteristics (MOC is used to analyze the transient flow. The OOA is applied to sift through the candidate pipes and the initial organisms with leak information. The SOS is employed to determine the leaks by minimizing the sum of differences between simulated and computed head at the observation points. Two synthetic leaking scenarios, a simple pipe network and a water distribution network (WDN, are chosen to test the performance of leak detection ordinal symbiotic organism search (LDOSOS. Leak information can be accurately identified by the proposed approach for both of the scenarios. The presented technique makes a remarkable contribution to the success of leak detection in the pipe networks.

  12. The Islands Approach to Nearest Neighbor Querying in Spatial Networks

    DEFF Research Database (Denmark)

    Huang, Xuegang; Jensen, Christian Søndergaard; Saltenis, Simonas

    2005-01-01

    , and versatile approach to k nearest neighbor computation that obviates the need for using several k nearest neighbor approaches for supporting a single service scenario. The experimental comparison with the existing techniques uses real-world road network data and considers both I/O and CPU performance...

  13. Towards a networked governance approach in Danish hospitals?

    DEFF Research Database (Denmark)

    Brambini-Pedersen, Jan Vang; Brambini, Annalisa

    2018-01-01

    Hospitals across the globe are prone to numerous wicked problems. Wicked problems are difficult to solve and continue to negatively influence hospital systems. The proponents of the networked governance approach suggest that a new governance mode embracing a collaborative innovation approach to s...

  14. The applying stakeholder approach to strategic management of territories development

    Directory of Open Access Journals (Sweden)

    Ilshat Azamatovich Tazhitdinov

    2013-06-01

    Full Text Available In the paper, the aspects of the strategic management of socioeconomic development of territories in terms of stakeholder approach are discussed. The author's interpretation of the concept of stakeholder sub-region is proposed, and their classification into internal and external to the territorial socioeconomic system of sub-regional level is offered. The types of interests and types of resources stakeholders in the sub-region are identified, and at the same time the correlation of interests and resources allows to determine the groups (alliances stakeholders, which ensure the balance of interests depending on the certain objectives of the association. The conceptual stakeholder agent model of management of strategic territorial development within the hierarchical system of «region — sub-region — municipal formation,» is proposed. All stakeholders there are considered as the influence agents directing its own resources to provide a comprehensive approach to management territorial development. The interaction between all the influence agents of the «Region — Sub-region — municipal formation» is provided vertically and horizontally through the initialization of the development and implementation of strategic documents of the sub-region. Vertical interaction occurs between stakeholders such as government and municipal authorities being as a guideline, and the horizontal — between the rests of them being as a partnership. Within the proposed model, the concurrent engineering is implemented, which is a form of inter-municipal strategic cooperation of local government municipalities for the formation and analyzing a set of alternatives of the project activities in the sub-region in order to choose the best options. The proposed approach was tested in the development of medium-term comprehensive program of socioeconomic development of the Zauralye and sub-regions of the North-East of the Republic of Bashkortostan (2011–2015.

  15. Applying deep bidirectional LSTM and mixture density network for basketball trajectory prediction

    Science.gov (United States)

    Zhao, Yu; Yang, Rennong; Chevalier, Guillaume; Shah, Rajiv C.; Romijnders, Rob

    2018-04-01

    Data analytics helps basketball teams to create tactics. However, manual data collection and analytics are costly and ineffective. Therefore, we applied a deep bidirectional long short-term memory (BLSTM) and mixture density network (MDN) approach. This model is not only capable of predicting a basketball trajectory based on real data, but it also can generate new trajectory samples. It is an excellent application to help coaches and players decide when and where to shoot. Its structure is particularly suitable for dealing with time series problems. BLSTM receives forward and backward information at the same time, while stacking multiple BLSTMs further increases the learning ability of the model. Combined with BLSTMs, MDN is used to generate a multi-modal distribution of outputs. Thus, the proposed model can, in principle, represent arbitrary conditional probability distributions of output variables. We tested our model with two experiments on three-pointer datasets from NBA SportVu data. In the hit-or-miss classification experiment, the proposed model outperformed other models in terms of the convergence speed and accuracy. In the trajectory generation experiment, eight model-generated trajectories at a given time closely matched real trajectories.

  16. SOCIOLOGICAL UNDERSTANDING OF INTERNET: THEORETICAL APPROACHES TO THE NETWORK ANALYSIS

    Directory of Open Access Journals (Sweden)

    D. E. Dobrinskaya

    2016-01-01

    Full Text Available Internet studies are carried out by various scientific disciplines and in different research perspectives. Sociological studies of the Internet deal with a new technology, a revolutionary means of mass communication and a social space. There is a set of research difficulties associated with the Internet. Firstly, the high speed and wide spread of Internet technologies’ development. Secondly, the collection and filtration of materials concerning with Internet studies. Lastly, the development of new conceptual categories, which are able to reflect the impact of the Internet development in contemporary world. In that regard the question of the “network” category use is essential. Network is the base of Internet functioning, on the one hand. On the other hand, network is the ground for almost all social interactions in modern society. So such society is called network society. Three theoretical network approaches in the Internet research case are the most relevant: network society theory, social network analysis and actor-network theory. Each of these theoretical approaches contributes to the study of the Internet. They shape various images of interactions between human beings in their entity and dynamics. All these approaches also provide information about the nature of these interactions. 

  17. An ANOVA approach for statistical comparisons of brain networks.

    Science.gov (United States)

    Fraiman, Daniel; Fraiman, Ricardo

    2018-03-16

    The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.

  18. Modeling in applied sciences a kinetic theory approach

    CERN Document Server

    Pulvirenti, Mario

    2000-01-01

    Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...

  19. Cortical complexity in bipolar disorder applying a spherical harmonics approach.

    Science.gov (United States)

    Nenadic, Igor; Yotter, Rachel A; Dietzek, Maren; Langbein, Kerstin; Sauer, Heinrich; Gaser, Christian

    2017-05-30

    Recent studies using surface-based morphometry of structural magnetic resonance imaging data have suggested that some changes in bipolar disorder (BP) might be neurodevelopmental in origin. We applied a novel analysis of cortical complexity based on fractal dimensions in high-resolution structural MRI scans of 18 bipolar disorder patients and 26 healthy controls. Our region-of-interest based analysis revealed increases in fractal dimensions (in patients relative to controls) in left lateral orbitofrontal cortex and right precuneus, and decreases in right caudal middle frontal, entorhinal cortex, and right pars orbitalis, and left fusiform and posterior cingulate cortices. While our analysis is preliminary, it suggests that early neurodevelopmental pathologies might contribute to bipolar disorder, possibly through genetic mechanisms. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Approach of Complex Networks for the Determination of Brain Death

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-Gang; CAO Jian-Ting; WANG Ru-Bin

    2011-01-01

    In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our Sndings might provide valuable insights on the determination of brain death.%@@ In clinical practice, brain death is the irreversible end of all brain activity.Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination.Brain functional networks constructed by correlation analysis axe derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated.Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state.Our findings might provide valuable insights on the determination of brain death.

  1. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2015-08-01

    Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.

  2. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach.

    Science.gov (United States)

    Zou, Cunlu; Ladroue, Christophe; Guo, Shuixia; Feng, Jianfeng

    2010-06-21

    Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger Causality. Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  3. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach

    Directory of Open Access Journals (Sweden)

    Guo Shuixia

    2010-06-01

    Full Text Available Abstract Background Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE, Bayesian networks, information theory and Granger Causality. Results Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins. For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. Conclusions The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  4. A simple network agreement-based approach for combining evidences in a heterogeneous sensor network

    Directory of Open Access Journals (Sweden)

    Raúl Eusebio-Grande

    2015-12-01

    Full Text Available In this research we investigate how the evidences provided by both static and mobile nodes that are part of a heterogenous sensor network can be combined to have trustworthy results. A solution relying on a network agreement-based approach was implemented and tested.

  5. A Neural Network Approach to Muon Triggering in ATLAS

    CERN Document Server

    Livneh, Ran; CERN. Geneva

    2007-01-01

    The extremely high rate of events that will be produced in the future Large Hadron Collider requires the triggering mechanism to make precise decisions in a few nano-seconds. This poses a complicated inverse problem, arising from the inhomogeneous nature of the magnetic fields in ATLAS. This thesis presents a study of an application of Artificial Neural Networks to the muon triggering problem in the ATLAS end-cap. A comparison with realistic results from the ATLAS first level trigger simulation was in favour of the neural network, but this is mainly due to superior resolution available off-line. Other options for applying a neural network to this problem are discussed.

  6. Exploring Peer Relationships, Friendships and Group Work Dynamics in Higher Education: Applying Social Network Analysis

    Science.gov (United States)

    Mamas, Christoforos

    2018-01-01

    This study primarily applied social network analysis (SNA) to explore the relationship between friendships, peer social interactions and group work dynamics within a higher education undergraduate programme in England. A critical case study design was adopted so as to allow for an in-depth exploration of the students' voice. In doing so, the views…

  7. Investigation of rotated PCA from the perspective of network communities applied to climate data

    Czech Academy of Sciences Publication Activity Database

    Hartman, David; Hlinka, Jaroslav; Vejmelka, Martin; Paluš, Milan

    2013-01-01

    Roč. 15, - (2013), s. 13124 ISSN 1607-7962. [European Geosciences Union General Assembly 2013. 07.04.2013-12.04.2013, Vienna] R&D Projects: GA ČR GCP103/11/J068 Institutional support: RVO:67985807 Keywords : complex networks * graph theory * climate dynamics Subject RIV: BB - Applied Statistics, Operational Research

  8. Neural networks applied to inverters control; Les reseaux de neurones appliques a la commande des convertisseurs

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, B; Marpinard, J C

    1996-12-31

    Neural networks are scarcely applied to power electronics. This attempt includes two different topics: optimal control and computerized simulation. The learning has been performed through output error feedback. For implementation, a buck converter has been used as a voltage pulse generator. (D.L.) 7 refs.

  9. Undiscovered resource evaluation: Towards applying a systematic approach to uranium

    International Nuclear Information System (INIS)

    Fairclough, M.; Katona, L.

    2014-01-01

    Evaluations of potential mineral resource supply range from spatial to aspatial, and everything in between across a range of scales. They also range from qualitative to quantitative with similar hybrid examples across the spectrum. These can compromise detailed deposit-specific reserve and resource calculations, target generative processes and estimates of potential endowments in a broad geographic or geological area. All are estimates until the ore has been discovered and extracted. Contemporary national or provincial scale evaluations of mineral potential are relatively advanced and some include uranium, such as those for South Australia undertaken by the State Geological Survey. These play an important role in land-use planning as well as attracting exploration investment and range from datato knowledge-driven approaches. Studies have been undertaken for the Mt Painter region, as well as for adjacent basins. The process of estimating large-scale potential mineral endowments is critical for national and international planning purposes but is a relatively recent and less common undertaking. In many cases, except at a general level, the data and knowledge for a relatively immature terrain is lacking, requiring assessment by analogy with other areas. Commencing in the 1980s, the United States Geological Survey, and subsequently the Geological Survey of Canada evaluated a range of commodities ranging from copper to hydrocarbons with a view to security of supply. They developed innovative approaches to, as far as practical, reduce the uncertainty and maximise the reproducibility of the calculations in information-poor regions. Yet the approach to uranium was relatively ad hoc and incomplete (such as the US Department of Energy NURE project). Other historic attempts, such as the IAEA-NEA International Uranium Resource Evaluation Project (IUREP) in the 1970s, were mainly qualitative. While there is still no systematic global evaluation of undiscovered uranium resources

  10. Identifying the optimal supply temperature in district heating networks - A modelling approach

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2014-01-01

    of this study is to develop a model for thermo-hydraulic calculation of low temperature DH system. The modelling is performed with emphasis on transient heat transfer in pipe networks. The pseudo-dynamic approach is adopted to model the District Heating Network [DHN] behaviour which estimates the temperature...... dynamically while the flow and pressure are calculated on the basis of steady state conditions. The implicit finite element method is applied to simulate the transient temperature behaviour in the network. Pipe network heat losses, pressure drop in the network and return temperature to the plant...... are calculated in the developed model. The model will serve eventually as a basis to find out the optimal supply temperature in an existing DHN in later work. The modelling results are used as decision support for existing DHN; proposing possible modifications to operate at optimal supply temperature....

  11. Ant colony optimization and neural networks applied to nuclear power plant monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gean Ribeiro dos; Andrade, Delvonei Alves de; Pereira, Iraci Martinez, E-mail: gean@usp.br, E-mail: delvonei@ipen.br, E-mail: martinez@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the ANNs created to solve this kind of problem are created by taking into account only parameters as the number of inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research reactor at IPEN. (author)

  12. Ant colony optimization and neural networks applied to nuclear power plant monitoring

    International Nuclear Information System (INIS)

    Santos, Gean Ribeiro dos; Andrade, Delvonei Alves de; Pereira, Iraci Martinez

    2015-01-01

    A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the ANNs created to solve this kind of problem are created by taking into account only parameters as the number of inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research reactor at IPEN. (author)

  13. A Holistic Approach to Networked Information Systems Design and Analysis

    Science.gov (United States)

    2016-04-15

    attain quite substantial savings. 11. Optimal algorithms for energy harvesting in wireless networks. We use a Markov- decision-process (MDP) based...approach to obtain optimal policies for transmissions . The key advantage of our approach is that it holistically considers information and energy in a...Coding technique to minimize delays and the number of transmissions in Wireless Systems. As we approach an era of ubiquitous computing with information

  14. An Intelligent Approach to Observability of Distribution Networks

    DEFF Research Database (Denmark)

    Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte

    2018-01-01

    This paper presents a novel intelligent observability approach for active distribution systems. Observability assessment of the measured power system network, which is a preliminary task in state estimation, is handled via an algebraic method that uses the triangular factors of singular, symmetric...... gain matrix accompanied by a minimum meter placement technique. In available literature, large numbers of pseudo measurements are used to cover the scarcity of sufficient real measurements in distribution systems; the values of these virtual meters are calculated value based on the available real...... measurements, network topology, and network parameters. However, since there are large margin of errors exist in the calculation phase, estimated states may be significantly differed from the actual values though network is classified as observable. Hence, an approach based on numerical observability analysis...

  15. An Inverse Kinematic Approach Using Groebner Basis Theory Applied to Gait Cycle Analysis

    Science.gov (United States)

    2013-03-01

    AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS Anum Barki AFIT-ENP-13-M-02 DEPARTMENT OF THE AIR...copyright protection in the United States. AFIT-ENP-13-M-02 AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS...APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS Anum Barki, BS Approved: Dr. Ronald F. Tuttle (Chairman) Date Dr. Kimberly Kendricks

  16. Methodological Approaches to Locating Outlets of the Franchise Retail Network

    OpenAIRE

    Grygorenko Tetyana M.

    2016-01-01

    Methodical approaches to selecting strategic areas of managing the future location of franchise retail network outlets are presented. The main stages in the assessment of strategic areas of managing the future location of franchise retail network outlets have been determined and the evaluation criteria have been suggested. Since such selection requires consideration of a variety of indicators and directions of the assessment, the author proposes a scale of evaluation, which ...

  17. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles.

    Science.gov (United States)

    Munguia, Rodrigo; Urzua, Sarquis; Grau, Antoni

    2016-01-01

    In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs) more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM) method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time.

  18. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles.

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguia

    Full Text Available In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time.

  19. Mouse genetic approaches applied to the normal tissue radiation response

    International Nuclear Information System (INIS)

    Haston, Christina K.

    2012-01-01

    The varying responses of inbred mouse models to radiation exposure present a unique opportunity to dissect the genetic basis of radiation sensitivity and tissue injury. Such studies are complementary to human association studies as they permit both the analysis of clinical features of disease, and of specific variants associated with its presentation, in a controlled environment. Herein I review how animal models are studied to identify specific genetic variants influencing predisposition to radiation-induced traits. Among these radiation-induced responses are documented strain differences in repair of DNA damage and in extent of tissue injury (in the lung, skin, and intestine) which form the base for genetic investigations. For example, radiation-induced DNA damage is consistently greater in tissues from BALB/cJ mice, than the levels in C57BL/6J mice, suggesting there may be an inherent DNA damage level per strain. Regarding tissue injury, strain specific inflammatory and fibrotic phenotypes have been documented for principally, C57BL/6 C3H and A/J mice but a correlation among responses such that knowledge of the radiation injury in one tissue informs of the response in another is not evident. Strategies to identify genetic differences contributing to a trait based on inbred strain differences, which include linkage analysis and the evaluation of recombinant congenic (RC) strains, are presented, with a focus on the lung response to irradiation which is the only radiation-induced tissue injury mapped to date. Such approaches are needed to reveal genetic differences in susceptibility to radiation injury, and also to provide a context for the effects of specific genetic variation uncovered in anticipated clinical association studies. In summary, mouse models can be studied to uncover heritable variation predisposing to specific radiation responses, and such variations may point to pathways of importance to phenotype development in the clinic.

  20. Informal networks and resilience to climate change impacts: A collective approach to index insurance

    DEFF Research Database (Denmark)

    Trærup, Sara Lærke Meltofte

    2012-01-01

    This article contributes to the understanding of how to proceed with the development of index-insurance in order to reach extended population coverage with the insurance. The approach is applied to an example from a region in Tanzania. One of the main coping strategies that resource-poor households...... networks become insufficient since the majority of risk-sharers will be affected by the shock at the same time. This paper proposes a collective approach to index-insurance in which the members of an informal network will be insured as one insurance taker. The paper raises a conceptual argument...... that targeting households through existing informal networks will remove a number of prevailing barriers to the takeup of insurance and consequently the approach has the potential to increase households’ resilience to climate change impacts. The policy implications of the conclusions are significant since...

  1. Contingent approach to Internet-based supply network integration

    Science.gov (United States)

    Ho, Jessica; Boughton, Nick; Kehoe, Dennis; Michaelides, Zenon

    2001-10-01

    The Internet is playing an increasingly important role in enhancing the operations of supply networks as many organizations begin to recognize the benefits of Internet- enabled supply arrangements. However, the developments and applications to-date do not extend significantly beyond the dyadic model, whereas the real advantages are to be made with the external and network models to support a coordinated and collaborative based approach. The DOMAIN research group at the University of Liverpool is currently defining new Internet- enabled approaches to enable greater collaboration across supply chains. Different e-business models and tools are focusing on different applications. Using inappropriate e- business models, tools or techniques will bring negative results instead of benefits to all the tiers in the supply network. Thus there are a number of issues to be considered before addressing Internet based supply network integration, in particular an understanding of supply chain management, the emergent business models and evaluating the effects of deploying e-business to the supply network or a particular tier. It is important to utilize a contingent approach to selecting the right e-business model to meet the specific supply chain requirements. This paper addresses the issues and provides a case study on the indirect materials supply networks.

  2. A neural network approach to job-shop scheduling.

    Science.gov (United States)

    Zhou, D N; Cherkassky, V; Baldwin, T R; Olson, D E

    1991-01-01

    A novel analog computational network is presented for solving NP-complete constraint satisfaction problems, i.e. job-shop scheduling. In contrast to most neural approaches to combinatorial optimization based on quadratic energy cost function, the authors propose to use linear cost functions. As a result, the network complexity (number of neurons and the number of resistive interconnections) grows only linearly with problem size, and large-scale implementations become possible. The proposed approach is related to the linear programming network described by D.W. Tank and J.J. Hopfield (1985), which also uses a linear cost function for a simple optimization problem. It is shown how to map a difficult constraint-satisfaction problem onto a simple neural net in which the number of neural processors equals the number of subjobs (operations) and the number of interconnections grows linearly with the total number of operations. Simulations show that the authors' approach produces better solutions than existing neural approaches to job-shop scheduling, i.e. the traveling salesman problem-type Hopfield approach and integer linear programming approach of J.P.S. Foo and Y. Takefuji (1988), in terms of the quality of the solution and the network complexity.

  3. Hierarchical brain networks active in approach and avoidance goal pursuit.

    Science.gov (United States)

    Spielberg, Jeffrey M; Heller, Wendy; Miller, Gregory A

    2013-01-01

    Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal-pursuit processes (e.g., motivation) has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity) vital to goal-pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging) with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures.

  4. Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure

    International Nuclear Information System (INIS)

    Xu, Xin; Cui, Qiang

    2017-01-01

    This paper focuses on evaluating airline energy efficiency, which is firstly divided into four stages: Operations Stage, Fleet Maintenance Stage, Services Stage and Sales Stage. The new four-stage network structure of airline energy efficiency is a modification of existing models. A new approach, integrated with Network Epsilon-based Measure and Network Slacks-based Measure, is applied to assess the overall energy efficiency and divisional efficiency of 19 international airlines from 2008 to 2014. The influencing factors of airline energy efficiency are analyzed through the regression analysis. The results indicate the followings: 1. The integrated model can identify the benchmarking airlines in the overall system and stages. 2. Most airlines' energy efficiencies keep steady during the period, except for some sharply fluctuations. The efficiency decreases mainly centralized in the year 2008–2011, affected by the financial crisis in the USA. 3. The average age of fleet is positively correlated with the overall energy efficiency, and each divisional efficiency has different significant influencing factors. - Highlights: • An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure is developed. • 19 airlines' energy efficiencies are evaluated. • Garuda Indonesia has the highest overall energy efficiency.

  5. From gene networks to drugs: systems pharmacology approaches for AUD.

    Science.gov (United States)

    Ferguson, Laura B; Harris, R Adron; Mayfield, Roy Dayne

    2018-06-01

    The alcohol research field has amassed an impressive number of gene expression datasets spanning key brain areas for addiction, species (humans as well as multiple animal models), and stages in the addiction cycle (binge/intoxication, withdrawal/negative effect, and preoccupation/anticipation). These data have improved our understanding of the molecular adaptations that eventually lead to dysregulation of brain function and the chronic, relapsing disorder of addiction. Identification of new medications to treat alcohol use disorder (AUD) will likely benefit from the integration of genetic, genomic, and behavioral information included in these important datasets. Systems pharmacology considers drug effects as the outcome of the complex network of interactions a drug has rather than a single drug-molecule interaction. Computational strategies based on this principle that integrate gene expression signatures of pharmaceuticals and disease states have shown promise for identifying treatments that ameliorate disease symptoms (called in silico gene mapping or connectivity mapping). In this review, we suggest that gene expression profiling for in silico mapping is critical to improve drug repurposing and discovery for AUD and other psychiatric illnesses. We highlight studies that successfully apply gene mapping computational approaches to identify or repurpose pharmaceutical treatments for psychiatric illnesses. Furthermore, we address important challenges that must be overcome to maximize the potential of these strategies to translate to the clinic and improve healthcare outcomes.

  6. A mathematical programming approach for sequential clustering of dynamic networks

    Science.gov (United States)

    Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2016-02-01

    A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.

  7. Intelligent Resource Management for Local Area Networks: Approach and Evolution

    Science.gov (United States)

    Meike, Roger

    1988-01-01

    The Data Management System network is a complex and important part of manned space platforms. Its efficient operation is vital to crew, subsystems and experiments. AI is being considered to aid in the initial design of the network and to augment the management of its operation. The Intelligent Resource Management for Local Area Networks (IRMA-LAN) project is concerned with the application of AI techniques to network configuration and management. A network simulation was constructed employing real time process scheduling for realistic loads, and utilizing the IEEE 802.4 token passing scheme. This simulation is an integral part of the construction of the IRMA-LAN system. From it, a causal model is being constructed for use in prediction and deep reasoning about the system configuration. An AI network design advisor is being added to help in the design of an efficient network. The AI portion of the system is planned to evolve into a dynamic network management aid. The approach, the integrated simulation, project evolution, and some initial results are described.

  8. Applying a Network-Lens to Hospitality Business Research: A New Research Agenda

    Directory of Open Access Journals (Sweden)

    Florian AUBKE

    2014-06-01

    Full Text Available Hospitality businesses are first and foremost places of social interaction. This paper argues for an inclusion of network methodology into the tool kit of hospitality researchers. This methodology focuses on the interaction of people rather than applying an actor-focused view, which currently seems dominant in hospitality research. Outside the field, a solid research basis has been formed, upon which hospitality researchers can build. The paper introduces the foundations of network theory and its applicability to the study of organizations. A brief methodological introduction is provided and potential applications and research topics relevant to the hospitality field are suggested.

  9. Neural Network Approach to Locating Cryptography in Object Code

    Energy Technology Data Exchange (ETDEWEB)

    Jason L. Wright; Milos Manic

    2009-09-01

    Finding and identifying cryptography is a growing concern in the malware analysis community. In this paper, artificial neural networks are used to classify functional blocks from a disassembled program as being either cryptography related or not. The resulting system, referred to as NNLC (Neural Net for Locating Cryptography) is presented and results of applying this system to various libraries are described.

  10. Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach

    Science.gov (United States)

    Gomani, M. C.; Dietrich, O.; Lischeid, G.; Mahoo, H.; Mahay, F.; Mbilinyi, B.; Sarmett, J.

    Sound decision making for water resources management has to be based on good knowledge of the dominant hydrological processes of a catchment. This information can only be obtained through establishing suitable hydrological monitoring networks. Research catchments are typically established without involving the key stakeholders, which results in instruments being installed at inappropriate places as well as at high risk of theft and vandalism. This paper presents an integrated participatory approach for establishing a hydrological monitoring network. We propose a framework with six steps beginning with (i) inception of idea; (ii) stakeholder identification; (iii) defining the scope of the network; (iv) installation; (v) monitoring; and (vi) feedback mechanism integrated within the participatory framework. The approach is illustrated using an example of the Ngerengere catchment in Tanzania. In applying the approach, the concept of establishing the Ngerengere catchment monitoring network was initiated in 2008 within the Resilient Agro-landscapes to Climate Change in Tanzania (ReACCT) research program. The main stakeholders included: local communities; Sokoine University of Agriculture; Wami Ruvu Basin Water Office and the ReACCT Research team. The scope of the network was based on expert experience in similar projects and lessons learnt from literature review of similar projects from elsewhere integrated with local expert knowledge. The installations involved reconnaissance surveys, detailed surveys, and expert consultations to identify best sites. First, a Digital Elevation Model, land use, and soil maps were used to identify potential monitoring sites. Local and expert knowledge was collected on flow regimes, indicators of shallow groundwater plant species, precipitation pattern, vegetation, and soil types. This information was integrated and used to select sites for installation of an automatic weather station, automatic rain gauges, river flow gauging stations

  11. Social network approaches to leadership: an integrative conceptual review.

    Science.gov (United States)

    Carter, Dorothy R; DeChurch, Leslie A; Braun, Michael T; Contractor, Noshir S

    2015-05-01

    Contemporary definitions of leadership advance a view of the phenomenon as relational, situated in specific social contexts, involving patterned emergent processes, and encompassing both formal and informal influence. Paralleling these views is a growing interest in leveraging social network approaches to study leadership. Social network approaches provide a set of theories and methods with which to articulate and investigate, with greater precision and rigor, the wide variety of relational perspectives implied by contemporary leadership theories. Our goal is to advance this domain through an integrative conceptual review. We begin by answering the question of why-Why adopt a network approach to study leadership? Then, we offer a framework for organizing prior research. Our review reveals 3 areas of research, which we term: (a) leadership in networks, (b) leadership as networks, and (c) leadership in and as networks. By clarifying the conceptual underpinnings, key findings, and themes within each area, this review serves as a foundation for future inquiry that capitalizes on, and programmatically builds upon, the insights of prior work. Our final contribution is to advance an agenda for future research that harnesses the confluent ideas at the intersection of leadership in and as networks. Leadership in and as networks represents a paradigm shift in leadership research-from an emphasis on the static traits and behaviors of formal leaders whose actions are contingent upon situational constraints, toward an emphasis on the complex and patterned relational processes that interact with the embedding social context to jointly constitute leadership emergence and effectiveness. (c) 2015 APA, all rights reserved.

  12. Introduction to focus issue: quantitative approaches to genetic networks.

    Science.gov (United States)

    Albert, Réka; Collins, James J; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  13. Adaption of the temporal correlation coefficient calculation for temporal networks (applied to a real-world pig trade network).

    Science.gov (United States)

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    The average topological overlap of two graphs of two consecutive time steps measures the amount of changes in the edge configuration between the two snapshots. This value has to be zero if the edge configuration changes completely and one if the two consecutive graphs are identical. Current methods depend on the number of nodes in the network or on the maximal number of connected nodes in the consecutive time steps. In the first case, this methodology breaks down if there are nodes with no edges. In the second case, it fails if the maximal number of active nodes is larger than the maximal number of connected nodes. In the following, an adaption of the calculation of the temporal correlation coefficient and of the topological overlap of the graph between two consecutive time steps is presented, which shows the expected behaviour mentioned above. The newly proposed adaption uses the maximal number of active nodes, i.e. the number of nodes with at least one edge, for the calculation of the topological overlap. The three methods were compared with the help of vivid example networks to reveal the differences between the proposed notations. Furthermore, these three calculation methods were applied to a real-world network of animal movements in order to detect influences of the network structure on the outcome of the different methods.

  14. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach.

    Science.gov (United States)

    Senior, Alistair M; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  15. An Intelligent Alternative Approach to the efficient Network Management

    Directory of Open Access Journals (Sweden)

    MARTÍN, A.

    2012-12-01

    Full Text Available Due to the increasing complexity and heterogeneity of networks and services, many efforts have been made to develop intelligent techniques for management. Network intelligent management is a key technology for operating large heterogeneous data transmission networks. This paper presents a proposal for an architecture that integrates management object specifications and the knowledge of expert systems. We present a new approach named Integrated Expert Management, for learning objects based on expert management rules and describe the design and implementation of an integrated intelligent management platform based on OSI and Internet management models. The main contributions of our approach is the integration of both expert system and managed models, so we can make use of them to construct more flexible intelligent management network. The prototype SONAP (Software for Network Assistant and Performance is accuracy-aware since it can control and manage a network. We have tested our system on real data to the fault diagnostic in a telecommunication system of a power utility. The results validate the model and show a significant improvement with respect to the number of rules and the error rate in others systems.

  16. Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection.

    Science.gov (United States)

    Guthke, Reinhard; Möller, Ulrich; Hoffmann, Martin; Thies, Frank; Töpfer, Susanne

    2005-04-15

    The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Reinhard.Guthke@hki-jena.de.

  17. Designing synthetic networks in silico: a generalised evolutionary algorithm approach.

    Science.gov (United States)

    Smith, Robert W; van Sluijs, Bob; Fleck, Christian

    2017-12-02

    Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.

  18. Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments

    International Nuclear Information System (INIS)

    Tahat Amani; Marti Jordi; Khwaldeh Ali; Tahat Kaher

    2014-01-01

    In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer ‘occurred’ and transfer ‘not occurred’. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies. (condensed matter: structural, mechanical, and thermal properties)

  19. An input feature selection method applied to fuzzy neural networks for signal esitmation

    International Nuclear Information System (INIS)

    Na, Man Gyun; Sim, Young Rok

    2001-01-01

    It is well known that the performance of a fuzzy neural networks strongly depends on the input features selected for its training. In its applications to sensor signal estimation, there are a large number of input variables related with an output. As the number of input variables increases, the training time of fuzzy neural networks required increases exponentially. Thus, it is essential to reduce the number of inputs to a fuzzy neural networks and to select the optimum number of mutually independent inputs that are able to clearly define the input-output mapping. In this work, principal component analysis (PAC), genetic algorithms (GA) and probability theory are combined to select new important input features. A proposed feature selection method is applied to the signal estimation of the steam generator water level, the hot-leg flowrate, the pressurizer water level and the pressurizer pressure sensors in pressurized water reactors and compared with other input feature selection methods

  20. Distance-Based Access Modifiers Applied to Safety in Home Networks

    DEFF Research Database (Denmark)

    Mortensen, Kjeld Høyer; Schougaard, Kari Rye; Schultz, Ulrik Pagh

    2004-01-01

    Home networks and the interconnection of home appliances is a classical theme in ubiquitous computing research. Security is a recurring concern, but there is a lack of awareness of safety: preventing the computerized house from harming the inhabitants, even in a worst-case scenario where...... be performed within a physical proximity that ensures safety. We use a declarative approach integrated with an IDL language to express location-based restrictions on operations. This model has been implemented in a middleware for home audio-video devices, using infrared communication and a local-area network...

  1. Approach of Complex Networks for the Determination of Brain Death

    International Nuclear Information System (INIS)

    Sun Wei-Gang; Cao Jian-Ting; Wang Ru-Bin

    2011-01-01

    In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our findings might provide valuable insights on the determination of brain death. (cross-disciplinary physics and related areas of science and technology)

  2. An Improved Dynamic Programming Decomposition Approach for Network Revenue Management

    OpenAIRE

    Dan Zhang

    2011-01-01

    We consider a nonlinear nonseparable functional approximation to the value function of a dynamic programming formulation for the network revenue management (RM) problem with customer choice. We propose a simultaneous dynamic programming approach to solve the resulting problem, which is a nonlinear optimization problem with nonlinear constraints. We show that our approximation leads to a tighter upper bound on optimal expected revenue than some known bounds in the literature. Our approach can ...

  3. Innovation Networks New Approaches in Modelling and Analyzing

    CERN Document Server

    Pyka, Andreas

    2009-01-01

    The science of graphs and networks has become by now a well-established tool for modelling and analyzing a variety of systems with a large number of interacting components. Starting from the physical sciences, applications have spread rapidly to the natural and social sciences, as well as to economics, and are now further extended, in this volume, to the concept of innovations, viewed broadly. In an abstract, systems-theoretical approach, innovation can be understood as a critical event which destabilizes the current state of the system, and results in a new process of self-organization leading to a new stable state. The contributions to this anthology address different aspects of the relationship between innovation and networks. The various chapters incorporate approaches in evolutionary economics, agent-based modeling, social network analysis and econophysics and explore the epistemic tension between insights into economics and society-related processes, and the insights into new forms of complex dynamics.

  4. An Intuitive Dominant Test Algorithm of CP-nets Applied on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Liu Zhaowei

    2014-07-01

    Full Text Available A wireless sensor network is of spatially distributed with autonomous sensors, just like a multi-Agent system with single Agent. Conditional Preference networks is a qualitative tool for representing ceteris paribus (all other things being equal preference statements, it has been a research hotspot in artificial intelligence recently. But the algorithm and complexity of strong dominant test with respect to binary-valued structure CP-nets have not been solved, and few researchers address the application to other domain. In this paper, strong dominant test and application of CP-nets are studied in detail. Firstly, by constructing induced graph of CP-nets and studying its properties, we make a conclusion that the problem of strong dominant test on binary-valued CP-nets is single source shortest path problem essentially, so strong dominant test problem can be solved by improved Dijkstra’s algorithm. Secondly, we apply the algorithm above mentioned to the completeness of wireless sensor network, and design a completeness judging algorithm based on strong dominant test. Thirdly, we apply the algorithm on wireless sensor network to solve routing problem. In the end, we point out some interesting work in the future.

  5. Applying a Network-Lens to Hospitality Business Research: A New Research Agenda

    OpenAIRE

    AUBKE, Florian

    2014-01-01

    Hospitality businesses are first and foremost places of social interaction. This paper argues for an inclusion of network methodology into the tool kit of hospitality researchers. This methodology focuses on the interaction of people rather than applying an actor-focused view, which currently seems dominant in hospitality research. Outside the field, a solid research basis has been formed, upon which hospitality researchers can build. The paper introduces the foundations ...

  6. Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE

    International Nuclear Information System (INIS)

    Correa, R.; Chesta, M.A.; Morales, J.R.; Dinator, M.I.; Requena, I.; Vila, I.

    2006-01-01

    An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses

  7. Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R. [Universidad Tecnologica Metropolitana, Departamento de Fisica, Av. Jose Pedro Alessandri 1242, Nunoa, Santiago (Chile)]. E-mail: rcorrea@utem.cl; Chesta, M.A. [Universidad Nacional de Cordoba, Facultad de Matematica, Astronomia y Fisica, Medina Allende s/n Ciudad Universitaria, 5000 Cordoba (Argentina)]. E-mail: chesta@famaf.unc.edu.ar; Morales, J.R. [Universidad de Chile, Facultad de Ciencias, Departamento de Fisica, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: rmorales@uchile.cl; Dinator, M.I. [Universidad de Chile, Facultad de Ciencias, Departamento de Fisica, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: mdinator@uchile.cl; Requena, I. [Universidad de Granada, Departamento de Ciencias de la Computacion e Inteligencia Artificial, Daniel Saucedo Aranda s/n, 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es; Vila, I. [Universidad de Chile, Facultad de Ciencias, Departamento de Ecologia, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: limnolog@uchile.cl

    2006-08-15

    An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses.

  8. Approaches in anomaly-based network intrusion detection systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, S.; Di Pietro, R.; Mancini, L.V.

    2008-01-01

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  9. Approaches in Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  10. A quantitative approach to measure road network information based on edge diversity

    Science.gov (United States)

    Wu, Xun; Zhang, Hong; Lan, Tian; Cao, Weiwei; He, Jing

    2015-12-01

    The measure of map information has been one of the key issues in assessing cartographic quality and map generalization algorithms. It is also important for developing efficient approaches to transfer geospatial information. Road network is the most common linear object in real world. Approximately describe road network information will benefit road map generalization, navigation map production and urban planning. Most of current approaches focused on node diversities and supposed that all the edges are the same, which is inconsistent to real-life condition, and thus show limitations in measuring network information. As real-life traffic flow are directed and of different quantities, the original undirected vector road map was first converted to a directed topographic connectivity map. Then in consideration of preferential attachment in complex network study and rich-club phenomenon in social network, the from and to weights of each edge are assigned. The from weight of a given edge is defined as the connectivity of its end node to the sum of the connectivities of all the neighbors of the from nodes of the edge. After getting the from and to weights of each edge, edge information, node information and the whole network structure information entropies could be obtained based on information theory. The approach has been applied to several 1 square mile road network samples. Results show that information entropies based on edge diversities could successfully describe the structural differences of road networks. This approach is a complementarity to current map information measurements, and can be extended to measure other kinds of geographical objects.

  11. Building research infrastructure in community health centers: a Community Health Applied Research Network (CHARN) report.

    Science.gov (United States)

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E

    2013-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and "matchmaking" between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings.

  12. A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments

    CERN Document Server

    Terzic, Edin; Nagarajah, Romesh; Alamgir, Muhammad

    2012-01-01

    Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions.   In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network base...

  13. Systems approach to modeling the Token Bucket algorithm in computer networks

    Directory of Open Access Journals (Sweden)

    Ahmed N. U.

    2002-01-01

    Full Text Available In this paper, we construct a new dynamic model for the Token Bucket (TB algorithm used in computer networks and use systems approach for its analysis. This model is then augmented by adding a dynamic model for a multiplexor at an access node where the TB exercises a policing function. In the model, traffic policing, multiplexing and network utilization are formally defined. Based on the model, we study such issues as (quality of service QoS, traffic sizing and network dimensioning. Also we propose an algorithm using feedback control to improve QoS and network utilization. Applying MPEG video traces as the input traffic to the model, we verify the usefulness and effectiveness of our model.

  14. INFLUENCE OF APPLYING ADDITIONAL FORCING FANS FOR THE AIR DISTRIBUTION IN VENTILATION NETWORK

    Directory of Open Access Journals (Sweden)

    Nikodem SZLĄZAK

    2016-07-01

    Full Text Available Mining progress in underground mines cause the ongoing movement of working areas. Consequently, it becomes neces-sary to adapt the ventilation network of a mine to direct airflow into newly-opened districts. For economic reasons, opening new fields is often achieved via underground workings. Length of primary intake and return routes increases and also increases the total resistance of a complex ventilation network. The development of a subsurface structure can make it necessary to change the air distribution in a ventilation network. Increasing airflow into newly-opened districts is necessary. In mines where extraction does not entail gas-related hazards, there is possibility of implementing a push-pull ventilation system in order to supplement airflows to newly developed mining fields. This is achieved by installing sub-surface fan stations with forcing fans at the bottom of downcast shaft. In push-pull systems with multiple main fans, it is vital to select forcing fans with characteristic curves matching those of the existing exhaust fans to prevent undesirable mutual interaction. In complex ventilation networks it is necessary to calculate distribution of airflow (especially in net-works with a large number of installed fans. In the article the influence of applying additional forcing fans for the air distribution in ventilation network for underground mine were considered. There are also analysed the extent of over-pressure caused by the additional forcing fan in branches of the ventilation network (the operating range of additional forcing fan. Possibilities of increasing airflow rate in working areas were conducted.

  15. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran

    2017-08-17

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset for event detection. The input features used include the average of absolute amplitudes, variance, energy-ratio and polarization rectilinearity. These features are calculated in a moving-window of same length for the entire waveform. The output is set as a user-specified relative probability curve, which provides a robust way of distinguishing between weak and strong events. An optimal network is selected by studying the weight-based saliency and effect of number of neurons on the predicted results. Using synthetic data examples, we demonstrate that this approach is effective in detecting weaker events and reduces the number of false positives.

  16. Designing wireless sensor networks for hydrological and water resource applications: A purpose-oriented approach

    Science.gov (United States)

    Mao, F.; Hannah, D. M.; Krause, S.; Clark, J.; Buytaert, W.; Ochoa-Tocachi, B. F.

    2017-12-01

    There have been a growing number of studies using low-cost wireless sensor networks (LCWSNs) in hydrology and water resources fields. By reviewing the development of sensing and wireless communication technologies, as well as the recent relevant projects and applications, we observe that the challenges in applying LCWSNs have been moving beyond technical aspects. The large pool of available low-cost network modules, such as Arduino, Raspberry Pi, Xbee and inexpensive sensors, enable us to assemble networks rather than building them from scratch. With a wide variety of costs, functions and features, these modules support customisation of hydrological monitoring network for different user groups and purposes. Therefore, more attentions are needed to be placed on how to better design tailored LCWSNs with current technologies that create more added value for users. To address this challenge, this research proposes a tool-box for what we term `purpose-oriented' LCWSN. We identify the main LCWSN application scenarios from literature, and compare them from three perspectives including (1) the major stakeholders in each scenario, (2) the purposes for stakeholders, and (3) the network technologies and settings that meet the purposes. Notably, this innovative approach designs LCWSNs for different scenarios with considerations of not only technologies, but also stakeholders and purposes that are related to the usability, maintenance and social sustainability of networks. We conclude that this new, purpose-orientated approach can further release the potential of hydrological and water resources LCWSNs to maximise benefits for users and wider society.

  17. Flow Regime Identification of Co-Current Downward Two-Phase Flow With Neural Network Approach

    International Nuclear Information System (INIS)

    Hiroshi Goda; Seungjin Kim; Ye Mi; Finch, Joshua P.; Mamoru Ishii; Jennifer Uhle

    2002-01-01

    Flow regime identification for an adiabatic vertical co-current downward air-water two-phase flow in the 25.4 mm ID and the 50.8 mm ID round tubes was performed by employing an impedance void meter coupled with the neural network classification approach. This approach minimizes the subjective judgment in determining the flow regimes. The signals obtained by an impedance void meter were applied to train the self-organizing neural network to categorize these impedance signals into a certain number of groups. The characteristic parameters set into the neural network classification included the mean, standard deviation and skewness of impedance signals in the present experiment. The classification categories adopted in the present investigation were four widely accepted flow regimes, viz. bubbly, slug, churn-turbulent, and annular flows. These four flow regimes were recognized based upon the conventional flow visualization approach by a high-speed motion analyzer. The resulting flow regime maps classified by the neural network were compared with the results obtained through the flow visualization method, and consequently the efficiency of the neural network classification for flow regime identification was demonstrated. (authors)

  18. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

    Directory of Open Access Journals (Sweden)

    Christian L Barrett

    2006-05-01

    Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

  19. An automated approach to network features of protein structure ensembles

    Science.gov (United States)

    Bhattacharyya, Moitrayee; Bhat, Chanda R; Vishveshwara, Saraswathi

    2013-01-01

    Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of β2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html. PMID:23934896

  20. A Multimetric Approach for Handoff Decision in Heterogeneous Wireless Networks

    Science.gov (United States)

    Kustiawan, I.; Purnama, W.

    2018-02-01

    Seamless mobility and service continuity anywhere at any time are an important issue in the wireless Internet. This research proposes a scheme to make handoff decisions effectively in heterogeneous wireless networks using a fuzzy system. Our design lies in an inference engine which takes RSS (received signal strength), data rate, network latency, and user preference as strategic determinants. The logic of our engine is realized on a UE (user equipment) side in faster reaction to network dynamics while roaming across different radio access technologies. The fuzzy system handles four metrics jointly to deduce a moderate decision about when to initiate handoff. The performance of our design is evaluated by simulating move-out mobility scenarios. Simulation results show that our scheme outperforms other approaches in terms of reducing unnecessary handoff.

  1. Methodological Approaches to Locating Outlets of the Franchise Retail Network

    Directory of Open Access Journals (Sweden)

    Grygorenko Tetyana M.

    2016-08-01

    Full Text Available Methodical approaches to selecting strategic areas of managing the future location of franchise retail network outlets are presented. The main stages in the assessment of strategic areas of managing the future location of franchise retail network outlets have been determined and the evaluation criteria have been suggested. Since such selection requires consideration of a variety of indicators and directions of the assessment, the author proposes a scale of evaluation, which allows generalizing and organizing the research data and calculations of the previous stages of the analysis. The most important criteria and sequence of the selection of the potential franchisees for the franchise retail network have been identified, the technique for their evaluation has been proposed. The use of the suggested methodological approaches will allow the franchiser making sound decisions on the selection of potential target markets, minimizing expenditures of time and efforts on the selection of franchisees and hence optimizing the process of development of the franchise retail network, which will contribute to the formation of its structure.

  2. A distributed multiagent system architecture for body area networks applied to healthcare monitoring.

    Science.gov (United States)

    Felisberto, Filipe; Laza, Rosalía; Fdez-Riverola, Florentino; Pereira, António

    2015-01-01

    In the last years the area of health monitoring has grown significantly, attracting the attention of both academia and commercial sectors. At the same time, the availability of new biomedical sensors and suitable network protocols has led to the appearance of a new generation of wireless sensor networks, the so-called wireless body area networks. Nowadays, these networks are routinely used for continuous monitoring of vital parameters, movement, and the surrounding environment of people, but the large volume of data generated in different locations represents a major obstacle for the appropriate design, development, and deployment of more elaborated intelligent systems. In this context, we present an open and distributed architecture based on a multiagent system for recognizing human movements, identifying human postures, and detecting harmful activities. The proposed system evolved from a single node for fall detection to a multisensor hardware solution capable of identifying unhampered falls and analyzing the users' movement. The experiments carried out contemplate two different scenarios and demonstrate the accuracy of our proposal as a real distributed movement monitoring and accident detection system. Moreover, we also characterize its performance, enabling future analyses and comparisons with similar approaches.

  3. Social Network Analysis Applied to a Historical Ethnographic Study Surrounding Home Birth

    Directory of Open Access Journals (Sweden)

    Elena Andina-Diaz

    2018-04-01

    Full Text Available Safety during birth has improved since hospital delivery became standard practice, but the process has also become increasingly medicalised. Hence, recent years have witnessed a growing interest in home births due to the advantages it offers to mothers and their newborn infants. The aims of the present study were to confirm the transition from a home birth model of care to a scenario in which deliveries began to occur almost exclusively in a hospital setting; to define the social networks surrounding home births; and to determine whether geography exerted any influence on the social networks surrounding home births. Adopting a qualitative approach, we recruited 19 women who had given birth at home in the mid 20th century in a rural area in Spain. We employed a social network analysis method. Our results revealed three essential aspects that remain relevant today: the importance of health professionals in home delivery care, the importance of the mother’s primary network, and the influence of the geographical location of the actors involved in childbirth. All of these factors must be taken into consideration when developing strategies for maternal health.

  4. Social Network Analysis Applied to a Historical Ethnographic Study Surrounding Home Birth.

    Science.gov (United States)

    Andina-Diaz, Elena; Ovalle-Perandones, Mª Antonia; Ramos-Vidal, Ignacio; Camacho-Morell, Francisca; Siles-Gonzalez, Jose; Marques-Sanchez, Pilar

    2018-04-24

    Safety during birth has improved since hospital delivery became standard practice, but the process has also become increasingly medicalised. Hence, recent years have witnessed a growing interest in home births due to the advantages it offers to mothers and their newborn infants. The aims of the present study were to confirm the transition from a home birth model of care to a scenario in which deliveries began to occur almost exclusively in a hospital setting; to define the social networks surrounding home births; and to determine whether geography exerted any influence on the social networks surrounding home births. Adopting a qualitative approach, we recruited 19 women who had given birth at home in the mid 20th century in a rural area in Spain. We employed a social network analysis method. Our results revealed three essential aspects that remain relevant today: the importance of health professionals in home delivery care, the importance of the mother’s primary network, and the influence of the geographical location of the actors involved in childbirth. All of these factors must be taken into consideration when developing strategies for maternal health.

  5. A brain network instantiating approach and avoidance motivation.

    Science.gov (United States)

    Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Engels, Anna S; Crocker, Laura D; Banich, Marie T; Sutton, Bradley P; Heller, Wendy

    2012-09-01

    Research indicates that dorsolateral prefrontal cortex (DLPFC) is important for pursuing goals, and areas of DLPFC are differentially involved in approach and avoidance motivation. Given the complexity of the processes involved in goal pursuit, DLPFC is likely part of a network that includes orbitofrontal cortex (OFC), cingulate, amygdala, and basal ganglia. This hypothesis was tested with regard to one component of goal pursuit, the maintenance of goals in the face of distraction. Examination of connectivity with motivation-related areas of DLPFC supported the network hypothesis. Differential patterns of connectivity suggest a distinct role for DLPFC areas, with one involved in selecting approach goals, one in selecting avoidance goals, and one in selecting goal pursuit strategies. Finally, differences in trait motivation moderated connectivity between DLPFC and OFC, suggesting that this connectivity is important for instantiating motivation. Copyright © 2012 Society for Psychophysiological Research.

  6. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  7. Network thermodynamic approach compartmental analysis. Na+ transients in frog skin.

    Science.gov (United States)

    Mikulecky, D C; Huf, E G; Thomas, S R

    1979-01-01

    We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc.

  8. Characterization of Genes for Beef Marbling Based on Applying Gene Coexpression Network

    Directory of Open Access Journals (Sweden)

    Dajeong Lim

    2014-01-01

    Full Text Available Marbling is an important trait in characterization beef quality and a major factor for determining the price of beef in the Korean beef market. In particular, marbling is a complex trait and needs a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with marbling, we used a weighted gene coexpression network analysis from the expression value of bovine genes. Hub genes were identified; they were topologically centered with large degree and BC values in the global network. We performed gene expression analysis to detect candidate genes in M. longissimus with divergent marbling phenotype (marbling scores 2 to 7 using qRT-PCR. The results demonstrate that transmembrane protein 60 (TMEM60 and dihydropyrimidine dehydrogenase (DPYD are associated with increasing marbling fat. We suggest that the network-based approach in livestock may be an important method for analyzing the complex effects of candidate genes associated with complex traits like marbling or tenderness.

  9. Challenges and Limitations of Applying an Emotion-driven Design Approach on Elderly Users

    DEFF Research Database (Denmark)

    Andersen, Casper L.; Gudmundsson, Hjalte P.; Achiche, Sofiane

    2011-01-01

    a competitive advantage for companies. In this paper, challenges of applying an emotion-driven design approach applied on elderly people, in order to identify their user needs towards walking frames, are discussed. The discussion will be based on the experiences and results obtained from the case study...... related to the participants’ age and cognitive abilities. The challenges encountered are discussed and guidelines on what should be taken into account to facilitate an emotion-driven design approach for elderly people are proposed....

  10. From Microactions to Macrostructure and Back : A Structurational Approach to the Evolution of Organizational Networks

    NARCIS (Netherlands)

    Whitbred, Robert; Fonti, Fabio; Steglich, Christian; Contractor, Noshir

    Structuration theory (ST) and network analysis are promising approaches for studying the emergence of communication networks. We offer a model that integrates the conceptual richness of structuration with the precision of relevant concepts and mechanisms offered from communication network research.

  11. An activities-based approach to network management: An explorative study

    NARCIS (Netherlands)

    Manser, K.; Hillebrand, B.; Klein Woolthuis, R.J.A.; Ziggers, G.W.; Driessen, P.H.; Bloemer, J.M.M.; Klein Woolthuis, R.

    2016-01-01

    Over the last few decades, the industrial marketing literature and the business network literature have promoted a holistic approach to marketing and provided a framework for understanding interorganizational networks. However, our understanding of how interorganizational networks govern themselves

  12. An activities-based approach to network management : An explorative study

    NARCIS (Netherlands)

    Manser, Kristina; Hillebrand, Bas; Klein Woolthuis, R.J.A.; Ziggers, Gerrit Willem; Driessen, Paul H.; Bloemer, Josée

    2016-01-01

    Over the last few decades, the industrial marketing literature and the business network literature have promoted a holistic approach to marketing and provided a framework for understanding interorganizational networks. However, our understanding of how interorganizational networks govern themselves

  13. A measure theoretic approach to traffic flow optimization on networks

    OpenAIRE

    Cacace, Simone; Camilli, Fabio; De Maio, Raul; Tosin, Andrea

    2018-01-01

    We consider a class of optimal control problems for measure-valued nonlinear transport equations describing traffic flow problems on networks. The objective isto minimise/maximise macroscopic quantities, such as traffic volume or average speed,controlling few agents, for example smart traffic lights and automated cars. The measuretheoretic approach allows to study in a same setting local and nonlocal drivers interactionsand to consider the control variables as additional measures interacting ...

  14. Automation of seismic network signal interpolation: an artificial intelligence approach

    International Nuclear Information System (INIS)

    Chiaruttini, C.; Roberto, V.

    1988-01-01

    After discussing the current status of the automation in signal interpretation from seismic networks, a new approach, based on artificial-intelligence tecniques, is proposed. The knowledge of the human expert analyst is examined, with emphasis on its objects, strategies and reasoning techniques. It is argued that knowledge-based systems (or expert systems) provide the most appropriate tools for designing an automatic system, modelled on the expert behaviour

  15. An Algebraic Approach to Inference in Complex Networked Structures

    Science.gov (United States)

    2015-07-09

    44], [45],[46] where the shift is the elementary non-trivial filter that generates, under an appropriate notion of shift invariance, all linear ... elementary filter, and its output is a graph signal with the value at vertex n of the graph given approximately by a weighted linear combination of...AFRL-AFOSR-VA-TR-2015-0265 An Algebraic Approach to Inference in Complex Networked Structures Jose Moura CARNEGIE MELLON UNIVERSITY Final Report 07

  16. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    International Nuclear Information System (INIS)

    Hartley, Lee; Roberts, David

    2013-04-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  17. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Roberts, David

    2013-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  18. Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Liang Jinghang

    2012-08-01

    network inferred from a T cell immune response dataset. An SBN can also implement the function of an asynchronous PBN and is potentially useful in a hybrid approach in combination with a continuous or single-molecule level stochastic model. Conclusions Stochastic Boolean networks (SBNs are proposed as an efficient approach to modelling gene regulatory networks (GRNs. The SBN approach is able to recover biologically-proven regulatory behaviours, such as the oscillatory dynamics of the p53-Mdm2 network and the dynamic attractors in a T cell immune response network. The proposed approach can further predict the network dynamics when the genes are under perturbation, thus providing biologically meaningful insights for a better understanding of the dynamics of GRNs. The algorithms and methods described in this paper have been implemented in Matlab packages, which are attached as Additional files.

  19. INTERPERSONAL COMMUNICATION AND METHODOLOGIES OF INNOVATION. A HEURISTIC EXPERIENCE IN THE CLASSROOM APPLYING SEMANTIC NETWORKS

    Directory of Open Access Journals (Sweden)

    José Manuel Corujeira Gómez

    2014-10-01

    Full Text Available The current definition of creativity gives importance to interpersonal communication in innovation strategies, and allows us to question the profiles of professionals –innovation partners– communication skills in the practice session in which they are applied. This text shows shallow results on the application of some of their tactics with a group of students. We tested structural/procedural descriptions of hypothetical effects of communication using indicators proposed by Network Theory in terms topologies provided by the group. Without a conclusive result, we expect this paper helps to the creativity's investigation in the innovation sessions.

  20. A Predictive Approach to Network Reverse-Engineering

    Science.gov (United States)

    Wiggins, Chris

    2005-03-01

    A central challenge of systems biology is the ``reverse engineering" of transcriptional networks: inferring which genes exert regulatory control over which other genes. Attempting such inference at the genomic scale has only recently become feasible, via data-intensive biological innovations such as DNA microrrays (``DNA chips") and the sequencing of whole genomes. In this talk we present a predictive approach to network reverse-engineering, in which we integrate DNA chip data and sequence data to build a model of the transcriptional network of the yeast S. cerevisiae capable of predicting the response of genes in unseen experiments. The technique can also be used to extract ``motifs,'' sequence elements which act as binding sites for regulatory proteins. We validate by a number of approaches and present comparison of theoretical prediction vs. experimental data, along with biological interpretations of the resulting model. En route, we will illustrate some basic notions in statistical learning theory (fitting vs. over-fitting; cross- validation; assessing statistical significance), highlighting ways in which physicists can make a unique contribution in data- driven approaches to reverse engineering.

  1. Hierarchical brain networks active in approach and avoidance goal pursuit

    Directory of Open Access Journals (Sweden)

    Jeffrey Martin Spielberg

    2013-06-01

    Full Text Available Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal pursuit processes (e.g., motivation has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity vital to goal pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures.

  2. Applying policy network theory to policy-making in China: the case of urban health insurance reform.

    Science.gov (United States)

    Zheng, Haitao; de Jong, Martin; Koppenjan, Joop

    2010-01-01

    In this article, we explore whether policy network theory can be applied in the People's Republic of China (PRC). We carried out a literature review of how this approach has already been dealt with in the Chinese policy sciences thus far. We then present the key concepts and research approach in policy networks theory in the Western literature and try these on a Chinese case to see the fit. We follow this with a description and analysis of the policy-making process regarding the health insurance reform in China from 1998 until the present. Based on this case study, we argue that this body of theory is useful to describe and explain policy-making processes in the Chinese context. However, limitations in the generic model appear in capturing the fundamentally different political and administrative systems, crucially different cultural values in the applicability of some research methods common in Western countries. Finally, we address which political and cultural aspects turn out to be different in the PRC and how they affect methodological and practical problems that PRC researchers will encounter when studying decision-making processes.

  3. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  4. A SYSTEM APPROACH TO ORGANISING PROTECTION FROM TARGETED INFORMATION IN SOCIAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Marina V. Tumbinskaya

    2017-01-01

    Full Text Available Abstract. Objectives The aim of the study is to formalise a generalised algorithm for the distribution of targeted information in social networks, serving as the basis for a methodology for increasing personal information security. Method The research is based on the methodology of protection from unwanted information distributed across social network systems. Results The article presents the formalisation of an algorithm for the distribution of targeted information across social networks: input and output parameters are defined and the algorithm’s internal conditions are described, consisting of parameters for implementing attack scenarios, which variation would allow them to be detailed. A technique for protection from targeted information distributed across social networks is proposed, allowing the level of protection of personal data and information of social networks users to be enhanced, as well as the reliability of information increased. Conclusion The results of the research will help to prevent threats to information security, counteract attacks by intruders who often use methods of competitive intelligence and social engineering through the use of countermeasures. A model for protection against targeted information and implement special software for its integration into online social network social information systems is developed. The system approach will allow external monitoring of events in social networks to be carried out and vulnerabilities identified in the mechanisms of instant messaging, which provide opportunities for attacks by intruders. The results of the research make it possible to apply a network approach to the study of informal communities, which are actively developing today, at a new level. 

  5. ADHD classification using bag of words approach on network features

    Science.gov (United States)

    Solmaz, Berkan; Dey, Soumyabrata; Rao, A. Ravishankar; Shah, Mubarak

    2012-02-01

    Attention Deficit Hyperactivity Disorder (ADHD) is receiving lots of attention nowadays mainly because it is one of the common brain disorders among children and not much information is known about the cause of this disorder. In this study, we propose to use a novel approach for automatic classification of ADHD conditioned subjects and control subjects using functional Magnetic Resonance Imaging (fMRI) data of resting state brains. For this purpose, we compute the correlation between every possible voxel pairs within a subject and over the time frame of the experimental protocol. A network of voxels is constructed by representing a high correlation value between any two voxels as an edge. A Bag-of-Words (BoW) approach is used to represent each subject as a histogram of network features; such as the number of degrees per voxel. The classification is done using a Support Vector Machine (SVM). We also investigate the use of raw intensity values in the time series for each voxel. Here, every subject is represented as a combined histogram of network and raw intensity features. Experimental results verified that the classification accuracy improves when the combined histogram is used. We tested our approach on a highly challenging dataset released by NITRC for ADHD-200 competition and obtained promising results. The dataset not only has a large size but also includes subjects from different demography and edge groups. To the best of our knowledge, this is the first paper to propose BoW approach in any functional brain disorder classification and we believe that this approach will be useful in analysis of many brain related conditions.

  6. A novel approach for voltage secure operation using Probabilistic Neural Network in transmission network

    Directory of Open Access Journals (Sweden)

    Santi Behera

    2016-05-01

    Full Text Available This work proposes a unique approach for improving voltage stability limit using a Probabilistic Neural Network (PNN classifier that gives corrective controls available in the system in the scenario of contingencies. The sensitivity of system is analyzed to identify weak buses with ENVCI evaluation approaching zero. The input to the classifier, termed as voltage stability enhancing neural network (VSENN classifier, for training are line flows and bus voltages near the notch point of the P–V curve and the output of the VSENN is a control variable. For various contingencies the control action that improves the voltage profile as well as stability index is identified and trained accordingly. The trained VSENN is finally tested for its robustness to improve load margin and ENVCI as well, apart from trained set of operating condition of the system along with contingencies. The proposed approach is verified in IEEE 39-bus test system.

  7. A network approach for researching partnerships in health.

    Science.gov (United States)

    Lewis, Jenny M

    2005-10-07

    The last decade has witnessed a significant move towards new modes of governing that are based on coordination and collaboration. In particular, local level partnerships have been widely introduced around the world. There are few comprehensive approaches for researching the effects of these partnerships. The aim of this paper is to outline a network approach that combines structure and agency based explanations to research partnerships in health. Network research based on two Primary Care Partnerships (PCPs) in Victoria is used to demonstrate the utility of this approach. The paper examines multiple types of ties between people (structure), and the use and value of relationships to partners (agency), using interviews with the people involved in two PCPs--one in metropolitan Melbourne and one in a rural area. Network maps of ties based on work, strategic information and policy advice, show that there are many strong connections in both PCPs. Not surprisingly, PCP staff are central and highly connected. Of more interest are the ties that are dependent on these dedicated partnership staff, as they reveal which actors become weakly linked or disconnected without them. Network measures indicate that work ties are the most dispersed and strategic information ties are the most concentrated around fewer people. Divisions of general practice are weakly linked, while local government officials and Department of Human Services (DHS) regional staff appear to play important bridging roles. Finally, the relationships between partners have changed and improved, and most of those interviewed value their new or improved links with partners. Improving service coordination and health promotion planning requires engaging people and building strong relationships. Mapping ties is a useful means for assessing the strengths and weaknesses of partnerships, and network analysis indicates concentration and dispersion, the importance of particular individuals, and the points at which they

  8. Periodic oscillatory solution in delayed competitive-cooperative neural networks: A decomposition approach

    International Nuclear Information System (INIS)

    Yuan Kun; Cao Jinde

    2006-01-01

    In this paper, the problems of exponential convergence and the exponential stability of the periodic solution for a general class of non-autonomous competitive-cooperative neural networks are analyzed via the decomposition approach. The idea is to divide the connection weights into inhibitory or excitatory types and thereby to embed a competitive-cooperative delayed neural network into an augmented cooperative delay system through a symmetric transformation. Some simple necessary and sufficient conditions are derived to ensure the componentwise exponential convergence and the exponential stability of the periodic solution of the considered neural networks. These results generalize and improve the previous works, and they are easy to check and apply in practice

  9. A two-phase copula entropy-based multiobjective optimization approach to hydrometeorological gauge network design

    Science.gov (United States)

    Xu, Pengcheng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi; Liu, Jiufu; Zou, Ying; He, Ruimin

    2017-12-01

    Hydrometeorological data are needed for obtaining point and areal mean, quantifying the spatial variability of hydrometeorological variables, and calibration and verification of hydrometeorological models. Hydrometeorological networks are utilized to collect such data. Since data collection is expensive, it is essential to design an optimal network based on the minimal number of hydrometeorological stations in order to reduce costs. This study proposes a two-phase copula entropy- based multiobjective optimization approach that includes: (1) copula entropy-based directional information transfer (CDIT) for clustering the potential hydrometeorological gauges into several groups, and (2) multiobjective method for selecting the optimal combination of gauges for regionalized groups. Although entropy theory has been employed for network design before, the joint histogram method used for mutual information estimation has several limitations. The copula entropy-based mutual information (MI) estimation method is shown to be more effective for quantifying the uncertainty of redundant information than the joint histogram (JH) method. The effectiveness of this approach is verified by applying to one type of hydrometeorological gauge network, with the use of three model evaluation measures, including Nash-Sutcliffe Coefficient (NSC), arithmetic mean of the negative copula entropy (MNCE), and MNCE/NSC. Results indicate that the two-phase copula entropy-based multiobjective technique is capable of evaluating the performance of regional hydrometeorological networks and can enable decision makers to develop strategies for water resources management.

  10. Chaotic artificial immune approach applied to economic dispatch of electric energy using thermal units

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos; Mariani, Viviana Cocco

    2009-01-01

    The economic dispatch problem (EDP) is an optimization problem useful in power systems operation. The objective of the EDP of electric power generation, whose characteristics are complex and highly non-linear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying system constraints. Recently, as an alternative to the conventional mathematical approaches, modern heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. As special mechanism to avoid being trapped in local minimum, the ergodicity property of chaotic sequences has been used as optimization technique in EDPs. Based on the chaos theory, this paper discusses the design and validation of an optimization procedure based on a chaotic artificial immune network approach based on Zaslavsky's map. The optimization approach based on chaotic artificial immune network is validated for a test system consisting of 13 thermal units whose incremental fuel cost function takes into account the valve-point loading effects. Simulation results and comparisons show that the chaotic artificial immune network approach is competitive in performance with other optimization approaches presented in literature and is also an attractive tool to be used on applications in the power systems field.

  11. Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote.

    Science.gov (United States)

    Strakova, Eva; Zikova, Alice; Vohradsky, Jiri

    2014-01-01

    A computational model of gene expression was applied to a novel test set of microarray time series measurements to reveal regulatory interactions between transcriptional regulators represented by 45 sigma factors and the genes expressed during germination of a prokaryote Streptomyces coelicolor. Using microarrays, the first 5.5 h of the process was recorded in 13 time points, which provided a database of gene expression time series on genome-wide scale. The computational modeling of the kinetic relations between the sigma factors, individual genes and genes clustered according to the similarity of their expression kinetics identified kinetically plausible sigma factor-controlled networks. Using genome sequence annotations, functional groups of genes that were predominantly controlled by specific sigma factors were identified. Using external binding data complementing the modeling approach, specific genes involved in the control of the studied process were identified and their function suggested.

  12. Responses of mink to auditory stimuli: Prerequisites for applying the ‘cognitive bias’ approach

    DEFF Research Database (Denmark)

    Svendsen, Pernille Maj; Malmkvist, Jens; Halekoh, Ulrich

    2012-01-01

    The aim of the study was to determine and validate prerequisites for applying a cognitive (judgement) bias approach to assessing welfare in farmed mink (Neovison vison). We investigated discrimination ability and associative learning ability using auditory cues. The mink (n = 15 females) were...... farmed mink in a judgement bias approach would thus appear to be feasible. However several specific issues are to be considered in order to successfully adapt a cognitive bias approach to mink, and these are discussed....

  13. A Passive Testing Approach for Protocols in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaoping Che

    2015-11-01

    Full Text Available Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN. However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results.

  14. A geovisual analytic approach to understanding geo-social relationships in the international trade network.

    Science.gov (United States)

    Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M

    2014-01-01

    The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social representations. We then apply it to an exploration of international trade networks in terms of the complex interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part hypothesis: international trade network clusters with structural equivalence are strongly 'balkanized' (fragmented) according to the geography of trading partners, and the geographical distance weighted by population within each network cluster has a positive relationship with the development level of countries. In addition to demonstrating the potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed above.

  15. Upon the opportunity to apply ART2 Neural Network for clusterization of biodiesel fuels

    Directory of Open Access Journals (Sweden)

    Petkov T.

    2016-03-01

    Full Text Available A chemometric approach using artificial neural network for clusterization of biodiesels was developed. It is based on artificial ART2 neural network. Gas chromatography (GC and Gas Chromatography - mass spectrometry (GC-MS were used for quantitative and qualitative analysis of biodiesels, produced from different feedstocks, and FAME (fatty acid methyl esters profiles were determined. Totally 96 analytical results for 7 different classes of biofuel plants: sunflower, rapeseed, corn, soybean, palm, peanut, “unknown” were used as objects. The analysis of biodiesels showed the content of five major FAME (C16:0, C18:0, C18:1, C18:2, C18:3 and those components were used like inputs in the model. After training with 6 samples, for which the origin was known, ANN was verified and tested with ninety “unknown” samples. The present research demonstrated the successful application of neural network for recognition of biodiesels according to their feedstock which give information upon their properties and handling.

  16. Upon the opportunity to apply ART2 Neural Network for clusterization of biodiesel fuels

    Science.gov (United States)

    Petkov, T.; Mustafa, Z.; Sotirov, S.; Milina, R.; Moskovkina, M.

    2016-03-01

    A chemometric approach using artificial neural network for clusterization of biodiesels was developed. It is based on artificial ART2 neural network. Gas chromatography (GC) and Gas Chromatography - mass spectrometry (GC-MS) were used for quantitative and qualitative analysis of biodiesels, produced from different feedstocks, and FAME (fatty acid methyl esters) profiles were determined. Totally 96 analytical results for 7 different classes of biofuel plants: sunflower, rapeseed, corn, soybean, palm, peanut, "unknown" were used as objects. The analysis of biodiesels showed the content of five major FAME (C16:0, C18:0, C18:1, C18:2, C18:3) and those components were used like inputs in the model. After training with 6 samples, for which the origin was known, ANN was verified and tested with ninety "unknown" samples. The present research demonstrated the successful application of neural network for recognition of biodiesels according to their feedstock which give information upon their properties and handling.

  17. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    Science.gov (United States)

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  18. A Multiple Mobility Support Approach (MMSA Based on PEAS for NCW in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Bong-Joo Koo

    2011-01-01

    Full Text Available Wireless Sensor Networks (WSNs can be implemented as one of sensor systems in Network Centric Warfare (NCW. Mobility support and energy efficiency are key concerns for this application, due to multiple mobile users and stimuli in real combat field. However, mobility support approaches that can be adopted in this circumstance are rare. This paper proposes Multiple Mobility Support Approach (MMSA based on Probing Environment and Adaptive Sleeping (PEAS to support the simultaneous mobility of both multiple users and stimuli by sharing the information of stimuli in WSNs. Simulations using Qualnet are conducted, showing that MMSA can support multiple mobile users and stimuli with good energy efficiency. It is expected that the proposed MMSA can be applied to real combat field.

  19. Structural Approaches to Sequence Evolution Molecules, Networks, Populations

    CERN Document Server

    Bastolla, Ugo; Roman, H. Eduardo; Vendruscolo, Michele

    2007-01-01

    Structural requirements constrain the evolution of biological entities at all levels, from macromolecules to their networks, right up to populations of biological organisms. Classical models of molecular evolution, however, are focused at the level of the symbols - the biological sequence - rather than that of their resulting structure. Now recent advances in understanding the thermodynamics of macromolecules, the topological properties of gene networks, the organization and mutation capabilities of genomes, and the structure of populations make it possible to incorporate these key elements into a broader and deeply interdisciplinary view of molecular evolution. This book gives an account of such a new approach, through clear tutorial contributions by leading scientists specializing in the different fields involved.

  20. Spreading dynamics on complex networks: a general stochastic approach.

    Science.gov (United States)

    Noël, Pierre-André; Allard, Antoine; Hébert-Dufresne, Laurent; Marceau, Vincent; Dubé, Louis J

    2014-12-01

    Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.

  1. The hippocampal network model: A transdiagnostic metaconnectomic approach

    Directory of Open Access Journals (Sweden)

    Eithan Kotkowski

    Full Text Available Purpose: The hippocampus plays a central role in cognitive and affective processes and is commonly implicated in neurodegenerative diseases. Our study aimed to identify and describe a hippocampal network model (HNM using trans-diagnostic MRI data from the BrainMap® database. We used meta-analysis to test the network degeneration hypothesis (NDH (Seeley et al., 2009 by identifying structural and functional covariance in this hippocampal network. Methods: To generate our network model, we used BrainMap's VBM database to perform a region-to-whole-brain (RtWB meta-analysis of 269 VBM experiments from 165 published studies across a range of 38 psychiatric and neurological diseases reporting hippocampal gray matter density alterations. This step identified 11 significant gray matter foci, or nodes. We subsequently used meta-analytic connectivity modeling (MACM to define edges of structural covariance between nodes from VBM data as well as functional covariance using the functional task-activation database, also from BrainMap. Finally, we applied a correlation analysis using Pearson's r to assess the similarities and differences between the structural and functional covariance models. Key findings: Our hippocampal RtWB meta-analysis reported consistent and significant structural covariance in 11 key regions. The subsequent structural and functional MACMs showed a strong correlation between HNM nodes with a significant structural-functional covariance correlation of r = .377 (p = .000049. Significance: This novel method of studying network covariance using VBM and functional meta-analytic techniques allows for the identification of generalizable patterns of functional and structural abnormalities pertaining to the hippocampus. In accordance with the NDH, this framework could have major implications in studying and predicting spatial disease patterns using network-based assays. Keywords: Anatomic likelihood estimation, ALE, BrainMap, Functional

  2. A Novel Approach to Detect Network Attacks Using G-HMM-Based Temporal Relations between Internet Protocol Packets

    Directory of Open Access Journals (Sweden)

    Han Kyusuk

    2011-01-01

    Full Text Available This paper introduces novel attack detection approaches on mobile and wireless device security and network which consider temporal relations between internet packets. In this paper we first present a field selection technique using a Genetic Algorithm and generate a Packet-based Mining Association Rule from an original Mining Association Rule for Support Vector Machine in mobile and wireless network environment. Through the preprocessing with PMAR, SVM inputs can account for time variation between packets in mobile and wireless network. Third, we present Gaussian observation Hidden Markov Model to exploit the hidden relationships between packets based on probabilistic estimation. In our G-HMM approach, we also apply G-HMM feature reduction for better initialization. We demonstrate the usefulness of our SVM and G-HMM approaches with GA on MIT Lincoln Lab datasets and a live dataset that we captured on a real mobile and wireless network. Moreover, experimental results are verified by -fold cross-validation test.

  3. Collaborative Distributed Scheduling Approaches for Wireless Sensor Network

    Science.gov (United States)

    Niu, Jianjun; Deng, Zhidong

    2009-01-01

    Energy constraints restrict the lifetime of wireless sensor networks (WSNs) with battery-powered nodes, which poses great challenges for their large scale application. In this paper, we propose a family of collaborative distributed scheduling approaches (CDSAs) based on the Markov process to reduce the energy consumption of a WSN. The family of CDSAs comprises of two approaches: a one-step collaborative distributed approach and a two-step collaborative distributed approach. The approaches enable nodes to learn the behavior information of its environment collaboratively and integrate sleep scheduling with transmission scheduling to reduce the energy consumption. We analyze the adaptability and practicality features of the CDSAs. The simulation results show that the two proposed approaches can effectively reduce nodes' energy consumption. Some other characteristics of the CDSAs like buffer occupation and packet delay are also analyzed in this paper. We evaluate CDSAs extensively on a 15-node WSN testbed. The test results show that the CDSAs conserve the energy effectively and are feasible for real WSNs. PMID:22408491

  4. Collaborative Distributed Scheduling Approaches for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhidong Deng

    2009-10-01

    Full Text Available Energy constraints restrict the lifetime of wireless sensor networks (WSNs with battery-powered nodes, which poses great challenges for their large scale application. In this paper, we propose a family of collaborative distributed scheduling approaches (CDSAs based on the Markov process to reduce the energy consumption of a WSN. The family of CDSAs comprises of two approaches: a one-step collaborative distributed approach and a two-step collaborative distributed approach. The approaches enable nodes to learn the behavior information of its environment collaboratively and integrate sleep scheduling with transmission scheduling to reduce the energy consumption. We analyze the adaptability and practicality features of the CDSAs. The simulation results show that the two proposed approaches can effectively reduce nodes’ energy consumption. Some other characteristics of the CDSAs like buffer occupation and packet delay are also analyzed in this paper. We evaluate CDSAs extensively on a 15-node WSN testbed. The test results show that the CDSAs conserve the energy effectively and are feasible for real WSNs.

  5. Substrate independent approach for synthesis of graphene platelet networks

    Science.gov (United States)

    Shashurin, A.; Fang, X.; Zemlyanov, D.; Keidar, M.

    2017-06-01

    Graphene platelet networks (GPNs) comprised of randomly oriented graphene flakes two to three atomic layers thick are synthesized using a novel plasma-based approach. The approach uses a substrate capable of withstanding synthesis temperatures around 800 °C, but is fully independent of the substrate material. The synthesis occurs directly on the substrate surface without the necessity of any additional steps. GPNs were synthesized on various substrate materials including silicon (Si), thermally oxidized Si (SiO2), molybdenum (Mo), nickel (Ni) and copper (Cu), nickel-chromium (NiCr) alloy and alumina ceramics (Al2O3). The mismatch between the atomic structures of sp2 honeycomb carbon networks and the substrate material is fully eliminated shortly after the synthesis initiation, namely when about 100 nm thick deposits are formed on the substrate. GPN structures synthesized on a substrate at a temperature of about 800 °C are significantly more porous in comparison to the much denser packed amorphous carbon deposits synthesized at lower temperatures. The method proposed here can potentially revolutionize the area of electrochemical energy storage by offering a single-step direct approach for the manufacture of graphene-based electrodes for non-Faradaic supercapacitors. Mass production can be achieved using this method if a roll-to-roll system is utilized.

  6. Modeling of methane emissions using artificial neural network approach

    Directory of Open Access Journals (Sweden)

    Stamenković Lidija J.

    2015-01-01

    Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007

  7. Analyzing energy consumption of wireless networks. A model-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Haidi

    2013-03-04

    During the last decades, wireless networking has been continuously a hot topic both in academy and in industry. Many different wireless networks have been introduced like wireless local area networks, wireless personal networks, wireless ad hoc networks, and wireless sensor networks. If these networks want to have a long term usability, the power consumed by the wireless devices in each of these networks needs to be managed efficiently. Hence, a lot of effort has been carried out for the analysis and improvement of energy efficiency, either for a specific network layer (protocol), or new cross-layer designs. In this thesis, we apply model-based approach for the analysis of energy consumption of different wireless protocols. The protocols under consideration are: one leader election protocol, one routing protocol, and two medium access control protocols. By model-based approach we mean that all these four protocols are formalized as some formal models, more precisely, as discrete-time Markov chains (DTMCs), Markov decision processes (MDPs), or stochastic timed automata (STA). For the first two models, DTMCs and MDPs, we model them in PRISM, a prominent model checker for probabilistic model checking, and apply model checking technique to analyze them. Model checking belongs to the family of formal methods. It discovers exhaustively all possible (reachable) states of the models, and checks whether these models meet a given specification. Specifications are system properties that we want to study, usually expressed by some logics, for instance, probabilistic computer tree logic (PCTL). However, while model checking relies on rigorous mathematical foundations and automatically explores the entire state space of a model, its applicability is also limited by the so-called state space explosion problem -- even systems of moderate size often yield models with an exponentially larger state space that thwart their analysis. Hence for the STA models in this thesis, since there

  8. A Model-Driven Approach for Telecommunications Network Services Definition

    Science.gov (United States)

    Chiprianov, Vanea; Kermarrec, Yvon; Alff, Patrick D.

    Present day Telecommunications market imposes a short concept-to-market time for service providers. To reduce it, we propose a computer-aided, model-driven, service-specific tool, with support for collaborative work and for checking properties on models. We started by defining a prototype of the Meta-model (MM) of the service domain. Using this prototype, we defined a simple graphical modeling language specific for service designers. We are currently enlarging the MM of the domain using model transformations from Network Abstractions Layers (NALs). In the future, we will investigate approaches to ensure the support for collaborative work and for checking properties on models.

  9. Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation.

    Science.gov (United States)

    Brosch, Tom; Tang, Lisa Y W; Youngjin Yoo; Li, David K B; Traboulsee, Anthony; Tam, Roger

    2016-05-01

    We propose a novel segmentation approach based on deep 3D convolutional encoder networks with shortcut connections and apply it to the segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. Our model is a neural network that consists of two interconnected pathways, a convolutional pathway, which learns increasingly more abstract and higher-level image features, and a deconvolutional pathway, which predicts the final segmentation at the voxel level. The joint training of the feature extraction and prediction pathways allows for the automatic learning of features at different scales that are optimized for accuracy for any given combination of image types and segmentation task. In addition, shortcut connections between the two pathways allow high- and low-level features to be integrated, which enables the segmentation of lesions across a wide range of sizes. We have evaluated our method on two publicly available data sets (MICCAI 2008 and ISBI 2015 challenges) with the results showing that our method performs comparably to the top-ranked state-of-the-art methods, even when only relatively small data sets are available for training. In addition, we have compared our method with five freely available and widely used MS lesion segmentation methods (EMS, LST-LPA, LST-LGA, Lesion-TOADS, and SLS) on a large data set from an MS clinical trial. The results show that our method consistently outperforms these other methods across a wide range of lesion sizes.

  10. Applying Bayesian neural networks to separate neutrino events from backgrounds in reactor neutrino experiments

    International Nuclear Information System (INIS)

    Xu, Y; Meng, Y X; Xu, W W

    2008-01-01

    A toy detector has been designed to simulate central detectors in reactor neutrino experiments in the paper. The samples of neutrino events and three major backgrounds from the Monte-Carlo simulation of the toy detector are generated in the signal region. The Bayesian Neural Networks (BNN) are applied to separate neutrino events from backgrounds in reactor neutrino experiments. As a result, the most neutrino events and uncorrelated background events in the signal region can be identified with BNN, and the part events each of the fast neutron and 8 He/ 9 Li backgrounds in the signal region can be identified with BNN. Then, the signal to noise ratio in the signal region is enhanced with BNN. The neutrino discrimination increases with the increase of the neutrino rate in the training sample. However, the background discriminations decrease with the decrease of the background rate in the training sample

  11. Common faults in turbines and applying neural networks in order to fault diagnostic by vibration analysis

    International Nuclear Information System (INIS)

    Masoudifar, M.; AghaAmini, M.

    2001-01-01

    Today the fault diagnostic of the rotating machinery based on the vibration analysis is an effective method in designing predictive maintenance programs. In this method, vibration level of the turbines is monitored and if it is higher than the allowable limit, vibrational data will be analyzed and the growing faults will be detected. But because of the high complexity of the system monitoring, the interpretation of the measured data is more difficult. Therefore, design of the fault diagnostic expert systems by using the expert's technical experiences and knowledge; seem to be the best solution. In this paper,at first several common faults in turbines are studied and the how applying the neural networks to interpret the vibrational data for fault diagnostic is explained

  12. Neural Network Blind Equalization Algorithm Applied in Medical CT Image Restoration

    Directory of Open Access Journals (Sweden)

    Yunshan Sun

    2013-01-01

    Full Text Available A new algorithm for iterative blind image restoration is presented in this paper. The method extends blind equalization found in the signal case to the image. A neural network blind equalization algorithm is derived and used in conjunction with Zigzag coding to restore the original image. As a result, the effect of PSF can be removed by using the proposed algorithm, which contributes to eliminate intersymbol interference (ISI. In order to obtain the estimation of the original image, what is proposed in this method is to optimize constant modulus blind equalization cost function applied to grayscale CT image by using conjugate gradient method. Analysis of convergence performance of the algorithm verifies the feasibility of this method theoretically; meanwhile, simulation results and performance evaluations of recent image quality metrics are provided to assess the effectiveness of the proposed method.

  13. An integrated artificial neural networks approach for predicting global radiation

    International Nuclear Information System (INIS)

    Azadeh, A.; Maghsoudi, A.; Sohrabkhani, S.

    2009-01-01

    This article presents an integrated artificial neural network (ANN) approach for predicting solar global radiation by climatological variables. The integrated ANN trains and tests data with multi layer perceptron (MLP) approach which has the lowest mean absolute percentage error (MAPE). The proposed approach is particularly useful for locations where no available measurement equipment. Also, it considers all related climatological and meteorological parameters as input variables. To show the applicability and superiority of the integrated ANN approach, monthly data were collected for 6 years (1995-2000) in six nominal cities in Iran. Separate model for each city is considered and the quantity of solar global radiation in each city is calculated. Furthermore an integrated ANN model has been introduced for prediction of solar global radiation. The acquired results of the integrated model have shown high accuracy of about 94%. The results of the integrated model have been compared with traditional angstrom's model to show its considerable accuracy. Therefore, the proposed approach can be used as an efficient tool for prediction of solar radiation in the remote and rural locations with no direct measurement equipment.

  14. Virtual target tracking (VTT) as applied to mobile satellite communication networks

    Science.gov (United States)

    Amoozegar, Farid

    1999-08-01

    Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.

  15. Reliability analysis with linguistic data: An evidential network approach

    International Nuclear Information System (INIS)

    Zhang, Xiaoge; Mahadevan, Sankaran; Deng, Xinyang

    2017-01-01

    In practical applications of reliability assessment of a system in-service, information about the condition of a system and its components is often available in text form, e.g., inspection reports. Estimation of the system reliability from such text-based records becomes a challenging problem. In this paper, we propose a four-step framework to deal with this problem. In the first step, we construct an evidential network with the consideration of available knowledge and data. Secondly, we train a Naive Bayes text classification algorithm based on the past records. By using the trained Naive Bayes algorithm to classify the new records, we build interval basic probability assignments (BPA) for each new record available in text form. Thirdly, we combine the interval BPAs of multiple new records using an evidence combination approach based on evidence theory. Finally, we propagate the interval BPA through the evidential network constructed earlier to obtain the system reliability. Two numerical examples are used to demonstrate the efficiency of the proposed method. We illustrate the effectiveness of the proposed method by comparing with Monte Carlo Simulation (MCS) results. - Highlights: • We model reliability analysis with linguistic data using evidential network. • Two examples are used to demonstrate the efficiency of the proposed method. • We compare the results with Monte Carlo Simulation (MCS).

  16. Discovery of Boolean metabolic networks: integer linear programming based approach.

    Science.gov (United States)

    Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing

    2018-04-11

    Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".

  17. Mean-field approach to evolving spatial networks, with an application to osteocyte network formation

    Science.gov (United States)

    Taylor-King, Jake P.; Basanta, David; Chapman, S. Jonathan; Porter, Mason A.

    2017-07-01

    We consider evolving networks in which each node can have various associated properties (a state) in addition to those that arise from network structure. For example, each node can have a spatial location and a velocity, or it can have some more abstract internal property that describes something like a social trait. Edges between nodes are created and destroyed, and new nodes enter the system. We introduce a "local state degree distribution" (LSDD) as the degree distribution at a particular point in state space. We then make a mean-field assumption and thereby derive an integro-partial differential equation that is satisfied by the LSDD. We perform numerical experiments and find good agreement between solutions of the integro-differential equation and the LSDD from stochastic simulations of the full model. To illustrate our theory, we apply it to a simple model for osteocyte network formation within bones, with a view to understanding changes that may take place during cancer. Our results suggest that increased rates of differentiation lead to higher densities of osteocytes, but with a smaller number of dendrites. To help provide biological context, we also include an introduction to osteocytes, the formation of osteocyte networks, and the role of osteocytes in bone metastasis.

  18. A Bilevel Scheduling Approach for Modeling Energy Transaction of Virtual Power Plants in Distribution Networks

    Directory of Open Access Journals (Sweden)

    F. Nazari

    2017-03-01

    Full Text Available By increasing the use of distributed generation (DG in the distribution network operation, an entity called virtual power plant (VPP has been introduced to control, dispatch and aggregate the generation of DGs, enabling them to participate either in the electricity market or the distribution network operation. The participation of VPPs in the electricity market has made challenges to fairly allocate payments and benefits between VPPs and distribution network operator (DNO. This paper presents a bilevel scheduling approach to model the energy transaction between VPPs and DNO.  The upper level corresponds to the decision making of VPPs which bid their long- term contract prices so that their own profits are maximized and the lower level represents the DNO decision making to supply electricity demand of the network by minimizing its overall cost. The proposed bilevel scheduling approach is transformed to a single level optimizing problem using its Karush-Kuhn-Tucker (KKT optimality conditions. Several scenarios are applied to scrutinize the effectiveness and usefulness of the proposed model. 

  19. Next-Generation Mitogenomics: A Comparison of Approaches Applied to Caecilian Amphibian Phylogeny

    OpenAIRE

    Maddock, Simon T.; Briscoe, Andrew G.; Wilkinson, Mark; Waeschenbach, Andrea; San Mauro, Diego; Day, Julia J.; Littlewood, D. Tim J.; Foster, Peter G.; Nussbaum, Ronald A.; Gower, David J.

    2016-01-01

    Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a ‘traditional’ Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing pla...

  20. Multimodal Approach for Automatic Emotion Recognition Applied to the Tension Levels Study in TV Newscasts

    Directory of Open Access Journals (Sweden)

    Moisés Henrique Ramos Pereira

    2015-12-01

    Full Text Available This article addresses a multimodal approach to automatic emotion recognition in participants of TV newscasts (presenters, reporters, commentators and others able to assist the tension levels study in narratives of events in this television genre. The methodology applies state-of-the-art computational methods to process and analyze facial expressions, as well as speech signals. The proposed approach contributes to semiodiscoursive study of TV newscasts and their enunciative praxis, assisting, for example, the identification of the communication strategy of these programs. To evaluate the effectiveness of the proposed approach was applied it in a video related to a report displayed on a Brazilian TV newscast great popularity in the state of Minas Gerais. The experimental results are promising on the recognition of emotions on the facial expressions of tele journalists and are in accordance with the distribution of audiovisual indicators extracted over a TV newscast, demonstrating the potential of the approach to support the TV journalistic discourse analysis.This article addresses a multimodal approach to automatic emotion recognition in participants of TV newscasts (presenters, reporters, commentators and others able to assist the tension levels study in narratives of events in this television genre. The methodology applies state-of-the-art computational methods to process and analyze facial expressions, as well as speech signals. The proposed approach contributes to semiodiscoursive study of TV newscasts and their enunciative praxis, assisting, for example, the identification of the communication strategy of these programs. To evaluate the effectiveness of the proposed approach was applied it in a video related to a report displayed on a Brazilian TV newscast great popularity in the state of Minas Gerais. The experimental results are promising on the recognition of emotions on the facial expressions of tele journalists and are in accordance

  1. Artificial neural networks applied for soil class prediction in mountainous landscape of the Serra do Mar¹

    Directory of Open Access Journals (Sweden)

    Braz Calderano Filho

    2014-12-01

    Full Text Available Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+ sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13. Excluding the variable profile curvature (set 12, overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.

  2. Towards a synthesised network approach: An analysis of UK nuclear and renewable (wave) energy programme 1939-1985

    International Nuclear Information System (INIS)

    Watt, R.N.

    1998-05-01

    This thesis is concerned with two broad areas of interest: network interpretations of policy processes and alternative sources of energy. All three network interpretations examined (policy networks, actor networks and advocacy coalitions) stress different variables when examining policy processes. Equally, each can be criticised for over-emphasising their chosen variable. However, I shall argue that these flaws do not constitute grounds for dismissing any of these approaches. Several authors have suggested that we combine the merits of these network approaches but so far this has not been attempted. A central aim of this thesis is to develop a synthesis of the merits of each network approach which I argue offers a more robust means of interpreting policy processes. These ideas are then applied to an examination of the relationship between the UK civil nuclear programme (1939-1985) and the UK wave energy programme (1974-1985). Existing literature argues that the nuclear establishment used its considerable influence to undermine the wave energy programme. With the aid of a synthesised network approach, I argue that the nuclear conspiracy narrative is an over-simplification of this particular policy process. (author)

  3. Physical approach to quantum networks with massive particles

    Science.gov (United States)

    Andersen, Molte Emil Strange; Zinner, Nikolaj Thomas

    2018-04-01

    Assembling large-scale quantum networks is a key goal of modern physics research with applications in quantum information and computation. Quantum wires and waveguides in which massive particles propagate in tailored confinement is one promising platform for realizing a quantum network. In the literature, such networks are often treated as quantum graphs, that is, the wave functions are taken to live on graphs of one-dimensional edges meeting in vertices. Hitherto, it has been unclear what boundary conditions on the vertices produce the physical states one finds in nature. This paper treats a quantum network from a physical approach, explicitly finds the physical eigenstates and compares them to the quantum-graph description. The basic building block of a quantum network is an X-shaped potential well made by crossing two quantum wires, and we consider a massive particle in such an X well. The system is analyzed using a variational method based on an expansion into modes with fast convergence and it provides a very clear intuition for the physics of the problem. The particle is found to have a ground state that is exponentially localized to the center of the X well, and the other symmetric solutions are formed so to be orthogonal to the ground state. This is in contrast to the predictions of the conventionally used so-called Kirchoff boundary conditions in quantum graph theory that predict a different sequence of symmetric solutions that cannot be physically realized. Numerical methods have previously been the only source of information on the ground-state wave function and our results provide a different perspective with strong analytical insights. The ground-state wave function has a spatial profile that looks very similar to the shape of a solitonic solution to a nonlinear Schrödinger equation, enabling an analytical prediction of the wave number. When combining multiple X wells into a network or grid, each site supports a solitonlike localized state. These

  4. A combinatorial approach to detect coevolved amino acid networks in protein families of variable divergence.

    Directory of Open Access Journals (Sweden)

    Julie Baussand

    2009-09-01

    Full Text Available Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence.

  5. A new approach for visual identification of orange varieties using neural networks and metaheuristic algorithms

    Directory of Open Access Journals (Sweden)

    Sajad Sabzi

    2018-03-01

    Full Text Available Accurate classification of fruit varieties in processing factories and during post-harvesting applications is a challenge that has been widely studied. This paper presents a novel approach to automatic fruit identification applied to three common varieties of oranges (Citrus sinensis L., namely Bam, Payvandi and Thomson. A total of 300 color images were used for the experiments, 100 samples for each orange variety, which are publicly available. After segmentation, 263 parameters, including texture, color and shape features, were extracted from each sample using image processing. Among them, the 6 most effective features were automatically selected by using a hybrid approach consisting of an artificial neural network and particle swarm optimization algorithm (ANN-PSO. Then, three different classifiers were applied and compared: hybrid artificial neural network – artificial bee colony (ANN-ABC; hybrid artificial neural network – harmony search (ANN-HS; and k-nearest neighbors (kNN. The experimental results show that the hybrid approaches outperform the results of kNN. The average correct classification rate of ANN-HS was 94.28%, while ANN-ABS achieved 96.70% accuracy with the available data, contrasting with the 70.9% baseline accuracy of kNN. Thus, this new proposed methodology provides a fast and accurate way to classify multiple fruits varieties, which can be easily implemented in processing factories. The main contribution of this work is that the method can be directly adapted to other use cases, since the selection of the optimal features and the configuration of the neural network are performed automatically using metaheuristic algorithms.

  6. Hybrid inversions of CO2 fluxes at regional scale applied to network design

    Science.gov (United States)

    Kountouris, Panagiotis; Gerbig, Christoph; -Thomas Koch, Frank

    2013-04-01

    Long term observations of atmospheric greenhouse gas measuring stations, located at representative regions over the continent, improve our understanding of greenhouse gas sources and sinks. These mixing ratio measurements can be linked to surface fluxes by atmospheric transport inversions. Within the upcoming years new stations are to be deployed, which requires decision making tools with respect to the location and the density of the network. We are developing a method to assess potential greenhouse gas observing networks in terms of their ability to recover specific target quantities. As target quantities we use CO2 fluxes aggregated to specific spatial and temporal scales. We introduce a high resolution inverse modeling framework, which attempts to combine advantages from pixel based inversions with those of a carbon cycle data assimilation system (CCDAS). The hybrid inversion system consists of the Lagrangian transport model STILT, the diagnostic biosphere model VPRM and a Bayesian inversion scheme. We aim to retrieve the spatiotemporal distribution of net ecosystem exchange (NEE) at a high spatial resolution (10 km x 10 km) by inverting for spatially and temporally varying scaling factors for gross ecosystem exchange (GEE) and respiration (R) rather than solving for the fluxes themselves. Thus the state space includes parameters for controlling photosynthesis and respiration, but unlike in a CCDAS it allows for spatial and temporal variations, which can be expressed as NEE(x,y,t) = λG(x,y,t) GEE(x,y,t) + λR(x,y,t) R(x,y,t) . We apply spatially and temporally correlated uncertainties by using error covariance matrices with non-zero off-diagonal elements. Synthetic experiments will test our system and select the optimal a priori error covariance by using different spatial and temporal correlation lengths on the error statistics of the a priori covariance and comparing the optimized fluxes against the 'known truth'. As 'known truth' we use independent fluxes

  7. A Service-Oriented Approach for Dynamic Chaining of Virtual Network Functions over Multi-Provider Software-Defined Networks

    Directory of Open Access Journals (Sweden)

    Barbara Martini

    2016-06-01

    Full Text Available Emerging technologies such as Software-Defined Networks (SDN and Network Function Virtualization (NFV promise to address cost reduction and flexibility in network operation while enabling innovative network service delivery models. However, operational network service delivery solutions still need to be developed that actually exploit these technologies, especially at the multi-provider level. Indeed, the implementation of network functions as software running over a virtualized infrastructure and provisioned on a service basis let one envisage an ecosystem of network services that are dynamically and flexibly assembled by orchestrating Virtual Network Functions even across different provider domains, thereby coping with changeable user and service requirements and context conditions. In this paper we propose an approach that adopts Service-Oriented Architecture (SOA technology-agnostic architectural guidelines in the design of a solution for orchestrating and dynamically chaining Virtual Network Functions. We discuss how SOA, NFV, and SDN may complement each other in realizing dynamic network function chaining through service composition specification, service selection, service delivery, and placement tasks. Then, we describe the architecture of a SOA-inspired NFV orchestrator, which leverages SDN-based network control capabilities to address an effective delivery of elastic chains of Virtual Network Functions. Preliminary results of prototype implementation and testing activities are also presented. The benefits for Network Service Providers are also described that derive from the adaptive network service provisioning in a multi-provider environment through the orchestration of computing and networking services to provide end users with an enhanced service experience.

  8. GMDH and neural networks applied in monitoring and fault detection in sensors in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Elaine Inacio [Instituto Federal de Educacao, Ciencia e Tecnologia, Guarulhos, SP (Brazil); Pereira, Iraci Martinez; Silva, Antonio Teixeira e, E-mail: martinez@ipen.b, E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this work a new monitoring and fault detection methodology was developed using GMDH (Group Method of Data Handling) algorithm and artificial neural networks (ANNs) which was applied in the IEA-R1 research reactor at IPEN. The monitoring and fault detection system was developed in two parts: the first was dedicated to preprocess information, using GMDH algorithm; and the second to the process information using ANNs. The preprocess information was divided in two parts. In the first part, the GMDH algorithm was used to generate a better database estimate, called matrix z, which was used to train the ANNs. In the second part the GMDH was used to study the best set of variables to be used to train the ANNs, resulting in a best monitoring variable estimative. The methodology was developed and tested using five different models: one theoretical model and for models using different sets of reactor variables. After an exhausting study dedicated to the sensors monitoring, the fault detection in sensors was developed by simulating faults in the sensors database using values of +5%, +10%, +15% and +20% in these sensors database. The good results obtained through the present methodology shows the viability of using GMDH algorithm in the study of the best input variables to the ANNs, thus making possible the use of these methods in the implementation of a new monitoring and fault detection methodology applied in sensors. (author)

  9. GMDH and neural networks applied in monitoring and fault detection in sensors in nuclear power plants

    International Nuclear Information System (INIS)

    Bueno, Elaine Inacio; Pereira, Iraci Martinez; Silva, Antonio Teixeira e

    2011-01-01

    In this work a new monitoring and fault detection methodology was developed using GMDH (Group Method of Data Handling) algorithm and artificial neural networks (ANNs) which was applied in the IEA-R1 research reactor at IPEN. The monitoring and fault detection system was developed in two parts: the first was dedicated to preprocess information, using GMDH algorithm; and the second to the process information using ANNs. The preprocess information was divided in two parts. In the first part, the GMDH algorithm was used to generate a better database estimate, called matrix z, which was used to train the ANNs. In the second part the GMDH was used to study the best set of variables to be used to train the ANNs, resulting in a best monitoring variable estimative. The methodology was developed and tested using five different models: one theoretical model and for models using different sets of reactor variables. After an exhausting study dedicated to the sensors monitoring, the fault detection in sensors was developed by simulating faults in the sensors database using values of +5%, +10%, +15% and +20% in these sensors database. The good results obtained through the present methodology shows the viability of using GMDH algorithm in the study of the best input variables to the ANNs, thus making possible the use of these methods in the implementation of a new monitoring and fault detection methodology applied in sensors. (author)

  10. Applying self-organizing map and modified radial based neural network for clustering and routing optimal path in wireless network

    Science.gov (United States)

    Hoomod, Haider K.; Kareem Jebur, Tuka

    2018-05-01

    Mobile ad hoc networks (MANETs) play a critical role in today’s wireless ad hoc network research and consist of active nodes that can be in motion freely. Because it consider very important problem in this network, we suggested proposed method based on modified radial basis function networks RBFN and Self-Organizing Map SOM. These networks can be improved by the use of clusters because of huge congestion in the whole network. In such a system, the performance of MANET is improved by splitting the whole network into various clusters using SOM. The performance of clustering is improved by the cluster head selection and number of clusters. Modified Radial Based Neural Network is very simple, adaptable and efficient method to increase the life time of nodes, packet delivery ratio and the throughput of the network will increase and connection become more useful because the optimal path has the best parameters from other paths including the best bitrate and best life link with minimum delays. Proposed routing algorithm depends on the group of factors and parameters to select the path between two points in the wireless network. The SOM clustering average time (1-10 msec for stall nodes) and (8-75 msec for mobile nodes). While the routing time range (92-510 msec).The proposed system is faster than the Dijkstra by 150-300%, and faster from the RBFNN (without modify) by 145-180%.

  11. Applying a new ensemble approach to estimating stock status of marine fisheries around the world

    DEFF Research Database (Denmark)

    Rosenberg, Andrew A.; Kleisner, Kristin M.; Afflerbach, Jamie

    2018-01-01

    The exploitation status of marine fisheries stocks worldwide is of critical importance for food security, ecosystem conservation, and fishery sustainability. Applying a suite of data-limited methods to global catch data, combined through an ensemble modeling approach, we provide quantitative esti...

  12. Geothermal potential assessment for a low carbon strategy : A new systematic approach applied in southern Italy

    NARCIS (Netherlands)

    Trumpy, E.; Botteghi, S.; Caiozzi, F.; Donato, A.; Gola, G.; Montanari, D.; Pluymaekers, M. P D; Santilano, A.; van Wees, J. D.; Manzella, A.

    2016-01-01

    In this study a new approach to geothermal potential assessment was set up and applied in four regions in southern Italy. Our procedure, VIGORThermoGIS, relies on the volume method of assessment and uses a 3D model of the subsurface to integrate thermal, geological and petro-physical data. The

  13. Geothermal potential assessment for a low carbon strategy: A new systematic approach applied in southern Italy

    NARCIS (Netherlands)

    Trumpy, E.; Botteghi, S.; Caiozzi, F.; Donato, A.; Gola, G.; Montanari, D.; Pluymaekers, M.P.D.; Santilano, A.; Wees, J.D. van; Manzella, A.

    2016-01-01

    In this study a new approach to geothermal potential assessment was set up and applied in four regions in southern Italy. Our procedure, VIGORThermoGIS, relies on the volume method of assessment and uses a 3D model of the subsurface to integrate thermal, geological and petro-physical data. The

  14. Social network approaches to recruitment, HIV prevention, medical care, and medication adherence.

    Science.gov (United States)

    Latkin, Carl A; Davey-Rothwell, Melissa A; Knowlton, Amy R; Alexander, Kamila A; Williams, Chyvette T; Boodram, Basmattee

    2013-06-01

    This article reviews the current issues and advancements in social network approaches to HIV prevention and care. Social network analysis can provide a method to understand health disparities in HIV rates, treatment access, and outcomes. Social network analysis is a valuable tool to link social structural factors to individual behaviors. Social networks provide an avenue for low-cost and sustainable HIV prevention interventions that can be adapted and translated into diverse populations. Social networks can be utilized as a viable approach to recruitment for HIV testing and counseling, HIV prevention interventions, optimizing HIV medical care, and medication adherence. Social network interventions may be face-to-face or through social media. Key issues in designing social network interventions are contamination due to social diffusion, network stability, density, and the choice and training of network members. There are also ethical issues involved in the development and implementation of social network interventions. Social network analyses can also be used to understand HIV transmission dynamics.

  15. Analytic network process (ANP approach for product mix planning in railway industry

    Directory of Open Access Journals (Sweden)

    Hadi Pazoki Toroudi

    2016-08-01

    Full Text Available Given the competitive environment in the global market in recent years, organizations need to plan for increased profitability and optimize their performance. Planning for an appropriate product mix plays essential role for the success of most production units. This paper applies analytical network process (ANP approach for product mix planning for a part supplier in Iran. The proposed method uses four criteria including cost of production, sales figures, supply of raw materials and quality of products. In addition, the study proposes different set of products as alternatives for production planning. The preliminary results have indicated that that the proposed study of this paper could increase productivity, significantly.

  16. Inverse problems in 1D hemodynamics on systemic networks: a sequential approach.

    Science.gov (United States)

    Lombardi, D

    2014-02-01

    In this work, a sequential approach based on the unscented Kalman filter is applied to solve inverse problems in 1D hemodynamics, on a systemic network. For instance, the arterial stiffness is estimated by exploiting cross-sectional area and mean speed observations in several locations of the arteries. The results are compared with those ones obtained by estimating the pulse wave velocity and the Moens-Korteweg formula. In the last section, a perspective concerning the identification of the terminal models parameters and peripheral circulation (modeled by a Windkessel circuit) is presented. Copyright © 2013 John Wiley & Sons, Ltd.

  17. A spectral approach for the quantitative description of cardiac collagen network from nonlinear optical imaging.

    Science.gov (United States)

    Masè, Michela; Cristoforetti, Alessandro; Avogaro, Laura; Tessarolo, Francesco; Piccoli, Federico; Caola, Iole; Pederzolli, Carlo; Graffigna, Angelo; Ravelli, Flavia

    2015-01-01

    The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component.

  18. xQuake: A Modern Approach to Seismic Network Analytics

    Science.gov (United States)

    Johnson, C. E.; Aikin, K. E.

    2017-12-01

    While seismic networks have expanded over the past few decades, and social needs for accurate and timely information has increased dramatically, approaches to the operational needs of both global and regional seismic observatories have been slow to adopt new technologies. This presentation presents the xQuake system that provides a fresh approach to seismic network analytics based on complexity theory and an adaptive architecture of streaming connected microservices as diverse data (picks, beams, and other data) flow into a final, curated catalog of events. The foundation for xQuake is the xGraph (executable graph) framework that is essentially a self-organizing graph database. An xGraph instance provides both the analytics as well as the data storage capabilities at the same time. Much of the analytics, such as synthetic annealing in the detection process and an evolutionary programing approach for event evolution, draws from the recent GLASS 3.0 seismic associator developed by and for the USGS National Earthquake Information Center (NEIC). In some respects xQuake is reminiscent of the Earthworm system, in that it comprises processes interacting through store and forward rings; not surprising as the first author was the lead architect of the original Earthworm project when it was known as "Rings and Things". While Earthworm components can easily be integrated into the xGraph processing framework, the architecture and analytics are more current (e.g. using a Kafka Broker for store and forward rings). The xQuake system is being released under an unrestricted open source license to encourage and enable sthe eismic community support in further development of its capabilities.

  19. A Technical Approach on Large Data Distributed Over a Network

    Directory of Open Access Journals (Sweden)

    Suhasini G

    2011-12-01

    Full Text Available Data mining is nontrivial extraction of implicit, previously unknown and potential useful information from the data. For a database with number of records and for a set of classes such that each record belongs to one of the given classes, the problem of classification is to decide the class to which the given record belongs. The classification problem is also to generate a model for each class from given data set. We are going to make use of supervised classification in which we have training dataset of record, and for each record the class to which it belongs is known. There are many approaches to supervised classification. Decision tree is attractive in data mining environment as they represent rules. Rules can readily expressed in natural languages and they can be even mapped o database access languages. Now a days classification based on decision trees is one of the important problems in data mining   which has applications in many areas.  Now a days database system have become highly distributed, and we are using many paradigms. we consider the problem of inducing decision trees in a large distributed network of highly distributed databases. The classification based on decision tree can be done on the existence of distributed databases in healthcare and in bioinformatics, human computer interaction and by the view that these databases are soon to contain large amounts of data, characterized by its high dimensionality. Current decision tree algorithms would require high communication bandwidth, memory, and they are less efficient and scalability reduces when executed on such large volume of data. So there are some approaches being developed to improve the scalability and even approaches to analyse the data distributed over a network.[keywords: Data mining, Decision tree, decision tree induction, distributed data, classification

  20. Heuristic approach to the passive optical network with fibre duct ...

    African Journals Online (AJOL)

    Integer programming, network flow optimisation, passive optical network, ... This paper uses concepts from network flow optimisation to incorporate fibre duct shar ... [4] studied the survivable constrained ConFL problem and solved a number of.

  1. Blended Risk Approach in Applying PSA Models to Risk-Based Regulations

    International Nuclear Information System (INIS)

    Dimitrijevic, V. B.; Chapman, J. R.

    1996-01-01

    In this paper, the authors will discuss a modern approach in applying PSA models in risk-based regulation. The Blended Risk Approach is a combination of traditional and probabilistic processes. It is receiving increased attention in different industries in the U. S. and abroad. The use of the deterministic regulations and standards provides a proven and well understood basis on which to assess and communicate the impact of change to plant design and operation. Incorporation of traditional values into risk evaluation is working very well in the blended approach. This approach is very application specific. It includes multiple risk attributes, qualitative risk analysis, and basic deterministic principles. In blending deterministic and probabilistic principles, this approach ensures that the objectives of the traditional defense-in-depth concept are not compromised and the design basis of the plant is explicitly considered. (author)

  2. Self organising hypothesis networks: a new approach for representing and structuring SAR knowledge.

    Science.gov (United States)

    Hanser, Thierry; Barber, Chris; Rosser, Edward; Vessey, Jonathan D; Webb, Samuel J; Werner, Stéphane

    2014-01-01

    Combining different sources of knowledge to build improved structure activity relationship models is not easy owing to the variety of knowledge formats and the absence of a common framework to interoperate between learning techniques. Most of the current approaches address this problem by using consensus models that operate at the prediction level. We explore the possibility to directly combine these sources at the knowledge level, with the aim to harvest potentially increased synergy at an earlier stage. Our goal is to design a general methodology to facilitate knowledge discovery and produce accurate and interpretable models. To combine models at the knowledge level, we propose to decouple the learning phase from the knowledge application phase using a pivot representation (lingua franca) based on the concept of hypothesis. A hypothesis is a simple and interpretable knowledge unit. Regardless of its origin, knowledge is broken down into a collection of hypotheses. These hypotheses are subsequently organised into hierarchical network. This unification permits to combine different sources of knowledge into a common formalised framework. The approach allows us to create a synergistic system between different forms of knowledge and new algorithms can be applied to leverage this unified model. This first article focuses on the general principle of the Self Organising Hypothesis Network (SOHN) approach in the context of binary classification problems along with an illustrative application to the prediction of mutagenicity. It is possible to represent knowledge in the unified form of a hypothesis network allowing interpretable predictions with performances comparable to mainstream machine learning techniques. This new approach offers the potential to combine knowledge from different sources into a common framework in which high level reasoning and meta-learning can be applied; these latter perspectives will be explored in future work.

  3. A suggested approach toward measuring sorption and applying sorption data to repository performance assessment

    International Nuclear Information System (INIS)

    Rundberg, R.S.

    1992-01-01

    The prediction of radionuclide migration for the purpose of assessing the safety of a nuclear waste repository will be based on a collective knowledge of hydrologic and geochemical properties of the surrounding rock and groundwater. This knowledge along with assumption about the interactions of radionuclides with groundwater and minerals form the scientific basis for a model capable of accurately predicting the repository's performance. Because the interaction of radionuclides in geochemical systems is known to be complicated, several fundamental and empirical approaches to measuring the interaction between radionuclides and the geologic barrier have been developed. The approaches applied to the measurement of sorption involve the use of pure minerals, intact, or crushed rock in dynamic and static experiments. Each approach has its advantages and disadvantages. There is no single best method for providing sorption data for performance assessment models which can be applied without invoking information derived from multiple experiments. 53 refs., 12 figs

  4. A Game-Theoretical Approach to Multimedia Social Networks Security

    Science.gov (United States)

    Liu, Enqiang; Liu, Zengliang; Shao, Fei; Zhang, Zhiyong

    2014-01-01

    The contents access and sharing in multimedia social networks (MSNs) mainly rely on access control models and mechanisms. Simple adoptions of security policies in the traditional access control model cannot effectively establish a trust relationship among parties. This paper proposed a novel two-party trust architecture (TPTA) to apply in a generic MSN scenario. According to the architecture, security policies are adopted through game-theoretic analyses and decisions. Based on formalized utilities of security policies and security rules, the choice of security policies in content access is described as a game between the content provider and the content requester. By the game method for the combination of security policies utility and its influences on each party's benefits, the Nash equilibrium is achieved, that is, an optimal and stable combination of security policies, to establish and enhance trust among stakeholders. PMID:24977226

  5. Dropping Probability Reduction in OBS Networks: A Simple Approach

    KAUST Repository

    Elrasad, Amr

    2016-08-01

    In this paper, we propose and derive a slotted-time model for analyzing the burst blocking probability in Optical Burst Switched (OBS) networks. We evaluated the immediate and delayed signaling reservation schemes. The proposed model compares the performance of both just-in-time (JIT) and just-enough-time (JET) signaling protocols associated with of void/non-void filling link scheduling schemes. It also considers none and limited range wavelength conversions scenarios. Our model is distinguished by being adaptable to different offset-time and burst length distributions. We observed that applying a limited range of wavelength conversion, burst blocking probability is reduced by several orders of magnitudes and yields a better burst delivery ratio compared with full wavelength conversion.

  6. A whole-of-curriculum approach to improving nursing students' applied numeracy skills.

    Science.gov (United States)

    van de Mortel, Thea F; Whitehair, Leeann P; Irwin, Pauletta M

    2014-03-01

    Nursing students often perform poorly on numeracy tests. Whilst one-off interventions have been trialled with limited success, a whole-of-curriculum approach may provide a better means of improving applied numeracy skills. The objective of the study is to assess the efficacy of a whole-of-curriculum approach in improving nursing students' applied numeracy skills. Two cycles of assessment, implementation and evaluation of strategies were conducted following a high fail rate in the final applied numeracy examination in a Bachelor of Nursing (BN) programme. Strategies included an early diagnostic assessment followed by referral to remediation, setting the pass mark at 100% for each of six applied numeracy examinations across the programme, and employing a specialist mathematics teacher to provide consistent numeracy teaching. The setting of the study is one Australian university. 1035 second and third year nursing students enrolled in four clinical nursing courses (CNC III, CNC IV, CNC V and CNC VI) were included. Data on the percentage of students who obtained 100% in their applied numeracy examination in up to two attempts were collected from CNCs III, IV, V and VI between 2008 and 2011. A four by two χ(2) contingency table was used to determine if the differences in the proportion of students achieving 100% across two examination attempts in each CNC were significantly different between 2008 and 2011. The percentage of students who obtained 100% correct answers on the applied numeracy examinations was significantly higher in 2011 than in 2008 in CNC III (χ(2)=272, 3; p<0.001), IV (χ(2)=94.7, 3; p<0.001) and VI (χ(2)=76.3, 3; p<0.001). A whole-of-curriculum approach to developing applied numeracy skills in BN students resulted in a substantial improvement in these skills over four years. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Artificial neural networks applied to DNBR calculation in digital core protection systems

    International Nuclear Information System (INIS)

    Lee, H. C.; Chang, S. H.

    2003-01-01

    The nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The digital core protection system calculates on-line real-time DNBR by using a complex subchannel analysis program, and triggers a reliable reactor shutdown if the calculated DNBR approaches the specified limit. However, it takes relatively long calculation time even for a steady state condition, which may have an adverse effect on the operation flexibility. To overcome the drawback, a method using artificial neural networks is studied in this paper. Nonparametric training approach is utilized, which shows dramatic reduction of the training time, no tedious heuristic process for optimizing parameters, and no local minima problem during the training. The test results show that the predicted DNBR is within about ±2% deviation from the target DNBR for the fixed axial flux shape case. For the variable axial flux case including severely skewed shapes appeared during accidents, the deviation is about ±10∼15%. The suggested method could be the alternative that can calculate DNBR very quickly while increasing the plant availability

  8. Radial basis function networks applied to DNBR calculation in digital core protection systems

    International Nuclear Information System (INIS)

    Lee, Gyu-Cheon; Heung Chang, Soon

    2003-01-01

    The nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The digital core protection system calculates on-line real-time DNBR by using a complex subchannel analysis program, and triggers a reliable reactor shutdown if the calculated DNBR approaches the specified limit. However, it takes a relatively long calculation time even for a steady state condition, which may have an adverse effect on the operation flexibility. To overcome the drawback, a new method using a radial basis function network is presented in this paper. Nonparametric training approach is utilized, which shows dramatic reduction of the training time, no tedious heuristic process for optimizing parameters, and no local minima problem during the training. The test results show that the predicted DNBR is within about ±2% deviation from the target DNBR for the fixed axial flux shape case. For the variable axial flux case including severely skewed shapes that appeared during accidents, the deviation is within about ±10%. The suggested method could be the alternative that can calculate DNBR very quickly while guaranteeing the plant safety

  9. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    Science.gov (United States)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  10. A neural-network approach for visual cryptography and authorization.

    Science.gov (United States)

    Yue, Tai-Wen; Chiang, Suchen

    2004-06-01

    In this paper, we propose a neural-network approach for visual authorization, which is an application of visual cryptography (VC). The scheme contains a key-share and a set of user-shares. The administrator owns the key-share, and each user owns a user-share issued by the administrator from the user-share set. The shares in the user-share set are visually indistinguishable, i.e. they have the same pictorial meaning. However, the stacking of the key-share with different user-shares will reveal significantly different images. Therefore, the administrator (in fact, only the administrator) can visually recognize the authority assigned to a particular user by viewing the information appearing in the superposed image of key-share and user-share. This approach is completely different from traditional VC approaches. The salient features include: (i) the access schemes are described using a set of graytone images, and (ii) the codebooks to fulfil them are not required; and (iii) the size of share images is the same as the size of target image.

  11. A network approach to predict pathogenic genes for Fusarium graminearum.

    Science.gov (United States)

    Liu, Xiaoping; Tang, Wei-Hua; Zhao, Xing-Ming; Chen, Luonan

    2010-10-04

    Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which

  12. Applying Statistical and Complex Network Methods to Explore the Key Signaling Molecules of Acupuncture Regulating Neuroendocrine-Immune Network

    Directory of Open Access Journals (Sweden)

    Kuo Zhang

    2018-01-01

    Full Text Available The mechanisms of acupuncture are still unclear. In order to reveal the regulatory effect of manual acupuncture (MA on the neuroendocrine-immune (NEI network and identify the key signaling molecules during MA modulating NEI network, we used a rat complete Freund’s adjuvant (CFA model to observe the analgesic and anti-inflammatory effect of MA, and, what is more, we used statistical and complex network methods to analyze the data about the expression of 55 common signaling molecules of NEI network in ST36 (Zusanli acupoint, and serum and hind foot pad tissue. The results indicate that MA had significant analgesic, anti-inflammatory effects on CFA rats; the key signaling molecules may play a key role during MA regulating NEI network, but further research is needed.

  13. Internet-Based Approaches to Building Stakeholder Networks for Conservation and Natural Resource Management.

    Science.gov (United States)

    Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing in...

  14. Shakeout: A New Approach to Regularized Deep Neural Network Training.

    Science.gov (United States)

    Kang, Guoliang; Li, Jun; Tao, Dacheng

    2018-05-01

    Recent years have witnessed the success of deep neural networks in dealing with a plenty of practical problems. Dropout has played an essential role in many successful deep neural networks, by inducing regularization in the model training. In this paper, we present a new regularized training approach: Shakeout. Instead of randomly discarding units as Dropout does at the training stage, Shakeout randomly chooses to enhance or reverse each unit's contribution to the next layer. This minor modification of Dropout has the statistical trait: the regularizer induced by Shakeout adaptively combines , and regularization terms. Our classification experiments with representative deep architectures on image datasets MNIST, CIFAR-10 and ImageNet show that Shakeout deals with over-fitting effectively and outperforms Dropout. We empirically demonstrate that Shakeout leads to sparser weights under both unsupervised and supervised settings. Shakeout also leads to the grouping effect of the input units in a layer. Considering the weights in reflecting the importance of connections, Shakeout is superior to Dropout, which is valuable for the deep model compression. Moreover, we demonstrate that Shakeout can effectively reduce the instability of the training process of the deep architecture.

  15. Approach on a global HTGR R and D network

    International Nuclear Information System (INIS)

    Lensa, W. von

    1997-01-01

    The present situation of nuclear power in general and of the innovative nuclear reactor systems in particular requires more comprehensive, coordinated R and D efforts on a broad international level to respond to today's requirements with respect to public and economic acceptance as well as to globalization trends and global environmental problems. HTGR technology development has already reached a high degree of maturity that will be complemented by the operation of the two new test reactors in Japan and China, representing technological milestones for the demonstration of HTGR safety characteristics and Nuclear Process Heat generation capabilities. It is proposed by the IAEA 'International Working Group on Gas-Cooled Reactors' to establish a 'Global HTGR R and D Network' on basic HTGR technology for the stable, long-term advancement of the specific HTGR features and as a basis for the future market introduction of this innovative reactor system. The background and the motivation for this approach are illustrated, as well as first proposals on the main objectives, the structure and the further procedures for the implementation of such a multinational working sharing R and D network. Modern telecooperation methods are foreseen as an interactive tool for effective communication and collaboration on a global scale. (author)

  16. Traffic networks as information systems a viability approach

    CERN Document Server

    Aubin, Jean-Pierre

    2017-01-01

    This authored monograph covers a viability to approach to traffic management by advising to vehicles circulated on the network the velocity they should follow for satisfying global traffic conditions;. It presents an investigation of three structural innovations: The objective is to broadcast at each instant and at each position the advised celerity to vehicles, which could be read by auxiliary speedometers or used by cruise control devices. Namely, 1. Construct regulation feedback providing at each time and position advised velocities (celerities) for minimizing congestion or other requirements. 2. Taking into account traffic constraints of different type, the first one being to remain on the roads, to stop at junctions, etc. 3. Use information provided by the probe vehicles equipped with GPS to the traffic regulator; 4. Use other global traffic measures of vehicles provided by different types of sensors; These results are based on convex analysis, intertemporal optimization and viability theory as mathemati...

  17. An efficient approach to imaging underground hydraulic networks

    Science.gov (United States)

    Kumar, Mohi

    2012-07-01

    To better locate natural resources, treat pollution, and monitor underground networks associated with geothermal plants, nuclear waste repositories, and carbon dioxide sequestration sites, scientists need to be able to accurately characterize and image fluid seepage pathways below ground. With these images, scientists can gain knowledge of soil moisture content, the porosity of geologic formations, concentrations and locations of dissolved pollutants, and the locations of oil fields or buried liquid contaminants. Creating images of the unknown hydraulic environments underfoot is a difficult task that has typically relied on broad extrapolations from characteristics and tests of rock units penetrated by sparsely positioned boreholes. Such methods, however, cannot identify small-scale features and are very expensive to reproduce over a broad area. Further, the techniques through which information is extrapolated rely on clunky and mathematically complex statistical approaches requiring large amounts of computational power.

  18. Estimating plant root water uptake using a neural network approach

    DEFF Research Database (Denmark)

    Qiao, D M; Shi, H B; Pang, H B

    2010-01-01

    but has not yet been addressed. This paper presents and tests such an approach. The method is based on a neural network model, estimating the water uptake using different types of data that are easy to measure in the field. Sunflower grown in a sandy loam subjected to water stress and salinity was taken......Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil...... and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root...

  19. Optimization of the graph model of the water conduit network, based on the approach of search space reducing

    Science.gov (United States)

    Korovin, Iakov S.; Tkachenko, Maxim G.

    2018-03-01

    In this paper we present a heuristic approach, improving the efficiency of methods, used for creation of efficient architecture of water distribution networks. The essence of the approach is a procedure of search space reduction the by limiting the range of available pipe diameters that can be used for each edge of the network graph. In order to proceed the reduction, two opposite boundary scenarios for the distribution of flows are analysed, after which the resulting range is further narrowed by applying a flow rate limitation for each edge of the network. The first boundary scenario provides the most uniform distribution of the flow in the network, the opposite scenario created the net with the highest possible flow level. The parameters of both distributions are calculated by optimizing systems of quadratic functions in a confined space, which can be effectively performed with small time costs. This approach was used to modify the genetic algorithm (GA). The proposed GA provides a variable number of variants of each gene, according to the number of diameters in list, taking into account flow restrictions. The proposed approach was implemented to the evaluation of a well-known test network - the Hanoi water distribution network [1], the results of research were compared with a classical GA with an unlimited search space. On the test data, the proposed trip significantly reduced the search space and provided faster and more obvious convergence in comparison with the classical version of GA.

  20. Neural networks, cellular automata, and robust approach applications for vertex localization in the opera target tracker detector

    International Nuclear Information System (INIS)

    Dmitrievskij, S.G.; Gornushkin, Yu.A.; Ososkov, G.A.

    2005-01-01

    A neural-network (NN) approach for neutrino interaction vertex reconstruction in the OPERA experiment with the help of the Target Tracker (TT) detector is described. A feed-forward NN with the standard back propagation option is used. The energy functional minimization of the network is performed by the method of conjugate gradients. Data preprocessing by means of cellular automaton algorithm is performed. The Hough transform is applied for muon track determination and the robust fitting method is used for shower axis reconstruction. A comparison of the proposed approach with earlier studies, based on the use of the neural network package SNNS, shows their similar performance. The further development of the approach is underway

  1. Unit Commitment Towards Decarbonized Network Facing Fixed and Stochastic Resources Applying Water Cycle Optimization

    Directory of Open Access Journals (Sweden)

    Heba-Allah I. ElAzab

    2018-05-01

    Full Text Available This paper presents a trustworthy unit commitment study to schedule both Renewable Energy Resources (RERs with conventional power plants to potentially decarbonize the electrical network. The study has employed a system with three IEEE thermal (coal-fired power plants as dispatchable distributed generators, one wind plant, one solar plant as stochastic distributed generators, and Plug-in Electric Vehicles (PEVs which can work either loads or generators based on their charging schedule. This paper investigates the unit commitment scheduling objective to minimize the Combined Economic Emission Dispatch (CEED. To reduce combined emission costs, integrating more renewable energy resources (RER and PEVs, there is an essential need to decarbonize the existing system. Decarbonizing the system means reducing the percentage of CO2 emissions. The uncertain behavior of wind and solar energies causes imbalance penalty costs. PEVs are proposed to overcome the intermittent nature of wind and solar energies. It is important to optimally integrate and schedule stochastic resources including the wind and solar energies, and PEVs charge and discharge processes with dispatched resources; the three IEEE thermal (coal-fired power plants. The Water Cycle Optimization Algorithm (WCOA is an efficient and intelligent meta-heuristic technique employed to solve the economically emission dispatch problem for both scheduling dispatchable and stochastic resources. The goal of this study is to obtain the solution for unit commitment to minimize the combined cost function including CO2 emission costs applying the Water Cycle Optimization Algorithm (WCOA. To validate the WCOA technique, the results are compared with the results obtained from applying the Dynamic Programming (DP algorithm, which is considered as a conventional numerical technique, and with the Genetic Algorithm (GA as a meta-heuristic technique.

  2. Neural networks prediction and fault diagnosis applied to stationary and non stationary ARMA (Autoregressive moving average) modeled time series

    International Nuclear Information System (INIS)

    Marseguerra, M.; Minoggio, S.; Rossi, A.; Zio, E.

    1992-01-01

    The correlated noise affecting many industrial plants under stationary or cyclo-stationary conditions - nuclear reactors included -has been successfully modeled by autoregressive moving average (ARMA) due to the versatility of this technique. The relatively recent neural network methods have similar features and much effort is being devoted to exploring their usefulness in forecasting and control. Identifying a signal by means of an ARMA model gives rise to the problem of selecting its correct order. Similar difficulties must be faced when applying neural network methods and, specifically, particular care must be given to the setting up of the appropriate network topology, the data normalization procedure and the learning code. In the present paper the capability of some neural networks of learning ARMA and seasonal ARMA processes is investigated. The results of the tested cases look promising since they indicate that the neural networks learn the underlying process with relative ease so that their forecasting capability may represent a convenient fault diagnosis tool. (Author)

  3. Uncharted territory: A complex systems approach as an emerging paradigm in applied linguistics

    Directory of Open Access Journals (Sweden)

    Weideman, Albert J

    2009-12-01

    Full Text Available Developing a theory of applied linguistics is a top priority for the discipline today. The emergence of a new paradigm - a complex systems approach - in applied linguistics presents us with a unique opportunity to give prominence to the development of a foundational framework for this design discipline. Far from being a mere philosophical exercise, such a framework will find application in the training and induction of new entrants into the discipline within the developing context of South Africa, as well as internationally.

  4. A biplex approach to PageRank centrality: From classic to multiplex networks.

    Science.gov (United States)

    Pedroche, Francisco; Romance, Miguel; Criado, Regino

    2016-06-01

    In this paper, we present a new view of the PageRank algorithm inspired by multiplex networks. This new approach allows to introduce a new centrality measure for classic complex networks and a new proposal to extend the usual PageRank algorithm to multiplex networks. We give some analytical relations between these new approaches and the classic PageRank centrality measure, and we illustrate the new parameters presented by computing them on real underground networks.

  5. A biplex approach to PageRank centrality: From classic to multiplex networks

    Science.gov (United States)

    Pedroche, Francisco; Romance, Miguel; Criado, Regino

    2016-06-01

    In this paper, we present a new view of the PageRank algorithm inspired by multiplex networks. This new approach allows to introduce a new centrality measure for classic complex networks and a new proposal to extend the usual PageRank algorithm to multiplex networks. We give some analytical relations between these new approaches and the classic PageRank centrality measure, and we illustrate the new parameters presented by computing them on real underground networks.

  6. Algebraic approach to small-world network models

    Science.gov (United States)

    Rudolph-Lilith, Michelle; Muller, Lyle E.

    2014-01-01

    We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph's asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical measures, thus allowing for an analytical investigation of finite-size small-world graphs.

  7. A machine learning approach to automated structural network analysis: application to neonatal encephalopathy.

    Directory of Open Access Journals (Sweden)

    Etay Ziv

    Full Text Available Neonatal encephalopathy represents a heterogeneous group of conditions associated with life-long developmental disabilities and neurological deficits. Clinical measures and current anatomic brain imaging remain inadequate predictors of outcome in children with neonatal encephalopathy. Some studies have suggested that brain development and, therefore, brain connectivity may be altered in the subgroup of patients who subsequently go on to develop clinically significant neurological abnormalities. Large-scale structural brain connectivity networks constructed using diffusion tractography have been posited to reflect organizational differences in white matter architecture at the mesoscale, and thus offer a unique tool for characterizing brain development in patients with neonatal encephalopathy. In this manuscript we use diffusion tractography to construct structural networks for a cohort of patients with neonatal encephalopathy. We systematically map these networks to a high-dimensional space and then apply standard machine learning algorithms to predict neurological outcome in the cohort. Using nested cross-validation we demonstrate high prediction accuracy that is both statistically significant and robust over a broad range of thresholds. Our algorithm offers a novel tool to evaluate neonates at risk for developing neurological deficit. The described approach can be applied to any brain pathology that affects structural connectivity.

  8. Research and Collaboration Overview of Institut Pasteur International Network: A Bibliometric Approach toward Research Funding Decisions

    Directory of Open Access Journals (Sweden)

    Ehsan Mostafavi

    2014-01-01

    Full Text Available Background Institut Pasteur International Network (IPIN, which includes 32 research institutes around the world, is a network of research and expertise to fight against infectious diseases. A scientometric approach was applied to describe research and collaboration activities of IPIN. Methods Publications were identified using a manual search of IPIN member addresses in Science Citation Index Expanded (SCIE between 2006 and 2011. Total publications were then subcategorized by geographic regions. Several scientometric indicators and the H-index were employed to estimate the scientific production of each IPIN member. Subject and geographical overlay maps were also applied to visualize the network activities of the IPIN members. Results A total number of 12667 publications originated from IPIN members. Each author produced an average number of 2.18 papers and each publication received an average of 13.40 citations. European Pasteur Institutes had the largest amount of publications, authored papers, and H-index values. Biochemistry and molecular biology, microbiology, immunology and infectious diseases were the most important research topics, respectively. Geographic mapping of IPIN publications showed wide international collaboration among IPIN members around the world. Conclusion IPIN has strong ties with national and international authorities and organizations to investigate the current and future health issues. It is recommended to use scientometric and collaboration indicators as measures of research performance in IPIN future policies and investment decisions.

  9. Research and collaboration overview of Institut Pasteur International Network: a bibliometric approach toward research funding decisions.

    Science.gov (United States)

    Mostafavi, Ehsan; Bazrafshan, Azam

    2014-01-01

    Institut Pasteur International Network (IPIN), which includes 32 research institutes around the world, is a network of research and expertise to fight against infectious diseases. A scientometric approach was applied to describe research and collaboration activities of IPIN. Publications were identified using a manual search of IPIN member addresses in Science Citation Index Expanded (SCIE) between 2006 and 2011. Total publications were then subcategorized by geographic regions. Several scientometric indicators and the H-index were employed to estimate the scientific production of each IPIN member. Subject and geographical overlay maps were also applied to visualize the network activities of the IPIN members. A total number of 12667 publications originated from IPIN members. Each author produced an average number of 2.18 papers and each publication received an average of 13.40 citations. European Pasteur Institutes had the largest amount of publications, authored papers, and H-index values. Biochemistry and molecular biology, microbiology, immunology and infectious diseases were the most important research topics, respectively. Geographic mapping of IPIN publications showed wide international collaboration among IPIN members around the world. IPIN has strong ties with national and international authorities and organizations to investigate the current and future health issues. It is recommended to use scientometric and collaboration indicators as measures of research performance in IPIN future policies and investment decisions.

  10. Network analysis as a tool for assessing environmental sustainability: applying the ecosystem perspective to a Danish water management system

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Scotti, Marco; Thomsen, Marianne

    2013-01-01

    New insights into the sustainable use of natural resources in human systems can be gained through comparison with ecosystems via common indices. In both kinds of system, resources are processed by a number of users within a network, but we consider ecosystems as the only ones displaying sustainable...... patterns of growth and development. We applied Network Analysis (NA) for assessing the sustainability of a Danish municipal Water Management System (WMS). We identified water users within the WMS and represented their interactions as a network of water flows. We computed intensive and extensive indices...

  11. A Tensor Decomposition-Based Approach for Detecting Dynamic Network States From EEG.

    Science.gov (United States)

    Mahyari, Arash Golibagh; Zoltowski, David M; Bernat, Edward M; Aviyente, Selin

    2017-01-01

    Functional connectivity (FC), defined as the statistical dependency between distinct brain regions, has been an important tool in understanding cognitive brain processes. Most of the current works in FC have focused on the assumption of temporally stationary networks. However, recent empirical work indicates that FC is dynamic due to cognitive functions. The purpose of this paper is to understand the dynamics of FC for understanding the formation and dissolution of networks of the brain. In this paper, we introduce a two-step approach to characterize the dynamics of functional connectivity networks (FCNs) by first identifying change points at which the network connectivity across subjects shows significant changes and then summarizing the FCNs between consecutive change points. The proposed approach is based on a tensor representation of FCNs across time and subjects yielding a four-mode tensor. The change points are identified using a subspace distance measure on low-rank approximations to the tensor at each time point. The network summarization is then obtained through tensor-matrix projections across the subject and time modes. The proposed framework is applied to electroencephalogram (EEG) data collected during a cognitive control task. The detected change-points are consistent with a priori known ERN interval. The results show significant connectivities in medial-frontal regions which are consistent with widely observed ERN amplitude measures. The tensor-based method outperforms conventional matrix-based methods such as singular value decomposition in terms of both change-point detection and state summarization. The proposed tensor-based method captures the topological structure of FCNs which provides more accurate change-point-detection and state summarization.

  12. DevOps for network function virtualisation: an architectural approach

    OpenAIRE

    Karl, H.; Draexler, S.; Peuster, M.; Galis, A.; Bredel, M.; Ramos, A.; Martrat, J.; Siddiqui, M. S.; Van Rossem, S.; Tavernier, W.; Xilouris, G.

    2016-01-01

    The Service Programming and Orchestration for Virtualised Software Networks (SONATA) project targets both the flexible programmability of software networks and the optimisation of their deployments by means of integrating Development and Operations in order to accelerate industry adoption of software networks and reduce time-to-market for networked services. SONATA supports network function chaining and orchestration, making service platforms modular and easier to customise to the needs of di...

  13. A study of penetration test for applying a remote monitoring system for virtual private network

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Park, I. J.; Min, K. S.; Choi, Y. M. [KAERI, Taejon (Korea, Republic of); Jo, D. K. [A3 Security Consulting Co., Seoul (Korea, Republic of)

    2003-07-01

    A penetration test has been performed to verify the vulnerability of Virtual Private Network that is substitute for communication method of an existing remote monitoring system. An existing RMS was used for the private telephone and the RMS was applied of all PWR in Korea. But, due to communication fee, IAEA wanted to replace current telephone line to the internet line to reduce transmission cost in operating remote monitoring system. The communication cost of telephone line was estimated about $66,000/yr. Internet technology would reduce the operating cost up to 1/5. The purpose of the penetration test was to demonstrate the security of the data and system against both various external and internal hacking scenarios. In most cases, hacker could not even identify the VPN system. In any cases, the system did not allow the access of the hacker to the system needless to say the data alteration or system shutdown. Two kinds of test method is chosen; one is external attack and another is internal attack. During the test, the hacking tool was used. The result of test was proved that VPN was secure against internal/external attack.

  14. Pediatric Emergency Care Applied Research Network head injuryprediction rules: on the basis of cost and effectiveness

    Science.gov (United States)

    Gökharman, Fatma Dilek; Aydın, Sonay; Fatihoğlu, Erdem; Koşar, Pınar Nercis

    2017-12-19

    Background/aim: Head injuries are commonly seen in the pediatric population. Noncontrast enhanced cranial CT is the method of choice to detect possible traumatic brain injury (TBI). Concerns about ionizing radiation exposure make the evaluation more challenging. The aim of this study was to evaluate the effectiveness of the Pediatric Emergency Care Applied Research Network (PECARN) rules in predicting clinically important TBI and to determine the amount of medical resource waste and unnecessary radiation exposure.Materials and methods: This retrospective study included 1041 pediatric patients presented to the emergency department. The patients were divided into subgroups of "appropriate for cranial CT", "not appropriate for cranial CT" and "cranial CT/observation of patient; both are appropriate". To determine the effectiveness of the PECARN rules, data were analyzed according to the presence of pathological findings Results: "Appropriate for cranial CT" results can predict pathology presence 118,056-fold compared to the "not appropriate for cranial CT" results. With "cranial CT/observation of patient; both are appropriate" results, pathology presence was predicted 11,457-fold compared to "not appropriate for cranial CT" results.Conclusion: PECARN rules can predict pathology presence successfully in pediatric TBI. Using PECARN can decrease resource waste and exposure to ionizing radiation.

  15. Statistical comparisons of Savannah River anemometer data applied to quality control of instrument networks

    International Nuclear Information System (INIS)

    Porch, W.M.; Dickerson, M.H.

    1976-08-01

    Continuous monitoring of extensive meteorological instrument arrays is a requirement in the study of important mesoscale atmospheric phenomena. The phenomena include pollution transport prediction from continuous area sources, or one time releases of toxic materials and wind energy prospecting in areas of topographic enhancement of the wind. Quality control techniques that can be applied to these data to determine if the instruments are operating within their prescribed tolerances were investigated. Savannah River Plant data were analyzed with both independent and comparative statistical techniques. The independent techniques calculate the mean, standard deviation, moments about the mean, kurtosis, skewness, probability density distribution, cumulative probability and power spectra. The comparative techniques include covariance, cross-spectral analysis and two dimensional probability density. At present the calculating and plotting routines for these statistical techniques do not reside in a single code so it is difficult to ascribe independent memory size and computation time accurately. However, given the flexibility of a data system which includes simple and fast running statistics at the instrument end of the data network (ASF) and more sophisticated techniques at the computational end (ACF) a proper balance will be attained. These techniques are described in detail and preliminary results are presented

  16. A study of penetration test for applying a remote monitoring system for virtual private network

    International Nuclear Information System (INIS)

    Kim, J. S.; Kim, J. S.; Park, I. J.; Min, K. S.; Choi, Y. M.; Jo, D. K.

    2003-01-01

    A penetration test has been performed to verify the vulnerability of Virtual Private Network that is substitute for communication method of an existing remote monitoring system. An existing RMS was used for the private telephone and the RMS was applied of all PWR in Korea. But, due to communication fee, IAEA wanted to replace current telephone line to the internet line to reduce transmission cost in operating remote monitoring system. The communication cost of telephone line was estimated about $66,000/yr. Internet technology would reduce the operating cost up to 1/5. The purpose of the penetration test was to demonstrate the security of the data and system against both various external and internal hacking scenarios. In most cases, hacker could not even identify the VPN system. In any cases, the system did not allow the access of the hacker to the system needless to say the data alteration or system shutdown. Two kinds of test method is chosen; one is external attack and another is internal attack. During the test, the hacking tool was used. The result of test was proved that VPN was secure against internal/external attack

  17. An entropy approach for evaluating the maximum information content achievable by an urban rainfall network

    Directory of Open Access Journals (Sweden)

    E. Ridolfi

    2011-07-01

    Full Text Available Hydrological models are the basis of operational flood-forecasting systems. The accuracy of these models is strongly dependent on the quality and quantity of the input information represented by rainfall height. Finer space-time rainfall resolution results in more accurate hazard forecasting. In this framework, an optimum raingauge network is essential in predicting flood events.

    This paper develops an entropy-based approach to evaluate the maximum information content achievable by a rainfall network for different sampling time intervals. The procedure is based on the determination of the coefficients of transferred and nontransferred information and on the relative isoinformation contours.

    The nontransferred information value achieved by the whole network is strictly dependent on the sampling time intervals considered. An empirical curve is defined, to assess the objective of the research: the nontransferred information value is plotted versus the associated sampling time on a semi-log scale. The curve has a linear trend.

    In this paper, the methodology is applied to the high-density raingauge network of the urban area of Rome.

  18. A new approach using artificial neural networks for determination of the thermodynamic properties of fluid couples

    International Nuclear Information System (INIS)

    Sencan, Arzu; Kalogirou, Soteris A.

    2005-01-01

    This paper presents a new approach using artificial neural networks (ANN) to determine the thermodynamic properties of two alternative refrigerant/absorbent couples (LiCl-H 2 O and LiBr + LiNO 3 + LiI + LiCl-H 2 O). These pairs can be used in absorption heat pump systems, and their main advantage is that they do not cause ozone depletion. In order to train the network, limited experimental measurements were used as training and test data. Two feedforward ANNs were trained, one for each pair, using the Levenberg-Marquardt algorithm. The training and validation were performed with good accuracy. The correlation coefficient obtained when unknown data were applied to the networks was 0.9997 and 0.9987 for the two pairs, respectively, which is very satisfactory. The present methodology proved to be much better than linear multiple regression analysis. Using the weights obtained from the trained network, a new formulation is presented for determination of the vapor pressures of the two refrigerant/absorbent couples. The use of this new formulation, which can be employed with any programming language or spreadsheet program for estimation of the vapor pressures of fluid couples, as described in this paper, may make the use of dedicated ANN software unnecessary

  19. A neural network approach to breast cancer diagnosis as a constraint satisfaction problem

    International Nuclear Information System (INIS)

    Tourassi, Georgia D.; Markey, Mia K.; Lo, Joseph Y.; Floyd, Carey E. Jr.

    2001-01-01

    A constraint satisfaction neural network (CSNN) approach is proposed for breast cancer diagnosis using mammographic and patient history findings. Initially, the diagnostic decision to biopsy was formulated as a constraint satisfaction problem. Then, an associative memory type neural network was applied to solve the problem. The proposed network has a flexible, nonhierarchical architecture that allows it to operate not only as a predictive tool but also as an analysis tool for knowledge discovery of association rules. The CSNN was developed and evaluated using a database of 500 nonpalpable breast lesions with definitive histopathological diagnosis. The CSNN diagnostic performance was evaluated using receiver operating characteristic analysis (ROC). The results of the study showed that the CSNN ROC area index was 0.84±0.02. The CSNN predictive performance is competitive with that achieved by experienced radiologists and backpropagation artificial neural networks (BP-ANNs) presented before. Furthermore, the study illustrates how CSNN can be used as a knowledge discovery tool overcoming some of the well-known limitations of BP-ANNs

  20. A neural network approach to the study of internal energy flow in molecular systems

    International Nuclear Information System (INIS)

    Sumpter, B.G.; Getino, C.; Noid, D.W.

    1992-01-01

    Neural networks are used to develop a new technique for efficient analysis of data obtained from molecular-dynamics calculations and is applied to the study of mode energy flow in molecular systems. The methodology is based on teaching an appropriate neural network the relationship between phase-space points along a classical trajectory and mode energies for stretch, bend, and torsion vibrations. Results are discussed for reactive and nonreactive classical trajectories of hydrogen peroxide (H 2 O 2 ) on a semiempirical potential-energy surface. The neural-network approach is shown to produce reasonably accurate values for the mode energies, with average errors between 1% and 12%, and is applicable to any region within the 24-dimensional phase space of H 2 O 2 . In addition, the generic knowledge learned by the neural network allows calculations to be made for other molecular systems. Results are discussed for a series of tetratomic molecules: H 2 X 2 , X=C, N, O, Si, S, or Se, and preliminary results are given for energy flow predictions in macromolecules

  1. Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Shahin [Purdue Univ., West Lafayette, IN (United States); Gleich, David F. [Purdue Univ., West Lafayette, IN (United States); Kolda, Tamara G. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Grama, Ananth [Purdue Univ., West Lafayette, IN (United States)

    2015-11-01

    Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.

  2. Network approach towards understanding the crazing in glassy amorphous polymers

    Science.gov (United States)

    Venkatesan, Sudarkodi; Vivek-Ananth, R. P.; Sreejith, R. P.; Mangalapandi, Pattulingam; Hassanali, Ali A.; Samal, Areejit

    2018-04-01

    We have used molecular dynamics to simulate an amorphous glassy polymer with long chains to study the deformation mechanism of crazing and associated void statistics. The Van der Waals interactions and the entanglements between chains constituting the polymer play a crucial role in crazing. Thus, we have reconstructed two underlying weighted networks, namely, the Van der Waals network and the entanglement network from polymer configurations extracted from the molecular dynamics simulation. Subsequently, we have performed graph-theoretic analysis of the two reconstructed networks to reveal the role played by them in the crazing of polymers. Our analysis captured various stages of crazing through specific trends in the network measures for Van der Waals networks and entanglement networks. To further corroborate the effectiveness of network analysis in unraveling the underlying physics of crazing in polymers, we have contrasted the trends in network measures for Van der Waals networks and entanglement networks in the light of stress-strain behaviour and voids statistics during deformation. We find that the Van der Waals network plays a crucial role in craze initiation and growth. Although, the entanglement network was found to maintain its structure during craze initiation stage, it was found to progressively weaken and undergo dynamic changes during the hardening and failure stages of crazing phenomena. Our work demonstrates the utility of network theory in quantifying the underlying physics of polymer crazing and widens the scope of applications of network science to characterization of deformation mechanisms in diverse polymers.

  3. A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite

    DEFF Research Database (Denmark)

    Mbamba, Christian Kazadi; Batstone, Damien J.; Flores Alsina, Xavier

    2015-01-01

    , the present study aims to identify a broadly applicable precipitation modelling approach. The study uses two experimental platforms applied to calcite precipitating from synthetic aqueous solutions to identify and validate the model approach. Firstly, dynamic pH titration tests are performed to define...... an Arrhenius-style correction of kcryst. The influence of magnesium (a common and representative added impurity) on kcryst was found to be significant but was considered an optional correction because of a lesser influence as compared to that of temperature. Other variables such as ionic strength and pH were...

  4. Applying neural networks to control the TFTR neutral beam ion sources

    International Nuclear Information System (INIS)

    Lagin, L.

    1992-01-01

    This paper describes the application of neural networks to the control of the neutral beam long-pulse positive ion source accelerators on the Tokamak Fusion Test Reactor (TFTR) at Princeton University. Neural networks were used to learn how the operators adjust the control setpoints when running these sources. The data sets used to train these networks were derived from a large database containing actual setpoints and power supply waveform calculations for the 1990 run period. The networks learned what the optimum control setpoints should initially be set based uon desired accel voltage and perveance levels. Neural networks were also used to predict the divergence of the ion beam

  5. Theory and design of broadband matching networks applied electricity and electronics

    CERN Document Server

    Chen, Wai-Kai

    1976-01-01

    Theory and Design of Broadband Matching Networks centers on the network theory and its applications to the design of broadband matching networks and amplifiers. Organized into five chapters, this book begins with a description of the foundation of network theory. Chapter 2 gives a fairly complete exposition of the scattering matrix associated with an n-port network. Chapter 3 considers the approximation problem along with a discussion of the approximating functions. Chapter 4 explains the Youla's theory of broadband matching by illustrating every phase of the theory with fully worked out examp

  6. An empirical Bayesian approach for model-based inference of cellular signaling networks

    Directory of Open Access Journals (Sweden)

    Klinke David J

    2009-11-01

    Full Text Available Abstract Background A common challenge in systems biology is to infer mechanistic descriptions of biological process given limited observations of a biological system. Mathematical models are frequently used to represent a belief about the causal relationships among proteins within a signaling network. Bayesian methods provide an attractive framework for inferring the validity of those beliefs in the context of the available data. However, efficient sampling of high-dimensional parameter space and appropriate convergence criteria provide barriers for implementing an empirical Bayesian approach. The objective of this study was to apply an Adaptive Markov chain Monte Carlo technique to a typical study of cellular signaling pathways. Results As an illustrative example, a kinetic model for the early signaling events associated with the epidermal growth factor (EGF signaling network was calibrated against dynamic measurements observed in primary rat hepatocytes. A convergence criterion, based upon the Gelman-Rubin potential scale reduction factor, was applied to the model predictions. The posterior distributions of the parameters exhibited complicated structure, including significant covariance between specific parameters and a broad range of variance among the parameters. The model predictions, in contrast, were narrowly distributed and were used to identify areas of agreement among a collection of experimental studies. Conclusion In summary, an empirical Bayesian approach was developed for inferring the confidence that one can place in a particular model that describes signal transduction mechanisms and for inferring inconsistencies in experimental measurements.

  7. Network analysis literacy a practical approach to the analysis of networks

    CERN Document Server

    Zweig, Katharina A

    2014-01-01

    Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.

  8. The sociocultural perspective applied to mobility and road safety: a case study through social networks

    Directory of Open Access Journals (Sweden)

    Pilar Parra Contreras

    2015-02-01

    Full Text Available This article explores the sociocultural paradigm as a theoretical framework to address mobility and road safety from the social sciences. This approach includes analysis of issues such as the uses and attributes of the car, cultural and social values associated with it, and the implications in processes in structuring and social exclusion. In order to this, we present a case study on alcohol and drugs and driving where we show the demographic, economic and occupational characteristics that mediate the different relation of the people with the car, but also their cultural characteristics, lifestyles and leisure. The research design combines data from a brief online survey with qualitative data such as tastes and preferences, from the social network Facebook. The analysis shows that there are groups of drivers who differ in their patterns of no dissociation in their consumption of alcohol / drugs and driving in terms of classical structural variables and lifestyles that are  reflected in their Facebook likes. The discussion and conclusions examine the need to analyze the social context in which road accident occurs and its usefulness in the design of awareness campaigns and intervention in road safety.

  9. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.

    Science.gov (United States)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-18

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  10. Neural Network-Based State Estimation for a Closed-Loop Control Strategy Applied to a Fed-Batch Bioreactor

    Directory of Open Access Journals (Sweden)

    Santiago Rómoli

    2017-01-01

    Full Text Available The lack of online information on some bioprocess variables and the presence of model and parametric uncertainties pose significant challenges to the design of efficient closed-loop control strategies. To address this issue, this work proposes an online state estimator based on a Radial Basis Function (RBF neural network that operates in closed loop together with a control law derived on a linear algebra-based design strategy. The proposed methodology is applied to a class of nonlinear systems with three types of uncertainties: (i time-varying parameters, (ii uncertain nonlinearities, and (iii unmodeled dynamics. To reduce the effect of uncertainties on the bioreactor, some integrators of the tracking error are introduced, which in turn allow the derivation of the proper control actions. This new control scheme guarantees that all signals are uniformly and ultimately bounded, and the tracking error converges to small values. The effectiveness of the proposed approach is illustrated on the basis of simulated experiments on a fed-batch bioreactor, and its performance is compared with two controllers available in the literature.

  11. Defeat and entrapment: more than meets the eye? Applying network analysis to estimate dimensions of highly correlated constructs.

    Science.gov (United States)

    Forkmann, Thomas; Teismann, Tobias; Stenzel, Jana-Sophie; Glaesmer, Heide; de Beurs, Derek

    2018-01-25

    Defeat and entrapment have been shown to be of central relevance to the development of different disorders. However, it remains unclear whether they represent two distinct constructs or one overall latent variable. One reason for the unclarity is that traditional factor analytic techniques have trouble estimating the right number of clusters in highly correlated data. In this study, we applied a novel approach based on network analysis that can deal with correlated data to establish whether defeat and entrapment are best thought of as one or multiple constructs. Explanatory graph analysis was used to estimate the number of dimensions within the 32 items that make up the defeat and entrapment scales in two samples: an online community sample of 480 participants, and a clinical sample of 147 inpatients admitted to a psychiatric hospital after a suicidal attempt or severe suicidal crisis. Confirmatory Factor analysis (CFA) was used to test whether the proposed structure fits the data. In both samples, bootstrapped exploratory graph analysis suggested that the defeat and entrapment items belonged to different dimensions. Within the entrapment items, two separate dimensions were detected, labelled internal and external entrapment. Defeat appeared to be multifaceted only in the online sample. When comparing the CFA outcomes of the one, two, three and four factor models, the one factor model was preferred. Defeat and entrapment can be viewed as distinct, yet, highly associated constructs. Thus, although replication is needed, results are in line with theories differentiating between these two constructs.

  12. Personalized translational epilepsy research - Novel approaches and future perspectives: Part I: Clinical and network analysis approaches.

    Science.gov (United States)

    Rosenow, Felix; van Alphen, Natascha; Becker, Albert; Chiocchetti, Andreas; Deichmann, Ralf; Deller, Thomas; Freiman, Thomas; Freitag, Christine M; Gehrig, Johannes; Hermsen, Anke M; Jedlicka, Peter; Kell, Christian; Klein, Karl Martin; Knake, Susanne; Kullmann, Dimitri M; Liebner, Stefan; Norwood, Braxton A; Omigie, Diana; Plate, Karlheinz; Reif, Andreas; Reif, Philipp S; Reiss, Yvonne; Roeper, Jochen; Ronellenfitsch, Michael W; Schorge, Stephanie; Schratt, Gerhard; Schwarzacher, Stephan W; Steinbach, Joachim P; Strzelczyk, Adam; Triesch, Jochen; Wagner, Marlies; Walker, Matthew C; von Wegner, Frederic; Bauer, Sebastian

    2017-11-01

    Despite the availability of more than 15 new "antiepileptic drugs", the proportion of patients with pharmacoresistant epilepsy has remained constant at about 20-30%. Furthermore, no disease-modifying treatments shown to prevent the development of epilepsy following an initial precipitating brain injury or to reverse established epilepsy have been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which in turn requires personalized medicine approaches. Recent advances in imaging, pathology, genetics and epigenetics have led to new pathophysiological concepts and the identification of monogenic causes of epilepsy. In the context of these advances, the First International Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in Frankfurt on September 8, 2016, to discuss novel approaches and future perspectives for personalized translational research. These included new developments and ideas in a range of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, EEG/MEG-based analysis of network dysfunction, tissue-based translational studies, innate immunity mechanisms, microRNA as treatment targets, functional characterization of genetic variants in human cell models and rodent organotypic slice cultures, personalized treatment approaches for monogenic epilepsies, blood-brain barrier dysfunction, therapeutic focal tissue modification, computational modeling for target and biomarker identification, and cost analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is aimed at stimulating much needed investments of time and resources in personalized translational epilepsy research. Part I includes the clinical phenotyping and diagnostic methods, EEG network-analysis, biomarkers, and personalized treatment approaches. In Part II, experimental and translational approaches will be discussed (Bauer et al., 2017) [1]. Copyright © 2017 Elsevier Inc

  13. An extended risk assessment approach for chemical plants applied to a study related to pipe ruptures

    International Nuclear Information System (INIS)

    Milazzo, Maria Francesca; Aven, Terje

    2012-01-01

    Risk assessments and Quantitative Risk Assessment (QRA) in particular have been used in the chemical industry for many years to support decision-making on the choice of arrangements and measures associated with chemical processes, transportation and storage of dangerous substances. The assessments have been founded on a risk perspective seeing risk as a function of frequency of events (probability) and associated consequences. In this paper we point to the need for extending this approach to place a stronger emphasis on uncertainties. A recently developed risk framework designed to better reflect such uncertainties is presented and applied to a chemical plant and specifically the analysis of accidental events related to the rupture of pipes. Two different ways of implementing the framework are presented, one based on the introduction of probability models and one without. The differences between the standard approach and the extended approaches are discussed from a theoretical point of view as well as from a practical risk analyst perspective.

  14. Effects produced by oscillations applied to nonlinear dynamic systems: a general approach and examples

    DEFF Research Database (Denmark)

    Blekhman, I. I.; Sorokin, V. S.

    2016-01-01

    A general approach to study effects produced by oscillations applied to nonlinear dynamic systems is developed. It implies a transition from initial governing equations of motion to much more simple equations describing only the main slow component of motions (the vibro-transformed dynamics.......g., the requirement for the involved nonlinearities to be weak. The approach is illustrated by several relevant examples from various fields of science, e.g., mechanics, physics, chemistry and biophysics....... equations). The approach is named as the oscillatory strobodynamics, since motions are perceived as under a stroboscopic light. The vibro-transformed dynamics equations comprise terms that capture the averaged effect of oscillations. The method of direct separation of motions appears to be an efficient...

  15. Anomaly Detection in SCADA Systems - A Network Based Approach

    NARCIS (Netherlands)

    Barbosa, R.R.R.

    2014-01-01

    Supervisory Control and Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities, such as water treatment facilities. Historically, these networks were composed by special-purpose embedded devices communicating through proprietary protocols.

  16. Anomaly detection in SCADA systems: a network based approach

    NARCIS (Netherlands)

    Barbosa, R.R.R.

    2014-01-01

    Supervisory Control and Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities, such as water treatment facilities. Historically, these networks were composed by special-purpose embedded devices communicating through proprietary protocols.

  17. An analytical approach to optical burst switched networks

    CERN Document Server

    Venkatesh, T

    2010-01-01

    This book presents the latest results on modeling and analysis of OBS networks. It classifies all the literature on the topic, and its scope extends to include discussion of high-speed communication networks with limited or no buffers.

  18. Experience of a Neural Network Imitator Applied to Diagnosis of Pre-pathological Conditions in Humans

    International Nuclear Information System (INIS)

    Belyashov, D.N.; Emelyanova, I.V.; Tichshenko, A.V.; Makarenko, N.G.; Sultanova, B.G.

    1998-01-01

    The Governmental Resolution of the RK 'Program of Medical Rehabilitation for People Influenced by Nuclear Tests at STS in 1949-1990' was published in March 1997. Implementation of the program requires first of all to create the effective methods of operative diagnostics of arid zones' population. To our mind, for this aims systems analysis with elements of neural network classification is more effective. We demonstrate such an approach using the example of the modem diagnostics system creating to detect the pre-pathological states among population by express analysis and personal particulars. The following considerations were used in the base of the training set: 1) any formalism must be based oneself upon wealth of phenomenology (experience, intuition, the presence of symptoms); 2) typical attributes of disease can be divided on 2 groups - subjective and objective. The common state of patient is characterised by the first group and it can have no intercommunication with disease. The second one is obtained by laboratory inspection and it is not connected with patient sensations. Each of the objective at-tributes can be the attribute of several illnesses at once. In this case both the subjective and objective features must be used together; 3) acceptability of any scheme can be substantiated only statistically. The question about justifiability and sufficiency of training set always demands separate discussion. Personal particulars are more available for creating training set. The set must be professionally oriented in order to reduce of selection effects. For our experiment the fully-connected neural network ( computer software, imitating the work of neural computer) 'Multi Neuron' was chosen. Feature space using for the net work was created from the 206 personal particulars. The research aimed to determine pre-pathological states of the urinary system organs among industrial, office and professional workers in the mining industry connected with phosphorus

  19. A network approach to predict pathogenic genes for Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Xiaoping Liu

    Full Text Available Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB, which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other

  20. Bridging the Gap in Port Security; Network Centric Theory Applied to Public/Private Collaboration

    National Research Council Canada - National Science Library

    Wright, Candice L

    2007-01-01

    ...." Admiral Thad Allen, 2007 The application of Network Centric Warfare theory enables all port stakeholders to better prepare for a disaster through increased information sharing and collaboration...

  1. Network-Centric Warfare: Implications for Applying the Principles of War

    National Research Council Canada - National Science Library

    Caneva, Joseph

    1999-01-01

    Noting the competitive advantage that a computer network system completely integrated into a firm's structure and operations has provided to businesses, individuals have begun to argue that adoption...

  2. Applying Novel Time-Frequency Moments Singular Value Decomposition Method and Artificial Neural Networks for Ballistocardiography

    Directory of Open Access Journals (Sweden)

    Koivistoinen Teemu

    2007-01-01

    Full Text Available As we know, singular value decomposition (SVD is designed for computing singular values (SVs of a matrix. Then, if it is used for finding SVs of an -by-1 or 1-by- array with elements representing samples of a signal, it will return only one singular value that is not enough to express the whole signal. To overcome this problem, we designed a new kind of the feature extraction method which we call ''time-frequency moments singular value decomposition (TFM-SVD.'' In this new method, we use statistical features of time series as well as frequency series (Fourier transform of the signal. This information is then extracted into a certain matrix with a fixed structure and the SVs of that matrix are sought. This transform can be used as a preprocessing stage in pattern clustering methods. The results in using it indicate that the performance of a combined system including this transform and classifiers is comparable with the performance of using other feature extraction methods such as wavelet transforms. To evaluate TFM-SVD, we applied this new method and artificial neural networks (ANNs for ballistocardiogram (BCG data clustering to look for probable heart disease of six test subjects. BCG from the test subjects was recorded using a chair-like ballistocardiograph, developed in our project. This kind of device combined with automated recording and analysis would be suitable for use in many places, such as home, office, and so forth. The results show that the method has high performance and it is almost insensitive to BCG waveform latency or nonlinear disturbance.

  3. Applying Novel Time-Frequency Moments Singular Value Decomposition Method and Artificial Neural Networks for Ballistocardiography

    Directory of Open Access Journals (Sweden)

    Alpo Värri

    2007-01-01

    Full Text Available As we know, singular value decomposition (SVD is designed for computing singular values (SVs of a matrix. Then, if it is used for finding SVs of an m-by-1 or 1-by-m array with elements representing samples of a signal, it will return only one singular value that is not enough to express the whole signal. To overcome this problem, we designed a new kind of the feature extraction method which we call ‘‘time-frequency moments singular value decomposition (TFM-SVD.’’ In this new method, we use statistical features of time series as well as frequency series (Fourier transform of the signal. This information is then extracted into a certain matrix with a fixed structure and the SVs of that matrix are sought. This transform can be used as a preprocessing stage in pattern clustering methods. The results in using it indicate that the performance of a combined system including this transform and classifiers is comparable with the performance of using other feature extraction methods such as wavelet transforms. To evaluate TFM-SVD, we applied this new method and artificial neural networks (ANNs for ballistocardiogram (BCG data clustering to look for probable heart disease of six test subjects. BCG from the test subjects was recorded using a chair-like ballistocardiograph, developed in our project. This kind of device combined with automated recording and analysis would be suitable for use in many places, such as home, office, and so forth. The results show that the method has high performance and it is almost insensitive to BCG waveform latency or nonlinear disturbance.

  4. Applying Novel Time-Frequency Moments Singular Value Decomposition Method and Artificial Neural Networks for Ballistocardiography

    Science.gov (United States)

    Akhbardeh, Alireza; Junnila, Sakari; Koivuluoma, Mikko; Koivistoinen, Teemu; Värri, Alpo

    2006-12-01

    As we know, singular value decomposition (SVD) is designed for computing singular values (SVs) of a matrix. Then, if it is used for finding SVs of an [InlineEquation not available: see fulltext.]-by-1 or 1-by- [InlineEquation not available: see fulltext.] array with elements representing samples of a signal, it will return only one singular value that is not enough to express the whole signal. To overcome this problem, we designed a new kind of the feature extraction method which we call ''time-frequency moments singular value decomposition (TFM-SVD).'' In this new method, we use statistical features of time series as well as frequency series (Fourier transform of the signal). This information is then extracted into a certain matrix with a fixed structure and the SVs of that matrix are sought. This transform can be used as a preprocessing stage in pattern clustering methods. The results in using it indicate that the performance of a combined system including this transform and classifiers is comparable with the performance of using other feature extraction methods such as wavelet transforms. To evaluate TFM-SVD, we applied this new method and artificial neural networks (ANNs) for ballistocardiogram (BCG) data clustering to look for probable heart disease of six test subjects. BCG from the test subjects was recorded using a chair-like ballistocardiograph, developed in our project. This kind of device combined with automated recording and analysis would be suitable for use in many places, such as home, office, and so forth. The results show that the method has high performance and it is almost insensitive to BCG waveform latency or nonlinear disturbance.

  5. Heuristic urban transportation network design method, a multilayer coevolution approach

    Science.gov (United States)

    Ding, Rui; Ujang, Norsidah; Hamid, Hussain bin; Manan, Mohd Shahrudin Abd; Li, Rong; Wu, Jianjun

    2017-08-01

    The design of urban transportation networks plays a key role in the urban planning process, and the coevolution of urban networks has recently garnered significant attention in literature. However, most of these recent articles are based on networks that are essentially planar. In this research, we propose a heuristic multilayer urban network coevolution model with lower layer network and upper layer network that are associated with growth and stimulate one another. We first use the relative neighbourhood graph and the Gabriel graph to simulate the structure of rail and road networks, respectively. With simulation we find that when a specific number of nodes are added, the total travel cost ratio between an expanded network and the initial lower layer network has the lowest value. The cooperation strength Λ and the changeable parameter average operation speed ratio Θ show that transit users' route choices change dramatically through the coevolution process and that their decisions, in turn, affect the multilayer network structure. We also note that the simulated relation between the Gini coefficient of the betweenness centrality, Θ and Λ have an optimal point for network design. This research could inspire the analysis of urban network topology features and the assessment of urban growth trends.

  6. Strategic interactions in DRAM and RISC technology: A network approach

    NARCIS (Netherlands)

    Duysters, G.M.; Vanhaverbeke, W.P.M.

    1996-01-01

    Interorganizational cooperation in some high-tech industries is no longer confined to two-company alliances, but entails industry-wide alliance networks. This article examines how industry analysis and network analysis can be combined to provide a thorough understanding of how network positions, and

  7. Energy-efficient virtual optical network mapping approaches over converged flexible bandwidth optical networks and data centers.

    Science.gov (United States)

    Chen, Bowen; Zhao, Yongli; Zhang, Jie

    2015-09-21

    In this paper, we develop a virtual link priority mapping (LPM) approach and a virtual node priority mapping (NPM) approach to improve the energy efficiency and to reduce the spectrum usage over the converged flexible bandwidth optical networks and data centers. For comparison, the lower bound of the virtual optical network mapping is used for the benchmark solutions. Simulation results show that the LPM approach achieves the better performance in terms of power consumption, energy efficiency, spectrum usage, and the number of regenerators compared to the NPM approach.

  8. Identifying the Critical Links in Road Transportation Networks: Centrality-based approach utilizing structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Supriya [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) and the criticality index is found to be effective for one test network to identify the vulnerable nodes.

  9. A social network analysis approach to alcohol use and co-occurring addictive behavior in young adults.

    Science.gov (United States)

    Meisel, Matthew K; Clifton, Allan D; MacKillop, James; Goodie, Adam S

    2015-12-01

    The current study applied egocentric social network analysis (SNA) to investigate the prevalence of addictive behavior and co-occurring substance use in college students' networks. Specifically, we examined individuals' perceptions of the frequency of network members' co-occurring addictive behavior and investigated whether co-occurring addictive behavior is spread evenly throughout networks or is more localized in clusters. We also examined differences in network composition between individuals with varying levels of alcohol use. The study utilized an egocentric SNA approach in which respondents ("egos") enumerated 30 of their closest friends, family members, co-workers, and significant others ("alters") and the relations among alters listed. Participants were 281 undergraduates at a large university in the Southeastern United States. Robust associations were observed among the frequencies of gambling, smoking, drinking, and using marijuana by network members. We also found that alters tended to cluster together into two distinct groups: one cluster moderate-to-high on co-occurring addictive behavior and the other low on co-occurring addictive behavior. Lastly, significant differences were present when examining egos' perceptions of alters' substance use between the networks of at-risk, light, and nondrinkers. These findings provide empirical evidence of distinct clustering of addictive behavior among young adults and suggest the promise of social network-based interventions for this cohort. Copyright © 2015. Published by Elsevier Ltd.

  10. Applying the flow-capturing location-allocation model to an authentic network: Edmonton, Canada

    NARCIS (Netherlands)

    M.J. Hodgson (John); K.E. Rosing (Kenneth); A.L.G. Storrier (Leontien)

    1996-01-01

    textabstractTraditional location-allocation models aim to locate network facilities to optimally serve demand expressed as weights at nodes. For some types of facilities demand is not expressed at nodes, but as passing network traffic. The flow-capturing location-allocation model responds to this

  11. A Network Inference Workflow Applied to Virulence-Related Processes in Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Singhal, Mudita; Weller, Jennifer B.; Khoshnevis, Saeed; Shi, Liang; McDermott, Jason E.

    2009-04-20

    Inference of the structure of mRNA transcriptional regulatory networks, protein regulatory or interaction networks, and protein activation/inactivation-based signal transduction networks are critical tasks in systems biology. In this article we discuss a workflow for the reconstruction of parts of the transcriptional regulatory network of the pathogenic bacterium Salmonella typhimurium based on the information contained in sets of microarray gene expression data now available for that organism, and describe our results obtained by following this workflow. The primary tool is one of the network inference algorithms deployed in the Software Environment for BIological Network Inference (SEBINI). Specifically, we selected the algorithm called Context Likelihood of Relatedness (CLR), which uses the mutual information contained in the gene expression data to infer regulatory connections. The associated analysis pipeline automatically stores the inferred edges from the CLR runs within SEBINI and, upon request, transfers the inferred edges into either Cytoscape or the plug-in Collective Analysis of Biological of Biological Interaction Networks (CABIN) tool for further post-analysis of the inferred regulatory edges. The following article presents the outcome of this workflow, as well as the protocols followed for microarray data collection, data cleansing, and network inference. Our analysis revealed several interesting interactions, functional groups, metabolic pathways, and regulons in S. typhimurium.

  12. Privacy and Generation Y: Applying Library Values to Social Networking Sites

    Science.gov (United States)

    Fernandez, Peter

    2010-01-01

    Librarians face many challenges when dealing with issues of privacy within the mediated space of social networking sites. Conceptually, social networking sites differ from libraries on privacy as a value. Research about Generation Y students, the primary clientele of undergraduate libraries, can inform librarians' relationship to this important…

  13. Applying agent-based control to mitigate overvoltage in distribution network

    NARCIS (Netherlands)

    Viyathukattuva Mohamed Ali, M.M.; Nguyen, P.H.; Kling, W.L.

    2014-01-01

    Increasing share of distributed renewable energy sources (DRES) in distribution networks raises new operational and power quality challenges for network operators such as handling overvoltage. Such technical constraint limits further penetration of DRES in low voltage (LV) and medium voltage (MV)

  14. Addressing dependability by applying an approach for model-based risk assessment

    International Nuclear Information System (INIS)

    Gran, Bjorn Axel; Fredriksen, Rune; Thunem, Atoosa P.-J.

    2007-01-01

    This paper describes how an approach for model-based risk assessment (MBRA) can be applied for addressing different dependability factors in a critical application. Dependability factors, such as availability, reliability, safety and security, are important when assessing the dependability degree of total systems involving digital instrumentation and control (I and C) sub-systems. In order to identify risk sources their roles with regard to intentional system aspects such as system functions, component behaviours and intercommunications must be clarified. Traditional risk assessment is based on fault or risk models of the system. In contrast to this, MBRA utilizes success-oriented models describing all intended system aspects, including functional, operational and organizational aspects of the target. The EU-funded CORAS project developed a tool-supported methodology for the application of MBRA in security-critical systems. The methodology has been tried out within the telemedicine and e-commerce areas, and provided through a series of seven trials a sound basis for risk assessments. In this paper the results from the CORAS project are presented, and it is discussed how the approach for applying MBRA meets the needs of a risk-informed Man-Technology-Organization (MTO) model, and how methodology can be applied as a part of a trust case development

  15. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    Science.gov (United States)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  16. Addressing dependability by applying an approach for model-based risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Gran, Bjorn Axel [Institutt for energiteknikk, OECD Halden Reactor Project, NO-1751 Halden (Norway)]. E-mail: bjorn.axel.gran@hrp.no; Fredriksen, Rune [Institutt for energiteknikk, OECD Halden Reactor Project, NO-1751 Halden (Norway)]. E-mail: rune.fredriksen@hrp.no; Thunem, Atoosa P.-J. [Institutt for energiteknikk, OECD Halden Reactor Project, NO-1751 Halden (Norway)]. E-mail: atoosa.p-j.thunem@hrp.no

    2007-11-15

    This paper describes how an approach for model-based risk assessment (MBRA) can be applied for addressing different dependability factors in a critical application. Dependability factors, such as availability, reliability, safety and security, are important when assessing the dependability degree of total systems involving digital instrumentation and control (I and C) sub-systems. In order to identify risk sources their roles with regard to intentional system aspects such as system functions, component behaviours and intercommunications must be clarified. Traditional risk assessment is based on fault or risk models of the system. In contrast to this, MBRA utilizes success-oriented models describing all intended system aspects, including functional, operational and organizational aspects of the target. The EU-funded CORAS project developed a tool-supported methodology for the application of MBRA in security-critical systems. The methodology has been tried out within the telemedicine and e-commerce areas, and provided through a series of seven trials a sound basis for risk assessments. In this paper the results from the CORAS project are presented, and it is discussed how the approach for applying MBRA meets the needs of a risk-informed Man-Technology-Organization (MTO) model, and how methodology can be applied as a part of a trust case development.

  17. A Regional Guidebook for Applying The Approach to Assessing Wetland Functions of Depressed Wetlands in Peninsular, Florida

    National Research Council Canada - National Science Library

    Noble, Chris

    2004-01-01

    The Hydrogeomophic (HGM) Approach is a method for developing functional indices and the protocols used to apply these indices to the assessment of wetland functions at a site-specific scale The HGM Approach was initially...

  18. Meeting fronthaul challenges of future mobile network deployments — The HARP approach

    DEFF Research Database (Denmark)

    Dittmann, Lars; Christiansen, Henrik Lehrmann; Checko, Aleksandra

    2014-01-01

    In future mobile networks aggregation at different levels is necessary but at the same time imposes challenges that mandate looking into new architectures. This paper presents the design consideration approach for a C-RAN based mobile aggregation network used in the EU HARP project....... With this architecture fronthaul aggregation is performed which might be an option for future generation of mobile networks....

  19. A social network analysis of alcohol-impaired drivers in Maryland : an egocentric approach.

    Science.gov (United States)

    2011-04-01

    This study examined the personal, household, and social structural attributes of alcoholimpaired : drivers in Maryland. The study used an egocentric approach of social network : analysis. This approach concentrated on specific actors (alcohol-impaire...

  20. Solution of the neutron point kinetics equations with temperature feedback effects applying the polynomial approach method

    Energy Technology Data Exchange (ETDEWEB)

    Tumelero, Fernanda, E-mail: fernanda.tumelero@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana, E-mail: claudiopeteren@yahoo.com.br, E-mail: gleniogoncalves@yahoo.com.br, E-mail: luana-lazzari@hotmail.com [Universidade Federal de Pelotas (DME/UFPEL), Capao do Leao, RS (Brazil). Instituto de Fisica e Matematica

    2015-07-01

    In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)

  1. Solution of the neutron point kinetics equations with temperature feedback effects applying the polynomial approach method

    International Nuclear Information System (INIS)

    Tumelero, Fernanda; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana

    2015-01-01

    In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)

  2. Modern Adaptive Analytics Approach to Lowering Seismic Network Detection Thresholds

    Science.gov (United States)

    Johnson, C. E.

    2017-12-01

    Modern seismic networks present a number of challenges, but perhaps most notably are those related to 1) extreme variation in station density, 2) temporal variation in station availability, and 3) the need to achieve detectability for much smaller events of strategic importance. The first of these has been reasonably addressed in the development of modern seismic associators, such as GLASS 3.0 by the USGS/NEIC, though some work still remains to be done in this area. However, the latter two challenges demand special attention. Station availability is impacted by weather, equipment failure or the adding or removing of stations, and while thresholds have been pushed to increasingly smaller magnitudes, new algorithms are needed to achieve even lower thresholds. Station availability can be addressed by a modern, adaptive architecture that maintains specified performance envelopes using adaptive analytics coupled with complexity theory. Finally, detection thresholds can be lowered using a novel approach that tightly couples waveform analytics with the event detection and association processes based on a principled repicking algorithm that uses particle realignment for enhanced phase discrimination.

  3. A neural network approach for radiographic image classification in NDT

    International Nuclear Information System (INIS)

    Lavayssiere, B.

    1993-05-01

    Radiography is used by EDF for pipe inspection in nuclear power plants in order to detect defects. The radiographs obtained are then digitized in a well-defined protocol. The aim of EDF consists of developing a non destructive testing system for recognizing defects. In this note, we describe the recognition procedure of areas with defects. We first present the digitization protocol, specifies the poor quality of images under study and propose a procedure to enhance defects. We then examine the problem raised by the choice of good features for classification. After having proved that statistical or standard textural features such as homogeneity, entropy or contrast are not relevant, we develop a geometrical-statistical approach based on the cooperation between signal correlations study and regional extrema analysis. The principle consists of analysing and comparing for areas with defects and without any defect, the evolution of conditional probabilities matrices for increasing neighbourhood sizes, the shape of variograms and the location of regional minima. We demonstrate that anisotropy and surface of series of 'comet tails' associated with probability matrices, variograms slope and statistical indices, regional extrema location, are features able to discriminate areas with defects from areas without any. The classification is then realized by a neural network, which structure, properties and learning mechanisms are detailed. Finally we discuss the results. (author). 5 figs., 21 refs

  4. A deep belief network approach using VDRAS data for nowcasting

    Science.gov (United States)

    Han, Lei; Dai, Jie; Zhang, Wei; Zhang, Changjiang; Feng, Hanlei

    2018-04-01

    Nowcasting or very short-term forecasting convective storms is still a challenging problem due to the high nonlinearity and insufficient observation of convective weather. As the understanding of the physical mechanism of convective weather is also insufficient, the numerical weather model cannot predict convective storms well. Machine learning approaches provide a potential way to nowcast convective storms using various meteorological data. In this study, a deep belief network (DBN) is proposed to nowcast convective storms using the real-time re-analysis meteorological data. The nowcasting problem is formulated as a classification problem. The 3D meteorological variables are fed directly to the DBN with dimension of input layer 6*6*80. Three hidden layers are used in the DBN and the dimension of output layer is two. A box-moving method is presented to provide the input features containing the temporal and spatial information. The results show that the DNB can generate reasonable prediction results of the movement and growth of convective storms.

  5. Network-based approaches to climate knowledge discovery

    Science.gov (United States)

    Budich, Reinhard; Nyberg, Per; Weigel, Tobias

    2011-11-01

    Climate Knowledge Discovery Workshop; Hamburg, Germany, 30 March to 1 April 2011 Do complex networks combined with semantic Web technologies offer the next generation of solutions in climate science? To address this question, a first Climate Knowledge Discovery (CKD) Workshop, hosted by the German Climate Computing Center (Deutsches Klimarechenzentrum (DKRZ)), brought together climate and computer scientists from major American and European laboratories, data centers, and universities, as well as representatives from industry, the broader academic community, and the semantic Web communities. The participants, representing six countries, were concerned with large-scale Earth system modeling and computational data analysis. The motivation for the meeting was the growing problem that climate scientists generate data faster than it can be interpreted and the need to prepare for further exponential data increases. Current analysis approaches are focused primarily on traditional methods, which are best suited for large-scale phenomena and coarse-resolution data sets. The workshop focused on the open discussion of ideas and technologies to provide the next generation of solutions to cope with the increasing data volumes in climate science.

  6. A multicriteria decision making approach applied to improving maintenance policies in healthcare organizations.

    Science.gov (United States)

    Carnero, María Carmen; Gómez, Andrés

    2016-04-23

    Healthcare organizations have far greater maintenance needs for their medical equipment than other organization, as many are used directly with patients. However, the literature on asset management in healthcare organizations is very limited. The aim of this research is to provide more rational application of maintenance policies, leading to an increase in quality of care. This article describes a multicriteria decision-making approach which integrates Markov chains with the multicriteria Measuring Attractiveness by a Categorical Based Evaluation Technique (MACBETH), to facilitate the best choice of combination of maintenance policies by using the judgements of a multi-disciplinary decision group. The proposed approach takes into account the level of acceptance that a given alternative would have among professionals. It also takes into account criteria related to cost, quality of care and impact of care cover. This multicriteria approach is applied to four dialysis subsystems: patients infected with hepatitis C, infected with hepatitis B, acute and chronic; in all cases, the maintenance strategy obtained consists of applying corrective and preventive maintenance plus two reserve machines. The added value in decision-making practices from this research comes from: (i) integrating the use of Markov chains to obtain the alternatives to be assessed by a multicriteria methodology; (ii) proposing the use of MACBETH to make rational decisions on asset management in healthcare organizations; (iii) applying the multicriteria approach to select a set or combination of maintenance policies in four dialysis subsystems of a health care organization. In the multicriteria decision making approach proposed, economic criteria have been used, related to the quality of care which is desired for patients (availability), and the acceptance that each alternative would have considering the maintenance and healthcare resources which exist in the organization, with the inclusion of a

  7. Extending network approach to language dynamics and human cognition. Comment on "Approaching human language with complex networks" by Cong and Liu

    Science.gov (United States)

    Gong, Tao; Shuai, Lan; Wu, Yicheng

    2014-12-01

    By analyzing complex networks constructed from authentic language data, Cong and Liu [1] advance linguistics research into the big data era. The network approach has revealed many intrinsic generalities and crucial differences at both the macro and micro scales between human languages. The axiom behind this research is that language is a complex adaptive system [2]. Although many lexical, semantic, or syntactic features have been discovered by means of analyzing the static and dynamic linguistic networks of world languages, available network-based language studies have not explicitly addressed the evolutionary dynamics of language systems and the correlations between language and human cognition. This commentary aims to provide some insights on how to use the network approach to study these issues.

  8. Identification of important nodes in directed biological networks: a network motif approach.

    Directory of Open Access Journals (Sweden)

    Pei Wang

    Full Text Available Identification of important nodes in complex networks has attracted an increasing attention over the last decade. Various measures have been proposed to characterize the importance of nodes in complex networks, such as the degree, betweenness and PageRank. Different measures consider different aspects of complex networks. Although there are numerous results reported on undirected complex networks, few results have been reported on directed biological networks. Based on network motifs and principal component analysis (PCA, this paper aims at introducing a new measure to characterize node importance in directed biological networks. Investigations on five real-world biological networks indicate that the proposed method can robustly identify actually important nodes in different networks, such as finding command interneurons, global regulators and non-hub but evolutionary conserved actually important nodes in biological networks. Receiver Operating Characteristic (ROC curves for the five networks indicate remarkable prediction accuracy of the proposed measure. The proposed index provides an alternative complex network metric. Potential implications of the related investigations include identifying network control and regulation targets, biological networks modeling and analysis, as well as networked medicine.

  9. Inter-organisational communication networks in healthcare: centralised versus decentralised approaches

    Directory of Open Access Journals (Sweden)

    Habibollah Pirnejad

    2007-05-01

    Full Text Available Background: To afford efficient and high quality care, healthcare providers increasingly need to exchange patient data. The existence of a communication network amongst care providers will help them to exchange patient data more efficiently. Information and communication technology (ICT has much potential to facilitate the development of such a communication network. Moreover, in order to offer integrated care interoperability of healthcare organizations based upon the exchanged data is of crucial importance. However, complications around such a development are beyond technical impediments. Objectives: To determine the challenges and complexities involved in building an Inter-organisational Communication network (IOCN in healthcare and the appropriations in the strategies. Case study: Interviews, literature review, and document analysis were conducted to analyse the developments that have taken place toward building a countrywide electronic patient record and its challenges in The Netherlands. Due to the interrelated nature of technical and non-technical problems, a socio-technical approach was used to analyse the data and define the challenges. Results: Organisational and cultural changes are necessary before technical solutions can be applied. There are organisational, financial, political, and ethicolegal challenges that have to be addressed appropriately. Two different approaches, one “centralised” and the other “decentralised” have been used by Dutch healthcare providers to adopt the necessary changes and cope with these challenges. Conclusion: The best solutions in building an IOCN have to be drawn from both the centralised and the decentralised approaches. Local communication initiatives have to be supervised and supported centrally and incentives at the organisations' interest level have to be created to encourage the stakeholder organisations to adopt the necessary changes.

  10. Inter-organisational communication networks in healthcare: centralised versus decentralised approaches.

    Science.gov (United States)

    Pirnejad, Habibollah; Bal, Roland; Stoop, Arjen P; Berg, Marc

    2007-05-16

    To afford efficient and high quality care, healthcare providers increasingly need to exchange patient data. The existence of a communication network amongst care providers will help them to exchange patient data more efficiently. Information and communication technology (ICT) has much potential to facilitate the development of such a communication network. Moreover, in order to offer integrated care interoperability of healthcare organizations based upon the exchanged data is of crucial importance. However, complications around such a development are beyond technical impediments. To determine the challenges and complexities involved in building an Inter-organisational Communication network (IOCN) in healthcare and the appropriations in the strategies. Interviews, literature review, and document analysis were conducted to analyse the developments that have taken place toward building a countrywide electronic patient record and its challenges in The Netherlands. Due to the interrelated nature of technical and non-technical problems, a socio-technical approach was used to analyse the data and define the challenges. Organisational and cultural changes are necessary before technical solutions can be applied. There are organisational, financial, political, and ethicolegal challenges that have to be addressed appropriately. Two different approaches, one "centralised" and the other "decentralised" have been used by Dutch healthcare providers to adopt the necessary changes and cope with these challenges. The best solutions in building an IOCN have to be drawn from both the centralised and the decentralised approaches. Local communication initiatives have to be supervised and supported centrally and incentives at the organisations' interest level have to be created to encourage the stakeholder organisations to adopt the necessary changes.

  11. Applying the health action process approach (HAPA) to the choice of health products: An exploratory study

    DEFF Research Database (Denmark)

    Krutulyte, Rasa; Grunert, Klaus G.; Scholderer, Joachim

    This paper presents the results of a qualitative pilot study that aimed to uncovering Danish consumers' motives for choosing health food. Schwarzer's (1992) health action process approach (HAPA) was applied to understand the process by which people chose health products. The research focused...... on the role of the behavioural intention predictors such as risk perception, outcome expectations and self-efficacy. The model has been proved to be a useful framework for understanding consumer choosing health food and is substantial in the further application of dietary choice issues....

  12. Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics.

    Directory of Open Access Journals (Sweden)

    István A Kovács

    Full Text Available BACKGROUND: Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult. METHODOLOGY/PRINCIPAL FINDINGS: Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1 determine persvasively overlapping modules with high resolution; (2 uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3 allow the determination of key network nodes and (4 help to predict network dynamics. CONCLUSIONS/SIGNIFICANCE: The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction.

  13. Systems Bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches.

    Science.gov (United States)

    Oulas, Anastasis; Minadakis, George; Zachariou, Margarita; Sokratous, Kleitos; Bourdakou, Marilena M; Spyrou, George M

    2017-11-27

    Systems Bioinformatics is a relatively new approach, which lies in the intersection of systems biology and classical bioinformatics. It focuses on integrating information across different levels using a bottom-up approach as in systems biology with a data-driven top-down approach as in bioinformatics. The advent of omics technologies has provided the stepping-stone for the emergence of Systems Bioinformatics. These technologies provide a spectrum of information ranging from genomics, transcriptomics and proteomics to epigenomics, pharmacogenomics, metagenomics and metabolomics. Systems Bioinformatics is the framework in which systems approaches are applied to such data, setting the level of resolution as well as the boundary of the system of interest and studying the emerging properties of the system as a whole rather than the sum of the properties derived from the system's individual components. A key approach in Systems Bioinformatics is the construction of multiple networks representing each level of the omics spectrum and their integration in a layered network that exchanges information within and between layers. Here, we provide evidence on how Systems Bioinformatics enhances computational therapeutics and diagnostics, hence paving the way to precision medicine. The aim of this review is to familiarize the reader with the emerging field of Systems Bioinformatics and to provide a comprehensive overview of its current state-of-the-art methods and technologies. Moreover, we provide examples of success stories and case studies that utilize such methods and tools to significantly advance research in the fields of systems biology and systems medicine. © The Author 2017. Published by Oxford University Press.

  14. RBF Neural Network Approach for Identification and Control of DC Motors

    Directory of Open Access Journals (Sweden)

    EA Feilat

    2012-12-01

    Full Text Available In this paper, a neural network approach for the identification and control of a separately excited direct (DC motor (SEDCM driving a centrifugal pump load is applied. In this application, two radial basis function neural networks (RBFNN are used: The first is a RBFNN identifier trained offline to emulate the dynamic performance of the DC motor-load system. The second is a RBFNN controller, which is trained to make the motor speed follow a selected reference signal. Two RBFNN control schemes are proposed using direct inverse and internal model control schemes. The performance of the RBFNN identifier and controller is investigated in terms of step response, sharp changes in speed trajectory, and sudden load change, as well as changes in motor parameters. The performance of RBFNN in system identification and control has been compared with the performance of the well-known back-propagation neural network (BPNN. The simulation results show that both of the BPNN and RBFNN controllers exhibit excellent dynamic response, adapt well to changes in speed trajectory and load connected to the motor, and adapt to the variations of motor parameters. Furthermore, the simulation results show that the step response of RBFNN internal model and direct inverse controllers are identical.

  15. Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach

    Directory of Open Access Journals (Sweden)

    Oliveira Rui

    2010-09-01

    Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.

  16. Social network approaches to recruitment, HIV prevention, medical care, and medication adherence

    OpenAIRE

    Latkin, Carl A.; Davey-Rothwell, Melissa A.; Knowlton, Amy R.; Alexander, Kamila A.; Williams, Chyvette T.; Boodram, Basmattee

    2013-01-01

    This article reviews current issues and advancements in social network approaches to HIV prevention and care. Social network analysis can provide a method to understand health disparities in HIV rates and treatment access and outcomes. Social network analysis is a value tool to link social structural factors to individual behaviors. Social networks provide an avenue for low cost and sustainable HIV prevention interventions that can be adapted and translated into diverse populations. Social ne...

  17. Improving the efficiency of a chemotherapy day unit: applying a business approach to oncology.

    Science.gov (United States)

    van Lent, Wineke A M; Goedbloed, N; van Harten, W H

    2009-03-01

    To improve the efficiency of a hospital-based chemotherapy day unit (CDU). The CDU was benchmarked with two other CDUs to identify their attainable performance levels for efficiency, and causes for differences. Furthermore, an in-depth analysis using a business approach, called lean thinking, was performed. An integrated set of interventions was implemented, among them a new planning system. The results were evaluated using pre- and post-measurements. We observed 24% growth of treatments and bed utilisation, a 12% increase of staff member productivity and an 81% reduction of overtime. The used method improved process design and led to increased efficiency and a more timely delivery of care. Thus, the business approaches, which were adapted for healthcare, were successfully applied. The method may serve as an example for other oncology settings with problems concerning waiting times, patient flow or lack of beds.

  18. An Approach to Data Analysis in 5G Networks

    Directory of Open Access Journals (Sweden)

    Lorena Isabel Barona López

    2017-02-01

    Full Text Available 5G networks expect to provide significant advances in network management compared to traditional mobile infrastructures by leveraging intelligence capabilities such as data analysis, prediction, pattern recognition and artificial intelligence. The key idea behind these actions is to facilitate the decision-making process in order to solve or mitigate common network problems in a dynamic and proactive way. In this context, this paper presents the design of Self-Organized Network Management in Virtualized and Software Defined Networks (SELFNET Analyzer Module, which main objective is to identify suspicious or unexpected situations based on metrics provided by different network components and sensors. The SELFNET Analyzer Module provides a modular architecture driven by use cases where analytic functions can be easily extended. This paper also proposes the data specification to define the data inputs to be taking into account in diagnosis process. This data specification has been implemented with different use cases within SELFNET Project, proving its effectiveness.

  19. A proposal framework for investigating website success in the context of e-banking:an analytic network process approach

    OpenAIRE

    Salehi, Mona; Keramati, Abbas

    2009-01-01

    This study proposes a framework to investigate website success factors, and their relative importance in selecting the most preferred e-banking website. For one thing, Updated Delone and Mclean IS success model is chosen to extract significant website success factors in the context of e-banking in Iran. Secondly, Updated Delone and McLean IS success model is extended through applying an analytic network process (ANP) approach in order to investigate the relative importance of each factor and ...

  20. Nationwide Network of TalentPoints: The Hungarian Approach to Talent Support

    Science.gov (United States)

    Csermely, Peter; Rajnai, Gabor; Sulyok, Katalin

    2013-01-01

    In 2006 a novel approach to talent support was promoted by several talent support programmes in Hungary. The new idea was a network approach. The nationwide network of so-called TalentPoints and its framework, the Hungarian Genius Program, gained substantial European Union funding in 2009, and today it is growing rapidly. A novel concept of talent…

  1. Restorative outcomes for endodontically treated teeth in the Practitioners Engaged in Applied Research and Learning network.

    Science.gov (United States)

    Spielman, Howard; Schaffer, Scott B; Cohen, Mitchell G; Wu, Hongyu; Vena, Donald A; Collie, Damon; Curro, Frederick A; Thompson, Van P; Craig, Ronald G

    2012-07-01

    The authors aimed to determine the outcome of and factors associated with success and failure of restorations in endodontically treated teeth in patients in practices participating in the Practitioners Engaged in Applied Research and Learning (PEARL) Network. Practitioner-investigators (P-Is) invited the enrollment of all patients seeking care at participating practices who had undergone primary endodontic therapy and restoration in a permanent tooth three to five years earlier. P-Is classified endodontically reated teeth as restorative failures if the restoration was replaced, the restoration needed replacement or the tooth was cracked or fractured. P-Is from 64 practices enrolled in the study 1,298 eligible patients who had endodontically treated teeth that had been restored. The mean (standard deviation) time to follow-up was 3.9 (0.6) years. Of the 1,298 enrolled teeth, P-Is classified 181 (13.9 percent; 95 percent confidence interval [CI], 12.1-15.8 percent) as restorative failures: 44 (3.4 percent) due to cracks or fractures, 57 (4.4 percent) due to replacement of the original restoration for reasons other than fracture and 80 (6.2 percent) due to need for a new restoration. When analyzing the results by means of multivariate logistic regression, the authors found a greater risk of restorative failure to be associated with canines or incisors and premolars (P = .04), intracoronal restorations (P < .01), lack of preoperative proximal contacts (P < .01), presence of periodontal connective-tissue attachment loss (P < .01), younger age (P = .01), Hispanic/Latino ethnicity (P = .04) and endodontic therapy not having been performed by a specialist (P = .04). These results suggest that molars (as opposed to other types of teeth), full-coverage restorations, preoperative proximal contacts, good periodontal health, non-Hispanic/Latino ethnicity, endodontic therapy performed by a specialist and older patient age are associated with restorative success for

  2. USER PERCEPTION TOWARDS SOCIAL NETWORKING SITES - AN ANALYTICAL APPROACH

    OpenAIRE

    Dr. S. Shanmugapriya; A. Kokila

    2017-01-01

    A social networking site (SNS) or social media is an online platform that people use to build social networks or social relations with other people who share similar personal or career interests, activities, backgrounds or real-life connections. The advent of Social Networking sites and its resources have revolutionized the communication and social relation world. This paper aims to assess the user perception towards SNS like Facebook, Twitter and LinkedIn. In the study data was obtained thro...

  3. Applying a synthetic approach to the resilience of Finnish reindeer herding as a changing livelihood

    Directory of Open Access Journals (Sweden)

    Simo Sarkki

    2016-12-01

    Full Text Available Reindeer herding is an emblematic livelihood for Northern Finland, culturally important for local people and valuable in tourism marketing. We examine the livelihood resilience of Finnish reindeer herding by narrowing the focus of general resilience on social-ecological systems (SESs to a specific livelihood while also acknowledging wider contexts in which reindeer herding is embedded. The questions for specified resilience can be combined with the applied DPSIR approach (Drivers; Pressures: resilience to what; State: resilience of what; Impacts: resilience for whom; Responses: resilience by whom and how. This paper is based on a synthesis of the authors' extensive anthropological fieldwork on reindeer herding and other land uses in Northern Finland. Our objective is to synthesize various opportunities and challenges that underpin the resilience of reindeer herding as a viable livelihood. The DPSIR approach, applied here as a three step procedure, helps focus the analysis on different components of SES and their dynamic interactions. First, various land use-related DPSIR factors and their relations (synergies and trade-offs to reindeer herding are mapped. Second, detailed DPSIR factors underpinning the resilience of reindeer herding are identified. Third, examples of interrelations between DPSIR factors are explored, revealing the key dynamics between Pressures, State, Impacts, and Responses related to the livelihood resilience of reindeer herding. In the Discussion section, we recommend that future applications of the DPSIR approach in examining livelihood resilience should (1 address cumulative pressures, (2 consider the state dimension as more tuned toward the social side of SES, (3 assess both the negative and positive impacts of environmental change on the examined livelihood by a combination of science led top-down and participatory bottom-up approaches, and (4 examine and propose governance solutions as well as local adaptations by

  4. Internet-Based Approaches to Building Stakeholder Networks for Conservation and Natural Resource Management

    OpenAIRE

    Kreakie, B. J.; Hychka, K. C.; Belaire, J. A.; Minor, E.; Walker, H. A.

    2015-01-01

    Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing internet-based social networks, and use an existing traditional (survey-based) case study to illustrate in a familiar context the deviations in methods and results. Internet-based approaches to SNA offer a means to over...

  5. Handover management in dense cellular networks: A stochastic geometry approach

    KAUST Repository

    Arshad, Rabe; Elsawy, Hesham; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2016-01-01

    Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios. © 2016 IEEE.

  6. Handover management in dense cellular networks: A stochastic geometry approach

    KAUST Repository

    Arshad, Rabe

    2016-07-26

    Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations\\' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users\\' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios. © 2016 IEEE.

  7. Optimization-Based Approaches to Control of Probabilistic Boolean Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2017-02-01

    Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.

  8. Network analysis and synthesis a modern systems theory approach

    CERN Document Server

    Anderson, Brian D O

    2006-01-01

    Geared toward upper-level undergraduates and graduate students, this book offers a comprehensive look at linear network analysis and synthesis. It explores state-space synthesis as well as analysis, employing modern systems theory to unite the classical concepts of network theory. The authors stress passive networks but include material on active networks. They avoid topology in dealing with analysis problems and discuss computational techniques. The concepts of controllability, observability, and degree are emphasized in reviewing the state-variable description of linear systems. Explorations

  9. Forecasting of passenger traffic in Moscow metro applying artificial neural networks

    International Nuclear Information System (INIS)

    Ivanov, V.V.; Natsional'nyj Issledovatel'skij Yadernyj Univ. MIFI, Moscow; FKU Rostransmodernizatsiya, Moscow

    2016-01-01

    Methods for the forecasting of passenger traffic in Moscow metro have been developed using artificial neural networks. To this end, the factors primarily determining passenger traffic in the subway have been analyzed and selected [ru

  10. A Belief Network Decision Support Method Applied to Aerospace Surveillance and Battle Management Projects

    National Research Council Canada - National Science Library

    Staker, R

    2003-01-01

    This report demonstrates the application of a Bayesian Belief Network decision support method for Force Level Systems Engineering to a collection of projects related to Aerospace Surveillance and Battle Management...

  11. A network approach to the geometric structure of shallow cloud fields

    Science.gov (United States)

    Glassmeier, F.; Feingold, G.

    2017-12-01

    . As an outlook, we discuss how a similar network approach can be applied to describe and quantify the geometric structure of shallow cumulus cloud fields.

  12. Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems

    Science.gov (United States)

    Etxaniz, Josu; Aranguren, Gerardo

    2017-01-01

    Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks. PMID:28468294

  13. Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems

    Directory of Open Access Journals (Sweden)

    Josu Etxaniz

    2017-04-01

    Full Text Available Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks.

  14. Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems.

    Science.gov (United States)

    Etxaniz, Josu; Aranguren, Gerardo

    2017-04-30

    Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks.

  15. Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Directory of Open Access Journals (Sweden)

    Gidrol Xavier

    2008-02-01

    Full Text Available Abstract Background Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge. Results We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC devoted to BN structure learning. Conclusion We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.

  16. Prediction of Protein Thermostability by an Efficient Neural Network Approach

    Directory of Open Access Journals (Sweden)

    Jalal Rezaeenour

    2016-10-01

    Full Text Available Introduction: Manipulation of protein stability is important for understanding the principles that govern protein thermostability, both in basic research and industrial applications. Various data mining techniques exist for prediction of thermostable proteins. Furthermore, ANN methods have attracted significant attention for prediction of thermostability, because they constitute an appropriate approach to mapping the non-linear input-output relationships and massive parallel computing. Method: An Extreme Learning Machine (ELM was applied to estimate thermal behavior of 1289 proteins. In the proposed algorithm, the parameters of ELM were optimized using a Genetic Algorithm (GA, which tuned a set of input variables, hidden layer biases, and input weights, to and enhance the prediction performance. The method was executed on a set of amino acids, yielding a total of 613 protein features. A number of feature selection algorithms were used to build subsets of the features. A total of 1289 protein samples and 613 protein features were calculated from UniProt database to understand features contributing to the enzymes’ thermostability and find out the main features that influence this valuable characteristic. Results:At the primary structure level, Gln, Glu and polar were the features that mostly contributed to protein thermostability. At the secondary structure level, Helix_S, Coil, and charged_Coil were the most important features affecting protein thermostability. These results suggest that the thermostability of proteins is mainly associated with primary structural features of the protein. According to the results, the influence of primary structure on the thermostabilty of a protein was more important than that of the secondary structure. It is shown that prediction accuracy of ELM (mean square error can improve dramatically using GA with error rates RMSE=0.004 and MAPE=0.1003. Conclusion: The proposed approach for forecasting problem

  17. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework

    Directory of Open Access Journals (Sweden)

    Xiangmin Guan

    2015-01-01

    Full Text Available Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology.

  18. multi-scale data assimilation approaches and error characterisation applied to the inverse modelling of atmospheric constituent emission fields

    International Nuclear Information System (INIS)

    Koohkan, Mohammad Reza

    2012-01-01

    Data assimilation in geophysical sciences aims at optimally estimating the state of the system or some parameters of the system's physical model. To do so, data assimilation needs three types of information: observations and background information, a physical/numerical model, and some statistical description that prescribes uncertainties to each component of the system. In my dissertation, new methodologies of data assimilation are used in atmospheric chemistry and physics: the joint use of a 4D-Var with a sub-grid statistical model to consistently account for representativeness errors, accounting for multiple scale in the BLUE estimation principle, and a better estimation of prior errors using objective estimation of hyper-parameters. These three approaches will be specifically applied to inverse modelling problems focusing on the emission fields of tracers or pollutants. First, in order to estimate the emission inventories of carbon monoxide over France, in-situ stations which are impacted by the representativeness errors are used. A sub-grid model is introduced and coupled with a 4D-Var to reduce the representativeness error. Indeed, the results of inverse modelling showed that the 4D-Var routine was not fit to handle the representativeness issues. The coupled data assimilation system led to a much better representation of the CO concentration variability, with a significant improvement of statistical indicators, and more consistent estimation of the CO emission inventory. Second, the evaluation of the potential of the IMS (International Monitoring System) radionuclide network is performed for the inversion of an accidental source. In order to assess the performance of the global network, a multi-scale adaptive grid is optimised using a criterion based on degrees of freedom for the signal (DFS). The results show that several specific regions remain poorly observed by the IMS network. Finally, the inversion of the surface fluxes of Volatile Organic Compounds

  19. Applying theory-driven approaches to understanding and modifying clinicians' behavior: what do we know?

    Science.gov (United States)

    Perkins, Matthew B; Jensen, Peter S; Jaccard, James; Gollwitzer, Peter; Oettingen, Gabriele; Pappadopulos, Elizabeth; Hoagwood, Kimberly E

    2007-03-01

    Despite major recent research advances, large gaps exist between accepted mental health knowledge and clinicians' real-world practices. Although hundreds of studies have successfully utilized basic behavioral science theories to understand, predict, and change patients' health behaviors, the extent to which these theories-most notably the theory of reasoned action (TRA) and its extension, the theory of planned behavior (TPB)-have been applied to understand and change clinician behavior is unclear. This article reviews the application of theory-driven approaches to understanding and changing clinician behaviors. MEDLINE and PsycINFO databases were searched, along with bibliographies, textbooks on health behavior or public health, and references from experts, to find article titles that describe theory-driven approaches (TRA or TPB) to understanding and modifying health professionals' behavior. A total of 19 articles that detailed 20 studies described the use of TRA or TPB and clinicians' behavior. Eight articles describe the use of TRA or TPB with physicians, four relate to nurses, three relate to pharmacists, and two relate to health workers. Only two articles applied TRA or TPB to mental health clinicians. The body of work shows that different constructs of TRA or TPB predict intentions and behavior among different groups of clinicians and for different behaviors and guidelines. The number of studies on this topic is extremely limited, but they offer a rationale and a direction for future research as well as a theoretical basis for increasing the specificity and efficiency of clinician-targeted interventions.

  20. Ion track based tunable device as humidity sensor: a neural network approach

    Science.gov (United States)

    Sharma, Mamta; Sharma, Anuradha; Bhattacherjee, Vandana

    2013-01-01

    Artificial Neural Network (ANN) has been applied in statistical model development, adaptive control system, pattern recognition in data mining, and decision making under uncertainty. The nonlinear dependence of any sensor output on the input physical variable has been the motivation for many researchers to attempt unconventional modeling techniques such as neural networks and other machine learning approaches. Artificial neural network (ANN) is a computational tool inspired by the network of neurons in biological nervous system. It is a network consisting of arrays of artificial neurons linked together with different weights of connection. The states of the neurons as well as the weights of connections among them evolve according to certain learning rules.. In the present work we focus on the category of sensors which respond to electrical property changes such as impedance or capacitance. Recently, sensor materials have been embedded in etched tracks due to their nanometric dimensions and high aspect ratio which give high surface area available for exposure to sensing material. Various materials can be used for this purpose to probe physical (light intensity, temperature etc.), chemical (humidity, ammonia gas, alcohol etc.) or biological (germs, hormones etc.) parameters. The present work involves the application of TEMPOS structures as humidity sensors. The sample to be studied was prepared using the polymer electrolyte (PEO/NH4ClO4) with CdS nano-particles dispersed in the polymer electrolyte. In the present research we have attempted to correlate the combined effects of voltage and frequency on impedance of humidity sensors using a neural network model and results have indicated that the mean absolute error of the ANN Model for the training data was 3.95% while for the validation data it was 4.65%. The corresponding values for the LR model were 8.28% and 8.35% respectively. It was also demonstrated the percentage improvement of the ANN Model with respect to the