WorldWideScience

Sample records for network ann model

  1. Super capacitor modeling with artificial neural network (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Marie-Francoise, J.N.; Gualous, H.; Berthon, A. [Universite de Franche-Comte, Lab. en Electronique, Electrotechnique et Systemes (L2ES), UTBM, INRETS (LRE T31) 90 - Belfort (France)

    2004-07-01

    This paper presents super-capacitors modeling using Artificial Neural Network (ANN). The principle consists on a black box nonlinear multiple inputs single output (MISO) model. The system inputs are temperature and current, the output is the super-capacitor voltage. The learning and the validation of the ANN model from experimental charge and discharge of super-capacitor establish the relationship between inputs and output. The learning and the validation of the ANN model use experimental results of 2700 F, 3700 F and a super-capacitor pack. Once the network is trained, the ANN model can predict the super-capacitor behaviour with temperature variations. The update parameters of the ANN model are performed thanks to Levenberg-Marquardt method in order to minimize the error between the output of the system and the predicted output. The obtained results with the ANN model of super-capacitor and experimental ones are in good agreement. (authors)

  2. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Sayiter [Engineering Faculty, Cumhuriyet University, Sivas (Turkmenistan)

    2017-09-15

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R{sup 2} value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R{sup 2} values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  3. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    International Nuclear Information System (INIS)

    Yildiz, Sayiter

    2017-01-01

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R"2 value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R"2 values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  4. Artificial Neural Network (ANN) Model to Predict Depression among Geriatric Population at a Slum in Kolkata, India.

    Science.gov (United States)

    Sau, Arkaprabha; Bhakta, Ishita

    2017-05-01

    Depression is one of the most important causes of mortality and morbidity among the geriatric population. Although, the aging brain is more vulnerable to depression, it cannot be considered as physiological and an inevitable part of ageing. Various sociodemographic and morbidity factors are responsible for the depression among them. Using Artificial Neural Network (ANN) model depression can be predicted from various sociodemographic variables and co morbid conditions even at community level by the grass root level health care workers. To predict depression among geriatric population from sociodemographic and morbidity attributes using ANN. An observational descriptive study with cross-sectional design was carried out at a slum under the service area of Bagbazar Urban Health and Training Centre (UHTC) in Kolkata. Among 126 elderlies under Bagbazar UHTC, 105 were interviewed using predesigned and pretested schedule. Depression status was assessed using 30 item Geriatric Depression Scale. WEKA 3.8.0 was used to develop the ANN model and test its performance. Prevalence of depression among the study population was 45.7%. Various sociodemographic variables like age, gender, literacy, living spouse, working status, personal income, family type, substance abuse and co morbid conditions like visual problem, mobility problem, hearing problem and sleeping problem were taken into consideration to develop the model. Prediction accuracy of this ANN model was 97.2%. Depression among geriatric population can be predicted accurately using ANN model from sociodemographic and morbidity attributes.

  5. The modelling of lead removal from water by deep eutectic solvents functionalized CNTs: artificial neural network (ANN) approach.

    Science.gov (United States)

    Fiyadh, Seef Saadi; AlSaadi, Mohammed Abdulhakim; AlOmar, Mohamed Khalid; Fayaed, Sabah Saadi; Hama, Ako R; Bee, Sharifah; El-Shafie, Ahmed

    2017-11-01

    The main challenge in the lead removal simulation is the behaviour of non-linearity relationships between the process parameters. The conventional modelling technique usually deals with this problem by a linear method. The substitute modelling technique is an artificial neural network (ANN) system, and it is selected to reflect the non-linearity in the interaction among the variables in the function. Herein, synthesized deep eutectic solvents were used as a functionalized agent with carbon nanotubes as adsorbents of Pb 2+ . Different parameters were used in the adsorption study including pH (2.7 to 7), adsorbent dosage (5 to 20 mg), contact time (3 to 900 min) and Pb 2+ initial concentration (3 to 60 mg/l). The number of experimental trials to feed and train the system was 158 runs conveyed in laboratory scale. Two ANN types were designed in this work, the feed-forward back-propagation and layer recurrent; both methods are compared based on their predictive proficiency in terms of the mean square error (MSE), root mean square error, relative root mean square error, mean absolute percentage error and determination coefficient (R 2 ) based on the testing dataset. The ANN model of lead removal was subjected to accuracy determination and the results showed R 2 of 0.9956 with MSE of 1.66 × 10 -4 . The maximum relative error is 14.93% for the feed-forward back-propagation neural network model.

  6. Hybrid intelligence systems and artificial neural network (ANN approach for modeling of surface roughness in drilling

    Directory of Open Access Journals (Sweden)

    Ch. Sanjay

    2014-12-01

    Full Text Available In machining processes, drilling operation is material removal process that has been widely used in manufacturing since industrial revolution. The useful life of cutting tool and its operating conditions largely controls the economics of machining operations. Drilling is most frequently performed material removing process and is used as a preliminary step for many operations, such as reaming, tapping, and boring. Drill wear has a bad effect on the surface finish and dimensional accuracy of the work piece. The surface finish of a machined part is one of the most important quality characteristics in manufacturing industries. The primary objective of this research is the prediction of suitable parameters for surface roughness in drilling. Cutting speed, cutting force, and machining time were given as inputs to the adaptive fuzzy neural network and neuro-fuzzy analysis for estimating the values of surface roughness by using 2, 3, 4, and 5 membership functions. The best structures were selected based on minimum of summation of square with the actual values with the estimated values by artificial neural fuzzy inference system (ANFIS and neuro-fuzzy systems. For artificial neural network (ANN analysis, the number of neurons was selected from 1, 2, 3, … , 20. The learning rate was selected as .5 and .5 smoothing factor was used. The inputs were selected as cutting speed, feed, machining time, and thrust force. The best structures of neural networks were selected based on the criteria as the minimum of summation of square with the actual value of surface roughness. Drilling experiments with 10 mm size were performed at two cutting speeds and feeds. Comparative analysis has been done between the actual values and the estimated values obtained by ANFIS, neuro-fuzzy, and ANN analysis.

  7. Simulation of Snowmelt Runoff Using SRM Model and Comparison With Neural Networks ANN and ANFIS (Case Study: Kardeh dam basin

    Directory of Open Access Journals (Sweden)

    morteza akbari

    2017-03-01

    of the basin with 2962 meters above sea level. Kardeh dam was primarily constructed on the Kardehriver for providing drinking and agriculture water demand with an annual volume rate of 21.23 million cubic meters. Satellite image: To estimate the level of snow cover, the satellite Landsat ETM+ data at path 35-159, rows 34-159 over the period 2001-2002 were used. Surfaces covered with snow were separated bysnow distinction normalized index (NDSI, But due to the lack of training data for image classification (areas with snow and no snow, the k-means unsupervised classification algorithm was used. Extracting the data from the meteorological and hydrological Since only a gauging station exists at the Kardeh dam site, the daily discharge data recorded at these stations was used. To extract meteorological parameters such as precipitation and temperature data, the records of the three stations Golmakan, Mashhad and Ghouchan, as the stations closest to the dam basin Kardeh were used. The purpose of this study was to simulate snowmelt runoff using SRM hydrological models and to compare the results with the outputs of the neural network models such as the ANN and the ANFIS model. Flow simulation was carried out using SRM, ANN model with the Multilayer Perceptron with back-propagation algorithm, and Sugeno type ANFIS. To evaluate the performance of the models in addition to the standard statistics such as mean square error or mean absolute percentage error, the regression coefficient measures and the difference in volume were used. The results showed that all three models are almost similar in terms of statistical parameters MSE and R and the differences were negligible. SRM model: SRM model is a daily hydrological model. This equation is composed of different components including 14 parameters. The input values were calculated based on the equations of degree-day factor. The evaluation of the model was performed with flow subside factor, coefficient and subtracting volume

  8. Comparison Between Wind Power Prediction Models Based on Wavelet Decomposition with Least-Squares Support Vector Machine (LS-SVM and Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2014-08-01

    Full Text Available A high penetration of wind energy into the electricity market requires a parallel development of efficient wind power forecasting models. Different hybrid forecasting methods were applied to wind power prediction, using historical data and numerical weather predictions (NWP. A comparative study was carried out for the prediction of the power production of a wind farm located in complex terrain. The performances of Least-Squares Support Vector Machine (LS-SVM with Wavelet Decomposition (WD were evaluated at different time horizons and compared to hybrid Artificial Neural Network (ANN-based methods. It is acknowledged that hybrid methods based on LS-SVM with WD mostly outperform other methods. A decomposition of the commonly known root mean square error was beneficial for a better understanding of the origin of the differences between prediction and measurement and to compare the accuracy of the different models. A sensitivity analysis was also carried out in order to underline the impact that each input had in the network training process for ANN. In the case of ANN with the WD technique, the sensitivity analysis was repeated on each component obtained by the decomposition.

  9. Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA-ANN model

    International Nuclear Information System (INIS)

    Koutroumanidis, Theodoros; Ioannou, Konstantinos; Arabatzis, Garyfallos

    2009-01-01

    Throughout history, energy resources have acquired a strategic significance for the economic growth and social welfare of any country. The large-scale oil crisis of 1973 coupled with various environmental protection issues, have led many countries to look for new, alternative energy sources. Biomass and fuelwood in particular, constitutes a major renewable energy source (RES) that can make a significant contribution, as a substitute for oil. This paper initially provides a description of the contribution of renewable energy sources to the production of electricity, and also examines the role of forests in the production of fuelwood in Greece. Following this, autoregressive integrated moving average (ARIMA) models, artificial neural networks (ANN) and a hybrid model are used to predict the future selling prices of the fuelwood (from broadleaved and coniferous species) produced by Greek state forest farms. The use of the ARIMA-ANN hybrid model provided the optimum prediction results, thus enabling decision-makers to proceed with a more rational planning for the production and fuelwood market. (author)

  10. Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells.

    Science.gov (United States)

    Yetilmezsoy, Kaan; Demirel, Sevgi

    2008-05-30

    A three-layer artificial neural network (ANN) model was developed to predict the efficiency of Pb(II) ions removal from aqueous solution by Antep pistachio (Pistacia Vera L.) shells based on 66 experimental sets obtained in a laboratory batch study. The effect of operational parameters such as adsorbent dosage, initial concentration of Pb(II) ions, initial pH, operating temperature, and contact time were studied to optimise the conditions for maximum removal of Pb(II) ions. On the basis of batch test results, optimal operating conditions were determined to be an initial pH of 5.5, an adsorbent dosage of 1.0 g, an initial Pb(II) concentration of 30 ppm, and a temperature of 30 degrees C. Experimental results showed that a contact time of 45 min was generally sufficient to achieve equilibrium. After backpropagation (BP) training combined with principal component analysis (PCA), the ANN model was able to predict adsorption efficiency with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and a linear transfer function (purelin) at output layer. The Levenberg-Marquardt algorithm (LMA) was found as the best of 11 BP algorithms with a minimum mean squared error (MSE) of 0.000227875. The linear regression between the network outputs and the corresponding targets were proven to be satisfactory with a correlation coefficient of about 0.936 for five model variables used in this study.

  11. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies

    International Nuclear Information System (INIS)

    Sahinkaya, Erkan

    2009-01-01

    Sulfidogenic treatment of sulfate (2-10 g/L) and zinc (65-677 mg/L) containing simulated wastewater was studied in a mesophilic (35 deg. C) CSTR. Ethanol was supplemented (COD/sulfate = 0.67) as carbon and energy source for sulfate-reducing bacteria (SRB). The robustness of the system was studied by increasing Zn, COD and sulfate loadings. Sulfate removal efficiency, which was 70% at 2 g/L feed sulfate concentration, steadily decreased with increasing feed sulfate concentration and reached 40% at 10 g/L. Over 99% Zn removal was attained due to the formation of zinc-sulfide precipitate. COD removal efficiency at 2 g/L feed sulfate concentration was over 94%, whereas, it steadily decreased due to the accumulation of acetate at higher loadings. Alkalinity produced from acetate oxidation increased wastewater pH remarkably when feed sulfate concentration was 5 g/L or lower. Electron flow from carbon oxidation to sulfate reduction averaged 83 ± 13%. The rest of the electrons were most likely coupled with fermentative reactions as the amount of methane production was insignificant. The developed ANN model was very successful as an excellent to reasonable match was obtained between the measured and the predicted concentrations of sulfate (R = 0.998), COD (R = 0.993), acetate (R = 0.976) and zinc (R = 0.827) in the CSTR effluent

  12. The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process

    International Nuclear Information System (INIS)

    Daneshvar, N.; Khataee, A.R.; Djafarzadeh, N.

    2006-01-01

    In this paper, electrocoagulation has been used for removal of color from solution containing C. I. Basic Yellow 28. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration, distance between the electrodes, retention time and solution conductivity were studied in an attempt to reach higher removal efficiency. Our results showed that the increase of current density up to 80 A m -2 enhanced the color removal efficiency, the electrolysis time was 7 min and the range of pH was determined 5-8. It was found that for achieving a high color removal percent, the conductivity of the solution and the initial concentration of dye should be 10 mS cm -1 and 50 mg l -1 , respectively. An artificial neural networks (ANN) model was developed to predict the performance of decolorization efficiency by EC process based on experimental data obtained in a laboratory batch reactor. A comparison between the predicted results of the designed ANN model and experimental data was also conducted. The model can describe the color removal percent under different conditions

  13. The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process

    Energy Technology Data Exchange (ETDEWEB)

    Daneshvar, N. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: nezam_daneshvar@yahoo.com; Khataee, A.R. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: ar_khataee@yahoo.com; Djafarzadeh, N. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: n.jafarzadeh@gmail.com

    2006-10-11

    In this paper, electrocoagulation has been used for removal of color from solution containing C. I. Basic Yellow 28. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration, distance between the electrodes, retention time and solution conductivity were studied in an attempt to reach higher removal efficiency. Our results showed that the increase of current density up to 80 A m{sup -2} enhanced the color removal efficiency, the electrolysis time was 7 min and the range of pH was determined 5-8. It was found that for achieving a high color removal percent, the conductivity of the solution and the initial concentration of dye should be 10 mS cm{sup -1} and 50 mg l{sup -1}, respectively. An artificial neural networks (ANN) model was developed to predict the performance of decolorization efficiency by EC process based on experimental data obtained in a laboratory batch reactor. A comparison between the predicted results of the designed ANN model and experimental data was also conducted. The model can describe the color removal percent under different conditions.

  14. ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks.

    Science.gov (United States)

    González-Díaz, Humberto; Herrera-Ibatá, Diana María; Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Orbegozo-Medina, Ricardo Alfredo; Pazos, Alejandro

    2014-03-24

    This work is aimed at describing the workflow for a methodology that combines chemoinformatics and pharmacoepidemiology methods and at reporting the first predictive model developed with this methodology. The new model is able to predict complex networks of AIDS prevalence in the US counties, taking into consideration the social determinants and activity/structure of anti-HIV drugs in preclinical assays. We trained different Artificial Neural Networks (ANNs) using as input information indices of social networks and molecular graphs. We used a Shannon information index based on the Gini coefficient to quantify the effect of income inequality in the social network. We obtained the data on AIDS prevalence and the Gini coefficient from the AIDSVu database of Emory University. We also used the Balaban information indices to quantify changes in the chemical structure of anti-HIV drugs. We obtained the data on anti-HIV drug activity and structure (SMILE codes) from the ChEMBL database. Last, we used Box-Jenkins moving average operators to quantify information about the deviations of drugs with respect to data subsets of reference (targets, organisms, experimental parameters, protocols). The best model found was a Linear Neural Network (LNN) with values of Accuracy, Specificity, and Sensitivity above 0.76 and AUROC > 0.80 in training and external validation series. This model generates a complex network of AIDS prevalence in the US at county level with respect to the preclinical activity of anti-HIV drugs in preclinical assays. To train/validate the model and predict the complex network we needed to analyze 43,249 data points including values of AIDS prevalence in 2,310 counties in the US vs ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4,856 protocols, and 10 possible experimental measures.

  15. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study

    Science.gov (United States)

    Maghsoudi, M.; Ghaedi, M.; Zinali, A.; Ghaedi, A. M.; Habibi, M. H.

    2015-01-01

    In this research, ZnO nanoparticle loaded on activated carbon (ZnO-NPs-AC) was synthesized simply by a low cost and nontoxic procedure. The characterization and identification have been completed by different techniques such as SEM and XRD analysis. A three layer artificial neural network (ANN) model is applicable for accurate prediction of dye removal percentage from aqueous solution by ZnO-NRs-AC following conduction of 270 experimental data. The network was trained using the obtained experimental data at optimum pH with different ZnO-NRs-AC amount (0.005-0.015 g) and 5-40 mg/L of sunset yellow dye over contact time of 0.5-30 min. The ANN model was applied for prediction of the removal percentage of present systems with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) in the hidden layer with 6 neurons. The minimum mean squared error (MSE) of 0.0008 and coefficient of determination (R2) of 0.998 were found for prediction and modeling of SY removal. The influence of parameters including adsorbent amount, initial dye concentration, pH and contact time on sunset yellow (SY) removal percentage were investigated and optimal experimental conditions were ascertained. Optimal conditions were set as follows: pH, 2.0; 10 min contact time; an adsorbent dose of 0.015 g. Equilibrium data fitted truly with the Langmuir model with maximum adsorption capacity of 142.85 mg/g for 0.005 g adsorbent. The adsorption of sunset yellow followed the pseudo-second-order rate equation.

  16. Comparison of Conventional and ANN Models for River Flow Forecasting

    Science.gov (United States)

    Jain, A.; Ganti, R.

    2011-12-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.

  17. Solar radiation modelling using ANNs for different climates in China

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Yang, Liu

    2008-01-01

    Artificial neural networks (ANNs) were used to develop prediction models for daily global solar radiation using measured sunshine duration for 40 cities covering nine major thermal climatic zones and sub-zones in China. Coefficients of determination (R 2 ) for all the 40 cities and nine climatic zones/sub-zones are 0.82 or higher, indicating reasonably strong correlation between daily solar radiation and the corresponding sunshine hours. Mean bias error (MBE) varies from -3.3 MJ/m 2 in Ruoqiang (cold climates) to 2.19 MJ/m 2 in Anyang (cold climates). Root mean square error (RMSE) ranges from 1.4 MJ/m 2 in Altay (severe cold climates) to 4.01 MJ/m 2 in Ruoqiang. The three principal statistics (i.e., R 2 , MBE and RMSE) of the climatic zone/sub-zone ANN models are very close to the corresponding zone/sub-zone averages of the individual city ANN models, suggesting that climatic zone ANN models could be used to estimate global solar radiation for locations within the respective zones/sub-zones where only measured sunshine duration data are available. (author)

  18. Empirical modeling of a dewaxing system of lubricant oil using Artificial Neural Network (ANN); Modelagem empirica de um sistema de desparafinacao de oleo lubrificante usando redes neurais artificiais

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Cristiano Hora de Oliveira; Medeiros, Ana Claudia Gondim de; Silva, Marcone Lopes; Neves, Sergio Bello; Carvalho, Luciene Santos de; Guimaraes, Paulo Roberto Britto; Pereira, Magnus; Vianna, Regina Ferreira [Universidade Salvador (UNIFACS), Salvador, BA (Brazil). Dept. de Engenharia e Arquitetura]. E-mail: paulorbg@unifacs.br; Santos, Nilza Maria Querino dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)]. E-mail: nilzaq@petrobras.com.br

    2003-07-01

    The MIBK (m-i-b-ketone) dewaxing unit, located at the Landulpho Alves refinery, allows two different operating modes: dewaxing ND oil removal. The former is comprised of an oil-wax separation process, which generates a wax stream with 2 - 5% oil. The latter involves the reprocessing of the wax stream to reduce its oil content. Both involve a two-stage filtration process (primary and secondary) with rotative filters. The general aim of this research is to develop empirical models to predict variables, for both unit-operating modes, to be used in control algorithms, since many data are not available during normal plant operation and therefore need to be estimated. Studies have suggested that the oil content is an essential variable to develop reliable empirical models and this work is concerned with the development of an empirical model for the prediction of the oil content in the wax stream leaving the primary filters. The model is based on a feed forward Artificial Neural Network (ANN) and tests with one and two hidden layers indicate very good agreement between experimental and predicted values. (author)

  19. Artificial Neural Networks (ANNs for flood forecasting at Dongola Station in the River Nile, Sudan

    Directory of Open Access Journals (Sweden)

    Sulafa Hag Elsafi

    2014-09-01

    Full Text Available Heavy seasonal rains cause the River Nile in Sudan to overflow and flood the surroundings areas. The floods destroy houses, crops, roads, and basic infrastructure, resulting in the displacement of people. This study aimed to forecast the River Nile flow at Dongola Station in Sudan using an Artificial Neural Network (ANN as a modeling tool and validated the accuracy of the model against actual flow. The ANN model was formulated to simulate flows at a certain location in the river reach, based on flow at upstream locations. Different procedures were applied to predict flooding by the ANN. Readings from stations along the Blue Nile, White Nile, Main Nile, and River Atbara between 1965 and 2003 were used to predict the likelihood of flooding at Dongola Station. The analysis indicated that the ANN provides a reliable means of detecting the flood hazard in the River Nile.

  20. Flow forecast by SWAT model and ANN in Pracana basin, Portugal

    NARCIS (Netherlands)

    Demirel, M.C.; Venancio, Anabela; Kahya, Ercan

    2009-01-01

    This study provides a unique opportunity to analyze the issue of flow forecast based on the soil and water assessment tool (SWAT) and artificial neural network (ANN) models. In last two decades, the ANNs have been extensively applied to various water resources system problems. In this study, the

  1. Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; SubbaRao; Harish, N.; Lokesha

    Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models...

  2. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  3. Comparison of ANN and RKS approaches to model SCC strength

    Science.gov (United States)

    Prakash, Aravind J.; Sathyan, Dhanya; Anand, K. B.; Aravind, N. R.

    2018-02-01

    Self compacting concrete (SCC) is a high performance concrete that has high flowability and can be used in heavily reinforced concrete members with minimal compaction segregation and bleeding. The mix proportioning of SCC is highly complex and large number of trials are required to get the mix with the desired properties resulting in the wastage of materials and time. The research on SCC has been highly empirical and no theoretical relationships have been developed between the mixture proportioning and engineering properties of SCC. In this work effectiveness of artificial neural network (ANN) and random kitchen sink algorithm(RKS) with regularized least square algorithm(RLS) in predicting the split tensile strength of the SCC is analysed. Random kitchen sink algorithm is used for mapping data to higher dimension and classification of this data is done using Regularized least square algorithm. The training and testing data for the algorithm was obtained experimentally using standard test procedures and materials available. Total of 40 trials were done which were used as the training and testing data. Trials were performed by varying the amount of fine aggregate, coarse aggregate, dosage and type of super plasticizer and water. Prediction accuracy of the ANN and RKS model is checked by comparing the RMSE value of both ANN and RKS. Analysis shows that eventhough the RKS model is good for large data set, its prediction accuracy is as good as conventional prediction method like ANN so the split tensile strength model developed by RKS can be used in industries for the proportioning of SCC with tailor made property.

  4. Identification of Relevant Phytochemical Constituents for Characterization and Authentication of Tomatoes by General Linear Model Linked to Automatic Interaction Detection (GLM-AID) and Artificial Neural Network Models (ANNs).

    Science.gov (United States)

    Hernández Suárez, Marcos; Astray Dopazo, Gonzalo; Larios López, Dina; Espinosa, Francisco

    2015-01-01

    There are a large number of tomato cultivars with a wide range of morphological, chemical, nutritional and sensorial characteristics. Many factors are known to affect the nutrient content of tomato cultivars. A complete understanding of the effect of these factors would require an exhaustive experimental design, multidisciplinary scientific approach and a suitable statistical method. Some multivariate analytical techniques such as Principal Component Analysis (PCA) or Factor Analysis (FA) have been widely applied in order to search for patterns in the behaviour and reduce the dimensionality of a data set by a new set of uncorrelated latent variables. However, in some cases it is not useful to replace the original variables with these latent variables. In this study, Automatic Interaction Detection (AID) algorithm and Artificial Neural Network (ANN) models were applied as alternative to the PCA, AF and other multivariate analytical techniques in order to identify the relevant phytochemical constituents for characterization and authentication of tomatoes. To prove the feasibility of AID algorithm and ANN models to achieve the purpose of this study, both methods were applied on a data set with twenty five chemical parameters analysed on 167 tomato samples from Tenerife (Spain). Each tomato sample was defined by three factors: cultivar, agricultural practice and harvest date. General Linear Model linked to AID (GLM-AID) tree-structured was organized into 3 levels according to the number of factors. p-Coumaric acid was the compound the allowed to distinguish the tomato samples according to the day of harvest. More than one chemical parameter was necessary to distinguish among different agricultural practices and among the tomato cultivars. Several ANN models, with 25 and 10 input variables, for the prediction of cultivar, agricultural practice and harvest date, were developed. Finally, the models with 10 input variables were chosen with fit's goodness between 44 and 100

  5. Identification of Relevant Phytochemical Constituents for Characterization and Authentication of Tomatoes by General Linear Model Linked to Automatic Interaction Detection (GLM-AID and Artificial Neural Network Models (ANNs.

    Directory of Open Access Journals (Sweden)

    Marcos Hernández Suárez

    Full Text Available There are a large number of tomato cultivars with a wide range of morphological, chemical, nutritional and sensorial characteristics. Many factors are known to affect the nutrient content of tomato cultivars. A complete understanding of the effect of these factors would require an exhaustive experimental design, multidisciplinary scientific approach and a suitable statistical method. Some multivariate analytical techniques such as Principal Component Analysis (PCA or Factor Analysis (FA have been widely applied in order to search for patterns in the behaviour and reduce the dimensionality of a data set by a new set of uncorrelated latent variables. However, in some cases it is not useful to replace the original variables with these latent variables. In this study, Automatic Interaction Detection (AID algorithm and Artificial Neural Network (ANN models were applied as alternative to the PCA, AF and other multivariate analytical techniques in order to identify the relevant phytochemical constituents for characterization and authentication of tomatoes. To prove the feasibility of AID algorithm and ANN models to achieve the purpose of this study, both methods were applied on a data set with twenty five chemical parameters analysed on 167 tomato samples from Tenerife (Spain. Each tomato sample was defined by three factors: cultivar, agricultural practice and harvest date. General Linear Model linked to AID (GLM-AID tree-structured was organized into 3 levels according to the number of factors. p-Coumaric acid was the compound the allowed to distinguish the tomato samples according to the day of harvest. More than one chemical parameter was necessary to distinguish among different agricultural practices and among the tomato cultivars. Several ANN models, with 25 and 10 input variables, for the prediction of cultivar, agricultural practice and harvest date, were developed. Finally, the models with 10 input variables were chosen with fit's goodness

  6. Assessment of ANN and SVM models for estimating normal direct irradiation (H_b)

    International Nuclear Information System (INIS)

    Santos, Cícero Manoel dos; Escobedo, João Francisco; Teramoto, Érico Tadao; Modenese Gorla da Silva, Silvia Helena

    2016-01-01

    Highlights: • The performance of SVM and ANN in estimating Normal Direct Irradiation (H_b) was evaluated. • 12 models using different input variables are developed (hourly and daily partitions). • The most relevant input variables for DNI are kt, H_s_c and insolation ratio (r′ = n/N). • Support Vector Machine (SVM) provides accurate estimates and outperforms the Artificial Neural Network (ANN). - Abstract: This study evaluates the estimation of hourly and daily normal direct irradiation (H_b) using machine learning techniques (ML): Artificial Neural Network (ANN) and Support Vector Machine (SVM). Time series of different meteorological variables measured over thirteen years in Botucatu were used for training and validating ANN and SVM. Seven different sets of input variables were tested and evaluated, which were chosen based on statistical models reported in the literature. Relative Mean Bias Error (rMBE), Relative Root Mean Square Error (rRMSE), determination coefficient (R"2) and “d” Willmott index were used to evaluate ANN and SVM models. When compared to statistical models which use the same set of input variables (R"2 between 0.22 and 0.78), ANN and SVM show higher values of R"2 (hourly models between 0.52 and 0.88; daily models between 0.42 and 0.91). Considering the input variables, atmospheric transmissivity of global radiation (kt), integrated solar constant (H_s_c) and insolation ratio (n/N, n is sunshine duration and N is photoperiod) were the most relevant in ANN and SVM models. The rMBE and rRMSE values in the two time partitions of SVM models are lower than those obtained with ANN. Hourly ANN and SVM models have higher rRMSE values than daily models. Optimal performance with hourly models was obtained with ANN4"h (rMBE = 12.24%, rRMSE = 23.99% and “d” = 0.96) and SVM4"h (rMBE = 1.75%, rRMSE = 20.10% and “d” = 0.96). Optimal performance with daily models was obtained with ANN2"d (rMBE = −3.09%, rRMSE = 18.95% and “d” = 0

  7. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling.

    Science.gov (United States)

    Ameer, Kashif; Bae, Seong-Woo; Jo, Yunhee; Lee, Hyun-Gyu; Ameer, Asif; Kwon, Joong-Ho

    2017-08-15

    Stevia rebaudiana (Bertoni) consists of stevioside and rebaudioside-A (Reb-A). We compared response surface methodology (RSM) and artificial neural network (ANN) modelling for their estimation and predictive capabilities in building effective models with maximum responses. A 5-level 3-factor central composite design was used to optimize microwave-assisted extraction (MAE) to obtain maximum yield of target responses as a function of extraction time (X 1 : 1-5min), ethanol concentration, (X 2 : 0-100%) and microwave power (X 3 : 40-200W). Maximum values of the three output parameters: 7.67% total extract yield, 19.58mg/g stevioside yield, and 15.3mg/g Reb-A yield, were obtained under optimum extraction conditions of 4min X 1 , 75% X 2 , and 160W X 3 . The ANN model demonstrated higher efficiency than did the RSM model. Hence, RSM can demonstrate interaction effects of inherent MAE parameters on target responses, whereas ANN can reliably model the MAE process with better predictive and estimation capabilities. Copyright © 2017. Published by Elsevier Ltd.

  8. Artificial neural network (ANN)-based prediction of depth filter loading capacity for filter sizing.

    Science.gov (United States)

    Agarwal, Harshit; Rathore, Anurag S; Hadpe, Sandeep Ramesh; Alva, Solomon J

    2016-11-01

    This article presents an application of artificial neural network (ANN) modelling towards prediction of depth filter loading capacity for clarification of a monoclonal antibody (mAb) product during commercial manufacturing. The effect of operating parameters on filter loading capacity was evaluated based on the analysis of change in the differential pressure (DP) as a function of time. The proposed ANN model uses inlet stream properties (feed turbidity, feed cell count, feed cell viability), flux, and time to predict the corresponding DP. The ANN contained a single output layer with ten neurons in hidden layer and employed a sigmoidal activation function. This network was trained with 174 training points, 37 validation points, and 37 test points. Further, a pressure cut-off of 1.1 bar was used for sizing the filter area required under each operating condition. The modelling results showed that there was excellent agreement between the predicted and experimental data with a regression coefficient (R 2 ) of 0.98. The developed ANN model was used for performing variable depth filter sizing for different clarification lots. Monte-Carlo simulation was performed to estimate the cost savings by using different filter areas for different clarification lots rather than using the same filter area. A 10% saving in cost of goods was obtained for this operation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1436-1443, 2016. © 2016 American Institute of Chemical Engineers.

  9. RegnANN: Reverse Engineering Gene Networks using Artificial Neural Networks.

    Directory of Open Access Journals (Sweden)

    Marco Grimaldi

    Full Text Available RegnANN is a novel method for reverse engineering gene networks based on an ensemble of multilayer perceptrons. The algorithm builds a regressor for each gene in the network, estimating its neighborhood independently. The overall network is obtained by joining all the neighborhoods. RegnANN makes no assumptions about the nature of the relationships between the variables, potentially capturing high-order and non linear dependencies between expression patterns. The evaluation focuses on synthetic data mimicking plausible submodules of larger networks and on biological data consisting of submodules of Escherichia coli. We consider Barabasi and Erdös-Rényi topologies together with two methods for data generation. We verify the effect of factors such as network size and amount of data to the accuracy of the inference algorithm. The accuracy scores obtained with RegnANN is methodically compared with the performance of three reference algorithms: ARACNE, CLR and KELLER. Our evaluation indicates that RegnANN compares favorably with the inference methods tested. The robustness of RegnANN, its ability to discover second order correlations and the agreement between results obtained with this new methods on both synthetic and biological data are promising and they stimulate its application to a wider range of problems.

  10. Development of a partial least squares-artificial neural network (PLS-ANN) hybrid model for the prediction of consumer liking scores of ready-to-drink green tea beverages.

    Science.gov (United States)

    Yu, Peigen; Low, Mei Yin; Zhou, Weibiao

    2018-01-01

    In order to develop products that would be preferred by consumers, the effects of the chemical compositions of ready-to-drink green tea beverages on consumer liking were studied through regression analyses. Green tea model systems were prepared by dosing solutions of 0.1% green tea extract with differing concentrations of eight flavour keys deemed to be important for green tea aroma and taste, based on a D-optimal experimental design, before undergoing commercial sterilisation. Sensory evaluation of the green tea model system was carried out using an untrained consumer panel to obtain hedonic liking scores of the samples. Regression models were subsequently trained to objectively predict the consumer liking scores of the green tea model systems. A linear partial least squares (PLS) regression model was developed to describe the effects of the eight flavour keys on consumer liking, with a coefficient of determination (R 2 ) of 0.733, and a root-mean-square error (RMSE) of 3.53%. The PLS model was further augmented with an artificial neural network (ANN) to establish a PLS-ANN hybrid model. The established hybrid model was found to give a better prediction of consumer liking scores, based on its R 2 (0.875) and RMSE (2.41%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN Technique

    Directory of Open Access Journals (Sweden)

    Awatif Soaded Alsaqqar

    2016-06-01

    Full Text Available In this research an Artificial Neural Network (ANN technique was applied for the prediction of Ryznar Index (RI of the flowing water from WTPs in Al-Karakh side (left side in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3 have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For Al-Dora WTP, ANN 3 model could be used as R was 92.8%.

  12. Estimation of the chemical-induced eye injury using a weight-of-evidence (WoE) battery of 21 artificial neural network (ANN) c-QSAR models (QSAR-21): part I: irritation potential.

    Science.gov (United States)

    Verma, Rajeshwar P; Matthews, Edwin J

    2015-03-01

    Evaluation of potential chemical-induced eye injury through irritation and corrosion is required to ensure occupational and consumer safety for industrial, household and cosmetic ingredient chemicals. The historical method for evaluating eye irritant and corrosion potential of chemicals is the rabbit Draize test. However, the Draize test is controversial and its use is diminishing - the EU 7th Amendment to the Cosmetic Directive (76/768/EEC) and recast Regulation now bans marketing of new cosmetics having animal testing of their ingredients and requires non-animal alternative tests for safety assessments. Thus, in silico and/or in vitro tests are advocated. QSAR models for eye irritation have been reported for several small (congeneric) data sets; however, large global models have not been described. This report describes FDA/CFSAN's development of 21 ANN c-QSAR models (QSAR-21) to predict eye irritation using the ADMET Predictor program and a diverse training data set of 2928 chemicals. The 21 models had external (20% test set) and internal validation and average training/verification/test set statistics were: 88/88/85(%) sensitivity and 82/82/82(%) specificity, respectively. The new method utilized multiple artificial neural network (ANN) molecular descriptor selection functionalities to maximize the applicability domain of the battery. The eye irritation models will be used to provide information to fill the critical data gaps for the safety assessment of cosmetic ingredient chemicals. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Predicting the Deflections of Micromachined Electrostatic Actuators Using Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Hing Wah LEE

    2009-03-01

    Full Text Available In this study, a general purpose Artificial Neural Network (ANN model based on the feed-forward back-propagation (FFBP algorithm has been used to predict the deflections of a micromachined structures actuated electrostatically under different loadings and geometrical parameters. A limited range of simulation results obtained via CoventorWare™ numerical software will be used initially to train the neural network via back-propagation algorithm. The micromachined structures considered in the analyses are diaphragm, fixed-fixed beams and cantilevers. ANN simulation results are compared with results obtained via CoventorWare™ simulations and existing analytical work for validation purpose. The proposed ANN model accurately predicts the deflections of the micromachined structures with great reduction of simulation efforts, establishing the method superiority. This method can be extended for applications in other sensors particularly for modeling sensors applying electrostatic actuation which are difficult in nature due to the inherent non-linearity of the electro-mechanical coupling response.

  14. IDI diesel engine performance and exhaust emission analysis using biodiesel with an artificial neural network (ANN

    Directory of Open Access Journals (Sweden)

    K. Prasada Rao

    2017-09-01

    Full Text Available Biodiesel is receiving increasing attention each passing day because of its fuel properties and compatibility. This study investigates the performance and emission characteristics of single cylinder four stroke indirect diesel injection (IDI engine fueled with Rice Bran Methyl Ester (RBME with Isopropanol additive. The investigation is done through a combination of experimental data analysis and artificial neural network (ANN modeling. The study used IDI engine experimental data to evaluate nine engine performance and emission parameters including Exhaust Gas Temperature (E.G.T, Brake Specific Fuel Consumption (BSFC, Brake Thermal Efficiency (B.The and various emissions like Hydrocarbons (HC, Carbon monoxide (CO, Carbon dioxide (CO2, Oxygen (O2, Nitrogen oxides (NOX and smoke. For the ANN modeling standard back propagation algorithm was found to be the optimum choice for training the model. A multi-layer perception (MLP network was used for non-linear mapping between the input and output parameters. It was found that ANN was able to predict the engine performance and exhaust emissions with a correlation coefficient of 0.995, 0.980, 0.999, 0.985, 0.999, 0.999, 0.980, 0.999, and 0.999 for E.G.T, BSFC, B.The, HC, O2, CO2, CO, NOX, smoke respectively.

  15. Identification of drought in Dhalai river watershed using MCDM and ANN models

    Science.gov (United States)

    Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy

    2017-03-01

    An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.

  16. Development and Application of ANN Model for Worker Assignment into Virtual Cells of Large Sized Configurations

    International Nuclear Information System (INIS)

    Murali, R. V.; Fathi, Khalid; Puri, A. B.

    2010-01-01

    This paper presents an extended version of study already undertaken on development of an artificial neural networks (ANNs) model for assigning workforce into virtual cells under virtual cellular manufacturing systems (VCMS) environments. Previously, the same authors have introduced this concept and applied it to virtual cells of two-cell configuration and the results demonstrated that ANNs could be a worth applying tool for carrying out workforce assignments. In this attempt, three-cell configurations problems are considered for worker assignment task. Virtual cells are formed under dual resource constraint (DRC) context in which the number of available workers is less than the total number of machines available. Since worker assignment tasks are quite non-linear and highly dynamic in nature under varying inputs and conditions and, in parallel, ANNs have the ability to model complex relationships between inputs and outputs and find similar patterns effectively, an attempt was earlier made to employ ANNs into the above task. In this paper, the multilayered perceptron with feed forward (MLP-FF) neural network model has been reused for worker assignment tasks of three-cell configurations under DRC context and its performance at different time periods has been analyzed. The previously proposed worker assignment model has been reconfigured and cell formation solutions available for three-cell configuration in the literature are used in combination to generate datasets for training ANNs framework. Finally, results of the study have been presented and discussed.

  17. Daily reservoir inflow forecasting combining QPF into ANNs model

    Science.gov (United States)

    Zhang, Jun; Cheng, Chun-Tian; Liao, Sheng-Li; Wu, Xin-Yu; Shen, Jian-Jian

    2009-01-01

    Daily reservoir inflow predictions with lead-times of several days are essential to the operational planning and scheduling of hydroelectric power system. The demand for quantitative precipitation forecasting (QPF) is increasing in hydropower operation with the dramatic advances in the numerical weather prediction (NWP) models. This paper presents a simple and an effective algorithm for daily reservoir inflow predictions which solicits the observed precipitation, forecasted precipitation from QPF as predictors and discharges in following 1 to 6 days as predicted targets for multilayer perceptron artificial neural networks (MLP-ANNs) modeling. An improved error back-propagation algorithm with self-adaptive learning rate and self-adaptive momentum coefficient is used to make the supervised training procedure more efficient in both time saving and search optimization. Several commonly used error measures are employed to evaluate the performance of the proposed model and the results, compared with that of ARIMA model, show that the proposed model is capable of obtaining satisfactory forecasting not only in goodness of fit but also in generalization. Furthermore, the presented algorithm is integrated into a practical software system which has been severed for daily inflow predictions with lead-times varying from 1 to 6 days of more than twenty reservoirs operated by the Fujian Province Grid Company, China.

  18. Using ANN and EPR models to predict carbon monoxide concentrations in urban area of Tabriz

    Directory of Open Access Journals (Sweden)

    Mohammad Shakerkhatibi

    2015-09-01

    Full Text Available Background: Forecasting of air pollutants has become a popular topic of environmental research today. For this purpose, the artificial neural network (AAN technique is widely used as a reliable method for forecasting air pollutants in urban areas. On the other hand, the evolutionary polynomial regression (EPR model has recently been used as a forecasting tool in some environmental issues. In this research, we compared the ability of these models to forecast carbon monoxide (CO concentrations in the urban area of Tabriz city. Methods: The dataset of CO concentrations measured at the fixed stations operated by the East Azerbaijan Environmental Office along with meteorological data obtained from the East Azerbaijan Meteorological Bureau from March 2007 to March 2013, were used as input for the ANN and EPR models. Results: Based on the results, the performance of ANN is more reliable in comparison with EPR. Using the ANN model, the correlation coefficient values at all monitoring stations were calculated above 0.85. Conversely, the R2 values for these stations were obtained <0.41 using the EPR model. Conclusion: The EPR model could not overcome the nonlinearities of input data. However, the ANN model displayed more accurate results compared to the EPR. Hence, the ANN models are robust tools for predicting air pollutant concentrations.

  19. Visual NNet: An Educational ANN's Simulation Environment Reusing Matlab Neural Networks Toolbox

    Science.gov (United States)

    Garcia-Roselló, Emilio; González-Dacosta, Jacinto; Lado, Maria J.; Méndez, Arturo J.; Garcia Pérez-Schofield, Baltasar; Ferrer, Fátima

    2011-01-01

    Artificial Neural Networks (ANN's) are nowadays a common subject in different curricula of graduate and postgraduate studies. Due to the complex algorithms involved and the dynamic nature of ANN's, simulation software has been commonly used to teach this subject. This software has usually been developed specifically for learning purposes, because…

  20. Review of Artificial Neural Networks (ANN) applied to corrosion monitoring

    International Nuclear Information System (INIS)

    Mabbutt, S; Picton, P; Shaw, P; Black, S

    2012-01-01

    The assessment of corrosion within an engineering system often forms an important aspect of condition monitoring but it is a parameter that is inherently difficult to measure and predict. The electrochemical nature of the corrosion process allows precise measurements to be made. Advances in instruments, techniques and software have resulted in devices that can gather data and perform various analysis routines that provide parameters to identify corrosion type and corrosion rate. Although corrosion rates are important they are only useful where general or uniform corrosion dominates. However, pitting, inter-granular corrosion and environmentally assisted cracking (stress corrosion) are examples of corrosion mechanisms that can be dangerous and virtually invisible to the naked eye. Electrochemical noise (EN) monitoring is a very useful technique for detecting these types of corrosion and it is the only non-invasive electrochemical corrosion monitoring technique commonly available. Modern instrumentation is extremely sensitive to changes in the system and new experimental configurations for gathering EN data have been proven. In this paper the identification of localised corrosion by different data analysis routines has been reviewed. In particular the application of Artificial Neural Network (ANN) analysis to corrosion data is of key interest. In most instances data needs to be used with conventional theory to obtain meaningful information and relies on expert interpretation. Recently work has been carried out using artificial neural networks to investigate various types of corrosion data in attempts to predict corrosion behaviour with some success. This work aims to extend this earlier work to identify reliable electrochemical indicators of localised corrosion onset and propagation stages.

  1. Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN).

    Science.gov (United States)

    Park, Sechan; Kim, Minjeong; Kim, Minhae; Namgung, Hyeong-Gyu; Kim, Ki-Tae; Cho, Kyung Hwa; Kwon, Soon-Bark

    2018-01-05

    The indoor air quality of subway systems can significantly affect the health of passengers since these systems are widely used for short-distance transit in metropolitan urban areas in many countries. The particles generated by abrasion during subway operations and the vehicle-emitted pollutants flowing in from the street in particular affect the air quality in underground subway stations. Thus the continuous monitoring of particulate matter (PM) in underground station is important to evaluate the exposure level of PM to passengers. However, it is difficult to obtain indoor PM data because the measurement systems are expensive and difficult to install and operate for significant periods of time in spaces crowded with people. In this study, we predicted the indoor PM concentration using the information of outdoor PM, the number of subway trains running, and information on ventilation operation by the artificial neural network (ANN) model. As well, we investigated the relationship between ANN's performance and the depth of underground subway station. ANN model showed a high correlation between the predicted and actual measured values and it was able to predict 67∼80% of PM at 6 subway station. In addition, we found that platform shape and depth influenced the model performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    Science.gov (United States)

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Novel Formulation of Adaptive MPC as EKF Using ANN Model: Multiproduct Semibatch Polymerization Reactor Case Study.

    Science.gov (United States)

    Kamesh, Reddi; Rani, Kalipatnapu Yamuna

    2017-12-01

    In this paper, a novel formulation for nonlinear model predictive control (MPC) has been proposed incorporating the extended Kalman filter (EKF) control concept using a purely data-driven artificial neural network (ANN) model based on measurements for supervisory control. The proposed scheme consists of two modules focusing on online parameter estimation based on past measurements and control estimation over control horizon based on minimizing the deviation of model output predictions from set points along the prediction horizon. An industrial case study for temperature control of a multiproduct semibatch polymerization reactor posed as a challenge problem has been considered as a test bed to apply the proposed ANN-EKFMPC strategy at supervisory level as a cascade control configuration along with proportional integral controller [ANN-EKFMPC with PI (ANN-EKFMPC-PI)]. The proposed approach is formulated incorporating all aspects of MPC including move suppression factor for control effort minimization and constraint-handling capability including terminal constraints. The nominal stability analysis and offset-free tracking capabilities of the proposed controller are proved. Its performance is evaluated by comparison with a standard MPC-based cascade control approach using the same adaptive ANN model. The ANN-EKFMPC-PI control configuration has shown better controller performance in terms of temperature tracking, smoother input profiles, as well as constraint-handling ability compared with the ANN-MPC with PI approach for two products in summer and winter. The proposed scheme is found to be versatile although it is based on a purely data-driven model with online parameter estimation.

  4. Application of ANN-SCE model on the evaluation of automatic generation control performance

    Energy Technology Data Exchange (ETDEWEB)

    Chang-Chien, L.R.; Lo, C.S.; Lee, K.S. [National Cheng Kung Univ., Tainan, Taiwan (China)

    2005-07-01

    An accurate evaluation of load frequency control (LFC) performance is needed to balance minute-to-minute electricity generation and demand. In this study, an artificial neural network-based system control error (ANN-SCE) model was used to assess the performance of automatic generation controls (AGC). The model was used to identify system dynamics for control references in supplementing AGC logic. The artificial neural network control error model was used to track a single area's LFC dynamics in Taiwan. The model was used to gauge the impacts of regulation control. Results of the training, evaluating, and projecting processes showed that the ANN-SCE model could be algebraically decomposed into components corresponding to different impact factors. The SCE information obtained from testing of various AGC gains provided data for the creation of a new control approach. The ANN-SCE model was used in conjunction with load forecasting and scheduled generation data to create an ANN-SCE identifier. The model successfully simulated SCE dynamics. 13 refs., 10 figs.

  5. Application of Artificial Neural Networks (ANNs for Weight Predictions of Blue Crabs (Callinectes sapidus RATHBUN, 1896 Using Predictor Variables

    Directory of Open Access Journals (Sweden)

    C. TURELI BILEN

    2011-10-01

    Full Text Available An evaluation of the performance of artificial networks (ANNs to estimate the weights of blue crab (Callinectes sapidus catches in Yumurtalık Cove (Iskenderun Bay that uses measured predictor variables is presented, including carapace width (CW, sex (male, female and female with eggs, and sampling month. Blue crabs (n=410 were collected each month between 15 September 1996 and 15 May 1998. Sex, CW, and sampling month were used and specified in the input layer of the network. The weights of the blue crabs were utilized in the output layer of the network. A multi-layer perception architecture model was used and was calibrated with the Levenberg Marguardt (LM algorithm. Finally, the values were determined by the ANN model using the actual data. The mean square error (MSE was measured as 3.3, and the best results had a correlation coefficient (R of 0.93. We compared the predictive capacity of the general linear model (GLM versus the Artificial Neural Network model (ANN for the estimation of the weights of blue crabs from independent field data. The results indicated the higher performance capacity of the ANN to predict weights compared to the GLM (R=0.97 vs. R=0.95, raw variable when evaluated against independent field data.

  6. USING ARTIFICIAL NEURAL NETWORKS (ANNs FOR SEDIMENT LOAD FORECASTING OF TALKHEROOD RIVER MOUTH

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2009-01-01

    Full Text Available Without a doubt the carried sediment load by a river is the most important factor in creating and formation of the related Delta in the river mouth. Therefore, accurate forecasting of the river sediment load can play a significant role for study on the river Delta. However considering the complexity and non-linearity of the phenomenon, the classic experimental or physical-based approaches usually could not handle the problem so well. In this paper, Artificial Neural Network (ANN as a non-linear black box interpolator tool is used for modeling suspended sediment load which discharges to the Talkherood river mouth, located in northern west Iran. For this purpose, observed time series of water discharge at current and previous time steps are used as the model input neurons and the model output neuron will be the forecasted sediment load at the current time step. In this way, various schemes of the ANN approach are examined in order to achieve the best network as well as the best architecture of the model. The obtained results are also compared with the results of two other classic methods (i.e., linear regression and rating curve methods in order to approve the efficiency and ability of the proposed method.

  7. Optimum coagulant forecasting by modeling jar test experiments using ANNs

    Science.gov (United States)

    Haghiri, Sadaf; Daghighi, Amin; Moharramzadeh, Sina

    2018-01-01

    Currently, the proper utilization of water treatment plants and optimizing their use is of particular importance. Coagulation and flocculation in water treatment are the common ways through which the use of coagulants leads to instability of particles and the formation of larger and heavier particles, resulting in improvement of sedimentation and filtration processes. Determination of the optimum dose of such a coagulant is of particular significance. A high dose, in addition to adding costs, can cause the sediment to remain in the filtrate, a dangerous condition according to the standards, while a sub-adequate dose of coagulants can result in the reducing the required quality and acceptable performance of the coagulation process. Although jar tests are used for testing coagulants, such experiments face many constraints with respect to evaluating the results produced by sudden changes in input water because of their significant costs, long time requirements, and complex relationships among the many factors (turbidity, temperature, pH, alkalinity, etc.) that can influence the efficiency of coagulant and test results. Modeling can be used to overcome these limitations; in this research study, an artificial neural network (ANN) multi-layer perceptron (MLP) with one hidden layer has been used for modeling the jar test to determine the dosage level of used coagulant in water treatment processes. The data contained in this research have been obtained from the drinking water treatment plant located in Ardabil province in Iran. To evaluate the performance of the model, the mean squared error (MSE) and correlation coefficient (R2) parameters have been used. The obtained values are within an acceptable range that demonstrates the high accuracy of the models with respect to the estimation of water-quality characteristics and the optimal dosages of coagulants; so using these models will allow operators to not only reduce costs and time taken to perform experimental jar tests

  8. Modelling and automatic reactive power control of isolated wind-diesel hybrid power systems using ANN

    International Nuclear Information System (INIS)

    Bansal, R.C.

    2008-01-01

    This paper presents an artificial neural network (ANN) based approach to tune the parameters of the static var compensator (SVC) reactive power controller over a wide range of typical load model parameters. The gains of PI (proportional integral) based SVC are optimised for typical values of the load voltage characteristics (n q ) by conventional techniques. Using the generated data, the method of multi-layer feed forward ANN with error back propagation training is employed to tune the parameters of the SVC. An ANN tuned SVC controller has been applied to control the reactive power of a variable slip/speed isolated wind-diesel hybrid power system. It is observed that the maximum deviations of all parameters are more for larger values of n q . It has been shown that initially synchronous generator supplies the reactive power required by the induction generator and/or load, and the latter reactive power is purely supplied by the SVC

  9. Modelling and automatic reactive power control of isolated wind-diesel hybrid power systems using ANN

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, R.C. [Electrical and Electronics Engineering Division, School of Engineering and Physics, The University of the South Pacific, Suva (Fiji)

    2008-02-15

    This paper presents an artificial neural network (ANN) based approach to tune the parameters of the static var compensator (SVC) reactive power controller over a wide range of typical load model parameters. The gains of PI (proportional integral) based SVC are optimised for typical values of the load voltage characteristics (n{sub q}) by conventional techniques. Using the generated data, the method of multi-layer feed forward ANN with error back propagation training is employed to tune the parameters of the SVC. An ANN tuned SVC controller has been applied to control the reactive power of a variable slip/speed isolated wind-diesel hybrid power system. It is observed that the maximum deviations of all parameters are more for larger values of n{sub q}. It has been shown that initially synchronous generator supplies the reactive power required by the induction generator and/or load, and the latter reactive power is purely supplied by the SVC. (author)

  10. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, Erasmo [Facultad de Ingenieria Mecanica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia No. 403, Centro (Mexico); Rivera, Wilfrido [Centro de Ivestigacion en Energia, Universidad Nacional Autonoma de Mexico, Apartado Postal 34, Temixco 62580, Morelos (Mexico)

    2010-12-15

    In this paper the wind speed forecasting in the Isla de Cedros in Baja California, in the Cerro de la Virgen in Zacatecas and in Holbox in Quintana Roo is presented. The time series utilized are average hourly wind speed data obtained directly from the measurements realized in the different sites during about one month. In order to do wind speed forecasting Hybrid models consisting of Autoregressive Integrated Moving Average (ARIMA) models and Artificial Neural Network (ANN) models were developed. The ARIMA models were first used to do the wind speed forecasting of the time series and then with the obtained errors ANN were built taking into account the nonlinear tendencies that the ARIMA technique could not identify, reducing with this the final errors. Once the Hybrid models were developed 48 data out of sample for each one of the sites were used to do the wind speed forecasting and the results were compared with the ARIMA and the ANN models working separately. Statistical error measures such as the mean error (ME), the mean square error (MSE) and the mean absolute error (MAE) were calculated to compare the three methods. The results showed that the Hybrid models predict the wind velocities with a higher accuracy than the ARIMA and ANN models in the three examined sites. (author)

  11. SU-E-T-206: Improving Radiotherapy Toxicity Based On Artificial Neural Network (ANN) for Head and Neck Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Daniel D; Wernicke, A Gabriella; Nori, Dattatreyudu; Chao, KSC; Parashar, Bhupesh; Chang, Jenghwa [Weill Cornell Medical College, NY, NY (United States)

    2014-06-01

    Purpose/Objective(s): The aim of this study is to build the estimator of toxicity using artificial neural network (ANN) for head and neck cancer patients Materials/Methods: An ANN can combine variables into a predictive model during training and considered all possible correlations of variables. We constructed an ANN based on the data from 73 patients with advanced H and N cancer treated with external beam radiotherapy and/or chemotherapy at our institution. For the toxicity estimator we defined input data including age, sex, site, stage, pathology, status of chemo, technique of external beam radiation therapy (EBRT), length of treatment, dose of EBRT, status of post operation, length of follow-up, the status of local recurrences and distant metastasis. These data were digitized based on the significance and fed to the ANN as input nodes. We used 20 hidden nodes (for the 13 input nodes) to take care of the correlations of input nodes. For training ANN, we divided data into three subsets such as training set, validation set and test set. Finally, we built the estimator for the toxicity from ANN output. Results: We used 13 input variables including the status of local recurrences and distant metastasis and 20 hidden nodes for correlations. 59 patients for training set, 7 patients for validation set and 7 patients for test set and fed the inputs to Matlab neural network fitting tool. We trained the data within 15% of errors of outcome. In the end we have the toxicity estimation with 74% of accuracy. Conclusion: We proved in principle that ANN can be a very useful tool for predicting the RT outcomes for high risk H and N patients. Currently we are improving the results using cross validation.

  12. SU-E-T-206: Improving Radiotherapy Toxicity Based On Artificial Neural Network (ANN) for Head and Neck Cancer Patients

    International Nuclear Information System (INIS)

    Cho, Daniel D; Wernicke, A Gabriella; Nori, Dattatreyudu; Chao, KSC; Parashar, Bhupesh; Chang, Jenghwa

    2014-01-01

    Purpose/Objective(s): The aim of this study is to build the estimator of toxicity using artificial neural network (ANN) for head and neck cancer patients Materials/Methods: An ANN can combine variables into a predictive model during training and considered all possible correlations of variables. We constructed an ANN based on the data from 73 patients with advanced H and N cancer treated with external beam radiotherapy and/or chemotherapy at our institution. For the toxicity estimator we defined input data including age, sex, site, stage, pathology, status of chemo, technique of external beam radiation therapy (EBRT), length of treatment, dose of EBRT, status of post operation, length of follow-up, the status of local recurrences and distant metastasis. These data were digitized based on the significance and fed to the ANN as input nodes. We used 20 hidden nodes (for the 13 input nodes) to take care of the correlations of input nodes. For training ANN, we divided data into three subsets such as training set, validation set and test set. Finally, we built the estimator for the toxicity from ANN output. Results: We used 13 input variables including the status of local recurrences and distant metastasis and 20 hidden nodes for correlations. 59 patients for training set, 7 patients for validation set and 7 patients for test set and fed the inputs to Matlab neural network fitting tool. We trained the data within 15% of errors of outcome. In the end we have the toxicity estimation with 74% of accuracy. Conclusion: We proved in principle that ANN can be a very useful tool for predicting the RT outcomes for high risk H and N patients. Currently we are improving the results using cross validation

  13. Simulation model of ANN based maximum power point tracking controller for solar PV system

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Anil K.; Singh, Bhupal [Department of Electrical and Electronics Engineering, Ajay Kumar Garg Engineering College, Ghaziabad 201009 (India); Kaushika, N.D.; Agarwal, Niti [School of Research and Development, Bharati Vidyapeeth College of Engineering, A-4 Paschim Vihar, New Delhi 110063 (India)

    2011-02-15

    In this paper the simulation model of an artificial neural network (ANN) based maximum power point tracking controller has been developed. The controller consists of an ANN tracker and the optimal control unit. The ANN tracker estimates the voltages and currents corresponding to a maximum power delivered by solar PV (photovoltaic) array for variable cell temperature and solar radiation. The cell temperature is considered as a function of ambient air temperature, wind speed and solar radiation. The tracker is trained employing a set of 124 patterns using the back propagation algorithm. The mean square error of tracker output and target values is set to be of the order of 10{sup -5} and the successful convergent of learning process takes 1281 epochs. The accuracy of the ANN tracker has been validated by employing different test data sets. The control unit uses the estimates of the ANN tracker to adjust the duty cycle of the chopper to optimum value needed for maximum power transfer to the specified load. (author)

  14. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Delnavaz, M. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ayati, B., E-mail: ayati_bi@modares.ac.ir [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ganjidoust, H. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of)

    2010-07-15

    In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds.

  15. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots

    Science.gov (United States)

    Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo

    2017-12-01

    Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.

  16. Groundwater Pollution Source Identification using Linked ANN-Optimization Model

    Science.gov (United States)

    Ayaz, Md; Srivastava, Rajesh; Jain, Ashu

    2014-05-01

    Groundwater is the principal source of drinking water in several parts of the world. Contamination of groundwater has become a serious health and environmental problem today. Human activities including industrial and agricultural activities are generally responsible for this contamination. Identification of groundwater pollution source is a major step in groundwater pollution remediation. Complete knowledge of pollution source in terms of its source characteristics is essential to adopt an effective remediation strategy. Groundwater pollution source is said to be identified completely when the source characteristics - location, strength and release period - are known. Identification of unknown groundwater pollution source is an ill-posed inverse problem. It becomes more difficult for real field conditions, when the lag time between the first reading at observation well and the time at which the source becomes active is not known. We developed a linked ANN-Optimization model for complete identification of an unknown groundwater pollution source. The model comprises two parts- an optimization model and an ANN model. Decision variables of linked ANN-Optimization model contain source location and release period of pollution source. An objective function is formulated using the spatial and temporal data of observed and simulated concentrations, and then minimized to identify the pollution source parameters. In the formulation of the objective function, we require the lag time which is not known. An ANN model with one hidden layer is trained using Levenberg-Marquardt algorithm to find the lag time. Different combinations of source locations and release periods are used as inputs and lag time is obtained as the output. Performance of the proposed model is evaluated for two and three dimensional case with error-free and erroneous data. Erroneous data was generated by adding uniformly distributed random error (error level 0-10%) to the analytically computed concentration

  17. WEPP and ANN models for simulating soil loss and runoff in a semi-arid Mediterranean region.

    Science.gov (United States)

    Albaradeyia, Issa; Hani, Azzedine; Shahrour, Isam

    2011-09-01

    This paper presents the use of both the Water Erosion Prediction Project (WEPP) and the artificial neural network (ANN) for the prediction of runoff and soil loss in the central highland mountainous of the Palestinian territories. Analyses show that the soil erosion is highly dependent on both the rainfall depth and the rainfall event duration rather than on the rainfall intensity as mostly mentioned in the literature. The results obtained from the WEPP model for the soil loss and runoff disagree with the field data. The WEPP underestimates both the runoff and soil loss. Analyses conducted with the ANN agree well with the observation. In addition, the global network models developed using the data of all the land use type show a relatively unbiased estimation for both runoff and soil loss. The study showed that the ANN model could be used as a management tool for predicting runoff and soil loss.

  18. Data-Driven Modeling of Complex Systems by means of a Dynamical ANN

    Science.gov (United States)

    Seleznev, A.; Mukhin, D.; Gavrilov, A.; Loskutov, E.; Feigin, A.

    2017-12-01

    The data-driven methods for modeling and prognosis of complex dynamical systems become more and more popular in various fields due to growth of high-resolution data. We distinguish the two basic steps in such an approach: (i) determining the phase subspace of the system, or embedding, from available time series and (ii) constructing an evolution operator acting in this reduced subspace. In this work we suggest a novel approach combining these two steps by means of construction of an artificial neural network (ANN) with special topology. The proposed ANN-based model, on the one hand, projects the data onto a low-dimensional manifold, and, on the other hand, models a dynamical system on this manifold. Actually, this is a recurrent multilayer ANN which has internal dynamics and capable of generating time series. Very important point of the proposed methodology is the optimization of the model allowing us to avoid overfitting: we use Bayesian criterion to optimize the ANN structure and estimate both the degree of evolution operator nonlinearity and the complexity of nonlinear manifold which the data are projected on. The proposed modeling technique will be applied to the analysis of high-dimensional dynamical systems: Lorenz'96 model of atmospheric turbulence, producing high-dimensional space-time chaos, and quasi-geostrophic three-layer model of the Earth's atmosphere with the natural orography, describing the dynamics of synoptical vortexes as well as mesoscale blocking systems. The possibility of application of the proposed methodology to analyze real measured data is also discussed. The study was supported by the Russian Science Foundation (grant #16-12-10198).

  19. Prediction by Artificial Neural Networks (ANN of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius

    Directory of Open Access Journals (Sweden)

    Julio Rojas Naccha

    2012-09-01

    Full Text Available The predictive ability of Artificial Neural Network (ANN on the effect of the concentration (30, 40, 50 y 60 % w/w and temperature (30, 40 y 50°C of fructooligosaccharides solution, in the mass, moisture, volume and solids of osmodehydrated yacon cubes, and in the coefficients of the water means effective diffusivity with and without shrinkage was evaluated. The Feedforward type ANN with the Backpropagation training algorithms and the Levenberg-Marquardt weight adjustment was applied, using the following topology: 10-5 goal error, 0.01 learning rate, 0.5 moment coefficient, 2 input neurons, 6 output neurons, one hidden layer with 18 neurons, 15 training stages and logsig-pureline transfer functions. The overall average error achieved by the ANN was 3.44% and correlation coefficients were bigger than 0.9. No significant differences were found between the experimental values and the predicted values achieved by the ANN and with the predicted values achieved by a statistical model of second-order polynomial regression (p > 0.95.

  20. Applying a supervised ANN (artificial neural network) approach to the prognostication of driven wheel energy efficiency indices

    International Nuclear Information System (INIS)

    Taghavifar, Hamid; Mardani, Aref

    2014-01-01

    This paper examines the prediction of energy efficiency indices of driven wheels (i.e. traction coefficient and tractive power efficiency) as affected by wheel load, slippage and forward velocity at three different levels with three replicates to form a total of 162 data points. The pertinent experiments were carried out in the soil bin testing facility. A feed-forward ANN (artificial neural network) with standard BP (back propagation) algorithm was practiced to construct a supervised representation to predict the energy efficiency indices of driven wheels. It was deduced, in view of the statistical performance criteria (i.e. MSE (mean squared error) and R 2 ), that a supervised ANN with 3-8-10-2 topology and Levenberg–Marquardt training algorithm represented the optimal model. Modeling implementations indicated that ANN is a powerful technique to prognosticate the stochastic energy efficiency indices as affected by soil-wheel interactions with MSE of 0.001194 and R 2 of 0.987 and 0.9772 for traction coefficient and tractive power efficiency. It was found that traction coefficient and tractive power efficiency increase with increased slippage. A similar trend is valid for the influence of wheel load on the objective parameters. Wherein increase of velocity led to an increment of tractive power efficiency, velocity had no significant effect on traction coefficient. - Highlights: • Energy efficiency indexes were assessed as affected by tire parameters. • ANN was applied for prognostication of the objective parameters. • A 3-8-10-2 ANN with MSE of 0.001194 and R 2 of 0.987 and 0.9772 was designated as optimal model. • Optimal values of learning rate and momentum were found 0.9 and 0.5, respectively

  1. Modelling flow dynamics in water distribution networks using ...

    African Journals Online (AJOL)

    One such approach is the Artificial Neural Networks (ANNs) technique. The advantage of ANNs is that they are robust and can be used to model complex linear and non-linear systems without making implicit assumptions. ANNs can be trained to forecast flow dynamics in a water distribution network. Such flow dynamics ...

  2. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S. F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  3. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S.F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  4. Modelling the spectral irradiance distribution in sunny inland locations using an ANN-based methodology

    International Nuclear Information System (INIS)

    Torres-Ramírez, M.; Elizondo, D.; García-Domingo, B.; Nofuentes, G.; Talavera, D.L.

    2015-01-01

    This work is aimed at verifying that in sunny inland locations artificial intelligence techniques may provide an estimation of the spectral irradiance with adequate accuracy for photovoltaic applications. An ANN (artificial neural network) based method was developed, trained and tested to model the spectral distributions between wavelengths ranging from 350 to 1050 nm. Only commonly available input data such as geographical information regarding location, specific date and time together with horizontal global irradiance and ambient temperature are required. Historical information from a 24-month experimental campaign carried out in Jaén (Spain) provided the necessary data to train and test the ANN tool. A Kohonen self-organized map was used as innovative technique to classify the whole input dataset and build a small and representative training dataset. The shape of the spectral irradiance distribution, the in-plane global irradiance (G T ) and irradiation (H T ) and the APE (average photon energy) values obtained through the ANN method were statistically compared to the experimental ones. In terms of shape distribution fitting, the mean relative deformation error stays below 4.81%. The root mean square percentage error is around 6.89% and 0.45% when estimating G T and APE, respectively. Regarding H T , errors lie below 3.18% in all cases. - Highlights: • ANN-based model to estimate the spectral irradiance distribution in sunny inland locations. • MRDE value stay below 4.81% in spectral irradiance distribution shape fitting. • RMSPE is about 6.89% for the in-plane global irradiance and 0.45% for the average photon energy. • Errors stay below 3.18% for all the months of the year in incident irradiation terms. • Improvement of assessment of the impact of the solar spectrum in the performance of a PV module

  5. On The Comparison of Artificial Neural Network (ANN) and ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    prediction of student achievement is one way to enhance the quality level and provide better ... model performance measure in solving different real life problems ranging from management sciences, business schools, and others [10], [12],.

  6. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN).

    Science.gov (United States)

    Titah, Harmin Sulistiyaning; Halmi, Mohd Izuan Effendi Bin; Abdullah, Siti Rozaimah Sheikh; Hasan, Hassimi Abu; Idris, Mushrifah; Anuar, Nurina

    2018-06-07

    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg -1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R 2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.

  7. Estimation of the chemical-induced eye injury using a Weight-of-Evidence (WoE) battery of 21 artificial neural network (ANN) c-QSAR models (QSAR-21): part II: corrosion potential.

    Science.gov (United States)

    Verma, Rajeshwar P; Matthews, Edwin J

    2015-03-01

    This is part II of an in silico investigation of chemical-induced eye injury that was conducted at FDA's CFSAN. Serious eye damage caused by chemical (eye corrosion) is assessed using the rabbit Draize test, and this endpoint is an essential part of hazard identification and labeling of industrial and consumer products to ensure occupational and consumer safety. There is an urgent need to develop an alternative to the Draize test because EU's 7th amendment to the Cosmetic Directive (EC, 2003; 76/768/EEC) and recast Regulation now bans animal testing on all cosmetic product ingredients and EU's REACH Program limits animal testing for chemicals in commerce. Although in silico methods have been reported for eye irritation (reversible damage), QSARs specific for eye corrosion (irreversible damage) have not been published. This report describes the development of 21 ANN c-QSAR models (QSAR-21) for assessing eye corrosion potential of chemicals using a large and diverse CFSAN data set of 504 chemicals, ADMET Predictor's three sensitivity analyses and ANNE classification functionalities with 20% test set selection from seven different methods. QSAR-21 models were internally and externally validated and exhibited high predictive performance: average statistics for the training, verification, and external test sets of these models were 96/96/94% sensitivity and 91/91/90% specificity. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN)

    Science.gov (United States)

    Raj, A. Stanley; Srinivas, Y.; Oliver, D. Hudson; Muthuraj, D.

    2014-03-01

    The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model.

  9. ANN modelling of sediment concentration in the dynamic glacial environment of Gangotri in Himalaya.

    Science.gov (United States)

    Singh, Nandita; Chakrapani, G J

    2015-08-01

    The present study explores for the first time the possibility of modelling sediment concentration with artificial neural networks (ANNs) at Gangotri, the source of Bhagirathi River in the Himalaya. Discharge, rainfall and temperature have been considered as the main controlling factors of variations in sediment concentration in the dynamic glacial environment of Gangotri. Fourteen feed forward neural networks with error back propagation algorithm have been created, trained and tested for prediction of sediment concentration. Seven models (T1-T7) have been trained and tested in the non-updating mode whereas remaining seven models (T1a-T7a) have been trained in the updating mode. The non-updating mode refers to the scenario where antecedent time (previous time step) values are not used as input to the model. In case of the updating mode, antecedent time values are used as network inputs. The inputs applied in the models are either the variables mentioned above as individual factors (single input networks) or a combination of them (multi-input networks). The suitability of employing antecedent time-step values as network inputs has hence been checked by comparative analysis of model performance in the two modes. The simple feed forward network has been improvised with a series parallel non-linear autoregressive with exogenous input (NARX) architecture wherein true values of sediment concentration have been fed as input during training. In the glacial scenario of Gangotri, maximum sediment movement takes place during the melt period (May-October). Hence, daily data of discharge, rainfall, temperature and sediment concentration for five consecutive melt periods (May-October, 2000-2004) have been used for modelling. High Coefficient of determination values [0.77-0.88] have been obtained between observed and ANN-predicted values of sediment concentration. The study has brought out relationships between variables that are not reflected in normal statistical analysis. A

  10. The Segmentation of Point Clouds with K-Means and ANN (artifical Neural Network)

    Science.gov (United States)

    Kuçak, R. A.; Özdemir, E.; Erol, S.

    2017-05-01

    Segmentation of point clouds is recently used in many Geomatics Engineering applications such as the building extraction in urban areas, Digital Terrain Model (DTM) generation and the road or urban furniture extraction. Segmentation is a process of dividing point clouds according to their special characteristic layers. The present paper discusses K-means and self-organizing map (SOM) which is a type of ANN (Artificial Neural Network) segmentation algorithm which treats the segmentation of point cloud. The point clouds which generate with photogrammetric method and Terrestrial Lidar System (TLS) were segmented according to surface normal, intensity and curvature. Thus, the results were evaluated. LIDAR (Light Detection and Ranging) and Photogrammetry are commonly used to obtain point clouds in many remote sensing and geodesy applications. By photogrammetric method or LIDAR method, it is possible to obtain point cloud from terrestrial or airborne systems. In this study, the measurements were made with a Leica C10 laser scanner in LIDAR method. In photogrammetric method, the point cloud was obtained from photographs taken from the ground with a 13 MP non-metric camera.

  11. THE SEGMENTATION OF POINT CLOUDS WITH K-MEANS AND ANN (ARTIFICAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. A. Kuçak

    2017-05-01

    Full Text Available Segmentation of point clouds is recently used in many Geomatics Engineering applications such as the building extraction in urban areas, Digital Terrain Model (DTM generation and the road or urban furniture extraction. Segmentation is a process of dividing point clouds according to their special characteristic layers. The present paper discusses K-means and self-organizing map (SOM which is a type of ANN (Artificial Neural Network segmentation algorithm which treats the segmentation of point cloud. The point clouds which generate with photogrammetric method and Terrestrial Lidar System (TLS were segmented according to surface normal, intensity and curvature. Thus, the results were evaluated. LIDAR (Light Detection and Ranging and Photogrammetry are commonly used to obtain point clouds in many remote sensing and geodesy applications. By photogrammetric method or LIDAR method, it is possible to obtain point cloud from terrestrial or airborne systems. In this study, the measurements were made with a Leica C10 laser scanner in LIDAR method. In photogrammetric method, the point cloud was obtained from photographs taken from the ground with a 13 MP non-metric camera.

  12. Dispersion compensation of fiber optic communication system with direct detection using artificial neural networks (ANNs)

    Science.gov (United States)

    Maghrabi, Mahmoud M. T.; Kumar, Shiva; Bakr, Mohamed H.

    2018-02-01

    This work introduces a powerful digital nonlinear feed-forward equalizer (NFFE), exploiting multilayer artificial neural network (ANN). It mitigates impairments of optical communication systems arising due to the nonlinearity introduced by direct photo-detection. In a direct detection system, the detection process is nonlinear due to the fact that the photo-current is proportional to the absolute square of the electric field intensity. The proposed equalizer provides the most efficient computational cost with high equalization performance. Its performance is comparable to the benchmark compensation performance achieved by maximum-likelihood sequence estimator. The equalizer trains an ANN to act as a nonlinear filter whose impulse response removes the intersymbol interference (ISI) distortions of the optical channel. Owing to the proposed extensive training of the equalizer, it achieves the ultimate performance limit of any feed-forward equalizer (FFE). The performance and efficiency of the equalizer is investigated by applying it to various practical short-reach fiber optic communication system scenarios. These scenarios are extracted from practical metro/media access networks and data center applications. The obtained results show that the ANN-NFFE compensates for the received BER degradation and significantly increases the tolerance to the chromatic dispersion distortion.

  13. Comparison of the accuracy of SST estimates by artificial neural networks (ANN) and other quantitative methods using radiolarian data from the Antarctic and Pacific Oceans

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Malmgren, B.A.

    ) regression, the maximum likelihood (ML) method, and artificial neural networks (ANNs), based on radiolarian faunal abundance data from surface sediments from the Antarctic and Pacific Oceans. Recent studies have suggested that ANNs may represent one...

  14. Biosorption of chromium (VI) from aqueous solutions and ANN modelling.

    Science.gov (United States)

    Nag, Soma; Mondal, Abhijit; Bar, Nirjhar; Das, Sudip Kumar

    2017-08-01

    The use of sustainable, green and biodegradable natural wastes for Cr(VI) detoxification from the contaminated wastewater is considered as a challenging issue. The present research is aimed to assess the effectiveness of seven different natural biomaterials, such as jackfruit leaf, mango leaf, onion peel, garlic peel, bamboo leaf, acid treated rubber leaf and coconut shell powder, for Cr(VI) eradication from aqueous solution by biosorption process. Characterizations were conducted using SEM, BET and FTIR spectroscopy. The effects of operating parameters, viz., pH, initial Cr(VI) ion concentration, adsorbent dosages, contact time and temperature on metal removal efficiency, were studied. The biosorption mechanism was described by the pseudo-second-order model and Langmuir isotherm model. The biosorption process was exothermic, spontaneous and chemical (except garlic peel) in nature. The sequence of adsorption capacity was mango leaf > jackfruit leaf > acid treated rubber leaf > onion peel > bamboo leaf > garlic peel > coconut shell with maximum Langmuir adsorption capacity of 35.7 mg g -1 for mango leaf. The treated effluent can be reused. Desorption study suggested effective reuse of the adsorbents up to three cycles, and safe disposal method of the used adsorbents suggested biodegradability and sustainability of the process by reapplication of the spent adsorbent and ultimately leading towards zero wastages. The performances of the adsorbents were verified with wastewater from electroplating industry. The scale-up study reported for industrial applications. ANN modelling using multilayer perception with gradient descent (GD) and Levenberg-Marquart (LM) algorithm had been successfully used for prediction of Cr(VI) removal efficiency. The study explores the undiscovered potential of the natural waste materials for sustainable existence of small and medium sector industries, especially in the third world countries by protecting the environment by eco-innovation.

  15. Prediction of Chl-a concentrations in an eutrophic lake using ANN models with hybrid inputs

    Science.gov (United States)

    Aksoy, A.; Yuzugullu, O.

    2017-12-01

    Chlorophyll-a (Chl-a) concentrations in water bodies exhibit both spatial and temporal variations. As a result, frequent sampling is required with higher number of samples. This motivates the use of remote sensing as a monitoring tool. Yet, prediction performances of models that convert radiance values into Chl-a concentrations can be poor in shallow lakes. In this study, Chl-a concentrations in Lake Eymir, a shallow eutrophic lake in Ankara (Turkey), are determined using artificial neural network (ANN) models that use hybrid inputs composed of water quality and meteorological data as well as remotely sensed radiance values to improve prediction performance. Following a screening based on multi-collinearity and principal component analysis (PCA), dissolved-oxygen concentration (DO), pH, turbidity, and humidity were selected among several parameters as the constituents of the hybrid input dataset. Radiance values were obtained from QuickBird-2 satellite. Conversion of the hybrid input into Chl-a concentrations were studied for two different periods in the lake. ANN models were successful in predicting Chl-a concentrations. Yet, prediction performance declined for low Chl-a concentrations in the lake. In general, models with hybrid inputs were superior over the ones that solely used remotely sensed data.

  16. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain

    OpenAIRE

    Patricia Jimeno-Sáez; Javier Senent-Aparicio; Julio Pérez-Sánchez; David Pulido-Velazquez

    2018-01-01

    Streamflow data are of prime importance to water-resources planning and management, and the accuracy of their estimation is very important for decision making. The Soil and Water Assessment Tool (SWAT) and Artificial Neural Network (ANN) models have been evaluated and compared to find a method to improve streamflow estimation. For a more complete evaluation, the accuracy and ability of these streamflow estimation models was also established separately based on their performance during differe...

  17. A computation ANN model for quantifying the global solar radiation: A case study of Al-Aqabah-Jordan

    International Nuclear Information System (INIS)

    Abolgasem, I M; Alghoul, M A; Ruslan, M H; Chan, H Y; Khrit, N G; Sopian, K

    2015-01-01

    In this paper, a computation model is developed to predict the global solar radiation (GSR) in Aqaba city based on the data recorded with association of Artificial Neural Networks (ANN). The data used in this work are global solar radiation (GSR), sunshine duration, maximum and minimum air temperature and relative humidity. These data are available from Jordanian meteorological station over a period of two years. The quality of GSR forecasting is compared by using different Learning Algorithms. The decision of changing the ANN architecture is essentially based on the predicted results to obtain the best ANN model for monthly and seasonal GSR. Different configurations patterns were tested using available observed data. It was found that the model using mainly sunshine duration and air temperature as inputs gives accurate results. The ANN model efficiency and the mean square error values show that the prediction model is accurate. It is found that the effect of the three learning algorithms on the accuracy of the prediction model at the training and testing stages for each time scale is mostly within the same accuracy range. (paper)

  18. Ann Modeling for Grey Particles Produced from Interactions of Different Projectiles with Emulsion Nuclei at 4.5 AGEV/C

    International Nuclear Information System (INIS)

    El-Bakry, M.N.Y.; Basha, A.M.; Rashed, N.; Mahmoud, M.A.; Radi, A.

    2008-01-01

    Artificial Neural Network (ANN) is one of the important tools in high energy physics. In this paper, we are using ANN for modeling the multiplicity distributions of grey particles produced from interactions of P, 3 He, 4 He, 6 Li, 12 C, 24 Mg, and 32 S with emulsion nuclei, light nuclei (CNO), and heavy nuclei (Ag Br). The equations of these distributions were obtained

  19. Exploration of artificial neural network [ANN] to predict the electrochemical characteristics of lithium-ion cells

    Energy Technology Data Exchange (ETDEWEB)

    Parthiban, Thirumalai; Ravi, R.; Kalaiselvi, N. [Central Electrochemical Research Institute (CECRI), Karaikudi 630006 (India)

    2007-12-31

    CoO anode, as an alternate to the carbonaceous anodes of lithium-ion cells has been prepared and investigated for electrochemical charge-discharge characteristics for about 50 cycles. Artificial neural networks (ANNs), which are useful in estimating battery performance, has been deployed for the first time to forecast and to verify the charge-discharge behavior of lithium-ion cells containing CoO anode for a total of 50 cycles. In this novel approach, ANN that has one input layer with one neuron corresponding to one input variable, viz., cycles [charge-discharge cycles] and a hidden layer consisting of three neurons to produce their outputs to the output layer through a sigmoid function has been selected for the present investigation. The output layer consists of two neurons, representing the charge and discharge capacity, whose activation function is also the sigmoid transfer function. In this ever first attempt to exploit ANN as an effective theoretical tool to understand the charge-discharge characteristics of lithium-ion cells, an excellent agreement between the calculated and observed capacity values was found with CoO anodes with the best fit values corresponding to an error factor of <1%, which is the highlight of the present study. (author)

  20. Ann modeling of kerf transfer in Co2 laser cutting and optimization of cutting parameters using monte carlo method

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2015-01-01

    Full Text Available In this paper, an attempt has been made to develop a mathematical model in order to study the relationship between laser cutting parameters such as laser power, cutting speed, assist gas pressure and focus position, and kerf taper angle obtained in CO2 laser cutting of AISI 304 stainless steel. To this aim, a single hidden layer artificial neural network (ANN trained with gradient descent with momentum algorithm was used. To obtain an experimental database for the ANN training, laser cutting experiment was planned as per Taguchi’s L27 orthogonal array with three levels for each of the cutting parameters. Statistically assessed as adequate, ANN model was then used to investigate the effect of the laser cutting parameters on the kerf taper angle by generating 2D and 3D plots. It was observed that the kerf taper angle was highly sensitive to the selected laser cutting parameters, as well as their interactions. In addition to modeling, by applying the Monte Carlo method on the developed kerf taper angle ANN model, the near optimal laser cutting parameter settings, which minimize kerf taper angle, were determined.

  1. Prediction of Tourism Demand in Iran by Using Artificial Neural Network (ANN and Supporting Vector Machine (SVR

    Directory of Open Access Journals (Sweden)

    Seyedehelham Sadatiseyedmahalleh

    2016-02-01

    Full Text Available This research examines and proves this effectiveness connected with artificial neural networks (ANNs as an alternative approach to the use of Support Vector Machine (SVR in the tourism research. This method can be used for the tourism industry to define the turism’s demands in Iran. The outcome reveals the use of ANNs in tourism research might result in better quotations when it comes to prediction bias and accuracy. Even more applications of ANNs in the context of tourism demand evaluation is needed to establish and validate the effects.

  2. Evaluation of Seasonal, ANN, and Hybrid Models in Modeling Urban Water Consumption A Case Study of Rash City

    Directory of Open Access Journals (Sweden)

    Seyed Nematollah Mousavi

    2016-09-01

    Full Text Available Forecasting future water consumption in cities to plan for the required capacities in urban water supply systems (including water transmission networks and water treatment facilities depends on the application of behavioral models of uban water consumption. Being located in the North-South corridor, Rasht City is assuming a new role to play in the national economy as a foreign trade center. It will, thus, be necessary to review its present urban infrastructure in order to draft the required infrastructural development plans for meeting the city’s future water demands. The three Seasonal Autoregressive Integrated Moving Average (SARIMA, Artificial Neural Network (ANN, and SARIMABP approaches were employed in present study to model and forecast Rasht urban water consumption using monthly time series for the period 2001‒2008 of urban water consumption in Rasht. The seasonal unit root test was applied to develop the relevant SARIMA model. Results showed that all the seasonal and non-seasonal unit roots are present in all the frequencies in the monthly time series for Rasht urban water consumption. Using a proper filter, the SAIMA patterns were estimated. In a second stage the SARIMA output was used to determine the ANN output and the hybrid SARIMABP structure was accordingly constructed. The values for Rasht urban water consumption predicted by the three models indicated the superiority of the SARIMABP hybrid model as evidenced by the forecast error index of 0.41% obtained for this model. The other two models of SARIMA and ANN were, however, found to yield acceptable results for urban water managers since the forecasting error recorded for them was below 1%.

  3. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    Science.gov (United States)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  4. Prediction ofWater Quality Parameters (NO3, CL in Karaj Riverby Usinga Combinationof Wavelet Neural Network, ANN and MLRModels

    Directory of Open Access Journals (Sweden)

    T. Rajaee

    2016-10-01

    Full Text Available IntroductionThe water quality is an issue of ongoing concern. Evaluation of the quantity and quality of running waters is considerable in hydro-environmental management.The prediction and control of the quality of Karaj river water, as one of the important needed water supply sources of Tehran, possesses great importance. In this study, Performance of Artificial Neural Network (ANN, Wavelet Neural Network combination (WANN and multi linear regression (MLR models, to predict next month the Nitrate (NO3 and Chloride (CL ions of "gate ofBylaqan sluice" station located in Karaj River has been evaluated. Materials and MethodsIn this research two separate ANN models for prediction of NO3 and CL has been expanded. Each one of the parameters for prediction (NO3 / CL has been put related to the past amounts of the same time series (NO3 / CL and its amounts of Q in past months.From astatisticalperiod of10yearswas usedforthe input of the models. Hence 80% of entire data from (96 initial months of data as training set, next 10% of data (12 months and 10% of the end of time series (terminal 12 months were considered as for validation and test of the models, respectively. In WANNcombination model, the real monthly observed time series of river discharge (Q and mentioned qualityparameters(NO3 / CL were decomposed to some sub-time series at different levels by wavelet analysis.Then the decomposed quality parameters to predict and Q time series were used at different levels as inputs to the ANN technique for predicting one-step-ahead Nitrate and Chloride. These time series play various roles in the original time series and the behavior of each is distinct, so the contribution to the original time series varies from each other. In addition, prediction of high NO3 and CL values greater than mean of data that have great importancewere investigated by the models. The capability of the models was evaluated by Coefficient of Efficiency (E and the Root Mean Square

  5. Artificial Neural Network (ANN) design for Hg-Se interactions and their effect on reduction of Hg uptake by radish plant

    International Nuclear Information System (INIS)

    Kumar Rohit Raj; Abhishek Kardam; Shalini Srivastava; Jyoti Kumar Arora

    2010-01-01

    The tendency of selenium to interact with heavy metals in presence of naturally occurring species has been exploited for the development of green bioremediation of toxic metals from soil using Artificial Neural Network (ANN) modeling. The cross validation of the data for the reduction in uptake of Hg(II) ions in the plant R. sativus grown in soil and sand culture in presence of selenium has been used for ANN modeling. ANN model based on the combination of back propagation and principal component analysis was able to predict the reduction in Hg uptake with a sigmoid axon transfer function. The data of fifty laboratory experimental sets were used for structuring single layer ANN model. Series of experiments resulted into the performance evaluation based on considering 20% data for testing and 20% data for cross validation at 1,500 Epoch with 0.70 momentums The Levenberg-Marquardt algorithm (LMA) was found as the best of BP algorithms with a minimum mean squared error at the eighth place of the decimal for training (MSE) and cross validation. (author)

  6. Rapid Identification of Asteraceae Plants with Improved RBF-ANN Classification Models Based on MOS Sensor E-Nose

    Directory of Open Access Journals (Sweden)

    Hui-Qin Zou

    2014-01-01

    Full Text Available Plants from Asteraceae family are widely used as herbal medicines and food ingredients, especially in Asian area. Therefore, authentication and quality control of these different Asteraceae plants are important for ensuring consumers’ safety and efficacy. In recent decades, electronic nose (E-nose has been studied as an alternative approach. In this paper, we aim to develop a novel discriminative model by improving radial basis function artificial neural network (RBF-ANN classification model. Feature selection algorithms, including principal component analysis (PCA and BestFirst + CfsSubsetEval (BC, were applied in the improvement of RBF-ANN models. Results illustrate that in the improved RBF-ANN models with lower dimension data classification accuracies (100% remained the same as in the original model with higher-dimension data. It is the first time to introduce feature selection methods to get valuable information on how to attribute more relevant MOS sensors; namely, in this case, S1, S3, S4, S6, and S7 show better capability to distinguish these Asteraceae plants. This paper also gives insights to further research in this area, for instance, sensor array optimization and performance improvement of classification model.

  7. Exact estimation of biodiesel cetane number (CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial neural network (ANN)

    International Nuclear Information System (INIS)

    Hosseinpour, Soleiman; Aghbashlo, Mortaza; Tabatabaei, Meisam; Khalife, Esmail

    2016-01-01

    Highlights: • Estimating the biodiesel CN from its FAMEs profile using ANN-based PLS approach. • Comparing the capability of ANN-adapted PLS approach with the standard PLS model. • Exact prediction of biodiesel CN from it FAMEs profile using ANN-based PLS method. • Developing an easy-to-use software using ANN-PLS model for computing the biodiesel CN. - Abstract: Cetane number (CN) is among the most important properties of biodiesel because it quantifies combustion speed or in better words, ignition quality. Experimental measurement of biodiesel CN is rather laborious and expensive. However, the high proportionality of biodiesel fatty acid methyl esters (FAMEs) profile with its CN is very appealing to develop straightforward and inexpensive computerized tools for biodiesel CN estimation. Unfortunately, correlating the chemical structure of biodiesel to its CN using conventional statistical and mathematical approaches is very difficult. To solve this issue, partial least square (PLS) adapted by artificial neural network (ANN) was introduced and examined herein as an innovative approach for the exact estimation of biodiesel CN from its FAMEs profile. In the proposed approach, ANN paradigm was used for modeling the inner relation between the input and the output PLS score vectors. In addition, the capability of the developed method in predicting the biodiesel CN was compared with the basal PLS method. The accuracy of the developed approaches for computing the biodiesel CN was assessed using three statistical criteria, i.e., coefficient of determination (R"2), mean-squared error (MSE), and percentage error (PE). The ANN-adapted PLS method predicted the biodiesel CN with an R"2 value higher than 0.99 demonstrating the fidelity of the developed model over the classical PLS method with a markedly lower R"2 value of about 0.85. In order to facilitate the use of the proposed model, an easy-to-use computer program was also developed on the basis of ANN-adapted PLS

  8. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain

    Directory of Open Access Journals (Sweden)

    Patricia Jimeno-Sáez

    2018-02-01

    Full Text Available Streamflow data are of prime importance to water-resources planning and management, and the accuracy of their estimation is very important for decision making. The Soil and Water Assessment Tool (SWAT and Artificial Neural Network (ANN models have been evaluated and compared to find a method to improve streamflow estimation. For a more complete evaluation, the accuracy and ability of these streamflow estimation models was also established separately based on their performance during different periods of flows using regional flow duration curves (FDCs. Specifically, the FDCs were divided into five sectors: very low, low, medium, high and very high flow. This segmentation of flow allows analysis of the model performance for every important discharge event precisely. In this study, the models were applied in two catchments in Peninsular Spain with contrasting climatic conditions: Atlantic and Mediterranean climates. The results indicate that SWAT and ANNs were generally good tools in daily streamflow modelling. However, SWAT was found to be more successful in relation to better simulation of lower flows, while ANNs were superior at estimating higher flows in all cases.

  9. Multiresolution wavelet-ANN model for significant wave height forecasting.

    Digital Repository Service at National Institute of Oceanography (India)

    Deka, P.C.; Mandal, S.; Prahlada, R.

    Hybrid wavelet artificial neural network (WLNN) has been applied in the present study to forecast significant wave heights (Hs). Here Discrete Wavelet Transformation is used to preprocess the time series data (Hs) prior to Artificial Neural Network...

  10. Development of ANN-based models to predict the static response and dynamic response of a heat exchanger in a real MVAC system

    International Nuclear Information System (INIS)

    Hu Qinhua; So, Albert T P; Tse, W L; Ren, Qingchang

    2005-01-01

    This paper presents a systematic approach to develop artificial neural network (ANN) models to predict the performance of a heat exchanger operating in real mechanical ventilation and air-conditioning (MVAC) system. Two approaches were attempted and presented. Every detailed components of the MVAC system have been considered and we attempt to model each of them by one ANN. This study used the neural network technique to obtain a static and a dynamic model for a heat exchanger mounted in an air handler unit (AHU), which is the key component of the MVAC system. It has been verified that almost all of the predicted values of the ANN model were within 95% - 105% of the measured values, with a consistent mean relative error (MRE) smaller than 2.5%. The paper details our experiences in using ANNs, especially those with back-propagation (BP) structures. Also, the weights and biases of our trained-up ANN models are listed out, which serve as good reference for readers to deal with their own situations

  11. Optimization of thermal conductivity lightweight brick type AAC (Autoclaved Aerated Concrete) effect of Si & Ca composition by using Artificial Neural Network (ANN)

    Science.gov (United States)

    Zulkifli; Wiryawan, G. P.

    2018-03-01

    Lightweight brick is the most important component of building construction, therefore it is necessary to have lightweight thermal, mechanical and aqustic thermal properties that meet the standard, in this paper which is discussed is the domain of light brick thermal conductivity properties. The advantage of lightweight brick has a low density (500-650 kg/m3), more economical, can reduce the load 30-40% compared to conventional brick (clay brick). In this research, Artificial Neural Network (ANN) is used to predict the thermal conductivity of lightweight brick type Autoclaved Aerated Concrete (AAC). Based on the training and evaluation that have been done on 10 model of ANN with number of hidden node 1 to 10, obtained that ANN with 3 hidden node have the best performance. It is known from the mean value of MSE (Mean Square Error) validation for three training times of 0.003269. This ANN was further used to predict the thermal conductivity of four light brick samples. The predicted results for each of the AAC1, AAC2, AAC3 and AAC4 light brick samples were 0.243 W/m.K, respectively; 0.29 W/m.K; 0.32 W/m.K; and 0.32 W/m.K. Furthermore, ANN is used to determine the effect of silicon composition (Si), Calcium (Ca), to light brick thermal conductivity. ANN simulation results show that the thermal conductivity increases with increasing Si composition. Si content is allowed maximum of 26.57%, while the Ca content in the range 20.32% - 30.35%.

  12. Modeling Multi-Event Non-Point Source Pollution in a Data-Scarce Catchment Using ANN and Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2017-06-01

    Full Text Available Event-based runoff–pollutant relationships have been the key for water quality management, but the scarcity of measured data results in poor model performance, especially for multiple rainfall events. In this study, a new framework was proposed for event-based non-point source (NPS prediction and evaluation. The artificial neural network (ANN was used to extend the runoff–pollutant relationship from complete data events to other data-scarce events. The interpolation method was then used to solve the problem of tail deviation in the simulated pollutographs. In addition, the entropy method was utilized to train the ANN for comprehensive evaluations. A case study was performed in the Three Gorges Reservoir Region, China. Results showed that the ANN performed well in the NPS simulation, especially for light rainfall events, and the phosphorus predictions were always more accurate than the nitrogen predictions under scarce data conditions. In addition, peak pollutant data scarcity had a significant impact on the model performance. Furthermore, these traditional indicators would lead to certain information loss during the model evaluation, but the entropy weighting method could provide a more accurate model evaluation. These results would be valuable for monitoring schemes and the quantitation of event-based NPS pollution, especially in data-poor catchments.

  13. Anne K. Bang: Islamic Sufi Networks in the Western Indian Ocean (c. 1880-1940. Ripples of Reform.

    Directory of Open Access Journals (Sweden)

    Angelika Brodersen

    2015-03-01

    Full Text Available This contribution offers a review of Anne K. Bang's book: Islamic Sufi Networks in the Western Indian Ocean (c. 1880-1940. Ripples of Reform. Islam in Africa, Volume 16. Leiden: Brill 2014. xiv + 227 pages, € 104.00, ISBN 978-900-425-1342.

  14. Modeling and Investigation of the Wear Resistance of Salt Bath Nitrided Aisi 4140 via ANN

    Science.gov (United States)

    Ekinci, Şerafettin; Akdemir, Ahmet; Kahramanli, Humar

    2013-05-01

    Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.

  15. Development of LC-MS determination method and back-propagation ANN pharmacokinetic model of corynoxeine in rat.

    Science.gov (United States)

    Ma, Jianshe; Cai, Jinzhang; Lin, Guanyang; Chen, Huilin; Wang, Xianqin; Wang, Xianchuan; Hu, Lufeng

    2014-05-15

    Corynoxeine(CX), isolated from the extract of Uncaria rhynchophylla, is a useful and prospective compound in the prevention and treatment for vascular diseases. A simple and selective liquid chromatography mass spectrometry (LC-MS) method was developed to determine the concentration of CX in rat plasma. The chromatographic separation was achieved on a Zorbax SB-C18 (2.1 mm × 150 mm, 5 μm) column with acetonitrile-0.1% formic acid in water as mobile phase. Selective ion monitoring (SIM) mode was used for quantification using target ions m/z 383 for CX and m/z 237 for the carbamazepine (IS). After the LC-MS method was validated, it was applied to a back-propagation artificial neural network (BP-ANN) pharmacokinetic model study of CX in rats. The results showed that after intravenous administration of CX, it was mainly distributed in blood and eliminated quickly, t1/2 was less than 1h. The predicted concentrations generated by BP-ANN model had a high correlation coefficient (R>0.99) with experimental values. The developed BP-ANN pharmacokinetic model can be used to predict the concentration of CX in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Application of Particle Swarm Optimization Algorithm for Optimizing ANN Model in Recognizing Ripeness of Citrus

    Science.gov (United States)

    Diyana Rosli, Anis; Adenan, Nur Sabrina; Hashim, Hadzli; Ezan Abdullah, Noor; Sulaiman, Suhaimi; Baharudin, Rohaiza

    2018-03-01

    This paper shows findings of the application of Particle Swarm Optimization (PSO) algorithm in optimizing an Artificial Neural Network that could categorize between ripeness and unripeness stage of citrus suhuensis. The algorithm would adjust the network connections weights and adapt its values during training for best results at the output. Initially, citrus suhuensis fruit’s skin is measured using optically non-destructive method via spectrometer. The spectrometer would transmit VIS (visible spectrum) photonic light radiation to the surface (skin of citrus) of the sample. The reflected light from the sample’s surface would be received and measured by the same spectrometer in terms of reflectance percentage based on VIS range. These measured data are used to train and test the best optimized ANN model. The accuracy is based on receiver operating characteristic (ROC) performance. The result outcomes from this investigation have shown that the achieved accuracy for the optimized is 70.5% with a sensitivity and specificity of 60.1% and 80.0% respectively.

  17. Development of ANN Model for Wind Speed Prediction as a Support for Early Warning System

    Directory of Open Access Journals (Sweden)

    Ivan Marović

    2017-01-01

    Full Text Available The impact of natural disasters increases every year with more casualties and damage to property and the environment. Therefore, it is important to prevent consequences by implementation of the early warning system (EWS in order to announce the possibility of the harmful phenomena occurrence. In this paper, focus is placed on the implementation of the EWS on the micro location in order to announce possible harmful phenomena occurrence caused by wind. In order to predict such phenomena (wind speed, an artificial neural network (ANN prediction model is developed. The model is developed on the basis of the input data obtained by local meteorological station on the University of Rijeka campus area in the Republic of Croatia. The prediction model is validated and evaluated by visual and common calculation approaches, after which it was found that it is possible to perform very good wind speed prediction for time steps Δt=1 h, Δt=3 h, and Δt=8 h. The developed model is implemented in the EWS as a decision support for improvement of the existing “procedure plan in a case of the emergency caused by stormy wind or hurricane, snow and occurrence of the ice on the University of Rijeka campus.”

  18. Comparative study of landslides susceptibility mapping methods: Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN)

    Science.gov (United States)

    Salleh, S. A.; Rahman, A. S. A. Abd; Othman, A. N.; Mohd, W. M. N. Wan

    2018-02-01

    As different approach produces different results, it is crucial to determine the methods that are accurate in order to perform analysis towards the event. This research aim is to compare the Rank Reciprocal (MCDM) and Artificial Neural Network (ANN) analysis techniques in determining susceptible zones of landslide hazard. The study is based on data obtained from various sources such as local authority; Dewan Bandaraya Kuala Lumpur (DBKL), Jabatan Kerja Raya (JKR) and other agencies. The data were analysed and processed using Arc GIS. The results were compared by quantifying the risk ranking and area differential. It was also compared with the zonation map classified by DBKL. The results suggested that ANN method gives better accuracy compared to MCDM with 18.18% higher accuracy assessment of the MCDM approach. This indicated that ANN provides more reliable results and it is probably due to its ability to learn from the environment thus portraying realistic and accurate result.

  19. [Study of building quantitative analysis model for chlorophyll in winter wheat with reflective spectrum using MSC-ANN algorithm].

    Science.gov (United States)

    Liang, Xue; Ji, Hai-yan; Wang, Peng-xin; Rao, Zhen-hong; Shen, Bing-hui

    2010-01-01

    Preprocess method of multiplicative scatter correction (MSC) was used to reject noises in the original spectra produced by the environmental physical factor effectively, then the principal components of near-infrared spectroscopy were calculated by nonlinear iterative partial least squares (NIPALS) before building the back propagation artificial neural networks method (BP-ANN), and the numbers of principal components were calculated by the method of cross validation. The calculated principal components were used as the inputs of the artificial neural networks model, and the artificial neural networks model was used to find the relation between chlorophyll in winter wheat and reflective spectrum, which can predict the content of chlorophyll in winter wheat. The correlation coefficient (r) of calibration set was 0.9604, while the standard deviation (SD) and relative standard deviation (RSD) was 0.187 and 5.18% respectively. The correlation coefficient (r) of predicted set was 0.9600, and the standard deviation (SD) and relative standard deviation (RSD) was 0.145 and 4.21% respectively. It means that the MSC-ANN algorithm can reject noises in the original spectra produced by the environmental physical factor effectively and set up an exact model to predict the contents of chlorophyll in living leaves veraciously to replace the classical method and meet the needs of fast analysis of agricultural products.

  20. FE-ANN based modeling of 3D Simple Reinforced Concrete Girders for Objective Structural Health Evaluation : Tech Transfer Summary

    Science.gov (United States)

    2017-06-01

    The objective of this study was to develop an objective, quantitative method for evaluating damage to bridge girders by using artificial neural networks (ANNs). This evaluation method, which is a supplement to visual inspection, requires only the res...

  1. Prediction of temperature and HAZ in thermal-based processes with Gaussian heat source by a hybrid GA-ANN model

    Science.gov (United States)

    Fazli Shahri, Hamid Reza; Mahdavinejad, Ramezanali

    2018-02-01

    Thermal-based processes with Gaussian heat source often produce excessive temperature which can impose thermally-affected layers in specimens. Therefore, the temperature distribution and Heat Affected Zone (HAZ) of materials are two critical factors which are influenced by different process parameters. Measurement of the HAZ thickness and temperature distribution within the processes are not only difficult but also expensive. This research aims at finding a valuable knowledge on these factors by prediction of the process through a novel combinatory model. In this study, an integrated Artificial Neural Network (ANN) and genetic algorithm (GA) was used to predict the HAZ and temperature distribution of the specimens. To end this, a series of full factorial design of experiments were conducted by applying a Gaussian heat flux on Ti-6Al-4 V at first, then the temperature of the specimen was measured by Infrared thermography. The HAZ width of each sample was investigated through measuring the microhardness. Secondly, the experimental data was used to create a GA-ANN model. The efficiency of GA in design and optimization of the architecture of ANN was investigated. The GA was used to determine the optimal number of neurons in hidden layer, learning rate and momentum coefficient of both output and hidden layers of ANN. Finally, the reliability of models was assessed according to the experimental results and statistical indicators. The results demonstrated that the combinatory model predicted the HAZ and temperature more effective than a trial-and-error ANN model.

  2. Comparative study on the predictability of statistical models (RSM and ANN) on the behavior of optimized buccoadhesive wafers containing Loratadine and their in vivo assessment.

    Science.gov (United States)

    Chakraborty, Prithviraj; Parcha, Versha; Chakraborty, Debarupa D; Ghosh, Amitava

    2016-01-01

    Buccoadhesive wafer dosage form containing Loratadine is formulated utilizing Formulation by Design (FbD) approach incorporating sodium alginate and lactose monohydrate as independent variable employing solvent casting method. The wafers were statistically optimized using Response Surface Methodology (RSM) and Artificial Neural Network algorithm (ANN) for predicting physicochemical and physico-mechanical properties of the wafers as responses. Morphologically wafers were tested using SEM. Quick disintegration of the samples was examined employing Optical Contact Angle (OCA). The comparison of the predictability of RSM and ANN showed a high prognostic capacity of RSM model over ANN model in forecasting mechanical and physicochemical properties of the wafers. The in vivo assessment of the optimized buccoadhesive wafer exhibits marked increase in bioavailability justifying the administration of Loratadine through buccal route, bypassing hepatic first pass metabolism.

  3. Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics

    International Nuclear Information System (INIS)

    Dong, Zibo; Yang, Dazhi; Reindl, Thomas; Walsh, Wilfred M.

    2014-01-01

    Highlights: • Satellite image analysis is performed and cloud cover index is classified using self-organizing maps (SOM). • The ESSS model is used to forecast cloud cover index. • Solar irradiance is estimated using multi-layer perceptron (MLP). • The proposed model shows better accuracy than other investigated models. - Abstract: We forecast hourly solar irradiance time series using satellite image analysis and a hybrid exponential smoothing state space (ESSS) model together with artificial neural networks (ANN). Since cloud cover is the major factor affecting solar irradiance, cloud detection and classification are crucial to forecast solar irradiance. Geostationary satellite images provide cloud information, allowing a cloud cover index to be derived and analysed using self-organizing maps (SOM). Owing to the stochastic nature of cloud generation in tropical regions, the ESSS model is used to forecast cloud cover index. Among different models applied in ANN, we favour the multi-layer perceptron (MLP) to derive solar irradiance based on the cloud cover index. This hybrid model has been used to forecast hourly solar irradiance in Singapore and the technique is found to outperform traditional forecasting models

  4. A Fault Diagnosis Model Based on LCD-SVD-ANN-MIV and VPMCD for Rotating Machinery

    Directory of Open Access Journals (Sweden)

    Songrong Luo

    2016-01-01

    Full Text Available The fault diagnosis process is essentially a class discrimination problem. However, traditional class discrimination methods such as SVM and ANN fail to capitalize the interactions among the feature variables. Variable predictive model-based class discrimination (VPMCD can adequately use the interactions. But the feature extraction and selection will greatly affect the accuracy and stability of VPMCD classifier. Aiming at the nonstationary characteristics of vibration signal from rotating machinery with local fault, singular value decomposition (SVD technique based local characteristic-scale decomposition (LCD was developed to extract the feature variables. Subsequently, combining artificial neural net (ANN and mean impact value (MIV, ANN-MIV as a kind of feature selection approach was proposed to select more suitable feature variables as input vector of VPMCD classifier. In the end of this paper, a novel fault diagnosis model based on LCD-SVD-ANN-MIV and VPMCD is proposed and proved by an experimental application for roller bearing fault diagnosis. The results show that the proposed method is effective and noise tolerant. And the comparative results demonstrate that the proposed method is superior to the other methods in diagnosis speed, diagnosis success rate, and diagnosis stability.

  5. Application of artificial neural networks in hydrological modeling: A case study of runoff simulation of a Himalayan glacier basin

    Science.gov (United States)

    Buch, A. M.; Narain, A.; Pandey, P. C.

    1994-01-01

    The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.

  6. Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation

    International Nuclear Information System (INIS)

    Voyant, Cyril; Muselli, Marc; Paoli, Christophe; Nivet, Marie-Laure

    2012-01-01

    We propose in this paper an original technique to predict global radiation using a hybrid ARMA/ANN model and data issued from a numerical weather prediction model (NWP). We particularly look at the multi-layer perceptron (MLP). After optimizing our architecture with NWP and endogenous data previously made stationary and using an innovative pre-input layer selection method, we combined it to an ARMA model from a rule based on the analysis of hourly data series. This model has been used to forecast the hourly global radiation for five places in Mediterranean area. Our technique outperforms classical models for all the places. The nRMSE for our hybrid model MLP/ARMA is 14.9% compared to 26.2% for the naïve persistence predictor. Note that in the standalone ANN case the nRMSE is 18.4%. Finally, in order to discuss the reliability of the forecaster outputs, a complementary study concerning the confidence interval of each prediction is proposed. -- Highlights: ► Time series forecasting with hybrid method based on the use of ALADIN numerical weather model, ANN and ARMA. ► Innovative pre-input layer selection method. ► Combination of optimized MLP and ARMA model obtained from a rule based on the analysis of hourly data series. ► Stationarity process (method and control) for the global radiation time series.

  7. Introducing Artificial Neural Networks through a Spreadsheet Model

    Science.gov (United States)

    Rienzo, Thomas F.; Athappilly, Kuriakose K.

    2012-01-01

    Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…

  8. Modeling of an Aged Porous Silicon Humidity Sensor Using ANN Technique

    Directory of Open Access Journals (Sweden)

    Tarikul ISLAM

    2006-10-01

    Full Text Available Porous silicon (PS sensor based on capacitive technique used for measuring relative humidity has the advantages of low cost, ease of fabrication with controlled structure and CMOS compatibility. But the response of the sensor is nonlinear function of humidity and suffers from errors due to aging and stability. One adaptive linear (ADALINE ANN model has been developed to model the behavior of the sensor with a view to estimate these errors and compensate them. The response of the sensor is represented by third order polynomial basis function whose coefficients are determined by the ANN technique. The drift in sensor output due to aging of PS layer is also modeled by adapting the weights of the polynomial function. ANN based modeling is found to be more suitable than conventional physical modeling of PS humidity sensor in changing environment and drift due to aging. It helps online estimation of nonlinearity as well as monitoring of the fault of the PS humidity sensor using the coefficients of the model.

  9. Simulation of CO2 Solubility in Polystyrene-b-Polybutadieneb-Polystyrene (SEBS) by artificial intelligence network (ANN) method

    Science.gov (United States)

    Sharudin, R. W.; AbdulBari Ali, S.; Zulkarnain, M.; Shukri, M. A.

    2018-05-01

    This study reports on the integration of Artificial Neural Network (ANNs) with experimental data in predicting the solubility of carbon dioxide (CO2) blowing agent in SEBS by generating highest possible value for Regression coefficient (R2). Basically, foaming of thermoplastic elastomer with CO2 is highly affected by the CO2 solubility. The ability of ANN in predicting interpolated data of CO2 solubility was investigated by comparing training results via different method of network training. Regards to the final prediction result for CO2 solubility by ANN, the prediction trend (output generate) was corroborated with the experimental results. The obtained result of different method of training showed the trend of output generated by Gradient Descent with Momentum & Adaptive LR (traingdx) required longer training time and required more accurate input to produce better output with final Regression Value of 0.88. However, it goes vice versa with Levenberg-Marquardt (trainlm) technique as it produced better output in quick detention time with final Regression Value of 0.91.

  10. Prediction of the Effect of Using Stone Column in Clayey Soil on the Behavior of Circular Footing by ANN Model

    Directory of Open Access Journals (Sweden)

    Omar Khaleel Ismael Al-Kubaisi

    2018-05-01

    Full Text Available Shallow foundations are usually used for structures with light to moderate loads where the soil underneath can carry them. In some cases, soil strength and/or other properties are not adequate and require improvement using one of the ground improvement techniques. Stone column is one of the common improvement techniques in which a column of stone is installed vertically in clayey soils. Stone columns are usually used to increase soil strength and to accelerate soil consolidation by acting as vertical drains. Many researches have been done to estimate the behavior of the improved soil. However, none of them considered the effect of stone column geometry on the behavior of the circular footing. In this research, finite element models have been conducted to evaluate the behavior of a circular footing with different stone column configurations. Moreover, an Artificial Neural Network (ANN model has been generated for predicting these effects. The results showed a reduction in the bending moment, the settlement, and the vertical stresses with the increment of the stone column length, while both the horizontal stress and the shear force were increased. ANN model showed a good relationship between the predicted and the calculated results.

  11. Identification of Constitutive Parameters Using Inverse Strategy Coupled to an ANN Model

    International Nuclear Information System (INIS)

    Aguir, H.; Chamekh, A.; BelHadjSalah, H.; Hambli, R.

    2007-01-01

    This paper deals with the identification of material parameters using an inverse strategy. In the classical methods, the inverse technique is generally coupled with a finite element code which leads to a long computing time. In this work an inverse strategy coupled with an ANN procedure is proposed. This method has the advantage of being faster than the classical one. To validate this approach an experimental plane tensile and bulge tests are used in order to identify material behavior. The ANN model is trained from finite element simulations of the two tests. In order to reduce the gap between the experimental responses and the numerical ones, the proposed method is coupled with an optimization procedure to identify material parameters for the AISI304. The identified material parameters are the hardening curve and the anisotropic coefficients

  12. Applying of the Artificial Neural Networks (ANN) to Identify and Characterize Sweet Spots in Shale Gas Formations

    Science.gov (United States)

    Puskarczyk, Edyta

    2018-03-01

    The main goal of the study was to enhance and improve information about the Ordovician and Silurian gas-saturated shale formations. Author focused on: firstly, identification of the shale gas formations, especially the sweet spots horizons, secondly, classification and thirdly, the accurate characterization of divisional intervals. Data set comprised of standard well logs from the selected well. Shale formations are represented mainly by claystones, siltstones, and mudstones. The formations are also partially rich in organic matter. During the calculations, information about lithology of stratigraphy weren't taken into account. In the analysis, selforganizing neural network - Kohonen Algorithm (ANN) was used for sweet spots identification. Different networks and different software were tested and the best network was used for application and interpretation. As a results of Kohonen networks, groups corresponding to the gas-bearing intervals were found. The analysis showed diversification between gas-bearing formations and surrounding beds. It is also shown that internal diversification in sweet spots is present. Kohonen algorithm was also used for geological interpretation of well log data and electrofacies prediction. Reliable characteristic into groups shows that Ja Mb and Sa Fm which are usually treated as potential sweet spots only partially have good reservoir conditions. It is concluded that ANN appears to be useful and quick tool for preliminary classification of members and sweet spots identification.

  13. Usefulness of ANN-based model for copper removal from aqueous solutions using agro industrial waste materials

    Directory of Open Access Journals (Sweden)

    Petrović Marija S.

    2015-01-01

    Full Text Available The purpose of this study was to investigate the adsorption properties of locally available lignocelluloses biomaterials as biosorbents for the removal of copper ions from aqueous solution. Materials are generated from juice production (apricot stones and from the corn milling process (corn cob. Such solid wastes have little or no economic value and very often present a disposal problem. Using batch adsorption techniques the effects of initial Cu(II ions concentration (Ci, amount of biomass (m and volume of metal solution (V, on biosorption efficiency and capacity were studied for both materials, without any pre-treatments. The optimal parameters for both biosorbents were selected depending on a highest sorption capability of biosorbent, in removal of Cu(II. Experimental data were compared with second order polynomial regression models (SOPs and artificial neural networks (ANNs. SOPs showed acceptable coefficients of determination (0.842 - 0.997, while ANNs performed high prediction accuracy (0.980-0.986 in comparison to experimental results. [Projekat Ministarstva nauke Republike Srbije, br. TR 31003, TR 31055

  14. Neuropathological findings processed by artificial neural networks (ANNs can perfectly distinguish Alzheimer's patients from controls in the Nun Study

    Directory of Open Access Journals (Sweden)

    Snowdon David

    2007-06-01

    Full Text Available Abstract Background Many reports have described that there are fewer differences in AD brain neuropathologic lesions between AD patients and control subjects aged 80 years and older, as compared with the considerable differences between younger persons with AD and controls. In fact some investigators have suggested that since neurofibrillary tangles (NFT can be identified in the brains of non-demented elderly subjects they should be considered as a consequence of the aging process. At present, there are no universally accepted neuropathological criteria which can mathematically differentiate AD from healthy brain in the oldest old. The aim of this study is to discover the hidden and non-linear associations among AD pathognomonic brain lesions and the clinical diagnosis of AD in participants in the Nun Study through Artificial Neural Networks (ANNs analysis Methods The analyses were based on 26 clinically- and pathologically-confirmed AD cases and 36 controls who had normal cognitive function. The inputs used for the analyses were just NFT and neuritic plaques counts in neocortex and hippocampus, for which, despite substantial differences in mean lesions counts between AD cases and controls, there was a substantial overlap in the range of lesion counts. Results By taking into account the above four neuropathological features, the overall predictive capability of ANNs in sorting out AD cases from normal controls reached 100%. The corresponding accuracy obtained with Linear Discriminant Analysis was 92.30%. These results were consistently obtained in ten independent experiments. The same experiments were carried out with ANNs on a subgroup of 13 non severe AD patients and on the same 36 controls. The results obtained in terms of prediction accuracy with ANNs were exactly the same. Input relevance analysis confirmed the relative dominance of NFT in neocortex in discriminating between AD patients and controls and indicated the lesser importance

  15. Neuropathological findings processed by artificial neural networks (ANNs) can perfectly distinguish Alzheimer's patients from controls in the Nun Study.

    Science.gov (United States)

    Grossi, Enzo; Buscema, Massimo P; Snowdon, David; Antuono, Piero

    2007-06-21

    Many reports have described that there are fewer differences in AD brain neuropathologic lesions between AD patients and control subjects aged 80 years and older, as compared with the considerable differences between younger persons with AD and controls. In fact some investigators have suggested that since neurofibrillary tangles (NFT) can be identified in the brains of non-demented elderly subjects they should be considered as a consequence of the aging process. At present, there are no universally accepted neuropathological criteria which can mathematically differentiate AD from healthy brain in the oldest old. The aim of this study is to discover the hidden and non-linear associations among AD pathognomonic brain lesions and the clinical diagnosis of AD in participants in the Nun Study through Artificial Neural Networks (ANNs) analysis The analyses were based on 26 clinically- and pathologically-confirmed AD cases and 36 controls who had normal cognitive function. The inputs used for the analyses were just NFT and neuritic plaques counts in neocortex and hippocampus, for which, despite substantial differences in mean lesions counts between AD cases and controls, there was a substantial overlap in the range of lesion counts. By taking into account the above four neuropathological features, the overall predictive capability of ANNs in sorting out AD cases from normal controls reached 100%. The corresponding accuracy obtained with Linear Discriminant Analysis was 92.30%. These results were consistently obtained in ten independent experiments. The same experiments were carried out with ANNs on a subgroup of 13 non severe AD patients and on the same 36 controls. The results obtained in terms of prediction accuracy with ANNs were exactly the same. Input relevance analysis confirmed the relative dominance of NFT in neocortex in discriminating between AD patients and controls and indicated the lesser importance played by NP in the hippocampus. The results of this study

  16. Use of artificial neural networks for transport energy demand modeling

    International Nuclear Information System (INIS)

    Murat, Yetis Sazi; Ceylan, Halim

    2006-01-01

    The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem

  17. Optimising training data for ANNs with Genetic Algorithms

    OpenAIRE

    Kamp , R. G.; Savenije , H. H. G.

    2006-01-01

    International audience; Artificial Neural Networks (ANNs) have proved to be good modelling tools in hydrology for rainfall-runoff modelling and hydraulic flow modelling. Representative datasets are necessary for the training phase in which the ANN learns the model's input-output relations. Good and representative training data is not always available. In this publication Genetic Algorithms (GA) are used to optimise training datasets. The approach is tested with an existing hydraulic model in ...

  18. Optimising training data for ANNs with Genetic Algorithms

    OpenAIRE

    R. G. Kamp; R. G. Kamp; H. H. G. Savenije

    2006-01-01

    Artificial Neural Networks (ANNs) have proved to be good modelling tools in hydrology for rainfall-runoff modelling and hydraulic flow modelling. Representative datasets are necessary for the training phase in which the ANN learns the model's input-output relations. Good and representative training data is not always available. In this publication Genetic Algorithms (GA) are used to optimise training datasets. The approach is tested with an existing hydraulic model in The Netherlands. An...

  19. ANN-based calibration model of FTIR used in transformer online monitoring

    Science.gov (United States)

    Li, Honglei; Liu, Xian-yong; Zhou, Fangjie; Tan, Kexiong

    2005-02-01

    Recently, chromatography column and gas sensor have been used in online monitoring device of dissolved gases in transformer oil. But some disadvantages still exist in these devices: consumption of carrier gas, requirement of calibration, etc. Since FTIR has high accuracy, consume no carrier gas and require no calibration, the researcher studied the application of FTIR in such monitoring device. Experiments of "Flow gas method" were designed, and spectrum of mixture composed of different gases was collected with A BOMEM MB104 FTIR Spectrometer. A key question in the application of FTIR is that: the absorbance spectrum of 3 fault key gases, including C2H4, CH4 and C2H6, are overlapped seriously at 2700~3400cm-1. Because Absorbance Law is no longer appropriate, a nonlinear calibration model based on BP ANN was setup to in the quantitative analysis. The height absorbance of C2H4, CH4 and C2H6 were adopted as quantitative feature, and all the data were normalized before training the ANN. Computing results show that the calibration model can effectively eliminate the cross disturbance to measurement.

  20. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    Science.gov (United States)

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.

  1. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?

    Science.gov (United States)

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-06-28

    A multilayer feed-forward artificial neural network (MLP-ANN) with a single, hidden layer that contains a finite number of neurons can be regarded as a universal non-linear approximator. Today, the ANN method and linear regression (MLR) model are widely used for quantum chemistry (QC) data analysis (e.g., thermochemistry) to improve their accuracy (e.g., Gaussian G2-G4, B3LYP/B3-LYP, X1, or W1 theoretical methods). In this study, an alternative approach based on support vector machines (SVMs) is used, the least squares support vector machine (LS-SVM) regression. It has been applied to ab initio (first principle) and density functional theory (DFT) quantum chemistry data. So, QC + SVM methodology is an alternative to QC + ANN one. The task of the study was to estimate the Møller-Plesset (MPn) or DFT (B3LYP, BLYP, BMK) energies calculated with large basis sets (e.g., 6-311G(3df,3pd)) using smaller ones (6-311G, 6-311G*, 6-311G**) plus molecular descriptors. A molecular set (BRM-208) containing a total of 208 organic molecules was constructed and used for the LS-SVM training, cross-validation, and testing. MP2, MP3, MP4(DQ), MP4(SDQ), and MP4/MP4(SDTQ) ab initio methods were tested. Hartree-Fock (HF/SCF) results were also reported for comparison. Furthermore, constitutional (CD: total number of atoms and mole fractions of different atoms) and quantum-chemical (QD: HOMO-LUMO gap, dipole moment, average polarizability, and quadrupole moment) molecular descriptors were used for the building of the LS-SVM calibration model. Prediction accuracies (MADs) of 1.62 ± 0.51 and 0.85 ± 0.24 kcal mol(-1) (1 kcal mol(-1) = 4.184 kJ mol(-1)) were reached for SVM-based approximations of ab initio and DFT energies, respectively. The LS-SVM model was more accurate than the MLR model. A comparison with the artificial neural network approach shows that the accuracy of the LS-SVM method is similar to the accuracy of ANN. The extrapolation and interpolation results show that LS-SVM is

  2. ANN Model-Based Simulation of the Runoff Variation in Response to Climate Change on the Qinghai-Tibet Plateau, China

    Directory of Open Access Journals (Sweden)

    Chang Juan

    2017-01-01

    Full Text Available Precisely quantitative assessments of stream flow response to climatic change and permafrost thawing are highly challenging and urgent in cold regions. However, due to the notably harsh environmental conditions, there is little field monitoring data of runoff in permafrost regions, which has limited the development of physically based models in these regions. To identify the impacts of climate change in the runoff process in the Three-River Headwater Region (TRHR on the Qinghai-Tibet Plateau, two artificial neural network (ANN models, one with three input variables (previous runoff, air temperature, and precipitation and another with two input variables (air temperature and precipitation only, were developed to simulate and predict the runoff variation in the TRHR. The results show that the three-input variable ANN model has a superior real-time prediction capability and performs well in the simulation and forecasting of the runoff variation in the TRHR. Under the different scenarios conditions, the forecasting results of ANN model indicated that climate change has a great effect on the runoff processes in the TRHR. The results of this study are of practical significance for water resources management and the evaluation of the impacts of climatic change on the hydrological regime in long-term considerations.

  3. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles

    2013-01-01

    Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...

  4. BP-ANN for fitting the temperature-germination model and its application in predicting sowing time and region for Bermudagrass.

    Directory of Open Access Journals (Sweden)

    Erxu Pi

    Full Text Available Temperature is one of the most significant environmental factors that affects germination of grass seeds. Reliable prediction of the optimal temperature for seed germination is crucial for determining the suitable regions and favorable sowing timing for turf grass cultivation. In this study, a back-propagation-artificial-neural-network-aided dual quintic equation (BP-ANN-QE model was developed to improve the prediction of the optimal temperature for seed germination. This BP-ANN-QE model was used to determine optimal sowing times and suitable regions for three Cynodon dactylon cultivars (C. dactylon, 'Savannah' and 'Princess VII'. Prediction of the optimal temperature for these seeds was based on comprehensive germination tests using 36 day/night (high/low temperature regimes (both ranging from 5/5 to 40/40°C with 5°C increments. Seed germination data from these temperature regimes were used to construct temperature-germination correlation models for estimating germination percentage with confidence intervals. Our tests revealed that the optimal high/low temperature regimes required for all the three bermudagrass cultivars are 30/5, 30/10, 35/5, 35/10, 35/15, 35/20, 40/15 and 40/20°C; constant temperatures ranging from 5 to 40°C inhibited the germination of all three cultivars. While comparing different simulating methods, including DQEM, Bisquare ANN-QE, and BP-ANN-QE in establishing temperature based germination percentage rules, we found that the R(2 values of germination prediction function could be significantly improved from about 0.6940-0.8177 (DQEM approach to 0.9439-0.9813 (BP-ANN-QE. These results indicated that our BP-ANN-QE model has better performance than the rests of the compared models. Furthermore, data of the national temperature grids generated from monthly-average temperature for 25 years were fit into these functions and we were able to map the germination percentage of these C. dactylon cultivars in the national scale

  5. ANN and RSM modelling of antioxidant characteristics of kombucha fermented milk beverages with peppermint

    Directory of Open Access Journals (Sweden)

    Jasmina Vitas

    2018-01-01

    Full Text Available Antioxidant activity to stable DPPH radical (AADPPH and unstable hydroxyl radicals (AA.OH and nutraceuticals (monounsaturated fatty acids (MUFAs, polyunsaturated fatty acids (PUFAs and ascorbic acid content of kombucha fermented milks with peppermint (KFM-P were modelled and optimised. Beverages were produced by the addition of 10 % of kombucha peppermint inoculum to the milk containing 0.8, 1.6 and 2.8 % milk fat at 37, 40 and 43 °C. Response surface methodology (RSM indicated opposite response surfaces for AADPPH and AA.OH PUFAs and ascorbic acid, as most significant and influential factors, were included in graphical optimization and gave the working region for obtaining products of highest antioxidant quality: lower temperatures and milk fat up to 1.8 %; higher temperatures and milk fat of maximum 1.6 %. ANN modelling of antioxidant characteristics of kombucha fermented milk beverages with peppermint was, as expected, more accurate than RSM.

  6. Hourly predictive Levenberg-Marquardt ANN and multi linear regression models for predicting of dew point temperature

    Science.gov (United States)

    Zounemat-Kermani, Mohammad

    2012-08-01

    In this study, the ability of two models of multi linear regression (MLR) and Levenberg-Marquardt (LM) feed-forward neural network was examined to estimate the hourly dew point temperature. Dew point temperature is the temperature at which water vapor in the air condenses into liquid. This temperature can be useful in estimating meteorological variables such as fog, rain, snow, dew, and evapotranspiration and in investigating agronomical issues as stomatal closure in plants. The availability of hourly records of climatic data (air temperature, relative humidity and pressure) which could be used to predict dew point temperature initiated the practice of modeling. Additionally, the wind vector (wind speed magnitude and direction) and conceptual input of weather condition were employed as other input variables. The three quantitative standard statistical performance evaluation measures, i.e. the root mean squared error, mean absolute error, and absolute logarithmic Nash-Sutcliffe efficiency coefficient ( {| {{{Log}}({{NS}})} |} ) were employed to evaluate the performances of the developed models. The results showed that applying wind vector and weather condition as input vectors along with meteorological variables could slightly increase the ANN and MLR predictive accuracy. The results also revealed that LM-NN was superior to MLR model and the best performance was obtained by considering all potential input variables in terms of different evaluation criteria.

  7. Biogas engine performance estimation using ANN

    Directory of Open Access Journals (Sweden)

    Yusuf Kurtgoz

    2017-12-01

    Full Text Available Artificial neural network (ANN method was used to estimate the thermal efficiency (TE, brake specific fuel consumption (BSFC and volumetric efficiency (VE values of a biogas engine with spark ignition at different methane (CH4 ratios and engine load values. For this purpose, the biogas used in the biogas engine was produced by the anaerobic fermentation method from bovine manure and different CH4 contents (51%, 57%, 87% were obtained by purification of CO2 and H2S. The data used in the ANN models were obtained experimentally from a 4-stroke four-cylinder, spark ignition engine, at constant speed for different load and CH4 ratios. Using some of the obtained experimental data, ANN models were developed, and the rest was used to test the developed models. In the ANN models, the CH4 ratio of the fuel, engine load, inlet air temperature (Tin, air fuel ratio and the maximum cylinder pressure are chosen as the input parameters. TE, BSFC and VE are used as the output parameters. Root mean square error (RMSE, mean absolute percentage error (MAPE and correlation coefficient (R performance indicators are used to compare measured and predicted values. It has been shown that ANN models give good results in spark ignition biogas engines with high correlation and low error rates for TE, BSFC and VE values.

  8. Neural network and parton two fireball model for pseudo-rapidity distribution in proton-proton collision

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.

    2000-01-01

    Pseudo-Rapidity distribution of created pions from proton-proton (p-p) interaction has been studied in the framework of artificial neural network (ANN) and the parton two fireball model (PTFM). The predicted distributions from the ANN based model and the parton two fireball model is compared with the corresponding experimental results. The ANN model has proved better matching for experimental data specially at high energies where the conventional two fireball model representation deteriorates

  9. An ANN application for water quality forecasting.

    Science.gov (United States)

    Palani, Sundarambal; Liong, Shie-Yui; Tkalich, Pavel

    2008-09-01

    Rapid urban and coastal developments often witness deterioration of regional seawater quality. As part of the management process, it is important to assess the baseline characteristics of the marine environment so that sustainable development can be pursued. In this study, artificial neural networks (ANNs) were used to predict and forecast quantitative characteristics of water bodies. The true power and advantage of this method lie in its ability to (1) represent both linear and non-linear relationships and (2) learn these relationships directly from the data being modeled. The study focuses on Singapore coastal waters. The ANN model is built for quick assessment and forecasting of selected water quality variables at any location in the domain of interest. Respective variables measured at other locations serve as the input parameters. The variables of interest are salinity, temperature, dissolved oxygen, and chlorophyll-alpha. A time lag up to 2Delta(t) appeared to suffice to yield good simulation results. To validate the performance of the trained ANN, it was applied to an unseen data set from a station in the region. The results show the ANN's great potential to simulate water quality variables. Simulation accuracy, measured in the Nash-Sutcliffe coefficient of efficiency (R(2)), ranged from 0.8 to 0.9 for the training and overfitting test data. Thus, a trained ANN model may potentially provide simulated values for desired locations at which measured data are unavailable yet required for water quality models.

  10. Modeling of methane emissions using artificial neural network approach

    Directory of Open Access Journals (Sweden)

    Stamenković Lidija J.

    2015-01-01

    Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007

  11. Anne Fine

    Directory of Open Access Journals (Sweden)

    Philip Gaydon

    2015-04-01

    Full Text Available An interview with Anne Fine with an introduction and aside on the role of children’s literature in our lives and development, and our adult perceptions of the suitability of childhood reading material. Since graduating from Warwick in 1968 with a BA in Politics and History, Anne Fine has written over fifty books for children and eight for adults, won the Carnegie Medal twice (for Goggle-Eyes in 1989 and Flour Babies in 1992, been a highly commended runner-up three times (for Bill’s New Frock in 1989, The Tulip Touch in 1996, and Up on Cloud Nine in 2002, been shortlisted for the Hans Christian Andersen Award (the highest recognition available to a writer or illustrator of children’s books, 1998, undertaken the positon of Children’s Laureate (2001-2003, and been awarded an OBE for her services to literature (2003. Warwick presented Fine with an Honorary Doctorate in 2005. Philip Gaydon’s interview with Anne Fine was recorded as part of the ‘Voices of the University’ oral history project, co-ordinated by Warwick’s Institute of Advanced Study.

  12. ANN Synthesis Model of Single-Feed Corner-Truncated Circularly Polarized Microstrip Antenna with an Air Gap for Wideband Applications

    Directory of Open Access Journals (Sweden)

    Zhongbao Wang

    2014-01-01

    Full Text Available A computer-aided design model based on the artificial neural network (ANN is proposed to directly obtain patch physical dimensions of the single-feed corner-truncated circularly polarized microstrip antenna (CPMA with an air gap for wideband applications. To take account of the effect of the air gap, an equivalent relative permittivity is introduced and adopted to calculate the resonant frequency and Q-factor of square microstrip antennas for obtaining the training data sets. ANN architectures using multilayered perceptrons (MLPs and radial basis function networks (RBFNs are compared. Also, six learning algorithms are used to train the MLPs for comparison. It is found that MLPs trained with the Levenberg-Marquardt (LM algorithm are better than RBFNs for the synthesis of the CPMA. An accurate model is achieved by using an MLP with three hidden layers. The model is validated by the electromagnetic simulation and measurements. It is enormously useful to antenna engineers for facilitating the design of the single-feed CPMA with an air gap.

  13. Classifying Sources Influencing Indoor Air Quality (IAQ Using Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Shaharil Mad Saad

    2015-05-01

    Full Text Available Monitoring indoor air quality (IAQ is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN—a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC, base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room’s conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity.

  14. Collaborative networks: Reference modeling

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of

  15. Statistical analysis and ANN modeling for predicting hydrological extremes under climate change scenarios: the example of a small Mediterranean agro-watershed.

    Science.gov (United States)

    Kourgialas, Nektarios N; Dokou, Zoi; Karatzas, George P

    2015-05-01

    The purpose of this study was to create a modeling management tool for the simulation of extreme flow events under current and future climatic conditions. This tool is a combination of different components and can be applied in complex hydrogeological river basins, where frequent flood and drought phenomena occur. The first component is the statistical analysis of the available hydro-meteorological data. Specifically, principal components analysis was performed in order to quantify the importance of the hydro-meteorological parameters that affect the generation of extreme events. The second component is a prediction-forecasting artificial neural network (ANN) model that simulates, accurately and efficiently, river flow on an hourly basis. This model is based on a methodology that attempts to resolve a very difficult problem related to the accurate estimation of extreme flows. For this purpose, the available measurements (5 years of hourly data) were divided in two subsets: one for the dry and one for the wet periods of the hydrological year. This way, two ANNs were created, trained, tested and validated for a complex Mediterranean river basin in Crete, Greece. As part of the second management component a statistical downscaling tool was used for the creation of meteorological data according to the higher and lower emission climate change scenarios A2 and B1. These data are used as input in the ANN for the forecasting of river flow for the next two decades. The final component is the application of a meteorological index on the measured and forecasted precipitation and flow data, in order to assess the severity and duration of extreme events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Neural network versus classical time series forecasting models

    Science.gov (United States)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  17. Refrigerant flow through electronic expansion valve: Experiment and neural network modeling

    International Nuclear Information System (INIS)

    Cao, Xiang; Li, Ze-Yu; Shao, Liang-Liang; Zhang, Chun-Lu

    2016-01-01

    Highlights: • Experimental data from different sources were used in comparison of EEV models. • Artificial neural network in EEV modeling is superior to literature correlations. • Artificial neural network with 4-4-1 structure and S function is recommended. • Artificial neural network is flexible for EEV mass flow rate and opening prediction. - Abstract: Electronic expansion valve (EEV) plays a crucial role in controlling refrigerant mass flow rate of refrigeration or heat pump systems for energy savings. However, complexities in two-phase throttling process and geometry make accurate modeling of EEV flow characteristics more difficult. This paper developed an artificial neural network (ANN) model using refrigerant inlet and outlet pressures, inlet subcooling, EEV opening as ANN inputs, refrigerant mass flow rate as ANN output. Both linear and nonlinear transfer functions in hidden layer were used and compared to each other. Experimental data from multiple sources including in-house experiments of one EEV with R410A were used for ANN training and test. In addition, literature correlations were compared with ANN as well. Results showed that the ANN model with nonlinear transfer function worked well in all cases and it is much accurate than the literature correlations. In all cases, nonlinear ANN predicted refrigerant mass flow rates within ±0.4% average relative deviation (A.D.) and 2.7% standard deviation (S.D.), meanwhile it predicted the EEV opening at 0.1% A.D. and 2.1% S.D.

  18. The use of output-dependent data scaling with artificial neural networks and multilinear regression for modeling of ciprofloxacin removal from aqueous solution

    Directory of Open Access Journals (Sweden)

    Ulaş Yurtsever

    2017-03-01

    Full Text Available In this study, an experimental system entailing ciprofloxacin hydrochloride (CIP removal from aqueous solution is modeled by using artificial neural networks (ANNs. For modeling of CIP removal from aqueous solution using bentonite and activated carbon, we utilized the combination of output-dependent data scaling (ODDS with ANN, and the combination of ODDS with multivariable linear regression model (MVLR. The ANN model normalized via ODDS performs better in comparison with the ANN model scaled via standard normalization. Four distinct hybrid models, ANN with standard normalization, ANN with ODDS, MVLR with standard normalization, and MVLR with ODDS, were also applied. We observed that ANN and MVLR estimations’ consistency, accuracy ratios and model performances increase as a result of pre-processing with ODDS.

  19. A comparison RSM and ANN surface roughness models in thin-wall machining of Ti6Al4V using vegetable oils under MQL-condition

    Science.gov (United States)

    Mohruni, Amrifan Saladin; Yanis, Muhammad; Sharif, Safian; Yani, Irsyadi; Yuliwati, Erna; Ismail, Ahmad Fauzi; Shayfull, Zamree

    2017-09-01

    Thin-wall components as usually applied in the structural parts of aeronautical industry require significant challenges in machining. Unacceptable surface roughness can occur during machining of thin-wall. Titanium product such Ti6Al4V is mostly applied to get the appropriate surface texture in thin wall designed requirements. In this study, the comparison of the accuracy between Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) in the prediction of surface roughness was conducted. Furthermore, the machining tests were carried out under Minimum Quantity Lubrication (MQL) using AlCrN-coated carbide tools. The use of Coconut oil as cutting fluids was also chosen in order to evaluate its performance when involved in end milling. This selection of cutting fluids is based on the better performance of oxidative stability than that of other vegetable based cutting fluids. The cutting speed, feed rate, radial and axial depth of cut were used as independent variables, while surface roughness is evaluated as the dependent variable or output. The results showed that the feed rate is the most significant factors in increasing the surface roughness value followed by the radial depth of cut and lastly the axial depth of cut. In contrary, the surface becomes smoother with increasing the cutting speed. From a comparison of both methods, the ANN model delivered a better accuracy than the RSM model.

  20. ANN Model for Predicting the Impact of Submerged Aquatic Weeds Existence on the Hydraulic Performance of Branched Open Channel System Accompanied by Water Structures

    International Nuclear Information System (INIS)

    Abdeen, Mostafa A. M.; Abdin, Alla E.

    2007-01-01

    The existence of hydraulic structures in a branched open channel system urges the need for considering the gradually varied flow criterion in evaluating the different hydraulic characteristics in this type of open channel system. Computations of hydraulic characteristics such as flow rates and water surface profiles in branched open channel system with hydraulic structures require tremendous numerical effort especially when the flow cannot be assumed uniform. In addition, the existence of submerged aquatic weeds in this branched open channel system adds to the complexity of the evaluation of the different hydraulic characteristics for this system. However, this existence of aquatic weeds can not be neglected since it is very common in Egyptian open channel systems. Artificial Neural Network (ANN) has been widely utilized in the past decade in civil engineering applications for the simulation and prediction of the different physical phenomena and has proven its capabilities in the different fields. The present study aims towards introducing the use of ANN technique to model and predict the impact of submerged aquatic weeds existence on the hydraulic performance of branched open channel system. Specifically the current paper investigates a branched open channel system that consists of main channel supplies water to two branch channels that are infested by submerged aquatic weeds and have water structures such as clear over fall weirs and sluice gates. The results of this study showed that ANN technique was capable, with small computational effort and high accuracy, of predicting the impact of different infestation percentage for submerged aquatic weeds on the hydraulic performance of branched open channel system with two different hydraulic structures

  1. Modeling of policies for reduction of GHG emissions in energy sector using ANN: case study-Croatia (EU).

    Science.gov (United States)

    Bolanča, Tomislav; Strahovnik, Tomislav; Ukić, Šime; Stankov, Mirjana Novak; Rogošić, Marko

    2017-07-01

    This study describes the development of tool for testing different policies for reduction of greenhouse gas (GHG) emissions in energy sector using artificial neural networks (ANNs). The case study of Croatia was elaborated. Two different energy consumption scenarios were used as a base for calculations and predictions of GHG emissions: the business as usual (BAU) scenario and sustainable scenario. Both of them are based on predicted energy consumption using different growth rates; the growth rates within the second scenario resulted from the implementation of corresponding energy efficiency measures in final energy consumption and increasing share of renewable energy sources. Both ANN architecture and training methodology were optimized to produce network that was able to successfully describe the existing data and to achieve reliable prediction of emissions in a forward time sense. The BAU scenario was found to produce continuously increasing emissions of all GHGs. The sustainable scenario was found to decrease the GHG emission levels of all gases with respect to BAU. The observed decrease was attributed to the group of measures termed the reduction of final energy consumption through energy efficiency measures.

  2. WE-A-201-00: Anne and Donald Herbert Distinguished Lectureship On Modern Statistical Modeling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Regulatory Commission and may be remembered for his critique of the National Academy of Sciences BEIR III report (stating that their methodology “imposes a Delphic quality to the .. risk estimates”.) This led to his appointment as a member of the BEIR V committee. Don presented refresher courses at the AAPM, ASTRO and RSNA meetings and was active in the AAPM as a member or chair of several committees. He was the principal author of AAPM Report 43, which is essentially a critique of established clinical studies prior to 1992. He was co-editor of the Proceedings of many symposia on Time, Dose and Fractionation held in Madison, Wisconsin. He received the AAPM lifetime Achievement award in 2004. Don’s second wife of 46 years, Ann, predeceased him and he is survived by daughters Hillary and Emily, son John and two grandsons. Don was a true gentleman with a unique and erudite writing style illuminated by pithy quotations. If he had a fault it was, perhaps, that he did not realize how much smarter he was than the rest of us. This presentation draws heavily on a biography and video interview in the History and Heritage section of the AAPM website. The quote is his own. Andrzej Niemierko: Statistical modeling plays an essential role in modern medicine for quantitative evaluation of the effect of treatment. This session will feature an overview of statistical modeling techniques used for analyzing the many types of research data and an exploration of recent advances in new statistical modeling methodologies. Learning Objectives: To learn basics of statistical modeling methodology. To discuss statistical models that are frequently used in radiation oncology To discuss advanced modern statistical modeling methods and applications.

  3. WE-A-201-00: Anne and Donald Herbert Distinguished Lectureship On Modern Statistical Modeling

    International Nuclear Information System (INIS)

    2016-01-01

    Regulatory Commission and may be remembered for his critique of the National Academy of Sciences BEIR III report (stating that their methodology “imposes a Delphic quality to the .. risk estimates”.) This led to his appointment as a member of the BEIR V committee. Don presented refresher courses at the AAPM, ASTRO and RSNA meetings and was active in the AAPM as a member or chair of several committees. He was the principal author of AAPM Report 43, which is essentially a critique of established clinical studies prior to 1992. He was co-editor of the Proceedings of many symposia on Time, Dose and Fractionation held in Madison, Wisconsin. He received the AAPM lifetime Achievement award in 2004. Don’s second wife of 46 years, Ann, predeceased him and he is survived by daughters Hillary and Emily, son John and two grandsons. Don was a true gentleman with a unique and erudite writing style illuminated by pithy quotations. If he had a fault it was, perhaps, that he did not realize how much smarter he was than the rest of us. This presentation draws heavily on a biography and video interview in the History and Heritage section of the AAPM website. The quote is his own. Andrzej Niemierko: Statistical modeling plays an essential role in modern medicine for quantitative evaluation of the effect of treatment. This session will feature an overview of statistical modeling techniques used for analyzing the many types of research data and an exploration of recent advances in new statistical modeling methodologies. Learning Objectives: To learn basics of statistical modeling methodology. To discuss statistical models that are frequently used in radiation oncology To discuss advanced modern statistical modeling methods and applications.

  4. Flood routing modelling with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    R. Peters

    2006-01-01

    Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.

  5. Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction

    International Nuclear Information System (INIS)

    Mousapour, Ashkan; Hajipour, Alireza; Rashidi, Mohammad Mehdi; Freidoonimehr, Navid

    2016-01-01

    In this paper, the first and second-laws efficiencies are applied to performance analysis of an irreversible Miller cycle. In the irreversible cycle, the linear relation between the specific heat of the working fluid and its temperature, the internal irreversibility described using the compression and expansion efficiencies, the friction loss computed according to the mean velocity of the piston and the heat-transfer loss are considered. The effects of various design parameters, such as the minimum and maximum temperatures of the working fluid and the compression ratio on the power output and the first and second-laws efficiencies of the cycle are discussed. In the following, a procedure named ANN is used for predicting the thermal efficiency values versus the compression ratio, and the minimum and maximum temperatures of the Miller cycle. Nowadays, Miller cycle is widely used in the automotive industry and the obtained results of this study will provide some significant theoretical grounds for the design optimization of the Miller cycle. - Highlights: • The performance of an irreversible Miller cycle is investigated using FFT. • The effects of design parameters on the performance of the cycle are investigated. • ANN is applied to predict the thermal efficiency and the power output values. • There is an excellent correlation between FTT and ANN data. • ANN can be applied to predict data where FTT analysis has not been performed.

  6. 3D fluid-structure modelling and vibration analysis for fault diagnosis of Francis turbine using multiple ANN and multiple ANFIS

    Science.gov (United States)

    Saeed, R. A.; Galybin, A. N.; Popov, V.

    2013-01-01

    This paper discusses condition monitoring and fault diagnosis in Francis turbine based on integration of numerical modelling with several different artificial intelligence (AI) techniques. In this study, a numerical approach for fluid-structure (turbine runner) analysis is presented. The results of numerical analysis provide frequency response functions (FRFs) data sets along x-, y- and z-directions under different operating load and different position and size of faults in the structure. To extract features and reduce the dimensionality of the obtained FRF data, the principal component analysis (PCA) has been applied. Subsequently, the extracted features are formulated and fed into multiple artificial neural networks (ANN) and multiple adaptive neuro-fuzzy inference systems (ANFIS) in order to identify the size and position of the damage in the runner and estimate the turbine operating conditions. The results demonstrated the effectiveness of this approach and provide satisfactory accuracy even when the input data are corrupted with certain level of noise.

  7. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

    Science.gov (United States)

    Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue

    2007-02-01

    Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.

  8. Curriculum Assessment Using Artificial Neural Network and Support Vector Machine Modeling Approaches: A Case Study. IR Applications. Volume 29

    Science.gov (United States)

    Chen, Chau-Kuang

    2010-01-01

    Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…

  9. Determining degree of roasting in cocoa beans by artificial neural network (ANN)-based electronic nose system and gas chromatography/mass spectrometry (GC/MS).

    Science.gov (United States)

    Tan, Juzhong; Kerr, William L

    2018-08-01

    Roasting is a critical step in chocolate processing, where moisture content is decreased and unique flavors and texture are developed. The determination of the degree of roasting in cocoa beans is important to ensure the quality of chocolate. Determining the degree of roasting relies on human specialists or sophisticated chemical analyses that are inaccessible to small manufacturers and farmers. In this study, an electronic nose system was constructed consisting of an array of gas sensors and used to detect volatiles emanating from cocoa beans roasted for 0, 20, 30 and 40 min. The several signals were used to train a three-layer artificial neural network (ANN). Headspace samples were also analyzed by gas chromatography/mass spectrometry (GC/MS), with 23 select volatiles used to train a separate ANN. Both ANNs were used to predict the degree of roasting of cocoa beans. The electronic nose had a prediction accuracy of 94.4% using signals from sensors TGS 813, 826, 822, 830, 830, 2620, 2602 and 2610. In comparison, the GC/MS predicted the degree of roasting with an accuracy of 95.8%. The electronic nose system is able to predict the extent of roasting, as well as a more sophisticated approach using GC/MS. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Neural network model for proton-proton collision at high energy

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.; El-Metwally, K.A.

    2003-01-01

    Developments in artificial intelligence (AI) techniques and their applications to physics have made it feasible to develop and implement new modeling techniques for high-energy interactions. In particular, AI techniques of artificial neural networks (ANN) have recently been used to design and implement more effective models. The primary purpose of this paper is to model the proton-proton (p-p) collision using the ANN technique. Following a review of the conventional techniques and an introduction to the neural network, the paper presents simulation test results using an p-p based ANN model trained with experimental data. The p-p based ANN model calculates the multiplicity distribution of charged particles and the inelastic cross section of the p-p collision at high energies. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness

  11. Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems

    International Nuclear Information System (INIS)

    Santos, P.J.; Martins, A.G.; Pires, A.J.

    2007-01-01

    The present trend to electricity market restructuring increases the need for reliable short-term load forecast (STLF) algorithms, in order to assist electric utilities in activities such as planning, operating and controlling electric energy systems. Methodologies such as artificial neural networks (ANN) have been widely used in the next hour load forecast horizon with satisfactory results. However, this type of approach has had some shortcomings. Usually, the input vector (IV) is defined in a arbitrary way, mainly based on experience, on engineering judgment criteria and on concern about the ANN dimension, always taking into consideration the apparent correlations within the available endogenous and exogenous data. In this paper, a proposal is made of an approach to define the IV composition, with the main focus on reducing the influence of trial-and-error and common sense judgments, which usually are not based on sufficient evidence of comparative advantages over previous alternatives. The proposal includes the assessment of the strictly necessary instances of the endogenous variable, both from the point of view of the contiguous values prior to the forecast to be made, and of the past values representing the trend of consumption at homologous time intervals of the past. It also assesses the influence of exogenous variables, again limiting their presence at the IV to the indispensable minimum. A comparison is made with two alternative IV structures previously proposed in the literature, also applied to the distribution sector. The paper is supported by a real case study at the distribution sector. (author)

  12. Modeling and prediction of retardance in citric acid coated ferrofluid using artificial neural network

    International Nuclear Information System (INIS)

    Lin, Jing-Fung; Sheu, Jer-Jia

    2016-01-01

    Citric acid coated (citrate-stabilized) magnetite (Fe 3 O 4 ) magnetic nanoparticles have been conducted and applied in the biomedical fields. Using Taguchi-based measured retardances as the training data, an artificial neural network (ANN) model was developed for the prediction of retardance in citric acid (CA) coated ferrofluid (FF). According to the ANN simulation results in the training stage, the correlation coefficient between predicted retardances and measured retardances was found to be as high as 0.9999998. Based on the well-trained ANN model, the predicted retardance at excellent program from Taguchi method showed less error of 2.17% compared with a multiple regression (MR) analysis of statistical significance. Meanwhile, the parameter analysis at excellent program by the ANN model had the guiding significance to find out a possible program for the maximum retardance. It was concluded that the proposed ANN model had high ability for the prediction of retardance in CA coated FF. - Highlights: • The feedforward ANN is applied for modeling of retardance in CA coated FFs. • ANN can predict the retardance at excellent program with acceptable error to MR. • The proposed ANN has high ability for the prediction of retardance.

  13. Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO Using an Artificial Neural Network-Genetic Algorithm (ANN-GA

    Directory of Open Access Journals (Sweden)

    Xuedan Shi

    2017-06-01

    Full Text Available Rhodamine B (Rh B is a toxic dye that is harmful to the environment, humans, and animals, and thus the discharge of Rh B wastewater has become a critical concern. In the present study, reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO was used to treat Rh B aqueous solutions. The nZVI/rGO composites were synthesized with the chemical deposition method and were characterized using scanning electron microscopy (SEM, X-ray diffraction (XRD, Raman spectroscopy, N2-sorption, and X-ray photoelectron spectroscopy (XPS analysis. The effects of several important parameters (initial pH, initial concentration, temperature, and contact time on the removal of Rh B by nZVI/rGO were optimized by response surface methodology (RSM and artificial neural network hybridized with genetic algorithm (ANN-GA. The results suggest that the ANN-GA model was more accurate than the RSM model. The predicted optimum value of Rh B removal efficiency (90.0% was determined using the ANN-GA model, which was compatible with the experimental value (86.4%. Moreover, the Langmuir, Freundlich, and Temkin isotherm equations were applied to fit the adsorption equilibrium data, and the Freundlich isotherm was the most suitable model for describing the process for sorption of Rh B onto the nZVI/rGO composites. The maximum adsorption capacity based on the Langmuir isotherm was 87.72 mg/g. The removal process of Rh B could be completed within 20 min, which was well described by the pseudo-second order kinetic model.

  14. Copula Entropy coupled with Wavelet Neural Network Model for Hydrological Prediction

    Science.gov (United States)

    Wang, Yin; Yue, JiGuang; Liu, ShuGuang; Wang, Li

    2018-02-01

    Artificial Neural network(ANN) has been widely used in hydrological forecasting. in this paper an attempt has been made to find an alternative method for hydrological prediction by combining Copula Entropy(CE) with Wavelet Neural Network(WNN), CE theory permits to calculate mutual information(MI) to select Input variables which avoids the limitations of the traditional linear correlation(LCC) analysis. Wavelet analysis can provide the exact locality of any changes in the dynamical patterns of the sequence Coupled with ANN Strong non-linear fitting ability. WNN model was able to provide a good fit with the hydrological data. finally, the hybrid model(CE+WNN) have been applied to daily water level of Taihu Lake Basin, and compared with CE ANN, LCC WNN and LCC ANN. Results showed that the hybrid model produced better results in estimating the hydrograph properties than the latter models.

  15. Artificial neural network models' application for radioactive substances' migration forecasting in soil

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Khil'ko, O.S.; Kundas, S.P.

    2009-01-01

    The work is indicated to the use of artificial neural network (ANN) models in program complex SPS for radioactive substances' migration forecasting in soil. For the problem solution two ANN models are used. One of them forecasts radioactive substances' migration, another carries out forecasting of physical and chemical soil properties. Program complex SPS allows to achieve a low error of forecasting (no more than 5 %) and high training speed. (authors)

  16. PREDICTING THE EFFECTIVENESS OF WEB INFORMATION SYSTEMS USING NEURAL NETWORKS MODELING: FRAMEWORK & EMPIRICAL TESTING

    Directory of Open Access Journals (Sweden)

    Dr. Kamal Mohammed Alhendawi

    2018-02-01

    Full Text Available The information systems (IS assessment studies have still used the commonly traditional tools such as questionnaires in evaluating the dependent variables and specially effectiveness of systems. Artificial neural networks have been recently accepted as an effective alternative tool for modeling the complicated systems and widely used for forecasting. A very few is known about the employment of Artificial Neural Network (ANN in the prediction IS effectiveness. For this reason, this study is considered as one of the fewest studies to investigate the efficiency and capability of using ANN for forecasting the user perceptions towards IS effectiveness where MATLAB is utilized for building and training the neural network model. A dataset of 175 subjects collected from international organization are utilized for ANN learning where each subject consists of 6 features (5 quality factors as inputs and one Boolean output. A percentage of 75% o subjects are used in the training phase. The results indicate an evidence on the ANN models has a reasonable accuracy in forecasting the IS effectiveness. For prediction, ANN with PURELIN (ANNP and ANN with TANSIG (ANNTS transfer functions are used. It is found that both two models have a reasonable prediction, however, the accuracy of ANNTS model is better than ANNP model (88.6% and 70.4% respectively. As the study proposes a new model for predicting IS dependent variables, it could save the considerably high cost that might be spent in sample data collection in the quantitative studies in the fields science, management, education, arts and others.

  17. Modeling Network Interdiction Tasks

    Science.gov (United States)

    2015-09-17

    118 xiii Table Page 36 Computation times for weighted, 100-node random networks for GAND Approach testing in Python ...in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 38 Accuracy measures for weighted, 100-node random networks for GAND...networks [15:p. 1]. A common approach to modeling network interdiction is to formulate the problem in terms of a two-stage strategic game between two

  18. Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN

    International Nuclear Information System (INIS)

    Peter, Josephine; Doloi, B.; Bhattacharyya, B.

    2011-01-01

    The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actual experimental observations.

  19. [Sensitivity analysis of AnnAGNPS model's hydrology and water quality parameters based on the perturbation analysis method].

    Science.gov (United States)

    Xi, Qing; Li, Zhao-Fu; Luo, Chuan

    2014-05-01

    Sensitivity analysis of hydrology and water quality parameters has a great significance for integrated model's construction and application. Based on AnnAGNPS model's mechanism, terrain, hydrology and meteorology, field management, soil and other four major categories of 31 parameters were selected for the sensitivity analysis in Zhongtian river watershed which is a typical small watershed of hilly region in the Taihu Lake, and then used the perturbation method to evaluate the sensitivity of the parameters to the model's simulation results. The results showed that: in the 11 terrain parameters, LS was sensitive to all the model results, RMN, RS and RVC were generally sensitive and less sensitive to the output of sediment but insensitive to the remaining results. For hydrometeorological parameters, CN was more sensitive to runoff and sediment and relatively sensitive for the rest results. In field management, fertilizer and vegetation parameters, CCC, CRM and RR were less sensitive to sediment and particulate pollutants, the six fertilizer parameters (FR, FD, FID, FOD, FIP, FOP) were particularly sensitive for nitrogen and phosphorus nutrients. For soil parameters, K is quite sensitive to all the results except the runoff, the four parameters of the soil's nitrogen and phosphorus ratio (SONR, SINR, SOPR, SIPR) were less sensitive to the corresponding results. The simulation and verification results of runoff in Zhongtian watershed show a good accuracy with the deviation less than 10% during 2005- 2010. Research results have a direct reference value on AnnAGNPS model's parameter selection and calibration adjustment. The runoff simulation results of the study area also proved that the sensitivity analysis was practicable to the parameter's adjustment and showed the adaptability to the hydrology simulation in the Taihu Lake basin's hilly region and provide reference for the model's promotion in China.

  20. Comparison between Possibilistic c-Means (PCM and Artificial Neural Network (ANN Classification Algorithms in Land use/ Land cover Classification

    Directory of Open Access Journals (Sweden)

    Ganchimeg Ganbold

    2017-03-01

    Full Text Available There are several statistical classification algorithms available for landuse/land cover classification. However, each has a certain bias orcompromise. Some methods like the parallel piped approach in supervisedclassification, cannot classify continuous regions within a feature. Onthe other hand, while unsupervised classification method takes maximumadvantage of spectral variability in an image, the maximally separableclusters in spectral space may not do much for our perception of importantclasses in a given study area. In this research, the output of an ANNalgorithm was compared with the Possibilistic c-Means an improvementof the fuzzy c-Means on both moderate resolutions Landsat8 and a highresolution Formosat 2 images. The Formosat 2 image comes with an8m spectral resolution on the multispectral data. This multispectral imagedata was resampled to 10m in order to maintain a uniform ratio of1:3 against Landsat 8 image. Six classes were chosen for analysis including:Dense forest, eucalyptus, water, grassland, wheat and riverine sand. Using a standard false color composite (FCC, the six features reflecteddifferently in the infrared region with wheat producing the brightestpixel values. Signature collection per class was therefore easily obtainedfor all classifications. The output of both ANN and FCM, were analyzedseparately for accuracy and an error matrix generated to assess the qualityand accuracy of the classification algorithms. When you compare theresults of the two methods on a per-class-basis, ANN had a crisperoutput compared to PCM which yielded clusters with pixels especiallyon the moderate resolution Landsat 8 imagery.

  1. An artificial neural network model for rainfall forecasting in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    N. Q. Hung

    2009-08-01

    Full Text Available This paper presents a new approach using an Artificial Neural Network technique to improve rainfall forecast performance. A real world case study was set up in Bangkok; 4 years of hourly data from 75 rain gauge stations in the area were used to develop the ANN model. The developed ANN model is being applied for real time rainfall forecasting and flood management in Bangkok, Thailand. Aimed at providing forecasts in a near real time schedule, different network types were tested with different kinds of input information. Preliminary tests showed that a generalized feedforward ANN model using hyperbolic tangent transfer function achieved the best generalization of rainfall. Especially, the use of a combination of meteorological parameters (relative humidity, air pressure, wet bulb temperature and cloudiness, the rainfall at the point of forecasting and rainfall at the surrounding stations, as an input data, advanced ANN model to apply with continuous data containing rainy and non-rainy period, allowed model to issue forecast at any moment. Additionally, forecasts by ANN model were compared to the convenient approach namely simple persistent method. Results show that ANN forecasts have superiority over the ones obtained by the persistent model. Rainfall forecasts for Bangkok from 1 to 3 h ahead were highly satisfactory. Sensitivity analysis indicated that the most important input parameter besides rainfall itself is the wet bulb temperature in forecasting rainfall.

  2. Integrating Artificial Neural Networks into the VIC Model for Rainfall-Runoff Modeling

    Directory of Open Access Journals (Sweden)

    Changqing Meng

    2016-09-01

    Full Text Available A hybrid rainfall-runoff model was developed in this study by integrating the variable infiltration capacity (VIC model with artificial neural networks (ANNs. In the proposed model, the prediction interval of the ANN replaces separate, individual simulation (i.e., single simulation. The spatial heterogeneity of horizontal resolution, subgrid-scale features and their influence on the streamflow can be assessed according to the VIC model. In the routing module, instead of a simple linear superposition of the streamflow generated from each subbasin, ANNs facilitate nonlinear mappings of the streamflow produced from each subbasin into the total streamflow at the basin outlet. A total of three subbasins were delineated and calibrated independently via the VIC model; daily runoff errors were simulated for each subbasin, then corrected by an ANN bias-correction model. The initial streamflow and corrected runoff from the simulation for individual subbasins serve as inputs to the ANN routing model. The feasibility of this proposed method was confirmed according to the performance of its application to a case study on rainfall-runoff prediction in the Jinshajiang River Basin, the headwater area of the Yangtze River.

  3. Modelling computer networks

    International Nuclear Information System (INIS)

    Max, G

    2011-01-01

    Traffic models in computer networks can be described as a complicated system. These systems show non-linear features and to simulate behaviours of these systems are also difficult. Before implementing network equipments users wants to know capability of their computer network. They do not want the servers to be overloaded during temporary traffic peaks when more requests arrive than the server is designed for. As a starting point for our study a non-linear system model of network traffic is established to exam behaviour of the network planned. The paper presents setting up a non-linear simulation model that helps us to observe dataflow problems of the networks. This simple model captures the relationship between the competing traffic and the input and output dataflow. In this paper, we also focus on measuring the bottleneck of the network, which was defined as the difference between the link capacity and the competing traffic volume on the link that limits end-to-end throughput. We validate the model using measurements on a working network. The results show that the initial model estimates well main behaviours and critical parameters of the network. Based on this study, we propose to develop a new algorithm, which experimentally determines and predict the available parameters of the network modelled.

  4. Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique

    Science.gov (United States)

    Nair, Archana; Singh, Gurjeet; Mohanty, U. C.

    2018-01-01

    The monthly prediction of summer monsoon rainfall is very challenging because of its complex and chaotic nature. In this study, a non-linear technique known as Artificial Neural Network (ANN) has been employed on the outputs of Global Climate Models (GCMs) to bring out the vagaries inherent in monthly rainfall prediction. The GCMs that are considered in the study are from the International Research Institute (IRI) (2-tier CCM3v6) and the National Centre for Environmental Prediction (Coupled-CFSv2). The ANN technique is applied on different ensemble members of the individual GCMs to obtain monthly scale prediction over India as a whole and over its spatial grid points. In the present study, a double-cross-validation and simple randomization technique was used to avoid the over-fitting during training process of the ANN model. The performance of the ANN-predicted rainfall from GCMs is judged by analysing the absolute error, box plots, percentile and difference in linear error in probability space. Results suggest that there is significant improvement in prediction skill of these GCMs after applying the ANN technique. The performance analysis reveals that the ANN model is able to capture the year to year variations in monsoon months with fairly good accuracy in extreme years as well. ANN model is also able to simulate the correct signs of rainfall anomalies over different spatial points of the Indian domain.

  5. Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoothing and Artificial Intelligence Models (ANN, SVM: The Case of Greek Electricity Market

    Directory of Open Access Journals (Sweden)

    George P. Papaioannou

    2016-08-01

    Full Text Available In this work we propose a new hybrid model, a combination of the manifold learning Principal Components (PC technique and the traditional multiple regression (PC-regression, for short and medium-term forecasting of daily, aggregated, day-ahead, electricity system-wide load in the Greek Electricity Market for the period 2004–2014. PC-regression is shown to effectively capture the intraday, intraweek and annual patterns of load. We compare our model with a number of classical statistical approaches (Holt-Winters exponential smoothing of its generalizations Error-Trend-Seasonal, ETS models, the Seasonal Autoregressive Moving Average with exogenous variables, Seasonal Autoregressive Integrated Moving Average with eXogenous (SARIMAX model as well as with the more sophisticated artificial intelligence models, Artificial Neural Networks (ANN and Support Vector Machines (SVM. Using a number of criteria for measuring the quality of the generated in-and out-of-sample forecasts, we have concluded that the forecasts of our hybrid model outperforms the ones generated by the other model, with the SARMAX model being the next best performing approach, giving comparable results. Our approach contributes to studies aimed at providing more accurate and reliable load forecasting, prerequisites for an efficient management of modern power systems.

  6. ANN modelling for the determination of moulding sand matrix grain size

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2011-10-01

    Full Text Available One of the modern methods of the production optimisation are artificial neural networks. Neural networks are gaining broader and broader application in the foundry industry, among others for controlling melting processes in cupolas and in arc furnaces, for designing castings and supply systems, for controlling moulding sand processing, for predicting properties of cast alloys or selecting parameters of pressure castings. An attempt to apply neural networks for controlling the quality of bentonite moulding sands is presented in this paper. This is the assessment method of sands suitability by means of detecting correlations between their individual parameters. The presented investigations were obtained by using the Statistica 9.0 program. The aim of the investigations was to select the neural network suitable for prediction the moulding sand matrix grain size on the basis of the determined sand properties such as: permeability, compactibility, and compressive strength.

  7. Hand Posture Prediction Using Neural Networks within a Biomechanical Model

    Directory of Open Access Journals (Sweden)

    Marta C. Mora

    2012-10-01

    Full Text Available This paper proposes the use of artificial neural networks (ANNs in the framework of a biomechanical hand model for grasping. ANNs enhance the model capabilities as they substitute estimated data for the experimental inputs required by the grasping algorithm used. These inputs are the tentative grasping posture and the most open posture during grasping. As a consequence, more realistic grasping postures are predicted by the grasping algorithm, along with the contact information required by the dynamic biomechanical model (contact points and normals. Several neural network architectures are tested and compared in terms of prediction errors, leading to encouraging results. The performance of the overall proposal is also shown through simulation, where a grasping experiment is replicated and compared to the real grasping data collected by a data glove device.

  8. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  9. Optimum Application of Thermal Factors to Artificial Neural Network Models for Improvement of Control Performance in Double Skin-Enveloped Buildings

    Directory of Open Access Journals (Sweden)

    Kyung-Il Chin

    2013-08-01

    Full Text Available This study proposes an artificial neural network (ANN-based thermal control method for buildings with double skin envelopes that has rational relationships between the ANN model input and output. The relationship between the indoor air temperature and surrounding environmental factors was investigated based on field measurement data from an actual building. The results imply that the indoor temperature was not significantly influenced by vertical solar irradiance, but by the outdoor and cavity temperature. Accordingly, a new ANN model developed in this study excluded solar irradiance as an input variable for predicting the future indoor temperature. The structure and learning method of this new ANN model was optimized, followed by the performance tests of a variety of internal and external envelope opening strategies for the heating and cooling seasons. The performance tests revealed that the optimized ANN-based logic yielded better temperature conditions than the non-ANN based logic. This ANN-based logic increased overall comfortable periods and decreased the frequency of overshoots and undershoots out of the thermal comfort range. The ANN model proved that it has the potential to be successfully applied in the temperature control logic for double skin-enveloped buildings. The ANN model, which was proposed in this study, effectively predicted future indoor temperatures for the diverse opening strategies. The ANN-based logic optimally determined the operation of heating and cooling systems as well as opening conditions for the double skin envelopes.

  10. Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy

    Directory of Open Access Journals (Sweden)

    Maytham S. Ahmed

    2016-09-01

    Full Text Available Demand response (DR program can shift peak time load to off-peak time, thereby reducing greenhouse gas emissions and allowing energy conservation. In this study, the home energy management scheduling controller of the residential DR strategy is proposed using the hybrid lightning search algorithm (LSA-based artificial neural network (ANN to predict the optimal ON/OFF status for home appliances. Consequently, the scheduled operation of several appliances is improved in terms of cost savings. In the proposed approach, a set of the most common residential appliances are modeled, and their activation is controlled by the hybrid LSA-ANN based home energy management scheduling controller. Four appliances, namely, air conditioner, water heater, refrigerator, and washing machine (WM, are developed by Matlab/Simulink according to customer preferences and priority of appliances. The ANN controller has to be tuned properly using suitable learning rate value and number of nodes in the hidden layers to schedule the appliances optimally. Given that finding proper ANN tuning parameters is difficult, the LSA optimization is hybridized with ANN to improve the ANN performances by selecting the optimum values of neurons in each hidden layer and learning rate. Therefore, the ON/OFF estimation accuracy by ANN can be improved. Results of the hybrid LSA-ANN are compared with those of hybrid particle swarm optimization (PSO based ANN to validate the developed algorithm. Results show that the hybrid LSA-ANN outperforms the hybrid PSO based ANN. The proposed scheduling algorithm can significantly reduce the peak-hour energy consumption during the DR event by up to 9.7138% considering four appliances per 7-h period.

  11. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    Science.gov (United States)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2017-08-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  12. Modeling of global horizontal irradiance in the United Arab Emirates with artificial neural networks

    International Nuclear Information System (INIS)

    Hejase, Hassan A.N.; Al-Shamisi, Maitha H.; Assi, Ali H.

    2014-01-01

    This paper employs ANN (Artificial Neural Network) models to estimate GHI (global horizontal irradiance) for three major cities in the UAE (United Arab Emirates), namely Abu Dhabi, Dubai and Al-Ain. City data are then used to develop a comprehensive global GHI model for other nearby locations in the UAE. The ANN models use MLP (Multi-Layer Perceptron) and RBF (Radial Basis Function) techniques with comprehensive training algorithms, architectures, and different combinations of inputs. The UAE models are tested and validated against individual city models and data available from the UAE Solar Atlas with good agreement as attested by the computed statistical error parameters. The optimal ANN model is MLP-based and requires four mean daily weather parameters; namely, maximum temperature, wind speed, sunshine hours, and relative humidity. The computed statistical error parameters for the optimal MLP-ANN model in relation to the measured three-cities mean data (referred to as UAE data) are MBE (mean bias error) = −0.0003 kWh/m 2 , RMSE = 0.179 kWh/m 2 , R 2  = 99%, NSE (Nash-Sutcliffe model Efficiency coefficient) = 99%, and t-statistic = 0.005 at 5% significance level. Results prove the suitability of the ANN models for estimating the monthly mean daily GHI in different locations of the UAE. - Highlights: • ANN prediction models for the GHI (global horizontal irradiance) in the UAE. • Models used to estimate the potential of global solar radiation for UAE cities. • Data from the UAE Solar Atlas are used to validate developed ANN models. • ANN models are more efficient than regression models in predicting GHI

  13. Modeling the citation network by network cosmology.

    Science.gov (United States)

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  14. Brain Network Modelling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther

    Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...

  15. Improving Gastric Cancer Outcome Prediction Using Single Time-Point Artificial Neural Network Models

    Science.gov (United States)

    Nilsaz-Dezfouli, Hamid; Abu-Bakar, Mohd Rizam; Arasan, Jayanthi; Adam, Mohd Bakri; Pourhoseingholi, Mohamad Amin

    2017-01-01

    In cancer studies, the prediction of cancer outcome based on a set of prognostic variables has been a long-standing topic of interest. Current statistical methods for survival analysis offer the possibility of modelling cancer survivability but require unrealistic assumptions about the survival time distribution or proportionality of hazard. Therefore, attention must be paid in developing nonlinear models with less restrictive assumptions. Artificial neural network (ANN) models are primarily useful in prediction when nonlinear approaches are required to sift through the plethora of available information. The applications of ANN models for prognostic and diagnostic classification in medicine have attracted a lot of interest. The applications of ANN models in modelling the survival of patients with gastric cancer have been discussed in some studies without completely considering the censored data. This study proposes an ANN model for predicting gastric cancer survivability, considering the censored data. Five separate single time-point ANN models were developed to predict the outcome of patients after 1, 2, 3, 4, and 5 years. The performance of ANN model in predicting the probabilities of death is consistently high for all time points according to the accuracy and the area under the receiver operating characteristic curve. PMID:28469384

  16. Neural Network-Based Model for Landslide Susceptibility and Soil Longitudinal Profile Analyses

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Barari, Amin; Choobbasti, A. J.

    2011-01-01

    The purpose of this study was to create an empirical model for assessing the landslide risk potential at Savadkouh Azad University, which is located in the rural surroundings of Savadkouh, about 5 km from the city of Pol-Sefid in northern Iran. The soil longitudinal profile of the city of Babol......, located 25 km from the Caspian Sea, also was predicted with an artificial neural network (ANN). A multilayer perceptron neural network model was applied to the landslide area and was used to analyze specific elements in the study area that contributed to previous landsliding events. The ANN models were...... studies in landslide susceptibility zonation....

  17. Modeling Epidemic Network Failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...... the SID model’s behavior and impact on the network performance, as well as the severity of the infection spreading. The simulations are carried out in OPNET Modeler. The model provides an important input to epidemic connection recovery mechanisms, and can due to its flexibility and versatility be used...... to evaluate multiple epidemic scenarios in various network types....

  18. Predicting the Water Level Fluctuation in an Alpine Lake Using Physically Based, Artificial Neural Network, and Time Series Forecasting Models

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Young

    2015-01-01

    Full Text Available Accurate prediction of water level fluctuation is important in lake management due to its significant impacts in various aspects. This study utilizes four model approaches to predict water levels in the Yuan-Yang Lake (YYL in Taiwan: a three-dimensional hydrodynamic model, an artificial neural network (ANN model (back propagation neural network, BPNN, a time series forecasting (autoregressive moving average with exogenous inputs, ARMAX model, and a combined hydrodynamic and ANN model. Particularly, the black-box ANN model and physically based hydrodynamic model are coupled to more accurately predict water level fluctuation. Hourly water level data (a total of 7296 observations was collected for model calibration (training and validation. Three statistical indicators (mean absolute error, root mean square error, and coefficient of correlation were adopted to evaluate model performances. Overall, the results demonstrate that the hydrodynamic model can satisfactorily predict hourly water level changes during the calibration stage but not for the validation stage. The ANN and ARMAX models better predict the water level than the hydrodynamic model does. Meanwhile, the results from an ANN model are superior to those by the ARMAX model in both training and validation phases. The novel proposed concept using a three-dimensional hydrodynamic model in conjunction with an ANN model has clearly shown the improved prediction accuracy for the water level fluctuation.

  19. ANN based optimization of a solar assisted hybrid cooling system in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozgur, Arif; Yetik, Ozge; Arslan, Oguz [Mechanical Eng. Dept., Engineering Faculty, Dumlupinar University (Turkey)], email: maozgur@dpu.edu.tr, email: ozgeyetik@dpu.edu.tr, email: oarslan@dpu.edu.tr

    2011-07-01

    This study achieved optimization of a solar assisted hybrid cooling system with refrigerants such as R717, R141b, R134a and R123 using an artificial neural network (ANN) model based on average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and fluid types. ANN is a new tool; it works rapidly and can thus be a solution for design and optimization of complex power cycles. A unique flexible ANN algorithm was introduced to evaluate the solar ejector cooling systems because of the nonlinearity of neural networks. The conclusion was that the best COPs value obtained with the ANN is 1.35 and COPc is 3.03 when the average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and algorithm are respectively 674.72 W/m2, 17.9, 80, 15 and 13 degree celsius and LM with 14 neurons in single hidden layer, for R717.

  20. Prediction of Splitting Tensile Strength of Concrete Containing Zeolite and Diatomite by ANN

    Directory of Open Access Journals (Sweden)

    E. Gülbandılar

    2017-01-01

    Full Text Available This study was designed to investigate with two different artificial neural network (ANN prediction model for the behavior of concrete containing zeolite and diatomite. For purpose of constructing this model, 7 different mixes with 63 specimens of the 28, 56 and 90 days splitting tensile strength experimental results of concrete containing zeolite, diatomite, both zeolite and diatomite used in training and testing for ANN systems was gathered from the tests. The data used in the ANN models are arranged in a format of seven input parameters that cover the age of samples, Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer and an output parameter which is splitting tensile strength of concrete. In the model, the training and testing results have shown that two different ANN systems have strong potential as a feasible tool for predicting 28, 56 and 90 days the splitting tensile strength of concrete containing zeolite and diatomite.

  1. Playing tag with ANN: boosted top identification with pattern recognition

    International Nuclear Information System (INIS)

    Almeida, Leandro G.; Backović, Mihailo; Cliche, Mathieu; Lee, Seung J.; Perelstein, Maxim

    2015-01-01

    Many searches for physics beyond the Standard Model at the Large Hadron Collider (LHC) rely on top tagging algorithms, which discriminate between boosted hadronic top quarks and the much more common jets initiated by light quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively takes a “digital image" of each jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this way, top tagging becomes a canonical pattern recognition problem. With this motivation, we present a novel top tagging algorithm based on an Artificial Neural Network (ANN), one of the most popular approaches to pattern recognition. The ANN is trained on a large sample of boosted tops and light quark/gluon jets, and is then applied to independent test samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study: for example, for jets with p T in the 1100–1200 GeV range, 60% top-tag efficiency can be achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by the ANN tagger as the most important for classification, as well as correlations between the ANN tagger and some of the familiar top-tagging observables and algorithms.

  2. Playing tag with ANN: boosted top identification with pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Leandro G. [Institut de Biologie de l’École Normale Supérieure (IBENS), Inserm 1024- CNRS 8197,46 rue d’Ulm, 75005 Paris (France); Backović, Mihailo [Center for Cosmology, Particle Physics and Phenomenology - CP3,Universite Catholique de Louvain,Louvain-la-neuve (Belgium); Cliche, Mathieu [Laboratory for Elementary Particle Physics, Cornell University,Ithaca, NY 14853 (United States); Lee, Seung J. [Department of Physics, Korea Advanced Institute of Science and Technology,335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Perelstein, Maxim [Laboratory for Elementary Particle Physics, Cornell University,Ithaca, NY 14853 (United States)

    2015-07-17

    Many searches for physics beyond the Standard Model at the Large Hadron Collider (LHC) rely on top tagging algorithms, which discriminate between boosted hadronic top quarks and the much more common jets initiated by light quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively takes a “digital image' of each jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this way, top tagging becomes a canonical pattern recognition problem. With this motivation, we present a novel top tagging algorithm based on an Artificial Neural Network (ANN), one of the most popular approaches to pattern recognition. The ANN is trained on a large sample of boosted tops and light quark/gluon jets, and is then applied to independent test samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study: for example, for jets with p{sub T} in the 1100–1200 GeV range, 60% top-tag efficiency can be achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by the ANN tagger as the most important for classification, as well as correlations between the ANN tagger and some of the familiar top-tagging observables and algorithms.

  3. Brand Choice Modeling Modeling Toothpaste Brand Choice: An Empirical Comparison of Artificial Neural Networks and Multinomial Probit Model

    Directory of Open Access Journals (Sweden)

    Tolga Kaya

    2010-11-01

    Full Text Available The purpose of this study is to compare the performances of Artificial Neural Networks (ANN and Multinomial Probit (MNP approaches in modeling the choice decision within fast moving consumer goods sector. To do this, based on 2597 toothpaste purchases of a panel sample of 404 households, choice models are built and their performances are compared on the 861 purchases of a test sample of 135 households. Results show that ANN's predictions are better while MNP is useful in providing marketing insight.

  4. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    Science.gov (United States)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  5. Prediction Model for Predicting Powdery Mildew using ANN for Medicinal Plant— Picrorhiza kurrooa

    Science.gov (United States)

    Shivling, V. D.; Ghanshyam, C.; Kumar, Rakesh; Kumar, Sanjay; Sharma, Radhika; Kumar, Dinesh; Sharma, Atul; Sharma, Sudhir Kumar

    2017-02-01

    Plant disease fore casting system is an important system as it can be used for prediction of disease, further it can be used as an alert system to warn the farmers in advance so as to protect their crop from being getting infected. Fore casting system will predict the risk of infection for crop by using the environmental factors that favor in germination of disease. In this study an artificial neural network based system for predicting the risk of powdery mildew in Picrorhiza kurrooa was developed. For development, Levenberg-Marquardt backpropagation algorithm was used having a single hidden layer of ten nodes. Temperature and duration of wetness are the major environmental factors that favor infection. Experimental data was used as a training set and some percentage of data was used for testing and validation. The performance of the system was measured in the form of the coefficient of correlation (R), coefficient of determination (R2), mean square error and root mean square error. For simulating the network an inter face was developed. Using this interface the network was simulated by putting temperature and wetness duration so as to predict the level of risk at that particular value of the input data.

  6. Optimization and modeling of a photovoltaic solar integrated system by neural networks

    International Nuclear Information System (INIS)

    Ashhab, Moh'd Sami S.

    2008-01-01

    A photovoltaic solar integrated system is modeled with artificial neural networks (ANN's). Data relevant to the system performance was collected on April, 4th 1993 and every 15 min during the day. This input-output data is used to train the ANN. The ANN approximates the data well and therefore can be relied on in predicting the system performance, namely, system efficiencies. The solar system consists of a solar trainer which contains a photovoltaic panel, a DC centrifugal pump, flat plate collectors, storage tank, a flowmeter for measuring the water mass flow rate, pipes, pyranometer for measuring the solar intensity, thermocouples for measuring various system temperatures and wind speed meter. The complex method constrained optimization is applied to the solar system ANN model to find the operating conditions of the system that will produce the maximum system efficiencies. This information will be very hard to obtain by just looking at the available historical input-output data

  7. Optimization and modeling of a photovoltaic solar integrated system by neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, Moh' d Sami S. [Department of Mechanical Engineering, The Hashemite University, Zarqa 13115 (Jordan)

    2008-11-15

    A photovoltaic solar integrated system is modeled with artificial neural networks (ANN's). Data relevant to the system performance was collected on April, 4th 1993 and every 15 min during the day. This input-output data is used to train the ANN. The ANN approximates the data well and therefore can be relied on in predicting the system performance, namely, system efficiencies. The solar system consists of a solar trainer which contains a photovoltaic panel, a DC centrifugal pump, flat plate collectors, storage tank, a flowmeter for measuring the water mass flow rate, pipes, pyranometer for measuring the solar intensity, thermocouples for measuring various system temperatures and wind speed meter. The complex method constrained optimization is applied to the solar system ANN model to find the operating conditions of the system that will produce the maximum system efficiencies. This information will be very hard to obtain by just looking at the available historical input-output data. (author)

  8. Comparison of Prediction Model for Cardiovascular Autonomic Dysfunction Using Artificial Neural Network and Logistic Regression Analysis

    Science.gov (United States)

    Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo

    2013-01-01

    Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593

  9. Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh.

    Science.gov (United States)

    Rahman, M Tauhid Ur; Tabassum, Faheemah; Rasheduzzaman, Md; Saba, Humayra; Sarkar, Lina; Ferdous, Jannatul; Uddin, Syed Zia; Zahedul Islam, A Z M

    2017-10-17

    Change analysis of land use and land cover (LULC) is a technique to study the environmental degradation and to control the unplanned development. Analysis of the past changing trend of LULC along with modeling future LULC provides a combined opportunity to evaluate and guide the present and future land use policy. The southwest coastal region of Bangladesh, especially Assasuni Upazila of Satkhira District, is the most vulnerable to natural disasters and has faced notable changes in its LULC due to the combined effects of natural and anthropogenic causes. The objectives of this study are to illustrate the temporal dynamics of LULC change in Assasuni Upazila over the last 27 years (i.e., between 1989 and 2015) and also to predict future land use change using CA-ANN (cellular automata and artificial neural network) model for the year 2028. Temporal dynamics of LULC change was analyzed, employing supervised classification of multi-temporal Landsat images. Then, prediction of future LULC was carried out by CA-ANN model using MOLUSCE plugin of QGIS. The analysis of LULC change revealed that the LULC of Assasuni had changed notably during 1989 to 2015. "Bare lands" decreased by 21% being occupied by other land uses, especially by "shrimp farms." Shrimp farm area increased by 25.9% during this period, indicating a major occupational transformation from agriculture to shrimp aquaculture in the study area during the period under study. Reduction in "settlement" area revealed the trend of migration from the Upazila. The predicted LULC for the year 2028 showed that reduction in bare land area would continue and 1595.97 ha bare land would transform into shrimp farm during 2015 to 2028. Also, the impacts of the changing LULC on the livelihood of local people and migration status of the Upazila were analyzed from the data collected through focus group discussions and questionnaire surveys. The analysis revealed that the changing LULC and the occupational shift from paddy

  10. Aspects of artificial neural networks and experimental noise

    NARCIS (Netherlands)

    Derks, E.P.P.A.

    1997-01-01

    About a decade ago, artificial neural networks (ANN) have been introduced to chemometrics for solving problems in analytical chemistry. ANN are based on the functioning of the brain and can be used for modeling complex relationships within chemical data. An ANN-model can be obtained by earning or

  11. Ann tuleb Rakverest Võrru

    Index Scriptorium Estoniae

    2009-01-01

    Võru kultuurimajas Kannel etendub 17. aprillil Rakvere teatri noortelavastus "Kuidas elad? ...Ann?!" Aidi Valliku jutustuse põhjal. Lavastaja Sven Heiberg. Mängivad ka Viljandi Kultuuriakadeemia teatritudengid

  12. Prediction of scour below submerged pipeline crossing a river using ANN.

    Science.gov (United States)

    Azamathulla, H M; Zakaria, Nor Azazi

    2011-01-01

    The process involved in the local scour below pipelines is so complex that it makes it difficult to establish a general empirical model to provide accurate estimation for scour. This paper describes the use of artificial neural networks (ANN) to estimate the pipeline scour depth. The data sets of laboratory measurements were collected from published works and used to train the network or evolve the program. The developed networks were validated by using the observations that were not involved in training. The performance of ANN was found to be more effective when compared with the results of regression equations in predicting the scour depth around pipelines.

  13. An empirical model of the Earth's bow shock based on an artificial neural network

    Science.gov (United States)

    Pallocchia, Giuseppe; Ambrosino, Danila; Trenchi, Lorenzo

    2014-05-01

    All of the past empirical models of the Earth's bow shock shape were obtained by best-fitting some given surfaces to sets of observed crossings. However, the issue of bow shock modeling can be addressed by means of artificial neural networks (ANN) as well. In this regard, here it is presented a perceptron, a simple feedforward network, which computes the bow shock distance along a given direction using the two angular coordinates of that direction, the bow shock predicted distance RF79 (provided by Formisano's model (F79)) and the upstream alfvénic Mach number Ma. After a brief description of the ANN architecture and training method, we discuss the results of the statistical comparison, performed over a test set of 1140 IMP8 crossings, between the prediction accuracies of ANN and F79 models.

  14. Battery Performance Modelling ad Simulation: a Neural Network Based Approach

    Science.gov (United States)

    Ottavianelli, Giuseppe; Donati, Alessandro

    2002-01-01

    This project has developed on the background of ongoing researches within the Control Technology Unit (TOS-OSC) of the Special Projects Division at the European Space Operations Centre (ESOC) of the European Space Agency. The purpose of this research is to develop and validate an Artificial Neural Network tool (ANN) able to model, simulate and predict the Cluster II battery system's performance degradation. (Cluster II mission is made of four spacecraft flying in tetrahedral formation and aimed to observe and study the interaction between sun and earth by passing in and out of our planet's magnetic field). This prototype tool, named BAPER and developed with a commercial neural network toolbox, could be used to support short and medium term mission planning in order to improve and maximise the batteries lifetime, determining which are the future best charge/discharge cycles for the batteries given their present states, in view of a Cluster II mission extension. This study focuses on the five Silver-Cadmium batteries onboard of Tango, the fourth Cluster II satellite, but time restrains have allowed so far to perform an assessment only on the first battery. In their most basic form, ANNs are hyper-dimensional curve fits for non-linear data. With their remarkable ability to derive meaning from complicated or imprecise history data, ANN can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. ANNs learn by example, and this is why they can be described as an inductive, or data-based models for the simulation of input/target mappings. A trained ANN can be thought of as an "expert" in the category of information it has been given to analyse, and this expert can then be used, as in this project, to provide projections given new situations of interest and answer "what if" questions. The most appropriate algorithm, in terms of training speed and memory storage requirements, is clearly the Levenberg

  15. Artificial neural network model to distinguish follicular adenoma from follicular carcinoma on fine needle aspiration of thyroid.

    Science.gov (United States)

    Savala, Rajiv; Dey, Pranab; Gupta, Nalini

    2018-03-01

    To distinguish follicular adenoma (FA) and follicular carcinoma (FC) of thyroid in fine needle aspiration cytology (FNAC) is a challenging problem. In this article, we attempted to build an artificial neural network (ANN) model from the cytological and morphometric features of the FNAC smears of thyroid to distinguish FA from FC. The cytological features and morphometric analysis were done on the FNAC smears of histology proven cases of FA (26) and FC (31). The cytological features were analysed semi-quantitatively by two independent observers (RS and PD). These data were used to make an ANN model to differentiate FA versus FC on FNAC material. The performance of this ANN model was assessed by analysing the confusion matrix and receiving operator curve. There were 39 cases in training set, 9 cases each in validation and test sets. In the test group, ANN model successfully distinguished all cases (9/9) of FA and FC. The area under receiver operating curve was 1. The present ANN model is efficient to diagnose follicular adenoma and carcinoma cases on cytology smears without any error. In future, this ANN model will be able to diagnose follicular adenoma and carcinoma cases on thyroid aspirate. This study has immense potential in future. This is an open ended ANN model and more parameters and more cases can be included to make the model much stronger. © 2017 Wiley Periodicals, Inc.

  16. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters

    Directory of Open Access Journals (Sweden)

    Hongshan Zhao

    2012-05-01

    Full Text Available Short-term solar irradiance forecasting (STSIF is of great significance for the optimal operation and power predication of grid-connected photovoltaic (PV plants. However, STSIF is very complex to handle due to the random and nonlinear characteristics of solar irradiance under changeable weather conditions. Artificial Neural Network (ANN is suitable for STSIF modeling and many research works on this topic are presented, but the conciseness and robustness of the existing models still need to be improved. After discussing the relation between weather variations and irradiance, the characteristics of the statistical feature parameters of irradiance under different weather conditions are figured out. A novel ANN model using statistical feature parameters (ANN-SFP for STSIF is proposed in this paper. The input vector is reconstructed with several statistical feature parameters of irradiance and ambient temperature. Thus sufficient information can be effectively extracted from relatively few inputs and the model complexity is reduced. The model structure is determined by cross-validation (CV, and the Levenberg-Marquardt algorithm (LMA is used for the network training. Simulations are carried out to validate and compare the proposed model with the conventional ANN model using historical data series (ANN-HDS, and the results indicated that the forecast accuracy is obviously improved under variable weather conditions.

  17. An experimental artificial-neural-network-based modeling of magneto-rheological fluid dampers

    International Nuclear Information System (INIS)

    Tudón-Martínez, J C; Lozoya-Santos, J J; Morales-Menendez, R; Ramirez-Mendoza, R A

    2012-01-01

    A static model for a magneto-rheological (MR) damper based on artificial neural networks (ANNs) is proposed, and an intensive and experimental study is presented for designing the ANN structure. The ANN model does not require time delays in the input vector. Besides the electric current signal, only one additional sensor is used to achieve a reliable MR damper structure. The model is experimentally validated with two commercial MR dampers of different characteristics: MR 1 damper with continuous actuation and MR 2 damper with two levels of actuation. The error to signal ratio (ESR) index is used to measure the model accuracy; for both MR dampers, an average value of 6.03% of total error is obtained from different experiments, which are designed to explore the nonlinearities of the MR phenomenon at different frequencies by including the impact of the electric current fluctuations. The proposed ANN model is compared with other well known parametric models; the qualitative and quantitative comparison among the models highlights the advantages of the ANN for representing a commercial MR damper. The ESR index was reduced by the ANN-based model by up to 29% with respect to the parametric models for the MR 1 damper and up to 40% for the MR 2 damper. The force–velocity diagram is used to compare the modeling properties of each approach: (1) the Bingham model cannot describe the hysteresis of both MR dampers and the distribution function of the modeled force varies from the experimental data, (2) the algebraic models have complications in representing the nonlinear behavior of the asymmetric damper (MR 2 ) and, (3) the ANN-based MR damper can model the nonlinearities of both MR dampers and presents good scalability; the accuracy of the results supports the use of this model for the validation of semi-active suspension control systems for a vehicle, by using nonlinear simulations. (paper)

  18. Generalized versus non-generalized neural network model for multi-lead inflow forecasting at Aswan High Dam

    Directory of Open Access Journals (Sweden)

    A. El-Shafie

    2011-03-01

    Full Text Available Artificial neural networks (ANN have been found efficient, particularly in problems where characteristics of the processes are stochastic and difficult to describe using explicit mathematical models. However, time series prediction based on ANN algorithms is fundamentally difficult and faces problems. One of the major shortcomings is the search for the optimal input pattern in order to enhance the forecasting capabilities for the output. The second challenge is the over-fitting problem during the training procedure and this occurs when ANN loses its generalization. In this research, autocorrelation and cross correlation analyses are suggested as a method for searching the optimal input pattern. On the other hand, two generalized methods namely, Regularized Neural Network (RNN and Ensemble Neural Network (ENN models are developed to overcome the drawbacks of classical ANN models. Using Generalized Neural Network (GNN helped avoid over-fitting of training data which was observed as a limitation of classical ANN models. Real inflow data collected over the last 130 years at Lake Nasser was used to train, test and validate the proposed model. Results show that the proposed GNN model outperforms non-generalized neural network and conventional auto-regressive models and it could provide accurate inflow forecasting.

  19. Performance Parameters Analysis of an XD3P Peugeot Engine Using Artificial Neural Networks (ANN) Concept in MATLAB

    Science.gov (United States)

    Rangaswamy, T.; Vidhyashankar, S.; Madhusudan, M.; Bharath Shekar, H. R.

    2015-04-01

    The current trends of engineering follow the basic rule of innovation in mechanical engineering aspects. For the engineers to be efficient, problem solving aspects need to be viewed in a multidimensional perspective. One such methodology implemented is the fusion of technologies from other disciplines in order to solve the problems. This paper mainly deals with the application of Neural Networks in order to analyze the performance parameters of an XD3P Peugeot engine (used in Ministry of Defence). The basic propaganda of the work is divided into two main working stages. In the former stage, experimentation of an IC engine is carried out in order to obtain the primary data. In the latter stage the primary database formed is used to design and implement a predictive neural network in order to analyze the output parameters variation with respect to each other. A mathematical governing equation for the neural network is obtained. The obtained polynomial equation describes the characteristic behavior of the built neural network system. Finally, a comparative study of the results is carried out.

  20. Development of surrogate models using artificial neural network for building shell energy labelling

    NARCIS (Netherlands)

    Melo, A.P.; Costola, D.; Lamberts, R.; Hensen, J.L.M.

    2014-01-01

    Surrogate models are an important part of building energy labelling programs, but these models still present low accuracy, particularly in cooling-dominated climates. The objective of this study was to evaluate the feasibility of using an artificial neural network (ANN) to improve the accuracy of

  1. Artificial neural network for modeling the extraction of aromatic hydrocarbons from lube oil cuts

    Energy Technology Data Exchange (ETDEWEB)

    Mehrkesh, A.H.; Hajimirzaee, S. [Islamic Azad University, Majlesi Branch, Isfahan (Iran, Islamic Republic of); Hatamipour, M.S.; Tavakoli, T. [Department of Chemical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2011-03-15

    An artificial neural network (ANN) approach was used to obtain a simulation model to predict the rotating disc contactor (RDC) performance during the extraction of aromatic hydrocarbons from lube oil cuts, to produce a lubricating base oil using furfural as solvent. The field data used for training the ANN model was obtained from a lubricating oil production company. The input parameters of the ANN model were the volumetric flow rates of feed and solvent, the temperatures of feed and solvent, and the disc rotation rate. The output parameters were the volumetric flow rate of the raffinate phase and the extraction yield. In this study, a feed-forward multi-layer perceptron neural network was successfully used to demonstrate the complex relationship between the mentioned input and output parameters. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Prediction of Film Cooling Effectiveness on a Gas Turbine Blade Leading Edge Using ANN and CFD

    Science.gov (United States)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Huicochea, A.; De Santiago, O.

    2018-05-01

    In this work, the area-averaged film cooling effectiveness (AAFCE) on a gas turbine blade leading edge was predicted by employing an artificial neural network (ANN) using as input variables: hole diameter, injection angle, blowing ratio, hole and columns pitch. The database used to train the network was built using computational fluid dynamics (CFD) based on a two level full factorial design of experiments. The CFD numerical model was validated with an experimental rig, where a first stage blade of a gas turbine was represented by a cylindrical specimen. The ANN architecture was composed of three layers with four neurons in hidden layer and Levenberg-Marquardt was selected as ANN optimization algorithm. The AAFCE was successfully predicted by the ANN with a regression coefficient R2<0.99 and a root mean square error RMSE=0.0038. The ANN weight coefficients were used to estimate the relative importance of the input parameters. Blowing ratio was the most influential parameter with relative importance of 40.36 % followed by hole diameter. Additionally, by using the ANN model, the relationship between input parameters was analyzed.

  3. Theory Study and Application of the BP-ANN Method for Power Grid Short-Term Load Forecasting

    Institute of Scientific and Technical Information of China (English)

    Xia Hua; Gang Zhang; Jiawei Yang; Zhengyuan Li

    2015-01-01

    Aiming at the low accuracy problem of power system short⁃term load forecasting by traditional methods, a back⁃propagation artifi⁃cial neural network (BP⁃ANN) based method for short⁃term load forecasting is presented in this paper. The forecast points are re⁃lated to prophase adjacent data as well as the periodical long⁃term historical load data. Then the short⁃term load forecasting model of Shanxi Power Grid (China) based on BP⁃ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP⁃ANN method is simple and with higher precision and practicality.

  4. Modeling the Malaysian motor insurance claim using artificial neural network and adaptive NeuroFuzzy inference system

    Science.gov (United States)

    Mohd Yunos, Zuriahati; Shamsuddin, Siti Mariyam; Ismail, Noriszura; Sallehuddin, Roselina

    2013-04-01

    Artificial neural network (ANN) with back propagation algorithm (BP) and ANFIS was chosen as an alternative technique in modeling motor insurance claims. In particular, an ANN and ANFIS technique is applied to model and forecast the Malaysian motor insurance data which is categorized into four claim types; third party property damage (TPPD), third party bodily injury (TPBI), own damage (OD) and theft. This study is to determine whether an ANN and ANFIS model is capable of accurately predicting motor insurance claim. There were changes made to the network structure as the number of input nodes, number of hidden nodes and pre-processing techniques are also examined and a cross-validation technique is used to improve the generalization ability of ANN and ANFIS models. Based on the empirical studies, the prediction performance of the ANN and ANFIS model is improved by using different number of input nodes and hidden nodes; and also various sizes of data. The experimental results reveal that the ANFIS model has outperformed the ANN model. Both models are capable of producing a reliable prediction for the Malaysian motor insurance claims and hence, the proposed method can be applied as an alternative to predict claim frequency and claim severity.

  5. Efficient computation in adaptive artificial spiking neural networks

    NARCIS (Netherlands)

    D. Zambrano (Davide); R.B.P. Nusselder (Roeland); H.S. Scholte; S.M. Bohte (Sander)

    2017-01-01

    textabstractArtificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of

  6. Daily Crude Oil Price Forecasting Using Hybridizing Wavelet and Artificial Neural Network Model

    Directory of Open Access Journals (Sweden)

    Ani Shabri

    2014-01-01

    Full Text Available A new method based on integrating discrete wavelet transform and artificial neural networks (WANN model for daily crude oil price forecasting is proposed. The discrete Mallat wavelet transform is used to decompose the crude price series into one approximation series and some details series (DS. The new series obtained by adding the effective one approximation series and DS component is then used as input into the ANN model to forecast crude oil price. The relative performance of WANN model was compared to regular ANN model for crude oil forecasting at lead times of 1 day for two main crude oil price series, West Texas Intermediate (WTI and Brent crude oil spot prices. In both cases, WANN model was found to provide more accurate crude oil prices forecasts than individual ANN model.

  7. iAnn

    DEFF Research Database (Denmark)

    Jimenez, Rafael C; Albar, Juan P; Bhak, Jong

    2013-01-01

    We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators add...... submitted events, and these are subsequently accessed via web services. Thus, once an iAnn widget is incorporated into a website, it permanently shows timely relevant information as if it were native to the remote site. At the same time, announcements submitted to the repository are automatically...

  8. Response surface and neural network based predictive models of cutting temperature in hard turning

    Directory of Open Access Journals (Sweden)

    Mozammel Mia

    2016-11-01

    Full Text Available The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM and Artificial Neural Network (ANN were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA and mean absolute percentage error (MAPE were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.

  9. Assessment of Runoff and Sediment Yields Using the AnnAGNPS Model in a Three-Gorge Watershed of China

    Directory of Open Access Journals (Sweden)

    Hongwei Nan

    2012-05-01

    Full Text Available Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs and/or conservation programs have been adopted. Watershed models, such as the Annualized Agricultural Non-Point Source Pollutant Loading model (AnnAGNPS, have been developed to aid in the evaluation of watershed response to watershed management practices. The model has been applied worldwide and proven to be a very effective tool in identifying the critical areas which had serious erosion, and in aiding in decision-making processes for adopting BMPs and/or conservation programs so that cost/benefit can be maximized and non-point source pollution control can be achieved in the most efficient way. The main goal of this study was to assess the characteristics of soil erosion, sediment and sediment delivery of a watershed so that effective conservation measures can be implemented. To achieve the overall objective of this study, all necessary data for the 4,184 km2 Daning River watershed in the Three-Gorge region of the Yangtze River of China were assembled. The model was calibrated using observed monthly runoff from 1998 to 1999 (Nash-Sutcliffe coefficient of efficiency of 0.94 and R2 of 0.94 and validated using the observed monthly runoff from 2003 to 2005 (Nash-Sutcliffe coefficient of efficiency of 0.93 and R2 of 0.93. Additionally, the model was validated using annual average sediment of 2000–2002 (relative error of −0.34 and 2003–2004 (relative error of 0.18 at Wuxi station. Post validation simulation showed that approximately 48% of the watershed was under the soil loss tolerance released by the Ministry of Water Resources of China (500 t·km−2·y−1. However, 8% of the watershed had soil erosion of exceeding 5,000 t·km−2

  10. Artificial Neural Network Model for Monitoring Oil Film Regime in Spur Gear Based on Acoustic Emission Data

    Directory of Open Access Journals (Sweden)

    Yasir Hassan Ali

    2015-01-01

    Full Text Available The thickness of an oil film lubricant can contribute to less gear tooth wear and surface failure. The purpose of this research is to use artificial neural network (ANN computational modelling to correlate spur gear data from acoustic emissions, lubricant temperature, and specific film thickness (λ. The approach is using an algorithm to monitor the oil film thickness and to detect which lubrication regime the gearbox is running either hydrodynamic, elastohydrodynamic, or boundary. This monitoring can aid identification of fault development. Feed-forward and recurrent Elman neural network algorithms were used to develop ANN models, which are subjected to training, testing, and validation process. The Levenberg-Marquardt back-propagation algorithm was applied to reduce errors. Log-sigmoid and Purelin were identified as suitable transfer functions for hidden and output nodes. The methods used in this paper shows accurate predictions from ANN and the feed-forward network performance is superior to the Elman neural network.

  11. Urban Growth Modelling with Artificial Neural Network and Logistic Regression. Case Study: Sanandaj City, Iran

    Directory of Open Access Journals (Sweden)

    SASSAN MOHAMMADY

    2013-01-01

    Full Text Available Cities have shown remarkable growth due to attraction, economic, social and facilities centralization in the past few decades. Population and urban expansion especially in developing countries, led to lack of resources, land use change from appropriate agricultural land to urban land use and marginalization. Under these circumstances, land use activity is a major issue and challenge for town and country planners. Different approaches have been attempted in urban expansion modelling. Artificial Neural network (ANN models are among knowledge-based models which have been used for urban growth modelling. ANNs are powerful tools that use a machine learning approach to quantify and model complex behaviour and patterns. In this research, ANN and logistic regression have been employed for interpreting urban growth modelling. Our case study is Sanandaj city and we used Landsat TM and ETM+ imageries acquired at 2000 and 2006. The dataset used includes distance to main roads, distance to the residence region, elevation, slope, and distance to green space. Percent Area Match (PAM obtained from modelling of these changes with ANN is equal to 90.47% and the accuracy achieved for urban growth modelling with Logistic Regression (LR is equal to 88.91%. Percent Correct Match (PCM and Figure of Merit for ANN method were 91.33% and 59.07% and then for LR were 90.84% and 57.07%, respectively.

  12. Effectiveness of ANN for seismic behaviour prediction considering geometric configuration effect in concrete gravity dams

    Directory of Open Access Journals (Sweden)

    Mohd. Saqib

    2016-09-01

    Full Text Available In this study, an Artificial Neural Networks (ANN model is built and verified for quick estimation of the structural parameter obtained for a concrete gravity dam section due to seismic excitation. The database of numerous inputs and outputs obtained through Abaqus which are further converted into dimensionless forms in the statistical software (MATLAB to build the ANN model. The developed model can be used for accurate estimation of this parameter. The results showed an excellent capability of the model to predict the outputs with high accuracy and reduced computational time.

  13. Prediction of heat capacity of amine solutions using artificial neural network and thermodynamic models for CO2 capture processes

    Science.gov (United States)

    Afkhamipour, Morteza; Mofarahi, Masoud; Borhani, Tohid Nejad Ghaffar; Zanganeh, Masoud

    2018-03-01

    In this study, artificial neural network (ANN) and thermodynamic models were developed for prediction of the heat capacity ( C P ) of amine-based solvents. For ANN model, independent variables such as concentration, temperature, molecular weight and CO2 loading of amine were selected as the inputs of the model. The significance of the input variables of the ANN model on the C P values was investigated statistically by analyzing of correlation matrix. A thermodynamic model based on the Redlich-Kister equation was used to correlate the excess molar heat capacity ({C}_P^E) data as function of temperature. In addition, the effects of temperature and CO2 loading at different concentrations of conventional amines on the C P values were investigated. Both models were validated against experimental data and very good results were obtained between two mentioned models and experimental data of C P collected from various literatures. The AARD between ANN model results and experimental data of C P for 47 systems of amine-based solvents studied was 4.3%. For conventional amines, the AARD for ANN model and thermodynamic model in comparison with experimental data were 0.59% and 0.57%, respectively. The results showed that both ANN and Redlich-Kister models can be used as a practical tool for simulation and designing of CO2 removal processes by using amine solutions.

  14. Anne-Ly Reimaa : "Suhtlemisel on oluline avatus" / Anne-Ly Reimaa ; interv. Tiia Linnard

    Index Scriptorium Estoniae

    Reimaa, Anne-Ly

    2005-01-01

    Ilmunud ka: Severnoje Poberezhje : Subbota 3. september lk. 5. Intervjueeritav oma tööst Brüsselis, kus esindab Eesti linnade liitu ja Eesti maaomavalitsuste liitu. Arvamust avaldavad Anne Jundas ja Kaia Kaldvee. Lisa: CV

  15. Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting

    NARCIS (Netherlands)

    Rezaeianzadeh, M.; Stein, A.; Tabari, H.; Abghari, H.; Jalalkamali, N.; Hosseinipour, E.Z.; Singh, V.P.

    2013-01-01

    Artificial neural networks (ANNs) are used by hydrologists and engineers to forecast flows at the outlet of a watershed. They are employed in particular where hydrological data are limited. Despite these developments, practitioners still prefer conventional hydrological models. This study applied

  16. Neural Networks to model the innovativeness perception of co-creative firms

    DEFF Research Database (Denmark)

    Tanev, Stoyan

    2012-01-01

    contribution is to make a quantitative analysis in order to assess the relationship between value co-creation and innovation in technology-driven firms: we are using Artificial Neural Network (ANN) to investigate the relationship between value co-creation and innovativeness, and Self Organising Map (SOM) models...

  17. Development of surrogate models using artificial neural network for building shell energy labelling

    International Nuclear Information System (INIS)

    Melo, A.P.; Cóstola, D.; Lamberts, R.; Hensen, J.L.M.

    2014-01-01

    Surrogate models are an important part of building energy labelling programs, but these models still present low accuracy, particularly in cooling-dominated climates. The objective of this study was to evaluate the feasibility of using an artificial neural network (ANN) to improve the accuracy of surrogate models for labelling purposes. An ANN was applied to model the building stock of a city in Brazil, based on the results of extensive simulations using the high-resolution building energy simulation program EnergyPlus. Sensitivity and uncertainty analyses were carried out to evaluate the behaviour of the ANN model, and the variations in the best and worst performance for several typologies were analysed in relation to variations in the input parameters and building characteristics. The results obtained indicate that an ANN can represent the interaction between input and output data for a vast and diverse building stock. Sensitivity analysis showed that no single input parameter can be identified as the main factor responsible for the building energy performance. The uncertainty associated with several parameters plays a major role in assessing building energy performance, together with the facade area and the shell-to-floor ratio. The results of this study may have a profound impact as ANNs could be applied in the future to define regulations in many countries, with positive effects on optimizing the energy consumption. - Highlights: • We model several typologies which have variation in input parameters. • We evaluate the accuracy of surrogate models for labelling purposes. • ANN is applied to model the building stock. • Uncertainty in building plays a major role in the building energy performance. • Results show that ANN could help to develop building energy labelling systems

  18. Prediction of persistent hemodynamic depression after carotid angioplasty and stenting using artificial neural network model.

    Science.gov (United States)

    Jeon, Jin Pyeong; Kim, Chulho; Oh, Byoung-Doo; Kim, Sun Jeong; Kim, Yu-Seop

    2018-01-01

    To assess and compare predictive factors for persistent hemodynamic depression (PHD) after carotid artery angioplasty and stenting (CAS) using artificial neural network (ANN) and multiple logistic regression (MLR) or support vector machines (SVM) models. A retrospective data set of patients (n=76) who underwent CAS from 2007 to 2014 was used as input (training cohort) to a back-propagation ANN using TensorFlow platform. PHD was defined when systolic blood pressure was less than 90mmHg or heart rate was less 50 beats/min that lasted for more than one hour. The resulting ANN was prospectively tested in 33 patients (test cohort) and compared with MLR or SVM models according to accuracy and receiver operating characteristics (ROC) curve analysis. No significant difference in baseline characteristics between the training cohort and the test cohort was observed. PHD was observed in 21 (27.6%) patients in the training cohort and 10 (30.3%) patients in the test cohort. In the training cohort, the accuracy of ANN for the prediction of PHD was 98.7% and the area under the ROC curve (AUROC) was 0.961. In the test cohort, the number of correctly classified instances was 32 (97.0%) using the ANN model. In contrast, the accuracy rate of MLR or SVM model was both 75.8%. ANN (AUROC: 0.950; 95% CI [confidence interval]: 0.813-0.996) showed superior predictive performance compared to MLR model (AUROC: 0.796; 95% CI: 0.620-0.915, p<0.001) or SVM model (AUROC: 0.885; 95% CI: 0.725-0.969, p<0.001). The ANN model seems to have more powerful prediction capabilities than MLR or SVM model for persistent hemodynamic depression after CAS. External validation with a large cohort is needed to confirm our results. Copyright © 2017. Published by Elsevier B.V.

  19. Modeling of mass transfer of Phospholipids in separation process with supercritical CO2 fluid by RBF artificial neural networks

    Science.gov (United States)

    An artificial Radial Basis Function (RBF) neural network model was developed for the prediction of mass transfer of the phospholipids from canola meal in supercritical CO2 fluid. The RBF kind of artificial neural networks (ANN) with orthogonal least squares (OLS) learning algorithm were used for mod...

  20. Different approaches in Partial Least Squares and Artificial Neural Network models applied for the analysis of a ternary mixture of Amlodipine, Valsartan and Hydrochlorothiazide

    Science.gov (United States)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2014-03-01

    Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.

  1. ANN-based wavelet analysis for predicting electrical signal from photovoltaic power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, A. [Medea Univ., Medea (Algeria). Inst. of Science Engineering, Dept. of Electronics

    2007-07-01

    This study was conducted to predict different electrical signals from a photovoltaic power supply system (PVPS) using an artificial neural networks (ANN) with wavelet analysis. It involved the creation of a database of electrical signals (PV-generator current, voltage, battery current voltage, regulator current and voltage) obtained from an experimental PVPS system installed in the south of Algeria. The potential applications were for sizing and analyzing the performance of PVPS systems; control of maximum power point tracker (MPPT) in order to deliver the maximum energy from the PV-array; prediction of the optimal configuration (PV-array and battery sizing) of PVPS systems; expert configuration of PV-systems; faults diagnosis; supervision; and, control and monitoring. First, based on the wavelet analysis each electrical signal was mapped in several time frequency domains. The PV-system was then divided into 3-subsystems corresponding to ANN-PV generator model, ANN-battery model, and ANN-regulator model. An example of day-by-day prediction for each electrical signal was presented. The results of the proposed approach were in good agreement with experimental results. In addition, the accuracy of the proposed approach was more satisfactory when only ANN was used. It was concluded that this methodology offers the possibility of developing a new expert configuration of PVPS by implementing the soft computing ANN-wavelet program with a digital signal processing (DSP) circuit. 26 refs., 1 tab., 5 figs.

  2. Artificial neural network modelling of a large-scale wastewater treatment plant operation.

    Science.gov (United States)

    Güçlü, Dünyamin; Dursun, Sükrü

    2010-11-01

    Artificial Neural Networks (ANNs), a method of artificial intelligence method, provide effective predictive models for complex processes. Three independent ANN models trained with back-propagation algorithm were developed to predict effluent chemical oxygen demand (COD), suspended solids (SS) and aeration tank mixed liquor suspended solids (MLSS) concentrations of the Ankara central wastewater treatment plant. The appropriate architecture of ANN models was determined through several steps of training and testing of the models. ANN models yielded satisfactory predictions. Results of the root mean square error, mean absolute error and mean absolute percentage error were 3.23, 2.41 mg/L and 5.03% for COD; 1.59, 1.21 mg/L and 17.10% for SS; 52.51, 44.91 mg/L and 3.77% for MLSS, respectively, indicating that the developed model could be efficiently used. The results overall also confirm that ANN modelling approach may have a great implementation potential for simulation, precise performance prediction and process control of wastewater treatment plants.

  3. FLASH-FLOOD MODELLING WITH ARTIFICIAL NEURAL NETWORKS USING RADAR RAINFALL ESTIMATES

    Directory of Open Access Journals (Sweden)

    Dinu Cristian

    2017-09-01

    Full Text Available The use of artificial neural networks (ANNs in modelling the hydrological processes has become a common approach in the last two decades, among side the traditional methods. In regard to the rainfall-runoff modelling, in both traditional and ANN models the use of ground rainfall measurements is prevalent, which can be challenging in areas with low rain gauging station density, especially in catchments where strong focused rainfall can generate flash-floods. The weather radar technology can prove to be a solution for such areas by providing rain estimates with good time and space resolution. This paper presents a comparison between different ANN setups using as input both ground and radar observations for modelling the rainfall-runoff process for Bahluet catchment, with focus on a flash-flood observed in the catchment.

  4. Neural networks in data analysis and modeling for detecting littoral oil-spills by airborne laser fluorosensor remote sensing

    Science.gov (United States)

    Lin, Bin; An, Jubai; Brown, Carl E.; Chen, Weiwei

    2003-05-01

    In this paper an artificial neural network (ANN) approach, which is based on flexible nonlinear models for a very broad class of transfer functions, is applied for multi-spectral data analysis and modeling of airborne laser fluorosensor in order to differentiate between classes of oil on water surface. We use three types of algorithm: Perceptron Network, Back-Propagation (B-P) Network and Self-Organizing feature Maps (SOM) Network. Using the data in form of 64-channel spectra as inputs, the ANN presents the analysis and estimation results of the oil type on the basis of the type of background materials as outputs. The ANN is trained and tested using sample data set to the network. The results of the above 3 types of network are compared in this paper. It is proved that the training has developed a network that not only fits the training data, but also fits real-world data that the network will process operationally. The ANN model would play a significant role in the ocean oil-spill identification in the future.

  5. Statistical Models for Social Networks

    NARCIS (Netherlands)

    Snijders, Tom A. B.; Cook, KS; Massey, DS

    2011-01-01

    Statistical models for social networks as dependent variables must represent the typical network dependencies between tie variables such as reciprocity, homophily, transitivity, etc. This review first treats models for single (cross-sectionally observed) networks and then for network dynamics. For

  6. Artificial neural networks: an efficient tool for modelling and optimization of biofuel production (a mini review)

    International Nuclear Information System (INIS)

    Sewsynker-Sukai, Yeshona; Faloye, Funmilayo; Kana, Evariste Bosco Gueguim

    2016-01-01

    In view of the looming energy crisis as a result of depleting fossil fuel resources and environmental concerns from greenhouse gas emissions, the need for sustainable energy sources has secured global attention. Research is currently focused towards renewable sources of energy due to their availability and environmental friendliness. Biofuel production like other bioprocesses is controlled by several process parameters including pH, temperature and substrate concentration; however, the improvement of biofuel production requires a robust process model that accurately relates the effect of input variables to the process output. Artificial neural networks (ANNs) have emerged as a tool for modelling complex, non-linear processes. ANNs are applied in the prediction of various processes; they are useful for virtual experimentations and can potentially enhance bioprocess research and development. In this study, recent findings on the application of ANN for the modelling and optimization of biohydrogen, biogas, biodiesel, microbial fuel cell technology and bioethanol are reviewed. In addition, comparative studies on the modelling efficiency of ANN and other techniques such as the response surface methodology are briefly discussed. The review highlights the efficiency of ANNs as a modelling and optimization tool in biofuel process development

  7. Interpretable neural networks with BP-SOM

    NARCIS (Netherlands)

    Weijters, A.J.M.M.; Bosch, van den A.P.J.; Pobil, del A.P.; Mira, J.; Ali, M.

    1998-01-01

    Artificial Neural Networks (ANNS) are used successfully in industry and commerce. This is not surprising since neural networks are especially competitive for complex tasks for which insufficient domain-specific knowledge is available. However, interpretation of models induced by ANNS is often

  8. Prediction of hydrate formation temperature by both statistical models and artificial neural network approaches

    International Nuclear Information System (INIS)

    Zahedi, Gholamreza; Karami, Zohre; Yaghoobi, Hamed

    2009-01-01

    In this study, various estimation methods have been reviewed for hydrate formation temperature (HFT) and two procedures have been presented. In the first method, two general correlations have been proposed for HFT. One of the correlations has 11 parameters, and the second one has 18 parameters. In order to obtain constants in proposed equations, 203 experimental data points have been collected from literatures. The Engineering Equation Solver (EES) and Statistical Package for the Social Sciences (SPSS) soft wares have been employed for statistical analysis of the data. Accuracy of the obtained correlations also has been declared by comparison with experimental data and some recent common used correlations. In the second method, HFT is estimated by artificial neural network (ANN) approach. In this case, various architectures have been checked using 70% of experimental data for training of ANN. Among the various architectures multi layer perceptron (MLP) network with trainlm training algorithm was found as the best architecture. Comparing the obtained ANN model results with 30% of unseen data confirms ANN excellent estimation performance. It was found that ANN is more accurate than traditional methods and even our two proposed correlations for HFT estimation.

  9. Artificial neural network model of survival in patients treated with irradiation with and without concurrent chemotherapy for advanced carcinoma of the head and neck

    International Nuclear Information System (INIS)

    Bryce, Thomas J.; Dewhirst, Mark W.; Floyd, Carey E.; Hars, Vera; Brizel, David M.

    1998-01-01

    Purpose: This study was performed to investigate the feasibility of predicting survival in squamous cell carcinoma of the head and neck (SCCHN) with an artificial neural network (ANN), and to compare ANN performance with conventional models. Methods and Materials: Data were analyzed from a Phase III trial in which patients with locally advanced SCCHN received hyperfractionated irradiation with or without concurrent cisplatin and 5-fluorouracil. Of the 116 randomized patients, 95 who had 2-year follow-up and all required data were evaluated. ANN and logistic regression (LR) models were constructed to predict 2-year total survival using round-robin cross-validation. A modified staging model was also examined. Results: The best LR model used tumor size, nodal stage, and race to predict survival. The best ANN used nodal stage, tumor size, stage, and resectability, and hemoglobin. Treatment type did not predict 2-year survival and was not included in either model. Using the respective best feature sets, the area under the receiver operating characteristic curve (A z ) for the ANN was 0.78 ± 0.05, showing more accurate overall performance than LR (A z = 0.67 ± 0.05, p = 0.07). At 70% sensitivity, the ANN was 72% specific, while LR was 54% specific (p = 0.08). At 70% specificity, the ANN was 72% sensitive, while LR was 54% sensitive (p = 0.07). When both models used the five predictive variables best for an ANN, A z for LR decreased [A z = 0.61 ± 0.06, p z = 0.60 ± 0.07, p = 0.02 (ANN)]. Conclusions: An ANN modeled 2-year survival in this data set more accurately than LR or staging models and employed predictive variables that could not be used by LR. Further work is planned to confirm these results on larger patient samples, examining longer follow-up to incorporate treatment type into the model

  10. Modeling of surface dust concentrations using neural networks and kriging

    Science.gov (United States)

    Buevich, Alexander G.; Medvedev, Alexander N.; Sergeev, Alexander P.; Tarasov, Dmitry A.; Shichkin, Andrey V.; Sergeeva, Marina V.; Atanasova, T. B.

    2016-12-01

    Creating models which are able to accurately predict the distribution of pollutants based on a limited set of input data is an important task in environmental studies. In the paper two neural approaches: (multilayer perceptron (MLP)) and generalized regression neural network (GRNN)), and two geostatistical approaches: (kriging and cokriging), are using for modeling and forecasting of dust concentrations in snow cover. The area of study is under the influence of dust emissions from a copper quarry and a several industrial companies. The comparison of two mentioned approaches is conducted. Three indices are used as the indicators of the models accuracy: the mean absolute error (MAE), root mean square error (RMSE) and relative root mean square error (RRMSE). Models based on artificial neural networks (ANN) have shown better accuracy. When considering all indices, the most precision model was the GRNN, which uses as input parameters for modeling the coordinates of sampling points and the distance to the probable emissions source. The results of work confirm that trained ANN may be more suitable tool for modeling of dust concentrations in snow cover.

  11. Artificial Neural Networks for Reducing Computational Effort in Active Truncated Model Testing of Mooring Lines

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Voie, Per Erlend Torbergsen; Høgsberg, Jan Becker

    2015-01-01

    simultaneously, this method is very demanding in terms of numerical efficiency and computational power. Therefore, this method has not yet proved to be feasible. It has recently been shown how a hybrid method combining classical numerical models and artificial neural networks (ANN) can provide a dramatic...... prior to the experiment and with a properly trained ANN it is no problem to obtain accurate simulations much faster than real time-without any need for large computational capacity. The present study demonstrates how this hybrid method can be applied to the active truncated experiments yielding a system...

  12. Modelling of solar energy potential in Nigeria using an artificial neural network model

    International Nuclear Information System (INIS)

    Fadare, D.A.

    2009-01-01

    In this study, an artificial neural network (ANN) based model for prediction of solar energy potential in Nigeria (lat. 4-14 o N, log. 2-15 o E) was developed. Standard multilayered, feed-forward, back-propagation neural networks with different architecture were designed using neural toolbox for MATLAB. Geographical and meteorological data of 195 cities in Nigeria for period of 10 years (1983-1993) from the NASA geo-satellite database were used for the training and testing the network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, mean temperature, and relative humidity) were used as inputs to the network, while the solar radiation intensity was used as the output of the network. The results show that the correlation coefficients between the ANN predictions and actual mean monthly global solar radiation intensities for training and testing datasets were higher than 90%, thus suggesting a high reliability of the model for evaluation of solar radiation in locations where solar radiation data are not available. The predicted solar radiation values from the model were given in form of monthly maps. The monthly mean solar radiation potential in northern and southern regions ranged from 7.01-5.62 to 5.43-3.54 kW h/m 2 day, respectively. A graphical user interface (GUI) was developed for the application of the model. The model can be used easily for estimation of solar radiation for preliminary design of solar applications.

  13. Intelligent MRTD testing for thermal imaging system using ANN

    Science.gov (United States)

    Sun, Junyue; Ma, Dongmei

    2006-01-01

    The Minimum Resolvable Temperature Difference (MRTD) is the most widely accepted figure for describing the performance of a thermal imaging system. Many models have been proposed to predict it. The MRTD testing is a psychophysical task, for which biases are unavoidable. It requires laboratory conditions such as normal air condition and a constant temperature. It also needs expensive measuring equipments and takes a considerable period of time. Especially when measuring imagers of the same type, the test is time consuming. So an automated and intelligent measurement method should be discussed. This paper adopts the concept of automated MRTD testing using boundary contour system and fuzzy ARTMAP, but uses different methods. It describes an Automated MRTD Testing procedure basing on Back-Propagation Network. Firstly, we use frame grabber to capture the 4-bar target image data. Then according to image gray scale, we segment the image to get 4-bar place and extract feature vector representing the image characteristic and human detection ability. These feature sets, along with known target visibility, are used to train the ANN (Artificial Neural Networks). Actually it is a nonlinear classification (of input dimensions) of the image series using ANN. Our task is to justify if image is resolvable or uncertainty. Then the trained ANN will emulate observer performance in determining MRTD. This method can reduce the uncertainties between observers and long time dependent factors by standardization. This paper will introduce the feature extraction algorithm, demonstrate the feasibility of the whole process and give the accuracy of MRTD measurement.

  14. An attempt to model the relationship between MMI attenuation and engineering ground-motion parameters using artificial neural networks and genetic algorithms

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2010-12-01

    Full Text Available Complex application domains involve difficult pattern classification problems. This paper introduces a model of MMI attenuation and its dependence on engineering ground motion parameters based on artificial neural networks (ANNs and genetic algorithms (GAs. The ultimate goal of this investigation is to evaluate the target-region applicability of ground-motion attenuation relations developed for a host region based on training an ANN using the seismic patterns of the host region. This ANN learning is based on supervised learning using existing data from past earthquakes. The combination of these two learning procedures (that is, GA and ANN allows us to introduce a new method for pattern recognition in the context of seismological applications. The performance of this new GA-ANN regression method has been evaluated using a Greek seismological database with satisfactory results.

  15. Predicting risk for portal vein thrombosis in acute pancreatitis patients: A comparison of radical basis function artificial neural network and logistic regression models.

    Science.gov (United States)

    Fei, Yang; Hu, Jian; Gao, Kun; Tu, Jianfeng; Li, Wei-Qin; Wang, Wei

    2017-06-01

    To construct a radical basis function (RBF) artificial neural networks (ANNs) model to predict the incidence of acute pancreatitis (AP)-induced portal vein thrombosis. The analysis included 353 patients with AP who had admitted between January 2011 and December 2015. RBF ANNs model and logistic regression model were constructed based on eleven factors relevant to AP respectively. Statistical indexes were used to evaluate the value of the prediction in two models. The predict sensitivity, specificity, positive predictive value, negative predictive value and accuracy by RBF ANNs model for PVT were 73.3%, 91.4%, 68.8%, 93.0% and 87.7%, respectively. There were significant differences between the RBF ANNs and logistic regression models in these parameters (Plogistic regression model. D-dimer, AMY, Hct and PT were important prediction factors of approval for AP-induced PVT. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim

    2014-12-03

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  17. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim; Chasparis, Georgios; Shamma, Jeff S.

    2014-01-01

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  18. COMBINING PCA ANALYSIS AND ARTIFICIAL NEURAL NETWORKS IN MODELLING ENTREPRENEURIAL INTENTIONS OF STUDENTS

    Directory of Open Access Journals (Sweden)

    Marijana Zekić-Sušac

    2013-02-01

    Full Text Available Despite increased interest in the entrepreneurial intentions and career choices of young adults, reliable prediction models are yet to be developed. Two nonparametric methods were used in this paper to model entrepreneurial intentions: principal component analysis (PCA and artificial neural networks (ANNs. PCA was used to perform feature extraction in the first stage of modelling, while artificial neural networks were used to classify students according to their entrepreneurial intentions in the second stage. Four modelling strategies were tested in order to find the most efficient model. Dataset was collected in an international survey on entrepreneurship self-efficacy and identity. Variables describe students’ demographics, education, attitudes, social and cultural norms, self-efficacy and other characteristics. The research reveals benefits from the combination of the PCA and ANNs in modeling entrepreneurial intentions, and provides some ideas for further research.

  19. Novel model of a AlGaN/GaN high electron mobility transistor based on an artificial neural network

    Science.gov (United States)

    Cheng, Zhi-Qun; Hu, Sha; Liu, Jun; Zhang, Qi-Jun

    2011-03-01

    In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are described. The circuit-based Neuro-space mapping (neuro-SM) technique is studied in detail. The EEHEMT model is implemented according to the measurement results of the designed device, which serves as a coarse model. An ANN is proposed to model AlGaN/GaN HEMT based on the coarse model. Its optimization is performed. The simulation results from the model are compared with the measurement results. It is shown that the simulation results obtained from the ANN model of AlGaN/GaN HEMT are more accurate than those obtained from the EEHEMT model. Project supported by the National Natural Science Foundation of China (Grant No. 60776052).

  20. Novel model of a AlGaN/GaN high electron mobility transistor based on an artificial neural network

    International Nuclear Information System (INIS)

    Cheng Zhi-Qun; Hu Sha; Liu Jun; Zhang Qi-Jun

    2011-01-01

    In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are described. The circuit-based Neuro-space mapping (neuro-SM) technique is studied in detail. The EEHEMT model is implemented according to the measurement results of the designed device, which serves as a coarse model. An ANN is proposed to model AlGaN/GaN HEMT based on the coarse model. Its optimization is performed. The simulation results from the model are compared with the measurement results. It is shown that the simulation results obtained from the ANN model of AlGaN/GaN HEMT are more accurate than those obtained from the EEHEMT model. (condensed matter: structural, mechanical, and thermal properties)

  1. Artificial Neural Network versus Linear Models Forecasting Doha Stock Market

    Science.gov (United States)

    Yousif, Adil; Elfaki, Faiz

    2017-12-01

    The purpose of this study is to determine the instability of Doha stock market and develop forecasting models. Linear time series models are used and compared with a nonlinear Artificial Neural Network (ANN) namely Multilayer Perceptron (MLP) Technique. It aims to establish the best useful model based on daily and monthly data which are collected from Qatar exchange for the period starting from January 2007 to January 2015. Proposed models are for the general index of Qatar stock exchange and also for the usages in other several sectors. With the help of these models, Doha stock market index and other various sectors were predicted. The study was conducted by using various time series techniques to study and analyze data trend in producing appropriate results. After applying several models, such as: Quadratic trend model, double exponential smoothing model, and ARIMA, it was concluded that ARIMA (2,2) was the most suitable linear model for the daily general index. However, ANN model was found to be more accurate than time series models.

  2. Unsteady flamelet modelling of spray flames using deep artificial neural networks

    Science.gov (United States)

    Owoyele, Opeoluwa; Kundu, Prithwish; Ameen, Muhsin; Echekki, Tarek; Som, Sibendu

    2017-11-01

    We investigate the applicability of the tabulated, multidimensional unsteady flamelet model and artificial neural networks (TFM-ANN) to lifted diesel spray flame simulations. The tabulated flamelet model (TFM), based on the widely known flamelet assumption, eliminates the use of a progress variable and has been shown to successfully model global diesel spray flame characteristics in previous studies. While the TFM has shown speed-up compared to other models and predictive capabilities across a range of ambient conditions, it involves the storage of multidimensional tables, requiring large memory and multidimensional interpolation schemes. This work discusses the implementation of deep artificial neural networks (ANN) to replace the use of large tables and multidimensional interpolation. The proposed framework is validated by applying it to an n-dodecane spray flame (ECN Spray A) at different conditions using a 4 dimensional flamelet library. The validations are then extended for the simulations using a 5-dimensional flamelet table applied to the combustion of methyl decanoate in a compression ignition engine. Different ANN topologies, optimization algorithms and speed-up techniques are explored and details of computational resources required for TFM-ANN and the TFM are also presented. The overall tools and algorithms used in this study can be directly extended to other multidimensional tabulated models.

  3. Ensemble ANNs-PSO-GA Approach for Day-ahead Stock E-exchange Prices Forecasting

    Directory of Open Access Journals (Sweden)

    Yi Xiao

    2013-02-01

    Full Text Available Stock e-exchange prices forecasting is an important financial problem that is receiving increasing attention. This study proposes a novel three-stage nonlinear ensemble model. In the proposed model, three different types of neural-network based models, i.e. Elman network, generalized regression neural network (GRNN and wavelet neural network (WNN are constructed by three non-overlapping training sets and are further optimized by improved particle swarm optimization (IPSO. Finally, a neural-network-based nonlinear meta-model is generated by learning three neural-network based models through support vector machines (SVM neural network. The superiority of the proposed approach lies in its flexibility to account for potentially complex nonlinear relationships. Three daily stock indices time series are used for validating the forecasting model. Empirical results suggest the ensemble ANNs-PSO-GA approach can significantly improve the prediction performance over other individual models and linear combination models listed in this study.

  4. Development of Water Quality Forecasting Models Based on the SOM-ANN on TMDL Unit Watershed in Nakdong River

    Science.gov (United States)

    KIM, M.; Kim, J.; Baek, J.; Kim, C.; Shin, H.

    2013-12-01

    It has being happened as flush flood or red/green tide in various natural phenomena due to climate change and indiscreet development of river or land. Especially, water being very important to man should be protected and managed from water quality pollution, and in water resources management, real-time watershed monitoring system is being operated with the purpose of keeping watch and managing on rivers. It is especially important to monitor and forecast water quality in watershed. A study area selected Nak_K as one site among TMDL unit watershed in Nakdong River. This study is to develop a water quality forecasting model connected with making full use of observed data of 8 day interval from Nakdong River Environment Research Center. When forecasting models for each of the BOD, DO, COD, and chlorophyll-a are established considering correlation of various water quality factors, it is needed to select water quality factors showing highly considerable correlation with each water quality factor which is BOD, DO, COD, and chlorophyll-a. For analyzing the correlation of the factors (reservoir discharge, precipitation, air temperature, DO, BOD, COD, Tw, TN, TP, chlorophyll-a), in this study, self-organizing map was used and cross correlation analysis method was also used for comparing results drawn. Based on the results, each forecasting model for BOD, DO, COD, and chlorophyll-a was developed during the short period as 8, 16, 24, 32 days at 8 day interval. The each forecasting model is based on neural network with back propagation algorithm. That is, the study is connected with self-organizing map for analyzing correlation among various factors and neural network model for forecasting of water quality. It is considerably effective to manage the water quality in plenty of rivers, then, it specially is possible to monitor a variety of accidents in water quality. It will work well to protect water quality and to prevent destruction of the environment becoming more and more

  5. Modeling online social signed networks

    Science.gov (United States)

    Li, Le; Gu, Ke; Zeng, An; Fan, Ying; Di, Zengru

    2018-04-01

    People's online rating behavior can be modeled by user-object bipartite networks directly. However, few works have been devoted to reveal the hidden relations between users, especially from the perspective of signed networks. We analyze the signed monopartite networks projected by the signed user-object bipartite networks, finding that the networks are highly clustered with obvious community structure. Interestingly, the positive clustering coefficient is remarkably higher than the negative clustering coefficient. Then, a Signed Growing Network model (SGN) based on local preferential attachment is proposed to generate a user's signed network that has community structure and high positive clustering coefficient. Other structural properties of the modeled networks are also found to be similar to the empirical networks.

  6. Green Synthesis of Ultraviolet Absorber 2-Ethylhexyl Salicylate: Experimental Design and Artificial Neural Network Modeling

    Directory of Open Access Journals (Sweden)

    Shang-Ming Huang

    2017-11-01

    Full Text Available 2-Ethylhexyl salicylate, an ultraviolet filter, is widely used to protect skin against sunlight-induced harmful effects in the cosmetic industry. In this study, the green synthesis of 2-ethylhexyl salicylate using immobilized lipase through a solvent-free and reduced pressure evaporation system was investigated. A Box–Behnken design was employed to develop an artificial neural network (ANN model. The parameters for an optimal architecture of an ANN were set out: a quick propagation algorithm, a hyperbolic tangent transfer function, 10,000 iterations, and six nodes within the hidden layer. The best-fitting performance of the ANN was determined by the coefficient of determination and the root-mean-square error between the correlation of predicted and experimental data, indicating that the ANN displayed excellent data-fitting properties. Finally, the experimental conditions of synthesis were well established with the optimal parameters to obtain a high conversion of 2-ethylhexyl salicylate. In conclusion, this study efficiently replaces the traditional solvents with a green process for the synthesis of 2-ethylhexyl salicylate to avoid environmental contamination, and this process is well-modeled by a methodological ANN for optimization, which might be a benefit for industrial production.

  7. Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery.

    Directory of Open Access Journals (Sweden)

    Hon-Yi Shi

    Full Text Available BACKGROUND: Since most published articles comparing the performance of artificial neural network (ANN models and logistic regression (LR models for predicting hepatocellular carcinoma (HCC outcomes used only a single dataset, the essential issue of internal validity (reproducibility of the models has not been addressed. The study purposes to validate the use of ANN model for predicting in-hospital mortality in HCC surgery patients in Taiwan and to compare the predictive accuracy of ANN with that of LR model. METHODOLOGY/PRINCIPAL FINDINGS: Patients who underwent a HCC surgery during the period from 1998 to 2009 were included in the study. This study retrospectively compared 1,000 pairs of LR and ANN models based on initial clinical data for 22,926 HCC surgery patients. For each pair of ANN and LR models, the area under the receiver operating characteristic (AUROC curves, Hosmer-Lemeshow (H-L statistics and accuracy rate were calculated and compared using paired T-tests. A global sensitivity analysis was also performed to assess the relative significance of input parameters in the system model and the relative importance of variables. Compared to the LR models, the ANN models had a better accuracy rate in 97.28% of cases, a better H-L statistic in 41.18% of cases, and a better AUROC curve in 84.67% of cases. Surgeon volume was the most influential (sensitive parameter affecting in-hospital mortality followed by age and lengths of stay. CONCLUSIONS/SIGNIFICANCE: In comparison with the conventional LR model, the ANN model in the study was more accurate in predicting in-hospital mortality and had higher overall performance indices. Further studies of this model may consider the effect of a more detailed database that includes complications and clinical examination findings as well as more detailed outcome data.

  8. Evaluation of the AnnAGNPS Model for Predicting Runoff and Nutrient Export in a Typical Small Watershed in the Hilly Region of Taihu Lake

    Directory of Open Access Journals (Sweden)

    Chuan Luo

    2015-09-01

    Full Text Available The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS model to predict runoff, total nitrogen (TN and total phosphorus (TP loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds.

  9. Ann Tenno salapaigad / Margit Tõnson

    Index Scriptorium Estoniae

    Tõnson, Margit, 1978-

    2011-01-01

    Fotograaf Ann Tenno aiandushuvist, pildistamisest maailma erinevates paikades. Uutest suundadest (fototöötlus, fractal art, soojuskaameraga pildistamine) tema loomingus. Katkendeid Ann Tenno 2010. aastal ilmunud proosaraamatust "Üle unepiiri"

  10. A neighbourhood evolving network model

    International Nuclear Information System (INIS)

    Cao, Y.J.; Wang, G.Z.; Jiang, Q.Y.; Han, Z.X.

    2006-01-01

    Many social, technological, biological and economical systems are best described by evolved network models. In this short Letter, we propose and study a new evolving network model. The model is based on the new concept of neighbourhood connectivity, which exists in many physical complex networks. The statistical properties and dynamics of the proposed model is analytically studied and compared with those of Barabasi-Albert scale-free model. Numerical simulations indicate that this network model yields a transition between power-law and exponential scaling, while the Barabasi-Albert scale-free model is only one of its special (limiting) cases. Particularly, this model can be used to enhance the evolving mechanism of complex networks in the real world, such as some social networks development

  11. Predicting heat stress index in Sasso hens using automatic linear modeling and artificial neural network

    Science.gov (United States)

    Yakubu, A.; Oluremi, O. I. A.; Ekpo, E. I.

    2018-03-01

    There is an increasing use of robust analytical algorithms in the prediction of heat stress. The present investigation therefore, was carried out to forecast heat stress index (HSI) in Sasso laying hens. One hundred and sixty seven records on the thermo-physiological parameters of the birds were utilized. They were reared on deep litter and battery cage systems. Data were collected when the birds were 42- and 52-week of age. The independent variables fitted were housing system, age of birds, rectal temperature (RT), pulse rate (PR), and respiratory rate (RR). The response variable was HSI. Data were analyzed using automatic linear modeling (ALM) and artificial neural network (ANN) procedures. The ALM model building method involved Forward Stepwise using the F Statistic criterion. As regards ANN, multilayer perceptron (MLP) with back-propagation network was used. The ANN network was trained with 90% of the data set while 10% were dedicated to testing for model validation. RR and PR were the two parameters of utmost importance in the prediction of HSI. However, the fractional importance of RR was higher than that of PR in both ALM (0.947 versus 0.053) and ANN (0.677 versus 0.274) models. The two models also predicted HSI effectively with high degree of accuracy [r = 0.980, R 2 = 0.961, adjusted R 2 = 0.961, and RMSE = 0.05168 (ALM); r = 0.983, R 2 = 0.966; adjusted R 2 = 0.966, and RMSE = 0.04806 (ANN)]. The present information may be exploited in the development of a heat stress chart based largely on RR. This may aid detection of thermal discomfort in a poultry house under tropical and subtropical conditions.

  12. Modeling and simulation of xylitol production in bioreactor by Debaryomyces nepalensis NCYC 3413 using unstructured and artificial neural network models.

    Science.gov (United States)

    Pappu, J Sharon Mano; Gummadi, Sathyanarayana N

    2016-11-01

    This study examines the use of unstructured kinetic model and artificial neural networks as predictive tools for xylitol production by Debaryomyces nepalensis NCYC 3413 in bioreactor. An unstructured kinetic model was proposed in order to assess the influence of pH (4, 5 and 6), temperature (25°C, 30°C and 35°C) and volumetric oxygen transfer coefficient kLa (0.14h(-1), 0.28h(-1) and 0.56h(-1)) on growth and xylitol production. A feed-forward back-propagation artificial neural network (ANN) has been developed to investigate the effect of process condition on xylitol production. ANN configuration of 6-10-3 layers was selected and trained with 339 experimental data points from bioreactor studies. Results showed that simulation and prediction accuracy of ANN was apparently higher when compared to unstructured mechanistic model under varying operational conditions. ANN was found to be an efficient data-driven tool to predict the optimal harvest time in xylitol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Feature Selection and ANN Solar Power Prediction

    Directory of Open Access Journals (Sweden)

    Daniel O’Leary

    2017-01-01

    Full Text Available A novel method of solar power forecasting for individuals and small businesses is developed in this paper based on machine learning, image processing, and acoustic classification techniques. Increases in the production of solar power at the consumer level require automated forecasting systems to minimize loss, cost, and environmental impact for homes and businesses that produce and consume power (prosumers. These new participants in the energy market, prosumers, require new artificial neural network (ANN performance tuning techniques to create accurate ANN forecasts. Input masking, an ANN tuning technique developed for acoustic signal classification and image edge detection, is applied to prosumer solar data to improve prosumer forecast accuracy over traditional macrogrid ANN performance tuning techniques. ANN inputs tailor time-of-day masking based on error clustering in the time domain. Results show an improvement in prediction to target correlation, the R2 value, lowering inaccuracy of sample predictions by 14.4%, with corresponding drops in mean average error of 5.37% and root mean squared error of 6.83%.

  14. A TLBO based gradient descent learning-functional link higher order ANN: An efficient model for learning from non-linear data

    Directory of Open Access Journals (Sweden)

    Bighnaraj Naik

    2018-01-01

    Full Text Available All the higher order ANNs (HONNs including functional link ANN (FLANN are sensitive to random initialization of weight and rely on the learning algorithms adopted. Although a selection of efficient learning algorithms for HONNs helps to improve the performance, on the other hand, initialization of weights with optimized weights rather than random weights also play important roles on its efficiency. In this paper, the problem solving approach of the teaching learning based optimization (TLBO along with learning ability of the gradient descent learning (GDL is used to obtain the optimal set of weight of FLANN learning model. TLBO does not require any specific parameters rather it requires only some of the common independent parameters like number of populations, number of iterations and stopping criteria, thereby eliminating the intricacy in selection of algorithmic parameters for adjusting the set of weights of FLANN model. The proposed TLBO-FLANN is implemented in MATLAB and compared with GA-FLANN, PSO-FLANN and HS-FLANN. The TLBO-FLANN is tested on various 5-fold cross validated benchmark data sets from UCI machine learning repository and analyzed under the null-hypothesis by using Friedman test, Holm’s procedure and post hoc ANOVA statistical analysis (Tukey test & Dunnett test.

  15. The application of artificial neural network in radon disaster model of uranium mining

    International Nuclear Information System (INIS)

    Zhu Yufeng; Zhu Guogen; Zhou Shijian

    2012-01-01

    The structural features, data analysis and learning process of feed-forward neural network (BP ANN) were analyzed at first. Rodon sample from Fuzhou Jinan Uranium Industry Limited Company were used to training the network and make the forecast then, and a forecasting model was established for the radon disaster in uranium mines. The method and effectiveness of BP neural network in predicting radon disaster was discussed. The test of training samples showed that the BP network had gotten fairly satisfied result in predicting mine radon disaster. (authors)

  16. Prediction of paddy drying kinetics: A comparative study between mathematical and artificial neural network modelling

    Directory of Open Access Journals (Sweden)

    Beigi Mohsen

    2017-01-01

    Full Text Available The present study aimed at investigation of deep bed drying of rough rice kernels at various thin layers at different drying air temperatures and flow rates. A comparative study was performed between mathematical thin layer models and artificial neural networks to estimate the drying curves of rough rice. The suitability of nine mathematical models in simulating the drying kinetics was examined and the Midilli model was determined as the best approach for describing drying curves. Different feed forward-back propagation artificial neural networks were examined to predict the moisture content variations of the grains. The ANN with 4-18-18-1 topology, transfer function of hyperbolic tangent sigmoid and a Levenberg-Marquardt back propagation training algorithm provided the best results with the maximum correlation coefficient and the minimum mean square error values. Furthermore, it was revealed that ANN modeling had better performance in prediction of drying curves with lower root mean square error values.

  17. Kõnelused Tartus / Anne Untera

    Index Scriptorium Estoniae

    Untera, Anne, 1951-

    2007-01-01

    8.-10. V Tartus toimunud eesti, läti ja saksa kunstiteadlaste ühisseminarist. Alexander Knorre rääkis Karl August Senffi, Ilona Audere Friedrich Ludwig von Maydelli, Mai Levin Karl Alexander von Winkleri, Kristiana Abele Johann Walter-Kurau (1869-1932), Anne Untera Konstantin ja Sally von Kügelgeni, Epp Preem Julie Hagen-Schwartzi, Friedrich Gross Eduard von Gebhardti ja Katharina Hadding Ida Kerkoviuse (1879-1970) loomingust

  18. QSAR models for prediction study of HIV protease inhibitors using support vector machines, neural networks and multiple linear regression

    Directory of Open Access Journals (Sweden)

    Rachid Darnag

    2017-02-01

    Full Text Available Support vector machines (SVM represent one of the most promising Machine Learning (ML tools that can be applied to develop a predictive quantitative structure–activity relationship (QSAR models using molecular descriptors. Multiple linear regression (MLR and artificial neural networks (ANNs were also utilized to construct quantitative linear and non linear models to compare with the results obtained by SVM. The prediction results are in good agreement with the experimental value of HIV activity; also, the results reveal the superiority of the SVM over MLR and ANN model. The contribution of each descriptor to the structure–activity relationships was evaluated.

  19. Preliminary Study on Application of Artificial Neural Networks (ANN) for Determining the Peroxide Value of Three Commercial Palm Oil Based FTIR Spectrum)

    International Nuclear Information System (INIS)

    Azwan Mat Lazim; Musa Ahmad; Zuriati Zakaria; Mohd Suzeren Jamil; Suria Ramli; Faiz Zainuddin; Mohd Nasir Taib; Mat Nasir Mat Arip

    2013-01-01

    Peroxide value is one of the measurements that being used to determine the peroxide in oil samples produce from the peroxide compound and hydroperoxide group at the primary level of lipid oxidation. In this study, 3 commercial palm cooking oils were selected and labeled as A, B and C. Two different conditions were applied to the samples. First, the oil sample was exposed to the air for three months (labeled as A) while samples B and C were used for frying for many times. Two inputs from FTIR spectra (3444 cm -1 and 3450 cm -1 ) were chosen for the ANN training. The suitable architecture for this training is 2:20:1. The prediction made by ANN was very accurate and compatible to the result which obtained from the standard method. A low average error (0.48) was obtained when the hidden neuron (20) and the epochs (300) were used. (author)

  20. Improving gridded snow water equivalent products in British Columbia, Canada: multi-source data fusion by neural network models

    Science.gov (United States)

    Snauffer, Andrew M.; Hsieh, William W.; Cannon, Alex J.; Schnorbus, Markus A.

    2018-03-01

    Estimates of surface snow water equivalent (SWE) in mixed alpine environments with seasonal melts are particularly difficult in areas of high vegetation density, topographic relief, and snow accumulations. These three confounding factors dominate much of the province of British Columbia (BC), Canada. An artificial neural network (ANN) was created using as predictors six gridded SWE products previously evaluated for BC. Relevant spatiotemporal covariates were also included as predictors, and observations from manual snow surveys at stations located throughout BC were used as target data. Mean absolute errors (MAEs) and interannual correlations for April surveys were found using cross-validation. The ANN using the three best-performing SWE products (ANN3) had the lowest mean station MAE across the province. ANN3 outperformed each product as well as product means and multiple linear regression (MLR) models in all of BC's five physiographic regions except for the BC Plains. Subsequent comparisons with predictions generated by the Variable Infiltration Capacity (VIC) hydrologic model found ANN3 to better estimate SWE over the VIC domain and within most regions. The superior performance of ANN3 over the individual products, product means, MLR, and VIC was found to be statistically significant across the province.

  1. Comparison of hybrid spectral-decomposition artificial neural network models for understanding climatic forcing of groundwater levels

    Science.gov (United States)

    Abrokwah, K.; O'Reilly, A. M.

    2017-12-01

    Groundwater is an important resource that is extracted every day because of its invaluable use for domestic, industrial and agricultural purposes. The need for sustaining groundwater resources is clearly indicated by declining water levels and has led to modeling and forecasting accurate groundwater levels. In this study, spectral decomposition of climatic forcing time series was used to develop hybrid wavelet analysis (WA) and moving window average (MWA) artificial neural network (ANN) models. These techniques are explored by modeling historical groundwater levels in order to provide understanding of potential causes of the observed groundwater-level fluctuations. Selection of the appropriate decomposition level for WA and window size for MWA helps in understanding the important time scales of climatic forcing, such as rainfall, that influence water levels. Discrete wavelet transform (DWT) is used to decompose the input time-series data into various levels of approximate and details wavelet coefficients, whilst MWA acts as a low-pass signal-filtering technique for removing high-frequency signals from the input data. The variables used to develop and validate the models were daily average rainfall measurements from five National Atmospheric and Oceanic Administration (NOAA) weather stations and daily water-level measurements from two wells recorded from 1978 to 2008 in central Florida, USA. Using different decomposition levels and different window sizes, several WA-ANN and MWA-ANN models for simulating the water levels were created and their relative performances compared against each other. The WA-ANN models performed better than the corresponding MWA-ANN models; also higher decomposition levels of the input signal by the DWT gave the best results. The results obtained show the applicability and feasibility of hybrid WA-ANN and MWA-ANN models for simulating daily water levels using only climatic forcing time series as model inputs.

  2. Neural network modelling of rainfall interception in four different forest stands

    OpenAIRE

    Ibrahim Yurtseven; Mustafa Zengin

    2013-01-01

    The objective of this study is to reveal whether it is possible to predict rainfall, throughfall and stemflow in forest ecosystems with less effort, using several measurements of rainfall interception (hereafter interception) and an artificial neural network based linear regression model (ANN model). To this end, the Kerpe Research Forest in the province of Kocaeli, which houses stands of mixed deciduous-broadleaf forest (Castanea sativa Mill., Fagus orientalis Lipsky, Quercus spp.), black pi...

  3. An optimization on strontium separation model for fission products (inactive trace elements) using artificial neural networks

    International Nuclear Information System (INIS)

    Moosavi, K.; Setayeshi, S.; Maragheh, M.Gh.; Ahmadi, S.J.; Kardan, M.R.; Banaem, L.M.

    2009-01-01

    In this study, an experimental design using artificial neural networks for an optimization on the strontium separation model for fission products (inactive trace elements) is investigated. The goal is to optimize the separation parameters to achieve maximum amount of strontium that is separated from the fission products. The result of the optimization method causes a proper purity of Strontium-89 that was separated from the fission products. It is also shown that ANN may be establish a method to optimize the separation model.

  4. Exploring QSARs of the interaction of flavonoids with GABA (A) receptor using MLR, ANN and SVM techniques.

    Science.gov (United States)

    Deeb, Omar; Shaik, Basheerulla; Agrawal, Vijay K

    2014-10-01

    Quantitative Structure-Activity Relationship (QSAR) models for binding affinity constants (log Ki) of 78 flavonoid ligands towards the benzodiazepine site of GABA (A) receptor complex were calculated using the machine learning methods: artificial neural network (ANN) and support vector machine (SVM) techniques. The models obtained were compared with those obtained using multiple linear regression (MLR) analysis. The descriptor selection and model building were performed with 10-fold cross-validation using the training data set. The SVM and MLR coefficient of determination values are 0.944 and 0.879, respectively, for the training set and are higher than those of ANN models. Though the SVM model shows improvement of training set fitting, the ANN model was superior to SVM and MLR in predicting the test set. Randomization test is employed to check the suitability of the models.

  5. From Heuristic to Mathematical Modeling of Drugs Dissolution Profiles: Application of Artificial Neural Networks and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Aleksander Mendyk

    2015-01-01

    Full Text Available The purpose of this work was to develop a mathematical model of the drug dissolution (Q from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs and genetic programming (GP tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1 direct modeling of Q versus extrudate diameter (d and the time variable (t and (2 indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations’ parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE from 2.19 to 2.33. The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs’ black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies.

  6. Predictive modeling of performance of a helium charged Stirling engine using an artificial neural network

    International Nuclear Information System (INIS)

    Özgören, Yaşar Önder; Çetinkaya, Selim; Sarıdemir, Suat; Çiçek, Adem; Kara, Fuat

    2013-01-01

    Highlights: ► Max torque and power values were obtained at 3.5 bar Pch, 1273 K Hst and 1.4:1 r. ► According to ANOVA, the most influential parameter on power was Hst with 48.75%. ► According to ANOVA, the most influential parameter on torque was Hst with 41.78%. ► ANN (R 2 = 99.8% for T, P) was superior to regression method (R 2 = 92% for T, 81% for P). ► LM was the best learning algorithm in predicting both power and torque. - Abstract: In this study, an artificial neural network (ANN) model was developed to predict the torque and power of a beta-type Stirling engine using helium as the working fluid. The best results were obtained by 5-11-7-1 and 5-13-7-1 network architectures, with double hidden layers for the torque and power respectively. For these network architectures, the Levenberg–Marquardt (LM) learning algorithm was used. Engine performance values predicted with the developed ANN model were compared with the actual performance values measured experimentally, and substantially coinciding results were observed. After ANN training, correlation coefficients (R 2 ) of both engine performance values for testing and training data were very close to 1. Similarly, root-mean-square error (RMSE) and mean error percentage (MEP) values for the testing and training data were less than 0.02% and 3.5% respectively. These results showed that the ANN is an acceptable model for prediction of the torque and power of the beta-type Stirling engine

  7. Artificial neural network models for prediction of cardiovascular autonomic dysfunction in general Chinese population

    Science.gov (United States)

    2013-01-01

    Background The present study aimed to develop an artificial neural network (ANN) based prediction model for cardiovascular autonomic (CA) dysfunction in the general population. Methods We analyzed a previous dataset based on a population sample consisted of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN analysis. Performances of these prediction models were evaluated in the validation set. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with CA dysfunction (P < 0.05). The mean area under the receiver-operating curve was 0.762 (95% CI 0.732–0.793) for prediction model developed using ANN analysis. The mean sensitivity, specificity, positive and negative predictive values were similar in the prediction models was 0.751, 0.665, 0.330 and 0.924, respectively. All HL statistics were less than 15.0. Conclusion ANN is an effective tool for developing prediction models with high value for predicting CA dysfunction among the general population. PMID:23902963

  8. Modeling of an industrial drying process by artificial neural networks

    Directory of Open Access Journals (Sweden)

    E. Assidjo

    2008-09-01

    Full Text Available A suitable method is needed to solve the nonquality problem in the grated coconut industry due to the poor control of product humidity during the process. In this study the possibility of using an artificial neural network (ANN, precisely a Multilayer Perceptron, for modeling the drying step of the production of grated coconut process is highlighted. Drying must confer to the product a final moisture of 3%. Unfortunately, under industrial conditions, this moisture varies from 1.9 to 4.8 %. In order to control this parameter and consequently reduce the proportion of the product that does not meet the humidity specification, a 9-4-1 neural network architecture was established using data gathered from an industrial plant. This Multilayer Perceptron can satisfactorily model the process with less bias, ranging from -0.35 to 0.34%, and can reduce the rate of rejected products from 92% to 3% during the first cycle of drying.

  9. Ground Motion Prediction Model Using Artificial Neural Network

    Science.gov (United States)

    Dhanya, J.; Raghukanth, S. T. G.

    2018-03-01

    This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude ( M w), closest distance to rupture plane ( R rup), shear wave velocity in the region ( V s30) and focal mechanism ( F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.

  10. ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An artificial neural network(ANN) and a self-adjusting fuzzy logic controller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented. The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and the intelligent control for weld seam tracking with FLC. The proposed neural network can produce highly complex nonlinear multi-variable model of the GTAW process that offers the accurate prediction of welding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts the control parameters on-line automatically according to the tracking errors so that the torch position can be controlled accurately.

  11. Shallow Landslide Susceptibility Modeling Using the Data Mining Models Artificial Neural Network and Boosted Tree

    Directory of Open Access Journals (Sweden)

    Hyun-Joo Oh

    2017-09-01

    Full Text Available The main purpose of this paper is to present some potential applications of sophisticated data mining techniques, such as artificial neural network (ANN and boosted tree (BT, for landslide susceptibility modeling in the Yongin area, Korea. Initially, landslide inventory was detected from visual interpretation using digital aerial photographic maps with a high resolution of 50 cm taken before and after the occurrence of landslides. The debris flows were randomly divided into two groups: training and validation sets with a 50:50 proportion. Additionally, 18 environmental factors related to landslide occurrence were derived from the topography, soil, and forest maps. Subsequently, the data mining techniques were applied to identify the influence of environmental factors on landslide occurrence of the training set and assess landslide susceptibility. Finally, the landslide susceptibility indexes from ANN and BT were compared with a validation set using a receiver operating characteristics curve. The slope gradient, topographic wetness index, and timber age appear to be important factors in landslide occurrence from both models. The validation result of ANN and BT showed 82.25% and 90.79%, which had reasonably good performance. The study shows the benefit of selecting optimal data mining techniques in landslide susceptibility modeling. This approach could be used as a guideline for choosing environmental factors on landslide occurrence and add influencing factors into landslide monitoring systems. Furthermore, this method can rank landslide susceptibility in urban areas, thus providing helpful information when selecting a landslide monitoring site and planning land-use.

  12. Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T.

    Science.gov (United States)

    Bertleff, Marco; Domsch, Sebastian; Weingärtner, Sebastian; Zapp, Jascha; O'Brien, Kieran; Barth, Markus; Schad, Lothar R

    2017-12-01

    Artificial neural networks (ANNs) were used for voxel-wise parameter estimation with the combined intravoxel incoherent motion (IVIM) and kurtosis model facilitating robust diffusion parameter mapping in the human brain. The proposed ANN approach was compared with conventional least-squares regression (LSR) and state-of-the-art multi-step fitting (LSR-MS) in Monte-Carlo simulations and in vivo in terms of estimation accuracy and precision, number of outliers and sensitivity in the distinction between grey (GM) and white (WM) matter. Both the proposed ANN approach and LSR-MS yielded visually increased parameter map quality. Estimations of all parameters (perfusion fraction f, diffusion coefficient D, pseudo-diffusion coefficient D*, kurtosis K) were in good agreement with the literature using ANN, whereas LSR-MS resulted in D* overestimation and LSR yielded increased values for f and D*, as well as decreased values for K. Using ANN, outliers were reduced for the parameters f (ANN, 1%; LSR-MS, 19%; LSR, 8%), D* (ANN, 21%; LSR-MS, 25%; LSR, 23%) and K (ANN, 0%; LSR-MS, 0%; LSR, 15%). Moreover, ANN enabled significant distinction between GM and WM based on all parameters, whereas LSR facilitated this distinction only based on D and LSR-MS on f, D and K. Overall, the proposed ANN approach was found to be superior to conventional LSR, posing a powerful alternative to the state-of-the-art method LSR-MS with several advantages in the estimation of IVIM-kurtosis parameters, which might facilitate increased applicability of enhanced diffusion models at clinical scan times. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Artificial Neural Network Analysis of Xinhui Pericarpium Citri ...

    African Journals Online (AJOL)

    Methods: Artificial neural networks (ANN) models, including general regression neural network (GRNN) and multi-layer ... N-hexane (HPLC grade) was purchased from. Fisher Scientific. ..... Simultaneous Quantification of Seven Flavonoids in.

  14. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling: a case study

    NARCIS (Netherlands)

    Lin, Y.P.; Chu, H.J.; Wu, C.F.; Verburg, P.H.

    2011-01-01

    The objective of this study is to compare the abilities of logistic, auto-logistic and artificial neural network (ANN) models for quantifying the relationships between land uses and their drivers. In addition, the application of the results obtained by the three techniques is tested in a dynamic

  15. Application of Artificial Neural Network and Response Surface Methodology in Modeling of Surface Roughness in WS2 Solid Lubricant Assisted MQL Turning of Inconel 718

    Science.gov (United States)

    Maheshwera Reddy Paturi, Uma; Devarasetti, Harish; Abimbola Fadare, David; Reddy Narala, Suresh Kumar

    2018-04-01

    In the present paper, the artificial neural network (ANN) and response surface methodology (RSM) are used in modeling of surface roughness in WS2 (tungsten disulphide) solid lubricant assisted minimal quantity lubrication (MQL) machining. The real time MQL turning of Inconel 718 experimental data considered in this paper was available in the literature [1]. In ANN modeling, performance parameters such as mean square error (MSE), mean absolute percentage error (MAPE) and average error in prediction (AEP) for the experimental data were determined based on Levenberg–Marquardt (LM) feed forward back propagation training algorithm with tansig as transfer function. The MATLAB tool box has been utilized in training and testing of neural network model. Neural network model with three input neurons, one hidden layer with five neurons and one output neuron (3-5-1 architecture) is found to be most confidence and optimal. The coefficient of determination (R2) for both the ANN and RSM model were seen to be 0.998 and 0.982 respectively. The surface roughness predictions from ANN and RSM model were related with experimentally measured values and found to be in good agreement with each other. However, the prediction efficacy of ANN model is relatively high when compared with RSM model predictions.

  16. Quality assessment and artificial neural networks modeling for characterization of chemical and physical parameters of potable water.

    Science.gov (United States)

    Salari, Marjan; Salami Shahid, Esmaeel; Afzali, Seied Hosein; Ehteshami, Majid; Conti, Gea Oliveri; Derakhshan, Zahra; Sheibani, Solmaz Nikbakht

    2018-04-22

    Today, due to the increase in the population, the growth of industry and the variety of chemical compounds, the quality of drinking water has decreased. Five important river water quality properties such as: dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (ALK) and turbidity (TU) were estimated by parameters such as: electric conductivity (EC), temperature (T), and pH that could be measured easily with almost no costs. Simulate water quality parameters were examined with two methods of modeling include mathematical and Artificial Neural Networks (ANN). Mathematical methods are based on polynomial fitting with least square method and ANN modeling algorithms are feed-forward networks. All conditions/circumstances covered by neural network modeling were tested for all parameters in this study, except for Alkalinity. All optimum ANN models developed to simulate water quality parameters had precision value as R-value close to 0.99. The ANN model extended to simulate alkalinity with R-value equals to 0.82. Moreover, Surface fitting techniques were used to refine data sets. Presented models and equations are reliable/useable tools for studying water quality parameters at similar rivers, as a proper replacement for traditional water quality measuring equipment's. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Development of Artificial Neural Network Model of Crude Oil Distillation Column

    Directory of Open Access Journals (Sweden)

    Ali Hussein Khalaf

    2016-02-01

    Full Text Available Artificial neural network in MATLAB simulator is used to model Baiji crude oil distillation unit based on data generated from aspen-HYSYS simulator. Thirteen inputs, six outputs and over 1487 data set are used to model the actual unit. Nonlinear autoregressive network with exogenous inputs (NARXand back propagation algorithm are used for training. Seventy percent of data are used for training the network while the remaining  thirty percent are used for testing  and validating the network to determine its prediction accuracy. One hidden layer and 34 hidden neurons are used for the proposed network with MSE of 0.25 is obtained. The number of neuron are selected based on less MSE for the network. The model founded to predict the optimal operating conditions for different objective functions within the training limit since ANN models are poor extrapolators. They are usually only reliable within the range of data that they had been trained for.

  18. Development of Artificial Neural Network Model of Crude Oil Distillation Column

    Directory of Open Access Journals (Sweden)

    Duraid F. Ahmed

    2016-02-01

    Full Text Available Artificial neural network in MATLAB simulator is used to model Baiji crude oil distillation unit based on data generated from aspen-HYSYS simulator. Thirteen inputs, six outputs and over 1487 data set are used to model the actual unit. Nonlinear autoregressive network with exogenous inputs (NARX and back propagation algorithm are used for training. Seventy percent of data are used for training the network while the remaining thirty percent are used for testing and validating the network to determine its prediction accuracy. One hidden layer and 34 hidden neurons are used for the proposed network with MSE of 0.25 is obtained. The number of neuron are selected based on less MSE for the network. The model founded to predict the optimal operating conditions for different objective functions within the training limit since ANN models are poor extrapolators. They are usually only reliable within the range of data that they had been trained for.

  19. Neural Network Modeling of the Lithium/Thionyl Chloride Battery System

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Jungst, R.G.; O' Gorman, C.C.; Paez, T.L.

    1998-10-29

    Battery systems have traditionally relied on extensive build and test procedures for product realization. Analytical models have been developed to diminish this reliance, but have only been partially successful in consistently predicting the performance of battery systems. The complex set of interacting physical and chemical processes within battery systems has made the development of analytical models a significant challenge. Advanced simulation tools are needed to more accurately model battery systems which will reduce the time and cost required for product realization. Sandia has initiated an advanced model-based design strategy to battery systems, beginning with the performance of lithiumhhionyl chloride cells. As an alternative approach, we have begun development of cell performance modeling using non-phenomenological models for battery systems based on artificial neural networks (ANNs). ANNs are inductive models for simulating input/output mappings with certain advantages over phenomenological models, particularly for complex systems. Among these advantages is the ability to avoid making measurements of hard to determine physical parameters or having to understand cell processes sufficiently to write mathematical functions describing their behavior. For example, ANN models are also being studied for simulating complex physical processes within the Li/SOC12 cell, such as the time and temperature dependence of the anode interracial resistance. ANNs have been shown to provide a very robust and computationally efficient simulation tool for predicting voltage and capacity output for Li/SOC12 cells under a variety of operating conditions. The ANN modeling approach should be applicable to a wide variety of battery chemistries, including rechargeable systems.

  20. Developing Personal Network Business Models

    DEFF Research Database (Denmark)

    Saugstrup, Dan; Henten, Anders

    2006-01-01

    The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports...

  1. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.; Byrne, H.M.; King, J.R.; Bennett, M.J.

    2013-01-01

    methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more

  2. Complex Networks in Psychological Models

    Science.gov (United States)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  3. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model.

    Directory of Open Access Journals (Sweden)

    Mingyue Qiu

    Full Text Available In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders' expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day's price of the Japanese stock market index by using an optimized artificial neural network (ANN model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA. We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately.

  4. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model.

    Science.gov (United States)

    Qiu, Mingyue; Song, Yu

    2016-01-01

    In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders' expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day's price of the Japanese stock market index by using an optimized artificial neural network (ANN) model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA). We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately.

  5. A neural network model for estimating soil phosphorus using terrain analysis

    Directory of Open Access Journals (Sweden)

    Ali Keshavarzi

    2015-12-01

    Full Text Available Artificial neural network (ANN model was developed and tested for estimating soil phosphorus (P in Kouhin watershed area (1000 ha, Qazvin province, Iran using terrain analysis. Based on the soil distribution correlation, vegetation growth pattern across the topographically heterogeneous landscape, the topographic and vegetation attributes were used in addition to pedologic information for the development of ANN model in area for estimating of soil phosphorus. Totally, 85 samples were collected and tested for phosphorus contents and corresponding attributes were estimated by the digital elevation model (DEM. In order to develop the pedo-transfer functions, data linearity was checked, correlated and 80% was used for modeling and ANN was tested using 20% of collected data. Results indicate that 68% of the variation in soil phosphorus could be explained by elevation and Band 1 data and significant correlation was observed between input variables and phosphorus contents. There was a significant correlation between soil P and terrain attributes which can be used to derive the pedo-transfer function for soil P estimation to manage nutrient deficiency. Results showed that P values can be calculated more accurately with the ANN-based pedo-transfer function with the input topographic variables along with the Band 1.

  6. Artificial Neural Network Model to Estimate the Viscosity of Polymer Solutions for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Pan-Sang Kang

    2016-06-01

    Full Text Available Polymer flooding is now considered a technically- and commercially-proven method for enhanced oil recovery (EOR. The viscosity of the injected polymer solution is the key property for successful polymer flooding. Given that the viscosity of a polymer solution has a non-linear relationship with various influential parameters (molecular weight, degree of hydrolysis, polymer concentration, cation concentration of polymer solution, shear rate, temperature and that measurement of viscosity based on these parameters is a time-consuming process, the range of solution samples and the measurement conditions need to be limited and precise. Viscosity estimation of the polymer solution is effective for these purposes. An artificial neural network (ANN was applied to the viscosity estimation of FlopaamTM 3330S, FlopaamTM 3630S and AN-125 solutions, three commonly-used EOR polymers. The viscosities measured and estimated by ANN and the Carreau model using Lee’s correlation, the only method for estimating the viscosity of an EOR polymer solution in unmeasured conditions, were compared. Estimation accuracy was evaluated by the average absolute relative deviation, which has been widely used for accuracy evaluation of the results of ANN models. In all conditions, the accuracy of the ANN model is higher than that of the Carreau model using Lee’s correlation.

  7. Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L.

    Directory of Open Access Journals (Sweden)

    J. Prakash Maran

    2013-09-01

    Full Text Available In this study, a comparative approach was made between artificial neural network (ANN and response surface methodology (RSM to predict the mass transfer parameters of osmotic dehydration of papaya. The effects of process variables such as temperature, osmotic solution concentration and agitation speed on water loss, weight reduction, and solid gain during osmotic dehydration were investigated using a three-level three-factor Box-Behnken experimental design. Same design was utilized to train a feed-forward multilayered perceptron (MLP ANN with back-propagation algorithm. The predictive capabilities of the two methodologies were compared in terms of root mean square error (RMSE, mean absolute error (MAE, standard error of prediction (SEP, model predictive error (MPE, chi square statistic (χ2, and coefficient of determination (R2 based on the validation data set. The results showed that properly trained ANN model is found to be more accurate in prediction as compared to RSM model.

  8. Artificial Neural Networks for Thermochemical Conversion of Biomass

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Joan Carles

    2015-01-01

    Artificial neural networks (ANNs), extensively used in different fields, have been applied for modeling biomass gasification processes in fluidized bed reactors. Two ANN models are presented, one for circulating fluidized bed gasifiers and another for bubbling fluidized bed gasifiers. Both models...

  9. SWANN: The Snow Water Artificial Neural Network Modelling System

    Science.gov (United States)

    Broxton, P. D.; van Leeuwen, W.; Biederman, J. A.

    2017-12-01

    Snowmelt from mountain forests is important for water supply and ecosystem health. Along Arizona's Mogollon Rim, snowmelt contributes to rivers and streams that provide a significant water supply for hydro-electric power generation, agriculture, and human consumption in central Arizona. In this project, we are building a snow monitoring system for the Salt River Project (SRP), which supplies water and power to millions of customers in the Phoenix metropolitan area. We are using process-based hydrological models and artificial neural networks (ANNs) to generate information about both snow water equivalent (SWE) and snow cover. The snow-cover data is generated with ANNs that are applied to Landsat and MODIS satellite reflectance data. The SWE data is generated using a combination of gridded SWE estimates generated by process-based snow models and ANNs that account for variations in topography, forest cover, and solar radiation. The models are trained and evaluated with snow data from SNOTEL stations as well as from aerial LiDAR and field data that we collected this past winter in northern Arizona, as well as with similar data from other sites in the Southwest US. These snow data are produced in near-real time, and we have built a prototype decision support tool to deliver them to SRP. This tool is designed to provide daily-to annual operational monitoring of spatial and temporal changes in SWE and snow cover conditions over the entire Salt River Watershed (covering 17,000 km2), and features advanced web mapping capabilities and watershed analytics displayed as graphical data.

  10. Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Aminmohammad Saberian

    2014-01-01

    Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.

  11. A model of coauthorship networks

    Science.gov (United States)

    Zhou, Guochang; Li, Jianping; Xie, Zonglin

    2017-10-01

    A natural way of representing the coauthorship of authors is to use a generalization of graphs known as hypergraphs. A random geometric hypergraph model is proposed here to model coauthorship networks, which is generated by placing nodes on a region of Euclidean space randomly and uniformly, and connecting some nodes if the nodes satisfy particular geometric conditions. Two kinds of geometric conditions are designed to model the collaboration patterns of academic authorities and basic researches respectively. The conditions give geometric expressions of two causes of coauthorship: the authority and similarity of authors. By simulation and calculus, we show that the forepart of the degree distribution of the network generated by the model is mixture Poissonian, and the tail is power-law, which are similar to these of some coauthorship networks. Further, we show more similarities between the generated network and real coauthorship networks: the distribution of cardinalities of hyperedges, high clustering coefficient, assortativity, and small-world property

  12. Artificial Neural Networks For Hadron Hadron Cross-sections

    International Nuclear Information System (INIS)

    ELMashad, M.; ELBakry, M.Y.; Tantawy, M.; Habashy, D.M.

    2011-01-01

    In recent years artificial neural networks (ANN ) have emerged as a mature and viable framework with many applications in various areas. Artificial neural networks theory is sometimes used to refer to a branch of computational science that uses neural networks as models to either simulate or analyze complex phenomena and/or study the principles of operation of neural networks analytically. In this work a model of hadron- hadron collision using the ANN technique is present, the hadron- hadron based ANN model calculates the cross sections of hadron- hadron collision. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness

  13. Multiobjecitve Sampling Design for Calibration of Water Distribution Network Model Using Genetic Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    Kourosh Behzadian

    2008-03-01

    Full Text Available In this paper, a novel multiobjective optimization model is presented for selecting optimal locations in the water distribution network (WDN with the aim of installing pressure loggers. The pressure data collected at optimal locations will be used later on in the calibration of the proposed WDN model. Objective functions consist of maximization of calibrated model prediction accuracy and minimization of the total cost for sampling design. In order to decrease the model run time, an optimization model has been developed using multiobjective genetic algorithm and adaptive neural network (MOGA-ANN. Neural networks (NNs are initially trained after a number of initial GA generations and periodically retrained and updated after generation of a specified number of full model-analyzed solutions. Trained NNs are replaced with the fitness evaluation of some chromosomes within the GA progress. Using cache prevents objective function evaluation of repetitive chromosomes within GA. Optimal solutions are obtained through pareto-optimal front with respect to the two objective functions. Results show that jointing NNs in MOGA for approximating portions of chromosomes’ fitness in each generation leads to considerable savings in model run time and can be promising for reducing run-time in optimization models with significant computational effort.

  14. Modeling of surface dust concentration in snow cover at industrial area using neural networks and kriging

    Science.gov (United States)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.

    2017-06-01

    Modeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method - kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set.

  15. Application of neural networks in experimental physics

    International Nuclear Information System (INIS)

    Kisel', I.V.; Neskromnyj, V.N.; Ososkov, G.A.

    1993-01-01

    The theoretical foundations of numerous models of artificial neural networks (ANN) and their applications to the actual problems of associative memory, optimization and pattern recognition are given. This review contains also numerous using of ANN in the experimental physics both as the hardware realization of fast triggering systems for even selection and for the following software implementation of the trajectory data recognition

  16. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy

    Science.gov (United States)

    Maleki, E.

    2015-12-01

    Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI) systems such as artificial neural networks (ANNs) as an efficient approach to solve the science and engineering problems is considerable. In present study modeling of FSW effective parameters by ANNs is investigated. To train the networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the networks are developed based on back propagation (BP) algorithm. ANNs testing are carried out using different experimental data that they are not used during networks training. In this paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile strength and hardness of welding zone are gathered as outputs of neural networks. According to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative error (MRE), respectively. Comparison of the predicted and the experimental results confirms that the networks are adjusted carefully, and the ANN can be used for modeling of FSW effective parameters.

  17. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy

    International Nuclear Information System (INIS)

    Maleki, E

    2015-01-01

    Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI) systems such as artificial neural networks (ANNs) as an efficient approach to solve the science and engineering problems is considerable. In present study modeling of FSW effective parameters by ANNs is investigated. To train the networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the networks are developed based on back propagation (BP) algorithm. ANNs testing are carried out using different experimental data that they are not used during networks training. In this paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile strength and hardness of welding zone are gathered as outputs of neural networks. According to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative error (MRE), respectively. Comparison of the predicted and the experimental results confirms that the networks are adjusted carefully, and the ANN can be used for modeling of FSW effective parameters. (paper)

  18. Implementation of a model reference adaptive control system using neural network to control a fast breeder reactor evaporator

    International Nuclear Information System (INIS)

    Ugolini, D.; Yoshikawa, S.; Endou, A.

    1994-01-01

    Artificial intelligence is foreseen as the base for new control systems aimed to replace traditional controllers and to assist and eventually advise plant operators. This paper discusses the development of an indirect model reference adaptive control (MRAC) system, using the artificial neural network (ANN) technique, and its implementation to control the outlet steam temperature of a sodium to water evaporator. The ANN technique is applied in the identification and in the control process of the indirect MRAC system. The emphasis is placed on demonstrating the efficacy of the indirect MRAC system in controlling the outlet steam temperature of the evaporator, and on showing the important function covered by the ANN technique. An important characteristic of this control system is that it relays only on some selected input variables and output variables of the evaporator model. These are the variables that can be actually measured or calculated in a real environment. The results obtained applying the indirect MRAC system to control the evaporator model are quite remarkable. The outlet temperature of the steam is almost perfectly kept close to its desired set point, when the evaporator is forced to depart from steady state conditions, either due to the variation of some input variables or due to the alteration of some of its internal parameters. The results also show the importance of the role played by the ANN technique in the overall control action. The connecting weights of the ANN nodes self adjust to follow the modifications which may occur in the characteristic of the evaporator model during a transient. The efficiency and the accuracy of the control action highly depends on the on-line identification process of the ANN, which is responsible for upgrading the connecting weights of the ANN nodes. (J.P.N.)

  19. Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery.

    Science.gov (United States)

    Naderi, Arman; Delavar, Mohammad Amir; Kaboudin, Babak; Askari, Mohammad Sadegh

    2017-05-01

    This study aims to assess and compare heavy metal distribution models developed using stepwise multiple linear regression (MSLR) and neural network-genetic algorithm model (ANN-GA) based on satellite imagery. The source identification of heavy metals was also explored using local Moran index. Soil samples (n = 300) were collected based on a grid and pH, organic matter, clay, iron oxide contents cadmium (Cd), lead (Pb) and zinc (Zn) concentrations were determined for each sample. Visible/near-infrared reflectance (VNIR) within the electromagnetic ranges of satellite imagery was applied to estimate heavy metal concentrations in the soil using MSLR and ANN-GA models. The models were evaluated and ANN-GA model demonstrated higher accuracy, and the autocorrelation results showed higher significant clusters of heavy metals around the industrial zone. The higher concentration of Cd, Pb and Zn was noted under industrial lands and irrigation farming in comparison to barren and dryland farming. Accumulation of industrial wastes in roads and streams was identified as main sources of pollution, and the concentration of soil heavy metals was reduced by increasing the distance from these sources. In comparison to MLSR, ANN-GA provided a more accurate indirect assessment of heavy metal concentrations in highly polluted soils. The clustering analysis provided reliable information about the spatial distribution of soil heavy metals and their sources.

  20. Telecommunications network modelling, planning and design

    CERN Document Server

    Evans, Sharon

    2003-01-01

    Telecommunication Network Modelling, Planning and Design addresses sophisticated modelling techniques from the perspective of the communications industry and covers some of the major issues facing telecommunications network engineers and managers today. Topics covered include network planning for transmission systems, modelling of SDH transport network structures and telecommunications network design and performance modelling, as well as network costs and ROI modelling and QoS in 3G networks.

  1. Development of a thermal control algorithm using artificial neural network models for improved thermal comfort and energy efficiency in accommodation buildings

    International Nuclear Information System (INIS)

    Moon, Jin Woo; Jung, Sung Kwon

    2016-01-01

    Highlights: • An ANN model for predicting optimal start moment of the cooling system was developed. • An ANN model for predicting the amount of cooling energy consumption was developed. • An optimal control algorithm was developed employing two ANN models. • The algorithm showed the advanced thermal comfort and energy efficiency. - Abstract: The aim of this study was to develop a control algorithm to demonstrate the improved thermal comfort and building energy efficiency of accommodation buildings in the cooling season. For this, two artificial neural network (ANN)-based predictive and adaptive models were developed and employed in the algorithm. One model predicted the cooling energy consumption during the unoccupied period for different setback temperatures and the other predicted the time required for restoring current indoor temperature to the normal set-point temperature. Using numerical simulation methods, the prediction accuracy of the two ANN models and the performance of the algorithm were tested. Through the test result analysis, the two ANN models showed their prediction accuracy with an acceptable error rate when applied in the control algorithm. In addition, the two ANN models based algorithm can be used to provide a more comfortable and energy efficient indoor thermal environment than the two conventional control methods, which respectively employed a fixed set-point temperature for the entire day and a setback temperature during the unoccupied period. Therefore, the operating range was 23–26 °C during the occupied period and 25–28 °C during the unoccupied period. Based on the analysis, it can be concluded that the optimal algorithm with two predictive and adaptive ANN models can be used to design a more comfortable and energy efficient indoor thermal environment for accommodation buildings in a comprehensive manner.

  2. Modeling and optimization of ethanol fermentation using Saccharomyces cerevisiae: Response surface methodology and artificial neural network

    Directory of Open Access Journals (Sweden)

    Esfahanian Mehri

    2013-01-01

    Full Text Available In this study, the capabilities of response surface methodology (RSM and artificial neural networks (ANN for modeling and optimization of ethanol production from glucoseusing Saccharomyces cerevisiae in batch fermentation process were investigated. Effect of three independent variables in a defined range of pH (4.2-5.8, temperature (20-40ºC and glucose concentration (20-60 g/l on the cell growth and ethanol production was evaluated. Results showed that prediction accuracy of ANN was apparently similar to RSM. At optimum condition of temperature (32°C, pH (5.2 and glucose concentration (50 g/l suggested by the statistical methods, the maximum cell dry weight and ethanol concentration obtained from RSM were 12.06 and 16.2 g/l whereas experimental values were 12.09 and 16.53 g/l, respectively. The present study showed that using ANN as fitness function, the maximum cell dry weight and ethanol concentration were 12.05 and 16.16 g/l, respectively. Also, the coefficients of determination for biomass and ethanol concentration obtained from RSM were 0.9965 and 0.9853 and from ANN were 0.9975 and 0.9936, respectively. The process parameters optimization was successfully conducted using RSM and ANN; however prediction by ANN was slightly more precise than RSM. Based on experimental data maximum yield of ethanol production of 0.5 g ethanol/g substrate (97 % of theoretical yield was obtained.

  3. Development of artificial neural network models for supercritical fluid solvency in presence of co-solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shokir, Eissa Mohamed El-Moghawry; El-Midany, Ayman Abdel-Hamid [Cairo University, Giza (Egypt); Al-Homadhi, Emad Souliman; Al-Mahdy, Osama [King Saud University, Riyadh (Saudi Arabia)

    2014-08-15

    This paper presents the application of artificial neural networks (ANN) to develop new models of liquid solvent dissolution of supercritical fluids with solutes in the presence of cosolvents. The neural network model of the liquid solvent dissolution of CO{sub 2} was built as a function of pressure, temperature, and concentrations of the solutes and cosolvents. Different experimental measurements of liquid solvent dissolution of supercritical fluids (CO{sub 2}) with solutes in the presence of cosolvents were collected. The collected data are divided into two parts. The first part was used in building the models, and the second part was used to test and validate the developed models against the Peng- Robinson equation of state. The developed ANN models showed high accuracy, within the studied variables range, in predicting the solubility of the 2-naphthol, anthracene, and aspirin in the supercritical fluid in the presence and absence of co-solvents compared to (EoS). Therefore, the developed ANN models could be considered as a good tool in predicting the solubility of tested solutes in supercritical fluid.

  4. Campus network security model study

    Science.gov (United States)

    Zhang, Yong-ku; Song, Li-ren

    2011-12-01

    Campus network security is growing importance, Design a very effective defense hacker attacks, viruses, data theft, and internal defense system, is the focus of the study in this paper. This paper compared the firewall; IDS based on the integrated, then design of a campus network security model, and detail the specific implementation principle.

  5. Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models

    International Nuclear Information System (INIS)

    Benmouiza, Khalil; Cheknane, Ali

    2013-01-01

    Highlights: • An unsupervised clustering algorithm with a neural network model was explored. • The forecasting results of solar radiation time series and the comparison of their performance was simulated. • A new method was proposed combining k-means algorithm and NAR network to provide better prediction results. - Abstract: In this paper, we review our work for forecasting hourly global horizontal solar radiation based on the combination of unsupervised k-means clustering algorithm and artificial neural networks (ANN). k-Means algorithm focused on extracting useful information from the data with the aim of modeling the time series behavior and find patterns of the input space by clustering the data. On the other hand, nonlinear autoregressive (NAR) neural networks are powerful computational models for modeling and forecasting nonlinear time series. Taking the advantage of both methods, a new method was proposed combining k-means algorithm and NAR network to provide better forecasting results

  6. Neural Network Control of CSTR for Reversible Reaction Using Reverence Model Approach

    Directory of Open Access Journals (Sweden)

    Duncan ALOKO

    2007-01-01

    Full Text Available In this work, non-linear control of CSTR for reversible reaction is carried out using Neural Network as design tool. The Model Reverence approach in used to design ANN controller. The idea is to have a control system that will be able to achieve improvement in the level of conversion and to be able to track set point change and reject load disturbance. We use PID control scheme as benchmark to study the performance of the controller. The comparison shows that ANN controller out perform PID in the extreme range of non-linearity.This paper represents a preliminary effort to design a simplified neutral network control scheme for a class of non-linear process. Future works will involve further investigation of the effectiveness of thin approach for the real industrial chemical process

  7. Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network

    Science.gov (United States)

    Mandal, Sumantra; Sivaprasad, P. V.; Dube, R. K.

    2007-12-01

    An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena.

  8. Process Control Strategies for Dual-Phase Steel Manufacturing Using ANN and ANFIS

    Science.gov (United States)

    Vafaeenezhad, H.; Ghanei, S.; Seyedein, S. H.; Beygi, H.; Mazinani, M.

    2014-11-01

    In this research, a comprehensive soft computational approach is presented for the analysis of the influencing parameters on manufacturing of dual-phase steels. A set of experimental data have been gathered to obtain the initial database used for the training and testing of both artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The parameters used in the strategy were intercritical annealing temperature, carbon content, and holding time which gives off martensite percentage as an output. A fraction of the data set was chosen to train both ANN and ANFIS, and the rest was put into practice to authenticate the act of the trained networks while seeing unseen data. To compare the obtained results, coefficient of determination and root mean squared error indexes were chosen. Using artificial intelligence methods, it is not necessary to consider and establish a preliminary mathematical model and formulate its affecting parameters on its definition. In conclusion, the martensite percentages corresponding to the manufacturing parameters can be determined prior to a production using these controlling algorithms. Although the results acquired from both ANN and ANFIS are very encouraging, the proposed ANFIS has enhanced performance over the ANN and takes better effect on cost-reduction profit.

  9. Generalized Network Psychometrics : Combining Network and Latent Variable Models

    NARCIS (Netherlands)

    Epskamp, S.; Rhemtulla, M.; Borsboom, D.

    2017-01-01

    We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between

  10. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  11. Modeling of fluctuating reaction networks

    International Nuclear Information System (INIS)

    Lipshtat, A.; Biham, O.

    2004-01-01

    Full Text:Various dynamical systems are organized as reaction networks, where the population size of one component affects the populations of all its neighbors. Such networks can be found in interstellar surface chemistry, cell biology, thin film growth and other systems. I cases where the populations of reactive species are large, the network can be modeled by rate equations which provide all reaction rates within mean field approximation. However, in small systems that are partitioned into sub-micron size, these populations strongly fluctuate. Under these conditions rate equations fail and the master equation is needed for modeling these reactions. However, the number of equations in the master equation grows exponentially with the number of reactive species, severely limiting its feasibility for complex networks. Here we present a method which dramatically reduces the number of equations, thus enabling the incorporation of the master equation in complex reaction networks. The method is examplified in the context of reaction network on dust grains. Its applicability for genetic networks will be discussed. 1. Efficient simulations of gas-grain chemistry in interstellar clouds. Azi Lipshtat and Ofer Biham, Phys. Rev. Lett. 93 (2004), 170601. 2. Modeling of negative autoregulated genetic networks in single cells. Azi Lipshtat, Hagai B. Perets, Nathalie Q. Balaban and Ofer Biham, Gene: evolutionary genomics (2004), In press

  12. Construction of a predictive model for concentration of nickel and vanadium in vacuum residues of crude oils using artificial neural networks and LIBS.

    Science.gov (United States)

    Tarazona, José L; Guerrero, Jáder; Cabanzo, Rafael; Mejía-Ospino, E

    2012-03-01

    A predictive model to determine the concentration of nickel and vanadium in vacuum residues of Colombian crude oils using laser-induced breakdown spectroscopy (LIBS) and artificial neural networks (ANNs) with nodes distributed in multiple layers (multilayer perceptron) is presented. ANN inputs are intensity values in the vicinity of the emission lines 300.248, 301.200 and 305.081 nm of the Ni(I), and 309.310, 310.229, and 311.070 nm of the V(II). The effects of varying number of nodes and the initial weights and biases in the ANNs were systematically explored. Average relative error of calibration/prediction (REC/REP) and average relative standard deviation (RSD) metrics were used to evaluate the performance of the ANN in the prediction of concentrations of two elements studied here. © 2012 Optical Society of America

  13. APLIKASI MODEL ARTIFICIAL NEURAL NETWORKS UNTUK STOCK FORECASTING DI PASAR MODAL INDONESIA

    Directory of Open Access Journals (Sweden)

    Christian Herdinata

    2017-03-01

    Full Text Available This research showed the applicat ion of model Art if icial Neural Networks (ANN orJaringan Syaraf Tiruan (JST at the f ield of monetary science, especially for the applicat ion off inancial forecast ing. ANN or JST was a new alternat ive for the applicat ion of f inancialforecast ing.The purpose of this research was to know whether the stock index instantaneouslyand fully ref lect historical informat ion, in Indonesia Stock Exchange (IDX. The research usedcomparison between return of technical t rading rule based Art if icial Neural Networks (ANNmodel and return of buy & hold st rategy. The result showed that the weakness form ofef f icient market hypothesis was rejected in the Indonesian capital market . Expectat ion ofthis research was giving informat ion and securing the market perpet rators that st ill enabledto get abnormal of return by doing commerce in chnical through forecast ing of model Art ificial Neural Networks (ANN or Jaringan Syaraf Tiruan ( JST.

  14. Bayesian neural network modeling of tree-ring temperature variability record from the Western Himalayas

    Directory of Open Access Journals (Sweden)

    R. K. Tiwari

    2011-08-01

    Full Text Available A novel technique based on the Bayesian neural network (BNN theory is developed and employed to model the temperature variation record from the Western Himalayas. In order to estimate an a posteriori probability function, the BNN is trained with the Hybrid Monte Carlo (HMC/Markov Chain Monte Carlo (MCMC simulations algorithm. The efficacy of the new algorithm is tested on the well known chaotic, first order autoregressive (AR and random models and then applied to model the temperature variation record decoded from the tree-ring widths of the Western Himalayas for the period spanning over 1226–2000 AD. For modeling the actual tree-ring temperature data, optimum network parameters are chosen appropriately and then cross-validation test is performed to ensure the generalization skill of the network on the new data set. Finally, prediction result based on the BNN model is compared with the conventional artificial neural network (ANN and the AR linear models results. The comparative results show that the BNN based analysis makes better prediction than the ANN and the AR models. The new BNN modeling approach provides a viable tool for climate studies and could also be exploited for modeling other kinds of environmental data.

  15. A gentle introduction to artificial neural networks.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-10-01

    Artificial neural network (ANN) is a flexible and powerful machine learning technique. However, it is under utilized in clinical medicine because of its technical challenges. The article introduces some basic ideas behind ANN and shows how to build ANN using R in a step-by-step framework. In topology and function, ANN is in analogue to the human brain. There are input and output signals transmitting from input to output nodes. Input signals are weighted before reaching output nodes according to their respective importance. Then the combined signal is processed by activation function. I simulated a simple example to illustrate how to build a simple ANN model using nnet() function. This function allows for one hidden layer with varying number of units in that layer. The basic structure of ANN can be visualized with plug-in plot.nnet() function. The plot function is powerful that it allows for varieties of adjustment to the appearance of the neural networks. Prediction with ANN can be performed with predict() function, similar to that of conventional generalized linear models. Finally, the prediction power of ANN is examined using confusion matrix and average accuracy. It appears that ANN is slightly better than conventional linear model.

  16. Application of neural networks in coastal engineering - An overview

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Patil, S.G.; Manjunatha, Y.R.; Hegde, A.V.

    Artificial Neural Network (ANN) is being applied to solve a wide variety of coastal/ocean engineering problems. In practical terms ANNs are non-linear modeling tools and they can be used to model complex relationship between the input and output...

  17. A Model for Shovel Capital Cost Estimation, Using a Hybrid Model of Multivariate Regression and Neural Networks

    Directory of Open Access Journals (Sweden)

    Abdolreza Yazdani-Chamzini

    2017-12-01

    Full Text Available Cost estimation is an essential issue in feasibility studies in civil engineering. Many different methods can be applied to modelling costs. These methods can be divided into several main groups: (1 artificial intelligence, (2 statistical methods, and (3 analytical methods. In this paper, the multivariate regression (MVR method, which is one of the most popular linear models, and the artificial neural network (ANN method, which is widely applied to solving different prediction problems with a high degree of accuracy, have been combined to provide a cost estimate model for a shovel machine. This hybrid methodology is proposed, taking the advantages of MVR and ANN models in linear and nonlinear modelling, respectively. In the proposed model, the unique advantages of the MVR model in linear modelling are used first to recognize the existing linear structure in data, and, then, the ANN for determining nonlinear patterns in preprocessed data is applied. The results with three indices indicate that the proposed model is efficient and capable of increasing the prediction accuracy.

  18. Artificial neural networks as a multivariate calibration tool: modelling the Fe-Cr-Ni system in X-ray fluorescence spectroscopy

    NARCIS (Netherlands)

    Bos, A.; Bos, A.; Bos, M.; van der Linden, W.E.

    1993-01-01

    The performance of artificial neural networks (ANNs) for modeling the Cr---Ni---Fe system in quantitative x-ray fluorescence spectroscopy was compared with the classical Rasberry-Heinrich model and a previously published method applying the linear learning machine in combination with singular value

  19. [Algorithms of artificial neural networks--practical application in medical science].

    Science.gov (United States)

    Stefaniak, Bogusław; Cholewiński, Witold; Tarkowska, Anna

    2005-12-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer applications of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. This paper presents practical aspects of scientific application of ANN in medicine using widely available algorithms. Several main steps of analysis with ANN were discussed starting from material selection and dividing it into groups, to the quality assessment of obtained results at the end. The most frequent, typical reasons for errors as well as the comparison of ANN method to the modeling by regression analysis were also described.

  20. Artificial Neural Network model for the determination of GSM Rxlevel from atmospheric parameters

    Directory of Open Access Journals (Sweden)

    Julia Ofure Eichie

    2017-04-01

    Full Text Available Accurate received signal level (Rxlevel values are useful for mobile telecommunication network planning. Rxlevel is affected by the dynamics of the atmosphere through which it propagates. Adequate knowledge of the prevailing atmospheric conditions in an environment is essential for proper network planning. However most of the existing GSM received signal determination model are function of distance between point of signal reception and transmitting site thus necessitating the development of a model that involve the use of atmospheric parameters in the determination of received GSM signal level. In this paper, a three stage approach was used in the development of the model using some atmospheric parameters such as atmospheric temperature, relative humidity and dew point. The selected and easily measurable atmospheric parameters were used as input parameters in developing two new models for computing the Rxlevel of GSM signal using a three-step approach. Data acquisition and pre-processing serves as the first stage and formulation of ANN design and the development of parametric model for the Rxlevel using ANN synaptic weights form the second stage of the proposed approach. The third stage involves the use of ANN weight and bias values, and network architecture in the development of the model equation. In evaluating the performance of the proposed models, network parameters were varied and the results obtained using mean squared error (MSE as performance measure showed the developed model with 33 neurons in the hidden layer and tansig activation, function in both the hidden and output layers as the optimal model with least MSE value of 0.056. Thus showing that the developed model has an acceptable accuracy value as demonstrated from comparison of results with actual measured values.

  1. Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study.

    Science.gov (United States)

    Li, Qiongge; Chan, Maria F

    2017-01-01

    Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field. © 2016 New York Academy of Sciences.

  2. Implementation of ANN on CCHP system to predict trigeneration performance with consideration of various operative factors

    International Nuclear Information System (INIS)

    Anvari, Simin; Taghavifar, Hadi; Saray, Rahim Khoshbakhti; Khalilarya, Shahram; Jafarmadar, Samad

    2015-01-01

    Highlights: • ANN modeling tool was implemented on the CCHP system. • The best ANN topology was detected 10–8–9 with Levenberg–Marquadt algorithm. • The system is more sensitive of CC outlet temperature and turbine isentropic efficiency. • The lowest RMSE = 3.13e−5 and the best R 2 = 0.999 is related to lambda and second law efficiency terms, respectively. - Abstract: A detailed investigation was aimed based on numerical thermodynamic survey and artificial neural network (ANN) modeling of the trigeneration system. The results are presented in two pivotal frameworks namely the sensitivity analysis and ANN prediction capability of proposed modeling. The underlying operative parameters were chosen as input parameters from different cycles and components, while the exergy efficiency, exergy loss, coefficient of performance, heating load exergy, lambda, gas turbine power, exergy destruction, actual outlet air compressor temperature, and heat recovery gas steam generator (HRSG) outlet temperature were taken as objective output parameters for the modeling purpose. Up to now, no significant step was taken to investigate the compound power plant with thermodynamic analyses and network predictability hybrid in such a detailed oriented approach. It follows that multilayer perceptron neural network with back propagation algorithm deployed with 10–8–9 configuration results in the modeling reliability ranged within R 2 = 0.995–0.999. When dataset treated with trainlm learning algorithm and diversified neurons, the mean square error (MSE) is obtained equal to 0.2175. This denotes a powerful modeling achievement in both scientific and industrial scale to save considerable computational cost on combined cooling, heating, and power system in accomplishment of boosting the energy efficiency and system maintenance

  3. An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran

    Directory of Open Access Journals (Sweden)

    Mahdi Saadat

    2014-02-01

    Full Text Available Blast-induced ground vibration is one of the inevitable outcomes of blasting in mining projects and may cause substantial damage to rock mass as well as nearby structures and human beings. In this paper, an attempt has been made to present an application of artificial neural network (ANN to predict the blast-induced ground vibration of the Gol-E-Gohar (GEG iron mine, Iran. A four-layer feed-forward back propagation multi-layer perceptron (MLP was used and trained with Levenberg–Marquardt algorithm. To construct ANN models, the maximum charge per delay, distance from blasting face to monitoring point, stemming and hole depth were taken as inputs, whereas peak particle velocity (PPV was considered as an output parameter. A database consisting of 69 data sets recorded at strategic and vulnerable locations of GEG iron mine was used to train and test the generalization capability of ANN models. Coefficient of determination (R2 and mean square error (MSE were chosen as the indicators of the performance of the networks. A network with architecture 4-11-5-1 and R2 of 0.957 and MSE of 0.000722 was found to be optimum. To demonstrate the supremacy of ANN approach, the same 69 data sets were used for the prediction of PPV with four common empirical models as well as multiple linear regression (MLR analysis. The results revealed that the proposed ANN approach performs better than empirical and MLR models.

  4. Experimental study and artificial neural network modeling of tartrazine removal by photocatalytic process under solar light.

    Science.gov (United States)

    Sebti, Aicha; Souahi, Fatiha; Mohellebi, Faroudja; Igoud, Sadek

    2017-07-01

    This research focuses on the application of an artificial neural network (ANN) to predict the removal efficiency of tartrazine from simulated wastewater using a photocatalytic process under solar illumination. A program is developed in Matlab software to optimize the neural network architecture and select the suitable combination of training algorithm, activation function and hidden neurons number. The experimental results of a batch reactor operated under different conditions of pH, TiO 2 concentration, initial organic pollutant concentration and solar radiation intensity are used to train, validate and test the networks. While negligible mineralization is demonstrated, the experimental results show that under sunlight irradiation, 85% of tartrazine is removed after 300 min using only 0.3 g/L of TiO 2 powder. Therefore, irradiation time is prolonged and almost 66% of total organic carbon is reduced after 15 hours. ANN 5-8-1 with Bayesian regulation back-propagation algorithm and hyperbolic tangent sigmoid transfer function is found to be able to predict the response with high accuracy. In addition, the connection weights approach is used to assess the importance contribution of each input variable on the ANN model response. Among the five experimental parameters, the irradiation time has the greatest effect on the removal efficiency of tartrazine.

  5. Hydrology and sediment budget of Los Laureles Canyon, Tijuana, MX: Modelling channel, gully, and rill erosion with 3D photo-reconstruction, CONCEPTS, and AnnAGNPS

    Science.gov (United States)

    Taniguchi, Kristine; Gudiño, Napoleon; Biggs, Trent; Castillo, Carlos; Langendoen, Eddy; Bingner, Ron; Taguas, Encarnación; Liden, Douglas; Yuan, Yongping

    2015-04-01

    Several watersheds cross the US-Mexico boundary, resulting in trans-boundary environmental problems. Erosion in Tijuana, Mexico, increases the rate of sediment deposition in the Tijuana Estuary in the United States, altering the structure and function of the ecosystem. The well-being of residents in Tijuana is compromised by damage to infrastructure and homes built adjacent to stream channels, gully formation in dirt roads, and deposition of trash. We aim to understand the dominant source of sediment contributing to the sediment budget of the watershed (channel, gully, or rill erosion), where the hotspots of erosion are located, and what the impact of future planned and unplanned land use changes and Best Management Practices (BMPs) will be on sediment and storm flow. We will be using a mix of field methods, including 3D photo-reconstruction of stream channels, with two models, CONCEPTS and AnnAGNPS to constrain estimates of the sediment budget and impacts of land use change. Our research provides an example of how 3D photo-reconstruction and Structure from Motion (SfM) can be used to model channel evolution.

  6. Artificial neural network based modeling of performance characteristics of deep well pumps with splitter blade

    International Nuclear Information System (INIS)

    Goelcue, Mustafa

    2006-01-01

    Experimental studies were made to investigate the effects of splitter blade length (25%, 35%, 50%, 60% and 80% of the main blade length) on the pump characteristics of deep well pumps for different blade numbers (z=3, 4, 5, 6 and 7). In this study, an artificial neural network (ANN) was used for modeling the performance of deep well pumps with splitter blades. Two hundred and ten experimental results were used to train and test. Forty-two patterns have been randomly selected and used as the test data. The main parameters for the experiments are the blade number (z), non-dimensional splitter blade length (L-bar ), flow rate (Q, l/s), head (H m , m), efficiency (η, %) and power (P e , kW). z, L-bar and Q have been used as the input layer, and H m and η have also been used as the output layer. The best training algorithm and number of neurons were obtained. Training of the network was performed using the Levenberg-Marquardt (LM) algorithm. To determine the effect of the transfer function, different ANN models are trained, and the results of these ANN models are compared. Some statistical methods; fraction of variance (R 2 ) and root mean squared error (RMSE) values, have been used for comparison

  7. Estimating tree bole volume using artificial neural network models for four species in Turkey.

    Science.gov (United States)

    Ozçelik, Ramazan; Diamantopoulou, Maria J; Brooks, John R; Wiant, Harry V

    2010-01-01

    Tree bole volumes of 89 Scots pine (Pinus sylvestris L.), 96 Brutian pine (Pinus brutia Ten.), 107 Cilicica fir (Abies cilicica Carr.) and 67 Cedar of Lebanon (Cedrus libani A. Rich.) trees were estimated using Artificial Neural Network (ANN) models. Neural networks offer a number of advantages including the ability to implicitly detect complex nonlinear relationships between input and output variables, which is very helpful in tree volume modeling. Two different neural network architectures were used and produced the Back propagation (BPANN) and the Cascade Correlation (CCANN) Artificial Neural Network models. In addition, tree bole volume estimates were compared to other established tree bole volume estimation techniques including the centroid method, taper equations, and existing standard volume tables. An overview of the features of ANNs and traditional methods is presented and the advantages and limitations of each one of them are discussed. For validation purposes, actual volumes were determined by aggregating the volumes of measured short sections (average 1 meter) of the tree bole using Smalian's formula. The results reported in this research suggest that the selected cascade correlation artificial neural network (CCANN) models are reliable for estimating the tree bole volume of the four examined tree species since they gave unbiased results and were superior to almost all methods in terms of error (%) expressed as the mean of the percentage errors. 2009 Elsevier Ltd. All rights reserved.

  8. Network model of security system

    Directory of Open Access Journals (Sweden)

    Adamczyk Piotr

    2016-01-01

    Full Text Available The article presents the concept of building a network security model and its application in the process of risk analysis. It indicates the possibility of a new definition of the role of the network models in the safety analysis. Special attention was paid to the development of the use of an algorithm describing the process of identifying the assets, vulnerability and threats in a given context. The aim of the article is to present how this algorithm reduced the complexity of the problem by eliminating from the base model these components that have no links with others component and as a result and it was possible to build a real network model corresponding to reality.

  9. A hybrid ARIMA and neural network model applied to forecast catch volumes of Selar crumenophthalmus

    Science.gov (United States)

    Aquino, Ronald L.; Alcantara, Nialle Loui Mar T.; Addawe, Rizavel C.

    2017-11-01

    The Selar crumenophthalmus with the English name big-eyed scad fish, locally known as matang-baka, is one of the fishes commonly caught along the waters of La Union, Philippines. The study deals with the forecasting of catch volumes of big-eyed scad fish for commercial consumption. The data used are quarterly caught volumes of big-eyed scad fish from 2002 to first quarter of 2017. This actual data is available from the open stat database published by the Philippine Statistics Authority (PSA)whose task is to collect, compiles, analyzes and publish information concerning different aspects of the Philippine setting. Autoregressive Integrated Moving Average (ARIMA) models, Artificial Neural Network (ANN) model and the Hybrid model consisting of ARIMA and ANN were developed to forecast catch volumes of big-eyed scad fish. Statistical errors such as Mean Absolute Errors (MAE) and Root Mean Square Errors (RMSE) were computed and compared to choose the most suitable model for forecasting the catch volume for the next few quarters. A comparison of the results of each model and corresponding statistical errors reveals that the hybrid model, ARIMA-ANN (2,1,2)(6:3:1), is the most suitable model to forecast the catch volumes of the big-eyed scad fish for the next few quarters.

  10. Fuzzy logic, artificial neural network and mathematical model for prediction of white mulberry drying kinetics

    Science.gov (United States)

    Jahedi Rad, Shahpour; Kaveh, Mohammad; Sharabiani, Vali Rasooli; Taghinezhad, Ebrahim

    2018-05-01

    The thin-layer convective- infrared drying behavior of white mulberry was experimentally studied at infrared power levels of 500, 1000 and 1500 W, drying air temperatures of 40, 55 and 70 °C and inlet drying air speeds of 0.4, 1 and 1.6 m/s. Drying rate raised with the rise of infrared power levels at a distinct air temperature and velocity and thus decreased the drying time. Five mathematical models describing thin-layer drying have been fitted to the drying data. Midlli et al. model could satisfactorily describe the convective-infrared drying of white mulberry fruit with the values of the correlation coefficient (R 2=0.9986) and root mean square error of (RMSE= 0.04795). Artificial neural network (ANN) and fuzzy logic methods was desirably utilized for modeling output parameters (moisture ratio (MR)) regarding input parameters. Results showed that output parameters were more accurately predicted by fuzzy model than by the ANN and mathematical models. Correlation coefficient (R 2) and RMSE generated by the fuzzy model (respectively 0.9996 and 0.01095) were higher than referred values for the ANN model (0.9990 and 0.01988 respectively).

  11. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  12. Çocuğun Dinî Gelişiminde Rol Model Olarak Anne ve Baba

    Directory of Open Access Journals (Sweden)

    Bozkurt Koç

    2015-11-01

    Full Text Available Family is an institution through whose basic principles of society, customs and traditions, value judgments, beliefs and ideals are transferred to child. Family which reflects the culturel values of society to child is also a place where child gains its first experiences. While learning how to be social individual, child needs a model with which it will identify himself. Members of family, parents in particular, are the most important models who have a direct or indirect influence on the child. They are the role models who play a considerable part in the religious development of children as well as in their psychological, emotional and social developments. In this article, the influence of parents as a role models on the religious development of child has been dealt with

  13. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques

    Science.gov (United States)

    Jain, Ashu; Srinivasulu, Sanaga

    2006-02-01

    This paper presents the findings of a study aimed at decomposing a flow hydrograph into different segments based on physical concepts in a catchment, and modelling different segments using different technique viz. conceptual and artificial neural networks (ANNs). An integrated modelling framework is proposed capable of modelling infiltration, base flow, evapotranspiration, soil moisture accounting, and certain segments of the decomposed flow hydrograph using conceptual techniques and the complex, non-linear, and dynamic rainfall-runoff process using ANN technique. Specifically, five different multi-layer perceptron (MLP) and two self-organizing map (SOM) models have been developed. The rainfall and streamflow data derived from the Kentucky River catchment were employed to test the proposed methodology and develop all the models. The performance of all the models was evaluated using seven different standard statistical measures. The results obtained in this study indicate that (a) the rainfall-runoff relationship in a large catchment consists of at least three or four different mappings corresponding to different dynamics of the underlying physical processes, (b) an integrated approach that models the different segments of the decomposed flow hydrograph using different techniques is better than a single ANN in modelling the complex, dynamic, non-linear, and fragmented rainfall runoff process, (c) a simple model based on the concept of flow recession is better than an ANN to model the falling limb of a flow hydrograph, and (d) decomposing a flow hydrograph into the different segments corresponding to the different dynamics based on the physical concepts is better than using the soft decomposition employed using SOM.

  14. Uncertainty analysis of neural network based flood forecasting models: An ensemble based approach for constructing prediction interval

    Science.gov (United States)

    Kasiviswanathan, K.; Sudheer, K.

    2013-05-01

    Artificial neural network (ANN) based hydrologic models have gained lot of attention among water resources engineers and scientists, owing to their potential for accurate prediction of flood flows as compared to conceptual or physics based hydrologic models. The ANN approximates the non-linear functional relationship between the complex hydrologic variables in arriving at the river flow forecast values. Despite a large number of applications, there is still some criticism that ANN's point prediction lacks in reliability since the uncertainty of predictions are not quantified, and it limits its use in practical applications. A major concern in application of traditional uncertainty analysis techniques on neural network framework is its parallel computing architecture with large degrees of freedom, which makes the uncertainty assessment a challenging task. Very limited studies have considered assessment of predictive uncertainty of ANN based hydrologic models. In this study, a novel method is proposed that help construct the prediction interval of ANN flood forecasting model during calibration itself. The method is designed to have two stages of optimization during calibration: at stage 1, the ANN model is trained with genetic algorithm (GA) to obtain optimal set of weights and biases vector, and during stage 2, the optimal variability of ANN parameters (obtained in stage 1) is identified so as to create an ensemble of predictions. During the 2nd stage, the optimization is performed with multiple objectives, (i) minimum residual variance for the ensemble mean, (ii) maximum measured data points to fall within the estimated prediction interval and (iii) minimum width of prediction interval. The method is illustrated using a real world case study of an Indian basin. The method was able to produce an ensemble that has an average prediction interval width of 23.03 m3/s, with 97.17% of the total validation data points (measured) lying within the interval. The derived

  15. Obituary: Anne Barbara Underhill, 1920-2003

    Science.gov (United States)

    Roman, Nancy Grace

    2003-12-01

    Anne was born in Vancouver, British Columbia on 12 June 1920. Her parents were Frederic Clare Underhill, a civil engineer and Irene Anna (née Creery) Underhill. She had a twin brother and three younger brothers. As a young girl she was active in Girl Guides and graduated from high school winning the Lieutenant Governor's medal as one of the top students in the Province. She also excelled in high school sports. Her mother died when Anne was 18 and, while undertaking her university studies, Anne assisted in raising her younger brothers. Her twin brother was killed in Italy during World War II (1944), a loss that Anne felt deeply. Possibly because of fighting to get ahead in astronomy, a field overwhelming male when she started, she frequently appeared combative. At the University of British Columbia, Anne obtained a BA (honors) in Chemistry (1942), followed by a MA in 1944. After working for the NRC in Montreal for a year, she studied at the University of Toronto prior to entering the University of Chicago in 1946 to obtain her PhD. Her thesis was the first model computed for a multi-layered stellar atmosphere (1948). During this time she worked with Otto Struve, developing a lifetime interest in hot stars and the analysis of their high dispersion spectra. She received two fellowships from the University Women of Canada. She received a U.S. National Research Fellowship to work at the Copenhagen Observatory, and upon its completion, she returned to British Columbia to work at the Dominion Astrophysical Observatory as a research scientist from 1949--1962. During this period she spent a year at Harvard University as a visiting professor and at Princeton where she used their advanced computer to write the first code for modeling stellar atmospheres. Anne was invited to the University of Utrecht (Netherlands) as a full professor in 1962. She was an excellent teacher, well liked by the students in her classes, and by the many individuals that she guided throughout her

  16. Target-Centric Network Modeling

    DEFF Research Database (Denmark)

    Mitchell, Dr. William L.; Clark, Dr. Robert M.

    In Target-Centric Network Modeling: Case Studies in Analyzing Complex Intelligence Issues, authors Robert Clark and William Mitchell take an entirely new approach to teaching intelligence analysis. Unlike any other book on the market, it offers case study scenarios using actual intelligence...... reporting formats, along with a tested process that facilitates the production of a wide range of analytical products for civilian, military, and hybrid intelligence environments. Readers will learn how to perform the specific actions of problem definition modeling, target network modeling......, and collaborative sharing in the process of creating a high-quality, actionable intelligence product. The case studies reflect the complexity of twenty-first century intelligence issues by dealing with multi-layered target networks that cut across political, economic, social, technological, and military issues...

  17. Coupled Model of Artificial Neural Network and Grey Model for Tendency Prediction of Labor Turnover

    Directory of Open Access Journals (Sweden)

    Yueru Ma

    2014-01-01

    Full Text Available The tendency of labor turnover in the Chinese enterprise shows the characteristics of seasonal fluctuations and irregular distribution of various factors, especially the Chinese traditional social and cultural characteristics. In this paper, we present a coupled model for the tendency prediction of labor turnover. In the model, a time series of tendency prediction of labor turnover was expressed as trend item and its random item. Trend item of tendency prediction of labor turnover is predicted using Grey theory. Random item of trend item is calculated by artificial neural network model (ANN. A case study is presented by the data of 24 months in a Chinese matured enterprise. The model uses the advantages of “accumulative generation” of a Grey prediction method, which weakens the original sequence of random disturbance factors and increases the regularity of data. It also takes full advantage of the ANN model approximation performance, which has a capacity to solve economic problems rapidly, describes the nonlinear relationship easily, and avoids the defects of Grey theory.

  18. Modeling of Malachite Green Removal from Aqueous Solutions by Nanoscale Zerovalent Zinc Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Wenqian Ruan

    2017-12-01

    Full Text Available The commercially available nanoscale zerovalent zinc (nZVZ was used as an adsorbent for the removal of malachite green (MG from aqueous solutions. This material was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The advanced experimental design tools were adopted to study the effect of process parameters (viz. initial pH, temperature, contact time and initial concentration and to reduce number of trials and cost. Response surface methodology and rapidly developing artificial intelligence technologies, i.e., artificial neural network coupled with particle swarm optimization (ANN-PSO and artificial neural network coupled with genetic algorithm (ANN-GA were employed for predicting the optimum process variables and obtaining the maximum removal efficiency of MG. The results showed that the removal efficiency predicted by ANN-GA (94.12% was compatible with the experimental value (90.72%. Furthermore, the Langmuir isotherm was found to be the best model to describe the adsorption of MG onto nZVZ, while the maximum adsorption capacity was calculated to be 1000.00 mg/g. The kinetics for adsorption of MG onto nZVZ was found to follow the pseudo-second-order kinetic model. Thermodynamic parameters (ΔG0, ΔH0 and ΔS0 were calculated from the Van’t Hoff plot of lnKc vs. 1/T in order to discuss the removal mechanism of MG.

  19. MODELING AND ANALYSIS OF ALGAL BLOOMS IN ARAS DAM BY ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    JAHANGIRI-RAD MAHSA

    2015-03-01

    Full Text Available Man made practices have contributed to large-scale algal blooms that have caused serious ecological, aesthetic, water purification and water distribution problems. Aras Dam, which provides Arasful city with drinking water, has chronic algal blooms since 1990. This study addresses the use of artificial neural network (ANN model to anticipate the chlorophyll-a concentration in water of dam reservoir. Operation tests carried out by collecting water samples from 5 stations and examined for physical quality parameters namely: water temperature, total suspended solids (TSS, biochemical oxygen demands (BOD, ortophosphate, total phosphorous and nitrate concentrations using standard methods. Chlorophyll-a was also checked separately in order to investigate the accuracy of the predicted results by ANN. The results showed that a network was highly accurate in predicting the Chl-a concentration. A good agreement between actual data and the ANN outputs for training was observed, indicating the validation of testing data sets. The initial results of the research indicate that the dam is enriched with nutrients (phosphorus and nitrogen. The Chl-a concentration that were predicted by the model were beyond the standard levels; indicating the possibility of eutrophication especially during fall season.

  20. Artificial Neural Network Models for Long Lead Streamflow Forecasts using Climate Information

    Science.gov (United States)

    Kumar, J.; Devineni, N.

    2007-12-01

    Information on season ahead stream flow forecasts is very beneficial for the operation and management of water supply systems. Daily streamflow conditions at any particular reservoir primarily depend on atmospheric and land surface conditions including the soil moisture and snow pack. On the other hand recent studies suggest that developing long lead streamflow forecasts (3 months ahead) typically depends on exogenous climatic conditions particularly Sea Surface Temperature conditions (SST) in the tropical oceans. Examples of some oceanic variables are El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Identification of such conditions that influence the moisture transport into a given basin poses many challenges given the nonlinear dependency between the predictors (SST) and predictand (stream flows). In this study, we apply both linear and nonlinear dependency measures to identify the predictors that influence the winter flows into the Neuse basin. The predictor identification approach here adopted uses simple correlation coefficients to spearman rank correlation measures for detecting nonlinear dependency. All these dependency measures are employed with a lag 3 time series of the high flow season (January - February - March) using 75 years (1928-2002) of stream flows recorded in to the Falls Lake, Neuse River Basin. Developing streamflow forecasts contingent on these exogenous predictors will play an important role towards improved water supply planning and management. Recently, the soft computing techniques, such as artificial neural networks (ANNs) have provided an alternative method to solve complex problems efficiently. ANNs are data driven models which trains on the examples given to it. The ANNs functions as universal approximators and are non linear in nature. This paper presents a study aiming towards using climatic predictors for 3 month lead time streamflow forecast. ANN models representing the physical process of the system are

  1. Comparison of Artificial Neural Networks and ARIMA statistical models in simulations of target wind time series

    Science.gov (United States)

    Kolokythas, Kostantinos; Vasileios, Salamalikis; Athanassios, Argiriou; Kazantzidis, Andreas

    2015-04-01

    The wind is a result of complex interactions of numerous mechanisms taking place in small or large scales, so, the better knowledge of its behavior is essential in a variety of applications, especially in the field of power production coming from wind turbines. In the literature there is a considerable number of models, either physical or statistical ones, dealing with the problem of simulation and prediction of wind speed. Among others, Artificial Neural Networks (ANNs) are widely used for the purpose of wind forecasting and, in the great majority of cases, outperform other conventional statistical models. In this study, a number of ANNs with different architectures, which have been created and applied in a dataset of wind time series, are compared to Auto Regressive Integrated Moving Average (ARIMA) statistical models. The data consist of mean hourly wind speeds coming from a wind farm on a hilly Greek region and cover a period of one year (2013). The main goal is to evaluate the models ability to simulate successfully the wind speed at a significant point (target). Goodness-of-fit statistics are performed for the comparison of the different methods. In general, the ANN showed the best performance in the estimation of wind speed prevailing over the ARIMA models.

  2. Bacterial DNA Sequence Compression Models Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Armando J. Pinho

    2013-08-01

    Full Text Available It is widely accepted that the advances in DNA sequencing techniques have contributed to an unprecedented growth of genomic data. This fact has increased the interest in DNA compression, not only from the information theory and biology points of view, but also from a practical perspective, since such sequences require storage resources. Several compression methods exist, and particularly, those using finite-context models (FCMs have received increasing attention, as they have been proven to effectively compress DNA sequences with low bits-per-base, as well as low encoding/decoding time-per-base. However, the amount of run-time memory required to store high-order finite-context models may become impractical, since a context-order as low as 16 requires a maximum of 17.2 x 109 memory entries. This paper presents a method to reduce such a memory requirement by using a novel application of artificial neural networks (ANN to build such probabilistic models in a compact way and shows how to use them to estimate the probabilities. Such a system was implemented, and its performance compared against state-of-the art compressors, such as XM-DNA (expert model and FCM-Mx (mixture of finite-context models , as well as with general-purpose compressors. Using a combination of order-10 FCM and ANN, similar encoding results to those of FCM, up to order-16, are obtained using only 17 megabytes of memory, whereas the latter, even employing hash-tables, uses several hundreds of megabytes.

  3. Prediction of mechanical properties of a warm compacted molybdenum prealloy using artificial neural network and adaptive neuro-fuzzy models

    International Nuclear Information System (INIS)

    Zare, Mansour; Vahdati Khaki, Jalil

    2012-01-01

    Highlights: ► ANNs and ANFIS fairly predicted UTS and YS of warm compacted molybdenum prealloy. ► Effects of composition, temperature, compaction pressure on output were studied. ► ANFIS model was in better agreement with experimental data from published article. ► Sintering temperature had the most significant effect on UTS and YS. -- Abstract: Predictive models using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were successfully developed to predict yield strength and ultimate tensile strength of warm compacted 0.85 wt.% molybdenum prealloy samples. To construct these models, 48 different experimental data were gathered from the literature. A portion of the data set was randomly chosen to train both ANN with back propagation (BP) learning algorithm and ANFIS model with Gaussian membership function and the rest was implemented to verify the performance of the trained network against the unseen data. The generalization capability of the networks was also evaluated by applying new input data within the domain covered by the training pattern. To compare the obtained results, coefficient of determination (R 2 ), root mean squared error (RMSE) and average absolute error (AAE) indexes were chosen and calculated for both of the models. The results showed that artificial neural network and adaptive neuro-fuzzy system were both potentially strong for prediction of the mechanical properties of warm compacted 0.85 wt.% molybdenum prealloy; however, the proposed ANFIS showed better performance than the ANN model. Also, the ANFIS model was subjected to a sensitivity analysis to find the significant inputs affecting mechanical properties of the samples.

  4. Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm-Artificial Neural Network.

    Science.gov (United States)

    Ramadan Suleiman, Ahmed; Nehdi, Moncef L

    2017-02-07

    This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm-artificial neural network (GA-ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can assist the network in achieving a global optimum and avoid the possibility of the network getting trapped at local optima. The proposed model was trained and validated using an especially built database using various experimental studies retrieved from the open literature. The model inputs include the cement content, water-to-cement ratio (w/c), type and dosage of supplementary cementitious materials, bio-healing materials, and both expansive and crystalline additives. Self-healing indicated by means of crack width is the model output. The results showed that the proposed GA-ANN model is capable of capturing the complex effects of various self-healing agents (e.g., biochemical material, silica-based additive, expansive and crystalline components) on the self-healing performance in cement-based materials.

  5. Application of ANN and fuzzy logic algorithms for streamflow ...

    Indian Academy of Sciences (India)

    1Department of Soil and Water Engineering, College of Technology and Engineering, Maharana Pratap. University of ... It was found that, ANN model performance improved with increasing .... algorithm uses supervised learning that provides.

  6. A Sensitive ANN Based Differential Relay for Transformer Protection with Security against CT Saturation and Tap Changer Operation

    OpenAIRE

    KHORASHADI-ZADEH, Hassan; LI, Zuyi

    2014-01-01

    This paper presents an artificial neural network (ANN) based scheme for fault identification in power transformer protection. The proposed scheme is featured by the application of ANN to identifying system patterns, the unique choice of harmonics of positive sequence differential currents as ANN inputs, the effective handling of current transformer (CT) saturation with an ANN based approach, and the consideration of tap changer position for correcting secondary CT current. Performanc...

  7. Mathematical Modelling and Optimization of Cutting Force, Tool Wear and Surface Roughness by Using Artificial Neural Network and Response Surface Methodology in Milling of Ti-6242S

    Directory of Open Access Journals (Sweden)

    Erol Kilickap

    2017-10-01

    Full Text Available In this paper, an experimental study was conducted to determine the effect of different cutting parameters such as cutting speed, feed rate, and depth of cut on cutting force, surface roughness, and tool wear in the milling of Ti-6242S alloy using the cemented carbide (WC end mills with a 10 mm diameter. Data obtained from experiments were defined both Artificial Neural Network (ANN and Response Surface Methodology (RSM. ANN trained network using Levenberg-Marquardt (LM and weights were trained. On the other hand, the mathematical models in RSM were created applying Box Behnken design. Values obtained from the ANN and the RSM was found to be very close to the data obtained from experimental studies. The lowest cutting force and surface roughness were obtained at high cutting speeds and low feed rate and depth of cut. The minimum tool wear was obtained at low cutting speed, feed rate, and depth of cut.

  8. Modelling the release of volatile fission product cesium from CANDU fuel under severe accident conditions using artificial neural networks

    International Nuclear Information System (INIS)

    Andrews, W.S.; Lewis, B.J.; Cox, D.S.

    1997-01-01

    An artificial neural network (ANN) model has been developed to predict the release of volatile fission products from CANDU fuel under severe accident conditions. The model was based on data for the release Of 134 Cs measured during three annealing experiments (Hot Cell Experiments 1 and 2, or HCE- 1, HCE-2 and Metallurgical Cell Experiment 1, or MCE- 1) at Chalk River Laboratories. These experiments were comprised of a total of 30 separate tests. The ANN established a correlation among 14 separate input variables and predicted the cumulative fractional release for a set of 386 data points drawn from 29 tests to a normalized error, E n , of 0.104 and an average absolute error, E abs , of 0.064. Predictions for a blind validation set (test HCE2-CM6) had an E n of 0.064 and an E abs of 0.054. A methodology is presented for deploying the ANN model by providing the connection weights. Finally, the performance of an ANN model was compared to a fuel oxidation model developed by Lewis et al. and to the U.S. Nuclear Regulatory Commission's CORSOR-M. (author)

  9. Modeling and optimization of fermentation variables for enhanced production of lactase by isolated Bacillus subtilis strain VUVD001 using artificial neural networking and response surface methodology.

    Science.gov (United States)

    Venkateswarulu, T C; Prabhakar, K Vidya; Kumar, R Bharath; Krupanidhi, S

    2017-07-01

    Modeling and optimization were performed to enhance production of lactase through submerged fermentation by Bacillus subtilis VUVD001 using artificial neural networks (ANN) and response surface methodology (RSM). The effect of process parameters namely temperature (°C), pH, and incubation time (h) and their combinational interactions on production was studied in shake flask culture by Box-Behnken design. The model was validated by conducting an experiment at optimized process variables which gave the maximum lactase activity of 91.32 U/ml. Compared to traditional activity, 3.48-folds improved production was obtained after RSM optimization. This study clearly shows that both RSM and ANN models provided desired predictions. However, compared with RSM (R 2  = 0.9496), the ANN model (R 2  = 0.99456) gave a better prediction for the production of lactase.

  10. Application of ann-based decision making pattern recognition to fishing operations

    Energy Technology Data Exchange (ETDEWEB)

    Akhlaghinia, M.; Torabi, F.; Wilton, R.R. [University of Regina, Saskatchewan (Canada). Faculty of Engineering. Dept. of Petroleum Engineering], e-mail: Farshid.Torabi@uregina.ca

    2010-10-15

    Decision making is a crucial part of fishing operations. Proper decisions should be made to prevent wasted time and associated costs on unsuccessful operations. This paper presents a novel model to help drilling managers decide when to commence and when to quit a fishing operation. A decision making model based on Artificial Neural Network (ANN) has been developed that utilizes Pattern Recognition based on 181 fishing incidents from one of the most fish-prone fields of the southwest of Iran. All parameters chosen to train the ANN-Based Pattern Recognition Tool are assumed to play a role in the success of the fishing operation and are therefore used to decide whether a fishing operation should be performed or not. If the tool deems the operation suitable for consideration, a cost analysis of the fishing operation can then be performed to justify its overall cost. (author)

  11. Continuum Model for River Networks

    Science.gov (United States)

    Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.

    1995-07-01

    The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.

  12. Towards modeling of combined cooling, heating and power system with artificial neural network for exergy destruction and exergy efficiency prognostication of tri-generation components

    International Nuclear Information System (INIS)

    Taghavifar, Hadi; Anvari, Simin; Saray, Rahim Khoshbakhti; Khalilarya, Shahram; Jafarmadar, Samad; Taghavifar, Hamid

    2015-01-01

    The current study is an attempt to address the investigation of the CCHP (combined cooling, heating and power) system when 10 input variables were chosen to analyze 10 most important objective output parameters. Moreover, ANN (artificial neural network) was successfully applied on the tri-generation system on account of its capability to predict responses with great confidence. The results of sensitivity analysis were considered as foundation for selecting the most suitable and potent input parameters of the supposed cycle. Furthermore, the best ANN topology was attained based on the least amount of MSE and number of iterations. Consequently, the trainlm (Levenberg–Marquardt) training approach with 10-9-10 configuration has been exploited for ANN modeling in order to give the best output correspondence. The maximum MRE = 1.75% (mean relative error) and minimum R 2  = 0.984 represents the reliability and outperformance of the developed ANN over common conventional thermodynamic analysis carried out by EES (engineering equation solver) software. - Highlights: • Exergy analysis is undertaken for CCHP components based on operative factors. • ANN tool is applied to obtained database from thermodynamic analyses session. • The best ANN topology is detected at 10-9-10 with trainlm learning algorithm. • The input and output layer parameters were selected based on sensitivity analysis.

  13. Using Artificial Neural Networks in Educational Research: Some Comparisons with Linear Statistical Models.

    Science.gov (United States)

    Everson, Howard T.; And Others

    This paper explores the feasibility of neural computing methods such as artificial neural networks (ANNs) and abductory induction mechanisms (AIM) for use in educational measurement. ANNs and AIMS methods are contrasted with more traditional statistical techniques, such as multiple regression and discriminant function analyses, for making…

  14. A Pruning Neural Network Model in Credit Classification Analysis

    Directory of Open Access Journals (Sweden)

    Yajiao Tang

    2018-01-01

    Full Text Available Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency.

  15. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  16. Evaluation of neural networks to identify types of activity using accelerometers

    NARCIS (Netherlands)

    Vries, S.I. de; Garre, F.G.; Engbers, L.H.; Hildebrandt, V.H.; Buuren, S. van

    2011-01-01

    Purpose: To develop and evaluate two artificial neural network (ANN) models based on single-sensor accelerometer data and an ANN model based on the data of two accelerometers for the identification of types of physical activity in adults. Methods: Forty-nine subjects (21 men and 28 women; age range

  17. Predicting Subsurface Soil Layering and Landslide Risk with Artificial Neural Networks

    DEFF Research Database (Denmark)

    Farrokhzad, Farzad; Barari, Amin; Ibsen, Lars Bo

    2011-01-01

    This paper is concerned principally with the application of ANN model in geotechnical engineering. In particular the application for subsurface soil layering and landslide analysis is discussed in more detail. Three ANN models are trained using the required geotechnical data obtained from...... networks are capable of predicting variations in the soil profile and assessing the landslide hazard with an acceptable level of confidence....

  18. Neural network models for biological waste-gas treatment systems.

    Science.gov (United States)

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression

  19. Optimization of a neural network model for signal-to-background prediction in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Dragovic, S.; Onjia, A. . E-mail address of corresponding author: sdragovic@inep.co.yu; Dragovic, S.)

    2005-01-01

    The artificial neural network (ANN) model was optimized for the prediction of signal-to-background (SBR) ratio as a function of the measurement time in gamma-ray spectrometry. The network parameters: learning rate (α), momentum (μ), number of epochs (E) and number of nodes in hidden layer (N) were optimized simultaneously employing variable-size simplex method. The most accurate model with the root mean square (RMS) error of 0.073 was obtained using ANN with online backpropagation randomized (OBPR) algorithm with α = 0.27, μ 0.36, E = 14800 and N = 9. Most of the predicted and experimental SBR values for the eight radionuclides ( 226 Ra, 214 Bi, 235 U, 40 K, 232 Th, 134 Cs, 137 Cs and 7 Be), studied in this work, reasonably agreed to within 15 %, which was satisfactory accuracy. (author)

  20. Network modelling methods for FMRI.

    Science.gov (United States)

    Smith, Stephen M; Miller, Karla L; Salimi-Khorshidi, Gholamreza; Webster, Matthew; Beckmann, Christian F; Nichols, Thomas E; Ramsey, Joseph D; Woolrich, Mark W

    2011-01-15

    There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Predicting pressure drop in venturi scrubbers with artificial neural networks.

    Science.gov (United States)

    Nasseh, S; Mohebbi, A; Jeirani, Z; Sarrafi, A

    2007-05-08

    In this study a new approach based on artificial neural networks (ANNs) has been used to predict pressure drop in venturi scrubbers. The main parameters affecting the pressure drop are mainly the gas velocity in the throat of venturi scrubber (V(g)(th)), liquid to gas flow rate ratio (L/G), and axial distance of the venturi scrubber (z). Three sets of experimental data from five different venturi scrubbers have been applied to design three independent ANNs. Comparing the results of these ANNs and the calculated results from available models shows that the results of ANNs have a better agreement with experimental data.

  2. Assessment of earthquake-triggered landslide susceptibility in El Salvador based on an Artificial Neural Network model

    Directory of Open Access Journals (Sweden)

    M. J. García-Rodríguez

    2010-06-01

    Full Text Available This paper presents an approach for assessing earthquake-triggered landslide susceptibility using artificial neural networks (ANNs. The computational method used for the training process is a back-propagation learning algorithm. It is applied to El Salvador, one of the most seismically active regions in Central America, where the last severe destructive earthquakes occurred on 13 January 2001 (Mw 7.7 and 13 February 2001 (Mw 6.6. The first one triggered more than 600 landslides (including the most tragic, Las Colinas landslide and killed at least 844 people.

    The ANN is designed and programmed to develop landslide susceptibility analysis techniques at a regional scale. This approach uses an inventory of landslides and different parameters of slope instability: slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness. The information obtained from ANN is then used by a Geographic Information System (GIS to map the landslide susceptibility. In a previous work, a Logistic Regression (LR was analysed with the same parameters considered in the ANN as independent variables and the occurrence or non-occurrence of landslides as dependent variables. As a result, the logistic approach determined the importance of terrain roughness and soil type as key factors within the model. The results of the landslide susceptibility analysis with ANN are checked using landslide location data. These results show a high concordance between the landslide inventory and the high susceptibility estimated zone. Finally, a comparative analysis of the ANN and LR models are made. The advantages and disadvantages of both approaches are discussed using Receiver Operating Characteristic (ROC curves.

  3. Assessment of earthquake-triggered landslide susceptibility in El Salvador based on an Artificial Neural Network model

    Science.gov (United States)

    García-Rodríguez, M. J.; Malpica, J. A.

    2010-06-01

    This paper presents an approach for assessing earthquake-triggered landslide susceptibility using artificial neural networks (ANNs). The computational method used for the training process is a back-propagation learning algorithm. It is applied to El Salvador, one of the most seismically active regions in Central America, where the last severe destructive earthquakes occurred on 13 January 2001 (Mw 7.7) and 13 February 2001 (Mw 6.6). The first one triggered more than 600 landslides (including the most tragic, Las Colinas landslide) and killed at least 844 people. The ANN is designed and programmed to develop landslide susceptibility analysis techniques at a regional scale. This approach uses an inventory of landslides and different parameters of slope instability: slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness. The information obtained from ANN is then used by a Geographic Information System (GIS) to map the landslide susceptibility. In a previous work, a Logistic Regression (LR) was analysed with the same parameters considered in the ANN as independent variables and the occurrence or non-occurrence of landslides as dependent variables. As a result, the logistic approach determined the importance of terrain roughness and soil type as key factors within the model. The results of the landslide susceptibility analysis with ANN are checked using landslide location data. These results show a high concordance between the landslide inventory and the high susceptibility estimated zone. Finally, a comparative analysis of the ANN and LR models are made. The advantages and disadvantages of both approaches are discussed using Receiver Operating Characteristic (ROC) curves.

  4. Use of an Artificial Neural Network to Construct a Model of Predicting Deep Fungal Infection in Lung Cancer Patients.

    Science.gov (United States)

    Chen, Jian; Chen, Jie; Ding, Hong-Yan; Pan, Qin-Shi; Hong, Wan-Dong; Xu, Gang; Yu, Fang-You; Wang, Yu-Min

    2015-01-01

    The statistical methods to analyze and predict the related dangerous factors of deep fungal infection in lung cancer patients were several, such as logic regression analysis, meta-analysis, multivariate Cox proportional hazards model analysis, retrospective analysis, and so on, but the results are inconsistent. A total of 696 patients with lung cancer were enrolled. The factors were compared employing Student's t-test or the Mann-Whitney test or the Chi-square test and variables that were significantly related to the presence of deep fungal infection selected as candidates for input into the final artificial neural network analysis (ANN) model. The receiver operating characteristic (ROC) and area under curve (AUC) were used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. The prevalence of deep fungal infection from lung cancer in this entire study population was 32.04%(223/696), deep fungal infections occur in sputum specimens 44.05% (200/454). The ratio of candida albicans was 86.99% (194/223) in the total fungi. It was demonstrated that older (≥65 years), use of antibiotics, low serum albumin concentrations (≤37.18 g /L), radiotherapy, surgery, low hemoglobin hyperlipidemia (≤93.67 g /L), long time of hospitalization (≥14 days) were apt to deep fungal infection and the ANN model consisted of the seven factors. The AUC of ANN model (0.829±0.019) was higher than that of LR model (0.756±0.021). The artificial neural network model with variables consisting of age, use of antibiotics, serum albumin concentrations, received radiotherapy, received surgery, hemoglobin, time of hospitalization should be useful for predicting the deep fungal infection in lung cancer.

  5. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.

    Science.gov (United States)

    Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold

    2016-12-01

    In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Collapse susceptibility mapping in karstified gypsum terrain (Sivas basin - Turkey) by conditional probability, logistic regression, artificial neural network models

    Science.gov (United States)

    Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin

    2010-05-01

    This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.

  7. Prediction of shear and tensile strength of the diffusion bonded AA5083 and AA7075 aluminium alloy using ANN

    International Nuclear Information System (INIS)

    Sagai Francis Britto, A.; Raj, R. Edwin; Mabel, M. Carolin

    2017-01-01

    Diffusion bonding is a pressure welding technique to establish bonds by inter diffusion of atoms. Bonding characteristics were generated by varying the significant process conditions such as the bonding temperature, the pressing load and the duration of pressure while bonding the aluminium alloys AA5083 and AA7075. Deriving analytical correlation with the process variables to weld strength is quite involved due to the non-linear dependency of the process variables with the mechanical strength of the joints. An arbitrary function approximation mechanism, the artificial neural network (ANN) is therefore employed to develop the models for predicting the mechanical properties of the bonded joints. Back propagation technique, which alters the network weights to minimize the mean square error was used to develop the ANN models. The models were tested, validated and found to be satisfactory with good prediction accuracy.

  8. Prediction of shear and tensile strength of the diffusion bonded AA5083 and AA7075 aluminium alloy using ANN

    Energy Technology Data Exchange (ETDEWEB)

    Sagai Francis Britto, A. [Department of Mechanical Engineering, St.Xavier' s Catholic College of Engineering, Nagercoil 629003,Tamil Nadu (India); Raj, R. Edwin, E-mail: redwinraj@gmail.com [Department of Mechanical Engineering, St.Xavier' s Catholic College of Engineering, Nagercoil 629003,Tamil Nadu (India); Mabel, M. Carolin [Department of Electrical and Electronics Engineering, St.Xavier' s Catholic College of Engineering, Nagercoil 629003,Tamil Nadu (India)

    2017-04-24

    Diffusion bonding is a pressure welding technique to establish bonds by inter diffusion of atoms. Bonding characteristics were generated by varying the significant process conditions such as the bonding temperature, the pressing load and the duration of pressure while bonding the aluminium alloys AA5083 and AA7075. Deriving analytical correlation with the process variables to weld strength is quite involved due to the non-linear dependency of the process variables with the mechanical strength of the joints. An arbitrary function approximation mechanism, the artificial neural network (ANN) is therefore employed to develop the models for predicting the mechanical properties of the bonded joints. Back propagation technique, which alters the network weights to minimize the mean square error was used to develop the ANN models. The models were tested, validated and found to be satisfactory with good prediction accuracy.

  9. Research on the model of home networking

    Science.gov (United States)

    Yun, Xiang; Feng, Xiancheng

    2007-11-01

    It is the research hotspot of current broadband network to combine voice service, data service and broadband audio-video service by IP protocol to transport various real time and mutual services to terminal users (home). Home Networking is a new kind of network and application technology which can provide various services. Home networking is called as Digital Home Network. It means that PC, home entertainment equipment, home appliances, Home wirings, security, illumination system were communicated with each other by some composing network technology, constitute a networking internal home, and connect with WAN by home gateway. It is a new network technology and application technology, and can provide many kinds of services inside home or between homes. Currently, home networking can be divided into three kinds: Information equipment, Home appliances, Communication equipment. Equipment inside home networking can exchange information with outer networking by home gateway, this information communication is bidirectional, user can get information and service which provided by public networking by using home networking internal equipment through home gateway connecting public network, meantime, also can get information and resource to control the internal equipment which provided by home networking internal equipment. Based on the general network model of home networking, there are four functional entities inside home networking: HA, HB, HC, and HD. (1) HA (Home Access) - home networking connects function entity; (2) HB (Home Bridge) Home networking bridge connects function entity; (3) HC (Home Client) - Home networking client function entity; (4) HD (Home Device) - decoder function entity. There are many physical ways to implement four function entities. Based on theses four functional entities, there are reference model of physical layer, reference model of link layer, reference model of IP layer and application reference model of high layer. In the future home network

  10. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  11. Validation of artificial neural network models for predicting biochemical markers associated with male infertility.

    Science.gov (United States)

    Vickram, A S; Kamini, A Rao; Das, Raja; Pathy, M Ramesh; Parameswari, R; Archana, K; Sridharan, T B

    2016-08-01

    Seminal fluid is the secretion from many glands comprised of several organic and inorganic compounds including free amino acids, proteins, fructose, glucosidase, zinc, and other scavenging elements like Mg(2+), Ca(2+), K(+), and Na(+). Therefore, in the view of development of novel approaches and proper diagnosis to male infertility, overall understanding of the biochemical and molecular composition and its role in regulation of sperm quality is highly desirable. Perhaps this can be achieved through artificial intelligence. This study was aimed to elucidate and predict various biochemical markers present in human seminal plasma with three different neural network models. A total of 177 semen samples were collected for this research (both fertile and infertile samples) and immediately processed to prepare a semen analysis report, based on the protocol of the World Health Organization (WHO [2010]). The semen samples were then categorized into oligoasthenospermia (n=35), asthenospermia (n=35), azoospermia (n=22), normospermia (n=34), oligospermia (n=34), and control (n=17). The major biochemical parameters like total protein content, fructose, glucosidase, and zinc content were elucidated by standard protocols. All the biochemical markers were predicted by using three different artificial neural network (ANN) models with semen parameters as inputs. Of the three models, the back propagation neural network model (BPNN) yielded the best results with mean absolute error 0.025, -0.080, 0.166, and -0.057 for protein, fructose, glucosidase, and zinc, respectively. This suggests that BPNN can be used to predict biochemical parameters for the proper diagnosis of male infertility in assisted reproductive technology (ART) centres. AAS: absorption spectroscopy; AI: artificial intelligence; ANN: artificial neural networks; ART: assisted reproductive technology; BPNN: back propagation neural network model; DT: decision tress; MLP: multilayer perceptron; PESA: percutaneous

  12. Inverse problems using ANN in long range atmospheric dispersion with signature analysis picked scattered numerical sensors from CFD

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Gera, B.; Ghosh, A.K.; Kushwaha, H.S.

    2010-01-01

    Scalar dispersion in the atmosphere is an important area wherein different approaches are followed in development of good analytical model. The analyses based on Computational Fluid Dynamics (CFD) codes offer an opportunity of model development based on first principles of physics and hence such models have an edge over the existing models. Both forward and backward calculation methods are being developed for atmospheric dispersion around NPPs at BARC Forward modeling methods, which describe the atmospheric transport from sources to receptors, use forward-running transport and dispersion models or computational fluid dynamics models which are run many times, and the resulting dispersion field is compared to observations from multiple sensors. Backward or inverse modeling methods use only one model run in the reverse direction from the receptors to estimate the upwind sources. Inverse modeling methods include adjoint and tangent linear models, Kalman filters, and variational data assimilation, and neural network. The present paper is aimed at developing a new approach where the identified specific signatures at receptor points form the basis for source estimation or inversions. This approach is expected to reduce the large transient data sets to reduced and meaningful data sets. In fact this reduces the inherently transient data set into a time independent mean data set. Forward computation were carried out with CFD code for various case to generate a large set of data to train the ANN. Specific signature analysis was carried out to find the parameters of interest for ANN training like peak concentration, time to reach peak concentration and time to fall, the ANN was trained with data and source strength and location were predicted from ANN. Inverse problem was performed using ANN approach in long range atmospheric dispersion. An illustration of application of CFD code for atmospheric dispersion studies for a hypothetical case is also included in the paper. (author)

  13. An application of artificial intelligence for rainfall–runoff modeling

    Indian Academy of Sciences (India)

    This study proposes an application of two techniques of artificial intelligence (AI) for rainfall–runoff modeling: the artificial neural networks (ANN) and the evolutionary computation (EC). Two diff- erent ANN techniques, the feed forward back propagation (FFBP) and generalized regression neural network (GRNN) methods ...

  14. Energy modelling in sensor networks

    Science.gov (United States)

    Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.

    2007-06-01

    Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  15. A comparison of the performances of an artificial neural network and a regression model for GFR estimation.

    Science.gov (United States)

    Liu, Xun; Li, Ning-shan; Lv, Lin-sheng; Huang, Jian-hua; Tang, Hua; Chen, Jin-xia; Ma, Hui-juan; Wu, Xiao-ming; Lou, Tan-qi

    2013-12-01

    Accurate estimation of glomerular filtration rate (GFR) is important in clinical practice. Current models derived from regression are limited by the imprecision of GFR estimates. We hypothesized that an artificial neural network (ANN) might improve the precision of GFR estimates. A study of diagnostic test accuracy. 1,230 patients with chronic kidney disease were enrolled, including the development cohort (n=581), internal validation cohort (n=278), and external validation cohort (n=371). Estimated GFR (eGFR) using a new ANN model and a new regression model using age, sex, and standardized serum creatinine level derived in the development and internal validation cohort, and the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) 2009 creatinine equation. Measured GFR (mGFR). GFR was measured using a diethylenetriaminepentaacetic acid renal dynamic imaging method. Serum creatinine was measured with an enzymatic method traceable to isotope-dilution mass spectrometry. In the external validation cohort, mean mGFR was 49±27 (SD) mL/min/1.73 m2 and biases (median difference between mGFR and eGFR) for the CKD-EPI, new regression, and new ANN models were 0.4, 1.5, and -0.5 mL/min/1.73 m2, respectively (P30% from mGFR) were 50.9%, 77.4%, and 78.7%, respectively (Psource of systematic bias in comparisons of new models to CKD-EPI, and both the derivation and validation cohorts consisted of a group of patients who were referred to the same institution. An ANN model using 3 variables did not perform better than a new regression model. Whether ANN can improve GFR estimation using more variables requires further investigation. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  16. Modeling and Optimization of NLDH/PVDF Ultrafiltration Nanocomposite Membrane Using Artificial Neural Network-Genetic Algorithm Hybrid.

    Science.gov (United States)

    Arefi-Oskoui, Samira; Khataee, Alireza; Vatanpour, Vahid

    2017-07-10

    In this research, MgAl-CO 3 2- nanolayered double hydroxide (NLDH) was synthesized through a facile coprecipitation method, followed by a hydrothermal treatment. The prepared NLDHs were used as a hydrophilic nanofiller for improving the performance of the PVDF-based ultrafiltration membranes. The main objective of this research was to obtain the optimized formula of NLDH/PVDF nanocomposite membrane presenting the best performance using computational techniques as a cost-effective method. For this aim, an artificial neural network (ANN) model was developed for modeling and expressing the relationship between the performance of the nanocomposite membrane (pure water flux, protein flux and flux recovery ratio) and the affecting parameters including the NLDH, PVP 29000 and polymer concentrations. The effects of the mentioned parameters and the interaction between the parameters were investigated using the contour plot predicted with the developed model. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle techniques were applied to characterize the nanocomposite membranes and to interpret the predictions of the ANN model. The developed ANN model was introduced to genetic algorithm (GA) as a bioinspired optimizer to determine the optimum values of input parameters leading to high pure water flux, protein flux, and flux recovery ratio. The optimum values for NLDH, PVP 29000 and the PVDF concentration were determined to be 0.54, 1, and 18 wt %, respectively. The performance of the nanocomposite membrane prepared using the optimum values proposed by GA was investigated experimentally, in which the results were in good agreement with the values predicted by ANN model with error lower than 6%. This good agreement confirmed that the nanocomposite membranes prformance could be successfully modeled and optimized by ANN-GA system.

  17. Application of artificial neural networks for response surface modelling in HPLC method development

    Directory of Open Access Journals (Sweden)

    Mohamed A. Korany

    2012-01-01

    Full Text Available This paper discusses the usefulness of artificial neural networks (ANNs for response surface modelling in HPLC method development. In this study, the combined effect of pH and mobile phase composition on the reversed-phase liquid chromatographic behaviour of a mixture of salbutamol (SAL and guaiphenesin (GUA, combination I, and a mixture of ascorbic acid (ASC, paracetamol (PAR and guaiphenesin (GUA, combination II, was investigated. The results were compared with those produced using multiple regression (REG analysis. To examine the respective predictive power of the regression model and the neural network model, experimental and predicted response factor values, mean of squares error (MSE, average error percentage (Er%, and coefficients of correlation (r were compared. It was clear that the best networks were able to predict the experimental responses more accurately than the multiple regression analysis.

  18. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.

    2015-01-01

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation

  19. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks

    International Nuclear Information System (INIS)

    Antanasijević, Davor; Pocajt, Viktor; Ristić, Mirjana; Perić-Grujić, Aleksandra

    2015-01-01

    This paper presents a new approach for the estimation of energy-related GHG (greenhouse gas) emissions at the national level that combines the simplicity of the concept of GHG intensity and the generalization capabilities of ANNs (artificial neural networks). The main objectives of this work includes the determination of the accuracy of a GRNN (general regression neural network) model applied for the prediction of EC (energy consumption) and GHG intensity of energy consumption, utilizing general country statistics as inputs, as well as analysis of the accuracy of energy-related GHG emissions obtained by multiplying the two aforementioned outputs. The models were developed using historical data from the period 2004–2012, for a set of 26 European countries (EU Members). The obtained results demonstrate that the GRNN GHG intensity model provides a more accurate prediction, with the MAPE (mean absolute percentage error) of 4.5%, than tested MLR (multiple linear regression) and second-order and third-order non-linear MPR (multiple polynomial regression) models. Also, the GRNN EC model has high accuracy (MAPE = 3.6%), and therefore both GRNN models and the proposed approach can be considered as suitable for the calculation of GHG emissions. The energy-related predicted GHG emissions were very similar to the actual GHG emissions of EU Members (MAPE = 6.4%). - Highlights: • ANN modeling of GHG intensity of energy consumption is presented. • ANN modeling of energy consumption at the national level is presented. • GHG intensity concept was used for the estimation of energy-related GHG emissions. • The ANN models provide better results in comparison with conventional models. • Forecast of GHG emissions for 26 countries was made successfully with MAPE of 6.4%

  20. Development of relative humidity models by using optimized neural network structures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-romero, A.; Ortega, J. F.; Juan, J. A.; Tarjuelo, J. M.; Moreno, M. A.

    2010-07-01

    Climate has always had a very important role in life on earth, as well as human activity and health. The influence of relative humidity (RH) in controlled environments (e.g. industrial processes in agro-food processing, cold storage of foods such as fruits, vegetables and meat, or controls in greenhouses) is very important. Relative humidity is a main factor in agricultural production and crop yield (due to the influence on crop water demand or the development and distribution of pests and diseases, for example). The main objective of this paper is to estimate RH [maximum (RHmax), average (RHave), and minimum (RHmin)] data in a specific area, being applied to the Region of Castilla-La Mancha (C-LM) in this case, from available data at thermo-pluviometric weather stations. In this paper Artificial neural networks (ANN) are used to generate RH considering maximum and minimum temperatures and extraterrestrial solar radiation data. Model validation and generation is based on data from the years 2000 to 2008 from 44 complete agroclimatic weather stations. Relative errors are estimated as 1) spatial errors of 11.30%, 6.80% and 10.27% and 2) temporal errors of 10.34%, 6.59% and 9.77% for RHmin, RHmax and RHave, respectively. The use of ANNs is interesting in generating climate parameters from available climate data. For determining optimal ANN structure in estimating RH values, model calibration and validation is necessary, considering spatial and temporal variability. (Author) 44 refs.

  1. Hypothetical neural mechanism that may play a role in mental rotation: an attractor neural network model.

    Science.gov (United States)

    Benusková, L; Estok, S

    1998-11-01

    We propose an attractor neural network (ANN) model that performs rotation-invariant pattern recognition in such a way that it can account for a neural mechanism being involved in the image transformation accompanying the experience of mental rotation. We compared the performance of our ANN model with the results of the chronometric psychophysical experiments of Cooper and Shepard (Cooper L A and Shepard R N 1973 Visual Information Processing (New York: Academic) pp 204-7) on discrimination of alphanumeric characters presented in various angular departures from their canonical upright position. Comparing the times required for pattern retrieval in its canonical upright position with the reaction times of human subjects, we found agreement in that (i) retrieval times for clockwise and anticlockwise departures of the same angular magnitude (up to 180 degrees) were not different, (ii) retrieval times increased with departure from upright and (iii) increased more sharply as departure from upright approached 180 degrees. The rotation-invariant retrieval of the activity pattern has been accomplished by means of the modified algorithm of Dotsenko (Dotsenko V S 1988 J. Phys. A: Math. Gen. 21 L783-7) proposed for translation-, rotation- and size-invariant pattern recognition, which uses relaxation of neuronal firing thresholds to guide the evolution of the ANN in state space towards the desired memory attractor. The dynamics of neuronal relaxation has been modified for storage and retrieval of low-activity patterns and the original gradient optimization of threshold dynamics has been replaced with optimization by simulated annealing.

  2. Potential Habitat Modelling of Ferula ovina Using Artificial Neural Network in Fereydunshahr Region, Isfahan Province

    Directory of Open Access Journals (Sweden)

    Z. Rahmati

    2015-06-01

    Full Text Available Species distribution maps have been widely developed based on ecological niche theory together with statistical and geographical information system in plant ecology. The current study aimed to evaluate Artificial Neural Network (ANN in mapping potential habitat of Ferula ovina Boiss in Ferydunshar rangelands, Isfahan. This is known as valuable forage and medicinal species. Environmental data (independent variables and species occurrence data (dependent variable were required to determine potential habitat of a given species. Some physical and chemical soil properties, climate and physiographic variables were mapped for the entire studied area using krigging and inverse distance weighting methods. F. ovina occurrence data were collected from 278 sites including 137 presence and 141 absence sites. The relationships between the studied environmental variables and F. ovina occurrence data were explored using ANN method. According to the sensitivity analysis, occurrence of F. ovina mostly correlated with silt and sand percentage, elevation slope, and organic matter. Model evaluation based on Kappa coefficient (0.66 and Receiver operating characteristic (ROC=0.9 showed good model fitness in relation to reality on local scales. The ANN technique enables managers to identify appropriate areas for rehabilitation practices such as direct seeding and planting.                       

  3. An artificial neural network model of energy expenditure using nonintegrated acceleration signals.

    Science.gov (United States)

    Rothney, Megan P; Neumann, Megan; Béziat, Ashley; Chen, Kong Y

    2007-10-01

    Accelerometers are a promising tool for characterizing physical activity patterns in free living. The major limitation in their widespread use to date has been a lack of precision in estimating energy expenditure (EE), which may be attributed to the oversimplified time-integrated acceleration signals and subsequent use of linear regression models for EE estimation. In this study, we collected biaxial raw (32 Hz) acceleration signals at the hip to develop a relationship between acceleration and minute-to-minute EE in 102 healthy adults using EE data collected for nearly 24 h in a room calorimeter as the reference standard. From each 1 min of acceleration data, we extracted 10 signal characteristics (features) that we felt had the potential to characterize EE intensity. Using these data, we developed a feed-forward/back-propagation artificial neural network (ANN) model with one hidden layer (12 x 20 x 1 nodes). Results of the ANN were compared with estimations using the ActiGraph monitor, a uniaxial accelerometer, and the IDEEA monitor, an array of five accelerometers. After training and validation (leave-one-subject out) were completed, the ANN showed significantly reduced mean absolute errors (0.29 +/- 0.10 kcal/min), mean squared errors (0.23 +/- 0.14 kcal(2)/min(2)), and difference in total EE (21 +/- 115 kcal/day), compared with both the IDEEA (P types under free-living conditions.

  4. Measurement and ANN prediction of pH-dependent solubility of nitrogen-heterocyclic compounds.

    Science.gov (United States)

    Sun, Feifei; Yu, Qingni; Zhu, Jingke; Lei, Lecheng; Li, Zhongjian; Zhang, Xingwang

    2015-09-01

    Based on the solubility of 25 nitrogen-heterocyclic compounds (NHCs) measured by saturation shake-flask method, artificial neural network (ANN) was employed to the study of the quantitative relationship between the structure and pH-dependent solubility of NHCs. With genetic algorithm-multivariate linear regression (GA-MLR) approach, five out of the 1497 molecular descriptors computed by Dragon software were selected to describe the molecular structures of NHCs. Using the five selected molecular descriptors as well as pH and the partial charge on the nitrogen atom of NHCs (QN) as inputs of ANN, a quantitative structure-property relationship (QSPR) model without using Henderson-Hasselbalch (HH) equation was successfully developed to predict the aqueous solubility of NHCs in different pH water solutions. The prediction model performed well on the 25 model NHCs with an absolute average relative deviation (AARD) of 5.9%, while HH approach gave an AARD of 36.9% for the same model NHCs. It was found that QN played a very important role in the description of NHCs and, with QN, ANN became a potential tool for the prediction of pH-dependent solubility of NHCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Neural networks in signal processing

    International Nuclear Information System (INIS)

    Govil, R.

    2000-01-01

    Nuclear Engineering has matured during the last decade. In research and design, control, supervision, maintenance and production, mathematical models and theories are used extensively. In all such applications signal processing is embedded in the process. Artificial Neural Networks (ANN), because of their nonlinear, adaptive nature are well suited to such applications where the classical assumptions of linearity and second order Gaussian noise statistics cannot be made. ANN's can be treated as nonparametric techniques, which can model an underlying process from example data. They can also adopt their model parameters to statistical change with time. Algorithms in the framework of Neural Networks in Signal processing have found new applications potentials in the field of Nuclear Engineering. This paper reviews the fundamentals of Neural Networks in signal processing and their applications in tasks such as recognition/identification and control. The topics covered include dynamic modeling, model based ANN's, statistical learning, eigen structure based processing and generalization structures. (orig.)

  6. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Li Chunguang; Maini, Philip K

    2005-01-01

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  7. Brand Marketing Model on Social Networks

    Directory of Open Access Journals (Sweden)

    Jolita Jezukevičiūtė

    2014-04-01

    Full Text Available The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalysis of a single case study revealed a brand marketingsocial networking tools that affect consumers the most. Basedon information analysis and methodological studies, develop abrand marketing model on social networks.

  8. A novel Direct Small World network model

    Directory of Open Access Journals (Sweden)

    LIN Tao

    2016-10-01

    Full Text Available There is a certain degree of redundancy and low efficiency of existing computer networks.This paper presents a novel Direct Small World network model in order to optimize networks.In this model,several nodes construct a regular network.Then,randomly choose and replot some nodes to generate Direct Small World network iteratively.There is no change in average distance and clustering coefficient.However,the network performance,such as hops,is improved.The experiments prove that compared to traditional small world network,the degree,average of degree centrality and average of closeness centrality are lower in Direct Small World network.This illustrates that the nodes in Direct Small World networks are closer than Watts-Strogatz small world network model.The Direct Small World can be used not only in the communication of the community information,but also in the research of epidemics.

  9. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  10. Ado Vabbe preemia Anne Parmastole

    Index Scriptorium Estoniae

    2003-01-01

    Tartu Kunstimajas Tartu kunsti aastalõpunäitus. Kujundaja Mari Nõmmela. Anne Parmastole A. Vabbe, Silja Salmistule E-Kunstisalongi, Lii Jürgensonile EDA, Jüri Marranile Wilde kohviku, Sami Makkonenile AS Vunder ja Tartu Õlletehase A. Le Coq ning Eda Lõhmusele AS Merko Tartu preemia

  11. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    Science.gov (United States)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  12. Water balance estimation in high Alpine terrain by combining distributed modeling and a neural network approach (Berchtesgaden Alps, Germany

    Directory of Open Access Journals (Sweden)

    G. Kraller

    2012-07-01

    Full Text Available The water balance in high Alpine regions is often characterized by significant variation of meteorological variables in space and time, a complex hydrogeological situation and steep gradients. The system is even more complex when the rock composition is dominated by soluble limestone, because unknown underground flow conditions and flow directions lead to unknown storage quantities. Reliable distributed modeling cannot be implemented by traditional approaches due to unknown storage processes at local and catchment scale. We present an artificial neural network extension of a distributed hydrological model (WaSiM-ETH that allows to account for subsurface water transfer in a karstic environment. The extension was developed for the Alpine catchment of the river "Berchtesgadener Ache" (Berchtesgaden Alps, Germany, which is characterized by extreme topography and calcareous rocks. The model assumes porous conditions and does not account for karstic environments, resulting in systematic mismatch of modeled and measured runoff in discharge curves at the outlet points of neighboring high alpine subbasins. Various precipitation interpolation methods did not allow to explain systematic mismatches, and unknown subsurface hydrological processes were concluded as the underlying reason. We introduce a new method that allows to describe the unknown subsurface boundary fluxes, and account for them in the hydrological model. This is achieved by an artificial neural network approach (ANN, where four input variables are taken to calculate the unknown subsurface storage conditions. This was first developed for the high Alpine subbasin Königsseer Ache to improve the monthly water balance. We explicitly derive the algebraic transfer function of an artificial neural net to calculate the missing boundary fluxes. The result of the ANN is then implemented in the groundwater module of the hydrological model as boundary flux, and considered during the consecutive model

  13. Analysis of Artificial Neural Network in Erosion Modeling: A Case Study of Serang Watershed

    Science.gov (United States)

    Arif, N.; Danoedoro, P.; Hartono

    2017-12-01

    Erosion modeling is an important measuring tool for both land users and decision makers to evaluate land cultivation and thus it is necessary to have a model to represent the actual reality. Erosion models are a complex model because of uncertainty data with different sources and processing procedures. Artificial neural networks can be relied on for complex and non-linear data processing such as erosion data. The main difficulty in artificial neural network training is the determination of the value of each network input parameters, i.e. hidden layer, momentum, learning rate, momentum, and RMS. This study tested the capability of artificial neural network application in the prediction of erosion risk with some input parameters through multiple simulations to get good classification results. The model was implemented in Serang Watershed, Kulonprogo, Yogyakarta which is one of the critical potential watersheds in Indonesia. The simulation results showed the number of iterations that gave a significant effect on the accuracy compared to other parameters. A small number of iterations can produce good accuracy if the combination of other parameters was right. In this case, one hidden layer was sufficient to produce good accuracy. The highest training accuracy achieved in this study was 99.32%, occurred in ANN 14 simulation with combination of network input parameters of 1 HL; LR 0.01; M 0.5; RMS 0.0001, and the number of iterations of 15000. The ANN training accuracy was not influenced by the number of channels, namely input dataset (erosion factors) as well as data dimensions, rather it was determined by changes in network parameters.

  14. Toward automatic time-series forecasting using neural networks.

    Science.gov (United States)

    Yan, Weizhong

    2012-07-01

    Over the past few decades, application of artificial neural networks (ANN) to time-series forecasting (TSF) has been growing rapidly due to several unique features of ANN models. However, to date, a consistent ANN performance over different studies has not been achieved. Many factors contribute to the inconsistency in the performance of neural network models. One such factor is that ANN modeling involves determining a large number of design parameters, and the current design practice is essentially heuristic and ad hoc, this does not exploit the full potential of neural networks. Systematic ANN modeling processes and strategies for TSF are, therefore, greatly needed. Motivated by this need, this paper attempts to develop an automatic ANN modeling scheme. It is based on the generalized regression neural network (GRNN), a special type of neural network. By taking advantage of several GRNN properties (i.e., a single design parameter and fast learning) and by incorporating several design strategies (e.g., fusing multiple GRNNs), we have been able to make the proposed modeling scheme to be effective for modeling large-scale business time series. The initial model was entered into the NN3 time-series competition. It was awarded the best prediction on the reduced dataset among approximately 60 different models submitted by scholars worldwide.

  15. Multivariate Analysis and Modeling of Sediment Pollution Using Neural Network Models and Geostatistics

    Science.gov (United States)

    Golay, Jean; Kanevski, Mikhaïl

    2013-04-01

    The present research deals with the exploration and modeling of a complex dataset of 200 measurement points of sediment pollution by heavy metals in Lake Geneva. The fundamental idea was to use multivariate Artificial Neural Networks (ANN) along with geostatistical models and tools in order to improve the accuracy and the interpretability of data modeling. The results obtained with ANN were compared to those of traditional geostatistical algorithms like ordinary (co)kriging and (co)kriging with an external drift. Exploratory data analysis highlighted a great variety of relationships (i.e. linear, non-linear, independence) between the 11 variables of the dataset (i.e. Cadmium, Mercury, Zinc, Copper, Titanium, Chromium, Vanadium and Nickel as well as the spatial coordinates of the measurement points and their depth). Then, exploratory spatial data analysis (i.e. anisotropic variography, local spatial correlations and moving window statistics) was carried out. It was shown that the different phenomena to be modeled were characterized by high spatial anisotropies, complex spatial correlation structures and heteroscedasticity. A feature selection procedure based on General Regression Neural Networks (GRNN) was also applied to create subsets of variables enabling to improve the predictions during the modeling phase. The basic modeling was conducted using a Multilayer Perceptron (MLP) which is a workhorse of ANN. MLP models are robust and highly flexible tools which can incorporate in a nonlinear manner different kind of high-dimensional information. In the present research, the input layer was made of either two (spatial coordinates) or three neurons (when depth as auxiliary information could possibly capture an underlying trend) and the output layer was composed of one (univariate MLP) to eight neurons corresponding to the heavy metals of the dataset (multivariate MLP). MLP models with three input neurons can be referred to as Artificial Neural Networks with EXternal

  16. Brand Marketing Model on Social Networks

    OpenAIRE

    Jolita Jezukevičiūtė; Vida Davidavičienė

    2014-01-01

    The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalys...

  17. Brand marketing model on social networks

    OpenAIRE

    Jezukevičiūtė, Jolita; Davidavičienė, Vida

    2014-01-01

    Paper analyzes the brand and its marketing solutions on social networks. This analysis led to the creation of improved brand marketing model on social networks, which will contribute to the rapid and cheap organization brand recognition, increase competitive advantage and enhance consumer loyalty. Therefore, the brand and a variety of social networks are becoming a hot research area for brand marketing model on social networks. The world‘s most successful brand marketing models exploratory an...

  18. Stability analysis of rubblemound breakwater using ANN

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Rao, S.; Manjunath, Y.R.; Kim, D.H.

    relation is not clear. In more practical terms networks are non-linear modeling tools and they can be used to model complex relationship between input and output system. Earlier applications of neural networks for stability analysis of rubble mound.... WORKING PRINCIPLE OF NEURAL NETWORK The feed forward neural networks have ability to approximate any continuous function or complex phenomena into a simple one. The working of neural network as described below. A feed forward neural network as shown...

  19. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  20. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  1. Dynamic modeling of physical phenomena for PRAs using neural networks

    International Nuclear Information System (INIS)

    Benjamin, A.S.; Brown, N.N.; Paez, T.L.

    1998-04-01

    In most probabilistic risk assessments, there is a set of accident scenarios that involves the physical responses of a system to environmental challenges. Examples include the effects of earthquakes and fires on the operability of a nuclear reactor safety system, the effects of fires and impacts on the safety integrity of a nuclear weapon, and the effects of human intrusions on the transport of radionuclides from an underground waste facility. The physical responses of the system to these challenges can be quite complex, and their evaluation may require the use of detailed computer codes that are very time consuming to execute. Yet, to perform meaningful probabilistic analyses, it is necessary to evaluate the responses for a large number of variations in the input parameters that describe the initial state of the system, the environments to which it is exposed, and the effects of human interaction. Because the uncertainties of the system response may be very large, it may also be necessary to perform these evaluations for various values of modeling parameters that have high uncertainties, such as material stiffnesses, surface emissivities, and ground permeabilities. The authors have been exploring the use of artificial neural networks (ANNs) as a means for estimating the physical responses of complex systems to phenomenological events such as those cited above. These networks are designed as mathematical constructs with adjustable parameters that can be trained so that the results obtained from the networks will simulate the results obtained from the detailed computer codes. The intent is for the networks to provide an adequate simulation of the detailed codes over a significant range of variables while requiring only a small fraction of the computer processing time required by the detailed codes. This enables the authors to integrate the physical response analyses into the probabilistic models in order to estimate the probabilities of various responses

  2. Transient stability enhancement of wind farms connected to a multi-machine power system by using an adaptive ANN-controlled SMES

    International Nuclear Information System (INIS)

    Muyeen, S.M.; Hasanien, Hany M.; Al-Durra, Ahmed

    2014-01-01

    Highlights: • We present an ANN-controlled SMES in this paper. • The objective is to enhance transient stability of WF connected to power system. • The control strategy depends on a PWM VSC and DC–DC converter. • The effectiveness of proposed controller is compared with PI controller. • The validity of the proposed system is verified by simulation results. - Abstract: This paper presents a novel adaptive artificial neural network (ANN)-controlled superconducting magnetic energy storage (SMES) system to enhance the transient stability of wind farms connected to a multi-machine power system during network disturbances. The control strategy of SMES depends mainly on a sinusoidal pulse width modulation (PWM) voltage source converter (VSC) and an adaptive ANN-controlled DC–DC converter using insulated gate bipolar transistors (IGBTs). The effectiveness of the proposed adaptive ANN-controlled SMES is then compared with that of proportional-integral (PI)-controlled SMES optimized by response surface methodology and genetic algorithm (RSM–GA) considering both of symmetrical and unsymmetrical faults. For realistic responses, real wind speed data and two-mass drive train model of wind turbine generator system is considered in the analyses. The validity of the proposed system is verified by the simulation results which are performed using the laboratory standard dynamic power system simulator PSCAD/EMTDC. Notably, the proposed adaptive ANN-controlled SMES enhances the transient stability of wind farms connected to a multi-machine power system

  3. Application of artificial neural network to predict the optimal start time for heating system in building

    International Nuclear Information System (INIS)

    Yang, In-Ho; Yeo, Myoung-Souk; Kim, Kwang-Woo

    2003-01-01

    The artificial neural network (ANN) approach is a generic technique for mapping non-linear relationships between inputs and outputs without knowing the details of these relationships. This paper presents an application of the ANN in a building control system. The objective of this study is to develop an optimized ANN model to determine the optimal start time for a heating system in a building. For this, programs for predicting the room air temperature and the learning of the ANN model based on back propagation learning were developed, and learning data for various building conditions were collected through program simulation for predicting the room air temperature using systems of experimental design. Then, the optimized ANN model was presented through learning of the ANN, and its performance to determine the optimal start time was evaluated

  4. Modelling the performance parameters of a horizontal falling film absorber with aqueous (lithium, potassium, sodium) nitrate solution using artificial neural networks

    International Nuclear Information System (INIS)

    Álvarez, María E.; Hernández, José A.; Bourouis, Mahmoud

    2016-01-01

    An ANN (artificial neural network) model was developed to determine the efficiency parameters of a horizontal falling film absorber at operating conditions of interest for absorption cooling systems. The aqueous nitrate solution LiNO_3 + KNO_3 + NaNO_3 with salt mass percentages of 53%, 28% and 19%, respectively, was used as a working fluid. The authors created the ANN from the database they had compiled with the results of experiments that they had performed in a set-up designed and built for this purpose. The ANN structure consisted of 6 input variables: inlet solution and cooling water temperatures, cooling water and solution mass flow rates, absorber pressure and inlet solution concentration; 4 output variables which facilitated the assessment of the performance of the absorber: heat and mass transfer coefficients, absorption mass flux and the degree of subcooling of the solution leaving the absorber. The hidden layer contained 9 neurons which were determined by training and test procedures. The results showed that the deviation between the experimental data and the estimated values was well adjusted. This indicated that the ANN model was an effective tool for predicting the efficiency parameters of the absorber. The solution flow rate was also observed to be the most significant operating variable which affected the performance of the absorber. - Highlights: • An ANN was developed to predict the efficiency parameters of a falling film absorber. • The ANN was created using a database corresponding to a triple-effect absorption chiller. • The ANN predicts the efficiency parameters of falling film absorbers with r"2 > 0.95. • The solution flow rate is the variable that most affects the performance of the absorber.

  5. Use of Artificial Neural Network Models to Predict Indicator Organism Concentrations in an Urban Watershed

    Science.gov (United States)

    Mas, D. M.; Ahlfeld, D. P.

    2004-05-01

    Forecasting stream water quality is important for numerous aspects of resource protection and management. Fecal coliform and enteroccocus are primary indicator organisms used to assess potential pathogen contamination. Consequently, modeling the occurrence and concentration of fecal coliform and enterococcus is an important tool in watershed management. In addition, analyzing the relationship between model input and predicted indicator organisms is useful for elucidating possible sources of contamination and mechanisms of transport. While many process-based, statistical, and empirical models exist for water quality prediction, artificial neural network (ANN) models are increasingly being used for forecasting of water resources variables because ANNs are often capable of modeling complex systems for which behavioral rules are either unknown or difficult to simulate. The performance of ANNs compared to more established modeling approaches such as multiple linear regression (MLR) remains an importance research question. Data collected the U.S. Geological Survey in the lower Charles River in Massachusetts, USA in 1999-2000 was examined to determine correlation between various water quality constituents and indicator organisms and to explore the relationship between rainfall characteristics and indicator organism concentrations. Using the results of the statistical analysis to guide the selection of explanatory variables, MLR was performed to develop predictive equations for wet weather and dry weather conditions. The results show that the best-performing predictor variables are generally consistent for both indicator organisms considered. In addition, the regression equations show increasing indicator organism concentrations as a function of suspended sediment concentrations and length of time since last precipitation event, suggesting accumulation and wash off as a key mechanism of pathogen transport under wet weather conditions. This research also presents the

  6. Neural Network Modeling for the Extraction of Rare Earth Elements from Eudialyte Concentrate by Dry Digestion and Leaching

    Directory of Open Access Journals (Sweden)

    Yiqian Ma

    2018-04-01

    Full Text Available Eudialyte is a promising mineral for rare earth elements (REE extraction due to its good solubility in acid, low radioactive, and relatively high content of REE. In this paper, a two stage hydrometallurgical treatment of eudialyte concentrate was studied: dry digestion with hydrochloric acid and leaching with water. The hydrochloric acid for dry digestion to eudialyte concentrate ratio, mass of water for leaching to mass of eudialyte concentrate ratio, leaching temperature and leaching time as the predictor variables, and the total rare earth elements (TREE extraction efficiency as the response were considered. After experimental work in laboratory conditions, according to design of experiment theory (DoE, the modeling process was performed using Multiple Linear Regression (MLR, Stepwise Regression (SWR, and Artificial Neural Network (ANN. The ANN model of REE extraction was adopted. Additional tests showed that values predicted by the neural network model were in very good agreement with the experimental results. Finally, the experiments were performed on a scaled up system under optimal conditions that were predicted by the adopted ANN model. Results at the scale-up plant confirmed the results that were obtained in the laboratory.

  7. Perbandingan Metode ANN-PSO Dan ANN-GA Dalam Pemodelan Komposisi Pakan Kambing Peranakan Etawa (PE Untuk Optimasi Kandungan Gizi

    Directory of Open Access Journals (Sweden)

    Canny Amerilyse Caesar

    2016-09-01

    Abstract Milk is one of the animal protein sources which it contains all of the substances needed by human body. The main milk producer cattle in Indonesia is dairy cow, however its milk production has not fulfilled the society needs. The alternative is the goat, the Etawa crossbreed (PE. The high quality of milk nutrients content is greatly influenced by some factors one of them, is the food factor. The PE goat livestock division of the UPT Cattle Breeding and the Cattle Food Greenery in Singosari-Malang still faces the problem, it is the low ability in giving the food composition for PE goat. This flaw affects the quality of the produced milk. It needs the artificial science of the milk nutrients contain in order to determine the food composition to produce premium milk with the optimum nutrients contain. The writer uses the method of the Artificial Neural Network (ANN and the Particle Swarm Optimization (PSO to make the modeling of goat food in optimizing the content of goat milk nutrients. In the analysis of the examination that is done with the case of 36 kg goat weight, also the food type used is the 70 % Odot grass and 30% Raja grass can increase the nutrients contain of the protein milk for 0.707% and decrease the fat nutrients contain for 0.879%. If uses the method of Artificial Neural Network (ANN and Genethic Algorithm (GA can increase the nutriens contain of the protein for 0.0852% and decrease the fat nutients contain for 2.3254%.   Key Words : Goat Milk, Optimization, Artificial Neural Network (ANN, Particle Swarm Optimization (PSO, Genetic Algorithm (GA, the food nutrients contain.

  8. Anne-Ly Võlli: Iga inimene ja asutus vajab omamoodi lähenemist / Anne-Ly Võlli ; intervjueerinud Jaanika Kressa

    Index Scriptorium Estoniae

    Võlli, Anne-Ly, 1976-

    2009-01-01

    MTÜ Jõgevamaa Omavalitsuste Aktiviseerimiskeskus kinnitas avaliku konkursi tulemusel juhatuse liikmeks Anne-Ly Võlli, kelle ülesandeks on keskuse tegevuse juhtimine ja koostöö arendamine partneromavalitsuste ja teiste koostööpartnerite vahel

  9. Modeling mechanical properties of cast aluminum alloy using artificial neural network

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.

    2009-01-01

    Modeling is widely used to investigate the mechanical properties of engineering materials due to increasing demand of low cost and high strength to weight ratio for many engineering applications. The aluminum casting alloys are cost competitive material and possess the desired properties. The mechanical properties largely depend upon composition of alloys and their processing method. Alloy design involves controlling mechanical properties via optimization of the composition and processing parameters. For optimization the possible root is empirical modeling and its more refined version is the analysis of the wide range of data using ANN (Artificial Neural Networks) modeling. The modeling of mechanical properties of the aluminum alloys are the main objective of present work. For this purpose, some data were collected and experimentally prepared using conventional casting method. A MLP (Multilayer Perceptron) network was developed, which is trained by using the error back propagation algorithm. (author)

  10. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  11. Performance measurement of plate fin heat exchanger by exploration: ANN, ANFIS, GA, and SA

    Directory of Open Access Journals (Sweden)

    A.K. Gupta

    2017-01-01

    Full Text Available An experimental work is conducted on counter flow plate fin compact heat exchanger using offset strip fin under different mass flow rates. The training, testing, and validation set of data has been collected by conducting experiments. Next, artificial neural network merged with Genetic Algorithm (GA utilized to measure the performance of plate-fin compact heat exchanger. The main aim of present research is to measure the performance of plate-fin compact heat exchanger and to provide full explanations. An artificial neural network predicted simulated data, which verified with experimental data under 10–20% error. Then, the authors examined two well-known global search techniques, simulated annealing and the genetic algorithm. The proposed genetic algorithm and Simulated Annealing (SA results have been summarized. The parameters are impartially important for good results. With the emergence of a new data-driven modeling technique, Neuro-fuzzy based systems are established in academic and practical applications. The neuro-fuzzy interference system (ANFIS has also been examined to undertake the problem related to plate-fin heat exchanger performance measurement under various parameters. Moreover, Parallel with ANFIS model and Artificial Neural Network (ANN model has been created with emphasizing the accuracy of the different techniques. A wide range of statistical indicators used to assess the performance of the models. Based on the comparison, it was revealed that technical ANFIS improve the accuracy of estimates in the small pool and tropical ANN.

  12. LFC based adaptive PID controller using ANN and ANFIS techniques

    Directory of Open Access Journals (Sweden)

    Mohamed I. Mosaad

    2014-12-01

    Full Text Available This paper presents an adaptive PID Load Frequency Control (LFC for power systems using Neuro-Fuzzy Inference Systems (ANFIS and Artificial Neural Networks (ANN oriented by Genetic Algorithm (GA. PID controller parameters are tuned off-line by using GA to minimize integral error square over a wide-range of load variations. The values of PID controller parameters obtained from GA are used to train both ANFIS and ANN. Therefore, the two proposed techniques could, online, tune the PID controller parameters for optimal response at any other load point within the operating range. Testing of the developed techniques shows that the adaptive PID-LFC could preserve optimal performance over the whole loading range. Results signify superiority of ANFIS over ANN in terms of performance measures.

  13. Neural network modelling of antifungal activity of a series of oxazole derivatives based on in silico pharmacokinetic parameters

    Directory of Open Access Journals (Sweden)

    Kovačević Strahinja Z.

    2013-01-01

    Full Text Available In the present paper, the antifungal activity of a series of benzoxazole and oxazolo[ 4,5-b]pyridine derivatives was evaluated against Candida albicans by using quantitative structure-activity relationships chemometric methodology with artificial neural network (ANN regression approach. In vitro antifungal activity of the tested compounds was presented by minimum inhibitory concentration expressed as log(1/cMIC. In silico pharmacokinetic parameters related to absorption, distribution, metabolism and excretion (ADME were calculated for all studied compounds by using PreADMET software. A feedforward back-propagation ANN with gradient descent learning algorithm was applied for modelling of the relationship between ADME descriptors (blood-brain barrier penetration, plasma protein binding, Madin-Darby cell permeability and Caco-2 cell permeability and experimental log(1/cMIC values. A 4-6-1 ANN was developed with the optimum momentum and learning rates of 0.3 and 0.05, respectively. An excellent correlation between experimental antifungal activity and values predicted by the ANN was obtained with a correlation coefficient of 0.9536. [Projekat Ministarstva nauke Republike Srbije, br. 172012 i br. 172014

  14. Design and optimization of Artificial Neural Networks for the modelling of superconducting magnets operation in tokamak fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Froio, A.; Bonifetto, R.; Carli, S.; Quartararo, A.; Savoldi, L., E-mail: laura.savoldi@polito.it; Zanino, R.

    2016-09-15

    In superconducting tokamaks, the cryoplant provides the helium needed to cool different clients, among which by far the most important one is the superconducting magnet system. The evaluation of the transient heat load from the magnets to the cryoplant is fundamental for the design of the latter and the assessment of suitable strategies to smooth the heat load pulses, induced by the intrinsically pulsed plasma scenarios characteristic of today's tokamaks, is crucial for both suitable sizing and stable operation of the cryoplant. For that evaluation, accurate but expensive system-level models, as implemented in e.g. the validated state-of-the-art 4C code, were developed in the past, including both the magnets and the respective external cryogenic cooling circuits. Here we show how these models can be successfully substituted with cheaper ones, where the magnets are described by suitably trained Artificial Neural Networks (ANNs) for the evaluation of the heat load to the cryoplant. First, two simplified thermal-hydraulic models for an ITER Toroidal Field (TF) magnet and for the ITER Central Solenoid (CS) are developed, based on ANNs, and a detailed analysis of the chosen networks' topology and parameters is presented and discussed. The ANNs are then inserted into the 4C model of the ITER TF and CS cooling circuits, which also includes active controls to achieve a smoothing of the variation of the heat load to the cryoplant. The training of the ANNs is achieved using the results of full 4C simulations (including detailed models of the magnets) for conventional sigmoid-like waveforms of the drivers and the predictive capabilities of the ANN-based models in the case of actual ITER operating scenarios are demonstrated by comparison with the results of full 4C runs, both with and without active smoothing, in terms of both accuracy and computational time. Exploiting the low computational effort requested by the ANN-based models, a demonstrative optimization study

  15. Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors.

    Science.gov (United States)

    Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Riera-Fernández, Pablo; López-Díaz, Antonio; Pazos, Alejandro; González-Díaz, Humberto

    2014-01-27

    (k)(i) values were used as inputs for different ANNs in order to discriminate correct node connectivity patterns from incorrect random patterns. The MIANN models obtained present good values of Sensitivity/Specificity (%): MRNs (78/78), IWDBNs (90/88), and SFLN (86/84). These preliminary results are very promising from the point of view of a first exploratory study and suggest that the use of these models could be extended to the high-throughput re-evaluation of connectivity in known complex networks (collation).

  16. Spinal Cord Injury Model System Information Network

    Science.gov (United States)

    ... the UAB-SCIMS More The UAB-SCIMS Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network as a resource to promote knowledge in the ...

  17. Eight challenges for network epidemic models

    Directory of Open Access Journals (Sweden)

    Lorenzo Pellis

    2015-03-01

    Full Text Available Networks offer a fertile framework for studying the spread of infection in human and animal populations. However, owing to the inherent high-dimensionality of networks themselves, modelling transmission through networks is mathematically and computationally challenging. Even the simplest network epidemic models present unanswered questions. Attempts to improve the practical usefulness of network models by including realistic features of contact networks and of host–pathogen biology (e.g. waning immunity have made some progress, but robust analytical results remain scarce. A more general theory is needed to understand the impact of network structure on the dynamics and control of infection. Here we identify a set of challenges that provide scope for active research in the field of network epidemic models.

  18. Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles.

    Science.gov (United States)

    Bisgin, Halil; Bera, Tanmay; Ding, Hongjian; Semey, Howard G; Wu, Leihong; Liu, Zhichao; Barnes, Amy E; Langley, Darryl A; Pava-Ripoll, Monica; Vyas, Himansu J; Tong, Weida; Xu, Joshua

    2018-04-25

    Insect pests, such as pantry beetles, are often associated with food contaminations and public health risks. Machine learning has the potential to provide a more accurate and efficient solution in detecting their presence in food products, which is currently done manually. In our previous research, we demonstrated such feasibility where Artificial Neural Network (ANN) based pattern recognition techniques could be implemented for species identification in the context of food safety. In this study, we present a Support Vector Machine (SVM) model which improved the average accuracy up to 85%. Contrary to this, the ANN method yielded ~80% accuracy after extensive parameter optimization. Both methods showed excellent genus level identification, but SVM showed slightly better accuracy  for most species. Highly accurate species level identification remains a challenge, especially in distinguishing between species from the same genus which may require improvements in both imaging and machine learning techniques. In summary, our work does illustrate a new SVM based technique and provides a good comparison with the ANN model in our context. We believe such insights will pave better way forward for the application of machine learning towards species identification and food safety.

  19. ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining

    Science.gov (United States)

    Chandrasekaran, Muthumari; Tamang, Santosh

    2017-08-01

    Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.

  20. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators.

    Science.gov (United States)

    You, Haihui; Ma, Zengyi; Tang, Yijun; Wang, Yuelan; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa; Huang, Qunxing

    2017-10-01

    The heating values, particularly lower heating values of burning municipal solid waste are critically important parameters in operating circulating fluidized bed incineration systems. However, the heating values change widely and frequently, while there is no reliable real-time instrument to measure heating values in the process of incinerating municipal solid waste. A rapid, cost-effective, and comparative methodology was proposed to evaluate the heating values of burning MSW online based on prior knowledge, expert experience, and data-mining techniques. First, selecting the input variables of the model by analyzing the operational mechanism of circulating fluidized bed incinerators, and the corresponding heating value was classified into one of nine fuzzy expressions according to expert advice. Development of prediction models by employing four different nonlinear models was undertaken, including a multilayer perceptron neural network, a support vector machine, an adaptive neuro-fuzzy inference system, and a random forest; a series of optimization schemes were implemented simultaneously in order to improve the performance of each model. Finally, a comprehensive comparison study was carried out to evaluate the performance of the models. Results indicate that the adaptive neuro-fuzzy inference system model outperforms the other three models, with the random forest model performing second-best, and the multilayer perceptron model performing at the worst level. A model with sufficient accuracy would contribute adequately to the control of circulating fluidized bed incinerator operation and provide reliable heating value signals for an automatic combustion control system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modeling of the height control system using artificial neural networks

    Directory of Open Access Journals (Sweden)

    A. R Tahavvor

    2016-09-01

    Full Text Available Introduction Automation of agricultural and machinery construction has generally been enhanced by intelligent control systems due to utility and efficiency rising, ease of use, profitability and upgrading according to market demand. A broad variety of industrial merchandise are now supplied with computerized control systems of earth moving processes to be performed by construction and agriculture field vehicle such as grader, backhoe, tractor and scraper machines. A height control machine which is used in measuring base thickness is consisted of two mechanical and electronic parts. The mechanical part is consisted of conveyor belt, main body, electrical engine and invertors while the electronic part is consisted of ultrasonic, wave transmitter and receiver sensor, electronic board, control set, and microcontroller. The main job of these controlling devices consists of the topographic surveying, cutting and filling of elevated and spotted low area, and these actions fundamentally dependent onthe machine's ability in elevation and thickness measurement and control. In this study, machine was first tested and then some experiments were conducted for data collection. Study of system modeling in artificial neural networks (ANN was done for measuring, controlling the height for bases by input variable input vectors such as sampling time, probe speed, conveyer speed, sound wave speed and speed sensor are finally the maximum and minimum probe output vector on various conditions. The result reveals the capability of this procedure for experimental recognition of sensors' behavior and improvement of field machine control systems. Inspection, calibration and response, diagnosis of the elevation control system in combination with machine function can also be evaluated by some extra development of this system. Materials and Methods Designing and manufacture of the planned apparatus classified in three dissimilar, mechanical and electronic module, courses of

  2. Selection in sugarcane families with artificial neural networks

    Directory of Open Access Journals (Sweden)

    Bruno Portela Brasileiro

    2015-04-01

    Full Text Available The objective of this study was to evaluate Artificial Neural Networks (ANN applied in an selection process within sugarcane families. The best ANN model produced no mistake, but was able to classify all genotypes correctly, i.e., the network made the same selective choice as the breeder during the simulation individual best linear unbiased predictor (BLUPIS, demonstrating the ability of the ANN to learn from the inputs and outputs provided in the training and validation phases. Since the ANN-based selection facilitates the identification of the best plants and the development of a new selection strategy in the best families, to ensure that the best genotypes of the population are evaluated in the following stages of the breeding program, we recommend to rank families by BLUP, followed by selection of the best families and finally, select the seedlings by ANN, from information at the individual level in the best families.

  3. Annely Peebo kutsus presidendi kontserdile / Maria Ulfsak

    Index Scriptorium Estoniae

    Ulfsak, Maria, 1981-

    2003-01-01

    Laulja Anneli Peebo kohtus president Arnold Rüütliga, et anda üle kutse Andrea Bocelli ja Annely Peebo ühiskontserdile. Vt. samas: Andrea Bocelli ja Annely Peebo kontsert Tallinna lauluväljakul 23. augustil; Andrea Bocelli

  4. Entropy Characterization of Random Network Models

    Directory of Open Access Journals (Sweden)

    Pedro J. Zufiria

    2017-06-01

    Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.

  5. The model of social crypto-network

    Directory of Open Access Journals (Sweden)

    Марк Миколайович Орел

    2015-06-01

    Full Text Available The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks

  6. Introducing Synchronisation in Deterministic Network Models

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.

    2006-01-01

    The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading...... to the suggestion of suitable network models. An existing model for flow control is presented and an inherent weakness is revealed and remedied. Examples are given and numerically analysed through deterministic network modelling. Results are presented to highlight the properties of the suggested models...

  7. Ethanol production from steam exploded rapeseed straw and the process simulation using artificial neural networks

    DEFF Research Database (Denmark)

    Talebnia, Farid; Mighani, Moein; Rahimnejad, Mostafa

    2015-01-01

    and 67% of maximum theoretical value. Next, data of the experimental runs were exploited for modeling the processes by artificial neural networks (ANNs) and performance of the developed models was evaluated. The ANN-based models showed a great potential for time-course prediction of the studied processes....... Efficiency of the joint network for simulating the whole process was also determined and promising results were obtained....

  8. Artificial neural network modelling for organic and total nitrogen removal of aerobic granulation under steady-state condition.

    Science.gov (United States)

    Gong, H; Pishgar, R; Tay, J H

    2018-04-27

    Aerobic granulation is a recent technology with high level of complexity and sensitivity to environmental and operational conditions. Artificial neural networks (ANNs), computational tools capable of describing complex non-linear systems, are the best fit to simulate aerobic granular bioreactors. In this study, two feedforward backpropagation ANN models were developed to predict chemical oxygen demand (Model I) and total nitrogen removal efficiencies (Model II) of aerobic granulation technology under steady-state condition. Fundamentals of ANN models and the steps to create them were briefly reviewed. The models were respectively fed with 205 and 136 data points collected from laboratory-, pilot-, and full-scale studies on aerobic granulation technology reported in the literature. Initially, 60%, 20%, and 20%, and 80%, 10%, and 10% of the points in the corresponding datasets were randomly chosen and used for training, testing, and validation of Model I, and Model II, respectively. Overall coefficient of determination (R 2 ) value and mean squared error (MSE) of the two models were initially 0.49 and 15.5, and 0.37 and 408, respectively. To improve the model performance, two data division methods were used. While one method is generic and potentially applicable to other fields, the other can only be applied to modelling the performance of aerobic granular reactors. R 2 value and MSE were improved to 0.90 and 2.54, and 0.81 and 121.56, respectively, after applying the new data division methods. The results demonstrated that ANN-based models were capable simulation approach to predict a complicated process like aerobic granulation.

  9. The application of a coupled artificial neural network and fault tree analysis model to predict coal and gas outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Ruilin, Zhang [School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, PR (China); Lowndes, Ian S. [Process and Environmental Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-01

    This paper proposes the use of a coupled fault tree analysis (FTA) and artificial neural network (ANN) model to improve the prediction of the potential risk of coal and gas outburst events during the underground mining of thick and deep Chinese coal seams. The model developed has been used to investigate the gas emission characteristics and the geological conditions that exist within the Huaibei coal mining region, Anhui province, China. The coal seams in this region exhibit a high incidence of coal and gas outbursts. An analysis of the results obtained from an initial application of an FTA model, identified eight dominant model parameters related to the gas content or geological conditions of the coal seams, which characterize the potential risk of in situ coal and gas outbursts. The eight dominant model parameters identified by the FTA method were subsequently used as input variables to an ANN model. The results produced by the ANN model were used to develop a qualitative risk index to characterize the potential risk level of occurrence of coal and gas outburst events. Four different potential risk alarm levels were defined: SAFE, POTENTIAL, HIGH and STRONG. Solutions to the prediction model were obtained using a combination of quantitative and qualitative data including the gas content or gas pressure and the geological and geotechnical conditions of coal seams. The application of this combined solution method identified more explicit and accurate model relationships between the in situ geological conditions and the potential risk of coal and gas outbursts. An analysis of the model solutions concluded that the coupled FTA and ANN model may offer a reliable alternative method to forecast the potential risk of coal and gas outbursts. (author)

  10. Late rectal bleeding after 3D-CRT for prostate cancer: development of a neural-network-based predictive model

    Science.gov (United States)

    Tomatis, S.; Rancati, T.; Fiorino, C.; Vavassori, V.; Fellin, G.; Cagna, E.; Mauro, F. A.; Girelli, G.; Monti, A.; Baccolini, M.; Naldi, G.; Bianchi, C.; Menegotti, L.; Pasquino, M.; Stasi, M.; Valdagni, R.

    2012-03-01

    The aim of this study was to develop a model exploiting artificial neural networks (ANNs) to correlate dosimetric and clinical variables with late rectal bleeding in prostate cancer patients undergoing radical radiotherapy and to compare the ANN results with those of a standard logistic regression (LR) analysis. 718 men included in the AIROPROS 0102 trial were analyzed. This multicenter protocol was characterized by the prospective evaluation of rectal toxicity, with a minimum follow-up of 36 months. Radiotherapy doses were between 70 and 80 Gy. Information was recorded for comorbidity, previous abdominal surgery, use of drugs and hormonal therapy. For each patient, a rectal dose-volume histogram (DVH) of the whole treatment was recorded and the equivalent uniform dose (EUD) evaluated as an effective descriptor of the whole DVH. Late rectal bleeding of grade ≥ 2 was considered to define positive events in this study (52 of 718 patients). The overall population was split into training and verification sets, both of which were involved in model instruction, and a test set, used to evaluate the predictive power of the model with independent data. Fourfold cross-validation was also used to provide realistic results for the full dataset. The LR was performed on the same data. Five variables were selected to predict late rectal bleeding: EUD, abdominal surgery, presence of hemorrhoids, use of anticoagulants and androgen deprivation. Following a receiver operating characteristic analysis of the independent test set, the areas under the curves (AUCs) were 0.704 and 0.655 for ANN and LR, respectively. When evaluated with cross-validation, the AUC was 0.714 for ANN and 0.636 for LR, which differed at a significance level of p = 0.03. When a practical discrimination threshold was selected, ANN could classify data with sensitivity and specificity both equal to 68.0%, whereas these values were 61.5% for LR. These data provide reasonable evidence that results obtained with

  11. Predicting the Impact of Multiwalled Carbon Nanotubes on the Cement Hydration Products and Durability of Cementitious Matrix Using Artificial Neural Network Modeling Technique

    Directory of Open Access Journals (Sweden)

    Babak Fakhim

    2013-01-01

    Full Text Available In this study the feasibility of using the artificial neural networks modeling in predicting the effect of MWCNT on amount of cement hydration products and improving the quality of cement hydration products microstructures of cement paste was investigated. To determine the amount of cement hydration products thermogravimetric analysis was used. Two critical parameters of TGA test are PHPloss and CHloss. In order to model the TGA test results, the ANN modeling was performed on these parameters separately. In this study, 60% of data are used for model calibration and the remaining 40% are used for model verification. Based on the highest efficiency coefficient and the lowest root mean square error, the best ANN model was chosen. The results of TGA test implied that the cement hydration is enhanced in the presence of the optimum percentage (0.3 wt% of MWCNT. Moreover, since the efficiency coefficient of the modeling results of CH and PHP loss in both the calibration and verification stages was more than 0.96, it was concluded that the ANN could be used as an accurate tool for modeling the TGA results. Another finding of this study was that the ANN prediction in higher ages was more precise.

  12. Accurate prediction of the dew points of acidic combustion gases by using an artificial neural network model

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Aminian, Ali

    2011-01-01

    This paper presents a new approach based on using an artificial neural network (ANN) model for predicting the acid dew points of the combustion gases in process and power plants. The most important acidic combustion gases namely, SO 3 , SO 2 , NO 2 , HCl and HBr are considered in this investigation. Proposed Network is trained using the Levenberg-Marquardt back propagation algorithm and the hyperbolic tangent sigmoid activation function is applied to calculate the output values of the neurons of the hidden layer. According to the network's training, validation and testing results, a three layer neural network with nine neurons in the hidden layer is selected as the best architecture for accurate prediction of the acidic combustion gases dew points over wide ranges of acid and moisture concentrations. The proposed neural network model can have significant application in predicting the condensation temperatures of different acid gases to mitigate the corrosion problems in stacks, pollution control devices and energy recovery systems.

  13. Artificial neural network model of pork meat cubes osmotic dehydratation

    Directory of Open Access Journals (Sweden)

    Pezo Lato L.

    2013-01-01

    Full Text Available Mass transfer of pork meat cubes (M. triceps brachii, shaped as 1x1x1 cm, during osmotic dehydration (OD and under atmospheric pressure was investigated in this paper. The effects of different parameters, such as concentration of sugar beet molasses (60-80%, w/w, temperature (20-50ºC, and immersion time (1-5 h in terms of water loss (WL, solid gain (SG, final dry matter content (DM, and water activity (aw, were investigated using experimental results. Five artificial neural network (ANN models were developed for the prediction of WL, SG, DM, and aw in OD of pork meat cubes. These models were able to predict process outputs with coefficient of determination, r2, of 0.990 for SG, 0.985 for WL, 0.986 for aw, and 0.992 for DM compared to experimental measurements. The wide range of processing variables considered for the formulation of these models, and their easy implementation in a spreadsheet calculus make it very useful and practical for process design and control.

  14. Bayesian Network Webserver: a comprehensive tool for biological network modeling.

    Science.gov (United States)

    Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan

    2013-11-01

    The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.

  15. A Novel Multiscale Ensemble Carbon Price Prediction Model Integrating Empirical Mode Decomposition, Genetic Algorithm and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Bangzhu Zhu

    2012-02-01

    Full Text Available Due to the movement and complexity of the carbon market, traditional monoscale forecasting approaches often fail to capture its nonstationary and nonlinear properties and accurately describe its moving tendencies. In this study, a multiscale ensemble forecasting model integrating empirical mode decomposition (EMD, genetic algorithm (GA and artificial neural network (ANN is proposed to forecast carbon price. Firstly, the proposed model uses EMD to decompose carbon price data into several intrinsic mode functions (IMFs and one residue. Then, the IMFs and residue are composed into a high frequency component, a low frequency component and a trend component which have similar frequency characteristics, simple components and strong regularity using the fine-to-coarse reconstruction algorithm. Finally, those three components are predicted using an ANN trained by GA, i.e., a GAANN model, and the final forecasting results can be obtained by the sum of these three forecasting results. For verification and testing, two main carbon future prices with different maturity in the European Climate Exchange (ECX are used to test the effectiveness of the proposed multiscale ensemble forecasting model. Empirical results obtained demonstrate that the proposed multiscale ensemble forecasting model can outperform the single random walk (RW, ARIMA, ANN and GAANN models without EMD preprocessing and the ensemble ARIMA model with EMD preprocessing.

  16. Weather Radar Estimations Feeding an Artificial Neural Network Model Weather Radar Estimations Feeding an Artificial Neural Network Model

    Directory of Open Access Journals (Sweden)

    Dawei Han

    2012-02-01

    Full Text Available The application of ANNs (Artifi cial Neural Networks has been studied by many researchers in modelling rainfall runoff processes. However, the work so far has been focused on the rainfall data from traditional raingauges. Weather radar is a modern technology which could provide high resolution rainfall in time and space. In this study, a comparison in rainfall runoff modelling between the raingauge and weather radar has been carried out. The data were collected from Brue catchment in Southwest of England, with 49 raingauges covering 136 km2 and two C-band weather radars. This raingauge network is extremely dense (for research purposes and does not represent the usual raingauge density in operational flood forecasting systems. The ANN models were set up with both lumped and spatial rainfall input. The results showed that raingauge data outperformed radar data in all the events tested, regardless of the lumped and spatial input. La aplicación de Redes Neuronales Artificiales (RNA en el modelado de lluvia-flujo ha sido estudiada ampliamente. Sin embargo, hasta ahora se han utilizado datos provenientes de pluviómetros tradicionales. Los radares meteorológicos son una tecnología moderna que puede proveer datos de lluvia de alta resolución en tiempo y espacio. Este es un trabajo de comparación en el modelado lluvia-flujo entre pluviómetros y radares meteorológicos. Los datos provienen de la cuenca del río Brue en el suroeste de Inglaterra, con 49 pluviómetros cubriendo 136 km2 y dos radares meteorológicos en la banda C. Esta red de pluviómetros es extremadamente densa (para investigación y no representa la densidad usual en sistemas de predicción de inundaciones. Los modelos de RNA fueron implementados con datos de entrada de lluvia tanto espaciados como no distribuidos. Los resultados muestran que los datos de los pluviómetros fueron mejores que los datos de los radares en todos los eventos probados.

  17. A Modified Feature Selection and Artificial Neural Network-Based Day-Ahead Load Forecasting Model for a Smart Grid

    Directory of Open Access Journals (Sweden)

    Ashfaq Ahmad

    2015-12-01

    Full Text Available In the operation of a smart grid (SG, day-ahead load forecasting (DLF is an important task. The SG can enhance the management of its conventional and renewable resources with a more accurate DLF model. However, DLF model development is highly challenging due to the non-linear characteristics of load time series in SGs. In the literature, DLF models do exist; however, these models trade off between execution time and forecast accuracy. The newly-proposed DLF model will be able to accurately predict the load of the next day with a fair enough execution time. Our proposed model consists of three modules; the data preparation module, feature selection and the forecast module. The first module makes the historical load curve compatible with the feature selection module. The second module removes redundant and irrelevant features from the input data. The third module, which consists of an artificial neural network (ANN, predicts future load on the basis of selected features. Moreover, the forecast module uses a sigmoid function for activation and a multi-variate auto-regressive model for weight updating during the training process. Simulations are conducted in MATLAB to validate the performance of our newly-proposed DLF model in terms of accuracy and execution time. Results show that our proposed modified feature selection and modified ANN (m(FS + ANN-based model for SGs is able to capture the non-linearity(ies in the history load curve with 97 . 11 % accuracy. Moreover, this accuracy is achieved at the cost of a fair enough execution time, i.e., we have decreased the average execution time of the existing FS + ANN-based model by 38 . 50 % .

  18. Applications of artificial neural networks in medical science.

    Science.gov (United States)

    Patel, Jigneshkumar L; Goyal, Ramesh K

    2007-09-01

    Computer technology has been advanced tremendously and the interest has been increased for the potential use of 'Artificial Intelligence (AI)' in medicine and biological research. One of the most interesting and extensively studied branches of AI is the 'Artificial Neural Networks (ANNs)'. Basically, ANNs are the mathematical algorithms, generated by computers. ANNs learn from standard data and capture the knowledge contained in the data. Trained ANNs approach the functionality of small biological neural cluster in a very fundamental manner. They are the digitized model of biological brain and can detect complex nonlinear relationships between dependent as well as independent variables in a data where human brain may fail to detect. Nowadays, ANNs are widely used for medical applications in various disciplines of medicine especially in cardiology. ANNs have been extensively applied in diagnosis, electronic signal analysis, medical image analysis and radiology. ANNs have been used by many authors for modeling in medicine and clinical research. Applications of ANNs are increasing in pharmacoepidemiology and medical data mining. In this paper, authors have summarized various applications of ANNs in medical science.

  19. Modeling the Effect of Crude Oil Impacted Sand on the Properties of Concrete Using Artificial Neural Networks

    OpenAIRE

    W. O. Ajagbe; A. A. Ganiyu; M. O. Owoyele; J. O. Labiran

    2013-01-01

    A network of the feedforward-type artificial neural networks (ANNs) was used to predict the compressive strength of concrete made from crude oil contaminated soil samples at 3, 7, 14, 28, 56, 84, and 168 days at different degrees of contamination of 2.5%, 5%, 10%, 15%, 20% and 25%. A total of 49 samples were used in the training, testing, and prediction phase of the modeling in the ratio 32 : 11 : 7. The TANH activation function was used and the maximum number of iterations was limited to 20,...

  20. Neural network modelling of rainfall interception in four different forest stands

    Directory of Open Access Journals (Sweden)

    İbrahim Yurtseven

    2013-11-01

    Full Text Available The objective of this study is to reveal whether it is possible to predict rainfall, through fall and stem flow in forest ecosystems with less effort, using several measurements of rainfall interception (hereafter ‘interception’ and an artificial neural network based linear regression model (ANN model. To this end, the Kerpe Research Forest in the province of Kocaeli, which houses stands of mixed deciduous-broadleaf forest (Castanea sativa Mill., Fagusorientalis Lipsky, Quercus spp., black pine (Pinus nigra Arnold, maritime pine (Pinus pinaster Aiton and Monterey pine (Pinus radiata D. Don, was selected study site. Four different forest stands were observed for a period of two years, during which rainfall, throughfall and stemflow measurements were conducted. These measurements were separately calculated for each individual stand, based on interception values and the use of stemflow data in strict accordance with the rainfall data, and the measured throughfall interceptionvalues were compared with values estimated by the ANN model.In this comparison, 70% of the total data was used for testing, and 30% was used for estimation and performance evaluation. No significant differences were found between values predicted with the help of the model and the measured values. In other words, interception values predicted by the ANN models were parallel with the measured values. In this study, the most success was achieved with the models of the Monterey pine stand (r2 = 0.9968; Mean Squared Error MSE = 0.16 and the mixed deciduous forest stand (r2 = 0.9964; MSE = 0.08, followed by models of the maritime pine stand (r2 = 0.9405; MSE = 1.27 and the black pine stand (r2 = 0.843, MSE = 17.36.

  1. Neural network modelling of rainfall interception in four different forest stands

    Directory of Open Access Journals (Sweden)

    Ibrahim Yurtseven

    2013-12-01

    Full Text Available The objective of this study is to reveal whether it is possible to predict rainfall, throughfall and stemflow in forest ecosystems with less effort, using several measurements of rainfall interception (hereafter ‘interception’ and an artificial neural network based linear regression model (ANN model. To this end, the Kerpe Research Forest in the province of Kocaeli, which houses stands of mixed deciduous-broadleaf forest (Castanea sativa Mill., Fagus orientalis Lipsky, Quercus spp., black pine (Pinus nigra Arnold, maritime pine (Pinus pinaster Aiton and Monterey pine (Pinus radiata D. Don, was selected study site. Four different forest stands were observed for a period of two years, during which rainfall, throughfall and stemflow measurements were conducted. These measurements were separately calculated for each individual stand, based on interception values and the use of stemflow data in strict accordance with the rainfall data, and the measured throughfall interception values were compared with values estimated by the ANN model. In this comparison, 70% of the total data was used for testing, and 30% was used for estimation and performance evaluation. No significant differences were found between values predicted with the help of the model and the measured values. In other words, interception values predicted by the ANN models were parallel with the measured values. In this study, the most success was achieved with the models of the Monterey pine stand (r2 = 0.9968; Mean Squared Error MSE = 0.16 and the mixed deciduous forest stand (r2 = 0.9964; MSE = 0.08, followed by models of the maritime pine stand (r2 = 0.9405; MSE = 1.27 and the black pine stand (r2 = 0.843, MSE = 17.36.

  2. Mathematical model for dissolved oxygen prediction in Cirata ...

    African Journals Online (AJOL)

    This paper presents the implementation and performance of mathematical model to predict theconcentration of dissolved oxygen in Cirata Reservoir, West Java by using Artificial Neural Network (ANN). The simulation program was created using Visual Studio 2012 C# software with ANN model implemented in it. Prediction ...

  3. Prediction of pelvic organ prolapse using an artificial neural network.

    Science.gov (United States)

    Robinson, Christopher J; Swift, Steven; Johnson, Donna D; Almeida, Jonas S

    2008-08-01

    The objective of this investigation was to test the ability of a feedforward artificial neural network (ANN) to differentiate patients who have pelvic organ prolapse (POP) from those who retain good pelvic organ support. Following institutional review board approval, patients with POP (n = 87) and controls with good pelvic organ support (n = 368) were identified from the urogynecology research database. Historical and clinical information was extracted from the database. Data analysis included the training of a feedforward ANN, variable selection, and external validation of the model with an independent data set. Twenty variables were used. The median-performing ANN model used a median of 3 (quartile 1:3 to quartile 3:5) variables and achieved an area under the receiver operator curve of 0.90 (external, independent validation set). Ninety percent sensitivity and 83% specificity were obtained in the external validation by ANN classification. Feedforward ANN modeling is applicable to the identification and prediction of POP.

  4. Estimating SPT-N Value Based on Soil Resistivity using Hybrid ANN-PSO Algorithm

    Science.gov (United States)

    Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd

    2018-04-01

    Standard Penetration Resistance (N value) is used in many empirical geotechnical engineering formulas. Meanwhile, soil resistivity is a measure of soil’s resistance to electrical flow. For a particular site, usually, only a limited N value data are available. In contrast, resistivity data can be obtained extensively. Moreover, previous studies showed evidence of a correlation between N value and resistivity value. Yet, no existing method is able to interpret resistivity data for estimation of N value. Thus, the aim is to develop a method for estimating N-value using resistivity data. This study proposes a hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) method to estimate N value using resistivity data. Five different ANN-PSO models based on five boreholes were developed and analyzed. The performance metrics used were the coefficient of determination, R2 and mean absolute error, MAE. Analysis of result found that this method can estimate N value (R2 best=0.85 and MAEbest=0.54) given that the constraint, Δ {\\bar{l}}ref, is satisfied. The results suggest that ANN-PSO method can be used to estimate N value with good accuracy.

  5. A comparative study of generalized linear mixed modelling and artificial neural network approach for the joint modelling of survival and incidence of Dengue patients in Sri Lanka

    Science.gov (United States)

    Hapugoda, J. C.; Sooriyarachchi, M. R.

    2017-09-01

    Survival time of patients with a disease and the incidence of that particular disease (count) is frequently observed in medical studies with the data of a clustered nature. In many cases, though, the survival times and the count can be correlated in a way that, diseases that occur rarely could have shorter survival times or vice versa. Due to this fact, joint modelling of these two variables will provide interesting and certainly improved results than modelling these separately. Authors have previously proposed a methodology using Generalized Linear Mixed Models (GLMM) by joining the Discrete Time Hazard model with the Poisson Regression model to jointly model survival and count model. As Aritificial Neural Network (ANN) has become a most powerful computational tool to model complex non-linear systems, it was proposed to develop a new joint model of survival and count of Dengue patients of Sri Lanka by using that approach. Thus, the objective of this study is to develop a model using ANN approach and compare the results with the previously developed GLMM model. As the response variables are continuous in nature, Generalized Regression Neural Network (GRNN) approach was adopted to model the data. To compare the model fit, measures such as root mean square error (RMSE), absolute mean error (AME) and correlation coefficient (R) were used. The measures indicate the GRNN model fits the data better than the GLMM model.

  6. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks | Center for Cancer Research

    Science.gov (United States)

    The purpose of this study was to develop a method of classifying cancers to specific diagnostic categories based on their gene expression signatures using artificial neural networks (ANNs). We trained the ANNs using the small, round blue-cell tumors (SRBCTs) as a model. These cancers belong to four distinct diagnostic categories and often present diagnostic dilemmas in

  7. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  8. Model checking mobile ad hoc networks

    NARCIS (Netherlands)

    Ghassemi, Fatemeh; Fokkink, Wan

    2016-01-01

    Modeling arbitrary connectivity changes within mobile ad hoc networks (MANETs) makes application of automated formal verification challenging. We use constrained labeled transition systems as a semantic model to represent mobility. To model check MANET protocols with respect to the underlying

  9. Implementing artificial neural networks in nuclear power plants diagnostic systems: issues and challenges

    International Nuclear Information System (INIS)

    Boger, Z.

    1998-01-01

    A recent review of artificial intelligence applications in nuclear power plants (NPP) diagnostics and fault detection finds that mostly expert systems (ES) and artificial neural networks (ANN) techniques were researched and proposed, but the number of actual implementations in NPP diagnostics systems is very small. It lists the perceived obstacles to the ANN-based system acceptance and implementation. This paper analyses this list. Some of ANN limitations relate to 'quantitative' difficulties of designing and training large-scale ANNs. The availability of an efficient large-scale ANN training algorithm may alleviate most of these concerns. Other perceived drawbacks refer to the 'qualitative' aspects of ANN acceptance - how and when can we rely on the quality of the advice given by the ANN model. Several techniques are available that help to brighten the 'black box' image of the ANN. Analysis of the trained ANN can identify the significant inputs. Calculation of the Causal Indices may reveal the magnitude and sign of the influence of each input on each output. Both these techniques increase the confidence of the users when they conform to known knowledge, or point to plausible relationships. Analysis of the behavior of the neurons in the hidden layer can identify false ANN classification when presented with noisy or corrupt data. Auto-associative NN can identify faulty sensors or data. Two examples of the ANN capabilities as possible diagnostic tools are given, using NPP data, one classifying internal reactor disturbances by neutron noise spectra analysis, the other identifying the faults causes of several transients. To use these techniques the ANN developers need large amount of training data of as many transients as possible. Such data is routinely generated in NPP simulators during the periodic qualification of NPP operators. The IAEA can help by encouraging the saving and distributing the transient data to developers of ANN diagnostic system, to serve as

  10. ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs

    Directory of Open Access Journals (Sweden)

    Adel Taha Abbas

    2018-05-01

    Full Text Available Magnesium alloys are widely used in aerospace vehicles and modern cars, due to their rapid machinability at high cutting speeds. A novel Edgeworth–Pareto optimization of an artificial neural network (ANN is presented in this paper for surface roughness (Ra prediction of one component in computer numerical control (CNC turning over minimal machining time (Tm and at prime machining costs (C. An ANN is built in the Matlab programming environment, based on a 4-12-3 multi-layer perceptron (MLP, to predict Ra, Tm, and C, in relation to cutting speed, vc, depth of cut, ap, and feed per revolution, fr. For the first time, a profile of an AZ61 alloy workpiece after finish turning is constructed using an ANN for the range of experimental values vc, ap, and fr. The global minimum length of a three-dimensional estimation vector was defined with the following coordinates: Ra = 0.087 μm, Tm = 0.358 min/cm3, C = $8.2973. Likewise, the corresponding finish-turning parameters were also estimated: cutting speed vc = 250 m/min, cutting depth ap = 1.0 mm, and feed per revolution fr = 0.08 mm/rev. The ANN model achieved a reliable prediction accuracy of ±1.35% for surface roughness.

  11. ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs.

    Science.gov (United States)

    Abbas, Adel Taha; Pimenov, Danil Yurievich; Erdakov, Ivan Nikolaevich; Taha, Mohamed Adel; Soliman, Mahmoud Sayed; El Rayes, Magdy Mostafa

    2018-05-16

    Magnesium alloys are widely used in aerospace vehicles and modern cars, due to their rapid machinability at high cutting speeds. A novel Edgeworth⁻Pareto optimization of an artificial neural network (ANN) is presented in this paper for surface roughness ( Ra ) prediction of one component in computer numerical control (CNC) turning over minimal machining time ( T m ) and at prime machining costs ( C ). An ANN is built in the Matlab programming environment, based on a 4-12-3 multi-layer perceptron (MLP), to predict Ra , T m , and C , in relation to cutting speed, v c , depth of cut, a p , and feed per revolution, f r . For the first time, a profile of an AZ61 alloy workpiece after finish turning is constructed using an ANN for the range of experimental values v c , a p , and f r . The global minimum length of a three-dimensional estimation vector was defined with the following coordinates: Ra = 0.087 μm, T m = 0.358 min/cm³, C = $8.2973. Likewise, the corresponding finish-turning parameters were also estimated: cutting speed v c = 250 m/min, cutting depth a p = 1.0 mm, and feed per revolution f r = 0.08 mm/rev. The ANN model achieved a reliable prediction accuracy of ±1.35% for surface roughness.

  12. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  13. Spatial Disaggregation of Areal Rainfall Using Two Different Artificial Neural Networks Models

    Directory of Open Access Journals (Sweden)

    Sungwon Kim

    2015-06-01

    Full Text Available The objective of this study is to develop artificial neural network (ANN models, including multilayer perceptron (MLP and Kohonen self-organizing feature map (KSOFM, for spatial disaggregation of areal rainfall in the Wi-stream catchment, an International Hydrological Program (IHP representative catchment, in South Korea. A three-layer MLP model, using three training algorithms, was used to estimate areal rainfall. The Levenberg–Marquardt training algorithm was found to be more sensitive to the number of hidden nodes than were the conjugate gradient and quickprop training algorithms using the MLP model. Results showed that the networks structures of 11-5-1 (conjugate gradient and quickprop and 11-3-1 (Levenberg-Marquardt were the best for estimating areal rainfall using the MLP model. The networks structures of 1-5-11 (conjugate gradient and quickprop and 1-3-11 (Levenberg–Marquardt, which are the inverse networks for estimating areal rainfall using the best MLP model, were identified for spatial disaggregation of areal rainfall using the MLP model. The KSOFM model was compared with the MLP model for spatial disaggregation of areal rainfall. The MLP and KSOFM models could disaggregate areal rainfall into individual point rainfall with spatial concepts.

  14. Modeling of frequency agile devices: development of PKI neuromodeling library based on hierarchical network structure

    Science.gov (United States)

    Sanchez, P.; Hinojosa, J.; Ruiz, R.

    2005-06-01

    Recently, neuromodeling methods of microwave devices have been developed. These methods are suitable for the model generation of novel devices. They allow fast and accurate simulations and optimizations. However, the development of libraries makes these methods to be a formidable task, since they require massive input-output data provided by an electromagnetic simulator or measurements and repeated artificial neural network (ANN) training. This paper presents a strategy reducing the cost of library development with the advantages of the neuromodeling methods: high accuracy, large range of geometrical and material parameters and reduced CPU time. The library models are developed from a set of base prior knowledge input (PKI) models, which take into account the characteristics common to all the models in the library, and high-level ANNs which give the library model outputs from base PKI models. This technique is illustrated for a microwave multiconductor tunable phase shifter using anisotropic substrates. Closed-form relationships have been developed and are presented in this paper. The results show good agreement with the expected ones.

  15. Nonparametric Bayesian Modeling of Complex Networks

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Mørup, Morten

    2013-01-01

    an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...

  16. An Experimental Investigation into the Optimal Processing Conditions for the CO2 Laser Cladding of 20 MnCr5 Steel Using Taguchi Method and ANN

    Science.gov (United States)

    Mondal, Subrata; Bandyopadhyay, Asish.; Pal, Pradip Kumar

    2010-10-01

    This paper presents the prediction and evaluation of laser clad profile formed by means of CO2 laser applying Taguchi method and the artificial neural network (ANN). Laser cladding is one of the surface modifying technologies in which the desired surface characteristics of any component can be achieved such as good corrosion resistance, wear resistance and hardness etc. Laser is used as a heat source to melt the anti-corrosive powder of Inconel-625 (Super Alloy) to give a coating on 20 MnCr5 substrate. The parametric study of this technique is also attempted here. The data obtained from experiments have been used to develop the linear regression equation and then to develop the neural network model. Moreover, the data obtained from regression equations have also been used as supporting data to train the neural network. The artificial neural network (ANN) is used to establish the relationship between the input/output parameters of the process. The established ANN model is then indirectly integrated with the optimization technique. It has been seen that the developed neural network model shows a good degree of approximation with experimental data. In order to obtain the combination of process parameters such as laser power, scan speed and powder feed rate for which the output parameters become optimum, the experimental data have been used to develop the response surfaces.

  17. Using artificial neural network approach for modelling rainfall–runoff ...

    Indian Academy of Sciences (India)

    Department of Civil Engineering, National Pingtung University of Science and Technology, Neipu Hsiang,. Pingtung ... study, a model for estimating runoff by using rainfall data from a river basin is developed and a neural ... For example, 2009 typhoon Morakot in Pingtung ... Tokar and Markus (2000) applied ANN to predict.

  18. Optimal factor evaluation for the dissolution of alumina from Azaraegbelu clay in acid solution using RSM and ANN comparative analysis

    Directory of Open Access Journals (Sweden)

    P.E. Ohale

    2017-12-01

    Full Text Available Artificial neural network (ANN and Response Surface Methodology based on a 25−1 fractional factorial design were used as tools for simulation and optimisation of the dissolution process for Azaraegbelu clay. A feedforward neural network model with Levenberg–Marquard back propagating training algorithm was adapted to predict the response (alumina yield. The studied input variables were temperature, stirring speed, clay to acid dosage, leaching time and leachant concentration. The raw clay was characterized for structure elucidation via FTIR, SEM and X-ray diffraction spectroscopic techniques and the result indicates that the clay is predominantly kaolinite. Leachant concentration and dosage ratio were found to be the most significant process parameter with p-value of 0.0001. The performance of the ANN and RSM model showed adequate prediction of the response, with AAD of 11.6% and 3.6%, and R2 of 0.9733 and 0.9568, respectively. A non-dominated optimal response of 81.45% yield of alumina at 4.6 M sulphuric acid concentration, 214 min leaching time, 0.085 g/ml dosage and 214 rpm stirring speed was established as a viable route for reduced material and operating cost via RSM. Keywords: Alumina dissolution, ANN modelling, Azaraegbelu, Clay, RSM

  19. ASSESSMENT OF THE ARTIFICIAL NEURAL NETWORKS TO GEOMORPHIC MODELLING OF SEDIMENT YIELD FOR UNGAUGED CATCHMENTS, ALGERIA

    Directory of Open Access Journals (Sweden)

    Khanchoul Kamel

    2014-01-01

    Full Text Available Knowledge of sediment yield and the factors controlling it provides useful information for estimating erosion intensities within river basins. The objective of this study was to build a model from which suspended sediment yield could be estimated from ungauged rivers using computed sediment yield and physical factors. Researchers working on suspended sediment transported by wadis in the Maghreb are usually facing the lack of available data for such river types. Further study of the prediction of sediment transport in these regions and its variability is clearly required. In this work, ANNs were built between sediment yield established from longterm measurement series at gauging stations in Algerian catchments and corresponding basic physiographic parameters such as rainfall, runoff, lithology index, coefficient of torrentiality, and basin area. The proposed Levenberg-Marquardt and Multilayer Perceptron algorithms to train the neural networks of the current research study was based on the feed-forward backpropagation method with combinations of number of neurons in each hidden layer, transfer function, error goal. Additionally, three statistical measurements, namely the root mean square error (RMSE, the coefficient of determination (R², and the efficiency factor (EF have been reported for examining the forecasting accuracy of the developed model. Single plot displays of network outputs with respect to targets for training have provided good performance results and good fitting . Thus, ANNs were a promising method for predicting suspended sediment yield in ungauged Algerian catchments.

  20. Network structure exploration via Bayesian nonparametric models

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z

    2015-01-01

    Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)

  1. The design and optimization for light-algae bioreactor controller based on Artificial Neural Network-Model Predictive Control

    Science.gov (United States)

    Hu, Dawei; Liu, Hong; Yang, Chenliang; Hu, Enzhu

    As a subsystem of the bioregenerative life support system (BLSS), light-algae bioreactor (LABR) has properties of high reaction rate, efficiently synthesizing microalgal biomass, absorbing CO2 and releasing O2, so it is significant for BLSS to provide food and maintain gas balance. In order to manipulate the LABR properly, it has been designed as a closed-loop control system, and technology of Artificial Neural Network-Model Predictive Control (ANN-MPC) is applied to design the controller for LABR in which green microalgae, Spirulina platensis is cultivated continuously. The conclusion is drawn by computer simulation that ANN-MPC controller can intelligently learn the complicated dynamic performances of LABR, and automatically, robustly and self-adaptively regulate the light intensity illuminating on the LABR, hence make the growth of microalgae in the LABR be changed in line with the references, meanwhile provide appropriate damping to improve markedly the transient response performance of LABR.

  2. Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation.

    Science.gov (United States)

    Buyukada, Musa

    2016-09-01

    Co-combustion of coal and peanut hull (PH) were investigated using artificial neural networks (ANN), particle swarm optimization, and Monte Carlo simulation as a function of blend ratio, heating rate, and temperature. The best prediction was reached by ANN61 multi-layer perception model with a R(2) of 0.99994. Blend ratio of 90 to 10 (PH to coal, wt%), temperature of 305°C, and heating rate of 49°Cmin(-1) were determined as the optimum input values and yield of 87.4% was obtained under PSO optimized conditions. The validation experiments resulted in yields of 87.5%±0.2 after three replications. Monte Carlo simulations were used for the probabilistic assessments of stochastic variability and uncertainty associated with explanatory variables of co-combustion process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Annäherung Approaching

    Directory of Open Access Journals (Sweden)

    Carola Hilmes

    2007-03-01

    Full Text Available Das von Stefan Moses zusammengestellte „Bilderbuch“ zeigt Fotos von Ilse Aichinger. Sie selbst kommt durch eine Reihe von Geschichten und Gedichten zu Wort. In diesen intimen Dialog werden auch die Leser/-innen einbezogen. Das ermöglicht Annäherung.This “Picture Book”, compiled by Stefan Moses, displays photographs of Ilse Aichinger. She is also given voice through a series of stories and poems. The reader is also drawn into this intimate dialogue, thus making it possible for image, text, and reader to converge.

  4. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  5. Building functional networks of spiking model neurons.

    Science.gov (United States)

    Abbott, L F; DePasquale, Brian; Memmesheimer, Raoul-Martin

    2016-03-01

    Most of the networks used by computer scientists and many of those studied by modelers in neuroscience represent unit activities as continuous variables. Neurons, however, communicate primarily through discontinuous spiking. We review methods for transferring our ability to construct interesting networks that perform relevant tasks from the artificial continuous domain to more realistic spiking network models. These methods raise a number of issues that warrant further theoretical and experimental study.

  6. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling

    International Nuclear Information System (INIS)

    Ongen, Atakan; Kurtulus Ozcan, H.; Arayıcı, Semiha

    2013-01-01

    Highlights: • We model calorific value of syn-gas from tannery industry treatment sludge. • We monitor variation of gas composition in produced gas. • Heating value of produced gas is around 1500 kcal/m 3 . • Model predictions are in close accordance with real values. -- Abstract: This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity

  7. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ongen, Atakan, E-mail: aongen@istanbul.edu.tr; Kurtulus Ozcan, H.; Arayıcı, Semiha

    2013-12-15

    Highlights: • We model calorific value of syn-gas from tannery industry treatment sludge. • We monitor variation of gas composition in produced gas. • Heating value of produced gas is around 1500 kcal/m{sup 3}. • Model predictions are in close accordance with real values. -- Abstract: This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity.

  8. Application of ANN and fuzzy logic algorithms for streamflow ...

    Indian Academy of Sciences (India)

    The present study focusses on development of models using ANN and fuzzy logic (FL) algorithm for predicting the streamflow for catchment of Savitri River Basin. The input vector to these models were daily rainfall, mean daily evaporation, mean daily temperature and lag streamflow used. In the present study, 20 years ...

  9. Modeling, Optimization & Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat

    2014-01-01

    . The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used......Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...

  10. Artificial neural network model for predicting the bioavailability of tacrolimus in patients with renal transplantation

    Science.gov (United States)

    Thishya, Kalluri; Vattam, Kiran Kumar; Naushad, Shaik Mohammad; Raju, Shree Bhushan

    2018-01-01

    The objective of the current study was to explore the role of ABCB1 and CYP3A5 genetic polymorphisms in predicting the bioavailability of tacrolimus and the risk for post-transplant diabetes. Artificial neural network (ANN) and logistic regression (LR) models were used to predict the bioavailability of tacrolimus and risk for post-transplant diabetes, respectively. The five-fold cross-validation of ANN model showed good correlation with the experimental data of bioavailability (r2 = 0.93–0.96). Younger age, male gender, optimal body mass index were shown to exhibit lower bioavailability of tacrolimus. ABCB1 1236 C>T and 2677G>T/A showed inverse association while CYP3A5*3 showed a positive association with the bioavailability of tacrolimus. Gender bias was observed in the association with ABCB1 3435 C>T polymorphism. CYP3A5*3 was shown to interact synergistically in increasing the bioavailability in combination with ABCB1 1236 TT or 2677GG genotypes. LR model showed an independent association of ABCB1 2677 G>T/A with post transplant diabetes (OR: 4.83, 95% CI: 1.22–19.03). Multifactor dimensionality reduction analysis (MDR) revealed that synergistic interactions between CYP3A5*3 and ABCB1 2677 G>T/A as the determinants of risk for post-transplant diabetes. To conclude, the ANN and MDR models explore both individual and synergistic effects of variables in modulating the bioavailability of tacrolimus and risk for post-transplant diabetes. PMID:29621269

  11. Port Hamiltonian modeling of Power Networks

    NARCIS (Netherlands)

    van Schaik, F.; van der Schaft, Abraham; Scherpen, Jacquelien M.A.; Zonetti, Daniele; Ortega, R

    2012-01-01

    In this talk a full nonlinear model for the power network in port–Hamiltonian framework is derived to study its stability properties. For this we use the modularity approach i.e., we first derive the models of individual components in power network as port-Hamiltonian systems and then we combine all

  12. Modelling traffic congestion using queuing networks

    Indian Academy of Sciences (India)

    Flow-density curves; uninterrupted traffic; Jackson networks. ... ness - also suffer from a big handicap vis-a-vis the Indian scenario: most of these models do .... more well-known queuing network models and onsite data, a more exact Road Cell ...

  13. Settings in Social Networks : a Measurement Model

    NARCIS (Netherlands)

    Schweinberger, Michael; Snijders, Tom A.B.

    2003-01-01

    A class of statistical models is proposed that aims to recover latent settings structures in social networks. Settings may be regarded as clusters of vertices. The measurement model is based on two assumptions. (1) The observed network is generated by hierarchically nested latent transitive

  14. Network interconnections: an architectural reference model

    NARCIS (Netherlands)

    Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.

    1985-01-01

    One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for

  15. Performance modeling of network data services

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.A.; Pierson, L.G.

    1997-01-01

    Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.

  16. Continuum Modeling of Biological Network Formation

    KAUST Repository

    Albi, Giacomo; Burger, Martin; Haskovec, Jan; Markowich, Peter A.; Schlottbom, Matthias

    2017-01-01

    We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes

  17. Network models in economics and finance

    CERN Document Server

    Pardalos, Panos; Rassias, Themistocles

    2014-01-01

    Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis  that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.

  18. Predicting the co-melting temperatures of municipal solid waste incinerator fly ash and sewage sludge ash using grey model and neural network.

    Science.gov (United States)

    Pai, Tzu-Yi; Lin, Kae-Long; Shie, Je-Lung; Chang, Tien-Chin; Chen, Bor-Yann

    2011-03-01

    A grey model (GM) and an artificial neural network (ANN) were employed to predict co-melting temperature of municipal solid waste incinerator (MSWI) fly ash and sewage sludge ash (SSA) during formation of modified slag. The results indicated that in the aspect of model prediction, the mean absolute percentage error (MAPEs) were between 1.69 and 13.20% when adopting seven different GM (1, N) models. The MAPE were 1.59 and 1.31% when GM (1, 1) and rolling grey model (RGM (1, 1)) were adopted. The MAPEs fell within the range of 0.04 and 0.50% using different types of ANN. In GMs, the MAPE of 1.31% was found to be the lowest when using RGM (1, 1) to predict co-melting temperature. This value was higher than those of ANN2-1 to ANN8-1 by 1.27, 1.25, 1.24, 1.18, 1.16, 1.14 and 0.81%, respectively. GM only required a small amount of data (at least four data). Therefore, GM could be applied successfully in predicting the co-melting temperature of MSWI fly ash and SSA when no sufficient information is available. It also indicates that both the composition of MSWI fly ash and SSA could be applied on the prediction of co-melting temperature.

  19. Synergistic effects in threshold models on networks

    Science.gov (United States)

    Juul, Jonas S.; Porter, Mason A.

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  20. Gossip spread in social network Models

    Science.gov (United States)

    Johansson, Tobias

    2017-04-01

    Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.