WorldWideScience

Sample records for network ann architectures

  1. Super capacitor modeling with artificial neural network (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Marie-Francoise, J.N.; Gualous, H.; Berthon, A. [Universite de Franche-Comte, Lab. en Electronique, Electrotechnique et Systemes (L2ES), UTBM, INRETS (LRE T31) 90 - Belfort (France)

    2004-07-01

    This paper presents super-capacitors modeling using Artificial Neural Network (ANN). The principle consists on a black box nonlinear multiple inputs single output (MISO) model. The system inputs are temperature and current, the output is the super-capacitor voltage. The learning and the validation of the ANN model from experimental charge and discharge of super-capacitor establish the relationship between inputs and output. The learning and the validation of the ANN model use experimental results of 2700 F, 3700 F and a super-capacitor pack. Once the network is trained, the ANN model can predict the super-capacitor behaviour with temperature variations. The update parameters of the ANN model are performed thanks to Levenberg-Marquardt method in order to minimize the error between the output of the system and the predicted output. The obtained results with the ANN model of super-capacitor and experimental ones are in good agreement. (authors)

  2. FTS2000 network architecture

    Science.gov (United States)

    Klenart, John

    1991-01-01

    The network architecture of FTS2000 is graphically depicted. A map of network A topology is provided, with interservice nodes. Next, the four basic element of the architecture is laid out. Then, the FTS2000 time line is reproduced. A list of equipment supporting FTS2000 dedicated transmissions is given. Finally, access alternatives are shown.

  3. Information network architectures

    Science.gov (United States)

    Murray, N. D.

    1985-01-01

    Graphs, charts, diagrams and outlines of information relative to information network architectures for advanced aerospace missions, such as the Space Station, are presented. Local area information networks are considered a likely technology solution. The principle needs for the network are listed.

  4. Heterogeneous network architectures

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann

    2006-01-01

    is flexibility. This thesis investigates such heterogeneous network architectures and how to make them flexible. A survey of algorithms for network design is presented, and it is described how using heuristics can increase the speed. A hierarchical, MPLS based network architecture is described......Future networks will be heterogeneous! Due to the sheer size of networks (e.g., the Internet) upgrades cannot be instantaneous and thus heterogeneity appears. This means that instead of trying to find the olution, networks hould be designed as being heterogeneous. One of the key equirements here...... and it is discussed that it is advantageous to heterogeneous networks and illustrated by a number of examples. Modeling and simulation is a well-known way of doing performance evaluation. An approach to event-driven simulation of communication networks is presented and mixed complexity modeling, which can simplify...

  5. Mobile networks architecture

    CERN Document Server

    Perez, Andre

    2013-01-01

    This book explains the evolutions of architecture for mobiles and summarizes the different technologies:- 2G: the GSM (Global System for Mobile) network, the GPRS (General Packet Radio Service) network and the EDGE (Enhanced Data for Global Evolution) evolution;- 3G: the UMTS (Universal Mobile Telecommunications System) network and the HSPA (High Speed Packet Access) evolutions:- HSDPA (High Speed Downlink Packet Access),- HSUPA (High Speed Uplink Packet Access),- HSPA+;- 4G: the EPS (Evolved Packet System) network.The telephone service and data transmission are the

  6. Future Network Architectures

    DEFF Research Database (Denmark)

    Wessing, Henrik; Bozorgebrahimi, Kurosh; Belter, Bartosz

    2015-01-01

    This study identifies key requirements for NRENs towards future network architectures that become apparent as users become more mobile and have increased expectations in terms of availability of data. In addition, cost saving requirements call for federated use of, in particular, the optical...

  7. Quantifying loopy network architectures.

    Directory of Open Access Journals (Sweden)

    Eleni Katifori

    Full Text Available Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of approaches have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes from the metric topology (connectivity and edge weight and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.

  8. Towards a networkArchitecture

    DEFF Research Database (Denmark)

    Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    Planche, bidrag til DAL-konkurrencen. Hvor industrien har været inspirationen for udviklingen af den moderne arkitektur, er IT det tekniske og æstetiske grundlag for den spirende NetworkArchitecture. Computeren og netværker af computerne er således mere end en metafor for NetworkArchitecture....... NetworkArchitecture består af intelligente byggekomponenter forbundet med hinanden i et netværk og i interaktion med omgivelser....

  9. RegnANN: Reverse Engineering Gene Networks using Artificial Neural Networks.

    Directory of Open Access Journals (Sweden)

    Marco Grimaldi

    Full Text Available RegnANN is a novel method for reverse engineering gene networks based on an ensemble of multilayer perceptrons. The algorithm builds a regressor for each gene in the network, estimating its neighborhood independently. The overall network is obtained by joining all the neighborhoods. RegnANN makes no assumptions about the nature of the relationships between the variables, potentially capturing high-order and non linear dependencies between expression patterns. The evaluation focuses on synthetic data mimicking plausible submodules of larger networks and on biological data consisting of submodules of Escherichia coli. We consider Barabasi and Erdös-Rényi topologies together with two methods for data generation. We verify the effect of factors such as network size and amount of data to the accuracy of the inference algorithm. The accuracy scores obtained with RegnANN is methodically compared with the performance of three reference algorithms: ARACNE, CLR and KELLER. Our evaluation indicates that RegnANN compares favorably with the inference methods tested. The robustness of RegnANN, its ability to discover second order correlations and the agreement between results obtained with this new methods on both synthetic and biological data are promising and they stimulate its application to a wider range of problems.

  10. Application of Artificial Neural Networks (ANNs for Weight Predictions of Blue Crabs (Callinectes sapidus RATHBUN, 1896 Using Predictor Variables

    Directory of Open Access Journals (Sweden)

    C. TURELI BILEN

    2011-10-01

    Full Text Available An evaluation of the performance of artificial networks (ANNs to estimate the weights of blue crab (Callinectes sapidus catches in Yumurtalık Cove (Iskenderun Bay that uses measured predictor variables is presented, including carapace width (CW, sex (male, female and female with eggs, and sampling month. Blue crabs (n=410 were collected each month between 15 September 1996 and 15 May 1998. Sex, CW, and sampling month were used and specified in the input layer of the network. The weights of the blue crabs were utilized in the output layer of the network. A multi-layer perception architecture model was used and was calibrated with the Levenberg Marguardt (LM algorithm. Finally, the values were determined by the ANN model using the actual data. The mean square error (MSE was measured as 3.3, and the best results had a correlation coefficient (R of 0.93. We compared the predictive capacity of the general linear model (GLM versus the Artificial Neural Network model (ANN for the estimation of the weights of blue crabs from independent field data. The results indicated the higher performance capacity of the ANN to predict weights compared to the GLM (R=0.97 vs. R=0.95, raw variable when evaluated against independent field data.

  11. USING ARTIFICIAL NEURAL NETWORKS (ANNs FOR SEDIMENT LOAD FORECASTING OF TALKHEROOD RIVER MOUTH

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2009-01-01

    Full Text Available Without a doubt the carried sediment load by a river is the most important factor in creating and formation of the related Delta in the river mouth. Therefore, accurate forecasting of the river sediment load can play a significant role for study on the river Delta. However considering the complexity and non-linearity of the phenomenon, the classic experimental or physical-based approaches usually could not handle the problem so well. In this paper, Artificial Neural Network (ANN as a non-linear black box interpolator tool is used for modeling suspended sediment load which discharges to the Talkherood river mouth, located in northern west Iran. For this purpose, observed time series of water discharge at current and previous time steps are used as the model input neurons and the model output neuron will be the forecasted sediment load at the current time step. In this way, various schemes of the ANN approach are examined in order to achieve the best network as well as the best architecture of the model. The obtained results are also compared with the results of two other classic methods (i.e., linear regression and rating curve methods in order to approve the efficiency and ability of the proposed method.

  12. Visual NNet: An Educational ANN's Simulation Environment Reusing Matlab Neural Networks Toolbox

    Science.gov (United States)

    Garcia-Roselló, Emilio; González-Dacosta, Jacinto; Lado, Maria J.; Méndez, Arturo J.; Garcia Pérez-Schofield, Baltasar; Ferrer, Fátima

    2011-01-01

    Artificial Neural Networks (ANN's) are nowadays a common subject in different curricula of graduate and postgraduate studies. Due to the complex algorithms involved and the dynamic nature of ANN's, simulation software has been commonly used to teach this subject. This software has usually been developed specifically for learning purposes, because…

  13. Review of Artificial Neural Networks (ANN) applied to corrosion monitoring

    International Nuclear Information System (INIS)

    Mabbutt, S; Picton, P; Shaw, P; Black, S

    2012-01-01

    The assessment of corrosion within an engineering system often forms an important aspect of condition monitoring but it is a parameter that is inherently difficult to measure and predict. The electrochemical nature of the corrosion process allows precise measurements to be made. Advances in instruments, techniques and software have resulted in devices that can gather data and perform various analysis routines that provide parameters to identify corrosion type and corrosion rate. Although corrosion rates are important they are only useful where general or uniform corrosion dominates. However, pitting, inter-granular corrosion and environmentally assisted cracking (stress corrosion) are examples of corrosion mechanisms that can be dangerous and virtually invisible to the naked eye. Electrochemical noise (EN) monitoring is a very useful technique for detecting these types of corrosion and it is the only non-invasive electrochemical corrosion monitoring technique commonly available. Modern instrumentation is extremely sensitive to changes in the system and new experimental configurations for gathering EN data have been proven. In this paper the identification of localised corrosion by different data analysis routines has been reviewed. In particular the application of Artificial Neural Network (ANN) analysis to corrosion data is of key interest. In most instances data needs to be used with conventional theory to obtain meaningful information and relies on expert interpretation. Recently work has been carried out using artificial neural networks to investigate various types of corrosion data in attempts to predict corrosion behaviour with some success. This work aims to extend this earlier work to identify reliable electrochemical indicators of localised corrosion onset and propagation stages.

  14. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Delnavaz, M. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ayati, B., E-mail: ayati_bi@modares.ac.ir [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ganjidoust, H. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of)

    2010-07-15

    In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds.

  15. Optical Neural Network Classifier Architectures

    National Research Council Canada - National Science Library

    Getbehead, Mark

    1998-01-01

    We present an adaptive opto-electronic neural network hardware architecture capable of exploiting parallel optics to realize real-time processing and classification of high-dimensional data for Air...

  16. Modular architectures for quantum networks

    Science.gov (United States)

    Pirker, A.; Wallnöfer, J.; Dür, W.

    2018-05-01

    We consider the problem of generating multipartite entangled states in a quantum network upon request. We follow a top-down approach, where the required entanglement is initially present in the network in form of network states shared between network devices, and then manipulated in such a way that the desired target state is generated. This minimizes generation times, and allows for network structures that are in principle independent of physical links. We present a modular and flexible architecture, where a multi-layer network consists of devices of varying complexity, including quantum network routers, switches and clients, that share certain resource states. We concentrate on the generation of graph states among clients, which are resources for numerous distributed quantum tasks. We assume minimal functionality for clients, i.e. they do not participate in the complex and distributed generation process of the target state. We present architectures based on shared multipartite entangled Greenberger–Horne–Zeilinger states of different size, and fully connected decorated graph states, respectively. We compare the features of these architectures to an approach that is based on bipartite entanglement, and identify advantages of the multipartite approach in terms of memory requirements and complexity of state manipulation. The architectures can handle parallel requests, and are designed in such a way that the network state can be dynamically extended if new clients or devices join the network. For generation or dynamical extension of the network states, we propose a quantum network configuration protocol, where entanglement purification is used to establish high fidelity states. The latter also allows one to show that the entanglement generated among clients is private, i.e. the network is secure.

  17. Network Analysis, Architecture, and Design

    CERN Document Server

    McCabe, James D

    2007-01-01

    Traditionally, networking has had little or no basis in analysis or architectural development, with designers relying on technologies they are most familiar with or being influenced by vendors or consultants. However, the landscape of networking has changed so that network services have now become one of the most important factors to the success of many third generation networks. It has become an important feature of the designer's job to define the problems that exist in his network, choose and analyze several optimization parameters during the analysis process, and then prioritize and evalua

  18. Data center networks and network architecture

    Science.gov (United States)

    Esaki, Hiroshi

    2014-02-01

    This paper discusses and proposes the architectural framework, which is for data center networks. The data center networks require new technical challenges, and it would be good opportunity to change the functions, which are not need in current and future networks. Based on the observation and consideration on data center networks, this paper proposes; (i) Broadcast-free layer 2 network (i.e., emulation of broadcast at the end-node), (ii) Full-mesh point-to-point pipes, and (iii) IRIDES (Invitation Routing aDvertisement for path Engineering System).

  19. Architecture in the network society

    DEFF Research Database (Denmark)

    2004-01-01

    Under the theme Architecture in the Network Society, participants were invited to focus on the dialog and sharing of knowledge between architects and other disciplines and to reflect on, and propose, new methods in the design process, to enhance and improve the impact of information technology...

  20. Artificial Neural Networks (ANNs for flood forecasting at Dongola Station in the River Nile, Sudan

    Directory of Open Access Journals (Sweden)

    Sulafa Hag Elsafi

    2014-09-01

    Full Text Available Heavy seasonal rains cause the River Nile in Sudan to overflow and flood the surroundings areas. The floods destroy houses, crops, roads, and basic infrastructure, resulting in the displacement of people. This study aimed to forecast the River Nile flow at Dongola Station in Sudan using an Artificial Neural Network (ANN as a modeling tool and validated the accuracy of the model against actual flow. The ANN model was formulated to simulate flows at a certain location in the river reach, based on flow at upstream locations. Different procedures were applied to predict flooding by the ANN. Readings from stations along the Blue Nile, White Nile, Main Nile, and River Atbara between 1965 and 2003 were used to predict the likelihood of flooding at Dongola Station. The analysis indicated that the ANN provides a reliable means of detecting the flood hazard in the River Nile.

  1. LINCS: Livermore's network architecture

    International Nuclear Information System (INIS)

    Fletcher, J.G.

    1982-01-01

    Octopus, a local computing network that has been evolving at the Lawrence Livermore National Laboratory for over fifteen years, is currently undergoing a major revision. The primary purpose of the revision is to consolidate and redefine the variety of conventions and formats, which have grown up over the years, into a single standard family of protocols, the Livermore Interactive Network Communication Standard (LINCS). This standard treats the entire network as a single distributed operating system such that access to a computing resource is obtained in a single way, whether that resource is local (on the same computer as the accessing process) or remote (on another computer). LINCS encompasses not only communication but also such issues as the relationship of customer to server processes and the structure, naming, and protection of resources. The discussion includes: an overview of the Livermore user community and computing hardware, the functions and structure of each of the seven layers of LINCS protocol, the reasons why we have designed our own protocols and why we are dissatisfied by the directions that current protocol standards are taking

  2. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Sayiter [Engineering Faculty, Cumhuriyet University, Sivas (Turkmenistan)

    2017-09-15

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R{sup 2} value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R{sup 2} values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  3. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    International Nuclear Information System (INIS)

    Yildiz, Sayiter

    2017-01-01

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R"2 value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R"2 values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  4. Data Architecture for Sensor Network

    Directory of Open Access Journals (Sweden)

    Jan Ježek

    2012-03-01

    Full Text Available Fast development of hardware in recent years leads to the high availability of simple sensing devices at minimal cost. As a consequence, there is many of sensor networks nowadays. These networks can continuously produce a large amount of observed data including the location of measurement. Optimal data architecture for such propose is a challenging issue due to its large scale and spatio-temporal nature.  The aim of this paper is to describe data architecture that was used in a particular solution for storage of sensor data. This solution is based on relation data model – concretely PostgreSQL and PostGIS. We will mention out experience from real world projects focused on car monitoring and project targeted on agriculture sensor networks. We will also shortly demonstrate the possibilities of client side API and the potential of other open source libraries that can be used for cartographic visualization (e.g. GeoServer. The main objective is to describe the strength and weakness of usage of relation database system for such propose and to introduce also alternative approaches based on NoSQL concept.

  5. The architectural design of networks of protein domain architectures.

    Science.gov (United States)

    Hsu, Chia-Hsin; Chen, Chien-Kuo; Hwang, Ming-Jing

    2013-08-23

    Protein domain architectures (PDAs), in which single domains are linked to form multiple-domain proteins, are a major molecular form used by evolution for the diversification of protein functions. However, the design principles of PDAs remain largely uninvestigated. In this study, we constructed networks to connect domain architectures that had grown out from the same single domain for every single domain in the Pfam-A database and found that there are three main distinctive types of these networks, which suggests that evolution can exploit PDAs in three different ways. Further analysis showed that these three different types of PDA networks are each adopted by different types of protein domains, although many networks exhibit the characteristics of more than one of the three types. Our results shed light on nature's blueprint for protein architecture and provide a framework for understanding architectural design from a network perspective.

  6. Artificial neural network (ANN)-based prediction of depth filter loading capacity for filter sizing.

    Science.gov (United States)

    Agarwal, Harshit; Rathore, Anurag S; Hadpe, Sandeep Ramesh; Alva, Solomon J

    2016-11-01

    This article presents an application of artificial neural network (ANN) modelling towards prediction of depth filter loading capacity for clarification of a monoclonal antibody (mAb) product during commercial manufacturing. The effect of operating parameters on filter loading capacity was evaluated based on the analysis of change in the differential pressure (DP) as a function of time. The proposed ANN model uses inlet stream properties (feed turbidity, feed cell count, feed cell viability), flux, and time to predict the corresponding DP. The ANN contained a single output layer with ten neurons in hidden layer and employed a sigmoidal activation function. This network was trained with 174 training points, 37 validation points, and 37 test points. Further, a pressure cut-off of 1.1 bar was used for sizing the filter area required under each operating condition. The modelling results showed that there was excellent agreement between the predicted and experimental data with a regression coefficient (R 2 ) of 0.98. The developed ANN model was used for performing variable depth filter sizing for different clarification lots. Monte-Carlo simulation was performed to estimate the cost savings by using different filter areas for different clarification lots rather than using the same filter area. A 10% saving in cost of goods was obtained for this operation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1436-1443, 2016. © 2016 American Institute of Chemical Engineers.

  7. A COMPARATIVE STUDY OF SYSTEM NETWORK ARCHITECTURE Vs DIGITAL NETWORK ARCHITECTURE

    OpenAIRE

    Seema; Mukesh Arya

    2011-01-01

    The efficient managing system of sources is mandatory for the successful running of any network. Here this paper describes the most popular network architectures one of developed by IBM, System Network Architecture (SNA) and other is Digital Network Architecture (DNA). As we know that the network standards and protocols are needed for the network developers as well as users. Some standards are The IEEE 802.3 standards (The Institute of Electrical and Electronics Engineers 1980) (LAN), IBM Sta...

  8. Security Shift in Future Network Architectures

    NARCIS (Netherlands)

    Hartog, T.; Schotanus, H.A.; Verkoelen, C.A.A.

    2010-01-01

    In current practice military communication infrastructures are deployed as stand-alone networked information systems. Network-Enabled Capabilities (NEC) and combined military operations lead to new requirements which current communication architectures cannot deliver. This paper informs IT

  9. Home networking architecture for IPv6

    OpenAIRE

    Arkko, Jari; Weil, Jason; Troan, Ole; Brandt, Anders

    2012-01-01

    This text describes evolving networking technology within increasingly large residential home networks. The goal of this document is to define an architecture for IPv6-based home networking while describing the associated principles, considerations and requirements. The text briefly highlights the specific implications of the introduction of IPv6 for home networking, discusses the elements of the architecture, and suggests how standard IPv6 mechanisms and addressing can be employed in home ne...

  10. Predicting the Deflections of Micromachined Electrostatic Actuators Using Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Hing Wah LEE

    2009-03-01

    Full Text Available In this study, a general purpose Artificial Neural Network (ANN model based on the feed-forward back-propagation (FFBP algorithm has been used to predict the deflections of a micromachined structures actuated electrostatically under different loadings and geometrical parameters. A limited range of simulation results obtained via CoventorWare™ numerical software will be used initially to train the neural network via back-propagation algorithm. The micromachined structures considered in the analyses are diaphragm, fixed-fixed beams and cantilevers. ANN simulation results are compared with results obtained via CoventorWare™ simulations and existing analytical work for validation purpose. The proposed ANN model accurately predicts the deflections of the micromachined structures with great reduction of simulation efforts, establishing the method superiority. This method can be extended for applications in other sensors particularly for modeling sensors applying electrostatic actuation which are difficult in nature due to the inherent non-linearity of the electro-mechanical coupling response.

  11. Dispersion compensation of fiber optic communication system with direct detection using artificial neural networks (ANNs)

    Science.gov (United States)

    Maghrabi, Mahmoud M. T.; Kumar, Shiva; Bakr, Mohamed H.

    2018-02-01

    This work introduces a powerful digital nonlinear feed-forward equalizer (NFFE), exploiting multilayer artificial neural network (ANN). It mitigates impairments of optical communication systems arising due to the nonlinearity introduced by direct photo-detection. In a direct detection system, the detection process is nonlinear due to the fact that the photo-current is proportional to the absolute square of the electric field intensity. The proposed equalizer provides the most efficient computational cost with high equalization performance. Its performance is comparable to the benchmark compensation performance achieved by maximum-likelihood sequence estimator. The equalizer trains an ANN to act as a nonlinear filter whose impulse response removes the intersymbol interference (ISI) distortions of the optical channel. Owing to the proposed extensive training of the equalizer, it achieves the ultimate performance limit of any feed-forward equalizer (FFE). The performance and efficiency of the equalizer is investigated by applying it to various practical short-reach fiber optic communication system scenarios. These scenarios are extracted from practical metro/media access networks and data center applications. The obtained results show that the ANN-NFFE compensates for the received BER degradation and significantly increases the tolerance to the chromatic dispersion distortion.

  12. IDI diesel engine performance and exhaust emission analysis using biodiesel with an artificial neural network (ANN

    Directory of Open Access Journals (Sweden)

    K. Prasada Rao

    2017-09-01

    Full Text Available Biodiesel is receiving increasing attention each passing day because of its fuel properties and compatibility. This study investigates the performance and emission characteristics of single cylinder four stroke indirect diesel injection (IDI engine fueled with Rice Bran Methyl Ester (RBME with Isopropanol additive. The investigation is done through a combination of experimental data analysis and artificial neural network (ANN modeling. The study used IDI engine experimental data to evaluate nine engine performance and emission parameters including Exhaust Gas Temperature (E.G.T, Brake Specific Fuel Consumption (BSFC, Brake Thermal Efficiency (B.The and various emissions like Hydrocarbons (HC, Carbon monoxide (CO, Carbon dioxide (CO2, Oxygen (O2, Nitrogen oxides (NOX and smoke. For the ANN modeling standard back propagation algorithm was found to be the optimum choice for training the model. A multi-layer perception (MLP network was used for non-linear mapping between the input and output parameters. It was found that ANN was able to predict the engine performance and exhaust emissions with a correlation coefficient of 0.995, 0.980, 0.999, 0.985, 0.999, 0.999, 0.980, 0.999, and 0.999 for E.G.T, BSFC, B.The, HC, O2, CO2, CO, NOX, smoke respectively.

  13. Comparison of the accuracy of SST estimates by artificial neural networks (ANN) and other quantitative methods using radiolarian data from the Antarctic and Pacific Oceans

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Malmgren, B.A.

    ) regression, the maximum likelihood (ML) method, and artificial neural networks (ANNs), based on radiolarian faunal abundance data from surface sediments from the Antarctic and Pacific Oceans. Recent studies have suggested that ANNs may represent one...

  14. Tenet: An Architecture for Tiered Embedded Networks

    OpenAIRE

    Ramesh Govindan; Eddie Kohler; Deborah Estrin; Fang Bian; Krishna Chintalapudi; Om Gnawali; Sumit Rangwala; Ramakrishna Gummadi; Thanos Stathopoulos

    2005-01-01

    Future large-scale sensor network deployments will be tiered, with the motes providing dense sensing and a higher tier of 32-bit master nodes with more powerful radios providing increased overall network capacity. In this paper, we describe a functional architecture for wireless sensor networks that leverages this structure to simplify the overall system. Our Tenet architecture has the nice property that the mote-layer software is generic and reusable, and all application functionality reside...

  15. Arhitektuuriline vahendamine: kliima vs kultuur = Architectural mediations: climate vs culture / Franklin Lee, Anne Save de Beaurecueil

    Index Scriptorium Estoniae

    Lee, Franklin

    2011-01-01

    Tegelemisest Architectural Associationi 2. diplomistuudios ja büroos SUBdV keskkondlike ja kultuuriliste mõjurite duaalsusega arhitektuuris. Teemat on uuritud kolmes valdkonnas: sile vs artikuleeritud, keskkond vs ornament, kõrgtehnoloogia vs madaltehnoloogia. Architectural Association'i ja Hollandi Arhitektuuriinstituudi töötoast São Paulos 2010. a. suvel

  16. Exploration of artificial neural network [ANN] to predict the electrochemical characteristics of lithium-ion cells

    Energy Technology Data Exchange (ETDEWEB)

    Parthiban, Thirumalai; Ravi, R.; Kalaiselvi, N. [Central Electrochemical Research Institute (CECRI), Karaikudi 630006 (India)

    2007-12-31

    CoO anode, as an alternate to the carbonaceous anodes of lithium-ion cells has been prepared and investigated for electrochemical charge-discharge characteristics for about 50 cycles. Artificial neural networks (ANNs), which are useful in estimating battery performance, has been deployed for the first time to forecast and to verify the charge-discharge behavior of lithium-ion cells containing CoO anode for a total of 50 cycles. In this novel approach, ANN that has one input layer with one neuron corresponding to one input variable, viz., cycles [charge-discharge cycles] and a hidden layer consisting of three neurons to produce their outputs to the output layer through a sigmoid function has been selected for the present investigation. The output layer consists of two neurons, representing the charge and discharge capacity, whose activation function is also the sigmoid transfer function. In this ever first attempt to exploit ANN as an effective theoretical tool to understand the charge-discharge characteristics of lithium-ion cells, an excellent agreement between the calculated and observed capacity values was found with CoO anodes with the best fit values corresponding to an error factor of <1%, which is the highlight of the present study. (author)

  17. Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN).

    Science.gov (United States)

    Park, Sechan; Kim, Minjeong; Kim, Minhae; Namgung, Hyeong-Gyu; Kim, Ki-Tae; Cho, Kyung Hwa; Kwon, Soon-Bark

    2018-01-05

    The indoor air quality of subway systems can significantly affect the health of passengers since these systems are widely used for short-distance transit in metropolitan urban areas in many countries. The particles generated by abrasion during subway operations and the vehicle-emitted pollutants flowing in from the street in particular affect the air quality in underground subway stations. Thus the continuous monitoring of particulate matter (PM) in underground station is important to evaluate the exposure level of PM to passengers. However, it is difficult to obtain indoor PM data because the measurement systems are expensive and difficult to install and operate for significant periods of time in spaces crowded with people. In this study, we predicted the indoor PM concentration using the information of outdoor PM, the number of subway trains running, and information on ventilation operation by the artificial neural network (ANN) model. As well, we investigated the relationship between ANN's performance and the depth of underground subway station. ANN model showed a high correlation between the predicted and actual measured values and it was able to predict 67∼80% of PM at 6 subway station. In addition, we found that platform shape and depth influenced the model performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. An architecture for human-network interfaces

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1990-01-01

    Some of the issues (and their consequences) that arise when human-network interfaces (HNIs) are viewed from the perspective of people who use and develop them are examined. Target attributes of HNI architecture are presented. A high-level architecture model that supports the attributes is discussed...

  19. Prediction of Tourism Demand in Iran by Using Artificial Neural Network (ANN and Supporting Vector Machine (SVR

    Directory of Open Access Journals (Sweden)

    Seyedehelham Sadatiseyedmahalleh

    2016-02-01

    Full Text Available This research examines and proves this effectiveness connected with artificial neural networks (ANNs as an alternative approach to the use of Support Vector Machine (SVR in the tourism research. This method can be used for the tourism industry to define the turism’s demands in Iran. The outcome reveals the use of ANNs in tourism research might result in better quotations when it comes to prediction bias and accuracy. Even more applications of ANNs in the context of tourism demand evaluation is needed to establish and validate the effects.

  20. An Architectural Modelfor Intelligent Network Management

    Institute of Scientific and Technical Information of China (English)

    罗军舟; 顾冠群; 费翔

    2000-01-01

    Traditional network management approach involves the management of each vendor's equipment and network segment in isolation through its own proprietary element management system. It is necessary to set up a new network management architecture that calls for operation consolidation across vendor and technology boundaries. In this paper, an architectural model for Intelligent Network Management (INM) is presented. The INM system includes a manager system, which controls all subsystems and coordinates different management tasks; an expert system, which is responsible for handling particularly difficult problems, and intelligent agents, which bring the management closer to applications and user requirements by spreading intelligent agents through network segments or domain. In the expert system model proposed, especially an intelligent fault management system is given.The architectural model is to build the INM system to meet the need of managing modern network systems.

  1. Microsoft Windows 2000 Network Architecture Guide

    National Research Council Canada - National Science Library

    Bartock, Paul

    2000-01-01

    The purpose of this guide is to inform the reader about the services that are available in the Microsoft Windows 2000 environment and how to integrate these services into their network architecture...

  2. Hybrid architecture for building secure sensor networks

    Science.gov (United States)

    Owens, Ken R., Jr.; Watkins, Steve E.

    2012-04-01

    Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.

  3. The functional consequences of mutualistic network architecture.

    Directory of Open Access Journals (Sweden)

    José M Gómez

    Full Text Available The architecture and properties of many complex networks play a significant role in the functioning of the systems they describe. Recently, complex network theory has been applied to ecological entities, like food webs or mutualistic plant-animal interactions. Unfortunately, we still lack an accurate view of the relationship between the architecture and functioning of ecological networks. In this study we explore this link by building individual-based pollination networks from eight Erysimum mediohispanicum (Brassicaceae populations. In these individual-based networks, each individual plant in a population was considered a node, and was connected by means of undirected links to conspecifics sharing pollinators. The architecture of these unipartite networks was described by means of nestedness, connectivity and transitivity. Network functioning was estimated by quantifying the performance of the population described by each network as the number of per-capita juvenile plants produced per population. We found a consistent relationship between the topology of the networks and their functioning, since variation across populations in the average per-capita production of juvenile plants was positively and significantly related with network nestedness, connectivity and clustering. Subtle changes in the composition of diverse pollinator assemblages can drive major consequences for plant population performance and local persistence through modifications in the structure of the inter-plant pollination networks.

  4. Network interconnections: an architectural reference model

    NARCIS (Netherlands)

    Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.

    1985-01-01

    One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for

  5. Smart business networks: architectural aspects and risks

    NARCIS (Netherlands)

    L-F. Pau (Louis-François)

    2004-01-01

    textabstractThis paper summarizes key attributes and the uniqueness of smart business networks [1], to propose thereafter an operational implementation architecture. It involves, amongst others, the embedding of business logic specific to a network of business partners, inside the communications

  6. UMA/GAN network architecture analysis

    Science.gov (United States)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  7. Virtualized cognitive network architecture for 5G cellular networks

    KAUST Repository

    Elsawy, Hesham

    2015-07-17

    Cellular networks have preserved an application agnostic and base station (BS) centric architecture1 for decades. Network functionalities (e.g. user association) are decided and performed regardless of the underlying application (e.g. automation, tactile Internet, online gaming, multimedia). Such an ossified architecture imposes several hurdles against achieving the ambitious metrics of next generation cellular systems. This article first highlights the features and drawbacks of such architectural ossification. Then the article proposes a virtualized and cognitive network architecture, wherein network functionalities are implemented via software instances in the cloud, and the underlying architecture can adapt to the application of interest as well as to changes in channels and traffic conditions. The adaptation is done in terms of the network topology by manipulating connectivities and steering traffic via different paths, so as to attain the applications\\' requirements and network design objectives. The article presents cognitive strategies to implement some of the classical network functionalities, along with their related implementation challenges. The article further presents a case study illustrating the performance improvement of the proposed architecture as compared to conventional cellular networks, both in terms of outage probability and handover rate.

  8. Mobile opportunistic networks architectures, protocols and applications

    CERN Document Server

    Denko, Mieso K

    2011-01-01

    Widespread availability of pervasive and mobile devices coupled with recent advances in networking technologies make opportunistic networks one of the most promising communication technologies for a growing number of future mobile applications. Covering the basics as well as advanced concepts, this book introduces state-of-the-art research findings, technologies, tools, and innovations. Prominent researchers from academia and industry report on communication architectures, network algorithms and protocols, emerging applications, experimental studies, simulation tools, implementation test beds,

  9. Security Shift in Future Network Architectures

    OpenAIRE

    Hartog, T.; Schotanus, H.A.; Verkoelen, C.A.A.

    2010-01-01

    In current practice military communication infrastructures are deployed as stand-alone networked information systems. Network-Enabled Capabilities (NEC) and combined military operations lead to new requirements which current communication architectures cannot deliver. This paper informs IT architects, information architects and security specialists about the separation of network and information security, the consequences of this shift and our view on future communication infrastructures in d...

  10. Hybrid intelligence systems and artificial neural network (ANN approach for modeling of surface roughness in drilling

    Directory of Open Access Journals (Sweden)

    Ch. Sanjay

    2014-12-01

    Full Text Available In machining processes, drilling operation is material removal process that has been widely used in manufacturing since industrial revolution. The useful life of cutting tool and its operating conditions largely controls the economics of machining operations. Drilling is most frequently performed material removing process and is used as a preliminary step for many operations, such as reaming, tapping, and boring. Drill wear has a bad effect on the surface finish and dimensional accuracy of the work piece. The surface finish of a machined part is one of the most important quality characteristics in manufacturing industries. The primary objective of this research is the prediction of suitable parameters for surface roughness in drilling. Cutting speed, cutting force, and machining time were given as inputs to the adaptive fuzzy neural network and neuro-fuzzy analysis for estimating the values of surface roughness by using 2, 3, 4, and 5 membership functions. The best structures were selected based on minimum of summation of square with the actual values with the estimated values by artificial neural fuzzy inference system (ANFIS and neuro-fuzzy systems. For artificial neural network (ANN analysis, the number of neurons was selected from 1, 2, 3, … , 20. The learning rate was selected as .5 and .5 smoothing factor was used. The inputs were selected as cutting speed, feed, machining time, and thrust force. The best structures of neural networks were selected based on the criteria as the minimum of summation of square with the actual value of surface roughness. Drilling experiments with 10 mm size were performed at two cutting speeds and feeds. Comparative analysis has been done between the actual values and the estimated values obtained by ANFIS, neuro-fuzzy, and ANN analysis.

  11. Satellite ATM Networks: Architectures and Guidelines Developed

    Science.gov (United States)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  12. Routing architecture and security for airborne networks

    Science.gov (United States)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  13. SU-E-T-206: Improving Radiotherapy Toxicity Based On Artificial Neural Network (ANN) for Head and Neck Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Daniel D; Wernicke, A Gabriella; Nori, Dattatreyudu; Chao, KSC; Parashar, Bhupesh; Chang, Jenghwa [Weill Cornell Medical College, NY, NY (United States)

    2014-06-01

    Purpose/Objective(s): The aim of this study is to build the estimator of toxicity using artificial neural network (ANN) for head and neck cancer patients Materials/Methods: An ANN can combine variables into a predictive model during training and considered all possible correlations of variables. We constructed an ANN based on the data from 73 patients with advanced H and N cancer treated with external beam radiotherapy and/or chemotherapy at our institution. For the toxicity estimator we defined input data including age, sex, site, stage, pathology, status of chemo, technique of external beam radiation therapy (EBRT), length of treatment, dose of EBRT, status of post operation, length of follow-up, the status of local recurrences and distant metastasis. These data were digitized based on the significance and fed to the ANN as input nodes. We used 20 hidden nodes (for the 13 input nodes) to take care of the correlations of input nodes. For training ANN, we divided data into three subsets such as training set, validation set and test set. Finally, we built the estimator for the toxicity from ANN output. Results: We used 13 input variables including the status of local recurrences and distant metastasis and 20 hidden nodes for correlations. 59 patients for training set, 7 patients for validation set and 7 patients for test set and fed the inputs to Matlab neural network fitting tool. We trained the data within 15% of errors of outcome. In the end we have the toxicity estimation with 74% of accuracy. Conclusion: We proved in principle that ANN can be a very useful tool for predicting the RT outcomes for high risk H and N patients. Currently we are improving the results using cross validation.

  14. SU-E-T-206: Improving Radiotherapy Toxicity Based On Artificial Neural Network (ANN) for Head and Neck Cancer Patients

    International Nuclear Information System (INIS)

    Cho, Daniel D; Wernicke, A Gabriella; Nori, Dattatreyudu; Chao, KSC; Parashar, Bhupesh; Chang, Jenghwa

    2014-01-01

    Purpose/Objective(s): The aim of this study is to build the estimator of toxicity using artificial neural network (ANN) for head and neck cancer patients Materials/Methods: An ANN can combine variables into a predictive model during training and considered all possible correlations of variables. We constructed an ANN based on the data from 73 patients with advanced H and N cancer treated with external beam radiotherapy and/or chemotherapy at our institution. For the toxicity estimator we defined input data including age, sex, site, stage, pathology, status of chemo, technique of external beam radiation therapy (EBRT), length of treatment, dose of EBRT, status of post operation, length of follow-up, the status of local recurrences and distant metastasis. These data were digitized based on the significance and fed to the ANN as input nodes. We used 20 hidden nodes (for the 13 input nodes) to take care of the correlations of input nodes. For training ANN, we divided data into three subsets such as training set, validation set and test set. Finally, we built the estimator for the toxicity from ANN output. Results: We used 13 input variables including the status of local recurrences and distant metastasis and 20 hidden nodes for correlations. 59 patients for training set, 7 patients for validation set and 7 patients for test set and fed the inputs to Matlab neural network fitting tool. We trained the data within 15% of errors of outcome. In the end we have the toxicity estimation with 74% of accuracy. Conclusion: We proved in principle that ANN can be a very useful tool for predicting the RT outcomes for high risk H and N patients. Currently we are improving the results using cross validation

  15. Stable architectures for deep neural networks

    Science.gov (United States)

    Haber, Eldad; Ruthotto, Lars

    2018-01-01

    Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.

  16. Anne K. Bang: Islamic Sufi Networks in the Western Indian Ocean (c. 1880-1940. Ripples of Reform.

    Directory of Open Access Journals (Sweden)

    Angelika Brodersen

    2015-03-01

    Full Text Available This contribution offers a review of Anne K. Bang's book: Islamic Sufi Networks in the Western Indian Ocean (c. 1880-1940. Ripples of Reform. Islam in Africa, Volume 16. Leiden: Brill 2014. xiv + 227 pages, € 104.00, ISBN 978-900-425-1342.

  17. Software Defined Networks in Wireless Sensor Architectures

    Directory of Open Access Journals (Sweden)

    Jesús Antonio Puente Fernández

    2018-03-01

    Full Text Available Nowadays, different protocols coexist in Internet that provides services to users. Unfortunately, control decisions and distributed management make it hard to control networks. These problems result in an inefficient and unpredictable network behaviour. Software Defined Networks (SDN is a new concept of network architecture. It intends to be more flexible and to simplify the management in networks with respect to traditional architectures. Each of these aspects are possible because of the separation of control plane (controller and data plane (switches in network devices. OpenFlow is the most common protocol for SDN networks that provides the communication between control and data planes. Moreover, the advantage of decoupling control and data planes enables a quick evolution of protocols and also its deployment without replacing data plane switches. In this survey, we review the SDN technology and the OpenFlow protocol and their related works. Specifically, we describe some technologies as Wireless Sensor Networks and Wireless Cellular Networks and how SDN can be included within them in order to solve their challenges. We classify different solutions for each technology attending to the problem that is being fixed.

  18. A DRM Security Architecture for Home Networks

    NARCIS (Netherlands)

    Popescu, B.C.; Crispo, B.; Kamperman, F.L.A.J.; Tanenbaum, A.S.; Kiayias, A.; Yung, M.

    2004-01-01

    This paper describes a security architecture allowing digital rights management in home networks consisting of consumer electronic devices. The idea is to allow devices to establish dynamic groups, so called "Authorized Domains", where legally acquired copyrighted content can seamlessly move from

  19. An architectural model for network interconnection

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Vissers, C.A.; Kalin, T.

    1983-01-01

    This paper presents a technique of successive decomposition of a common users' activity to illustrate the problems of network interconnection. The criteria derived from this approach offer a structuring principle which is used to develop an architectural model that embeds heterogeneous subnetworks

  20. MIRAI Architecture for Heterogeneous Network

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Havinga, Paul J.M.

    One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless

  1. Comparative study of landslides susceptibility mapping methods: Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN)

    Science.gov (United States)

    Salleh, S. A.; Rahman, A. S. A. Abd; Othman, A. N.; Mohd, W. M. N. Wan

    2018-02-01

    As different approach produces different results, it is crucial to determine the methods that are accurate in order to perform analysis towards the event. This research aim is to compare the Rank Reciprocal (MCDM) and Artificial Neural Network (ANN) analysis techniques in determining susceptible zones of landslide hazard. The study is based on data obtained from various sources such as local authority; Dewan Bandaraya Kuala Lumpur (DBKL), Jabatan Kerja Raya (JKR) and other agencies. The data were analysed and processed using Arc GIS. The results were compared by quantifying the risk ranking and area differential. It was also compared with the zonation map classified by DBKL. The results suggested that ANN method gives better accuracy compared to MCDM with 18.18% higher accuracy assessment of the MCDM approach. This indicated that ANN provides more reliable results and it is probably due to its ability to learn from the environment thus portraying realistic and accurate result.

  2. Artificial Neural Network (ANN) Model to Predict Depression among Geriatric Population at a Slum in Kolkata, India.

    Science.gov (United States)

    Sau, Arkaprabha; Bhakta, Ishita

    2017-05-01

    Depression is one of the most important causes of mortality and morbidity among the geriatric population. Although, the aging brain is more vulnerable to depression, it cannot be considered as physiological and an inevitable part of ageing. Various sociodemographic and morbidity factors are responsible for the depression among them. Using Artificial Neural Network (ANN) model depression can be predicted from various sociodemographic variables and co morbid conditions even at community level by the grass root level health care workers. To predict depression among geriatric population from sociodemographic and morbidity attributes using ANN. An observational descriptive study with cross-sectional design was carried out at a slum under the service area of Bagbazar Urban Health and Training Centre (UHTC) in Kolkata. Among 126 elderlies under Bagbazar UHTC, 105 were interviewed using predesigned and pretested schedule. Depression status was assessed using 30 item Geriatric Depression Scale. WEKA 3.8.0 was used to develop the ANN model and test its performance. Prevalence of depression among the study population was 45.7%. Various sociodemographic variables like age, gender, literacy, living spouse, working status, personal income, family type, substance abuse and co morbid conditions like visual problem, mobility problem, hearing problem and sleeping problem were taken into consideration to develop the model. Prediction accuracy of this ANN model was 97.2%. Depression among geriatric population can be predicted accurately using ANN model from sociodemographic and morbidity attributes.

  3. Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN Technique

    Directory of Open Access Journals (Sweden)

    Awatif Soaded Alsaqqar

    2016-06-01

    Full Text Available In this research an Artificial Neural Network (ANN technique was applied for the prediction of Ryznar Index (RI of the flowing water from WTPs in Al-Karakh side (left side in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3 have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For Al-Dora WTP, ANN 3 model could be used as R was 92.8%.

  4. An Evolutionary Optimization Framework for Neural Networks and Neuromorphic Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Plank, James [University of Tennessee (UT); Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2016-01-01

    As new neural network and neuromorphic architectures are being developed, new training methods that operate within the constraints of the new architectures are required. Evolutionary optimization (EO) is a convenient training method for new architectures. In this work, we review a spiking neural network architecture and a neuromorphic architecture, and we describe an EO training framework for these architectures. We present the results of this training framework on four classification data sets and compare those results to other neural network and neuromorphic implementations. We also discuss how this EO framework may be extended to other architectures.

  5. The plasma automata network (PAN) architecture

    International Nuclear Information System (INIS)

    Cameron-Carey, C.M.

    1991-01-01

    Conventional neural networks consist of processing elements which are interconnected according to a specified topology. Typically, the number of processing elements and the interconnection topology are fixed. A neural network's information processing capability lies mainly in the variability of interconnection strengths, which directly influence activation patterns; these patterns represent entities and their interrelationships. Contrast this architecture, with its fixed topology and variable interconnection strengths, against one having dynamic topology and fixed connection strength. This paper reports on this proposed architecture in which there are no connections between processing elements. Instead, the processing elements form a plasma, exchanging information upon collision. A plasma can be populated with several different types of processing elements, each with their won activation function and self-modification mechanism. The activation patterns that are the plasma;s response to stimulation drive natural selection among processing elements which evolve to optimize performance

  6. The Segmentation of Point Clouds with K-Means and ANN (artifical Neural Network)

    Science.gov (United States)

    Kuçak, R. A.; Özdemir, E.; Erol, S.

    2017-05-01

    Segmentation of point clouds is recently used in many Geomatics Engineering applications such as the building extraction in urban areas, Digital Terrain Model (DTM) generation and the road or urban furniture extraction. Segmentation is a process of dividing point clouds according to their special characteristic layers. The present paper discusses K-means and self-organizing map (SOM) which is a type of ANN (Artificial Neural Network) segmentation algorithm which treats the segmentation of point cloud. The point clouds which generate with photogrammetric method and Terrestrial Lidar System (TLS) were segmented according to surface normal, intensity and curvature. Thus, the results were evaluated. LIDAR (Light Detection and Ranging) and Photogrammetry are commonly used to obtain point clouds in many remote sensing and geodesy applications. By photogrammetric method or LIDAR method, it is possible to obtain point cloud from terrestrial or airborne systems. In this study, the measurements were made with a Leica C10 laser scanner in LIDAR method. In photogrammetric method, the point cloud was obtained from photographs taken from the ground with a 13 MP non-metric camera.

  7. THE SEGMENTATION OF POINT CLOUDS WITH K-MEANS AND ANN (ARTIFICAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. A. Kuçak

    2017-05-01

    Full Text Available Segmentation of point clouds is recently used in many Geomatics Engineering applications such as the building extraction in urban areas, Digital Terrain Model (DTM generation and the road or urban furniture extraction. Segmentation is a process of dividing point clouds according to their special characteristic layers. The present paper discusses K-means and self-organizing map (SOM which is a type of ANN (Artificial Neural Network segmentation algorithm which treats the segmentation of point cloud. The point clouds which generate with photogrammetric method and Terrestrial Lidar System (TLS were segmented according to surface normal, intensity and curvature. Thus, the results were evaluated. LIDAR (Light Detection and Ranging and Photogrammetry are commonly used to obtain point clouds in many remote sensing and geodesy applications. By photogrammetric method or LIDAR method, it is possible to obtain point cloud from terrestrial or airborne systems. In this study, the measurements were made with a Leica C10 laser scanner in LIDAR method. In photogrammetric method, the point cloud was obtained from photographs taken from the ground with a 13 MP non-metric camera.

  8. Re-engineering Nascom's network management architecture

    Science.gov (United States)

    Drake, Brian C.; Messent, David

    1994-01-01

    The development of Nascom systems for ground communications began in 1958 with Project Vanguard. The low-speed systems (rates less than 9.6 Kbs) were developed following existing standards; but, there were no comparable standards for high-speed systems. As a result, these systems were developed using custom protocols and custom hardware. Technology has made enormous strides since the ground support systems were implemented. Standards for computer equipment, software, and high-speed communications exist and the performance of current workstations exceeds that of the mainframes used in the development of the ground systems. Nascom is in the process of upgrading its ground support systems and providing additional services. The Message Switching System (MSS), Communications Address Processor (CAP), and Multiplexer/Demultiplexer (MDM) Automated Control System (MACS) are all examples of Nascom systems developed using standards such as, X-windows, Motif, and Simple Network Management Protocol (SNMP). Also, the Earth Observing System (EOS) Communications (Ecom) project is stressing standards as an integral part of its network. The move towards standards has produced a reduction in development, maintenance, and interoperability costs, while providing operational quality improvement. The Facility and Resource Manager (FARM) project has been established to integrate the Nascom networks and systems into a common network management architecture. The maximization of standards and implementation of computer automation in the architecture will lead to continued cost reductions and increased operational efficiency. The first step has been to derive overall Nascom requirements and identify the functionality common to all the current management systems. The identification of these common functions will enable the reuse of processes in the management architecture and promote increased use of automation throughout the Nascom network. The MSS, CAP, MACS, and Ecom projects have indicated

  9. Prediction by Artificial Neural Networks (ANN of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius

    Directory of Open Access Journals (Sweden)

    Julio Rojas Naccha

    2012-09-01

    Full Text Available The predictive ability of Artificial Neural Network (ANN on the effect of the concentration (30, 40, 50 y 60 % w/w and temperature (30, 40 y 50°C of fructooligosaccharides solution, in the mass, moisture, volume and solids of osmodehydrated yacon cubes, and in the coefficients of the water means effective diffusivity with and without shrinkage was evaluated. The Feedforward type ANN with the Backpropagation training algorithms and the Levenberg-Marquardt weight adjustment was applied, using the following topology: 10-5 goal error, 0.01 learning rate, 0.5 moment coefficient, 2 input neurons, 6 output neurons, one hidden layer with 18 neurons, 15 training stages and logsig-pureline transfer functions. The overall average error achieved by the ANN was 3.44% and correlation coefficients were bigger than 0.9. No significant differences were found between the experimental values and the predicted values achieved by the ANN and with the predicted values achieved by a statistical model of second-order polynomial regression (p > 0.95.

  10. Navigation Architecture for a Space Mobile Network

    Science.gov (United States)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  11. NATO Human View Architecture and Human Networks

    Science.gov (United States)

    Handley, Holly A. H.; Houston, Nancy P.

    2010-01-01

    The NATO Human View is a system architectural viewpoint that focuses on the human as part of a system. Its purpose is to capture the human requirements and to inform on how the human impacts the system design. The viewpoint contains seven static models that include different aspects of the human element, such as roles, tasks, constraints, training and metrics. It also includes a Human Dynamics component to perform simulations of the human system under design. One of the static models, termed Human Networks, focuses on the human-to-human communication patterns that occur as a result of ad hoc or deliberate team formation, especially teams distributed across space and time. Parameters of human teams that effect system performance can be captured in this model. Human centered aspects of networks, such as differences in operational tempo (sense of urgency), priorities (common goal), and team history (knowledge of the other team members), can be incorporated. The information captured in the Human Network static model can then be included in the Human Dynamics component so that the impact of distributed teams is represented in the simulation. As the NATO militaries transform to a more networked force, the Human View architecture is an important tool that can be used to make recommendations on the proper mix of technological innovations and human interactions.

  12. Development of the brain's functional network architecture.

    Science.gov (United States)

    Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L

    2010-12-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.

  13. Ensemble Network Architecture for Deep Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Xi-liang Chen

    2018-01-01

    Full Text Available The popular deep Q learning algorithm is known to be instability because of the Q-value’s shake and overestimation action values under certain conditions. These issues tend to adversely affect their performance. In this paper, we develop the ensemble network architecture for deep reinforcement learning which is based on value function approximation. The temporal ensemble stabilizes the training process by reducing the variance of target approximation error and the ensemble of target values reduces the overestimate and makes better performance by estimating more accurate Q-value. Our results show that this architecture leads to statistically significant better value evaluation and more stable and better performance on several classical control tasks at OpenAI Gym environment.

  14. Applying a supervised ANN (artificial neural network) approach to the prognostication of driven wheel energy efficiency indices

    International Nuclear Information System (INIS)

    Taghavifar, Hamid; Mardani, Aref

    2014-01-01

    This paper examines the prediction of energy efficiency indices of driven wheels (i.e. traction coefficient and tractive power efficiency) as affected by wheel load, slippage and forward velocity at three different levels with three replicates to form a total of 162 data points. The pertinent experiments were carried out in the soil bin testing facility. A feed-forward ANN (artificial neural network) with standard BP (back propagation) algorithm was practiced to construct a supervised representation to predict the energy efficiency indices of driven wheels. It was deduced, in view of the statistical performance criteria (i.e. MSE (mean squared error) and R 2 ), that a supervised ANN with 3-8-10-2 topology and Levenberg–Marquardt training algorithm represented the optimal model. Modeling implementations indicated that ANN is a powerful technique to prognosticate the stochastic energy efficiency indices as affected by soil-wheel interactions with MSE of 0.001194 and R 2 of 0.987 and 0.9772 for traction coefficient and tractive power efficiency. It was found that traction coefficient and tractive power efficiency increase with increased slippage. A similar trend is valid for the influence of wheel load on the objective parameters. Wherein increase of velocity led to an increment of tractive power efficiency, velocity had no significant effect on traction coefficient. - Highlights: • Energy efficiency indexes were assessed as affected by tire parameters. • ANN was applied for prognostication of the objective parameters. • A 3-8-10-2 ANN with MSE of 0.001194 and R 2 of 0.987 and 0.9772 was designated as optimal model. • Optimal values of learning rate and momentum were found 0.9 and 0.5, respectively

  15. The modelling of lead removal from water by deep eutectic solvents functionalized CNTs: artificial neural network (ANN) approach.

    Science.gov (United States)

    Fiyadh, Seef Saadi; AlSaadi, Mohammed Abdulhakim; AlOmar, Mohamed Khalid; Fayaed, Sabah Saadi; Hama, Ako R; Bee, Sharifah; El-Shafie, Ahmed

    2017-11-01

    The main challenge in the lead removal simulation is the behaviour of non-linearity relationships between the process parameters. The conventional modelling technique usually deals with this problem by a linear method. The substitute modelling technique is an artificial neural network (ANN) system, and it is selected to reflect the non-linearity in the interaction among the variables in the function. Herein, synthesized deep eutectic solvents were used as a functionalized agent with carbon nanotubes as adsorbents of Pb 2+ . Different parameters were used in the adsorption study including pH (2.7 to 7), adsorbent dosage (5 to 20 mg), contact time (3 to 900 min) and Pb 2+ initial concentration (3 to 60 mg/l). The number of experimental trials to feed and train the system was 158 runs conveyed in laboratory scale. Two ANN types were designed in this work, the feed-forward back-propagation and layer recurrent; both methods are compared based on their predictive proficiency in terms of the mean square error (MSE), root mean square error, relative root mean square error, mean absolute percentage error and determination coefficient (R 2 ) based on the testing dataset. The ANN model of lead removal was subjected to accuracy determination and the results showed R 2 of 0.9956 with MSE of 1.66 × 10 -4 . The maximum relative error is 14.93% for the feed-forward back-propagation neural network model.

  16. Simulation of CO2 Solubility in Polystyrene-b-Polybutadieneb-Polystyrene (SEBS) by artificial intelligence network (ANN) method

    Science.gov (United States)

    Sharudin, R. W.; AbdulBari Ali, S.; Zulkarnain, M.; Shukri, M. A.

    2018-05-01

    This study reports on the integration of Artificial Neural Network (ANNs) with experimental data in predicting the solubility of carbon dioxide (CO2) blowing agent in SEBS by generating highest possible value for Regression coefficient (R2). Basically, foaming of thermoplastic elastomer with CO2 is highly affected by the CO2 solubility. The ability of ANN in predicting interpolated data of CO2 solubility was investigated by comparing training results via different method of network training. Regards to the final prediction result for CO2 solubility by ANN, the prediction trend (output generate) was corroborated with the experimental results. The obtained result of different method of training showed the trend of output generated by Gradient Descent with Momentum & Adaptive LR (traingdx) required longer training time and required more accurate input to produce better output with final Regression Value of 0.88. However, it goes vice versa with Levenberg-Marquardt (trainlm) technique as it produced better output in quick detention time with final Regression Value of 0.91.

  17. Cloud Radio Access Network architecture. Towards 5G mobile networks

    DEFF Research Database (Denmark)

    Checko, Aleksandra

    Cloud Radio Access Network (C-RAN) is a novel mobile network architecture which can address a number of challenges that mobile operators face while trying to support ever-growing end-users’ needs towards 5th generation of mobile networks (5G). The main idea behind C-RAN is to split the base...... stations into radio and baseband parts, and pool the Baseband Units (BBUs) from multiple base stations into a centralized and virtualized BBU Pool. This gives a number of benefits in terms of cost and capacity. However, the challenge is then to find an optimal functionality splitting point as well...... as to design the socalled fronthaul network, interconnecting those parts. This thesis focuses on quantifying those benefits and proposing a flexible and capacity-optimized fronthaul network. It is shown that a C-RAN with a functional split resulting in a variable bit rate on the fronthaul links brings cost...

  18. Deep Space Network information system architecture study

    Science.gov (United States)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  19. Applying of the Artificial Neural Networks (ANN) to Identify and Characterize Sweet Spots in Shale Gas Formations

    Science.gov (United States)

    Puskarczyk, Edyta

    2018-03-01

    The main goal of the study was to enhance and improve information about the Ordovician and Silurian gas-saturated shale formations. Author focused on: firstly, identification of the shale gas formations, especially the sweet spots horizons, secondly, classification and thirdly, the accurate characterization of divisional intervals. Data set comprised of standard well logs from the selected well. Shale formations are represented mainly by claystones, siltstones, and mudstones. The formations are also partially rich in organic matter. During the calculations, information about lithology of stratigraphy weren't taken into account. In the analysis, selforganizing neural network - Kohonen Algorithm (ANN) was used for sweet spots identification. Different networks and different software were tested and the best network was used for application and interpretation. As a results of Kohonen networks, groups corresponding to the gas-bearing intervals were found. The analysis showed diversification between gas-bearing formations and surrounding beds. It is also shown that internal diversification in sweet spots is present. Kohonen algorithm was also used for geological interpretation of well log data and electrofacies prediction. Reliable characteristic into groups shows that Ja Mb and Sa Fm which are usually treated as potential sweet spots only partially have good reservoir conditions. It is concluded that ANN appears to be useful and quick tool for preliminary classification of members and sweet spots identification.

  20. A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN)

    Science.gov (United States)

    Raj, A. Stanley; Srinivas, Y.; Oliver, D. Hudson; Muthuraj, D.

    2014-03-01

    The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model.

  1. Underwater Sensor Networks: A New Energy Efficient and Robust Architecture

    NARCIS (Netherlands)

    Climent, Salvador; Capella, Juan Vincente; Meratnia, Nirvana; Serrano, Juan José

    2012-01-01

    The specific characteristics of underwater environments introduce new challenges for networking protocols. In this paper, a specialized architecture for underwater sensor networks (UWSNs) is proposed and evaluated. Experiments are conducted in order to analyze the suitability of this protocol for

  2. Establishment of a Spaceport Network Architecture

    Science.gov (United States)

    Larson, Wiley J.; Gill, Tracy R.; Mueller, Robert P.; Brink, Jeffrey S.

    2012-01-01

    Since the beginning of the space age, the main actors in space exploration have been governmental agencies, enabling a privileged access to space, but with very restricted and rare missions. The last decade has seen the rise of space tourism, and the founding of ambitious private space mining companies, showing the beginnings of a new exploration era, that is based on a more generalized and regular access to space and which is not limited to the Earth's vicinity. However, the cost of launching sufficient mass into orbit to sustain these inspiring challenges is prohibitive, and the necessary infrastructures to support these missions is still lacking. To provide easy and affordable access into orbital and deep space destinations, there is the need to create a network of spaceports via specific waypoint locations coupled with the use of natural resources, or In Situ Resource Utilization (ISRU), to provide a more economical solution. As part of the International Space University Space Studies Program 2012, the international and intercultural team of Operations and Service Infrastructure for Space (OASIS) proposes an interdisciplinary answer to the problem of economical space access and transportation. This paper presents a summary of a detailed report [1] of the different phases of a project for developing a network of spaceports throughout the Solar System in a timeframe of 50 years. The requirements, functions, critical technologies and mission architecture of this network of spaceports are outlined in a roadmap of the important steps and phases. The economic and financial aspects are emphasized in order to allow a sustainable development of the network in a public-private partnership via the formation of an International Spaceport Authority (ISPA). The approach includes engineering, scientific, financial, legal, policy, and societal aspects. Team OASIS intends to provide guidelines to make the development of space transportation via a spaceports logistics network

  3. Seafloor classification using acoustic backscatter echo-waveform - Artificial neural network applications

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Mahale, V.; Navelkar, G.S.; Desai, R.G.P.

    In this paper seafloor classifications system based on artificial neural network (ANN) has been designed. The ANN architecture employed here is a combination of Self Organizing Feature Map (SOFM) and Linear Vector Quantization (LVQ1). Currently...

  4. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots

    Science.gov (United States)

    Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo

    2017-12-01

    Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.

  5. Control Architecture for Intentional Island Operation in Distribution Network with High Penetration of Distributed Generation

    DEFF Research Database (Denmark)

    Chen, Yu

    , the feasibility of the application of Artificial Neural Network (ANN) to ICA is studied, in order to improve the computation efficiency for ISR calculation. Finally, the integration of ICA into Dynamic Security Assessment (DSA), the ICA implementation, and the development of ICA are discussed....... to utilize them for maintaining the security of the power supply under the emergency situations, has been of great interest for study. One proposal is the intentional island operation. This PhD project is intended to develop a control architecture for the island operation in distribution system with high...... amount of DGs. As part of the NextGen project, this project focuses on the system modeling and simulation regarding the control architecture and recommends the development of a communication and information exchange system based on IEC 61850. This thesis starts with the background of this PhD project...

  6. Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique

    Energy Technology Data Exchange (ETDEWEB)

    Wijayasekara, Dumidu, E-mail: wija2589@vandals.uidaho.edu [Department of Computer Science, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83402 (United States); Manic, Milos [Department of Computer Science, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83402 (United States); Sabharwall, Piyush [Idaho National Laboratory, Idaho Falls, ID (United States); Utgikar, Vivek [Department of Chemical Engineering, University of Idaho, Idaho Falls, ID 83402 (United States)

    2011-07-15

    Highlights: > Performance prediction of PCHE using artificial neural networks. > Evaluating artificial neural network performance for PCHE modeling. > Selection of over-training resilient artificial neural networks. > Artificial neural network architecture selection for modeling problems with small data sets. - Abstract: Artificial Neural Networks (ANN) have been used in the past to predict the performance of printed circuit heat exchangers (PCHE) with satisfactory accuracy. Typically published literature has focused on optimizing ANN using a training dataset to train the network and a testing dataset to evaluate it. Although this may produce outputs that agree with experimental results, there is a risk of over-training or over-learning the network rather than generalizing it, which should be the ultimate goal. An over-trained network is able to produce good results with the training dataset but fails when new datasets with subtle changes are introduced. In this paper we present EBaLM-OTR (error back propagation and Levenberg-Marquardt algorithms for over training resilience) technique, which is based on a previously discussed method of selecting neural network architecture that uses a separate validation set to evaluate different network architectures based on mean square error (MSE), and standard deviation of MSE. The method uses k-fold cross validation. Therefore in order to select the optimal architecture for the problem, the dataset is divided into three parts which are used to train, validate and test each network architecture. Then each architecture is evaluated according to their generalization capability and capability to conform to original data. The method proved to be a comprehensive tool in identifying the weaknesses and advantages of different network architectures. The method also highlighted the fact that the architecture with the lowest training error is not always the most generalized and therefore not the optimal. Using the method the testing

  7. Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique

    International Nuclear Information System (INIS)

    Wijayasekara, Dumidu; Manic, Milos; Sabharwall, Piyush; Utgikar, Vivek

    2011-01-01

    Highlights: → Performance prediction of PCHE using artificial neural networks. → Evaluating artificial neural network performance for PCHE modeling. → Selection of over-training resilient artificial neural networks. → Artificial neural network architecture selection for modeling problems with small data sets. - Abstract: Artificial Neural Networks (ANN) have been used in the past to predict the performance of printed circuit heat exchangers (PCHE) with satisfactory accuracy. Typically published literature has focused on optimizing ANN using a training dataset to train the network and a testing dataset to evaluate it. Although this may produce outputs that agree with experimental results, there is a risk of over-training or over-learning the network rather than generalizing it, which should be the ultimate goal. An over-trained network is able to produce good results with the training dataset but fails when new datasets with subtle changes are introduced. In this paper we present EBaLM-OTR (error back propagation and Levenberg-Marquardt algorithms for over training resilience) technique, which is based on a previously discussed method of selecting neural network architecture that uses a separate validation set to evaluate different network architectures based on mean square error (MSE), and standard deviation of MSE. The method uses k-fold cross validation. Therefore in order to select the optimal architecture for the problem, the dataset is divided into three parts which are used to train, validate and test each network architecture. Then each architecture is evaluated according to their generalization capability and capability to conform to original data. The method proved to be a comprehensive tool in identifying the weaknesses and advantages of different network architectures. The method also highlighted the fact that the architecture with the lowest training error is not always the most generalized and therefore not the optimal. Using the method the

  8. A research on the application of software defined networking in satellite network architecture

    Science.gov (United States)

    Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing

    2017-10-01

    Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.

  9. Neuropathological findings processed by artificial neural networks (ANNs can perfectly distinguish Alzheimer's patients from controls in the Nun Study

    Directory of Open Access Journals (Sweden)

    Snowdon David

    2007-06-01

    Full Text Available Abstract Background Many reports have described that there are fewer differences in AD brain neuropathologic lesions between AD patients and control subjects aged 80 years and older, as compared with the considerable differences between younger persons with AD and controls. In fact some investigators have suggested that since neurofibrillary tangles (NFT can be identified in the brains of non-demented elderly subjects they should be considered as a consequence of the aging process. At present, there are no universally accepted neuropathological criteria which can mathematically differentiate AD from healthy brain in the oldest old. The aim of this study is to discover the hidden and non-linear associations among AD pathognomonic brain lesions and the clinical diagnosis of AD in participants in the Nun Study through Artificial Neural Networks (ANNs analysis Methods The analyses were based on 26 clinically- and pathologically-confirmed AD cases and 36 controls who had normal cognitive function. The inputs used for the analyses were just NFT and neuritic plaques counts in neocortex and hippocampus, for which, despite substantial differences in mean lesions counts between AD cases and controls, there was a substantial overlap in the range of lesion counts. Results By taking into account the above four neuropathological features, the overall predictive capability of ANNs in sorting out AD cases from normal controls reached 100%. The corresponding accuracy obtained with Linear Discriminant Analysis was 92.30%. These results were consistently obtained in ten independent experiments. The same experiments were carried out with ANNs on a subgroup of 13 non severe AD patients and on the same 36 controls. The results obtained in terms of prediction accuracy with ANNs were exactly the same. Input relevance analysis confirmed the relative dominance of NFT in neocortex in discriminating between AD patients and controls and indicated the lesser importance

  10. Neuropathological findings processed by artificial neural networks (ANNs) can perfectly distinguish Alzheimer's patients from controls in the Nun Study.

    Science.gov (United States)

    Grossi, Enzo; Buscema, Massimo P; Snowdon, David; Antuono, Piero

    2007-06-21

    Many reports have described that there are fewer differences in AD brain neuropathologic lesions between AD patients and control subjects aged 80 years and older, as compared with the considerable differences between younger persons with AD and controls. In fact some investigators have suggested that since neurofibrillary tangles (NFT) can be identified in the brains of non-demented elderly subjects they should be considered as a consequence of the aging process. At present, there are no universally accepted neuropathological criteria which can mathematically differentiate AD from healthy brain in the oldest old. The aim of this study is to discover the hidden and non-linear associations among AD pathognomonic brain lesions and the clinical diagnosis of AD in participants in the Nun Study through Artificial Neural Networks (ANNs) analysis The analyses were based on 26 clinically- and pathologically-confirmed AD cases and 36 controls who had normal cognitive function. The inputs used for the analyses were just NFT and neuritic plaques counts in neocortex and hippocampus, for which, despite substantial differences in mean lesions counts between AD cases and controls, there was a substantial overlap in the range of lesion counts. By taking into account the above four neuropathological features, the overall predictive capability of ANNs in sorting out AD cases from normal controls reached 100%. The corresponding accuracy obtained with Linear Discriminant Analysis was 92.30%. These results were consistently obtained in ten independent experiments. The same experiments were carried out with ANNs on a subgroup of 13 non severe AD patients and on the same 36 controls. The results obtained in terms of prediction accuracy with ANNs were exactly the same. Input relevance analysis confirmed the relative dominance of NFT in neocortex in discriminating between AD patients and controls and indicated the lesser importance played by NP in the hippocampus. The results of this study

  11. Architectures of electro-optical packet switched networks

    DEFF Research Database (Denmark)

    Berger, Michael Stubert

    2004-01-01

    and examines possible architectures for future high capacity networks with high capacity nodes. It is assumed that optics will play a key role in this scenario, and in this respect, the European IST research project DAVID aimed at proposing viable architectures for optical packet switching, exploiting the best...... from optics and electronics. An overview of the DAVID network architecture is given, focusing on the MAN and WAN architecture as well as the MPLS based network hierarchy. A statistical model of the optical slot generation process is presented and utilised to evaluate delay vs. efficiency. Furthermore...... architecture for a buffered crossbar switch is presented. The architecture uses two levels of backpressure (flow control) with different constraints on round trip time. No additional scheduling complexity is introduced, and for the actual example shown, a reduction in memory of 75% was obtained at the cost...

  12. Seafloor classification using artificial neural network architecture from central western continental shelf of India

    Science.gov (United States)

    Mahale, Vasudev; Chakraborty, Bishwajit; Navelkar, Gajanan S.; Prabhu Desai, R. G.

    2005-04-01

    Seafloor classification studies are carried out at the central western continental shelf of India employing two frequency normal incidence single beam echo-sounder backscatter data. Echo waveform data from different seafloor sediment areas are utilized for present study. Three artificial neural network (ANN) architectures, e.g., Self-Organization Feature Maps (SOFM), Multi-Layer Perceptron (MLP), and Learning Vector Quantization (LVQ) are applied for seafloor classifications. In case of MLP, features are extracted from the received echo signal, on the basis of which, classification is carried out. In the case of the SOFM, a simple moving average echo waveform pre-processing technique is found to yield excellent classification results. Finally, LVQ, which is known as ANN of hybrid architecture is found to be the efficient seafloor classifier especially from the point of view of the real-time application. The simultaneously acquired sediment sample, multi-beam bathymetry and side scan sonar and echo waveform based seafloor classifications results are indicative of the depositional (inner shelf), non-depositional or erosion (outer shelf) environment and combination of both in the transition zone. [Work supported by DIT.

  13. Advances in network systems architectures, security, and applications

    CERN Document Server

    Awad, Ali; Furtak, Janusz; Legierski, Jarosław

    2017-01-01

    This book provides the reader with a comprehensive selection of cutting–edge algorithms, technologies, and applications. The volume offers new insights into a range of fundamentally important topics in network architectures, network security, and network applications. It serves as a reference for researchers and practitioners by featuring research contributions exemplifying research done in the field of network systems. In addition, the book highlights several key topics in both theoretical and practical aspects of networking. These include wireless sensor networks, performance of TCP connections in mobile networks, photonic data transport networks, security policies, credentials management, data encryption for network transmission, risk management, live TV services, and multicore energy harvesting in distributed systems. .

  14. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    Science.gov (United States)

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  15. Scaling architecture-on-demand based optical networks

    NARCIS (Netherlands)

    Meyer, Hugo; Sancho, Jose Carlos; Mrdakovic, Milica; Peng, Shuping; Simeonidou, Dimitra; Miao, Wang; Calabretta, Nicola

    2016-01-01

    This paper analyzes methodologies that allow scaling properly Architecture-On-Demand (AoD) based optical networks. As Data Centers and HPC systems are growing in size and complexity, optical networks seem to be the way to scale the bandwidth of current network infrastructures. To scale the number of

  16. Security Aspects of an Enterprise-Wide Network Architecture.

    Science.gov (United States)

    Loew, Robert; Stengel, Ingo; Bleimann, Udo; McDonald, Aidan

    1999-01-01

    Presents an overview of two projects that concern local area networks and the common point between networks as they relate to network security. Discusses security architectures based on firewall components, packet filters, application gateways, security-management components, an intranet solution, user registration by Web form, and requests for…

  17. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN).

    Science.gov (United States)

    Titah, Harmin Sulistiyaning; Halmi, Mohd Izuan Effendi Bin; Abdullah, Siti Rozaimah Sheikh; Hasan, Hassimi Abu; Idris, Mushrifah; Anuar, Nurina

    2018-06-07

    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg -1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R 2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.

  18. The Hi-Ring architecture for datacentre networks

    DEFF Research Database (Denmark)

    Galili, Michael; Kamchevska, Valerija; Ding, Yunhong

    2016-01-01

    This paper summarizes recent work on a hierarchical ring-based network architecture (Hi-Ring) for datacentre and short-range applications. The architecture allows leveraging benefits of optical switching technologies while maintaining a high level of connection granularity. We discuss results...

  19. Wireless sensor networks architectures and protocols

    CERN Document Server

    Callaway, Jr, Edgar H

    2003-01-01

    Introduction to Wireless Sensor NetworksApplications and MotivationNetwork Performance ObjectivesContributions of this BookOrganization of this BookThe Development of Wireless Sensor NetworksEarly Wireless NetworksWireless Data NetworksWireless Sensor and Related NetworksConclusionThe Physical LayerSome Physical Layer ExamplesA Practical Physical Layer for Wireless Sensor NetworksSimulations and ResultsConclusionThe Data Link LayerMedium Access Control TechniquesThe Mediation DeviceSystem Analysis and SimulationConclusionThe Network LayerSome Network Design ExamplesA Wireless Sensor Network De

  20. A Reference Architecture for Network-Centric Information Systems

    National Research Council Canada - National Science Library

    Renner, Scott; Schaefer, Ronald

    2003-01-01

    This paper presents the "C2 Enterprise Reference Architecture" (C2ERA), which is a new technical concept of operations for building information systems better suited to the Network-Centric Warfare (NCW) environment...

  1. Design of Network Architectures: Role of Game Theory and Economics

    OpenAIRE

    Shetty, Nikhil

    2010-01-01

    The economics of the market that a network architecture enables has a important bearing on its success and eventual adoption. Some of these economic issues are tightly coupled with the design of the network architecture. A poor design could end up making certain markets very difficult to enable, even if they are in the better interest of society. Theanalysis of these cross-disciplinary problems requires understanding both the technology and the economic aspects. This thesis introduces three m...

  2. Prediction ofWater Quality Parameters (NO3, CL in Karaj Riverby Usinga Combinationof Wavelet Neural Network, ANN and MLRModels

    Directory of Open Access Journals (Sweden)

    T. Rajaee

    2016-10-01

    Full Text Available IntroductionThe water quality is an issue of ongoing concern. Evaluation of the quantity and quality of running waters is considerable in hydro-environmental management.The prediction and control of the quality of Karaj river water, as one of the important needed water supply sources of Tehran, possesses great importance. In this study, Performance of Artificial Neural Network (ANN, Wavelet Neural Network combination (WANN and multi linear regression (MLR models, to predict next month the Nitrate (NO3 and Chloride (CL ions of "gate ofBylaqan sluice" station located in Karaj River has been evaluated. Materials and MethodsIn this research two separate ANN models for prediction of NO3 and CL has been expanded. Each one of the parameters for prediction (NO3 / CL has been put related to the past amounts of the same time series (NO3 / CL and its amounts of Q in past months.From astatisticalperiod of10yearswas usedforthe input of the models. Hence 80% of entire data from (96 initial months of data as training set, next 10% of data (12 months and 10% of the end of time series (terminal 12 months were considered as for validation and test of the models, respectively. In WANNcombination model, the real monthly observed time series of river discharge (Q and mentioned qualityparameters(NO3 / CL were decomposed to some sub-time series at different levels by wavelet analysis.Then the decomposed quality parameters to predict and Q time series were used at different levels as inputs to the ANN technique for predicting one-step-ahead Nitrate and Chloride. These time series play various roles in the original time series and the behavior of each is distinct, so the contribution to the original time series varies from each other. In addition, prediction of high NO3 and CL values greater than mean of data that have great importancewere investigated by the models. The capability of the models was evaluated by Coefficient of Efficiency (E and the Root Mean Square

  3. Comparing the Complexity of Two Network Architectures

    Directory of Open Access Journals (Sweden)

    Olivier Z. Zheng

    2017-10-01

    Full Text Available A Service Provider has different methods to provide a VPN service to its customers. But which method is the least complex to implement? In this paper, two architectures are described and analysed. Based on the analyses, two methods of complexity calculation are designed to evaluate the complexity of the architecture: the first method evaluates the resources consumed, the second evaluates the number of cases possible.

  4. Virtualized cognitive network architecture for 5G cellular networks

    KAUST Repository

    Elsawy, Hesham; Dahrouj, Hayssam; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    , tactile Internet, online gaming, multimedia). Such an ossified architecture imposes several hurdles against achieving the ambitious metrics of next generation cellular systems. This article first highlights the features and drawbacks of such architectural

  5. A security architecture for 5G networks

    OpenAIRE

    Arfaoui, Ghada; Bisson, Pascal; Blom, Rolf; Borgaonkar, Ravishankar; Englund, Håkan; Félix, Edith; Klaedtke, Felix; Nakarmi, Prajwol Kumar; Näslund, Mats; O’Hanlon, Piers; Papay, Juri; Suomalainen, Jani; Surridge, Mike; Wary, Jean-Philippe; Zahariev, Alexander

    2018-01-01

    5G networks will provide opportunities for the creation of new services, for new business models, and for new players to enter the mobile market. The networks will support efficient and cost-effective launch of a multitude of services, tailored for different vertical markets having varying service and security requirements, and involving a large number of actors. Key technology concepts are network slicing and network softwarisation, including network function virtualisation and software-defi...

  6. Area analysis of interconnection networks implemented on the honeycomb architecture

    Energy Technology Data Exchange (ETDEWEB)

    Milutinovic, D

    1996-12-31

    The are utilization of interconnection networks for parallel processing on one form of uniform parallel architecture of cellular type is analyzed. Formulae for the number of cells necessity to realize a networks and the efficiency factor of the system are derived. 15 refs.

  7. Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    Science.gov (United States)

    Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  8. Architecture for Cognitive Networking within NASA's Future Space Communications Infrastructure

    Science.gov (United States)

    Clark, Gilbert; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, GEO, MEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes an architecture enabling the development and deployment of cognitive networking capabilities into the envisioned future NASA space communications infrastructure. We begin by discussing the need for increased automation, including inter-system discovery and collaboration. This discussion frames the requirements for an architecture supporting cognitive networking for future missions and relays, including both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture, and results of implementation and initial testing of a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  9. DAPNA: an architectural framework for data processing networks

    NARCIS (Netherlands)

    Sözer, Hasan; Nouta, Sander; Wombacher, Andreas; Perona, Paolo

    2013-01-01

    A data processing network is as a set of (software) components connected through communication channels to apply a series of operations on data. Realization and maintenance of large-scale data processing networks necessitate an architectural approach that supports analysis, verification,

  10. Designing network on-chip architectures in the nanoscale era

    CERN Document Server

    Flich, Jose

    2010-01-01

    Going beyond isolated research ideas and design experiences, Designing Network On-Chip Architectures in the Nanoscale Era covers the foundations and design methods of network on-chip (NoC) technology. The contributors draw on their own lessons learned to provide strong practical guidance on various design issues.Exploring the design process of the network, the first part of the book focuses on basic aspects of switch architecture and design, topology selection, and routing implementation. In the second part, contributors discuss their experiences in the industry, offering a roadmap to recent p

  11. Artificial Neural Networks for differential diagnosis of breast lesions in MR-Mammography: A systematic approach addressing the influence of network architecture on diagnostic performance using a large clinical database

    International Nuclear Information System (INIS)

    Dietzel, Matthias; Baltzer, Pascal A.T.; Dietzel, Andreas; Zoubi, Ramy; Gröschel, Tobias; Burmeister, Hartmut P.; Bogdan, Martin; Kaiser, Werner A.

    2012-01-01

    Rationale and objectives: Differential diagnosis of lesions in MR-Mammography (MRM) remains a complex task. The aim of this MRM study was to design and to test robustness of Artificial Neural Network architectures to predict malignancy using a large clinical database. Materials and methods: For this IRB-approved investigation standardized protocols and study design were applied (T1w-FLASH; 0.1 mmol/kgBW Gd-DTPA; T2w-TSE; histological verification after MRM). All lesions were evaluated by two experienced (>500 MRM) radiologists in consensus. In every lesion, 18 previously published descriptors were assessed and documented in the database. An Artificial Neural Network (ANN) was developed to process this database (The-MathWorks/Inc., feed-forward-architecture/resilient back-propagation-algorithm). All 18 descriptors were set as input variables, whereas histological results (malignant vs. benign) was defined as classification variable. Initially, the ANN was optimized in terms of “Training Epochs” (TE), “Hidden Layers” (HL), “Learning Rate” (LR) and “Neurons” (N). Robustness of the ANN was addressed by repeated evaluation cycles (n: 9) with receiver operating characteristics (ROC) analysis of the results applying 4-fold Cross Validation. The best network architecture was identified comparing the corresponding Area under the ROC curve (AUC). Results: Histopathology revealed 436 benign and 648 malignant lesions. Enhancing the level of complexity could not increase diagnostic accuracy of the network (P: n.s.). The optimized ANN architecture (TE: 20, HL: 1, N: 5, LR: 1.2) was accurate (mean-AUC 0.888; P: <0.001) and robust (CI: 0.885–0.892; range: 0.880–0.898). Conclusion: The optimized neural network showed robust performance and high diagnostic accuracy for prediction of malignancy on unknown data.

  12. Artificial Neural Networks for differential diagnosis of breast lesions in MR-Mammography: a systematic approach addressing the influence of network architecture on diagnostic performance using a large clinical database.

    Science.gov (United States)

    Dietzel, Matthias; Baltzer, Pascal A T; Dietzel, Andreas; Zoubi, Ramy; Gröschel, Tobias; Burmeister, Hartmut P; Bogdan, Martin; Kaiser, Werner A

    2012-07-01

    Differential diagnosis of lesions in MR-Mammography (MRM) remains a complex task. The aim of this MRM study was to design and to test robustness of Artificial Neural Network architectures to predict malignancy using a large clinical database. For this IRB-approved investigation standardized protocols and study design were applied (T1w-FLASH; 0.1 mmol/kgBW Gd-DTPA; T2w-TSE; histological verification after MRM). All lesions were evaluated by two experienced (>500 MRM) radiologists in consensus. In every lesion, 18 previously published descriptors were assessed and documented in the database. An Artificial Neural Network (ANN) was developed to process this database (The-MathWorks/Inc., feed-forward-architecture/resilient back-propagation-algorithm). All 18 descriptors were set as input variables, whereas histological results (malignant vs. benign) was defined as classification variable. Initially, the ANN was optimized in terms of "Training Epochs" (TE), "Hidden Layers" (HL), "Learning Rate" (LR) and "Neurons" (N). Robustness of the ANN was addressed by repeated evaluation cycles (n: 9) with receiver operating characteristics (ROC) analysis of the results applying 4-fold Cross Validation. The best network architecture was identified comparing the corresponding Area under the ROC curve (AUC). Histopathology revealed 436 benign and 648 malignant lesions. Enhancing the level of complexity could not increase diagnostic accuracy of the network (P: n.s.). The optimized ANN architecture (TE: 20, HL: 1, N: 5, LR: 1.2) was accurate (mean-AUC 0.888; P: <0.001) and robust (CI: 0.885-0.892; range: 0.880-0.898). The optimized neural network showed robust performance and high diagnostic accuracy for prediction of malignancy on unknown data. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Anne Fine

    Directory of Open Access Journals (Sweden)

    Philip Gaydon

    2015-04-01

    Full Text Available An interview with Anne Fine with an introduction and aside on the role of children’s literature in our lives and development, and our adult perceptions of the suitability of childhood reading material. Since graduating from Warwick in 1968 with a BA in Politics and History, Anne Fine has written over fifty books for children and eight for adults, won the Carnegie Medal twice (for Goggle-Eyes in 1989 and Flour Babies in 1992, been a highly commended runner-up three times (for Bill’s New Frock in 1989, The Tulip Touch in 1996, and Up on Cloud Nine in 2002, been shortlisted for the Hans Christian Andersen Award (the highest recognition available to a writer or illustrator of children’s books, 1998, undertaken the positon of Children’s Laureate (2001-2003, and been awarded an OBE for her services to literature (2003. Warwick presented Fine with an Honorary Doctorate in 2005. Philip Gaydon’s interview with Anne Fine was recorded as part of the ‘Voices of the University’ oral history project, co-ordinated by Warwick’s Institute of Advanced Study.

  14. Interconnection network architectures based on integrated orbital angular momentum emitters

    Science.gov (United States)

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  15. Optimum Neural Network Architecture for Precipitation Prediction of Myanmar

    OpenAIRE

    Khaing Win Mar; Thinn Thu Naing

    2008-01-01

    Nowadays, precipitation prediction is required for proper planning and management of water resources. Prediction with neural network models has received increasing interest in various research and application domains. However, it is difficult to determine the best neural network architecture for prediction since it is not immediately obvious how many input or hidden nodes are used in the model. In this paper, neural network model is used as a forecasting tool. The major aim is to evaluate a s...

  16. Emulation of Neural Networks on a Nanoscale Architecture

    International Nuclear Information System (INIS)

    Eshaghian-Wilner, Mary M; Friesz, Aaron; Khitun, Alex; Navab, Shiva; Parker, Alice C; Wang, Kang L; Zhou, Chongwu

    2007-01-01

    In this paper, we propose using a nanoscale spin-wave-based architecture for implementing neural networks. We show that this architecture can efficiently realize highly interconnected neural network models such as the Hopfield model. In our proposed architecture, no point-to-point interconnection is required, so unlike standard VLSI design, no fan-in/fan-out constraint limits the interconnectivity. Using spin-waves, each neuron could broadcast to all other neurons simultaneously and similarly a neuron could concurrently receive and process multiple data. Therefore in this architecture, the total weighted sum to each neuron can be computed by the sum of the values from all the incoming waves to that neuron. In addition, using the superposition property of waves, this computation can be done in O(1) time, and neurons can update their states quite rapidly

  17. Learning, memory, and the role of neural network architecture.

    Directory of Open Access Journals (Sweden)

    Ann M Hermundstad

    2011-06-01

    Full Text Available The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.

  18. Security Policy for a Generic Space Exploration Communication Network Architecture

    Science.gov (United States)

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  19. Architectural transformations in network services and distributed systems

    CERN Document Server

    Luntovskyy, Andriy

    2017-01-01

    With the given work we decided to help not only the readers but ourselves, as the professionals who actively involved in the networking branch, with understanding the trends that have developed in recent two decades in distributed systems and networks. Important architecture transformations of distributed systems have been examined. The examples of new architectural solutions are discussed. Content Periodization of service development Energy efficiency Architectural transformations in Distributed Systems Clustering and Parallel Computing, performance models Cloud Computing, RAICs, Virtualization, SDN Smart Grid, Internet of Things, Fog Computing Mobile Communication from LTE to 5G, DIDO, SAT-based systems Data Security Guaranteeing Distributed Systems Target Groups Students in EE and IT of universities and (dual) technical high schools Graduated engineers as well as teaching staff About the Authors Andriy Luntovskyy provides classes on networks, mobile communication, software technology, distributed systems, ...

  20. Preliminary Study on Application of Artificial Neural Networks (ANN) for Determining the Peroxide Value of Three Commercial Palm Oil Based FTIR Spectrum)

    International Nuclear Information System (INIS)

    Azwan Mat Lazim; Musa Ahmad; Zuriati Zakaria; Mohd Suzeren Jamil; Suria Ramli; Faiz Zainuddin; Mohd Nasir Taib; Mat Nasir Mat Arip

    2013-01-01

    Peroxide value is one of the measurements that being used to determine the peroxide in oil samples produce from the peroxide compound and hydroperoxide group at the primary level of lipid oxidation. In this study, 3 commercial palm cooking oils were selected and labeled as A, B and C. Two different conditions were applied to the samples. First, the oil sample was exposed to the air for three months (labeled as A) while samples B and C were used for frying for many times. Two inputs from FTIR spectra (3444 cm -1 and 3450 cm -1 ) were chosen for the ANN training. The suitable architecture for this training is 2:20:1. The prediction made by ANN was very accurate and compatible to the result which obtained from the standard method. A low average error (0.48) was obtained when the hidden neuron (20) and the epochs (300) were used. (author)

  1. Power, Avionics and Software Communication Network Architecture

    Science.gov (United States)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).

  2. Convolutional neural network architectures for predicting DNA–protein binding

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  3. ExScal Backbone Network Architecture

    Science.gov (United States)

    2005-01-01

    802.11 battery powered nodes was laid over the sensor network. We adopted the Stargate platform for the backbone tier to serve as the basis for...its head. XSS Hardware and Network: XSS stands for eXtreme Scaling Stargate . A stargate is a linux-based single board computer. It has a 400 MHz

  4. Hybrid RRM Architecture for Future Wireless Networks

    DEFF Research Database (Denmark)

    Tragos, Elias; Mihovska, Albena D.; Mino, Emilio

    2007-01-01

    The concept of ubiquitous and scalable system is applied in the IST WINNER II [1] project to deliver optimum performance for different deployment scenarios from local area to wide area wireless networks. The integration of cellular and local area networks in a unique radio system will provide a g...

  5. Classifying Sources Influencing Indoor Air Quality (IAQ Using Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Shaharil Mad Saad

    2015-05-01

    Full Text Available Monitoring indoor air quality (IAQ is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN—a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC, base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room’s conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity.

  6. Design Guidelines for New Generation Network Architecture

    Science.gov (United States)

    Harai, Hiroaki; Fujikawa, Kenji; Kafle, Ved P.; Miyazawa, Takaya; Murata, Masayuki; Ohnishi, Masaaki; Ohta, Masataka; Umezawa, Takeshi

    Limitations are found in the recent Internet because a lot of functions and protocols are patched to the original suite of layered protocols without considering global optimization. This reveals that end-to-end argument in the original Internet was neither sufficient for the current societal network and nor for a sustainable network of the future. In this position paper, we present design guidelines for a future network, which we call the New Generation Network, which provides the inclusion of diverse human requirements, reliable connection between the real-world and virtual network space, and promotion of social potentiality for human emergence. The guidelines consist of the crystal synthesis, the reality connection, and the sustainable & evolutional guidelines.

  7. Optimization of thermal conductivity lightweight brick type AAC (Autoclaved Aerated Concrete) effect of Si & Ca composition by using Artificial Neural Network (ANN)

    Science.gov (United States)

    Zulkifli; Wiryawan, G. P.

    2018-03-01

    Lightweight brick is the most important component of building construction, therefore it is necessary to have lightweight thermal, mechanical and aqustic thermal properties that meet the standard, in this paper which is discussed is the domain of light brick thermal conductivity properties. The advantage of lightweight brick has a low density (500-650 kg/m3), more economical, can reduce the load 30-40% compared to conventional brick (clay brick). In this research, Artificial Neural Network (ANN) is used to predict the thermal conductivity of lightweight brick type Autoclaved Aerated Concrete (AAC). Based on the training and evaluation that have been done on 10 model of ANN with number of hidden node 1 to 10, obtained that ANN with 3 hidden node have the best performance. It is known from the mean value of MSE (Mean Square Error) validation for three training times of 0.003269. This ANN was further used to predict the thermal conductivity of four light brick samples. The predicted results for each of the AAC1, AAC2, AAC3 and AAC4 light brick samples were 0.243 W/m.K, respectively; 0.29 W/m.K; 0.32 W/m.K; and 0.32 W/m.K. Furthermore, ANN is used to determine the effect of silicon composition (Si), Calcium (Ca), to light brick thermal conductivity. ANN simulation results show that the thermal conductivity increases with increasing Si composition. Si content is allowed maximum of 26.57%, while the Ca content in the range 20.32% - 30.35%.

  8. Robust quantum network architectures and topologies for entanglement distribution

    Science.gov (United States)

    Das, Siddhartha; Khatri, Sumeet; Dowling, Jonathan P.

    2018-01-01

    Entanglement distribution is a prerequisite for several important quantum information processing and computing tasks, such as quantum teleportation, quantum key distribution, and distributed quantum computing. In this work, we focus on two-dimensional quantum networks based on optical quantum technologies using dual-rail photonic qubits for the building of a fail-safe quantum internet. We lay out a quantum network architecture for entanglement distribution between distant parties using a Bravais lattice topology, with the technological constraint that quantum repeaters equipped with quantum memories are not easily accessible. We provide a robust protocol for simultaneous entanglement distribution between two distant groups of parties on this network. We also discuss a memory-based quantum network architecture that can be implemented on networks with an arbitrary topology. We examine networks with bow-tie lattice and Archimedean lattice topologies and use percolation theory to quantify the robustness of the networks. In particular, we provide figures of merit on the loss parameter of the optical medium that depend only on the topology of the network and quantify the robustness of the network against intermittent photon loss and intermittent failure of nodes. These figures of merit can be used to compare the robustness of different network topologies in order to determine the best topology in a given real-world scenario, which is critical in the realization of the quantum internet.

  9. Public Safety Broadband Network Architecture Description

    Science.gov (United States)

    2013-08-01

    could be used to add an in-app purchase to the user’s mobile phone bill. Major operators , such as AT& T , Deutsche Telekom, Orange, Telefonica and...3GPP technologies such as CDMA2000 and WiMAX networks. MME Mobility Managemen t Entity The MME is the key control-node for the LTE access-network... operator ( operator -managed small cells, etc.) or provides sufficient security (authentication, encryption, etc.). See Figure D3. Figure D3: ITU- T

  10. Exact estimation of biodiesel cetane number (CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial neural network (ANN)

    International Nuclear Information System (INIS)

    Hosseinpour, Soleiman; Aghbashlo, Mortaza; Tabatabaei, Meisam; Khalife, Esmail

    2016-01-01

    Highlights: • Estimating the biodiesel CN from its FAMEs profile using ANN-based PLS approach. • Comparing the capability of ANN-adapted PLS approach with the standard PLS model. • Exact prediction of biodiesel CN from it FAMEs profile using ANN-based PLS method. • Developing an easy-to-use software using ANN-PLS model for computing the biodiesel CN. - Abstract: Cetane number (CN) is among the most important properties of biodiesel because it quantifies combustion speed or in better words, ignition quality. Experimental measurement of biodiesel CN is rather laborious and expensive. However, the high proportionality of biodiesel fatty acid methyl esters (FAMEs) profile with its CN is very appealing to develop straightforward and inexpensive computerized tools for biodiesel CN estimation. Unfortunately, correlating the chemical structure of biodiesel to its CN using conventional statistical and mathematical approaches is very difficult. To solve this issue, partial least square (PLS) adapted by artificial neural network (ANN) was introduced and examined herein as an innovative approach for the exact estimation of biodiesel CN from its FAMEs profile. In the proposed approach, ANN paradigm was used for modeling the inner relation between the input and the output PLS score vectors. In addition, the capability of the developed method in predicting the biodiesel CN was compared with the basal PLS method. The accuracy of the developed approaches for computing the biodiesel CN was assessed using three statistical criteria, i.e., coefficient of determination (R"2), mean-squared error (MSE), and percentage error (PE). The ANN-adapted PLS method predicted the biodiesel CN with an R"2 value higher than 0.99 demonstrating the fidelity of the developed model over the classical PLS method with a markedly lower R"2 value of about 0.85. In order to facilitate the use of the proposed model, an easy-to-use computer program was also developed on the basis of ANN-adapted PLS

  11. Greening radio access networks using distributed base station architectures

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Soler, José; Dittmann, Lars

    2010-01-01

    Several actions for developing environmentally friendly technologies have been taken in most industrial fields. Significant resources have also been devoted in mobile communications industry. Moving towards eco-friendly alternatives is primarily a social responsibility for network operators....... However besides this, increasing energy efficiency represents a key factor for reducing operating expenses and deploying cost effective mobile networks. This paper presents how distributed base station architectures can contribute in greening radio access networks. More specifically, the advantages...... energy saving. Different subsystems have to be coordinated real-time and intelligent network nodes supporting complicated functionalities are necessary. Distributed base station architectures are ideal for this purpose mainly because of their high degree of configurability and self...

  12. Genetic optimization of neural network architecture

    International Nuclear Information System (INIS)

    Harp, S.A.; Samad, T.

    1994-03-01

    Neural networks are now a popular technology for a broad variety of application domains, including the electric utility industry. Yet, as the technology continues to gain increasing acceptance, it is also increasingly apparent that the power that neural networks provide is not an unconditional blessing. Considerable care must be exercised during application development if the full benefit of the technology is to be realized. At present, no fully general theory or methodology for neural network design is available, and application development is a trial-and-error process that is time-consuming and expertise-intensive. Each application demands appropriate selections of the network input space, the network structure, and values of learning algorithm parameters-design choices that are closely coupled in ways that largely remain a mystery. This EPRI-funded exploratory research project was initiated to take the key next step in this research program: the validation of the approach on a realistic problem. We focused on the problem of modeling the thermal performance of the TVA Sequoyah nuclear power plant (units 1 and 2)

  13. Software architecture for hybrid electrical/optical data center network

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2016-01-01

    This paper presents hardware and software architecture based on Software-Defined Networking (SDN) paradigm and OpenFlow/NETCONF protocols for enabling topology management of hybrid electrical/optical switching data center networks. In particular, a development on top of SDN open-source controller...... OpenDaylight is presented to control an optical switching matrix based on Micro-Electro-Mechanical System (MEMS) technology....

  14. SYS6: Tenet: An Architecture for Tiered Embedded Networks

    OpenAIRE

    Krishna Chintalapudi; Deborah Estrin; Om Gnawali; Ramesh Govindan; Eddie Kohler; Jeong Paek; Sumit Rangwala; Thanos Sthathopoulos

    2005-01-01

    Over the last five years, sensor network research has seen significant advances in the development of hardware devices and platforms, and in the design of services and infrastructural elements such as routing, localization, and time synchronization. Deployed systems, however, have lagged behind. In this poster, we will describe an alternative architecture, called Tenet, for sensor networks that constrains placement of application-specific functionality on relatively unconstrained nodes. We w...

  15. Artificial Neural Network (ANN) design for Hg-Se interactions and their effect on reduction of Hg uptake by radish plant

    International Nuclear Information System (INIS)

    Kumar Rohit Raj; Abhishek Kardam; Shalini Srivastava; Jyoti Kumar Arora

    2010-01-01

    The tendency of selenium to interact with heavy metals in presence of naturally occurring species has been exploited for the development of green bioremediation of toxic metals from soil using Artificial Neural Network (ANN) modeling. The cross validation of the data for the reduction in uptake of Hg(II) ions in the plant R. sativus grown in soil and sand culture in presence of selenium has been used for ANN modeling. ANN model based on the combination of back propagation and principal component analysis was able to predict the reduction in Hg uptake with a sigmoid axon transfer function. The data of fifty laboratory experimental sets were used for structuring single layer ANN model. Series of experiments resulted into the performance evaluation based on considering 20% data for testing and 20% data for cross validation at 1,500 Epoch with 0.70 momentums The Levenberg-Marquardt algorithm (LMA) was found as the best of BP algorithms with a minimum mean squared error at the eighth place of the decimal for training (MSE) and cross validation. (author)

  16. Internet of Things Heterogeneous Interoperable Network Architecture Design

    DEFF Research Database (Denmark)

    Bhalerao, Dipashree M.

    2014-01-01

    Internet of Thing‘s (IoT) state of the art deduce that there is no mature Internet of Things architecture available. Thesis contributes an abstract generic IoT system reference architecture development with specifications. Novelties of thesis are proposed solutions and implementations....... It is proved that reduction of data at a source will result in huge vertical scalability and indirectly horizontal also. Second non functional feature contributes in heterogeneous interoperable network architecture for constrained Things. To eliminate increasing number of gateways, Wi-Fi access point...... with Bluetooth, Zigbee (new access point is called as BZ-Fi) is proposed. Co-existence of Wi-Fi, Bluetooth, and Zigbee network technologies results in interference. To reduce the interference, orthogonal frequency division multiplexing (OFDM) is proposed tobe implemented in Bluetooth and Zigbee. The proposed...

  17. Reconfigurable radio systems network architectures and standards

    CERN Document Server

    Iacobucci, Maria Stella

    2013-01-01

    This timely book provides a standards-based view of the development, evolution, techniques and potential future scenarios for the deployment of reconfigurable radio systems.  After an introduction to radiomobile and radio systems deployed in the access network, the book describes cognitive radio concepts and capabilities, which are the basis for reconfigurable radio systems.  The self-organizing network features introduced in 3GPP standards are discussed and IEEE 802.22, the first standard based on cognitive radio, is described. Then the ETSI reconfigurable radio systems functional ar

  18. Agent-based Personal Network (PN) service architecture

    DEFF Research Database (Denmark)

    Jiang, Bo; Olesen, Henning

    2004-01-01

    In this paper we proposte a new concept for a centralized agent system as the solution for the PN service architecture, which aims to efficiently control and manage the PN resources and enable the PN based services to run seamlessly over different networks and devices. The working principle...

  19. Time analysis of interconnection network implemented on the honeycomb architecture

    Energy Technology Data Exchange (ETDEWEB)

    Milutinovic, D [Inst. Michael Pupin, Belgrade (Yugoslavia)

    1996-12-31

    Problems of time domains analysis of the mapping of interconnection networks for parallel processing on one form of uniform massively parallel architecture of the cellular type are considered. The results of time analysis are discussed. It is found that changing the technology results in changing the mapping rules. 17 refs.

  20. The development of brain network architecture

    NARCIS (Netherlands)

    Wierenga, Lara M.; van den Heuvel, Martijn P.; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A.; Durston, Sarah

    2016-01-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes

  1. A Security Architecture for Personal Networks

    NARCIS (Netherlands)

    Jehangir, A.

    2009-01-01

    The proliferation of personal mobile computing devices such as laptops and mo- bile phones, as well as wearable computing devices such as belt computers, digital bracelets and bio-medical sensors has created an opportunity to create a wireless network to share information and resources amongst

  2. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    Science.gov (United States)

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  3. Communication Network Architectures Based on Ethernet Passive Optical Network for Offshore Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed

    2016-03-01

    Full Text Available Nowadays, with large-scale offshore wind power farms (WPFs becoming a reality, more efforts are needed to maintain a reliable communication network for WPF monitoring. Deployment topologies, redundancy, and network availability are the main items to enhance the communication reliability between wind turbines (WTs and control centers. Traditional communication networks for monitoring and control (i.e., supervisory control and data acquisition (SCADA systems using switched gigabit Ethernet will not be sufficient for the huge amount of data passing through the network. In this paper, the optical power budget, optical path loss, reliability, and network cost of the proposed Ethernet Passive Optical Network (EPON-based communication network for small-size offshore WPFs have been evaluated for five different network architectures. The proposed network model consists of an optical network unit device (ONU deployed on the WT side for collecting data from different internal networks. All ONUs from different WTs are connected to a central optical line terminal (OLT, placed in the control center. There are no active electronic elements used between the ONUs and the OLT, which reduces the costs and complexity of maintenance and deployment. As fiber access networks without any protection are characterized by poor reliability, three different protection schemes have been configured, explained, and discussed. Considering the cost of network components, the total implementation expense of different architectures with, or without, protection have been calculated and compared. The proposed network model can significantly contribute to the communication network architecture for next generation WPFs.

  4. Design and optimizing factors of PACS network architecture

    International Nuclear Information System (INIS)

    Tao Yonghao; Miao Jingtao

    2001-01-01

    Objective: Exploring the design and optimizing factors of picture archiving and communication system (PACS) network architecture. Methods: Based on the PACS of shanghai first hospital to performed the measurements and tests on the requirements of network bandwidth and transmitting rate for different PACS functions and procedures respectively in static and dynamic network traffic situation, utilizing the network monitoring tools which built-in workstations and provided by Windows NT. Results: No obvious difference between switch equipment and HUB when measurements and tests implemented in static situation except route which slow down the rate markedly. In dynamic environment Switch is able to provide higher bandwidth utilizing than HUB and local system scope communication achieved faster transmitting rate than global system. Conclusion: The primary optimizing factors of PACS network architecture design include concise network topology and disassemble tremendous global traffic to multiple distributed local scope network communication to reduce the traffic of network backbone. The most important issue is guarantee essential bandwidth for diagnosis procedure of medical imaging

  5. Building and measuring a high performance network architecture

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck; Dugan, Jon; Wheeler, David; Wing, William R; Nickless, William; Goddard, Gregory; Corbato, Steven; Love, E. Paul; Daspit, Paul; Edwards, Hal; Mercer, Linden; Koester, David; Decina, Basil; Dart, Eli; Paul Reisinger, Paul; Kurihara, Riki; Zekauskas, Matthew J; Plesset, Eric; Wulf, Julie; Luce, Douglas; Rogers, James; Duncan, Rex; Mauth, Jeffery

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning. The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.

  6. Developing cyber security architecture for military networks using cognitive networking

    OpenAIRE

    Kärkkäinen, Anssi

    2015-01-01

    In recent years, the importance of cyber security has increased. Cyber security has not become a critical issue only for governmental or business actors, but also for armed forces that nowadays rely on national or even global networks in their daily activities. The Network Centric Warfare (NCW) paradigm has increased the significance of networking during last decades as it enables information superiority in which military combat power increased by networking the battlefield actors from perspe...

  7. System architecture for ubiquitous live video streaming in university network environment

    CSIR Research Space (South Africa)

    Dludla, AG

    2013-09-01

    Full Text Available an architecture which supports ubiquitous live streaming for university or campus networks using a modified bluetooth inquiry mechanism with extended ID, integrated end-user device usage and adaptation to heterogeneous networks. Riding on that architecture...

  8. Development of the network architecture of the Canadian MSAT system

    Science.gov (United States)

    Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.

    1988-05-01

    A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.

  9. Network architecture test-beds as platforms for ubiquitous computing.

    Science.gov (United States)

    Roscoe, Timothy

    2008-10-28

    Distributed systems research, and in particular ubiquitous computing, has traditionally assumed the Internet as a basic underlying communications substrate. Recently, however, the networking research community has come to question the fundamental design or 'architecture' of the Internet. This has been led by two observations: first, that the Internet as it stands is now almost impossible to evolve to support new functionality; and second, that modern applications of all kinds now use the Internet rather differently, and frequently implement their own 'overlay' networks above it to work around its perceived deficiencies. In this paper, I discuss recent academic projects to allow disruptive change to the Internet architecture, and also outline a radically different view of networking for ubiquitous computing that such proposals might facilitate.

  10. Network Architecture: lessons from the past, vision for the future

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Architectural Principles of the Internet have dominated the past decade. Orthogonal to the telecommunications industry principles, they dramatically changed the networking landscape because they relied on iconoclastic ideas. First, the Internet end-to-end principle, which stipulates that the network should intervene minimally on the end-to-end traffic, pushing the complexity to the end-systems. Second, the ban of centralized functions: all the Internet techniques (routing, DNS, management) are based on distributed, decentralized mechanisms. Third, the absolute domination of connectionless (stateless) protocols (as with IP, HTTTP). However, when facing new requirements: multimedia traffic, security, Grid applications, these principles appear sometimes as architectural barriers. Multimedia requires QoS guarantees, but stateless systems are not good at QoS. Security requires active, intelligent networks, but dumb routers or plain end-to-end mail systems are insufficient. Grid applications require...

  11. Nexus network journal patterns in architecture

    CERN Document Server

    2007-01-01

    This issue is dedicated to various kinds of patterns in architecture. Buthayna Eilouti and Amer Al-Jokhadar address patterns in shape grammars in the ground plans of Mamluk madrasas, religious schools. Giulio Magli goes back further in history, to the age of Greek colonies in Italy before they were conquered by the Romans, to examine patterns in urban design. In Traditional Patterns in Pyrgi of Chios: Mathematics and Community Charoula Stathopoulou examines the geometric patterns that decorate the buildings of the town of Pyrgi, on the Greek island of Chios. Curve Fitting is a study of ways to construct a function so that its graph most closely approximates the pattern given by a set of points. Dirk Huylebrouck’s paper examines how a pattern of points extracted from an arch might be associated to a precise mathematical curve. James Harris looks at the designs of Frank Lloyd Wright and Piet Mondrian to extract the rules of their pattern generation and propose possible applications.

  12. Resting state networks' corticotopy: the dual intertwined rings architecture.

    Directory of Open Access Journals (Sweden)

    Salma Mesmoudi

    Full Text Available How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called "the dual intertwined rings architecture" that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or "corticotopy". Recent results suggest that the resting state networks (RSNs are organized into two large families: 1 a sensorimotor family that includes visual, somatic, and auditory areas and 2 a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1 the RSN functional roles by using a projection of the results on task based networks (TBNs as referenced in large databases of fMRI activation studies; and (2 relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring. The second ring integrates distant parietal, temporal and frontal regions (PTF ring through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This "dual intertwined architecture" suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi

  13. Network architecture in a converged optical + IP network

    Science.gov (United States)

    Wakim, Walid; Zottmann, Harald

    2012-01-01

    As demands on Provider Networks continue to grow at exponential rates, providers are forced to evaluate how to continue to grow the network while increasing service velocity, enhancing resiliency while decreasing the total cost of ownership (TCO). The bandwidth growth that networks are experiencing is in the form packet based multimedia services such as video, video conferencing, gaming, etc... mixed with Over the Top (OTT) content providers such as Netflix, and the customer's expectations that best effort is not enough you end up with a situation that forces the provider to analyze how to gain more out of the network with less cost. In this paper we will discuss changes in the network that are driving us to a tighter integration between packet and optical layers and how to improve on today's multi - layer inefficiencies to drive down network TCO and provide for a fully integrated and dynamic network that will decrease time to revenue.

  14. The development of brain network architecture.

    Science.gov (United States)

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Comparison Between Wind Power Prediction Models Based on Wavelet Decomposition with Least-Squares Support Vector Machine (LS-SVM and Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2014-08-01

    Full Text Available A high penetration of wind energy into the electricity market requires a parallel development of efficient wind power forecasting models. Different hybrid forecasting methods were applied to wind power prediction, using historical data and numerical weather predictions (NWP. A comparative study was carried out for the prediction of the power production of a wind farm located in complex terrain. The performances of Least-Squares Support Vector Machine (LS-SVM with Wavelet Decomposition (WD were evaluated at different time horizons and compared to hybrid Artificial Neural Network (ANN-based methods. It is acknowledged that hybrid methods based on LS-SVM with WD mostly outperform other methods. A decomposition of the commonly known root mean square error was beneficial for a better understanding of the origin of the differences between prediction and measurement and to compare the accuracy of the different models. A sensitivity analysis was also carried out in order to underline the impact that each input had in the network training process for ANN. In the case of ANN with the WD technique, the sensitivity analysis was repeated on each component obtained by the decomposition.

  16. Hierarchical Communication Network Architectures for Offshore Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed

    2014-05-01

    Full Text Available Nowadays, large-scale wind power farms (WPFs bring new challenges for both electric systems and communication networks. Communication networks are an essential part of WPFs because they provide real-time control and monitoring of wind turbines from a remote location (local control center. However, different wind turbine applications have different requirements in terms of data volume, latency, bandwidth, QoS, etc. This paper proposes a hierarchical communication network architecture that consist of a turbine area network (TAN, farm area network (FAN, and control area network (CAN for offshore WPFs. The two types of offshore WPFs studied are small-scale WPFs close to the grid and medium-scale WPFs far from the grid. The wind turbines are modelled based on the logical nodes (LN concepts of the IEC 61400-25 standard. To keep pace with current developments in wind turbine technology, the network design takes into account the extension of the LNs for both the wind turbine foundation and meteorological measurements. The proposed hierarchical communication network is based on Switched Ethernet. Servers at the control center are used to store and process the data received from the WPF. The network architecture is modelled and evaluated via OPNET. We investigated the end-to-end (ETE delay for different WPF applications. The results are validated by comparing the amount of generated sensing data with that of received traffic at servers. The network performance is evaluated, analyzed and discussed in view of end-to-end (ETE delay for different link bandwidths.

  17. Architecture and dynamics of overlapped RNA regulatory networks.

    Science.gov (United States)

    Lapointe, Christopher P; Preston, Melanie A; Wilinski, Daniel; Saunders, Harriet A J; Campbell, Zachary T; Wickens, Marvin

    2017-11-01

    A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution. © 2017 Lapointe et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Simulation of Snowmelt Runoff Using SRM Model and Comparison With Neural Networks ANN and ANFIS (Case Study: Kardeh dam basin

    Directory of Open Access Journals (Sweden)

    morteza akbari

    2017-03-01

    of the basin with 2962 meters above sea level. Kardeh dam was primarily constructed on the Kardehriver for providing drinking and agriculture water demand with an annual volume rate of 21.23 million cubic meters. Satellite image: To estimate the level of snow cover, the satellite Landsat ETM+ data at path 35-159, rows 34-159 over the period 2001-2002 were used. Surfaces covered with snow were separated bysnow distinction normalized index (NDSI, But due to the lack of training data for image classification (areas with snow and no snow, the k-means unsupervised classification algorithm was used. Extracting the data from the meteorological and hydrological Since only a gauging station exists at the Kardeh dam site, the daily discharge data recorded at these stations was used. To extract meteorological parameters such as precipitation and temperature data, the records of the three stations Golmakan, Mashhad and Ghouchan, as the stations closest to the dam basin Kardeh were used. The purpose of this study was to simulate snowmelt runoff using SRM hydrological models and to compare the results with the outputs of the neural network models such as the ANN and the ANFIS model. Flow simulation was carried out using SRM, ANN model with the Multilayer Perceptron with back-propagation algorithm, and Sugeno type ANFIS. To evaluate the performance of the models in addition to the standard statistics such as mean square error or mean absolute percentage error, the regression coefficient measures and the difference in volume were used. The results showed that all three models are almost similar in terms of statistical parameters MSE and R and the differences were negligible. SRM model: SRM model is a daily hydrological model. This equation is composed of different components including 14 parameters. The input values were calculated based on the equations of degree-day factor. The evaluation of the model was performed with flow subside factor, coefficient and subtracting volume

  19. High-performance, scalable optical network-on-chip architectures

    Science.gov (United States)

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of

  20. Shifts in the architecture of the Nationwide Health Information Network.

    Science.gov (United States)

    Lenert, Leslie; Sundwall, David; Lenert, Michael Edward

    2012-01-01

    In the midst of a US $30 billion USD investment in the Nationwide Health Information Network (NwHIN) and electronic health records systems, a significant change in the architecture of the NwHIN is taking place. Prior to 2010, the focus of information exchange in the NwHIN was the Regional Health Information Organization (RHIO). Since 2010, the Office of the National Coordinator (ONC) has been sponsoring policies that promote an internet-like architecture that encourages point to-point information exchange and private health information exchange networks. The net effect of these activities is to undercut the limited business model for RHIOs, decreasing the likelihood of their success, while making the NwHIN dependent on nascent technologies for community level functions such as record locator services. These changes may impact the health of patients and communities. Independent, scientifically focused debate is needed on the wisdom of ONC's proposed changes in its strategy for the NwHIN.

  1. Mesh Network Architecture for Enabling Inter-Spacecraft Communication

    Science.gov (United States)

    Becker, Christopher; Merrill, Garrick

    2017-01-01

    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  2. Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction

    International Nuclear Information System (INIS)

    Mousapour, Ashkan; Hajipour, Alireza; Rashidi, Mohammad Mehdi; Freidoonimehr, Navid

    2016-01-01

    In this paper, the first and second-laws efficiencies are applied to performance analysis of an irreversible Miller cycle. In the irreversible cycle, the linear relation between the specific heat of the working fluid and its temperature, the internal irreversibility described using the compression and expansion efficiencies, the friction loss computed according to the mean velocity of the piston and the heat-transfer loss are considered. The effects of various design parameters, such as the minimum and maximum temperatures of the working fluid and the compression ratio on the power output and the first and second-laws efficiencies of the cycle are discussed. In the following, a procedure named ANN is used for predicting the thermal efficiency values versus the compression ratio, and the minimum and maximum temperatures of the Miller cycle. Nowadays, Miller cycle is widely used in the automotive industry and the obtained results of this study will provide some significant theoretical grounds for the design optimization of the Miller cycle. - Highlights: • The performance of an irreversible Miller cycle is investigated using FFT. • The effects of design parameters on the performance of the cycle are investigated. • ANN is applied to predict the thermal efficiency and the power output values. • There is an excellent correlation between FTT and ANN data. • ANN can be applied to predict data where FTT analysis has not been performed.

  3. Cyber-Physical Architecture Assisted by Programmable Networking

    OpenAIRE

    Rubio-Hernan, Jose; Sahay, Rishikesh; De Cicco, Luca; Garcia-Alfaro, Joaquin

    2018-01-01

    Cyber-physical technologies are prone to attacks, in addition to faults and failures. The issue of protecting cyber-physical systems should be tackled by jointly addressing security at both cyber and physical domains, in order to promptly detect and mitigate cyber-physical threats. Towards this end, this letter proposes a new architecture combining control-theoretic solutions together with programmable networking techniques to jointly handle crucial threats to cyber-physical systems. The arch...

  4. Architecture, design and protection of electrical distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Sorrel, J.P. [Schneider electric Industries SA (France)

    2000-07-01

    Architectures related to AII Electric Ship (AES) require high level of propulsion power. Merchant ships and obviously warships require a low vulnerability, a high reliability and availability, a simple maintainability as well as an ordinary ode of operation. These constraints converge to an optimum single line diagram. We will focus on the mode of operation of the network, its constraints, the facilities to use a ring distribution for the ship service distribution system, the earthing of HV network as well as future developments. (author)

  5. Data center networks topologies, architectures and fault-tolerance characteristics

    CERN Document Server

    Liu, Yang; Veeraraghavan, Malathi; Lin, Dong; Hamdi, Mounir

    2013-01-01

    This SpringerBrief presents a survey of data center network designs and topologies and compares several properties in order to highlight their advantages and disadvantages. The brief also explores several routing protocols designed for these topologies and compares the basic algorithms to establish connections, the techniques used to gain better performance, and the mechanisms for fault-tolerance. Readers will be equipped to understand how current research on data center networks enables the design of future architectures that can improve performance and dependability of data centers. This con

  6. A multi-agent system architecture for sensor networks.

    Science.gov (United States)

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  7. A Multi-Agent System Architecture for Sensor Networks

    Directory of Open Access Journals (Sweden)

    María Guijarro

    2009-12-01

    Full Text Available The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  8. A modular architecture for transparent computation in recurrent neural networks.

    Science.gov (United States)

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Determining degree of roasting in cocoa beans by artificial neural network (ANN)-based electronic nose system and gas chromatography/mass spectrometry (GC/MS).

    Science.gov (United States)

    Tan, Juzhong; Kerr, William L

    2018-08-01

    Roasting is a critical step in chocolate processing, where moisture content is decreased and unique flavors and texture are developed. The determination of the degree of roasting in cocoa beans is important to ensure the quality of chocolate. Determining the degree of roasting relies on human specialists or sophisticated chemical analyses that are inaccessible to small manufacturers and farmers. In this study, an electronic nose system was constructed consisting of an array of gas sensors and used to detect volatiles emanating from cocoa beans roasted for 0, 20, 30 and 40 min. The several signals were used to train a three-layer artificial neural network (ANN). Headspace samples were also analyzed by gas chromatography/mass spectrometry (GC/MS), with 23 select volatiles used to train a separate ANN. Both ANNs were used to predict the degree of roasting of cocoa beans. The electronic nose had a prediction accuracy of 94.4% using signals from sensors TGS 813, 826, 822, 830, 830, 2620, 2602 and 2610. In comparison, the GC/MS predicted the degree of roasting with an accuracy of 95.8%. The electronic nose system is able to predict the extent of roasting, as well as a more sophisticated approach using GC/MS. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Software defined network architecture based research on load balancing strategy

    Science.gov (United States)

    You, Xiaoqian; Wu, Yang

    2018-05-01

    As a new type network architecture, software defined network has the key idea of separating the control place of the network from the transmission plane, to manage and control the network in a concentrated way; in addition, the network interface is opened on the control layer and the data layer, so as to achieve programmable control of the network. Considering that only the single shortest route is taken into the calculation of traditional network data flow transmission, and congestion and resource consumption caused by excessive load of link circuits are ignored, a link circuit load based flow media business QoS gurantee system is proposed in this article to divide the flow in the network into ordinary data flow and QoS flow. In this way, it supervises the link circuit load with the controller so as to calculate reasonable route rapidly and issue the flow table to the exchanger, to finish rapid data transmission. In addition, it establishes a simulation platform to acquire optimized result through simulation experiment.

  11. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    Science.gov (United States)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  12. An open, interoperable, and scalable prehospital information technology network architecture.

    Science.gov (United States)

    Landman, Adam B; Rokos, Ivan C; Burns, Kevin; Van Gelder, Carin M; Fisher, Roger M; Dunford, James V; Cone, David C; Bogucki, Sandy

    2011-01-01

    Some of the most intractable challenges in prehospital medicine include response time optimization, inefficiencies at the emergency medical services (EMS)-emergency department (ED) interface, and the ability to correlate field interventions with patient outcomes. Information technology (IT) can address these and other concerns by ensuring that system and patient information is received when and where it is needed, is fully integrated with prior and subsequent patient information, and is securely archived. Some EMS agencies have begun adopting information technologies, such as wireless transmission of 12-lead electrocardiograms, but few agencies have developed a comprehensive plan for management of their prehospital information and integration with other electronic medical records. This perspective article highlights the challenges and limitations of integrating IT elements without a strategic plan, and proposes an open, interoperable, and scalable prehospital information technology (PHIT) architecture. The two core components of this PHIT architecture are 1) routers with broadband network connectivity to share data between ambulance devices and EMS system information services and 2) an electronic patient care report to organize and archive all electronic prehospital data. To successfully implement this comprehensive PHIT architecture, data and technology requirements must be based on best available evidence, and the system must adhere to health data standards as well as privacy and security regulations. Recent federal legislation prioritizing health information technology may position federal agencies to help design and fund PHIT architectures.

  13. SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS

    Directory of Open Access Journals (Sweden)

    Marijana Zekić-Sušac

    2012-07-01

    Full Text Available After production and operations, finance and investments are one of the mostfrequent areas of neural network applications in business. The lack of standardizedparadigms that can determine the efficiency of certain NN architectures in a particularproblem domain is still present. The selection of NN architecture needs to take intoconsideration the type of the problem, the nature of the data in the model, as well as somestrategies based on result comparison. The paper describes previous research in that areaand suggests a forward strategy for selecting best NN algorithm and structure. Since thestrategy includes both parameter-based and variable-based testings, it can be used forselecting NN architectures as well as for extracting models. The backpropagation, radialbasis,modular, LVQ and probabilistic neural network algorithms were used on twoindependent sets: stock market and credit scoring data. The results show that neuralnetworks give better accuracy comparing to multiple regression and logistic regressionmodels. Since it is model-independant, the strategy can be used by researchers andprofessionals in other areas of application.

  14. Mobile network architecture of the long-range WindScanner system

    OpenAIRE

    Vasiljevic, Nikola; Lea, Guillaume; Hansen, Per; Jensen, Henrik M.

    2016-01-01

    In this report we have presented the network architecture of the long-range WindScanner system that allows utilization of mobile network connections without the use of static public IP addresses. The architecture mitigates the issues of additional fees and contractual obligations that are linked to the acquisition of the mobile network connections with static public IP addresses. The architecture consists of a hardware VPN solution based on the network appliances Z1 and MX60 from Cisco Meraki...

  15. An efficient optical architecture for sparsely connected neural networks

    Science.gov (United States)

    Hine, Butler P., III; Downie, John D.; Reid, Max B.

    1990-01-01

    An architecture for general-purpose optical neural network processor is presented in which the interconnections and weights are formed by directing coherent beams holographically, thereby making use of the space-bandwidth products of the recording medium for sparsely interconnected networks more efficiently that the commonly used vector-matrix multiplier, since all of the hologram area is in use. An investigation is made of the use of computer-generated holograms recorded on such updatable media as thermoplastic materials, in order to define the interconnections and weights of a neural network processor; attention is given to limits on interconnection densities, diffraction efficiencies, and weighing accuracies possible with such an updatable thin film holographic device.

  16. Resting State Networks' Corticotopy: The Dual Intertwined Rings Architecture

    Science.gov (United States)

    Mesmoudi, Salma; Perlbarg, Vincent; Rudrauf, David; Messe, Arnaud; Pinsard, Basile; Hasboun, Dominique; Cioli, Claudia; Marrelec, Guillaume; Toro, Roberto; Benali, Habib; Burnod, Yves

    2013-01-01

    How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called “the dual intertwined rings architecture”) that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or “corticotopy”). Recent results suggest that the resting state networks (RSNs) are organized into two large families: 1) a sensorimotor family that includes visual, somatic, and auditory areas and 2) a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1) the RSN functional roles by using a projection of the results on task based networks (TBNs) as referenced in large databases of fMRI activation studies; and (2) relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring). The second ring integrates distant parietal, temporal and frontal regions (PTF ring) through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This “dual intertwined architecture” suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi

  17. Prediction of Film Cooling Effectiveness on a Gas Turbine Blade Leading Edge Using ANN and CFD

    Science.gov (United States)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Huicochea, A.; De Santiago, O.

    2018-05-01

    In this work, the area-averaged film cooling effectiveness (AAFCE) on a gas turbine blade leading edge was predicted by employing an artificial neural network (ANN) using as input variables: hole diameter, injection angle, blowing ratio, hole and columns pitch. The database used to train the network was built using computational fluid dynamics (CFD) based on a two level full factorial design of experiments. The CFD numerical model was validated with an experimental rig, where a first stage blade of a gas turbine was represented by a cylindrical specimen. The ANN architecture was composed of three layers with four neurons in hidden layer and Levenberg-Marquardt was selected as ANN optimization algorithm. The AAFCE was successfully predicted by the ANN with a regression coefficient R2<0.99 and a root mean square error RMSE=0.0038. The ANN weight coefficients were used to estimate the relative importance of the input parameters. Blowing ratio was the most influential parameter with relative importance of 40.36 % followed by hole diameter. Additionally, by using the ANN model, the relationship between input parameters was analyzed.

  18. Thinking in networks: artistic–architectural responses to ubiquitous information

    Directory of Open Access Journals (Sweden)

    Yvonne Spielmann

    2011-12-01

    Full Text Available The article discusses creative practices that in aesthetical-technical ways intervene into the computer networked communication systems.I am interested in artist practices that use networks in different ways to make us aware about the possibilities to rethink media-cultural environments. I use the example of the Japanese art-architectural group Double Negative Architecture to give an example of creatively thinking in networks.Yvonne Spielmann (Ph.D., Dr. habil. is presently Research Professor and Chair of New Media at The University of the West of Scotland. Her work focuses on inter-relationships between media and culture, technology, art, science and communication, and in particular on Western/European and non-Western/South-East Asian interaction. Milestones of publish research output are four authored monographs and about 90 single authored articles. Her book, “Video, the Reflexive Medium” (published by MIT Press 2008, Japanese edition by Sangen-sha Press 2011 was rewarded the 2009 Lewis Mumford Award for Outstanding Scholarship in the Ecology of Technics. Her most recent book “Hybrid Cultures” was published in German by Suhrkamp Press in 2010, English edition from MIT Press in 2012. Spielmann's work has been published in German and English and has been translated into French, Polish, Croatian, Swedish, Japanese, and Korean. She holds the 2011 Swedish Prize for Swedish–German scientific co-operation.

  19. Signalling design and architecture for a proposed mobile satellite network

    Science.gov (United States)

    Yan, T.-Y.; Cheng, U.; Wang, C.

    1990-01-01

    In a frequency-division/demand-assigned multiple-access (FD/DAMA) architecture, each mobile subscriber must make a connection request to the Network Management Center before transmission for either open-end or closed-end services. Open-end services are for voice calls and long file transfer and are processed on a blocked-call-cleared basis. Closed-end services are for transmitting burst data and are processed on a first-come first-served basis. This paper presents the signalling design and architecture for non-voice services of an FD/DAMA mobile satellite network. The connection requests are made through the recently proposed multiple channel collision resolution scheme which provides a significantly higher throughput than the traditional slotted ALOHA scheme. For non-voice services, it is well known that retransmissions are necessary to ensure the delivery of a message in its entirety from the source to destination. Retransmission protocols for open-end and closed-end data transfer are investigated. The signal structure for the proposed network is derived from X-25 standards with appropriate modifications. The packet types and their usages are described in this paper.

  20. A Novel Architectural Concept for Enhanced 5G Network Facilities

    Directory of Open Access Journals (Sweden)

    Chochliouros Ioannis P.

    2017-01-01

    Full Text Available The 5G ESSENCE project’s context is based on the concept of Edge Cloud Computing and Small Cell-as-a-Service (SCaaS -as both have been previously identified in the SESAME 5G-PPP project of phase 1- and further “promotes” their role and/or influences within the related 5G vertical markets. 5G ESSENCE’s core innovation is focused upon the development/provision of a highly flexible and scalable platform, offering benefits to the involved market actors. The present work identifies a variety of challenges to be fulfilled by the 5G ESSENCE, in the scope of an enhanced architectural framework. The proposed technical approach exploits the profits of the centralization of Small Cell functions as scale grows through an edge cloud environment, based on a two-tier architecture with the first distributed tier being for offering low latency services and the second centralized tier being for the provision of high processing power for computing-intensive network applications. This permits decoupling the control and user planes of the Radio Access Network (RAN and achieving the advantages of Cloud-RAN without the enormous fronthaul latency restrictions. The use of end-to-end network slicing mechanisms allows for sharing the related infrastructure among multiple operators/vertical industries and customizing its capabilities on a per-tenant basis, creating a neutral host market and reducing operational costs.

  1. Louis Kahni mateeria, valguse ja energia arhitektuur = Louis Kahn's Architecture of Matter, Light and Energy / Anne Griswold Tyng ; tõlk. Tiina Randus

    Index Scriptorium Estoniae

    Tyng, Anne Griswold

    2007-01-01

    Louis Kahni betoonarhitektuurist (Weissi maja, 1947-1949), Yale'i kunstigaleriist (1951-1953), City Toweri projektist (1952-1958), Trentoni supelmajast (1954-1956), Salki instituudist (1959-1965, La Jolla, California), Kimbelli kunstimuuseumist (1968-1974), pealinnakompleksist Dhakas (1965-1974). Anne Griswold Tyng hakkas L. Kahni juures tööle 1945. a., tema algkooli projektist (1949-50), oma Philadelphia maja juurdeehitusest (1965-1968)

  2. Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells.

    Science.gov (United States)

    Yetilmezsoy, Kaan; Demirel, Sevgi

    2008-05-30

    A three-layer artificial neural network (ANN) model was developed to predict the efficiency of Pb(II) ions removal from aqueous solution by Antep pistachio (Pistacia Vera L.) shells based on 66 experimental sets obtained in a laboratory batch study. The effect of operational parameters such as adsorbent dosage, initial concentration of Pb(II) ions, initial pH, operating temperature, and contact time were studied to optimise the conditions for maximum removal of Pb(II) ions. On the basis of batch test results, optimal operating conditions were determined to be an initial pH of 5.5, an adsorbent dosage of 1.0 g, an initial Pb(II) concentration of 30 ppm, and a temperature of 30 degrees C. Experimental results showed that a contact time of 45 min was generally sufficient to achieve equilibrium. After backpropagation (BP) training combined with principal component analysis (PCA), the ANN model was able to predict adsorption efficiency with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and a linear transfer function (purelin) at output layer. The Levenberg-Marquardt algorithm (LMA) was found as the best of 11 BP algorithms with a minimum mean squared error (MSE) of 0.000227875. The linear regression between the network outputs and the corresponding targets were proven to be satisfactory with a correlation coefficient of about 0.936 for five model variables used in this study.

  3. SANDS: an architecture for clinical decision support in a National Health Information Network.

    Science.gov (United States)

    Wright, Adam; Sittig, Dean F

    2007-10-11

    A new architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support) is introduced and its performance evaluated. The architecture provides a method for performing clinical decision support across a network, as in a health information exchange. Using the prototype we demonstrated that, first, a number of useful types of decision support can be carried out using our architecture; and, second, that the architecture exhibits desirable reliability and performance characteristics.

  4. Fully Connected Cascade Artificial Neural Network Architecture for Attention Deficit Hyperactivity Disorder Classification From Functional Magnetic Resonance Imaging Data.

    Science.gov (United States)

    Deshpande, Gopikrishna; Wang, Peng; Rangaprakash, D; Wilamowski, Bogdan

    2015-12-01

    Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Toward this end, an international competition was conducted for classifying ADHD using functional magnetic resonance imaging data acquired from multiple sites worldwide. Here, we consider the data from this competition as an example to illustrate the utility of fully connected cascade (FCC) artificial neural network (ANN) architecture for performing classification. We employed various directional and nondirectional brain connectivity-based methods to extract discriminative features which gave better classification accuracy compared to raw data. Our accuracy for distinguishing ADHD from healthy subjects was close to 90% and between the ADHD subtypes was close to 95%. Further, we show that, if properly used, FCC ANN performs very well compared to other classifiers such as support vector machines in terms of accuracy, irrespective of the feature used. Finally, the most discriminative connectivity features provided insights about the pathophysiology of ADHD and showed reduced and altered connectivity involving the left orbitofrontal cortex and various cerebellar regions in ADHD.

  5. Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks

    NARCIS (Netherlands)

    Thebault, E.M.C.; Fontaine, C.

    2010-01-01

    Research on the relationship between the architecture of ecological networks and community stability has mainly focused on one type of interaction at a time, making difficult any comparison between different network types. We used a theoretical approach to show that the network architecture favoring

  6. Towards A New Opportunistic IoT Network Architecture for Wildlife Monitoring System

    NARCIS (Netherlands)

    Ayele, Eyuel Debebe; Meratnia, Nirvana; Havinga, Paul J.M.

    In this paper we introduce an opportunistic dual radio IoT network architecture for wildlife monitoring systems (WMS). Since data processing consumes less energy than transmitting the raw data, the proposed architecture leverages opportunistic mobile networks in a fixed LPWAN IoT network

  7. Mobile network architecture of the long-range WindScanner system

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Lea, Guillaume; Hansen, Per

    to the acquisition of the mobile network connections with static public IP addresses. The architecture consists of a hardware VPN solution based on the network appliances Z1 and MX60 from Cisco Meraki with additional 3G or 4G dongles. With the presented network architecture and appropriate configuration, we fulfill...

  8. ARCHITECTURES AND ALGORITHMS FOR COGNITIVE NETWORKS ENABLED BY QUALITATIVE MODELS

    DEFF Research Database (Denmark)

    Balamuralidhar, P.

    2013-01-01

    traditional limitations and potentially achieving better performance. The vision is that, networks should be able to monitor themselves, reason upon changes in self and environment, act towards the achievement of specific goals and learn from experience. The concept of a Cognitive Engine (CE) supporting...... cognitive functions, as part of network elements, enabling above said autonomic capabilities is gathering attention. Awareness of the self and the world is an important aspect of the cognitive engine to be autonomic. This is achieved through embedding their models in the engine, but the complexity...... of the cognitive engine that incorporates a context space based information structure to its knowledge model. I propose a set of guiding principles behind a cognitive system to be autonomic and use them with additional requirements to build a detailed architecture for the cognitive engine. I define a context space...

  9. Space Mobile Network: A Near Earth Communications and Navigation Architecture

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory W.; Menrad, Robert J.

    2016-01-01

    This paper shares key findings of NASA's Earth Regime Network Evolution Study (ERNESt) team resulting from its 18-month effort to define a wholly new architecture-level paradigm for the exploitation of space by civil space and commercial sector organizations. Since the launch of Sputnik in October 1957 spaceflight missions have remained highly scripted activities from launch through disposal. The utilization of computer technology has enabled dramatic increases in mission complexity; but, the underlying premise that the diverse actions necessary to meet mission goals requires minute-by-minute scripting, defined weeks in advance of execution, for the life of the mission has remained. This archetype was appropriate for a "new frontier" but now risks overtly constraining the potential market-based opportunities for the innovation considered necessary to efficiently address the complexities associated with meeting communications and navigation requirements projected to be characteristics of the next era of space exploration: a growing number of missions in simultaneous execution, increased variance of mission types and growth in location/orbital regime diversity. The resulting ERNESt architectural cornerstone - the Space Mobile Network (SMN) - was envisioned as critical to creating an environment essential to meeting these future challenges in political, programmatic, technological and budgetary terms. The SMN incorporates technologies such as: Disruption Tolerant Networking (DTN) and optical communications, as well as new operations concepts such as User Initiated Services (UIS) to provide user services analogous to today's terrestrial mobile network user. Results developed in collaboration with NASA's Space Communications and Navigation (SCaN) Division and field centers are reported on. Findings have been validated via briefings to external focus groups and initial ground-based demonstrations. The SMN opens new niches for exploitation by the marketplace of mission

  10. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    Science.gov (United States)

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.

  11. Comparison between Possibilistic c-Means (PCM and Artificial Neural Network (ANN Classification Algorithms in Land use/ Land cover Classification

    Directory of Open Access Journals (Sweden)

    Ganchimeg Ganbold

    2017-03-01

    Full Text Available There are several statistical classification algorithms available for landuse/land cover classification. However, each has a certain bias orcompromise. Some methods like the parallel piped approach in supervisedclassification, cannot classify continuous regions within a feature. Onthe other hand, while unsupervised classification method takes maximumadvantage of spectral variability in an image, the maximally separableclusters in spectral space may not do much for our perception of importantclasses in a given study area. In this research, the output of an ANNalgorithm was compared with the Possibilistic c-Means an improvementof the fuzzy c-Means on both moderate resolutions Landsat8 and a highresolution Formosat 2 images. The Formosat 2 image comes with an8m spectral resolution on the multispectral data. This multispectral imagedata was resampled to 10m in order to maintain a uniform ratio of1:3 against Landsat 8 image. Six classes were chosen for analysis including:Dense forest, eucalyptus, water, grassland, wheat and riverine sand. Using a standard false color composite (FCC, the six features reflecteddifferently in the infrared region with wheat producing the brightestpixel values. Signature collection per class was therefore easily obtainedfor all classifications. The output of both ANN and FCM, were analyzedseparately for accuracy and an error matrix generated to assess the qualityand accuracy of the classification algorithms. When you compare theresults of the two methods on a per-class-basis, ANN had a crisperoutput compared to PCM which yielded clusters with pixels especiallyon the moderate resolution Landsat 8 imagery.

  12. Firewall Architectures for High-Speed Networks: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Errin W. Fulp

    2007-08-20

    Firewalls are a key component for securing networks that are vital to government agencies and private industry. They enforce a security policy by inspecting and filtering traffic arriving or departing from a secure network. While performing these critical security operations, firewalls must act transparent to legitimate users, with little or no effect on the perceived network performance (QoS). Packets must be inspected and compared against increasingly complex rule sets and tables, which is a time-consuming process. As a result, current firewall systems can introduce significant delays and are unable to maintain QoS guarantees. Furthermore, firewalls are susceptible to Denial of Service (DoS) attacks that merely overload/saturate the firewall with illegitimate traffic. Current firewall technology only offers a short-term solution that is not scalable; therefore, the \\textbf{objective of this DOE project was to develop new firewall optimization techniques and architectures} that meet these important challenges. Firewall optimization concerns decreasing the number of comparisons required per packet, which reduces processing time and delay. This is done by reorganizing policy rules via special sorting techniques that maintain the original policy integrity. This research is important since it applies to current and future firewall systems. Another method for increasing firewall performance is with new firewall designs. The architectures under investigation consist of multiple firewalls that collectively enforce a security policy. Our innovative distributed systems quickly divide traffic across different levels based on perceived threat, allowing traffic to be processed in parallel (beyond current firewall sandwich technology). Traffic deemed safe is transmitted to the secure network, while remaining traffic is forwarded to lower levels for further examination. The result of this divide-and-conquer strategy is lower delays for legitimate traffic, higher throughput

  13. Fiber-wireless convergence in next-generation communication networks systems, architectures, and management

    CERN Document Server

    Chang, Gee-Kung; Ellinas, Georgios

    2017-01-01

    This book investigates new enabling technologies for Fi-Wi convergence. The editors discuss Fi-Wi technologies at the three major network levels involved in the path towards convergence: system level, network architecture level, and network management level. The main topics will be: a. At system level: Radio over Fiber (digitalized vs. analogic, standardization, E-band and beyond) and 5G wireless technologies; b. Network architecture level: NGPON, WDM-PON, BBU Hotelling, Cloud Radio Access Networks (C-RANs), HetNets. c. Network management level: SDN for convergence, Next-generation Point-of-Presence, Wi-Fi LTE Handover, Cooperative MultiPoint. • Addresses the Fi-Wi convergence issues at three different levels, namely at the system level, network architecture level, and network management level • Provides approaches in communication systems, network architecture, and management that are expected to steer the evolution towards fiber-wireless convergence • Contributions from leading experts in the field of...

  14. Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA-ANN model

    International Nuclear Information System (INIS)

    Koutroumanidis, Theodoros; Ioannou, Konstantinos; Arabatzis, Garyfallos

    2009-01-01

    Throughout history, energy resources have acquired a strategic significance for the economic growth and social welfare of any country. The large-scale oil crisis of 1973 coupled with various environmental protection issues, have led many countries to look for new, alternative energy sources. Biomass and fuelwood in particular, constitutes a major renewable energy source (RES) that can make a significant contribution, as a substitute for oil. This paper initially provides a description of the contribution of renewable energy sources to the production of electricity, and also examines the role of forests in the production of fuelwood in Greece. Following this, autoregressive integrated moving average (ARIMA) models, artificial neural networks (ANN) and a hybrid model are used to predict the future selling prices of the fuelwood (from broadleaved and coniferous species) produced by Greek state forest farms. The use of the ARIMA-ANN hybrid model provided the optimum prediction results, thus enabling decision-makers to proceed with a more rational planning for the production and fuelwood market. (author)

  15. The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process

    International Nuclear Information System (INIS)

    Daneshvar, N.; Khataee, A.R.; Djafarzadeh, N.

    2006-01-01

    In this paper, electrocoagulation has been used for removal of color from solution containing C. I. Basic Yellow 28. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration, distance between the electrodes, retention time and solution conductivity were studied in an attempt to reach higher removal efficiency. Our results showed that the increase of current density up to 80 A m -2 enhanced the color removal efficiency, the electrolysis time was 7 min and the range of pH was determined 5-8. It was found that for achieving a high color removal percent, the conductivity of the solution and the initial concentration of dye should be 10 mS cm -1 and 50 mg l -1 , respectively. An artificial neural networks (ANN) model was developed to predict the performance of decolorization efficiency by EC process based on experimental data obtained in a laboratory batch reactor. A comparison between the predicted results of the designed ANN model and experimental data was also conducted. The model can describe the color removal percent under different conditions

  16. The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process

    Energy Technology Data Exchange (ETDEWEB)

    Daneshvar, N. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: nezam_daneshvar@yahoo.com; Khataee, A.R. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: ar_khataee@yahoo.com; Djafarzadeh, N. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: n.jafarzadeh@gmail.com

    2006-10-11

    In this paper, electrocoagulation has been used for removal of color from solution containing C. I. Basic Yellow 28. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration, distance between the electrodes, retention time and solution conductivity were studied in an attempt to reach higher removal efficiency. Our results showed that the increase of current density up to 80 A m{sup -2} enhanced the color removal efficiency, the electrolysis time was 7 min and the range of pH was determined 5-8. It was found that for achieving a high color removal percent, the conductivity of the solution and the initial concentration of dye should be 10 mS cm{sup -1} and 50 mg l{sup -1}, respectively. An artificial neural networks (ANN) model was developed to predict the performance of decolorization efficiency by EC process based on experimental data obtained in a laboratory batch reactor. A comparison between the predicted results of the designed ANN model and experimental data was also conducted. The model can describe the color removal percent under different conditions.

  17. SNMS: an intelligent transportation system network architecture based on WSN and P2P network

    Institute of Scientific and Technical Information of China (English)

    LI Li; LIU Yuan-an; TANG Bi-hua

    2007-01-01

    With the development of city road networks, the question of how to obtain information about the roads is becoming more and more important. In this article, sensor network with mobile station (SNMS), a novel two-tiered intelligent transportation system (ITS) network architecture based on wireless sensor network (WSN) and peer-to-peer (P2P) network, is proposed to provide significant traffic information about the road and thereby, assist travelers to take optimum decisions when they are driving. A detailed explanation with regard to the strategy of each level as well as the design of two main components in the network, sensor unit (SU) and mobile station (MS), is presented. Finally, a representative scenario is described to display the operation of the system.

  18. dSDiVN: a distributed Software-Defined Networking architecture for Infrastructure-less Vehicular Networks

    OpenAIRE

    Alioua, Ahmed; Senouci, Sidi-Mohammed; Moussaoui, Samira

    2017-01-01

    In the last few years, the emerging network architecture paradigm of Software-Defined Networking (SDN), has become one of the most important technology to manage large scale networks such as Vehicular Ad-hoc Networks (VANETs). Recently, several works have shown interest in the use of SDN paradigm in VANETs. SDN brings flexibility, scalability and management facility to current VANETs. However, almost all of proposed Software-Defined VANET (SDVN) architectures are infrastructure-based. This pa...

  19. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?

    Science.gov (United States)

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-06-28

    A multilayer feed-forward artificial neural network (MLP-ANN) with a single, hidden layer that contains a finite number of neurons can be regarded as a universal non-linear approximator. Today, the ANN method and linear regression (MLR) model are widely used for quantum chemistry (QC) data analysis (e.g., thermochemistry) to improve their accuracy (e.g., Gaussian G2-G4, B3LYP/B3-LYP, X1, or W1 theoretical methods). In this study, an alternative approach based on support vector machines (SVMs) is used, the least squares support vector machine (LS-SVM) regression. It has been applied to ab initio (first principle) and density functional theory (DFT) quantum chemistry data. So, QC + SVM methodology is an alternative to QC + ANN one. The task of the study was to estimate the Møller-Plesset (MPn) or DFT (B3LYP, BLYP, BMK) energies calculated with large basis sets (e.g., 6-311G(3df,3pd)) using smaller ones (6-311G, 6-311G*, 6-311G**) plus molecular descriptors. A molecular set (BRM-208) containing a total of 208 organic molecules was constructed and used for the LS-SVM training, cross-validation, and testing. MP2, MP3, MP4(DQ), MP4(SDQ), and MP4/MP4(SDTQ) ab initio methods were tested. Hartree-Fock (HF/SCF) results were also reported for comparison. Furthermore, constitutional (CD: total number of atoms and mole fractions of different atoms) and quantum-chemical (QD: HOMO-LUMO gap, dipole moment, average polarizability, and quadrupole moment) molecular descriptors were used for the building of the LS-SVM calibration model. Prediction accuracies (MADs) of 1.62 ± 0.51 and 0.85 ± 0.24 kcal mol(-1) (1 kcal mol(-1) = 4.184 kJ mol(-1)) were reached for SVM-based approximations of ab initio and DFT energies, respectively. The LS-SVM model was more accurate than the MLR model. A comparison with the artificial neural network approach shows that the accuracy of the LS-SVM method is similar to the accuracy of ANN. The extrapolation and interpolation results show that LS-SVM is

  20. Efficient network-matrix architecture for general flow transport inspired by natural pinnate leaves.

    Science.gov (United States)

    Hu, Liguo; Zhou, Han; Zhu, Hanxing; Fan, Tongxiang; Zhang, Di

    2014-11-14

    Networks embedded in three dimensional matrices are beneficial to deliver physical flows to the matrices. Leaf architectures, pervasive natural network-matrix architectures, endow leaves with high transpiration rates and low water pressure drops, providing inspiration for efficient network-matrix architectures. In this study, the network-matrix model for general flow transport inspired by natural pinnate leaves is investigated analytically. The results indicate that the optimal network structure inspired by natural pinnate leaves can greatly reduce the maximum potential drop and the total potential drop caused by the flow through the network while maximizing the total flow rate through the matrix. These results can be used to design efficient networks in network-matrix architectures for a variety of practical applications, such as tissue engineering, cell culture, photovoltaic devices and heat transfer.

  1. Optical home network based on an N×N multimode fiber architecture and CWDM technology

    NARCIS (Netherlands)

    Richard, F.; Guignard, P.; Pizzinat, A.; Guillo, L.; Guillory, J.; Charbonnier, B; Koonen, A.M.J.; Martinez, E.O.; Tanguy, E.; Li, H.W.

    2011-01-01

    With this optical home network solution associating an N×N multimode architecture and CWDM technology, various applications and network topologies are supported by a unique multiformat infrastructure. Issues related to the use of MMF are discussed.

  2. Network architectures and protocols for the integration of ACTS and ISDN

    Science.gov (United States)

    Chitre, D. M.; Lowry, P. A.

    1992-01-01

    A close integration of satellite networks and the integrated services digital network (ISDN) is essential for satellite networks to carry ISDN traffic effectively. This also shows how a given (pre-ISDN) satellite network architecture can be enhanced to handle ISDN signaling and provide ISDN services. It also describes the functional architecture and high-level protocols that could be implemented in the NASA Advanced Communications Technology Satellite (ACTS) low burst rate communications system to provide ISDN services.

  3. ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks.

    Science.gov (United States)

    González-Díaz, Humberto; Herrera-Ibatá, Diana María; Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Orbegozo-Medina, Ricardo Alfredo; Pazos, Alejandro

    2014-03-24

    This work is aimed at describing the workflow for a methodology that combines chemoinformatics and pharmacoepidemiology methods and at reporting the first predictive model developed with this methodology. The new model is able to predict complex networks of AIDS prevalence in the US counties, taking into consideration the social determinants and activity/structure of anti-HIV drugs in preclinical assays. We trained different Artificial Neural Networks (ANNs) using as input information indices of social networks and molecular graphs. We used a Shannon information index based on the Gini coefficient to quantify the effect of income inequality in the social network. We obtained the data on AIDS prevalence and the Gini coefficient from the AIDSVu database of Emory University. We also used the Balaban information indices to quantify changes in the chemical structure of anti-HIV drugs. We obtained the data on anti-HIV drug activity and structure (SMILE codes) from the ChEMBL database. Last, we used Box-Jenkins moving average operators to quantify information about the deviations of drugs with respect to data subsets of reference (targets, organisms, experimental parameters, protocols). The best model found was a Linear Neural Network (LNN) with values of Accuracy, Specificity, and Sensitivity above 0.76 and AUROC > 0.80 in training and external validation series. This model generates a complex network of AIDS prevalence in the US at county level with respect to the preclinical activity of anti-HIV drugs in preclinical assays. To train/validate the model and predict the complex network we needed to analyze 43,249 data points including values of AIDS prevalence in 2,310 counties in the US vs ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4,856 protocols, and 10 possible experimental measures.

  4. RoboSmith: Wireless Networked Architecture for Multiagent Robotic System

    Directory of Open Access Journals (Sweden)

    Florin Moldoveanu

    2010-11-01

    Full Text Available In this paper is presented an architecture for a flexible mini robot for a multiagent robotic system. In a multiagent system the value of an individual agent is negligible since the goal of the system is essential. Thus, the agents (robots need to be small, low cost and cooperative. RoboSmith are designed based on these conditions. The proposed architecture divide a robot into functional modules such as locomotion, control, sensors, communication, and actuation. Any mobile robot can be constructed by combining these functional modules for a specific application. An embedded software with dynamic task uploading and multi-tasking abilities is developed in order to create better interface between robots and the command center and among the robots. The dynamic task uploading allows the robots change their behaviors in runtime. The flexibility of the robots is given by facts that the robots can work in multiagent system, as master-slave, or hybrid mode, can be equipped with different modules and possibly be used in other applications such as mobile sensor networks remote sensing, and plant monitoring.

  5. A Novel, Privacy Preserving, Architecture for Online Social Networks

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2015-12-01

    Full Text Available The centralized nature of conventional OSNs poses serious risks to the privacy and security of information exchanged between their members. These risks prompted several attempts to create decentralized OSNs, or DOSNs. The basic idea underlying these attempts, is that each member of a social network keeps its data under its own control, instead of surrendering it to a central host, providing access to it to other members according to its own access-control policy. Unfortunately all existing versions of DOSNs have a very serious limitation. Namely, they are unable to subject the membership of a DOSN, and the interaction between its members, to any global policy—which is essential for many social communities. Moreover, the DOSN architecture is unable to support useful capabilities such as narrowcasting and profile based search. This paper describes a novel architecture of decentralized OSNs—called DOSC, for “online social community”. DOSC adopts the decentralization idea underlying DOSNs, but it is able to subject the membership of a DOSC-community, and the interaction between its members, to a wide range of policies, including privacy-preserving narrowcasting and profile-sensitive search.

  6. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study

    Science.gov (United States)

    Maghsoudi, M.; Ghaedi, M.; Zinali, A.; Ghaedi, A. M.; Habibi, M. H.

    2015-01-01

    In this research, ZnO nanoparticle loaded on activated carbon (ZnO-NPs-AC) was synthesized simply by a low cost and nontoxic procedure. The characterization and identification have been completed by different techniques such as SEM and XRD analysis. A three layer artificial neural network (ANN) model is applicable for accurate prediction of dye removal percentage from aqueous solution by ZnO-NRs-AC following conduction of 270 experimental data. The network was trained using the obtained experimental data at optimum pH with different ZnO-NRs-AC amount (0.005-0.015 g) and 5-40 mg/L of sunset yellow dye over contact time of 0.5-30 min. The ANN model was applied for prediction of the removal percentage of present systems with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) in the hidden layer with 6 neurons. The minimum mean squared error (MSE) of 0.0008 and coefficient of determination (R2) of 0.998 were found for prediction and modeling of SY removal. The influence of parameters including adsorbent amount, initial dye concentration, pH and contact time on sunset yellow (SY) removal percentage were investigated and optimal experimental conditions were ascertained. Optimal conditions were set as follows: pH, 2.0; 10 min contact time; an adsorbent dose of 0.015 g. Equilibrium data fitted truly with the Langmuir model with maximum adsorption capacity of 142.85 mg/g for 0.005 g adsorbent. The adsorption of sunset yellow followed the pseudo-second-order rate equation.

  7. Performance of artificial neural networks and genetical evolved artificial neural networks unfolding techniques

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Martinez B, M. R.; Vega C, H. R.; Gallego D, E.; Lorente F, A.; Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E.

    2011-01-01

    With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)

  8. Network topology exploration of mesh-based coarse-grain reconfigurable architectures

    NARCIS (Netherlands)

    Bansal, N.; Gupta, S.; Dutt, N.D.; Nicolau, A.; Gupta, R.

    2004-01-01

    Several coarse-grain reconfigurable architectures proposed recently consist of a large number of processing elements (PEs) connected in a mesh-like network topology. We study the effects of three aspects of network topology exploration on the performance of applications on these architectures: (a)

  9. Distributed Prognostics and Health Management with a Wireless Network Architecture

    Science.gov (United States)

    Goebel, Kai; Saha, Sankalita; Sha, Bhaskar

    2013-01-01

    A heterogeneous set of system components monitored by a varied suite of sensors and a particle-filtering (PF) framework, with the power and the flexibility to adapt to the different diagnostic and prognostic needs, has been developed. Both the diagnostic and prognostic tasks are formulated as a particle-filtering problem in order to explicitly represent and manage uncertainties in state estimation and remaining life estimation. Current state-of-the-art prognostic health management (PHM) systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to a loss in functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become for a number of reasons somewhat ungainly for successful deployment, and efficient distributed architectures can be more beneficial. The distributed health management architecture is comprised of a network of smart sensor devices. These devices monitor the health of various subsystems or modules. They perform diagnostics operations and trigger prognostics operations based on user-defined thresholds and rules. The sensor devices, called computing elements (CEs), consist of a sensor, or set of sensors, and a communication device (i.e., a wireless transceiver beside an embedded processing element). The CE runs in either a diagnostic or prognostic operating mode. The diagnostic mode is the default mode where a CE monitors a given subsystem or component through a low-weight diagnostic algorithm. If a CE detects a critical condition during monitoring, it raises a flag. Depending on availability of resources, a networked local cluster of CEs is formed that then carries out prognostics and fault mitigation by efficient distribution of the tasks. It should be noted that the CEs are expected not to suspend their previous tasks in the prognostic mode. When the

  10. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies

    International Nuclear Information System (INIS)

    Sahinkaya, Erkan

    2009-01-01

    Sulfidogenic treatment of sulfate (2-10 g/L) and zinc (65-677 mg/L) containing simulated wastewater was studied in a mesophilic (35 deg. C) CSTR. Ethanol was supplemented (COD/sulfate = 0.67) as carbon and energy source for sulfate-reducing bacteria (SRB). The robustness of the system was studied by increasing Zn, COD and sulfate loadings. Sulfate removal efficiency, which was 70% at 2 g/L feed sulfate concentration, steadily decreased with increasing feed sulfate concentration and reached 40% at 10 g/L. Over 99% Zn removal was attained due to the formation of zinc-sulfide precipitate. COD removal efficiency at 2 g/L feed sulfate concentration was over 94%, whereas, it steadily decreased due to the accumulation of acetate at higher loadings. Alkalinity produced from acetate oxidation increased wastewater pH remarkably when feed sulfate concentration was 5 g/L or lower. Electron flow from carbon oxidation to sulfate reduction averaged 83 ± 13%. The rest of the electrons were most likely coupled with fermentative reactions as the amount of methane production was insignificant. The developed ANN model was very successful as an excellent to reasonable match was obtained between the measured and the predicted concentrations of sulfate (R = 0.998), COD (R = 0.993), acetate (R = 0.976) and zinc (R = 0.827) in the CSTR effluent

  11. An Open Distributed Architecture for Sensor Networks for Risk Management

    Directory of Open Access Journals (Sweden)

    Ralf Denzer

    2008-03-01

    Full Text Available Sensors provide some of the basic input data for risk management of natural andman-made hazards. Here the word ‘sensors’ covers everything from remote sensingsatellites, providing invaluable images of large regions, through instruments installed on theEarth’s surface to instruments situated in deep boreholes and on the sea floor, providinghighly-detailed point-based information from single sites. Data from such sensors is used inall stages of risk management, from hazard, vulnerability and risk assessment in the preeventphase, information to provide on-site help during the crisis phase through to data toaid in recovery following an event. Because data from sensors play such an important part inimproving understanding of the causes of risk and consequently in its mitigation,considerable investment has been made in the construction and maintenance of highlysophisticatedsensor networks. In spite of the ubiquitous need for information from sensornetworks, the use of such data is hampered in many ways. Firstly, information about thepresence and capabilities of sensor networks operating in a region is difficult to obtain dueto a lack of easily available and usable meta-information. Secondly, once sensor networkshave been identified their data it is often difficult to access due to a lack of interoperability between dissemination and acquisition systems. Thirdly, the transfer and processing ofinformation from sensors is limited, again by incompatibilities between systems. Therefore,the current situation leads to a lack of efficiency and limited use of the available data thathas an important role to play in risk mitigation. In view of this situation, the EuropeanCommission (EC is funding a number of Integrated Projects within the Sixth FrameworkProgramme concerned with improving the accessibility of data and services for riskmanagement. Two of these projects: ‘Open Architecture and Spatial Data

  12. Figure-ground segregation in a recurrent network architecture.

    Science.gov (United States)

    Roelfsema, Pieter R; Lamme, Victor A F; Spekreijse, Henk; Bosch, Holger

    2002-05-15

    Here we propose a model of how the visual brain segregates textured scenes into figures and background. During texture segregation, locations where the properties of texture elements change abruptly are assigned to boundaries, whereas image regions that are relatively homogeneous are grouped together. Boundary detection and grouping of image regions require different connection schemes, which are accommodated in a single network architecture by implementing them in different layers. As a result, all units carry signals related to boundary detection as well as grouping of image regions, in accordance with cortical physiology. Boundaries yield an early enhancement of network responses, but at a later point, an entire figural region is grouped together, because units that respond to it are labeled with enhanced activity. The model predicts which image regions are preferentially perceived as figure or as background and reproduces the spatio-temporal profile of neuronal activity in the visual cortex during texture segregation in intact animals, as well as in animals with cortical lesions.

  13. Business architecture for inter-organisational innovation networks: A case study comparison from South Africa and Germany

    CSIR Research Space (South Africa)

    Gous, H

    2011-06-01

    Full Text Available systems architectures. An important step towards a deeper understanding of inter-organisational innovation networks is to compare the business architectures of network case studies to identify similarities and differences in terms of scope and context...

  14. Criteria for Evaluating Alternative Network and Link Layer Protocols for the NASA Constellation Program Communication Architecture

    Science.gov (United States)

    Benbenek, Daniel; Soloff, Jason; Lieb, Erica

    2010-01-01

    Selecting a communications and network architecture for future manned space flight requires an evaluation of the varying goals and objectives of the program, development of communications and network architecture evaluation criteria, and assessment of critical architecture trades. This paper uses Cx Program proposed exploration activities as a guideline; lunar sortie, outpost, Mars, and flexible path options are described. A set of proposed communications network architecture criteria are proposed and described. They include: interoperability, security, reliability, and ease of automating topology changes. Finally a key set of architecture options are traded including (1) multiplexing data at a common network layer vs. at the data link layer, (2) implementing multiple network layers vs. a single network layer, and (3) the use of a particular network layer protocol, primarily IPv6 vs. Delay Tolerant Networking (DTN). In summary, the protocol options are evaluated against the proposed exploration activities and their relative performance with respect to the criteria are assessed. An architectural approach which includes (a) the capability of multiplexing at both the network layer and the data link layer and (b) a single network layer for operations at each program phase, as these solutions are best suited to respond to the widest array of program needs and meet each of the evaluation criteria.

  15. Enabling Tussle-Agile Inter-networking Architectures by Underlay Virtualisation

    Science.gov (United States)

    Dianati, Mehrdad; Tafazolli, Rahim; Moessner, Klaus

    In this paper, we propose an underlay inter-network virtualisation framework in order to enable tussle-agile flexible networking over the existing inter-network infrastructures. The functionalities that inter-networking elements (transit nodes, access networks, etc.) need to support in order to enable virtualisation are discussed. We propose the base architectures of each the abstract elements to support the required inter-network virtualisation functionalities.

  16. The network architecture and site test of DCIS in Lungmen nuclear power station

    International Nuclear Information System (INIS)

    Lee, C. K.

    2006-01-01

    The Lungmen Nuclear Power Station (LMNPS) is located in North-Eastern Seashore of Taiwan. LMNPP has two units. Each unit generates 1350 Megawatts. It is the first ABWR Plant in Taiwan and is under-construction now. Due to contractual arrangement, there are seven large I and C suppliers/designers, which are GE NUMAC, DRS, Invensys, GEIS, Hitachi, MHI, and Stone and Webster company. The Distributed Control and Information System (DCIS) in Lungmen are fully integrated with the state-of-the-art computer and network technology. General Electric is the leading designer for integration of DCIS. This paper presents Network Architecture and the Site Test of DCIS. The network architectures are follows. GE NUMAC System adopts the point to point architecture, DRS System adopts Ring type architecture with SCRAMNET protocol, Inevnsys system adopts IGiga Byte Backbone mesh network with Rapid Spanning Tree Protocol, GEIS adopts Ethernet network with EGD protocol, Hitachi adopts ring type network with proprietary protocol. MHI adopt Ethernet network with UDP. The data-links are used for connection between different suppliers. The DCIS architecture supports the plant automation, the alarm prioritization and alarm suppression, and uniform MMI screen for entire plant. The Test Program regarding the integration of different network architectures and Initial DCIS architecture Setup for 161KV Energization will be discussed. Test tool for improving site test schedule, and lessons learned from FAT will be discussed too. And conclusions are at the end of this paper. (authors)

  17. The network architecture and site test of DCIS in Lungmen nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. K. [Instrument and Control Section, Lungmen Nuclear Power Station, Taiwan Power Company, Taipei County Taiwan (China)

    2006-07-01

    The Lungmen Nuclear Power Station (LMNPS) is located in North-Eastern Seashore of Taiwan. LMNPP has two units. Each unit generates 1350 Megawatts. It is the first ABWR Plant in Taiwan and is under-construction now. Due to contractual arrangement, there are seven large I and C suppliers/designers, which are GE NUMAC, DRS, Invensys, GEIS, Hitachi, MHI, and Stone and Webster company. The Distributed Control and Information System (DCIS) in Lungmen are fully integrated with the state-of-the-art computer and network technology. General Electric is the leading designer for integration of DCIS. This paper presents Network Architecture and the Site Test of DCIS. The network architectures are follows. GE NUMAC System adopts the point to point architecture, DRS System adopts Ring type architecture with SCRAMNET protocol, Inevnsys system adopts IGiga Byte Backbone mesh network with Rapid Spanning Tree Protocol, GEIS adopts Ethernet network with EGD protocol, Hitachi adopts ring type network with proprietary protocol. MHI adopt Ethernet network with UDP. The data-links are used for connection between different suppliers. The DCIS architecture supports the plant automation, the alarm prioritization and alarm suppression, and uniform MMI screen for entire plant. The Test Program regarding the integration of different network architectures and Initial DCIS architecture Setup for 161KV Energization will be discussed. Test tool for improving site test schedule, and lessons learned from FAT will be discussed too. And conclusions are at the end of this paper. (authors)

  18. Ann tuleb Rakverest Võrru

    Index Scriptorium Estoniae

    2009-01-01

    Võru kultuurimajas Kannel etendub 17. aprillil Rakvere teatri noortelavastus "Kuidas elad? ...Ann?!" Aidi Valliku jutustuse põhjal. Lavastaja Sven Heiberg. Mängivad ka Viljandi Kultuuriakadeemia teatritudengid

  19. Quantum perceptron over a field and neural network architecture selection in a quantum computer.

    Science.gov (United States)

    da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa

    2016-04-01

    In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. CRISP. Distributed Network Architectures D1.7

    International Nuclear Information System (INIS)

    Andrieu, C.; Fontela, M.; Raison, B.; Enacheanu, B.; Pham, H.; Besanger, Y.; Randrup, M.; Nilsson, U.B.; Kamphuis, I.G.; Schaeffer, G.J.

    2005-08-01

    This document summarises a possible evolution of the merge of ICT network and EPS in the scope of a future electrical architecture. A general overview on several aspects of the transmission and the distribution networks (technical operation, trading, securing, defence plan) and on several aspects of ICT improvement and risks has been given in previous work packages of the part I of the CRISP project. This document brings a common point of view between the partners on this future merge of the various domains involved. The approach is based on the study of given application based on chosen cases, trying then to show a more general view on the whole system. The MV network, including of course the main HV/MV substation, has a specific position in our purpose: historical, technical and trading boundary between the transmission and the distribution system, involving new functions in the context of a future massive and dispersed generation. The whole electrical system is not yet ready to work properly (supply performances maintained at the same level) with a lot of DG and DG-RES and at the same time with a new and complete electrical deregulated market. The multiplication of actors (production, transmission, distribution, customers, local networks) led by the rules of deregulation is an additional issue for planning and operating correctly the network in the long term. The interactions expected between the low level of the network (distribution EPS, VPP, customers, small aggregators) and the high level of the network (transmission EPS, large plants, LSVPP, large aggregators) require to structure the system in different integrated levels, allowing the operators at each stage to manage efficiently the power flux for steady-state, transients and temporary electrical variations. Compared with the present SCADA situation, the ICT will allow the needed information to be shared by various tools and actors at various locations, and will allow the local intelligence to be

  1. T-SDN architecture for space and ground integrated optical transport network

    Science.gov (United States)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  2. Performance Parameters Analysis of an XD3P Peugeot Engine Using Artificial Neural Networks (ANN) Concept in MATLAB

    Science.gov (United States)

    Rangaswamy, T.; Vidhyashankar, S.; Madhusudan, M.; Bharath Shekar, H. R.

    2015-04-01

    The current trends of engineering follow the basic rule of innovation in mechanical engineering aspects. For the engineers to be efficient, problem solving aspects need to be viewed in a multidimensional perspective. One such methodology implemented is the fusion of technologies from other disciplines in order to solve the problems. This paper mainly deals with the application of Neural Networks in order to analyze the performance parameters of an XD3P Peugeot engine (used in Ministry of Defence). The basic propaganda of the work is divided into two main working stages. In the former stage, experimentation of an IC engine is carried out in order to obtain the primary data. In the latter stage the primary database formed is used to design and implement a predictive neural network in order to analyze the output parameters variation with respect to each other. A mathematical governing equation for the neural network is obtained. The obtained polynomial equation describes the characteristic behavior of the built neural network system. Finally, a comparative study of the results is carried out.

  3. The Royal Summer Palace, Ferdinand I and Anne

    Czech Academy of Sciences Publication Activity Database

    Dobalová, Sylva

    2015-01-01

    Roč. 7, č. 2 (2015), s. 162-175 ISSN 1804-1132 Institutional support: RVO:68378033 Keywords : Anne of Jagiello * Prague Castle * Ferdinand I of Habsburg * olive tree * dynasticism Subject RIV: AL - Art, Architecture, Cultural Heritage

  4. A Smart Gateway Architecture for Improving Efficiency of Home Network Applications

    OpenAIRE

    Ding, Fei; Song, Aiguo; Tong, En; Li, Jianqing

    2016-01-01

    A smart home gateway plays an important role in the Internet of Things (IoT) system that takes responsibility for the connection between the network layer and the ubiquitous sensor network (USN) layer. Even though the home network application is developing rapidly, researches on the home gateway based open development architecture are less. This makes it difficult to extend the home network to support new applications, share service, and interoperate with other home network systems. An integr...

  5. Architecture

    OpenAIRE

    Clear, Nic

    2014-01-01

    When discussing science fiction’s relationship with architecture, the usual practice is to look at the architecture “in” science fiction—in particular, the architecture in SF films (see Kuhn 75-143) since the spaces of literary SF present obvious difficulties as they have to be imagined. In this essay, that relationship will be reversed: I will instead discuss science fiction “in” architecture, mapping out a number of architectural movements and projects that can be viewed explicitly as scien...

  6. Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures

    Science.gov (United States)

    2014-11-01

    Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures Allan Fong, MS1,3, Ranjeev...the medical staff in Intensive Care Units. The ability to predict electrocardiogram and arterial blood pressure waveforms can potentially help the...type of neural network for mining, understanding, and predicting electrocardiogram and arterial blood pressure waveforms. Several network

  7. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles

    2013-01-01

    Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...

  8. Implementation of a feed-forward artificial neural network in VHDL on FPGA

    NARCIS (Netherlands)

    Dondon, P.; Carvalho, J.; Gardere, R.; Lahalle, P.; Tsenov, G.; Mladenov, V.M.; Reljin, B.; Stankovic, S.

    2014-01-01

    Describing an Artificial Neural Network (ANN) using VHDL allows a further implementation of such a system on FPGA. Indeed, the principal point of using FPGA for ANNs is flexibility that gives it an advantage toward other systems like ASICS which are entirely dedicated to one unique architecture and

  9. Intrinsic and task-evoked network architectures of the human brain

    Science.gov (United States)

    Cole, Michael W.; Bassett, Danielle S.; Power, Jonathan D.; Braver, Todd S.; Petersen, Steven E.

    2014-01-01

    Summary Many functional network properties of the human brain have been identified during rest and task states, yet it remains unclear how the two relate. We identified a whole-brain network architecture present across dozens of task states that was highly similar to the resting-state network architecture. The most frequent functional connectivity strengths across tasks closely matched the strengths observed at rest, suggesting this is an “intrinsic”, standard architecture of functional brain organization. Further, a set of small but consistent changes common across tasks suggests the existence of a task-general network architecture distinguishing task states from rest. These results indicate the brain’s functional network architecture during task performance is shaped primarily by an intrinsic network architecture that is also present during rest, and secondarily by evoked task-general and task-specific network changes. This establishes a strong relationship between resting-state functional connectivity and task-evoked functional connectivity – areas of neuroscientific inquiry typically considered separately. PMID:24991964

  10. Development of a new software tool, based on ANN technology, in neutron spectrometry and dosimetry research

    International Nuclear Information System (INIS)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R.

    2007-01-01

    Artificial Intelligence is a branch of study which enhances the capability of computers by giving them human-like intelligence. The brain architecture has been extensively studied and attempts have been made to emulate it as in the Artificial Neural Network technology. A large variety of neural network architectures have been developed and they have gained wide-spread popularity over the last few decades. Their application is considered as a substitute for many classical techniques that have been used for many years, as in the case of neutron spectrometry and dosimetry research areas. In previous works, a new approach called Robust Design of Artificial Neural network was applied to build an ANN topology capable to solve the neutron spectrometry and dosimetry problems within the Mat lab programming environment. In this work, the knowledge stored at Mat lab ANN's synaptic weights was extracted in order to develop for first time a customized software application based on ANN technology, which is proposed to be used in the neutron spectrometry and simultaneous dosimetry fields. (Author)

  11. Development of a new software tool, based on ANN technology, in neutron spectrometry and dosimetry research

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R. [Universidad Autonoma de Zacatecas, Av. Ramon Lopez Velarde 801, A.P. 336, 98000 Zacatecas (Mexico)

    2007-07-01

    Artificial Intelligence is a branch of study which enhances the capability of computers by giving them human-like intelligence. The brain architecture has been extensively studied and attempts have been made to emulate it as in the Artificial Neural Network technology. A large variety of neural network architectures have been developed and they have gained wide-spread popularity over the last few decades. Their application is considered as a substitute for many classical techniques that have been used for many years, as in the case of neutron spectrometry and dosimetry research areas. In previous works, a new approach called Robust Design of Artificial Neural network was applied to build an ANN topology capable to solve the neutron spectrometry and dosimetry problems within the Mat lab programming environment. In this work, the knowledge stored at Mat lab ANN's synaptic weights was extracted in order to develop for first time a customized software application based on ANN technology, which is proposed to be used in the neutron spectrometry and simultaneous dosimetry fields. (Author)

  12. A Formally Verified Decentralized Key Management Architecture for Wireless Sensor Networks

    NARCIS (Netherlands)

    Law, Y.W.; Corin, R.J.; Etalle, Sandro; Hartel, Pieter H.

    We present a decentralized key management architecture for wireless sensor networks, covering the aspects of key deployment, key refreshment and key establishment. Our architecture is based on a clear set of assumptions and guidelines. Balance between security and energy consumption is achieved by

  13. Empirical modeling of a dewaxing system of lubricant oil using Artificial Neural Network (ANN); Modelagem empirica de um sistema de desparafinacao de oleo lubrificante usando redes neurais artificiais

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Cristiano Hora de Oliveira; Medeiros, Ana Claudia Gondim de; Silva, Marcone Lopes; Neves, Sergio Bello; Carvalho, Luciene Santos de; Guimaraes, Paulo Roberto Britto; Pereira, Magnus; Vianna, Regina Ferreira [Universidade Salvador (UNIFACS), Salvador, BA (Brazil). Dept. de Engenharia e Arquitetura]. E-mail: paulorbg@unifacs.br; Santos, Nilza Maria Querino dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)]. E-mail: nilzaq@petrobras.com.br

    2003-07-01

    The MIBK (m-i-b-ketone) dewaxing unit, located at the Landulpho Alves refinery, allows two different operating modes: dewaxing ND oil removal. The former is comprised of an oil-wax separation process, which generates a wax stream with 2 - 5% oil. The latter involves the reprocessing of the wax stream to reduce its oil content. Both involve a two-stage filtration process (primary and secondary) with rotative filters. The general aim of this research is to develop empirical models to predict variables, for both unit-operating modes, to be used in control algorithms, since many data are not available during normal plant operation and therefore need to be estimated. Studies have suggested that the oil content is an essential variable to develop reliable empirical models and this work is concerned with the development of an empirical model for the prediction of the oil content in the wax stream leaving the primary filters. The model is based on a feed forward Artificial Neural Network (ANN) and tests with one and two hidden layers indicate very good agreement between experimental and predicted values. (author)

  14. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry

    NARCIS (Netherlands)

    Liu, Fan; Heck, Albert J R

    2015-01-01

    Proteins are involved in almost all processes of the living cell. They are organized through extensive networks of interaction, by tightly bound macromolecular assemblies or more transiently via signaling nodes. Therefore, revealing the architecture of protein complexes and protein interaction

  15. iAnn

    DEFF Research Database (Denmark)

    Jimenez, Rafael C; Albar, Juan P; Bhak, Jong

    2013-01-01

    We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators add...... submitted events, and these are subsequently accessed via web services. Thus, once an iAnn widget is incorporated into a website, it permanently shows timely relevant information as if it were native to the remote site. At the same time, announcements submitted to the repository are automatically...

  16. Modeling of a 3DTV service in the software-defined networking architecture

    Science.gov (United States)

    Wilczewski, Grzegorz

    2014-11-01

    In this article a newly developed concept towards modeling of a multimedia service offering stereoscopic motion imagery is presented. Proposed model is based on the approach of utilization of Software-defined Networking or Software Defined Networks architecture (SDN). The definition of 3D television service spanning SDN concept is identified, exposing basic characteristic of a 3DTV service in a modern networking organization layout. Furthermore, exemplary functionalities of the proposed 3DTV model are depicted. It is indicated that modeling of a 3DTV service in the Software-defined Networking architecture leads to multiplicity of improvements, especially towards flexibility of a service supporting heterogeneity of end user devices.

  17. Anne-Ly Reimaa : "Suhtlemisel on oluline avatus" / Anne-Ly Reimaa ; interv. Tiia Linnard

    Index Scriptorium Estoniae

    Reimaa, Anne-Ly

    2005-01-01

    Ilmunud ka: Severnoje Poberezhje : Subbota 3. september lk. 5. Intervjueeritav oma tööst Brüsselis, kus esindab Eesti linnade liitu ja Eesti maaomavalitsuste liitu. Arvamust avaldavad Anne Jundas ja Kaia Kaldvee. Lisa: CV

  18. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  19. A comparison of neural network architectures for the prediction of MRR in EDM

    Science.gov (United States)

    Jena, A. R.; Das, Raja

    2017-11-01

    The aim of the research work is to predict the material removal rate of a work-piece in electrical discharge machining (EDM). Here, an effort has been made to predict the material removal rate through back-propagation neural network (BPN) and radial basis function neural network (RBFN) for a work-piece of AISI D2 steel. The input parameters for the architecture are discharge-current (Ip), pulse-duration (Ton), and duty-cycle (τ) taken for consideration to obtained the output for material removal rate of the work-piece. In the architecture, it has been observed that radial basis function neural network is comparatively faster than back-propagation neural network but logically back-propagation neural network results more real value. Therefore BPN may consider as a better process in this architecture for consistent prediction to save time and money for conducting experiments.

  20. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    Science.gov (United States)

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.

  1. An overview of 5G network slicing architecture

    Science.gov (United States)

    Chen, Qiang; Wang, Xiaolei; Lv, Yingying

    2018-05-01

    With the development of mobile communication technology, the traditional single network model has been unable to meet the needs of users, and the demand for differentiated services is increasing. In order to solve this problem, the fifth generation of mobile communication technology came into being, and as one of the key technologies of 5G, network slice is the core technology of network virtualization and software defined network, enabling network slices to flexibly provide one or more network services according to users' needs[1]. Each slice can independently tailor the network functions according to the requirements of the business scene and the traffic model and manage the layout of the corresponding network resources, to improve the flexibility of network services and the utilization of resources, and enhance the robustness and reliability of the whole network [2].

  2. DevOps for network function virtualisation: an architectural approach

    OpenAIRE

    Karl, H.; Draexler, S.; Peuster, M.; Galis, A.; Bredel, M.; Ramos, A.; Martrat, J.; Siddiqui, M. S.; Van Rossem, S.; Tavernier, W.; Xilouris, G.

    2016-01-01

    The Service Programming and Orchestration for Virtualised Software Networks (SONATA) project targets both the flexible programmability of software networks and the optimisation of their deployments by means of integrating Development and Operations in order to accelerate industry adoption of software networks and reduce time-to-market for networked services. SONATA supports network function chaining and orchestration, making service platforms modular and easier to customise to the needs of di...

  3. Metrics of brain network architecture capture the impact of disease in children with epilepsy

    Directory of Open Access Journals (Sweden)

    Michael J. Paldino

    2017-01-01

    Conclusions: We observed that a machine learning algorithm accurately predicted epilepsy duration based on global metrics of network architecture derived from resting state fMRI. These findings suggest that network metrics have the potential to form the basis for statistical models that translate quantitative imaging data into patient-level markers of cognitive deterioration.

  4. mCRAN: A radio access network architecture for 5G indoor ccommunications

    NARCIS (Netherlands)

    Chandra, Kishor; Cao, Zizheng; Bruintjes, Tom; Prasad, R.V.; Karagiannis, Georgios; Tangdiongga, E.; van den Boom, H.P.A.; Kokkeler, Andre B.J.

    2015-01-01

    Millimeter wave (mmWave) communication is being seen as a disruptive technology for 5G era. In particular, 60GHz frequency band has emerged as a promising candidate for multi-Gbps connectivity in indoor and hotspot areas. In terms of network architecture, cloud radio access network (CRAN) has

  5. mCRAN : a radio access network architecture for 5G indoor communications

    NARCIS (Netherlands)

    Chandra, Kishor; Cao, Zizheng; Bruintjes, T. M.; Prasad, R. Venkatesha; Karagiannis, G.; Tangdiongga, Eduward; van den Boom, H.P.A.; Kokkeler, A. B J

    2015-01-01

    Millimeter wave (mmWave) communication is being seen as a disruptive technology for 5G era. In particular, 60GHz frequency band has emerged as a promising candidate for multi-Gbps connectivity in indoor and hotspot areas. In terms of network architecture, cloud radio access network (CRAN) has

  6. OTN Transport of Baseband Radio Serial Protocols in C-RAN Architecture for Mobile Network Applications

    DEFF Research Database (Denmark)

    Checko, Aleksandra; Kardaras, Georgios; Lanzani, Christian Fabio Alessandro

    This white paper presents a proof of concept implementation of digital baseband radio data transport over Optical Transport Network (OTN) compliant to 3GPP Long Term Evolution – Advanced (LTE-A) standard enabling Cloud Radio Access Network (C-RAN) architecture. The transport between the baseband ...

  7. Modular Neural Tile Architecture for Compact Embedded Hardware Spiking Neural Network

    NARCIS (Netherlands)

    Pande, Sandeep; Morgan, Fearghal; Cawley, Seamus; Bruintjes, Tom; Smit, Gerardus Johannes Maria; McGinley, Brian; Carrillo, Snaider; Harkin, Jim; McDaid, Liam

    2013-01-01

    Biologically-inspired packet switched network on chip (NoC) based hardware spiking neural network (SNN) architectures have been proposed as an embedded computing platform for classification, estimation and control applications. Storage of large synaptic connectivity (SNN topology) information in

  8. ATLANTIDES: An Architecture for Alert Verification in Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Crispo, Bruno; Etalle, Sandro

    2007-01-01

    We present an architecture designed for alert verification (i.e., to reduce false positives) in network intrusion-detection systems. Our technique is based on a systematic (and automatic) anomaly-based analysis of the system output, which provides useful context information regarding the network

  9. A network architecture for International Business Satellite communications

    Science.gov (United States)

    Takahata, Fumio; Nohara, Mitsuo; Takeuchi, Yoshio

    Demand Assignment (DA) control is expected to be introduced in the International Business Satellte communications (IBS) network in order to cope with a growing international business traffic. The paper discusses the DA/IBS network from the viewpoints of network configuration, satellite channel configuration and DA control. The network configuration proposed here consists of one Central Station with network management function and several Network Coordination Stations with user management function. A satellite channel configuration is also presented along with a tradeoff study on transmission bit rate, high power amplifier output power requirement, and service quality. The DA control flow and protocol based on CCITT Signalling System No. 7 are also proposed.

  10. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

    Science.gov (United States)

    Graves, Alex; Schmidhuber, Jürgen

    2005-01-01

    In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise phoneme classification, using the TIMIT database. Our main findings are that bidirectional networks outperform unidirectional ones, and Long Short Term Memory (LSTM) is much faster and also more accurate than both standard Recurrent Neural Nets (RNNs) and time-windowed Multilayer Perceptrons (MLPs). Our results support the view that contextual information is crucial to speech processing, and suggest that BLSTM is an effective architecture with which to exploit it.

  11. Separating VNF and Network Control for Hardware‐Acceleration of SDN/NFV Architecture

    Directory of Open Access Journals (Sweden)

    Tong Duan

    2017-08-01

    Full Text Available A hardware‐acceleration architecture that separates virtual network functions (VNFs and network control (called HSN is proposed to solve the mismatch between the simple flow steering requirements and strong packet processing abilities of software‐defined networking (SDN forwarding elements (FEs in SDN/network function virtualization (NFV architecture, while improving the efficiency of NFV infrastructure and the performance of network‐intensive functions. HSN makes full use of FEs and accelerates VNFs through two mechanisms: (1 separation of traffic steering and packet processing in the FEs; (2 separation of SDN and NFV control in the FEs. Our HSN prototype, built on NetFPGA‐10G, demonstrates that the processing performance can be greatly improved with only a small modification of the traditional SDN/NFV architecture.

  12. SANDS: a service-oriented architecture for clinical decision support in a National Health Information Network.

    Science.gov (United States)

    Wright, Adam; Sittig, Dean F

    2008-12-01

    In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:

  13. Design mobile satellite system architecture as an integral part of the cellular access digital network

    Science.gov (United States)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  14. Hybrid SDN Architecture for Resource Consolidation in MPLS Networks

    OpenAIRE

    Katov, Anton Nikolaev; Mihovska, Albena D.; Prasad, Neeli R.

    2015-01-01

    This paper proposes a methodology for resourceconsolidation towards minimizing the power consumption in alarge network, with a substantial resource overprovisioning. Thefocus is on the operation of the core MPLS networks. Theproposed approach is based on a software defined networking(SDN) scheme with a reconfigurable centralized controller, whichturns off certain network elements. The methodology comprisesthe process of identifying time periods with lower traffic demand;the ranking of the net...

  15. Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation.

    Science.gov (United States)

    Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon

    2017-07-03

    Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.

  16. Towards Horizontal Architecture for Autonomic M2M Service Networks

    Directory of Open Access Journals (Sweden)

    Juhani Latvakoski

    2014-05-01

    Full Text Available Today, increasing number of industrial application cases rely on the Machine to Machine (M2M services exposed from physical devices. Such M2M services enable interaction of physical world with the core processes of company information systems. However, there are grand challenges related to complexity and “vertical silos” limiting the M2M market scale and interoperability. It is here expected that horizontal approach for the system architecture is required for solving these challenges. Therefore, a set of architectural principles and key enablers for the horizontal architecture have been specified in this work. A selected set of key enablers called as autonomic M2M manager, M2M service capabilities, M2M messaging system, M2M gateways towards energy constrained M2M asset devices and creation of trust to enable end-to-end security for M2M applications have been developed. The developed key enablers have been evaluated separately in different scenarios dealing with smart metering, car sharing and electric bike experiments. The evaluation results shows that the provided architectural principles, and developed key enablers establish a solid ground for future research and seem to enable communication between objects and applications, which are not initially been designed to communicate together. The aim as the next step in this research is to create a combined experimental system to evaluate the system interoperability and performance in a more detailed manner.

  17. Network Coding Parallelization Based on Matrix Operations for Multicore Architectures

    DEFF Research Database (Denmark)

    Wunderlich, Simon; Cabrera, Juan; Fitzek, Frank

    2015-01-01

    such as the Raspberry Pi2 with four cores in the order of up to one full magnitude. The speed increase gain is even higher than the number of cores of the Raspberry Pi2 since the newly introduced approach exploits the cache architecture way better than by-the-book matrix operations. Copyright © 2015 by the Institute...

  18. Study on Optimization of I and C Architecture for Research Reactors Using Bayesian Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Khaili Ur; Shin, Jinsoo; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-07-01

    The optimization in terms of redundancy of modules and components in Instrumentation and Control (I and C) architecture is based on cost and availability assuming regulatory requirements are satisfied. The motive of this study is to find an optimized I and C architecture, either in hybrid formation, fully digital or analog, with respect to system availability and relative cost of architecture. The cost of research reactors I and C systems is prone to have effect on marketing competitiveness. As a demonstrative example, the reactor protection system of research reactors is selected. The four cases with different architecture formation were developed with single and double redundancy of bi-stable modules, coincidence processor module, and safety or protection circuit actuation logic. The architecture configurations are transformed to reliability block diagram (RBD) based on logical operation and function of modules. A Bayesian Network (BN) model is constructed from RBD to assess availability. The cost estimation was proposed and reliability cost index RI was suggested.

  19. Study on Optimization of I and C Architecture for Research Reactors Using Bayesian Networks

    International Nuclear Information System (INIS)

    Rahman, Khaili Ur; Shin, Jinsoo; Heo, Gyunyoung

    2013-01-01

    The optimization in terms of redundancy of modules and components in Instrumentation and Control (I and C) architecture is based on cost and availability assuming regulatory requirements are satisfied. The motive of this study is to find an optimized I and C architecture, either in hybrid formation, fully digital or analog, with respect to system availability and relative cost of architecture. The cost of research reactors I and C systems is prone to have effect on marketing competitiveness. As a demonstrative example, the reactor protection system of research reactors is selected. The four cases with different architecture formation were developed with single and double redundancy of bi-stable modules, coincidence processor module, and safety or protection circuit actuation logic. The architecture configurations are transformed to reliability block diagram (RBD) based on logical operation and function of modules. A Bayesian Network (BN) model is constructed from RBD to assess availability. The cost estimation was proposed and reliability cost index RI was suggested

  20. Reference Architecture for Multi-Layer Software Defined Optical Data Center Networks

    Directory of Open Access Journals (Sweden)

    Casimer DeCusatis

    2015-09-01

    Full Text Available As cloud computing data centers grow larger and networking devices proliferate; many complex issues arise in the network management architecture. We propose a framework for multi-layer; multi-vendor optical network management using open standards-based software defined networking (SDN. Experimental results are demonstrated in a test bed consisting of three data centers interconnected by a 125 km metropolitan area network; running OpenStack with KVM and VMW are components. Use cases include inter-data center connectivity via a packet-optical metropolitan area network; intra-data center connectivity using an optical mesh network; and SDN coordination of networking equipment within and between multiple data centers. We create and demonstrate original software to implement virtual network slicing and affinity policy-as-a-service offerings. Enhancements to synchronous storage backup; cloud exchanges; and Fibre Channel over Ethernet topologies are also discussed.

  1. Wireless local network architecture for Naval medical treatment facilities

    OpenAIRE

    Deason, Russell C.

    2004-01-01

    Approved for public release; distribution is unlimited In today's Navy Medicine, an approach towards wireless networks is coming into view. The idea of developing and deploying workable Wireless Local Area Networks (WLAN) throughout Naval hospitals is but just a few years down the road. Currently Naval Medical Treatment Facilities (MTF) are using wired Local Area Networks (LANs) throughout the infrastructure of each facility. Civilian hospitals and other medical treatment facilities have b...

  2. A SECURE MESSAGE TRANSMISSION SYSTEM ARCHITECTURE FOR COMPUTER NETWORKS EMPLOYING SMART CARDS

    Directory of Open Access Journals (Sweden)

    Geylani KARDAŞ

    2008-01-01

    Full Text Available In this study, we introduce a mobile system architecture which employs smart cards for secure message transmission in computer networks. The use of smart card provides two security services as authentication and confidentiality in our design. The security of the system is provided by asymmetric encryption. Hence, smart cards are used to store personal account information as well as private key of each user for encryption / decryption operations. This offers further security, authentication and mobility to the system architecture. A real implementation of the proposed architecture which utilizes the JavaCard technology is also discussed in this study.

  3. A Holistic Management Architecture for Large-Scale Adaptive Networks

    National Research Council Canada - National Science Library

    Clement, Michael R

    2007-01-01

    This thesis extends the traditional notion of network management as an indicator of resource availability and utilization into a systemic model of resource requirements, capabilities, and adaptable...

  4. Marginally Stable Triangular Recurrent Neural Network Architecture for Time Series Prediction.

    Science.gov (United States)

    Sivakumar, Seshadri; Sivakumar, Shyamala

    2017-09-25

    This paper introduces a discrete-time recurrent neural network architecture using triangular feedback weight matrices that allows a simplified approach to ensuring network and training stability. The triangular structure of the weight matrices is exploited to readily ensure that the eigenvalues of the feedback weight matrix represented by the block diagonal elements lie on the unit circle in the complex z-plane by updating these weights based on the differential of the angular error variable. Such placement of the eigenvalues together with the extended close interaction between state variables facilitated by the nondiagonal triangular elements, enhances the learning ability of the proposed architecture. Simulation results show that the proposed architecture is highly effective in time-series prediction tasks associated with nonlinear and chaotic dynamic systems with underlying oscillatory modes. This modular architecture with dual upper and lower triangular feedback weight matrices mimics fully recurrent network architectures, while maintaining learning stability with a simplified training process. While training, the block-diagonal weights (hence the eigenvalues) of the dual triangular matrices are constrained to the same values during weight updates aimed at minimizing the possibility of overfitting. The dual triangular architecture also exploits the benefit of parsing the input and selectively applying the parsed inputs to the two subnetworks to facilitate enhanced learning performance.

  5. Softwarization of Mobile Network Functions towards Agile and Energy Efficient 5G Architectures: A Survey

    Directory of Open Access Journals (Sweden)

    Dlamini Thembelihle

    2017-01-01

    Full Text Available Future mobile networks (MNs are required to be flexible with minimal infrastructure complexity, unlike current ones that rely on proprietary network elements to offer their services. Moreover, they are expected to make use of renewable energy to decrease their carbon footprint and of virtualization technologies for improved adaptability and flexibility, thus resulting in green and self-organized systems. In this article, we discuss the application of software defined networking (SDN and network function virtualization (NFV technologies towards softwarization of the mobile network functions, taking into account different architectural proposals. In addition, we elaborate on whether mobile edge computing (MEC, a new architectural concept that uses NFV techniques, can enhance communication in 5G cellular networks, reducing latency due to its proximity deployment. Besides discussing existing techniques, expounding their pros and cons and comparing state-of-the-art architectural proposals, we examine the role of machine learning and data mining tools, analyzing their use within fully SDN- and NFV-enabled mobile systems. Finally, we outline the challenges and the open issues related to evolved packet core (EPC and MEC architectures.

  6. Design Methodology of a Sensor Network Architecture Supporting Urgent Information and Its Evaluation

    Science.gov (United States)

    Kawai, Tetsuya; Wakamiya, Naoki; Murata, Masayuki

    Wireless sensor networks are expected to become an important social infrastructure which helps our life to be safe, secure, and comfortable. In this paper, we propose design methodology of an architecture for fast and reliable transmission of urgent information in wireless sensor networks. In this methodology, instead of establishing single complicated monolithic mechanism, several simple and fully-distributed control mechanisms which function in different spatial and temporal levels are incorporated on each node. These mechanisms work autonomously and independently responding to the surrounding situation. We also show an example of a network architecture designed following the methodology. We evaluated the performance of the architecture by extensive simulation and practical experiments and our claim was supported by the results of these experiments.

  7. A Novel Buffer Management Architecture for Epidemic Routing in Delay Tolerant Networks (DTNs)

    KAUST Repository

    Elwhishi, Ahmed; Ho, Pin-Han; Naik, K.; Shihada, Basem

    2010-01-01

    Delay tolerant networks (DTNs) are wireless networks in which an end-to-end path for a given node pair can never exist for an extended period. It has been reported as a viable approach in launching multiple message replicas in order to increase message delivery ratio and reduce message delivery delay. This advantage, nonetheless, is at the expense of taking more buffer space at each node. The combination of custody and replication entails high buffer and bandwidth overhead. This paper investigates a new buffer management architecture for epidemic routing in DTNs, which helps each node to make a decision on which message should be forwarded or dropped. The proposed buffer management architecture is characterized by a suite of novel functional modules, including Summary Vector Exchange Module (SVEM), Networks State Estimation Module (NSEM), and Utility Calculation Module (UCM). Extensive simulation results show that the proposed buffer management architecture can achieve superb performance against its counterparts in terms of delivery ratio and delivery delay.

  8. A Novel Buffer Management Architecture for Epidemic Routing in Delay Tolerant Networks (DTNs)

    KAUST Repository

    Elwhishi, Ahmed

    2010-11-17

    Delay tolerant networks (DTNs) are wireless networks in which an end-to-end path for a given node pair can never exist for an extended period. It has been reported as a viable approach in launching multiple message replicas in order to increase message delivery ratio and reduce message delivery delay. This advantage, nonetheless, is at the expense of taking more buffer space at each node. The combination of custody and replication entails high buffer and bandwidth overhead. This paper investigates a new buffer management architecture for epidemic routing in DTNs, which helps each node to make a decision on which message should be forwarded or dropped. The proposed buffer management architecture is characterized by a suite of novel functional modules, including Summary Vector Exchange Module (SVEM), Networks State Estimation Module (NSEM), and Utility Calculation Module (UCM). Extensive simulation results show that the proposed buffer management architecture can achieve superb performance against its counterparts in terms of delivery ratio and delivery delay.

  9. Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services.

    Science.gov (United States)

    Zervas, Georgios S; Triay, Joan; Amaya, Norberto; Qin, Yixuan; Cervelló-Pastor, Cristina; Simeonidou, Dimitra

    2011-12-12

    This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated. © 2011 Optical Society of America

  10. The architecture of dynamic reservoir in the echo state network

    Science.gov (United States)

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.

  11. Toward a Mobility-Driven Architecture for Multimodal Underwater Networking

    Science.gov (United States)

    2017-02-01

    correspondence to high-level functionalities defined in the classical OSI model ...the Network and Transport layers of the Open Systems Interconnection ( OSI ) model . Specific technology requirements are mentioned as required. Before...functional layers of MobArch and their correspondence to high-level functionalities defined in the classical OSI model . 4.1 NETWORKING LAYER This

  12. The Hi-Ring Architecture for Data Center Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Ding, Yunhong; Berger, Michael Stübert

    2018-01-01

    Optical technologies have long been used for standard telecom applications ranging from long haul to metro and access networks. With the rapid expansion of traffic in data center networks, the deployment of optical technologies for computationally intensive short reach networking has attracted...... a lot of attention. The main interest in photonics comes from the fact that optical technologies are known for providing high bandwidth at low-cost and low power consumption. Unlike electrical switching, optical switching offers bit rate-independent operation; thus, the required processing capacity can...

  13. Evaluation of Flex-Grid architecture for NREN optical networks

    DEFF Research Database (Denmark)

    Turus, Ioan; Kleist, Josva; Fagertun, Anna Manolova

    2014-01-01

    The paper presents an in-depth and structured evaluation of the impact that Flex-Grid technology reveals within current NRENs’ core optical networks. The evaluation is based on simulations performed with OPNET Modeler tool and considers NORDUnet as well as a normalized GEANT core optical network...... as reference topologies. Flex-Grid technology is suggested as a solution to cope with the different challenges in NREN transport networks such as traffic increase and introduction of novel physical layer services. Flex-Grid refers to narrow channel spacing values and requires a control plane which would enable...

  14. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling.

    Science.gov (United States)

    Ameer, Kashif; Bae, Seong-Woo; Jo, Yunhee; Lee, Hyun-Gyu; Ameer, Asif; Kwon, Joong-Ho

    2017-08-15

    Stevia rebaudiana (Bertoni) consists of stevioside and rebaudioside-A (Reb-A). We compared response surface methodology (RSM) and artificial neural network (ANN) modelling for their estimation and predictive capabilities in building effective models with maximum responses. A 5-level 3-factor central composite design was used to optimize microwave-assisted extraction (MAE) to obtain maximum yield of target responses as a function of extraction time (X 1 : 1-5min), ethanol concentration, (X 2 : 0-100%) and microwave power (X 3 : 40-200W). Maximum values of the three output parameters: 7.67% total extract yield, 19.58mg/g stevioside yield, and 15.3mg/g Reb-A yield, were obtained under optimum extraction conditions of 4min X 1 , 75% X 2 , and 160W X 3 . The ANN model demonstrated higher efficiency than did the RSM model. Hence, RSM can demonstrate interaction effects of inherent MAE parameters on target responses, whereas ANN can reliably model the MAE process with better predictive and estimation capabilities. Copyright © 2017. Published by Elsevier Ltd.

  15. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.

    Science.gov (United States)

    Hearne, Luke J; Cocchi, Luca; Zalesky, Andrew; Mattingley, Jason B

    2017-08-30

    Our capacity for higher cognitive reasoning has a measurable limit. This limit is thought to arise from the brain's capacity to flexibly reconfigure interactions between spatially distributed networks. Recent work, however, has suggested that reconfigurations of task-related networks are modest when compared with intrinsic "resting-state" network architecture. Here we combined resting-state and task-driven functional magnetic resonance imaging to examine how flexible, task-specific reconfigurations associated with increasing reasoning demands are integrated within a stable intrinsic brain topology. Human participants (21 males and 28 females) underwent an initial resting-state scan, followed by a cognitive reasoning task involving different levels of complexity, followed by a second resting-state scan. The reasoning task required participants to deduce the identity of a missing element in a 4 × 4 matrix, and item difficulty was scaled parametrically as determined by relational complexity theory. Analyses revealed that external task engagement was characterized by a significant change in functional brain modules. Specifically, resting-state and null-task demand conditions were associated with more segregated brain-network topology, whereas increases in reasoning complexity resulted in merging of resting-state modules. Further increments in task complexity did not change the established modular architecture, but affected selective patterns of connectivity between frontoparietal, subcortical, cingulo-opercular, and default-mode networks. Larger increases in network efficiency within the newly established task modules were associated with higher reasoning accuracy. Our results shed light on the network architectures that underlie external task engagement, and highlight selective changes in brain connectivity supporting increases in task complexity. SIGNIFICANCE STATEMENT Humans have clear limits in their ability to solve complex reasoning problems. It is thought that

  16. Fluid and flexible minds: Intelligence reflects synchrony in the brain’s intrinsic network architecture

    Directory of Open Access Journals (Sweden)

    Michael A. Ferguson

    2017-06-01

    Full Text Available Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data (n = 830, we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease. In our study, we aimed to understand how individual differences in intellectual functioning are reflected in the intrinsic network architecture of the human brain. We applied statistical methods, known as spectral decompositions, in order to identify individual differences in the synchronous patterns of spontaneous brain activity that reliably predict core aspects of human intelligence. The synchrony of brain activity at rest across multiple discrete neural networks demonstrated positive relationships with fluid intelligence. In contrast, global synchrony within the brain’s network architecture reliably, and inversely, predicted mental flexibility, a core facet of intellectual functioning. The multinetwork systems approach described here represents a methodological and conceptual extension of earlier efforts that related differences in

  17. Architectural Design for the Global Legal Information Network

    Science.gov (United States)

    Kalpakis, Konstantinos

    1999-01-01

    In this report, we provide a summary of our activities regarding the goals, requirements analysis, design, and prototype implementation for the Global Legal Information Network, a joint effort between the Law Library of Congress and NASA.

  18. Use of communication architecture test bed to evaluate data network performance

    International Nuclear Information System (INIS)

    Clapp, N.E. Jr.; Swail, B.K.; Naser, J.A.

    1994-01-01

    Local area networks (LANs) are becoming more prevalent in nuclear power plants. Traditionally, LANs were only used as information highways, providing office automation services. LANs are now being used as data highways for applications in plant data acquisition and control systems. A communication architecture test bed, which contains network simulators, is needed to allow network performance studies and to resolve design issues prior to equipment purchase. Two levels of granularity of simulation are needed to provide the dynamic information about network performance. A coarse-grain simulator is used to estimate the dynamic performance of the network due to major resources such as workstations, gateways, and data acquisition systems. A fine-grain simulator allows a greater level of detail about the underlying network protocol and resources to be simulated. The combination of coarse-grain and fine-grain simulation packages provides the network designer with the required tools to thoroughly understand the behavior of the modeled network. This paper describes the development of a communication architecture test bed using commercial network simulation packages. Network simulators allow the resolution of major design issues in software without the expense of purchasing costly hardware components

  19. Ann Tenno salapaigad / Margit Tõnson

    Index Scriptorium Estoniae

    Tõnson, Margit, 1978-

    2011-01-01

    Fotograaf Ann Tenno aiandushuvist, pildistamisest maailma erinevates paikades. Uutest suundadest (fototöötlus, fractal art, soojuskaameraga pildistamine) tema loomingus. Katkendeid Ann Tenno 2010. aastal ilmunud proosaraamatust "Üle unepiiri"

  20. Energy-aware architecture for multi-rate ad hoc networks

    Directory of Open Access Journals (Sweden)

    Ahmed Yahya

    2010-06-01

    Full Text Available The backbone of ad hoc network design is energy performance and bandwidth resources limitations. Multi-rate adaptation architectures have been proposed to reduce the control overhead and to increase bandwidth utilization efficiency. In this paper, we propose a multi-rate protocol to provide the highest network performance under very low control overhead. The efficiency of the proposed auto multi-rate protocol is validated extensive simulations using QualNet network simulator. The simulation results demonstrate that our solution significantly improves the overall network performance.

  1. Research on the Architecture of a Basic Reconfigurable Information Communication Network

    Directory of Open Access Journals (Sweden)

    Ruimin Wang

    2013-01-01

    Full Text Available The current information network cannot fundamentally meet some urgent requirements, such as providing ubiquitous information services and various types of heterogeneous network, supporting diverse and comprehensive network services, possessing high quality communication effects, ensuring the security and credibility of information interaction, and implementing effective supervisory control. This paper provides the theory system for the basic reconfigurable information communication network based on the analysis of present problems on the Internet and summarizes the root of these problems. It also provides an in-depth discussion about the related technologies and the prime components of the architecture.

  2. Quantifying sleep architecture dynamics and individual differences using big data and Bayesian networks.

    Science.gov (United States)

    Yetton, Benjamin D; McDevitt, Elizabeth A; Cellini, Nicola; Shelton, Christian; Mednick, Sara C

    2018-01-01

    The pattern of sleep stages across a night (sleep architecture) is influenced by biological, behavioral, and clinical variables. However, traditional measures of sleep architecture such as stage proportions, fail to capture sleep dynamics. Here we quantify the impact of individual differences on the dynamics of sleep architecture and determine which factors or set of factors best predict the next sleep stage from current stage information. We investigated the influence of age, sex, body mass index, time of day, and sleep time on static (e.g. minutes in stage, sleep efficiency) and dynamic measures of sleep architecture (e.g. transition probabilities and stage duration distributions) using a large dataset of 3202 nights from a non-clinical population. Multi-level regressions show that sex effects duration of all Non-Rapid Eye Movement (NREM) stages, and age has a curvilinear relationship for Wake After Sleep Onset (WASO) and slow wave sleep (SWS) minutes. Bayesian network modeling reveals sleep architecture depends on time of day, total sleep time, age and sex, but not BMI. Older adults, and particularly males, have shorter bouts (more fragmentation) of Stage 2, SWS, and they transition less frequently to these stages. Additionally, we showed that the next sleep stage and its duration can be optimally predicted by the prior 2 stages and age. Our results demonstrate the potential benefit of big data and Bayesian network approaches in quantifying static and dynamic architecture of normal sleep.

  3. Biogas engine performance estimation using ANN

    Directory of Open Access Journals (Sweden)

    Yusuf Kurtgoz

    2017-12-01

    Full Text Available Artificial neural network (ANN method was used to estimate the thermal efficiency (TE, brake specific fuel consumption (BSFC and volumetric efficiency (VE values of a biogas engine with spark ignition at different methane (CH4 ratios and engine load values. For this purpose, the biogas used in the biogas engine was produced by the anaerobic fermentation method from bovine manure and different CH4 contents (51%, 57%, 87% were obtained by purification of CO2 and H2S. The data used in the ANN models were obtained experimentally from a 4-stroke four-cylinder, spark ignition engine, at constant speed for different load and CH4 ratios. Using some of the obtained experimental data, ANN models were developed, and the rest was used to test the developed models. In the ANN models, the CH4 ratio of the fuel, engine load, inlet air temperature (Tin, air fuel ratio and the maximum cylinder pressure are chosen as the input parameters. TE, BSFC and VE are used as the output parameters. Root mean square error (RMSE, mean absolute percentage error (MAPE and correlation coefficient (R performance indicators are used to compare measured and predicted values. It has been shown that ANN models give good results in spark ignition biogas engines with high correlation and low error rates for TE, BSFC and VE values.

  4. Feature Selection and ANN Solar Power Prediction

    Directory of Open Access Journals (Sweden)

    Daniel O’Leary

    2017-01-01

    Full Text Available A novel method of solar power forecasting for individuals and small businesses is developed in this paper based on machine learning, image processing, and acoustic classification techniques. Increases in the production of solar power at the consumer level require automated forecasting systems to minimize loss, cost, and environmental impact for homes and businesses that produce and consume power (prosumers. These new participants in the energy market, prosumers, require new artificial neural network (ANN performance tuning techniques to create accurate ANN forecasts. Input masking, an ANN tuning technique developed for acoustic signal classification and image edge detection, is applied to prosumer solar data to improve prosumer forecast accuracy over traditional macrogrid ANN performance tuning techniques. ANN inputs tailor time-of-day masking based on error clustering in the time domain. Results show an improvement in prediction to target correlation, the R2 value, lowering inaccuracy of sample predictions by 14.4%, with corresponding drops in mean average error of 5.37% and root mean squared error of 6.83%.

  5. An ANN application for water quality forecasting.

    Science.gov (United States)

    Palani, Sundarambal; Liong, Shie-Yui; Tkalich, Pavel

    2008-09-01

    Rapid urban and coastal developments often witness deterioration of regional seawater quality. As part of the management process, it is important to assess the baseline characteristics of the marine environment so that sustainable development can be pursued. In this study, artificial neural networks (ANNs) were used to predict and forecast quantitative characteristics of water bodies. The true power and advantage of this method lie in its ability to (1) represent both linear and non-linear relationships and (2) learn these relationships directly from the data being modeled. The study focuses on Singapore coastal waters. The ANN model is built for quick assessment and forecasting of selected water quality variables at any location in the domain of interest. Respective variables measured at other locations serve as the input parameters. The variables of interest are salinity, temperature, dissolved oxygen, and chlorophyll-alpha. A time lag up to 2Delta(t) appeared to suffice to yield good simulation results. To validate the performance of the trained ANN, it was applied to an unseen data set from a station in the region. The results show the ANN's great potential to simulate water quality variables. Simulation accuracy, measured in the Nash-Sutcliffe coefficient of efficiency (R(2)), ranged from 0.8 to 0.9 for the training and overfitting test data. Thus, a trained ANN model may potentially provide simulated values for desired locations at which measured data are unavailable yet required for water quality models.

  6. An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran

    Directory of Open Access Journals (Sweden)

    Mahdi Saadat

    2014-02-01

    Full Text Available Blast-induced ground vibration is one of the inevitable outcomes of blasting in mining projects and may cause substantial damage to rock mass as well as nearby structures and human beings. In this paper, an attempt has been made to present an application of artificial neural network (ANN to predict the blast-induced ground vibration of the Gol-E-Gohar (GEG iron mine, Iran. A four-layer feed-forward back propagation multi-layer perceptron (MLP was used and trained with Levenberg–Marquardt algorithm. To construct ANN models, the maximum charge per delay, distance from blasting face to monitoring point, stemming and hole depth were taken as inputs, whereas peak particle velocity (PPV was considered as an output parameter. A database consisting of 69 data sets recorded at strategic and vulnerable locations of GEG iron mine was used to train and test the generalization capability of ANN models. Coefficient of determination (R2 and mean square error (MSE were chosen as the indicators of the performance of the networks. A network with architecture 4-11-5-1 and R2 of 0.957 and MSE of 0.000722 was found to be optimum. To demonstrate the supremacy of ANN approach, the same 69 data sets were used for the prediction of PPV with four common empirical models as well as multiple linear regression (MLR analysis. The results revealed that the proposed ANN approach performs better than empirical and MLR models.

  7. OTN Transport of Baseband Radio Serial Protocols in C-RAN Architecture for Mobile Network Applications

    OpenAIRE

    Checko, Aleksandra; Kardaras, Georgios; Lanzani, Christian Fabio Alessandro; Temple, Dan; Mathiasen, Carsten; Pedersen, Lars A.; Klaps, Bert

    2014-01-01

    This white paper presents a proof of concept implementation of digital baseband radio data transport over Optical Transport Network (OTN) compliant to 3GPP Long Term Evolution – Advanced (LTE-A) standard enabling Cloud Radio Access Network (C-RAN) architecture. The transport between the baseband module and a remote radio module is compliant to Common Public Radio Interface (CPRI) and to the OBSAI reference point 3 - 01 (RP3-01) interface protocols, respectively. The purpose is to demonstrate ...

  8. TopoGen: A Network Topology Generation Architecture with application to automating simulations of Software Defined Networks

    CERN Document Server

    Laurito, Andres; The ATLAS collaboration

    2017-01-01

    Simulation is an important tool to validate the performance impact of control decisions in Software Defined Networks (SDN). Yet, the manual modeling of complex topologies that may change often during a design process can be a tedious error-prone task. We present TopoGen, a general purpose architecture and tool for systematic translation and generation of network topologies. TopoGen can be used to generate network simulation models automatically by querying information available at diverse sources, notably SDN controllers. The DEVS modeling and simulation framework facilitates a systematic translation of structured knowledge about a network topology into a formal modular and hierarchical coupling of preexisting or new models of network entities (physical or logical). TopoGen can be flexibly extended with new parsers and generators to grow its scope of applicability. This permits to design arbitrary workflows of topology transformations. We tested TopoGen in a network engineering project for the ATLAS detector ...

  9. TopoGen: A Network Topology Generation Architecture with application to automating simulations of Software Defined Networks

    CERN Document Server

    Laurito, Andres; The ATLAS collaboration

    2018-01-01

    Simulation is an important tool to validate the performance impact of control decisions in Software Defined Networks (SDN). Yet, the manual modeling of complex topologies that may change often during a design process can be a tedious error-prone task. We present TopoGen, a general purpose architecture and tool for systematic translation and generation of network topologies. TopoGen can be used to generate network simulation models automatically by querying information available at diverse sources, notably SDN controllers. The DEVS modeling and simulation framework facilitates a systematic translation of structured knowledge about a network topology into a formal modular and hierarchical coupling of preexisting or new models of network entities (physical or logical). TopoGen can be flexibly extended with new parsers and generators to grow its scope of applicability. This permits to design arbitrary workflows of topology transformations. We tested TopoGen in a network engineering project for the ATLAS detector ...

  10. Modeling, analysis and optimization of network-on-chip communication architectures

    CERN Document Server

    Ogras, Umit Y

    2013-01-01

    Traditionally, design space exploration for Systems-on-Chip (SoCs) has focused on the computational aspects of the problem at hand. However, as the number of components on a single chip and their performance continue to increase, the communication architecture plays a major role in the area, performance and energy consumption of the overall system. As a result, a shift from computation-based to communication-based design becomes mandatory. Towards this end, network-on-chip (NoC) communication architectures have emerged recently as a promising alternative to classical bus and point-to-point communication architectures. This book explores outstanding research problems related to modeling, analysis and optimization of NoC communication architectures. More precisely, we present novel design methodologies, software tools and FPGA prototypes to aid the design of application-specific NoCs.

  11. A network architecture supporting consistent rich behavior in collaborative interactive applications.

    Science.gov (United States)

    Marsh, James; Glencross, Mashhuda; Pettifer, Steve; Hubbold, Roger

    2006-01-01

    Network architectures for collaborative virtual reality have traditionally been dominated by client-server and peer-to-peer approaches, with peer-to-peer strategies typically being favored where minimizing latency is a priority, and client-server where consistency is key. With increasingly sophisticated behavior models and the demand for better support for haptics, we argue that neither approach provides sufficient support for these scenarios and, thus, a hybrid architecture is required. We discuss the relative performance of different distribution strategies in the face of real network conditions and illustrate the problems they face. Finally, we present an architecture that successfully meets many of these challenges and demonstrate its use in a distributed virtual prototyping application which supports simultaneous collaboration for assembly, maintenance, and training applications utilizing haptics.

  12. An Architecture to Manage Incoming Traffic of Inter-Domain Routing Using OpenFlow Networks

    Directory of Open Access Journals (Sweden)

    Walber José Adriano Silva

    2018-04-01

    Full Text Available The Border Gateway Protocol (BGP is the current state-of-the-art inter-domain routing between Autonomous Systems (ASes. Although BGP has different mechanisms to manage outbound traffic in an AS domain, it lacks an efficient tool for inbound traffic control from transit ASes such as Internet Service Providers (ISPs. For inter-domain routing, the BGP’s destination-based forwarding paradigm limits the granularity of distributing the network traffic among the multiple paths of the current Internet topology. Thus, this work offered a new architecture to manage incoming traffic in the inter-domain using OpenFlow networks. The architecture explored direct inter-domain communication to exchange control information and the functionalities of the OpenFlow protocol. Based on the achieved results of the size of exchanging messages, the proposed architecture is not only scalable, but also capable of performing load balancing for inbound traffic using different strategies.

  13. Kõnelused Tartus / Anne Untera

    Index Scriptorium Estoniae

    Untera, Anne, 1951-

    2007-01-01

    8.-10. V Tartus toimunud eesti, läti ja saksa kunstiteadlaste ühisseminarist. Alexander Knorre rääkis Karl August Senffi, Ilona Audere Friedrich Ludwig von Maydelli, Mai Levin Karl Alexander von Winkleri, Kristiana Abele Johann Walter-Kurau (1869-1932), Anne Untera Konstantin ja Sally von Kügelgeni, Epp Preem Julie Hagen-Schwartzi, Friedrich Gross Eduard von Gebhardti ja Katharina Hadding Ida Kerkoviuse (1879-1970) loomingust

  14. Hybrid SDN Architecture for Resource Consolidation in MPLS Networks

    DEFF Research Database (Denmark)

    Katov, Anton Nikolaev; Mihovska, Albena D.; Prasad, Neeli R.

    2015-01-01

    ) scheme with a reconfigurable centralized controller, which turns off certain network elements. The methodology comprises the process of identifying time periods with lower traffic demand; the ranking of the network elements, based on their utilization and criticality; the rerouting of the traffic off...... the least utilized elements; and finally, the switching off of the appropriate nodes or links. An algorithm for traffic rerouting, based on the MPLS traffic engineering techniques is proposed and its performance is evaluated in terms of the achieved energy efficiency in accordance with predefined...

  15. Design Considerations for a 5G Network Architecture

    OpenAIRE

    Bergren, Steven

    2017-01-01

    The data rates of up to 10 GB/s will characterize 5G networks telecommunications standards that are envisioned to replace the current 4G/IMT standards. The number of network-connected devices is expected to be 7 trillion by the end of this year and the traffic is expected to rise by an order of magnitude in the next 8 years. It is expected that elements of 5G will be rolled out by early 2020s to meet business and consumer demands as well as requirements of the Internet of Things. China's Mini...

  16. Middleware Architecture for Ambient Intelligence in the Networked Home

    Science.gov (United States)

    Georgantas, Nikolaos; Issarny, Valerie; Mokhtar, Sonia Ben; Bromberg, Yerom-David; Bianco, Sebastien; Thomson, Graham; Raverdy, Pierre-Guillaume; Urbieta, Aitor; Cardoso, Roberto Speicys

    With computing and communication capabilities now embedded in most physical objects of the surrounding environment and most users carrying wireless computing devices, the Ambient Intelligence (AmI) / pervasive computing vision [28] pioneered by Mark Weiser [32] is becoming a reality. Devices carried by nomadic users can seamlessly network with a variety of devices, both stationary and mobile, both nearby and remote, providing a wide range of functional capabilities, from base sensing and actuating to rich applications (e.g., smart spaces). This then allows the dynamic deployment of pervasive applications, which dynamically compose functional capabilities accessible in the pervasive network at the given time and place of an application request.

  17. Improvements to Integrated Tradespace Analysis of Communications Architectures (ITACA) Network Loading Analysis Tool

    Science.gov (United States)

    Lee, Nathaniel; Welch, Bryan W.

    2018-01-01

    NASA's SCENIC project aims to simplify and reduce the cost of space mission planning by replicating the analysis capabilities of commercially licensed software which are integrated with relevant analysis parameters specific to SCaN assets and SCaN supported user missions. SCENIC differs from current tools that perform similar analyses in that it 1) does not require any licensing fees, 2) will provide an all-in-one package for various analysis capabilities that normally requires add-ons or multiple tools to complete. As part of SCENIC's capabilities, the ITACA network loading analysis tool will be responsible for assessing the loading on a given network architecture and generating a network service schedule. ITACA will allow users to evaluate the quality of service of a given network architecture and determine whether or not the architecture will satisfy the mission's requirements. ITACA is currently under development, and the following improvements were made during the fall of 2017: optimization of runtime, augmentation of network asset pre-service configuration time, augmentation of Brent's method of root finding, augmentation of network asset FOV restrictions, augmentation of mission lifetimes, and the integration of a SCaN link budget calculation tool. The improvements resulted in (a) 25% reduction in runtime, (b) more accurate contact window predictions when compared to STK(Registered Trademark) contact window predictions, and (c) increased fidelity through the use of specific SCaN asset parameters.

  18. A multi-tiered architecture for content retrieval in mobile peer-to-peer networks.

    Science.gov (United States)

    2012-01-01

    In this paper, we address content retrieval in Mobile Peer-to-Peer (P2P) Networks. We design a multi-tiered architecture for content : retrieval, where at Tier 1, we design a protocol for content similarity governed by a parameter that trades accu...

  19. An Architecture for Anonymous Mobile Coupons in a Large Network

    Directory of Open Access Journals (Sweden)

    Alberto Bartoli

    2016-01-01

    Full Text Available A mobile coupon (m-coupon can be presented with a smartphone for obtaining a financial discount when purchasing a product or a service. M-coupons are a powerful marketing tool that has enjoyed a huge growth and diffusion, involving tens of millions of people each year. We propose an architecture which may enable significant improvements over current m-coupon technology, in terms of acceptance of potential customers and of marketing actions that become feasible: the customer does not need to install any dedicated app; an m-coupon is not bound to any specific device or customer; an m-coupon may be redeemed at any store in a set of potentially many thousands of stores, without any prior arrangement between customer and store. We are not aware of any proposal with these properties.

  20. Feedback control architecture and the bacterial chemotaxis network.

    Directory of Open Access Journals (Sweden)

    Abdullah Hamadeh

    2011-05-01

    Full Text Available Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance.

  1. Signatures of arithmetic simplicity in metabolic network architecture.

    Directory of Open Access Journals (Sweden)

    William J Riehl

    2010-04-01

    Full Text Available Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity.

  2. Architecture of the rat nephron-arterial network

    DEFF Research Database (Denmark)

    Marsh, Donald J; Postnov, Dmitry D; Rowland, Douglas

    2017-01-01

    Among solid organs the kidney's vascular network stands out because each nephron has 2 distinct capillary structures in series, and because tubuloglomerular feedback (TGF), one of the mechanisms responsible for blood flow autoregulation, is specific to renal tubules. TGF and the myogenic mechanis...

  3. Validation of Bosch' Mobile Communication NetworkArchitecture with SPIN

    NARCIS (Netherlands)

    Ruys, T.C.; Langerak, Romanus

    This paper discusses validation projects carried out for the Mobile Communication Division of Robert Bosch GmbH. We verified parts of their Mobile Communication Network (MCNet), a communication system which is to be used in infotainment systems of future cars. The protocols of the MCNet have been

  4. Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2015-01-01

    Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

  5. Architecture, design and protection of power distribution networks; Architecture, conception et protection des reseaux de distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sorrel, J.P. [Schneider Electric SA, 92 - Boulogne-Billancourt (France)

    2000-10-01

    The design of all-electric ships calls for high power levels in the propulsion systems. Merchant ships and especially naval vessels demand rugged, reliable propulsion systems with high availability, low maintenance and ease of operation. These constraints imply the choice of an optimized single winding system. The design of the network topology and protection system, and the choice of operating voltage and HT neutral configuration are the main steps in the design. (author)

  6. Tree-based server-middleman-client architecture: improving scalability and reliability for voting-based network games in ad hoc wireless networks

    Science.gov (United States)

    Guo, Y.; Fujinoki, H.

    2006-10-01

    The concept of a new tree-based architecture for networked multi-player games was proposed by Matuszek to improve scalability in network traffic at the same time to improve reliability. The architecture (we refer it as "Tree-Based Server- Middlemen-Client architecture") will solve the two major problems in ad-hoc wireless networks: frequent link failures and significance in battery power consumption at wireless transceivers by using two new techniques, recursive aggregation of client messages and subscription-based propagation of game state. However, the performance of the TBSMC architecture has never been quantitatively studied. In this paper, the TB-SMC architecture is compared with the client-server architecture using simulation experiments. We developed an event driven simulator to evaluate the performance of the TB-SMC architecture. In the network traffic scalability experiments, the TB-SMC architecture resulted in less than 1/14 of the network traffic load for 200 end users. In the reliability experiments, the TB-SMC architecture improved the number of successfully delivered players' votes by 31.6, 19.0, and 12.4% from the clientserver architecture at high (failure probability of 90%), moderate (50%) and low (10%) failure probability.

  7. Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture.

    Science.gov (United States)

    Meszlényi, Regina J; Buza, Krisztian; Vidnyánszky, Zoltán

    2017-01-01

    Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.

  8. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks.

    Science.gov (United States)

    Gorochowski, Thomas E; Grierson, Claire S; di Bernardo, Mario

    2018-03-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli . Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution.

  9. Real-time services in IP network architectures

    Science.gov (United States)

    Gilardi, Antonella

    1996-12-01

    The worldwide internet system seems to be the success key for the provision of real time multimedia services to both residential and business users and someone says that in such a way broadband networks will have a reason to exist. This new class of applications that use multiple media (voice, video and data) impose constraints to the global network nowadays consisting of subnets with various data links. The attention will be focused on the interconnection of IP non ATM and ATM networks. IETF and ATM forum are currently involved in the developing specifications suited to adapt the connectionless IP protocol to the connection oriented ATM protocol. First of all the link between the ATM and the IP service model has to be set in order to match the QoS and traffic requirements defined in the relative environment. A further significant topic is represented by the mapping of IP resource reservation model onto the ATM signalling and in the end it is necessary to define how the routing works when there are QoS parameters associated. This paper, considering only unicast applications, will examine the above issues taking as a starting point the situation where an host launches as call set up request with the relevant QoS and traffic descriptor and at some point a router at the edge of the ATM network has to decide how forwarding and request in order to establish an end to end link with the right capabilities. The aim is to compare the proposals emerging from different standard bodies to point out convergency or incompatibility.

  10. Intelligent Middle-Ware Architecture for Mobile Networks

    Science.gov (United States)

    Rayana, Rayene Ben; Bonnin, Jean-Marie

    Recent advances in electronic and automotive industries as well as in wireless telecommunication technologies have drawn a new picture where each vehicle became “fully networked”. Multiple stake-holders (network operators, drivers, car manufacturers, service providers, etc.) will participate in this emerging market, which could grow following various models. To free the market from technical constraints, it is important to return to the basics of the Internet, i.e., providing embarked devices with a fully operational Internet connectivity (IPv6).

  11. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.

    Science.gov (United States)

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A

    2015-06-01

    A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.

  12. Network based control point for UPnP QoS architecture

    DEFF Research Database (Denmark)

    Brewka, Lukasz Jerzy; Wessing, Henrik; Rossello Busquet, Ana

    2011-01-01

    Enabling coexistence of non-UPnP Devices in an UPnP QoS Architecture is an important issue that might have a major impact on the deployment and usability of UPnP in future home networks. The work presented here shows potential issues of placing non-UPnP Device in the network managed by UPnP QoS. We...... address this issue by extensions to the UPnP QoS Architecture that can prevent non-UPnP Devices from degrading the overall QoS level. The obtained results show that deploying Network Based Control Point service with efficient traffic classifier, improves significantly the end-to-end packet delay...

  13. Testing a Cloud Provider Network for Hybrid P2P and Cloud Streaming Architectures

    OpenAIRE

    Cerviño Arriba, Javier; Rodríguez, Pedro; Trajkovska, Irena; Mozo Velasco, Alberto; Salvachúa Rodríguez, Joaquín

    2011-01-01

    The number of online real-time streaming services deployed over network topologies like P2P or centralized ones has remarkably increased in the recent years. This has revealed the lack of networks that are well prepared to respond to this kind of traffic. A hybrid distribution network can be an efficient solution for real-time streaming services. This paper contains the experimental results of streaming distribution in a hybrid architecture that consist of mixed connections among P2P and Clou...

  14. Algorithm-structured computer arrays and networks architectures and processes for images, percepts, models, information

    CERN Document Server

    Uhr, Leonard

    1984-01-01

    Computer Science and Applied Mathematics: Algorithm-Structured Computer Arrays and Networks: Architectures and Processes for Images, Percepts, Models, Information examines the parallel-array, pipeline, and other network multi-computers.This book describes and explores arrays and networks, those built, being designed, or proposed. The problems of developing higher-level languages for systems and designing algorithm, program, data flow, and computer structure are also discussed. This text likewise describes several sequences of successively more general attempts to combine the power of arrays wi

  15. A proposed architecture for a satellite-based mobile communications network - The lowest three layers

    Science.gov (United States)

    Yan, T. Y.; Naderi, F. M.

    1986-01-01

    Architecture for a commercial mobile satellite network is proposed. The mobile satellite system (MSS) is composed of a network management center, mobile terminals, base stations, and gateways; the functions of each component are described. The satellite is a 'bent pipe' that performs frequency translations, and it has multiple UHF beams. The development of the MSS design based on the seven-layer open system interconnection model is examined. Consideration is given to the functions of the physical, data link, and network layers and the integrated adaptive mobile access protocol.

  16. Examining the volume efficiency of the cortical architecture in a multi-processor network model.

    Science.gov (United States)

    Ruppin, E; Schwartz, E L; Yeshurun, Y

    1993-01-01

    The convoluted form of the sheet-like mammalian cortex naturally raises the question whether there is a simple geometrical reason for the prevalence of cortical architecture in the brains of higher vertebrates. Addressing this question, we present a formal analysis of the volume occupied by a massively connected network or processors (neurons) and then consider the pertaining cortical data. Three gross macroscopic features of cortical organization are examined: the segregation of white and gray matter, the circumferential organization of the gray matter around the white matter, and the folded cortical structure. Our results testify to the efficiency of cortical architecture.

  17. AziSA: An architecture for underground measurement and control networks - 2nd CSIR Biennial Conference

    CSIR Research Space (South Africa)

    Stewart, R

    2008-11-01

    Full Text Available products from various manufacturers. SOLUTION The architecture that has been developed at the CSIR is called AziSA, an isiZulu word meaning ‘to inform’. The AziSA architecture AziSA is a specification for an open measurement and control network... for in-mine communications even if the link with the outside world is disrupted. This requirement for robustness implies that processing in the system must be distributed and not totally dependent on central coordination. Decisions should be made...

  18. Research on mixed network architecture collaborative application model

    Science.gov (United States)

    Jing, Changfeng; Zhao, Xi'an; Liang, Song

    2009-10-01

    When facing complex requirements of city development, ever-growing spatial data, rapid development of geographical business and increasing business complexity, collaboration between multiple users and departments is needed urgently, however conventional GIS software (such as Client/Server model or Browser/Server model) are not support this well. Collaborative application is one of the good resolutions. Collaborative application has four main problems to resolve: consistency and co-edit conflict, real-time responsiveness, unconstrained operation, spatial data recoverability. In paper, application model called AMCM is put forward based on agent and multi-level cache. AMCM can be used in mixed network structure and supports distributed collaborative. Agent is an autonomous, interactive, initiative and reactive computing entity in a distributed environment. Agent has been used in many fields such as compute science and automation. Agent brings new methods for cooperation and the access for spatial data. Multi-level cache is a part of full data. It reduces the network load and improves the access and handle of spatial data, especially, in editing the spatial data. With agent technology, we make full use of its characteristics of intelligent for managing the cache and cooperative editing that brings a new method for distributed cooperation and improves the efficiency.

  19. Tomographic image reconstruction using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Paschalis, P.; Giokaris, N.D.; Karabarbounis, A.; Loudos, G.K.; Maintas, D.; Papanicolas, C.N.; Spanoudaki, V.; Tsoumpas, Ch.; Stiliaris, E.

    2004-01-01

    A new image reconstruction technique based on the usage of an Artificial Neural Network (ANN) is presented. The most crucial factor in designing such a reconstruction system is the network architecture and the number of the input projections needed to reconstruct the image. Although the training phase requires a large amount of input samples and a considerable CPU time, the trained network is characterized by simplicity and quick response. The performance of this ANN is tested using several image patterns. It is intended to be used together with a phantom rotating table and the γ-camera of IASA for SPECT image reconstruction

  20. Adaptive Security Architecture based on EC-MQV Algorithm in Personal Network (PN)

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Prasad, Neeli R.

    2007-01-01

    Abstract — Personal Networks (PNs) have been focused on in order to support the user’s business and private activities without jeopardizing privacy and security of the users and their data. In such a network, it is necessary to produce a proper key agreement method according to the feature...... of the network. One of the features of the network is that the personal devices have deferent capabilities such as computational ability, memory size, transmission power, processing speed and implementation cost. Therefore an adaptive security mechanism should be contrived for such a network of various device...... combinations based on user’s location and device’s capability. The paper proposes new adaptive security architecture with three levels of asymmetric key agreement scheme by using context-aware security manager (CASM) based on elliptic curve cryptosystem (EC-MQV)....

  1. Survivable architectures for time and wavelength division multiplexed passive optical networks

    Science.gov (United States)

    Wong, Elaine

    2014-08-01

    The increased network reach and customer base of next-generation time and wavelength division multiplexed PON (TWDM-PONs) have necessitated rapid fault detection and subsequent restoration of services to its users. However, direct application of existing solutions for conventional PONs to TWDM-PONs is unsuitable as these schemes rely on the loss of signal (LOS) of upstream transmissions to trigger protection switching. As TWDM-PONs are required to potentially use sleep/doze mode optical network units (ONU), the loss of upstream transmission from a sleeping or dozing ONU could erroneously trigger protection switching. Further, TWDM-PONs require its monitoring modules for fiber/device fault detection to be more sensitive than those typically deployed in conventional PONs. To address the above issues, three survivable architectures that are compliant with TWDM-PON specifications are presented in this work. These architectures combine rapid detection and protection switching against multipoint failure, and most importantly do not rely on upstream transmissions for LOS activation. Survivability analyses as well as evaluations of the additional costs incurred to achieve survivability are performed and compared to the unprotected TWDM-PON. Network parameters that impact the maximum achievable network reach, maximum split ratio, connection availability, fault impact, and the incremental reliability costs for each proposed survivable architecture are highlighted.

  2. MPTCP Tunnel: An Architecture for Aggregating Bandwidth of Heterogeneous Access Networks

    Directory of Open Access Journals (Sweden)

    Xiaolan Liu

    2018-01-01

    Full Text Available Fixed and cellular networks are two typical access networks provided by operators. Fixed access network is widely employed; nevertheless, its bandwidth is sometimes not sufficient enough to meet user bandwidth requirements. Meanwhile, cellular access network owns unique advantages of wider coverage, faster increasing link speed, more flexible deployment, and so forth. Therefore, it is attractive for operators to mitigate the bandwidth shortage by bundling these two. Actually, there have been existing schemes proposed to aggregate the bandwidth of two access networks, whereas they all have their own problems, like packet reordering or extra latency overhead. To address this problem, we design new architecture, MPTCP Tunnel, to aggregate the bandwidth of multiple heterogeneous access networks from the perspective of operators. MPTCP Tunnel uses MPTCP, which solves the reordering problem essentially, to bundle multiple access networks. Besides, MPTCP Tunnel sets up only one MPTCP connection at play which adapts itself to multiple traffic types and TCP flows. Furthermore, MPTCP Tunnel forwards intact IP packets through access networks, maintaining the end-to-end TCP semantics. Experimental results manifest that MPTCP Tunnel can efficiently aggregate the bandwidth of multiple access networks and is more adaptable to the increasing heterogeneity of access networks than existing mechanisms.

  3. Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO Using an Artificial Neural Network-Genetic Algorithm (ANN-GA

    Directory of Open Access Journals (Sweden)

    Xuedan Shi

    2017-06-01

    Full Text Available Rhodamine B (Rh B is a toxic dye that is harmful to the environment, humans, and animals, and thus the discharge of Rh B wastewater has become a critical concern. In the present study, reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO was used to treat Rh B aqueous solutions. The nZVI/rGO composites were synthesized with the chemical deposition method and were characterized using scanning electron microscopy (SEM, X-ray diffraction (XRD, Raman spectroscopy, N2-sorption, and X-ray photoelectron spectroscopy (XPS analysis. The effects of several important parameters (initial pH, initial concentration, temperature, and contact time on the removal of Rh B by nZVI/rGO were optimized by response surface methodology (RSM and artificial neural network hybridized with genetic algorithm (ANN-GA. The results suggest that the ANN-GA model was more accurate than the RSM model. The predicted optimum value of Rh B removal efficiency (90.0% was determined using the ANN-GA model, which was compatible with the experimental value (86.4%. Moreover, the Langmuir, Freundlich, and Temkin isotherm equations were applied to fit the adsorption equilibrium data, and the Freundlich isotherm was the most suitable model for describing the process for sorption of Rh B onto the nZVI/rGO composites. The maximum adsorption capacity based on the Langmuir isotherm was 87.72 mg/g. The removal process of Rh B could be completed within 20 min, which was well described by the pseudo-second order kinetic model.

  4. Identification of Relevant Phytochemical Constituents for Characterization and Authentication of Tomatoes by General Linear Model Linked to Automatic Interaction Detection (GLM-AID) and Artificial Neural Network Models (ANNs).

    Science.gov (United States)

    Hernández Suárez, Marcos; Astray Dopazo, Gonzalo; Larios López, Dina; Espinosa, Francisco

    2015-01-01

    There are a large number of tomato cultivars with a wide range of morphological, chemical, nutritional and sensorial characteristics. Many factors are known to affect the nutrient content of tomato cultivars. A complete understanding of the effect of these factors would require an exhaustive experimental design, multidisciplinary scientific approach and a suitable statistical method. Some multivariate analytical techniques such as Principal Component Analysis (PCA) or Factor Analysis (FA) have been widely applied in order to search for patterns in the behaviour and reduce the dimensionality of a data set by a new set of uncorrelated latent variables. However, in some cases it is not useful to replace the original variables with these latent variables. In this study, Automatic Interaction Detection (AID) algorithm and Artificial Neural Network (ANN) models were applied as alternative to the PCA, AF and other multivariate analytical techniques in order to identify the relevant phytochemical constituents for characterization and authentication of tomatoes. To prove the feasibility of AID algorithm and ANN models to achieve the purpose of this study, both methods were applied on a data set with twenty five chemical parameters analysed on 167 tomato samples from Tenerife (Spain). Each tomato sample was defined by three factors: cultivar, agricultural practice and harvest date. General Linear Model linked to AID (GLM-AID) tree-structured was organized into 3 levels according to the number of factors. p-Coumaric acid was the compound the allowed to distinguish the tomato samples according to the day of harvest. More than one chemical parameter was necessary to distinguish among different agricultural practices and among the tomato cultivars. Several ANN models, with 25 and 10 input variables, for the prediction of cultivar, agricultural practice and harvest date, were developed. Finally, the models with 10 input variables were chosen with fit's goodness between 44 and 100

  5. Identification of Relevant Phytochemical Constituents for Characterization and Authentication of Tomatoes by General Linear Model Linked to Automatic Interaction Detection (GLM-AID and Artificial Neural Network Models (ANNs.

    Directory of Open Access Journals (Sweden)

    Marcos Hernández Suárez

    Full Text Available There are a large number of tomato cultivars with a wide range of morphological, chemical, nutritional and sensorial characteristics. Many factors are known to affect the nutrient content of tomato cultivars. A complete understanding of the effect of these factors would require an exhaustive experimental design, multidisciplinary scientific approach and a suitable statistical method. Some multivariate analytical techniques such as Principal Component Analysis (PCA or Factor Analysis (FA have been widely applied in order to search for patterns in the behaviour and reduce the dimensionality of a data set by a new set of uncorrelated latent variables. However, in some cases it is not useful to replace the original variables with these latent variables. In this study, Automatic Interaction Detection (AID algorithm and Artificial Neural Network (ANN models were applied as alternative to the PCA, AF and other multivariate analytical techniques in order to identify the relevant phytochemical constituents for characterization and authentication of tomatoes. To prove the feasibility of AID algorithm and ANN models to achieve the purpose of this study, both methods were applied on a data set with twenty five chemical parameters analysed on 167 tomato samples from Tenerife (Spain. Each tomato sample was defined by three factors: cultivar, agricultural practice and harvest date. General Linear Model linked to AID (GLM-AID tree-structured was organized into 3 levels according to the number of factors. p-Coumaric acid was the compound the allowed to distinguish the tomato samples according to the day of harvest. More than one chemical parameter was necessary to distinguish among different agricultural practices and among the tomato cultivars. Several ANN models, with 25 and 10 input variables, for the prediction of cultivar, agricultural practice and harvest date, were developed. Finally, the models with 10 input variables were chosen with fit's goodness

  6. An eConsent-based System Architecture Supporting Cooperation in Integrated Healthcare Networks.

    Science.gov (United States)

    Bergmann, Joachim; Bott, Oliver J; Hoffmann, Ina; Pretschner, Dietrich P

    2005-01-01

    The economical need for efficient healthcare leads to cooperative shared care networks. A virtual electronic health record is required, which integrates patient related information but reflects the distributed infrastructure and restricts access only to those health professionals involved into the care process. Our work aims on specification and development of a system architecture fulfilling these requirements to be used in concrete regional pilot studies. Methodical analysis and specification have been performed in a healthcare network using the formal method and modelling tool MOSAIK-M. The complexity of the application field was reduced by focusing on the scenario of thyroid disease care, which still includes various interdisciplinary cooperation. Result is an architecture for a secure distributed electronic health record for integrated care networks, specified in terms of a MOSAIK-M-based system model. The architecture proposes business processes, application services, and a sophisticated security concept, providing a platform for distributed document-based, patient-centred, and secure cooperation. A corresponding system prototype has been developed for pilot studies, using advanced application server technologies. The architecture combines a consolidated patient-centred document management with a decentralized system structure without needs for replication management. An eConsent-based approach assures, that access to the distributed health record remains under control of the patient. The proposed architecture replaces message-based communication approaches, because it implements a virtual health record providing complete and current information. Acceptance of the new communication services depends on compatibility with the clinical routine. Unique and cross-institutional identification of a patient is also a challenge, but will loose significance with establishing common patient cards.

  7. Backpropagation architecture optimization and an application in nuclear power plant diagnostics

    International Nuclear Information System (INIS)

    Basu, A.; Bartlett, E.B.

    1993-01-01

    This paper presents a Dynamic Node Architecture (DNA) scheme to optimize the architecture of backpropagation Artificial Neural Networks (ANNs). This network scheme is used to develop an ANN based diagnostic adviser capable of identifying the operating status of a nuclear power plant. Specifically, a ''root'' network is trained to diagnose if the plant is in a normal operating condition or not. In the event of an abnormal condition, and other ''classifier'' network is trained to recognize the particular transient taking place. these networks are trained using plant instrumentation data gathered during simulations of the various transients and normal operating conditions at the Iowa Electric Light and Power Company's Duane Arnold Energy Center (DAEC) operator training simulator

  8. Backpropagation architecture optimization and an application in nuclear power plant diagnostics

    International Nuclear Information System (INIS)

    Basu, A.; Bartlett, E.B.

    1993-01-01

    This paper presents a Dynamic Node Architecture (DNA) scheme to optimize the architecture of backpropagation Artificial Neural Networks (ANNs). This network scheme is used to develop an ANN based diagnostic adviser capable of identifying the operating status of a nuclear power plant. Specifically, a root network is trained to diagnose if the plant is in a normal operating condition or not. In the event of an abnormal condition, another classifier network is trained to recognize the particular transient taking place. These networks are trained using plant instrumentation data gathered during simulations of the various transients and normal operating conditions at, the Iowa Electric Light and Power Company's Duane Arnold Energy Center (DAEC) operator training simulator

  9. Role of graph architecture in controlling dynamical networks with applications to neural systems

    Science.gov (United States)

    Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  10. A Smart Gateway Architecture for Improving Efficiency of Home Network Applications

    Directory of Open Access Journals (Sweden)

    Fei Ding

    2016-01-01

    Full Text Available A smart home gateway plays an important role in the Internet of Things (IoT system that takes responsibility for the connection between the network layer and the ubiquitous sensor network (USN layer. Even though the home network application is developing rapidly, researches on the home gateway based open development architecture are less. This makes it difficult to extend the home network to support new applications, share service, and interoperate with other home network systems. An integrated access gateway (IAGW is proposed in this paper which upward connects with the operator machine-to-machine platform (M2M P/F. In this home network scheme, the gateway provides standard interfaces for supporting various applications in home environments, ranging from on-site configuration to node and service access. In addition, communication management ability is also provided by M2M P/F. A testbed of a simple home network application system that includes the IAGW prototype is created to test its user interaction capabilities. Experimental results show that the proposed gateway provides significant flexibility for users to configure and deploy a home automation network; it can be applied to other monitoring areas and simultaneously supports a multi-ubiquitous sensor network.

  11. GEYSERS: a novel architecture for virtualization and co-provisioning of dynamic optical networks and IT services

    NARCIS (Netherlands)

    Escalona, E.; Peng, S.; Nejabati, R.; Simeonidou, D.; García-Espín, J.A.; Ferrer, J.; Figuerola, S.; Landi, G.; Ciulli, N.; Jiménez, J.; Belter, B.; Demchenko, Y.; de Laat, C.; Chen, X.; Yukan, A.; Soudan, S.; Vicat-Blanc, P.; Buysse, J.; de Leenheer, M.; Develder, C.; Tzanakaki, A.; Robinson, P.; Brogle, M.; Bohnert, T.M.

    2011-01-01

    GEYSERS aims at defining an end-to-end network architecture that offers a novel planning, provisioning and operational framework for optical network and IT infrastructure providers and operators. In this framework, physical infrastructure resources (network and IT) are dynamically partitioned to

  12. Seafloor classification using echo- waveforms: A method employing hybrid neural network architecture

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Mahale, V.; DeSouza, C.; Das, P.

    , neural network architecture, seafloor classification, self-organizing feature map (SOFM). I. INTRODUCTION S EAFLOOR classification and characterization using re- mote high-frequency acoustic system has been recognized as a useful tool (see [1...] and references therein). The seafloor’s characteristics are extremely complicated due to variations of the many parameters at different scales. The parameters include sediment grain size, relief height at the water–sediment inter- face, and variations within...

  13. REAL-TIME VIDEO SCALING BASED ON CONVOLUTION NEURAL NETWORK ARCHITECTURE

    OpenAIRE

    S Safinaz; A V Ravi Kumar

    2017-01-01

    In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames t...

  14. Reconfigurable FPGA architecture for computer vision applications in Smart Camera Networks

    OpenAIRE

    Maggiani , Luca; Salvadori , Claudio; Petracca , Matteo; Pagano , Paolo; Saletti , Roberto

    2013-01-01

    International audience; Smart Camera Networks (SCNs) is nowadays an emerging research field which represents the natural evolution of centralized computer vision applications towards full distributed and pervasive systems. In such a scenario, one of the biggest effort is in the definition of a flexible and reconfigurable SCN node architecture able to remotely support the possibility of updating the application parameters and changing the running computer vision applications at run-time. In th...

  15. Principles of Network Architecture Emerging from Comparisons of the Cerebral Cortex in Large and Small Brains.

    Directory of Open Access Journals (Sweden)

    Barbara L Finlay

    2016-09-01

    Full Text Available The cerebral cortex retains its fundamental organization, layering, and input-output relations as it scales in volume over many orders of magnitude in mammals. How is its network architecture affected by size scaling? By comparing network organization of the mouse and rhesus macaque cortical connectome derived from complete neuroanatomical tracing studies, a recent study in PLOS Biology shows that an exponential distance rule emerges that reveals the falloff in connection probability with distance in the two brains that in turn determines common organizational features.

  16. LIDeA: A Distributed Lightweight Intrusion Detection Architecture for Sensor Networks

    DEFF Research Database (Denmark)

    Giannetsos, Athanasios; Krontiris, Ioannis; Dimitriou, Tassos

    2008-01-01

    to achieve a more autonomic and complete defense mechanism, even against attacks that have not been anticipated in advance. In this paper, we present a lightweight intrusion detection system, called LIDeA, designed for wireless sensor networks. LIDeA is based on a distributed architecture, in which nodes......Wireless sensor networks are vulnerable to adversaries as they are frequently deployed in open and unattended environments. Preventive mechanisms can be applied to protect them from an assortment of attacks. However, more sophisticated methods, like intrusion detection systems, are needed...

  17. Development of a partial least squares-artificial neural network (PLS-ANN) hybrid model for the prediction of consumer liking scores of ready-to-drink green tea beverages.

    Science.gov (United States)

    Yu, Peigen; Low, Mei Yin; Zhou, Weibiao

    2018-01-01

    In order to develop products that would be preferred by consumers, the effects of the chemical compositions of ready-to-drink green tea beverages on consumer liking were studied through regression analyses. Green tea model systems were prepared by dosing solutions of 0.1% green tea extract with differing concentrations of eight flavour keys deemed to be important for green tea aroma and taste, based on a D-optimal experimental design, before undergoing commercial sterilisation. Sensory evaluation of the green tea model system was carried out using an untrained consumer panel to obtain hedonic liking scores of the samples. Regression models were subsequently trained to objectively predict the consumer liking scores of the green tea model systems. A linear partial least squares (PLS) regression model was developed to describe the effects of the eight flavour keys on consumer liking, with a coefficient of determination (R 2 ) of 0.733, and a root-mean-square error (RMSE) of 3.53%. The PLS model was further augmented with an artificial neural network (ANN) to establish a PLS-ANN hybrid model. The established hybrid model was found to give a better prediction of consumer liking scores, based on its R 2 (0.875) and RMSE (2.41%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Estimation of the chemical-induced eye injury using a weight-of-evidence (WoE) battery of 21 artificial neural network (ANN) c-QSAR models (QSAR-21): part I: irritation potential.

    Science.gov (United States)

    Verma, Rajeshwar P; Matthews, Edwin J

    2015-03-01

    Evaluation of potential chemical-induced eye injury through irritation and corrosion is required to ensure occupational and consumer safety for industrial, household and cosmetic ingredient chemicals. The historical method for evaluating eye irritant and corrosion potential of chemicals is the rabbit Draize test. However, the Draize test is controversial and its use is diminishing - the EU 7th Amendment to the Cosmetic Directive (76/768/EEC) and recast Regulation now bans marketing of new cosmetics having animal testing of their ingredients and requires non-animal alternative tests for safety assessments. Thus, in silico and/or in vitro tests are advocated. QSAR models for eye irritation have been reported for several small (congeneric) data sets; however, large global models have not been described. This report describes FDA/CFSAN's development of 21 ANN c-QSAR models (QSAR-21) to predict eye irritation using the ADMET Predictor program and a diverse training data set of 2928 chemicals. The 21 models had external (20% test set) and internal validation and average training/verification/test set statistics were: 88/88/85(%) sensitivity and 82/82/82(%) specificity, respectively. The new method utilized multiple artificial neural network (ANN) molecular descriptor selection functionalities to maximize the applicability domain of the battery. The eye irritation models will be used to provide information to fill the critical data gaps for the safety assessment of cosmetic ingredient chemicals. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining

    Science.gov (United States)

    Chandrasekaran, Muthumari; Tamang, Santosh

    2017-08-01

    Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.

  20. An In-Home Digital Network Architecture for Real-Time and Non-Real-Time Communication

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.; Hanssen, F.T.Y.; Hattink, Tjalling

    2002-01-01

    This paper describes an in-home digital network architecture that supports both real-time and non-real-time communication. The architecture deploys a distributed token mechanism to schedule communication streams and to offer guaranteed quality-ofservice. Essentially, the token mechanism prevents

  1. A computation ANN model for quantifying the global solar radiation: A case study of Al-Aqabah-Jordan

    International Nuclear Information System (INIS)

    Abolgasem, I M; Alghoul, M A; Ruslan, M H; Chan, H Y; Khrit, N G; Sopian, K

    2015-01-01

    In this paper, a computation model is developed to predict the global solar radiation (GSR) in Aqaba city based on the data recorded with association of Artificial Neural Networks (ANN). The data used in this work are global solar radiation (GSR), sunshine duration, maximum and minimum air temperature and relative humidity. These data are available from Jordanian meteorological station over a period of two years. The quality of GSR forecasting is compared by using different Learning Algorithms. The decision of changing the ANN architecture is essentially based on the predicted results to obtain the best ANN model for monthly and seasonal GSR. Different configurations patterns were tested using available observed data. It was found that the model using mainly sunshine duration and air temperature as inputs gives accurate results. The ANN model efficiency and the mean square error values show that the prediction model is accurate. It is found that the effect of the three learning algorithms on the accuracy of the prediction model at the training and testing stages for each time scale is mostly within the same accuracy range. (paper)

  2. Sea-floor classification using multibeam echo-sounding angular backscatter data: A real-time approach employing hybrid neural network architecture

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Kodagali, V.N.; Baracho, J.

    successfully initiated [5]. ANN architecture such as the self-organizing feature map (SOFM) exercises unsupervised competitive learning on unknown data, to align the input space into coarse clusters [6]. The trained output space is refined by learning vector... for beam directions varying between the incidence angles of 45 to 45 . The data are then moving averaged over ten samples in each bin, and interpolated, each vector consisting of 91 values ranging from 45 to 45 which are used for ANN training and testing...

  3. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types.

    Science.gov (United States)

    Dáttilo, Wesley; Lara-Rodríguez, Nubia; Jordano, Pedro; Guimarães, Paulo R; Thompson, John N; Marquis, Robert J; Medeiros, Lucas P; Ortiz-Pulido, Raul; Marcos-García, Maria A; Rico-Gray, Victor

    2016-11-30

    Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization. © 2016 The Author(s).

  4. Service oriented network architecture for control and management of home appliances

    Science.gov (United States)

    Hayakawa, Hiroshi; Koita, Takahiro; Sato, Kenya

    2005-12-01

    Recent advances in multimedia network systems and mechatronics have led to the development of a new generation of applications that associate the use of various multimedia objects with the behavior of multiple robotic actors. The connection of audio and video devices through high speed multimedia networks is expected to make the system more convenient to use. For example, many home appliances, such as a video camera, a display monitor, a video recorder, an audio system and so on, are being equipped with a communication interface in the near future. Recently some platforms (i.e. UPnP1, HAVi2 and so on) are proposed for constructing home networks; however, there are some issues to be solved to realize various services by connecting different equipment via the pervasive peer-to-peer network. UPnP offers network connectivity of PCs of intelligent home appliances, practically, which means to require a PC in the network to control other devices. Meanwhile, HAVi has been developed for intelligent AV equipments with sophisticated functions using high CPU power and large memory. Considering the targets of home alliances are embedded systems, this situation raises issues of software and hardware complexity, cost, power consumption and so on. In this study, we have proposed and developed the service oriented network architecture for control and management of home appliances, named SONICA (Service Oriented Network Interoperability for Component Adaptation), to address these issues described before.

  5. A 10 Gb/s passive-components-based WDM-TDM reconfigurable optical access network architecture

    NARCIS (Netherlands)

    Tran, N.C.; Jung, H.D.; Okonkwo, C.M.; Tangdiongga, E.; Koonen, A.M.J.

    2011-01-01

    We propose a cost-effective, reconfigurable optical access network by employing passive components in the remote node and dual conventional optical transceivers in ONUs. The architecture is demonstrated with bidirectional transmission at 10 Gb/s.

  6. A Neutral-Network-Fusion Architecture for Automatic Extraction of Oceanographic Features from Satellite Remote Sensing Imagery

    National Research Council Canada - National Science Library

    Askari, Farid

    1999-01-01

    This report describes an approach for automatic feature detection from fusion of remote sensing imagery using a combination of neural network architecture and the Dempster-Shafer (DS) theory of evidence...

  7. Architecture and performance of neural networks for efficient A/C control in buildings

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed A.; Ben-Nakhi, Abdullatif E.

    2003-01-01

    The feasibility of using neural networks (NNs) for optimizing air conditioning (AC) setback scheduling in public buildings was investigated. The main focus is on optimizing the network architecture in order to achieve best performance. To save energy, the temperature inside public buildings is allowed to rise after business hours by setting back the thermostat. The objective is to predict the time of the end of thermostat setback (EoS) such that the design temperature inside the building is restored in time for the start of business hours. State of the art building simulation software, ESP-r, was used to generate a database that covered the years 1995-1999. The software was used to calculate the EoS for two office buildings using the climate records in Kuwait. The EoS data for 1995 and 1996 were used for training and testing the NNs. The robustness of the trained NN was tested by applying them to a 'production' data set (1997-1999), which the networks have never 'seen' before. For each of the six different NN architectures evaluated, parametric studies were performed to determine the network parameters that best predict the EoS. External hourly temperature readings were used as network inputs, and the thermostat end of setback (EoS) is the output. The NN predictions were improved by developing a neural control scheme (NC). This scheme is based on using the temperature readings as they become available. For each NN architecture considered, six NNs were designed and trained for this purpose. The performance of the NN analysis was evaluated using a statistical indicator (the coefficient of multiple determination) and by statistical analysis of the error patterns, including ANOVA (analysis of variance). The results show that the NC, when used with a properly designed NN, is a powerful instrument for optimizing AC setback scheduling based only on external temperature records

  8. Optimising training data for ANNs with Genetic Algorithms

    OpenAIRE

    Kamp , R. G.; Savenije , H. H. G.

    2006-01-01

    International audience; Artificial Neural Networks (ANNs) have proved to be good modelling tools in hydrology for rainfall-runoff modelling and hydraulic flow modelling. Representative datasets are necessary for the training phase in which the ANN learns the model's input-output relations. Good and representative training data is not always available. In this publication Genetic Algorithms (GA) are used to optimise training datasets. The approach is tested with an existing hydraulic model in ...

  9. Optimising training data for ANNs with Genetic Algorithms

    OpenAIRE

    R. G. Kamp; R. G. Kamp; H. H. G. Savenije

    2006-01-01

    Artificial Neural Networks (ANNs) have proved to be good modelling tools in hydrology for rainfall-runoff modelling and hydraulic flow modelling. Representative datasets are necessary for the training phase in which the ANN learns the model's input-output relations. Good and representative training data is not always available. In this publication Genetic Algorithms (GA) are used to optimise training datasets. The approach is tested with an existing hydraulic model in The Netherlands. An...

  10. Ensuring Data Storage Security in Tree cast Routing Architecture for Sensor Networks

    Science.gov (United States)

    Kumar, K. E. Naresh; Sagar, U. Vidya; Waheed, Mohd. Abdul

    2010-10-01

    In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In contrast to traditional solutions, where the IT services are under proper physical, logical and personnel controls, this routing architecture moves the application software and databases to the large data centers, where the management of the data and services may not be fully trustworthy. This unique attribute, however, poses many new security challenges which have not been well understood. In this paper, we focus on data storage security, which has always been an important aspect of quality of service. To ensure the correctness of users' data in this architecture, we propose an effective and flexible distributed scheme with two salient features, opposing to its predecessors. By utilizing the homomorphic token with distributed verification of erasure-coded data, our scheme achieves the integration of storage correctness insurance and data error localization, i.e., the identification of misbehaving server(s). Unlike most prior works, the new scheme further supports secure and efficient dynamic operations on data blocks, including: data update, delete and append. Extensive security and performance analysis shows that the proposed scheme is highly efficient and resilient against Byzantine failure, malicious data modification attack, and even server

  11. Architecture of the Multi-Modal Organizational Research and Production Heterogeneous Network (MORPHnet)

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, R.J.; Carlson, R.A.; Foster, I.T. [and others

    1997-01-01

    The research and education (R&E) community requires persistent and scaleable network infrastructure to concurrently support production and research applications as well as network research. In the past, the R&E community has relied on supporting parallel network and end-node infrastructures, which can be very expensive and inefficient for network service managers and application programmers. The grand challenge in networking is to provide support for multiple, concurrent, multi-layer views of the network for the applications and the network researchers, and to satisfy the sometimes conflicting requirements of both while ensuring one type of traffic does not adversely affect the other. Internet and telecommunications service providers will also benefit from a multi-modal infrastructure, which can provide smoother transitions to new technologies and allow for testing of these technologies with real user traffic while they are still in the pre-production mode. The authors proposed approach requires the use of as much of the same network and end system infrastructure as possible to reduce the costs needed to support both classes of activities (i.e., production and research). Breaking the infrastructure into segments and objects (e.g., routers, switches, multiplexors, circuits, paths, etc.) gives the capability to dynamically construct and configure the virtual active networks to address these requirements. These capabilities must be supported at the campus, regional, and wide-area network levels to allow for collaboration by geographically dispersed groups. The Multi-Modal Organizational Research and Production Heterogeneous Network (MORPHnet) described in this report is an initial architecture and framework designed to identify and support the capabilities needed for the proposed combined infrastructure and to address related research issues.

  12. Convolutional neural networks for event-related potential detection: impact of the architecture.

    Science.gov (United States)

    Cecotti, H

    2017-07-01

    The detection of brain responses at the single-trial level in the electroencephalogram (EEG) such as event-related potentials (ERPs) is a difficult problem that requires different processing steps to extract relevant discriminant features. While most of the signal and classification techniques for the detection of brain responses are based on linear algebra, different pattern recognition techniques such as convolutional neural network (CNN), as a type of deep learning technique, have shown some interests as they are able to process the signal after limited pre-processing. In this study, we propose to investigate the performance of CNNs in relation of their architecture and in relation to how they are evaluated: a single system for each subject, or a system for all the subjects. More particularly, we want to address the change of performance that can be observed between specifying a neural network to a subject, or by considering a neural network for a group of subjects, taking advantage of a larger number of trials from different subjects. The results support the conclusion that a convolutional neural network trained on different subjects can lead to an AUC above 0.9 by using an appropriate architecture using spatial filtering and shift invariant layers.

  13. On the complexity of neural network classifiers: a comparison between shallow and deep architectures.

    Science.gov (United States)

    Bianchini, Monica; Scarselli, Franco

    2014-08-01

    Recently, researchers in the artificial neural network field have focused their attention on connectionist models composed by several hidden layers. In fact, experimental results and heuristic considerations suggest that deep architectures are more suitable than shallow ones for modern applications, facing very complex problems, e.g., vision and human language understanding. However, the actual theoretical results supporting such a claim are still few and incomplete. In this paper, we propose a new approach to study how the depth of feedforward neural networks impacts on their ability in implementing high complexity functions. First, a new measure based on topological concepts is introduced, aimed at evaluating the complexity of the function implemented by a neural network, used for classification purposes. Then, deep and shallow neural architectures with common sigmoidal activation functions are compared, by deriving upper and lower bounds on their complexity, and studying how the complexity depends on the number of hidden units and the used activation function. The obtained results seem to support the idea that deep networks actually implements functions of higher complexity, so that they are able, with the same number of resources, to address more difficult problems.

  14. Prediction of temperature and HAZ in thermal-based processes with Gaussian heat source by a hybrid GA-ANN model

    Science.gov (United States)

    Fazli Shahri, Hamid Reza; Mahdavinejad, Ramezanali

    2018-02-01

    Thermal-based processes with Gaussian heat source often produce excessive temperature which can impose thermally-affected layers in specimens. Therefore, the temperature distribution and Heat Affected Zone (HAZ) of materials are two critical factors which are influenced by different process parameters. Measurement of the HAZ thickness and temperature distribution within the processes are not only difficult but also expensive. This research aims at finding a valuable knowledge on these factors by prediction of the process through a novel combinatory model. In this study, an integrated Artificial Neural Network (ANN) and genetic algorithm (GA) was used to predict the HAZ and temperature distribution of the specimens. To end this, a series of full factorial design of experiments were conducted by applying a Gaussian heat flux on Ti-6Al-4 V at first, then the temperature of the specimen was measured by Infrared thermography. The HAZ width of each sample was investigated through measuring the microhardness. Secondly, the experimental data was used to create a GA-ANN model. The efficiency of GA in design and optimization of the architecture of ANN was investigated. The GA was used to determine the optimal number of neurons in hidden layer, learning rate and momentum coefficient of both output and hidden layers of ANN. Finally, the reliability of models was assessed according to the experimental results and statistical indicators. The results demonstrated that the combinatory model predicted the HAZ and temperature more effective than a trial-and-error ANN model.

  15. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242

    Directory of Open Access Journals (Sweden)

    Ahmed R. J. Almusawi

    2016-01-01

    Full Text Available This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot’s joint angles.

  16. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242).

    Science.gov (United States)

    Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.

  17. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)

    Science.gov (United States)

    Dülger, L. Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129

  18. Evaluation of an IP Fabric network architecture for CERN's data center

    CERN Document Server

    AUTHOR|(CDS)2156318; Barceló Ordinas, José M.

    CERN has a large-scale data center with over 11500 servers used to analyze massive amounts of data acquired from the physics experiments and to provide IT services to workers. Its current network architecture is based on the classic three-tier design and it uses both IPv4 and IPv6. Between the access and aggregation layers the traffic is switched in Layer 2, while between aggregation and core it is routed using dual-stack OSPF. A new architecture is needed to increase redundancy and to provide virtual machine mobility and traffic isolation. The state-of-the-art architecture IP Fabric with EVPN is evaluated as a possible solution. The evaluation comprises a study of different features and options, including BGP table scalability and autonomous system number distributions. The proposed solution contains eBGP as the routing protocol, a route control policy, fast convergence mechanisms and an EVPN overlay with iBGP routing and VXLAN encapsulation. The solution is tested in the lab with the network equipment curre...

  19. A flexible data fusion architecture for persistent surveillance using ultra-low-power wireless sensor networks

    Science.gov (United States)

    Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.

    2011-06-01

    We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.

  20. Source-synchronous networks-on-chip circuit and architectural interconnect modeling

    CERN Document Server

    Mandal, Ayan; Mahapatra, Rabi

    2014-01-01

    This book describes novel methods for network-on-chip (NoC) design, using source-synchronous high-speed resonant clocks.  The authors discuss NoCs from the bottom up, providing circuit level details, before providing architectural simulations. As a result, readers will get a complete picture of how a NoC can be designed and optimized.  Using the methods described in this book, readers are enabled to design NoCs that are 5X better than existing approaches in terms of latency and throughput and can also sustain a significantly greater amount of traffic.   • Describes novel methods for high-speed network-on-chip (NoC) design; • Enables readers to understand NoC design from both circuit and architectural levels; • Provides circuit-level details of the NoC (including clocking, router design), along with a high-speed, resonant clocking style which is used in the NoC; • Includes architectural simulations of the NoC, demonstrating significantly superior performance over the state-of-the-art.

  1. A performance analysis of advanced I/O architectures for PC-based network file servers

    Science.gov (United States)

    Huynh, K. D.; Khoshgoftaar, T. M.

    1994-12-01

    In the personal computing and workstation environments, more and more I/O adapters are becoming complete functional subsystems that are intelligent enough to handle I/O operations on their own without much intervention from the host processor. The IBM Subsystem Control Block (SCB) architecture has been defined to enhance the potential of these intelligent adapters by defining services and conventions that deliver command information and data to and from the adapters. In recent years, a new storage architecture, the Redundant Array of Independent Disks (RAID), has been quickly gaining acceptance in the world of computing. In this paper, we would like to discuss critical system design issues that are important to the performance of a network file server. We then present a performance analysis of the SCB architecture and disk array technology in typical network file server environments based on personal computers (PCs). One of the key issues investigated in this paper is whether a disk array can outperform a group of disks (of same type, same data capacity, and same cost) operating independently, not in parallel as in a disk array.

  2. A service-oriented architecture for integrating the modeling and formal verification of genetic regulatory networks

    Directory of Open Access Journals (Sweden)

    Page Michel

    2009-12-01

    Full Text Available Abstract Background The study of biological networks has led to the development of increasingly large and detailed models. Computer tools are essential for the simulation of the dynamical behavior of the networks from the model. However, as the size of the models grows, it becomes infeasible to manually verify the predictions against experimental data or identify interesting features in a large number of simulation traces. Formal verification based on temporal logic and model checking provides promising methods to automate and scale the analysis of the models. However, a framework that tightly integrates modeling and simulation tools with model checkers is currently missing, on both the conceptual and the implementational level. Results We have developed a generic and modular web service, based on a service-oriented architecture, for integrating the modeling and formal verification of genetic regulatory networks. The architecture has been implemented in the context of the qualitative modeling and simulation tool GNA and the model checkers NUSMV and CADP. GNA has been extended with a verification module for the specification and checking of biological properties. The verification module also allows the display and visual inspection of the verification results. Conclusions The practical use of the proposed web service is illustrated by means of a scenario involving the analysis of a qualitative model of the carbon starvation response in E. coli. The service-oriented architecture allows modelers to define the model and proceed with the specification and formal verification of the biological properties by means of a unified graphical user interface. This guarantees a transparent access to formal verification technology for modelers of genetic regulatory networks.

  3. A Performance Analytical Strategy for Network-on-Chip Router with Input Buffer Architecture

    Directory of Open Access Journals (Sweden)

    WANG, J.

    2012-11-01

    Full Text Available In this paper, a performance analytical strategy is proposed for Network-on-Chip router with input buffer architecture. First, an analytical model is developed based on semi-Markov process. For the non-work-conserving router with small buffer size, the model can be used to analyze the schedule delay and the average service time for each buffer when given the related parameters. Then, the packet average delay in router is calculated by using the model. Finally, we validate the effectiveness of our strategy by simulation. By comparing our analytical results to simulation results, we show that our strategy successfully captures the Network-on-Chip router performance and it performs better than the state-of-art technology. Therefore, our strategy can be used as an efficiency performance analytical tool for Network-on-Chip design.

  4. Effective Utilization of Resources and Infrastructure for a Spaceport Network Architecture

    Science.gov (United States)

    Gill, Tracy; Larson, Wiley; Mueller, Robert; Roberson, Luke

    2012-01-01

    Providing routine, affordable access to a variety of orbital and deep space destinations requires an intricate network of ground, planetary surface, and space-based spaceports like those on Earth (land and sea), in various Earth orbits, and on other extraterrestrial surfaces. Advancements in technology and international collaboration are critical to establish a spaceport network that satisfies the requirements for private and government research, exploration, and commercial objectives. Technologies, interfaces, assembly techniques, and protocols must be adapted to enable mission critical capabilities and interoperability throughout the spaceport network. The conceptual space mission architecture must address the full range of required spaceport services, from managing propellants for a variety of spacecraft to governance structure. In order to accomplish affordability and sustainability goals, the network architecture must consider deriving propellants from in situ planetary resources to the maximum extent possible. Water on the Moon and Mars, Mars' atmospheric CO2, and O2 extracted from lunar regolith are examples of in situ resources that could be used to generate propellants for various spacecraft, orbital stages and trajectories, and the commodities to support habitation and human operations at these destinations. The ability to use in-space fuel depots containing in situ derived propellants would drastically reduce the mass required to launch long-duration or deep space missions from Earth's gravity well. Advances in transformative technologies and common capabilities, interfaces, umbilicals, commodities, protocols, and agreements will facilitate a cost-effective, safe, reliable infrastructure for a versatile network of Earth- and extraterrestrial spaceports. Defining a common infrastructure on Earth, planetary surfaces, and in space, as well as deriving propellants from in situ planetary resources to construct in-space propellant depots to serve the spaceport

  5. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.

    Science.gov (United States)

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-02-09

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  6. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems

    Directory of Open Access Journals (Sweden)

    Murad Khan

    2017-02-01

    Full Text Available The Web of Things (WoT plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN, which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  7. Extraction of fibre network architecture by X-ray tomography and prediction of elastic properties using an affine analytical model

    International Nuclear Information System (INIS)

    Tsarouchas, D.; Markaki, A.E.

    2011-01-01

    This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing.

  8. Security Analysis of DTN Architecture and Bundle Protocol Specification for Space-Based Networks

    Science.gov (United States)

    Ivancic, William D.

    2009-01-01

    A Delay-Tolerant Network (DTN) Architecture (Request for Comment, RFC-4838) and Bundle Protocol Specification, RFC-5050, have been proposed for space and terrestrial networks. Additional security specifications have been provided via the Bundle Security Specification (currently a work in progress as an Internet Research Task Force internet-draft) and, for link-layer protocols applicable to Space networks, the Licklider Transport Protocol Security Extensions. This document provides a security analysis of the current DTN RFCs and proposed security related internet drafts with a focus on space-based communication networks, which is a rather restricted subset of DTN networks. Note, the original focus and motivation of DTN work was for the Interplanetary Internet . This document does not address general store-and-forward network overlays, just the current work being done by the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) Space Internetworking Services Area (SIS) - DTN working group under the DTN and Bundle umbrellas. However, much of the analysis is relevant to general store-and-forward overlays.

  9. Role of architecture in the elastic response of semiflexible polymer and fiber networks

    Science.gov (United States)

    Heussinger, Claus; Frey, Erwin

    2007-01-01

    We study the elasticity of cross-linked networks of thermally fluctuating stiff polymers. As compared to their purely mechanical counterparts, it is shown that these thermal networks have a qualitatively different elastic response. By accounting for the entropic origin of the single-polymer elasticity, the networks acquire a strong susceptibility to polydispersity and structural randomness that is completely absent in athermal models. In extensive numerical studies we systematically vary the architecture of the networks and identify a wealth of phenomena that clearly show the strong dependence of the emergent macroscopic moduli on the underlying mesoscopic network structure. In particular, we highlight the importance of the polymer length, which to a large extent controls the elastic response of the network, surprisingly, even in parameter regions where it does not enter the macroscopic moduli explicitly. Understanding these subtle effects is only possible by going beyond the conventional approach that considers the response of typical polymer segments only. Instead, we propose to describe the elasticity in terms of a typical polymer filament and the spatial distribution of cross-links along its backbone. We provide theoretical scaling arguments to relate the observed macroscopic elasticity to the physical mechanisms on the microscopic and mesoscopic scales.

  10. Reconfiguration of brain network architecture to support executive control in aging.

    Science.gov (United States)

    Gallen, Courtney L; Turner, Gary R; Adnan, Areeba; D'Esposito, Mark

    2016-08-01

    Aging is accompanied by declines in executive control abilities and changes in underlying brain network architecture. Here, we examined brain networks in young and older adults during a task-free resting state and an N-back task and investigated age-related changes in the modular network organization of the brain. Compared with young adults, older adults showed larger changes in network organization between resting state and task. Although young adults exhibited increased connectivity between lateral frontal regions and other network modules during the most difficult task condition, older adults also exhibited this pattern of increased connectivity during less-demanding task conditions. Moreover, the increase in between-module connectivity in older adults was related to faster task performance and greater fractional anisotropy of the superior longitudinal fasciculus. These results demonstrate that older adults who exhibit more pronounced network changes between a resting state and task have better executive control performance and greater structural connectivity of a core frontal-posterior white matter pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees.

    Science.gov (United States)

    Khan, Pervez; Ullah, Niamat; Ullah, Sana; Kwak, Kyung Sup

    2011-10-01

    The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate.

  12. Intelligent neural network diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    Recently, artificial neural network (ANN) has made a significant mark in the domain of diagnostic applications. Neural networks are used to implement complex non-linear mappings (functions) using simple elementary units interrelated through connections with adaptive weights. The performance of the ANN is mainly depending on their topology structure and weights. Some systems have been developed using genetic algorithm (GA) to optimize the topology of the ANN. But, they suffer from some limitations. They are : (1) The computation time requires for training the ANN several time reaching for the average weight required, (2) Slowness of GA for optimization process and (3) Fitness noise appeared in the optimization of ANN. This research suggests new issues to overcome these limitations for finding optimal neural network architectures to learn particular problems. This proposed methodology is used to develop a diagnostic neural network system. It has been applied for a 600 MW turbo-generator as a case of real complex systems. The proposed system has proved its significant performance compared to two common methods used in the diagnostic applications.

  13. A FD/DAMA network architecture for the first generation land mobile satellite services

    Science.gov (United States)

    Yan, T.-Y.; Wang, C.; Cheng, U.; Dessouky, K.; Rafferty, W.

    1989-01-01

    A frequency division/demand assigned multiple access (FD/DAMA) network architecture for the first-generation land mobile satellite services is presented. Rationales and technical approaches are described. In this architecture, each mobile subscriber must follow a channel access protocol to make a service request to the network management center before transmission for either open-end or closed-end services. Open-end service requests will be processed on a blocked call cleared basis, while closed-end requests will be processed on a first-come-first-served basis. Two channel access protocols are investigated, namely, a recently proposed multiple channel collision resolution scheme which provides a significantly higher useful throughput, and the traditional slotted Aloha scheme. The number of channels allocated for either open-end or closed-end services can be adaptively changed according to aggregated traffic requests. Both theoretical and simulation results are presented. Theoretical results have been verified by simulation on the JPL network testbed.

  14. An Optimal Path Computation Architecture for the Cloud-Network on Software-Defined Networking

    Directory of Open Access Journals (Sweden)

    Hyunhun Cho

    2015-05-01

    Full Text Available Legacy networks do not open the precise information of the network domain because of scalability, management and commercial reasons, and it is very hard to compute an optimal path to the destination. According to today’s ICT environment change, in order to meet the new network requirements, the concept of software-defined networking (SDN has been developed as a technological alternative to overcome the limitations of the legacy network structure and to introduce innovative concepts. The purpose of this paper is to propose the application that calculates the optimal paths for general data transmission and real-time audio/video transmission, which consist of the major services of the National Research & Education Network (NREN in the SDN environment. The proposed SDN routing computation (SRC application is designed and applied in a multi-domain network for the efficient use of resources, selection of the optimal path between the multi-domains and optimal establishment of end-to-end connections.

  15. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yasaman Samei

    2008-08-01

    Full Text Available Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN. With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture. This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  16. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks.

    Science.gov (United States)

    Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-08-04

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  17. Concept of a computer network architecture for complete automation of nuclear power plants

    International Nuclear Information System (INIS)

    Edwards, R.M.; Ray, A.

    1990-01-01

    The state of the art in automation of nuclear power plants has been largely limited to computerized data acquisition, monitoring, display, and recording of process signals. Complete automation of nuclear power plants, which would include plant operations, control, and management, fault diagnosis, and system reconfiguration with efficient and reliable man/machine interactions, has been projected as a realistic goal. This paper presents the concept of a computer network architecture that would use a high-speed optical data highway to integrate diverse, interacting, and spatially distributed functions that are essential for a fully automated nuclear power plant

  18. A Unified Network Security Architecture for Large, Distributed Networks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In typical, multi-organizational networking environments, it is difficult to define and maintain a uniform authentication scheme that provides users with easy access...

  19. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    Science.gov (United States)

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.

  20. DReAM: Demand Response Architecture for Multi-level District Heating and Cooling Networks

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Saptarshi; Chandan, Vikas; Arya, Vijay; Kar, Koushik

    2017-05-19

    In this paper, we exploit the inherent hierarchy of heat exchangers in District Heating and Cooling (DHC) networks and propose DReAM, a novel Demand Response (DR) architecture for Multi-level DHC networks. DReAM serves to economize system operation while still respecting comfort requirements of individual consumers. Contrary to many present day DR schemes that work on a consumer level granularity, DReAM works at a level of hierarchy above buildings, i.e. substations that supply heat to a group of buildings. This improves the overall DR scalability and reduce the computational complexity. In the first step of the proposed approach, mathematical models of individual substations and their downstream networks are abstracted into appropriately constructed low-complexity structural forms. In the second step, this abstracted information is employed by the utility to perform DR optimization that determines the optimal heat inflow to individual substations rather than buildings, in order to achieve the targeted objectives across the network. We validate the proposed DReAM framework through experimental results under different scenarios on a test network.

  1. A super base station based centralized network architecture for 5G mobile communication systems

    Directory of Open Access Journals (Sweden)

    Manli Qian

    2015-04-01

    Full Text Available To meet the ever increasing mobile data traffic demand, the mobile operators are deploying a heterogeneous network with multiple access technologies and more and more base stations to increase the network coverage and capacity. However, the base stations are isolated from each other, so different types of radio resources and hardware resources cannot be shared and allocated within the overall network in a cooperative way. The mobile operators are thus facing increasing network operational expenses and a high system power consumption. In this paper, a centralized radio access network architecture, referred to as the super base station (super BS, is proposed, as a possible solution for an energy-efficient fifth-generation (5G mobile system. The super base station decouples the logical functions and physical entities of traditional base stations, so different types of system resources can be horizontally shared and statistically multiplexed among all the virtual base stations throughout the entire system. The system framework and main functionalities of the super BS are described. Some key technologies for system implementation, i.e., the resource pooling, real-time virtualization, adaptive hardware resource allocation are also highlighted.

  2. LPI Optimization Framework for Target Tracking in Radar Network Architectures Using Information-Theoretic Criteria

    Directory of Open Access Journals (Sweden)

    Chenguang Shi

    2014-01-01

    Full Text Available Widely distributed radar network architectures can provide significant performance improvement for target detection and localization. For a fixed radar network, the achievable target detection performance may go beyond a predetermined threshold with full transmitted power allocation, which is extremely vulnerable in modern electronic warfare. In this paper, we study the problem of low probability of intercept (LPI design for radar network and propose two novel LPI optimization schemes based on information-theoretic criteria. For a predefined threshold of target detection, Schleher intercept factor is minimized by optimizing transmission power allocation among netted radars in the network. Due to the lack of analytical closed-form expression for receiver operation characteristics (ROC, we employ two information-theoretic criteria, namely, Bhattacharyya distance and J-divergence as the metrics for target detection performance. The resulting nonconvex and nonlinear LPI optimization problems associated with different information-theoretic criteria are cast under a unified framework, and the nonlinear programming based genetic algorithm (NPGA is used to tackle the optimization problems in the framework. Numerical simulations demonstrate that our proposed LPI strategies are effective in enhancing the LPI performance for radar network.

  3. Architecture and design of optical path networks utilizing waveband virtual links

    Science.gov (United States)

    Ito, Yusaku; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi

    2016-02-01

    We propose a novel optical network architecture that uses waveband virtual links, each of which can carry several optical paths, to directly bridge distant node pairs. Future photonic networks should not only transparently cover extended areas but also expand fiber capacity. However, the traversal of many ROADM nodes impairs the optical signal due to spectrum narrowing. To suppress the degradation, the bandwidth of guard bands needs to be increased, which degrades fiber frequency utilization. Waveband granular switching allows us to apply broader pass-band filtering at ROADMs and to insert sufficient guard bands between wavebands with minimum frequency utilization offset. The scheme resolves the severe spectrum narrowing effect. Moreover, the guard band between optical channels in a waveband can be minimized, which increases the number of paths that can be accommodated per fiber. In the network, wavelength path granular routing is done without utilizing waveband virtual links, and it still suffers from spectrum narrowing. A novel network design algorithm that can bound the spectrum narrowing effect by limiting the number of hops (traversed nodes that need wavelength path level routing) is proposed in this paper. This algorithm dynamically changes the waveband virtual link configuration according to the traffic distribution variation, where optical paths that need many node hops are effectively carried by virtual links. Numerical experiments demonstrate that the number of necessary fibers is reduced by 23% compared with conventional optical path networks.

  4. Accessibility in networks: A useful measure for understanding social insect nest architecture

    International Nuclear Information System (INIS)

    Viana, Matheus P.; Fourcassié, Vincent; Perna, Andrea; Costa, Luciano da F.; Jost, Christian

    2013-01-01

    Networks and the associated tools from graph theory have now become well-established approaches to study natural as well as human-made systems. While early studies focused on topology and connectivity, the recent literature has acknowledged the importance of the dynamical properties of these networks. Here we focus on such a dynamic measure: accessibility. It characterizes for any given movement dynamics (such as random walks) the average number of nodes that can be reached in exactly h steps (out-accessibility), or the average number of nodes from which a given node can be reached (in-accessibility). This focus on dynamics makes accessibility particularly appropriate to study movement on networks and to detect complementary properties with respect to topology-based measurements such as betweenness centrality. We apply this measure to six nests of Cubitermes termites. Their mushroom-like 3D architectures consist of chambers and connecting tunnels that can be associated to nodes and edges in a communication network. Accessibilities turn out to be particularly low in the bottom part of the nests that link them to their underground tunneling network. We interpret this result in the context of anti-predator (ants) behavior and/or as a side effect of the global nest shape.

  5. A neural network based seafloor classification using acoustic backscatter

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    This paper presents a study results of the Artificial Neural Network (ANN) architectures [Self-Organizing Map (SOM) and Multi-Layer Perceptron (MLP)] using single beam echosounding data. The single beam echosounder, operable at 12 kHz, has been used...

  6. Recurrent Artificial Neural Networks and Finite State Natural Language Processing.

    Science.gov (United States)

    Moisl, Hermann

    It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…

  7. A novel survivable architecture for hybrid WDM/TDM passive optical networks

    Science.gov (United States)

    Qiu, Yang; Chan, Chun-Kit

    2014-02-01

    A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.

  8. Architecture and Design of IP Broadcasting System Using Passive Optical Network

    Science.gov (United States)

    Ikeda, Hiroki; Sugawa, Jun; Ashi, Yoshihiro; Sakamoto, Kenichi

    We propose an IP broadcasting system architecture using passive optical networks (PON) utilizing the optical broadcast links of a PON with a downstream bandwidth allocation algorithm to provide a multi-channel IP broadcasting service to home subscribers on single broadband IP network infrastructures. We introduce the design and adaptation of the optical broadcast links to effectively broadcast video contents to home subscribers. We present a performance analysis that includes the downstream bandwidth utilization efficiency of the broadcast link and the bandwidth control of the IP broadcasting and Internet data. Our analysis and simulation results show that the proposed system can provide 100 HDTV channels to every user over fiber lines. We also propose an IPTV channel selection mechanism in an ONT by selecting a broadcast stream. We developed and evaluated a prototype that can achieve a 15-msec IPTV channel selection speed.

  9. ESnet4: next generation network strategy, architecture, and implementation for DOE Science

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Michael; Burrescia, Joseph; Dart, Eli; Gagliardi, Jim; Guok, Chin; Johnston, William; Metzger, Joe; Oberman, Kevin; O' Connor, Mike

    2006-09-15

    The Department of Energy's (DOE) Office of Science is the largest supporter of basic research in the physical sciences in the US. It directly supports the research of 15,000 PhDs, PostDocs and Graduate Students, and operates major scientific facilities at DOE laboratories that serve the entire US research community: other Federal agencies, universities, and industry, as well as the international research and education (R and E) community. ESnet's mission is to provide the network infrastructure that supports the mission of the Office of Science (SC). ESnet must evolve substantially in order to continue meeting the Office of Science mission needs and this paper discusses the development of ESnet's strategy to meet these requirements through a new network architecture and implementation approach.

  10. ESnet4: next generation network strategy, architecture, and implementation for DOE Science

    International Nuclear Information System (INIS)

    Collins, Michael; Burrescia, Joseph; Dart, Eli; Gagliardi, Jim; Guok, Chin; Johnston, William; Metzger, Joe; Oberman, Kevin; O'Connor, Mike

    2006-01-01

    The Department of Energy's (DOE) Office of Science is the largest supporter of basic research in the physical sciences in the US. It directly supports the research of 15,000 PhDs, PostDocs and Graduate Students, and operates major scientific facilities at DOE laboratories that serve the entire US research community: other Federal agencies, universities, and industry, as well as the international research and education (R and E) community. ESnet's mission is to provide the network infrastructure that supports the mission of the Office of Science (SC). ESnet must evolve substantially in order to continue meeting the Office of Science mission needs and this paper discusses the development of ESnet's strategy to meet these requirements through a new network architecture and implementation approach

  11. Adaptive Monitoring and Control Architectures for Power Distribution Grids over Heterogeneous ICT Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Hägerling, Christian; Kurtz, Fabian M.

    2014-01-01

    The expected growth in distributed generation will significantly affect the operation and control of today’s distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses) and the q......The expected growth in distributed generation will significantly affect the operation and control of today’s distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses...... to the reliability due to the stochastic behaviour found in such networks. Therefore, key concepts are presented in this paper targeting the support of proper smart grid control in these network environments. An overview on the required Information and Communication Technology (ICT) architecture and its...

  12. AUTHENTICATION ARCHITECTURE USING THRESHOLD CRYPTOGRAPHY IN KERBEROS FOR MOBILE AD HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    Hadj Gharib

    2014-06-01

    Full Text Available The use of wireless technologies is gradually increasing and risks related to the use of these technologies are considerable. Due to their dynamically changing topology and open environment without a centralized policy control of a traditional network, a mobile ad hoc network (MANET is vulnerable to the presence of malicious nodes and attacks. The ideal solution to overcome a myriad of security concerns in MANET’s is the use of reliable authentication architecture. In this paper we propose a new key management scheme based on threshold cryptography in kerberos for MANET’s, the proposed scheme uses the elliptic curve cryptography method that consumes fewer resources well adapted to the wireless environment. Our approach shows a strength and effectiveness against attacks.

  13. A network architecture for precision formation flying using the IEEE 802.11 MAC Protocol

    Science.gov (United States)

    Clare, Loren P.; Gao, Jay L.; Jennings, Esther H.; Okino, Clayton

    2005-01-01

    Precision Formation Flying missions involve the tracking and maintenance of spacecraft in a desired geometric formation. The strong coupling of spacecraft in formation flying control requires inter-spacecraft communication to exchange information. In this paper, we present a network architecture that supports PFF control, from the initial random deployment phase to the final formation. We show that a suitable MAC layer for the application protocol is IEEE's 802.11 MAC protocol. IEEE 802.11 MAC has two modes of operations: DCF and PCF. We show that DCF is suitable for the initial deployment phase while switching to PCF when the spacecraft are in formation improves jitter and throughput. We also consider the effect of routing on protocol performance and suggest when it is profitable to turn off route discovery to achieve better network performance.

  14. A Sensitive ANN Based Differential Relay for Transformer Protection with Security against CT Saturation and Tap Changer Operation

    OpenAIRE

    KHORASHADI-ZADEH, Hassan; LI, Zuyi

    2014-01-01

    This paper presents an artificial neural network (ANN) based scheme for fault identification in power transformer protection. The proposed scheme is featured by the application of ANN to identifying system patterns, the unique choice of harmonics of positive sequence differential currents as ANN inputs, the effective handling of current transformer (CT) saturation with an ANN based approach, and the consideration of tap changer position for correcting secondary CT current. Performanc...

  15. Optimization of neural network architecture for classification of radar jamming FM signals

    Science.gov (United States)

    Soto, Alberto; Mendoza, Ariadna; Flores, Benjamin C.

    2017-05-01

    The purpose of this study is to investigate several artificial Neural Network (NN) architectures in order to design a cognitive radar system capable of optimally distinguishing linear Frequency-Modulated (FM) signals from bandlimited Additive White Gaussian Noise (AWGN). The goal is to create a theoretical framework to determine an optimal NN architecture to achieve a Probability of Detection (PD) of 95% or higher and a Probability of False Alarm (PFA) of 1.5% or lower at 5 dB Signal to Noise Ratio (SNR). Literature research reveals that the frequency-domain power spectral densities characterize a signal more efficiently than its time-domain counterparts. Therefore, the input data is preprocessed by calculating the magnitude square of the Discrete Fourier Transform of the digitally sampled bandlimited AWGN and linear FM signals to populate a matrix containing N number of samples and M number of spectra. This matrix is used as input for the NN, and the spectra are divided as follows: 70% for training, 15% for validation, and 15% for testing. The study begins by experimentally deducing the optimal number of hidden neurons (1-40 neurons), then the optimal number of hidden layers (1-5 layers), and lastly, the most efficient learning algorithm. The training algorithms examined are: Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Polak-Ribiére Conjugate Gradient, and Variable Learning Rate Backpropagation. We determine that an architecture with ten hidden neurons (or higher), one hidden layer, and a Scaled Conjugate Gradient for training algorithm encapsulates an optimal architecture for our application.

  16. Sandwich node architecture for agile wireless sensor networks for real-time structural health monitoring applications

    Science.gov (United States)

    Wang, Zi; Pakzad, Shamim; Cheng, Liang

    2012-04-01

    In recent years, wireless sensor network (WSN), as a powerful tool, has been widely applied to structural health monitoring (SHM) due to its low cost of deployment. Several commercial hardware platforms of wireless sensor networks (WSN) have been developed and used for structural monitoring applications [1,2]. A typical design of a node includes a sensor board and a mote connected to it. Sensing units, analog filters and analog-to-digital converters (ADCs) are integrated on the sensor board and the mote consists of a microcontroller and a wireless transceiver. Generally, there are a set of sensor boards compatible with the same model of mote and the selection of the sensor board depends on the specific applications. A WSN system based on this node lacks the capability of interrupting its scheduled task to start a higher priority task. This shortcoming is rooted in the hardware architecture of the node. The proposed sandwich-node architecture is designed to remedy the shortcomings of the existing one for task preemption. A sandwich node is composed of a sensor board and two motes. The first mote is dedicated to managing the sensor board and processing acquired data. The second mote controls the first mote via commands. A prototype has been implemented using Imote2 and verified by an emulation in which one mote is triggered by a remote base station and then preempts the running task at the other mote for handling an emergency event.

  17. MASM: a market architecture for sensor management in distributed sensor networks

    Science.gov (United States)

    Viswanath, Avasarala; Mullen, Tracy; Hall, David; Garga, Amulya

    2005-03-01

    Rapid developments in sensor technology and its applications have energized research efforts towards devising a firm theoretical foundation for sensor management. Ubiquitous sensing, wide bandwidth communications and distributed processing provide both opportunities and challenges for sensor and process control and optimization. Traditional optimization techniques do not have the ability to simultaneously consider the wildly non-commensurate measures involved in sensor management in a single optimization routine. Market-oriented programming provides a valuable and principled paradigm to designing systems to solve this dynamic and distributed resource allocation problem. We have modeled the sensor management scenario as a competitive market, wherein the sensor manager holds a combinatorial auction to sell the various items produced by the sensors and the communication channels. However, standard auction mechanisms have been found not to be directly applicable to the sensor management domain. For this purpose, we have developed a specialized market architecture MASM (Market architecture for Sensor Management). In MASM, the mission manager is responsible for deciding task allocations to the consumers and their corresponding budgets and the sensor manager is responsible for resource allocation to the various consumers. In addition to having a modified combinatorial winner determination algorithm, MASM has specialized sensor network modules that address commensurability issues between consumers and producers in the sensor network domain. A preliminary multi-sensor, multi-target simulation environment has been implemented to test the performance of the proposed system. MASM outperformed the information theoretic sensor manager in meeting the mission objectives in the simulation experiments.

  18. Performance Evaluation of 14 Neural Network Architectures Used for Predicting Heat Transfer Characteristics of Engine Oils

    Science.gov (United States)

    Al-Ajmi, R. M.; Abou-Ziyan, H. Z.; Mahmoud, M. A.

    2012-01-01

    This paper reports the results of a comprehensive study that aimed at identifying best neural network architecture and parameters to predict subcooled boiling characteristics of engine oils. A total of 57 different neural networks (NNs) that were derived from 14 different NN architectures were evaluated for four different prediction cases. The NNs were trained on experimental datasets performed on five engine oils of different chemical compositions. The performance of each NN was evaluated using a rigorous statistical analysis as well as careful examination of smoothness of predicted boiling curves. One NN, out of the 57 evaluated, correctly predicted the boiling curves for all cases considered either for individual oils or for all oils taken together. It was found that the pattern selection and weight update techniques strongly affect the performance of the NNs. It was also revealed that the use of descriptive statistical analysis such as R2, mean error, standard deviation, and T and slope tests, is a necessary but not sufficient condition for evaluating NN performance. The performance criteria should also include inspection of the smoothness of the predicted curves either visually or by plotting the slopes of these curves.

  19. An efficient architecture for the integration of sensor and actuator networks into the future internet

    Science.gov (United States)

    Schneider, J.; Klein, A.; Mannweiler, C.; Schotten, H. D.

    2011-08-01

    In the future, sensors will enable a large variety of new services in different domains. Important application areas are service adaptations in fixed and mobile environments, ambient assisted living, home automation, traffic management, as well as management of smart grids. All these applications will share a common property, the usage of networked sensors and actuators. To ensure an efficient deployment of such sensor-actuator networks, concepts and frameworks for managing and distributing sensor data as well as for triggering actuators need to be developed. In this paper, we present an architecture for integrating sensors and actuators into the future Internet. In our concept, all sensors and actuators are connected via gateways to the Internet, that will be used as comprehensive transport medium. Additionally, an entity is needed for registering all sensors and actuators, and managing sensor data requests. We decided to use a hierarchical structure, comparable to the Domain Name Service. This approach realizes a cost-efficient architecture disposing of "plug and play" capabilities and accounting for privacy issues.

  20. Architecture for an integrated real-time air combat and sensor network simulation

    Science.gov (United States)

    Criswell, Evans A.; Rushing, John; Lin, Hong; Graves, Sara

    2007-04-01

    An architecture for an integrated air combat and sensor network simulation is presented. The architecture integrates two components: a parallel real-time sensor fusion and target tracking simulation, and an air combat simulation. By integrating these two simulations, it becomes possible to experiment with scenarios in which one or both sides in a battle have very large numbers of primitive passive sensors, and to assess the likely effects of those sensors on the outcome of the battle. Modern Air Power is a real-time theater-level air combat simulation that is currently being used as a part of the USAF Air and Space Basic Course (ASBC). The simulation includes a variety of scenarios from the Vietnam war to the present day, and also includes several hypothetical future scenarios. Modern Air Power includes a scenario editor, an order of battle editor, and full AI customization features that make it possible to quickly construct scenarios for any conflict of interest. The scenario editor makes it possible to place a wide variety of sensors including both high fidelity sensors such as radars, and primitive passive sensors that provide only very limited information. The parallel real-time sensor network simulation is capable of handling very large numbers of sensors on a computing cluster of modest size. It can fuse information provided by disparate sensors to detect and track targets, and produce target tracks.

  1. Information processing in network architecture of genome controlled signal transduction circuit. A proposed theoretical explanation.

    Science.gov (United States)

    Chakraborty, Chiranjib; Sarkar, Bimal Kumar; Patel, Pratiksha; Agoramoorthy, Govindasamy

    2012-01-01

    In this paper, Shannon information theory has been applied to elaborate cell signaling. It is proposed that in the cellular network architecture, four components viz. source (DNA), transmitter (mRNA), receiver (protein) and destination (another protein) are involved. The message transmits from source (DNA) to transmitter (mRNA) and then passes through a noisy channel reaching finally the receiver (protein). The protein synthesis process is here considered as the noisy channel. Ultimately, signal is transmitted from receiver to destination (another protein). The genome network architecture elements were compared with genetic alphabet L = {A, C, G, T} with a biophysical model based on the popular Shannon information theory. This study found the channel capacity as maximum for zero error (sigma = 0) and at this condition, transition matrix becomes a unit matrix with rank 4. The transition matrix will be erroneous and finally at sigma = 1 channel capacity will be localized maxima with a value of 0.415 due to the increased value at sigma. On the other hand, minima exists at sigma = 0.75, where all transition probabilities become 0.25 and uncertainty will be maximum resulting in channel capacity with the minima value of zero.

  2. Experimental demonstration of OpenFlow-enabled media ecosystem architecture for high-end applications over metro and core networks.

    Science.gov (United States)

    Ntofon, Okung-Dike; Channegowda, Mayur P; Efstathiou, Nikolaos; Rashidi Fard, Mehdi; Nejabati, Reza; Hunter, David K; Simeonidou, Dimitra

    2013-02-25

    In this paper, a novel Software-Defined Networking (SDN) architecture is proposed for high-end Ultra High Definition (UHD) media applications. UHD media applications require huge amounts of bandwidth that can only be met with high-capacity optical networks. In addition, there are requirements for control frameworks capable of delivering effective application performance with efficient network utilization. A novel SDN-based Controller that tightly integrates application-awareness with network control and management is proposed for such applications. An OpenFlow-enabled test-bed demonstrator is reported with performance evaluations of advanced online and offline media- and network-aware schedulers.

  3. RoCoMAR: Robots’ Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Seokhoon Yoon

    2013-07-01

    Full Text Available In a practical deployment, mobile sensor network (MSN suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots’ Controllable Mobility Aided Routing that uses robotic nodes’ controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.

  4. Adaptive architectures for resilient control of networked multiagent systems in the presence of misbehaving agents

    Science.gov (United States)

    Torre, Gerardo De La; Yucelen, Tansel

    2018-03-01

    Control algorithms of networked multiagent systems are generally computed distributively without having a centralised entity monitoring the activity of agents; and therefore, unforeseen adverse conditions such as uncertainties or attacks to the communication network and/or failure of agent-wise components can easily result in system instability and prohibit the accomplishment of system-level objectives. In this paper, we study resilient coordination of networked multiagent systems in the presence of misbehaving agents, i.e. agents that are subject to exogenous disturbances that represent a class of adverse conditions. In particular, a distributed adaptive control architecture is presented for directed and time-varying graph topologies to retrieve a desired networked multiagent system behaviour. Apart from the existing relevant literature that make specific assumptions on the graph topology and/or the fraction of misbehaving agents, we show that the considered class of adverse conditions can be mitigated by the proposed adaptive control approach that utilises a local state emulator - even if all agents are misbehaving. Illustrative numerical examples are provided to demonstrate the theoretical findings.

  5. RoCoMAR: Robots' Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Science.gov (United States)

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2013-01-01

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134

  6. A distributed multiagent system architecture for body area networks applied to healthcare monitoring.

    Science.gov (United States)

    Felisberto, Filipe; Laza, Rosalía; Fdez-Riverola, Florentino; Pereira, António

    2015-01-01

    In the last years the area of health monitoring has grown significantly, attracting the attention of both academia and commercial sectors. At the same time, the availability of new biomedical sensors and suitable network protocols has led to the appearance of a new generation of wireless sensor networks, the so-called wireless body area networks. Nowadays, these networks are routinely used for continuous monitoring of vital parameters, movement, and the surrounding environment of people, but the large volume of data generated in different locations represents a major obstacle for the appropriate design, development, and deployment of more elaborated intelligent systems. In this context, we present an open and distributed architecture based on a multiagent system for recognizing human movements, identifying human postures, and detecting harmful activities. The proposed system evolved from a single node for fall detection to a multisensor hardware solution capable of identifying unhampered falls and analyzing the users' movement. The experiments carried out contemplate two different scenarios and demonstrate the accuracy of our proposal as a real distributed movement monitoring and accident detection system. Moreover, we also characterize its performance, enabling future analyses and comparisons with similar approaches.

  7. The central monitoring station of Indian Environmental Radiation Monitoring Network (IERMON): the architecture and functions

    International Nuclear Information System (INIS)

    Garg, Saurabh; Ratheesh, M.P.; Mukundan, T.; Patel, M.D.; Nair, C.K.G.; Puranik, V.D.

    2010-01-01

    The Indian Environmental Radiation Monitoring Network (IERMON) is being established across the country by the Bhabha Atomic Research Centre, Mumbai. The network consists of stations with automated systems for environmental radiation monitoring with online data communication facility. Currently about 100 stations are operational and additional 500 stations are expected to be installed by March, 2012. The network is established with different objectives, the main objective being the detection and reporting of any nuclear emergency anywhere in the country. The central monitoring station of the network is established in Mumbai. This paper describes the architecture and functions of IERMON Central Station. The Central Station consists of server room for online data collection from remote stations and maintenance of databases for various applications; central monitoring room for user interaction with database and IERMON website maintenance and development room for the development of new applications. The functions of IERMON Central Station include detection and reporting of nuclear emergency, maintenance of remote stations, enhancement of public awareness on environmental radiation through public display systems and website, etc. The details on system layout and data protocols can be found in the paper. (author)

  8. Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

    Science.gov (United States)

    Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  9. Improvement of radiation dose estimation due to nuclear accidents using deep neural network and GPU

    Energy Technology Data Exchange (ETDEWEB)

    Desterro, Filipe S.M.; Almeida, Adino A.H.; Pereira, Claudio M.N.A., E-mail: filipesantana18@gmail.com, E-mail: adino@ien.gov.br, E-mail: cmcoelho@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Recently, the use of mobile devices has been proposed for dose assessment during nuclear accidents. The idea is to support field teams, providing an approximated estimation of the dose distribution map in the vicinity of the nuclear power plant (NPP), without needing to be connected to the NPP systems. In order to provide such stand-alone execution, the use of artificial neural networks (ANN) has been proposed in substitution of the complex and time consuming physical models executed by the atmospheric dispersion radionuclide (ADR) system. One limitation observed on such approach is the very time-consuming training of the ANNs. Moreover, if the number of input parameters increases the performance of standard ANNs, like Multilayer-Perceptron (MLP) with backpropagation training, is affected leading to unreasonable training time. To improve learning, allowing better dose estimations, more complex ANN architectures are required. ANNs with many layers (much more than a typical number of layers), referred to as Deep Neural Networks (DNN), for example, have demonstrating to achieve better results. On the other hand, the training of such ANNs is very much slow. In order to allow the use of such DNNs in a reasonable training time, a parallel programming solution, using Graphic Processing Units (GPU) and Computing Unified Device Architecture (CUDA) is proposed. This work focuses on the study of computational technologies for improvement of the ANNs to be used in the mobile application, as well as their training algorithms. (author)

  10. Improvement of radiation dose estimation due to nuclear accidents using deep neural network and GPU

    International Nuclear Information System (INIS)

    Desterro, Filipe S.M.; Almeida, Adino A.H.; Pereira, Claudio M.N.A.

    2017-01-01

    Recently, the use of mobile devices has been proposed for dose assessment during nuclear accidents. The idea is to support field teams, providing an approximated estimation of the dose distribution map in the vicinity of the nuclear power plant (NPP), without needing to be connected to the NPP systems. In order to provide such stand-alone execution, the use of artificial neural networks (ANN) has been proposed in substitution of the complex and time consuming physical models executed by the atmospheric dispersion radionuclide (ADR) system. One limitation observed on such approach is the very time-consuming training of the ANNs. Moreover, if the number of input parameters increases the performance of standard ANNs, like Multilayer-Perceptron (MLP) with backpropagation training, is affected leading to unreasonable training time. To improve learning, allowing better dose estimations, more complex ANN architectures are required. ANNs with many layers (much more than a typical number of layers), referred to as Deep Neural Networks (DNN), for example, have demonstrating to achieve better results. On the other hand, the training of such ANNs is very much slow. In order to allow the use of such DNNs in a reasonable training time, a parallel programming solution, using Graphic Processing Units (GPU) and Computing Unified Device Architecture (CUDA) is proposed. This work focuses on the study of computational technologies for improvement of the ANNs to be used in the mobile application, as well as their training algorithms. (author)

  11. Effect of chain rigidity on network architecture and deformation behavior of glassy polymer networks

    Science.gov (United States)

    Knowles, Kyler Reser

    Processing carbon fiber composite laminates creates molecular-level strains in the thermoset matrix upon curing and cooling which can lead to failures such as geometry deformations, micro-cracking, and other issues. It is known strain creation is attributed to the significant volume and physical state changes undergone by the polymer matrix throughout the curing process, though storage and relaxation of cure-induced strains remain poorly understood. This dissertation establishes two approaches to address the issue. The first establishes testing methods to simultaneously measure key volumetric properties of a carbon fiber composite laminate and its polymer matrix. The second approach considers the rigidity of the polymer matrix in regards to strain storage and relaxation mechanisms which ultimately control composite performance throughout manufacturing and use. Through the use of a non-contact, full-field strain measurement technique known as digital image correlation (DIC), we describe and implement useful experiments which quantify matrix and composite parameters necessary for simulation efforts and failure models. The methods are compared to more traditional techniques and show excellent correlation. Further, we established relationships which represent matrix-fiber compatibility in regards to critical processing constraints. The second approach involves a systematic study of epoxy-amine networks which are chemically-similar but differ in chain segment rigidity. Prior research has investigated the isomer effect of glassy polymers, showing sizeable differences in thermal, volumetric, physical, and mechanical properties. This work builds on these themes and shows the apparent isomer effect is rather an effect of chain rigidity. Indeed, it was found that structurally-dissimilar polymer networks exhibit very similar properties as a consequence of their shared average network rigidity. Differences in chain packing, as a consequence of chain rigidity, were shown to

  12. Improved Vehicular Information Network Architecture Using Fuzzy Based Named Data NetworkingNDN

    Directory of Open Access Journals (Sweden)

    Kanwalpreet Kaur

    2015-08-01

    Full Text Available Vehicular Ad-hoc System VANETs is really a component with smart transport systems. It has ability to prevent accidents and the road congestion issues on highways but it suffers from the accomplishment and scalability issues. To handle these difficulties from the Inter Vehicular Communication IVC we apply Name Data Networking NDN. All though in NDN the users are only concerned about necessary data and give no attention on the number of locations from where the data is coming. The NDN layout is usually much more worthy for IVC circumstance getting the ordered material labeling design as well as amp64258exible material retrieval. In this report we propose vehicular network dependent on fuzzy membership function which offers the fundamental NDN style to improve support location dependent forwarding content aggregation and distributed mobility management. This paper finally winds up the several boundaries regarding earlier approaches.

  13. Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks.

    Science.gov (United States)

    Muddle, Joanna; Kirton, Stewart B; Parisini, Irene; Muddle, Andrew; Murnane, Darragh; Ali, Jogoth; Brown, Marc; Page, Clive; Forbes, Ben

    2017-01-01

    Dry powder inhalers are increasingly popular for delivering drugs to the lungs for the treatment of respiratory diseases, but are complex products with multivariate performance determinants. Heuristic product development guided by in vitro aerosol performance testing is a costly and time-consuming process. This study investigated the feasibility of using artificial neural networks (ANNs) to predict fine particle fraction (FPF) based on formulation device variables. Thirty-one ANN architectures were evaluated for their ability to predict experimentally determined FPF for a self-consistent dataset containing salmeterol xinafoate and salbutamol sulfate dry powder inhalers (237 experimental observations). Principal component analysis was used to identify inputs that significantly affected FPF. Orthogonal arrays (OAs) were used to design ANN architectures, optimized using the Taguchi method. The primary OA ANN r 2 values ranged between 0.46 and 0.90 and the secondary OA increased the r 2  values (0.53-0.93). The optimum ANN (9-4-1 architecture, average r 2 0.92 ± 0.02) included active pharmaceutical ingredient, formulation, and device inputs identified by principal component analysis, which reflected the recognized importance and interdependency of these factors for orally inhaled product performance. The Taguchi method was effective at identifying successful architecture with the potential for development as a useful generic inhaler ANN model, although this would require much larger datasets and more variable inputs. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. A Router Architecture for Connection-Oriented Service Guarantees in the MANGO Clockless Network-on-Chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Sparsø, Jens

    2005-01-01

    On-chip networks for future system-on-chip designs need simple, high performance implementations. In order to promote system-level integrity, guaranteed services (GS) need to be provided. We propose a network-on-chip (NoC) router architecture to support this, and demonstrate with a CMOS standard...... cell design. Our implementation is based on clockless circuit techniques, and thus inherently supports a modular, GALS-oriented design flow. Our router exploits virtual channels to provide connection-oriented GS, as well as connection-less best-effort (BE) routing. The architecture is highly flexible...

  15. Raingauge-Based Rainfall Nowcasting with Artificial Neural Network

    Science.gov (United States)

    Liong, Shie-Yui; He, Shan

    2010-05-01

    Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.

  16. CUDA-accelerated genetic feedforward-ANN training for data mining

    International Nuclear Information System (INIS)

    Patulea, Catalin; Peace, Robert; Green, James

    2010-01-01

    We present an implementation of genetic algorithm (GA) training of feedforward artificial neural networks (ANNs) targeting commodity graphics cards (GPUs). By carefully mapping the problem onto the unique GPU architecture, we achieve order-of-magnitude speedup over a conventional CPU implementation. Furthermore, we show that the speedup is consistent across a wide range of data set sizes, making this implementation ideal for large data sets. This performance boost enables the genetic algorithm to search a larger subset of the solution space, which results in more accurate pattern classification. Finally, we demonstrate this method in the context of the 2009 UC San Diego Data Mining Contest, achieving a world-class lift on a data set of 94682 e-commerce transactions.

  17. CUDA-accelerated genetic feedforward-ANN training for data mining

    Energy Technology Data Exchange (ETDEWEB)

    Patulea, Catalin; Peace, Robert; Green, James, E-mail: cpatulea@sce.carleton.ca, E-mail: rpeace@sce.carleton.ca, E-mail: jrgreen@sce.carleton.ca [School of Systems and Computer Engineering, Carleton University, Ottawa, K1S 5B6 (Canada)

    2010-11-01

    We present an implementation of genetic algorithm (GA) training of feedforward artificial neural networks (ANNs) targeting commodity graphics cards (GPUs). By carefully mapping the problem onto the unique GPU architecture, we achieve order-of-magnitude speedup over a conventional CPU implementation. Furthermore, we show that the speedup is consistent across a wide range of data set sizes, making this implementation ideal for large data sets. This performance boost enables the genetic algorithm to search a larger subset of the solution space, which results in more accurate pattern classification. Finally, we demonstrate this method in the context of the 2009 UC San Diego Data Mining Contest, achieving a world-class lift on a data set of 94682 e-commerce transactions.

  18. Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network

    Science.gov (United States)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.

  19. eQTL Networks Reveal Complex Genetic Architecture in the Immature Soybean Seed

    Directory of Open Access Journals (Sweden)

    Yung-Tsi Bolon

    2014-03-01

    Full Text Available The complex network of regulatory factors and interactions involved in transcriptional regulation within the seed is not well understood. To evaluate gene expression regulation in the immature seed, we utilized a genetical genomics approach on a soybean [ (L. Merr.] recombinant inbred line (RIL population and produced a genome-wide expression quantitative trait loci (eQTL dataset. The validity of the dataset was confirmed by mapping the eQTL hotspot for flavonoid biosynthesis-related genes to a region containing repeats of chalcone synthase (CHS genes known to correspond to the soybean inhibitor locus that regulates seed color. We then identified eQTL for genes with seed-specific expression and discovered striking eQTL hotspots at distinct genomic intervals on chromosomes (Chr 20, 7, and 13. The main eQTL hotspot for transcriptional regulation of fatty acid biosynthesis genes also coincided with regulation of oleosin genes. Transcriptional upregulation of genesets from eQTL with opposite allelic effects were also found. Gene–eQTL networks were constructed and candidate regulatory genes were identified from these three key loci specific to seed expression and enriched in genes involved in seed oil accumulation. Our data provides new insight into the complex nature of gene networks in the immature soybean seed and the genetic architecture that contributes to seed development.

  20. A framework using cluster-based hybrid network architecture for collaborative virtual surgery.

    Science.gov (United States)

    Qin, Jing; Choi, Kup-Sze; Poon, Wai-Sang; Heng, Pheng-Ann

    2009-12-01

    Research on collaborative virtual environments (CVEs) opens the opportunity for simulating the cooperative work in surgical operations. It is however a challenging task to implement a high performance collaborative surgical simulation system because of the difficulty in maintaining state consistency with minimum network latencies, especially when sophisticated deformable models and haptics are involved. In this paper, an integrated framework using cluster-based hybrid network architecture is proposed to support collaborative virtual surgery. Multicast transmission is employed to transmit updated information among participants in order to reduce network latencies, while system consistency is maintained by an administrative server. Reliable multicast is implemented using distributed message acknowledgment based on cluster cooperation and sliding window technique. The robustness of the framework is guaranteed by the failure detection chain which enables smooth transition when participants join and leave the collaboration, including normal and involuntary leaving. Communication overhead is further reduced by implementing a number of management approaches such as computational policies and collaborative mechanisms. The feasibility of the proposed framework is demonstrated by successfully extending an existing standalone orthopedic surgery trainer into a collaborative simulation system. A series of experiments have been conducted to evaluate the system performance. The results demonstrate that the proposed framework is capable of supporting collaborative surgical simulation.

  1. REAL-TIME VIDEO SCALING BASED ON CONVOLUTION NEURAL NETWORK ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    S Safinaz

    2017-08-01

    Full Text Available In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames to high resolution frames. We compare our outcomes with multiple exiting algorithms. Our extensive results of proposed technique RemCNN (Reconstruction error minimization Convolution Neural Network shows that our model outperforms the existing technologies such as bicubic, bilinear, MCResNet and provide better reconstructed motioning images and video frames. The experimental results shows that our average PSNR result is 47.80474 considering upscale-2, 41.70209 for upscale-3 and 36.24503 for upscale-4 for Myanmar dataset which is very high in contrast to other existing techniques. This results proves our proposed model real-time video scaling based on convolution neural network architecture’s high efficiency and better performance.

  2. Structural architecture supports functional organization in the human aging brain at a regionwise and network level.

    Science.gov (United States)

    Zimmermann, Joelle; Ritter, Petra; Shen, Kelly; Rothmeier, Simon; Schirner, Michael; McIntosh, Anthony R

    2016-07-01

    Functional interactions in the brain are constrained by the underlying anatomical architecture, and structural and functional networks share network features such as modularity. Accordingly, age-related changes of structural connectivity (SC) may be paralleled by changes in functional connectivity (FC). We provide a detailed qualitative and quantitative characterization of the SC-FC coupling in human aging as inferred from resting-state blood oxygen-level dependent functional magnetic resonance imaging and diffusion-weighted imaging in a sample of 47 adults with an age range of 18-82. We revealed that SC and FC decrease with age across most parts of the brain and there is a distinct age-dependency of regionwise SC-FC coupling and network-level SC-FC relations. A specific pattern of SC-FC coupling predicts age more reliably than does regionwise SC or FC alone (r = 0.73, 95% CI = [0.7093, 0.8522]). Hence, our data propose that regionwise SC-FC coupling can be used to characterize brain changes in aging. Hum Brain Mapp 37:2645-2661, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Semi-Interpenetrating Polymer Networks with Predefined Architecture for Metal Ion Fluorescence Monitoring

    Directory of Open Access Journals (Sweden)

    Kyriakos Christodoulou

    2016-11-01

    Full Text Available The development of new synthetic approaches for the preparation of efficient 3D luminescent chemosensors for transition metal ions receives considerable attention nowadays, owing to the key role of the latter as elements in biological systems and their harmful environmental effects when present in aquatic media. In this work, we describe an easy and versatile synthetic methodology that leads to the generation of nonconjugated 3D luminescent semi-interpenetrating amphiphilic networks (semi-IPN with structure-defined characteristics. More precisely, the synthesis involves the encapsulation of well-defined poly(9-anthrylmethyl methacrylate (pAnMMA (hydrophobic, luminescent linear polymer chains within a covalent poly(2-(dimethylaminoethyl methacrylate (pDMAEMA hydrophilic polymer network, derived via the 1,2-bis-(2-iodoethoxyethane (BIEE-induced crosslinking process of well-defined pDMAEMA linear chains. Characterization of their fluorescence properties demonstrated that these materials act as strong blue emitters when exposed to UV irradiation. This, combined with the presence of the metal-binding tertiary amino functionalities of the pDMAEMA segments, allowed for their applicability as sorbents and fluorescence chemosensors for transition metal ions (Fe3+, Cu2+ in solution via a chelation-enhanced fluorescence-quenching effect promoted within the semi-IPN network architecture. Ethylenediaminetetraacetic acid (EDTA-induced metal ion desorption and thus material recyclability has been also demonstrated.

  4. QoS Management and Control for an All-IP WiMAX Network Architecture: Design, Implementation and Evaluation

    Directory of Open Access Journals (Sweden)

    Thomas Michael Bohnert

    2008-01-01

    Full Text Available The IEEE 802.16 standard provides a specification for a fixed and mobile broadband wireless access system, offering high data rate transmission of multimedia services with different Quality-of-Service (QoS requirements through the air interface. The WiMAX Forum, going beyond the air interface, defined an end-to-end WiMAX network architecture, based on an all-IP platform in order to complete the standards required for a commercial rollout of WiMAX as broadband wireless access solution. As the WiMAX network architecture is only a functional specification, this paper focuses on an innovative solution for an end-to-end WiMAX network architecture offering in compliance with the WiMAX Forum specification. To our best knowledge, this is the first WiMAX architecture built by a research consortium globally and was performed within the framework of the European IST project WEIRD (WiMAX Extension to Isolated Research Data networks. One of the principal features of our architecture is support for end-to-end QoS achieved by the integration of resource control in the WiMAX wireless link and the resource management in the wired domains in the network core. In this paper we present the architectural design of these QoS features in the overall WiMAX all-IP framework and their functional as well as performance evaluation. The presented results can safely be considered as unique and timely for any WiMAX system integrator.

  5. Historical building monitoring using an energy-efficient scalable wireless sensor network architecture.

    Science.gov (United States)

    Capella, Juan V; Perles, Angel; Bonastre, Alberto; Serrano, Juan J

    2011-01-01

    We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties.

  6. Historical Building Monitoring Using an Energy-Efficient Scalable Wireless Sensor Network Architecture

    Science.gov (United States)

    Capella, Juan V.; Perles, Angel; Bonastre, Alberto; Serrano, Juan J.

    2011-01-01

    We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties. PMID:22346630

  7. Deep learning architecture for iris recognition based on optimal Gabor filters and deep belief network

    Science.gov (United States)

    He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang

    2017-03-01

    Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.

  8. A Scalable, Timing-Safe, Network-on-Chip Architecture with an Integrated Clock Distribution Method

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Stensgaard, Mikkel Bystrup; Sparsø, Jens

    2007-01-01

    Growing system sizes together with increasing performance variability are making globally synchronous operation hard to realize. Mesochronous clocking constitutes a possible solution to the problems faced. The most fundamental of problems faced when communicating between mesochronously clocked re...... is based purely on local observations. It is demonstrated with a 90 nm CMOS standard cell network-on-chip design which implements completely timing-safe, global communication in a modular system......Growing system sizes together with increasing performance variability are making globally synchronous operation hard to realize. Mesochronous clocking constitutes a possible solution to the problems faced. The most fundamental of problems faced when communicating between mesochronously clocked...... regions concerns the possibility of data corruption caused by metastability. This paper presents an integrated communication and mesochronous clocking strategy, which avoids timing related errors while maintaining a globally synchronous system perspective. The architecture is scalable as timing integrity...

  9. Application Architecture of Avian Influenza Research Collaboration Network in Korea e-Science

    Science.gov (United States)

    Choi, Hoon; Lee, Junehawk

    In the pursuit of globalization of the AI e-Science environment, KISTI is fostering to extend the AI research community to the AI research institutes of neighboring countries and to share the AI e-Science environment with them in the near future. In this paper we introduce the application architecture of AI research collaboration network (AIRCoN). AIRCoN is a global e-Science environment for AI research conducted by KISTI. It consists of AI virus sequence information sharing system for sufficing data requirement of research community, integrated analysis environment for analyzing the mutation pattern of AI viruses and their risks, epidemic modeling and simulation environment for establishing national effective readiness strategy against AI pandemics, and knowledge portal for sharing expertise of epidemic study and unpublished research results with community members.

  10. Flow forecast by SWAT model and ANN in Pracana basin, Portugal

    NARCIS (Netherlands)

    Demirel, M.C.; Venancio, Anabela; Kahya, Ercan

    2009-01-01

    This study provides a unique opportunity to analyze the issue of flow forecast based on the soil and water assessment tool (SWAT) and artificial neural network (ANN) models. In last two decades, the ANNs have been extensively applied to various water resources system problems. In this study, the

  11. Ado Vabbe preemia Anne Parmastole

    Index Scriptorium Estoniae

    2003-01-01

    Tartu Kunstimajas Tartu kunsti aastalõpunäitus. Kujundaja Mari Nõmmela. Anne Parmastole A. Vabbe, Silja Salmistule E-Kunstisalongi, Lii Jürgensonile EDA, Jüri Marranile Wilde kohviku, Sami Makkonenile AS Vunder ja Tartu Õlletehase A. Le Coq ning Eda Lõhmusele AS Merko Tartu preemia

  12. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    Science.gov (United States)

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  13. A single network adaptive critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems.

    Science.gov (United States)

    Padhi, Radhakant; Unnikrishnan, Nishant; Wang, Xiaohua; Balakrishnan, S N

    2006-12-01

    Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)" is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.

  14. An Architecture for Performance Optimization in a Collaborative Knowledge-Based Approach for  Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Juan Ramon Velasco

    2011-09-01

    Full Text Available Over the past few years, Intelligent Spaces (ISs have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a an optimized design for the inference engine; (b a visual interface; (c a module to reduce the redundancy and complexity of the knowledge bases; (d a module to evaluate the accuracy of the new knowledge base; (e a module to adapt the format of the rules to the structure used by the inference engine; and (f a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern. and repilo (caused by the fungus Spilocaea oleagina. The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery without a substantial decrease in the accuracy of the inferred values.

  15. AziSA: an architecture for underground measurement and control networks - 2nd International Conference on Wireless Communications...

    CSIR Research Space (South Africa)

    Stewart, R

    2008-08-01

    Full Text Available AziSA is an architecture for measurement and control networks that can be used to collect, store and facilitate the analysis of data from challenging underground environments. AziSA defines four node classes, two (Classes Four and Three...

  16. Architecture of a consent management suite and integration into IHE-based Regional Health Information Networks.

    Science.gov (United States)

    Heinze, Oliver; Birkle, Markus; Köster, Lennart; Bergh, Björn

    2011-10-04

    The University Hospital Heidelberg is implementing a Regional Health Information Network (RHIN) in the Rhine-Neckar-Region in order to establish a shared-care environment, which is based on established Health IT standards and in particular Integrating the Healthcare Enterprise (IHE). Similar to all other Electronic Health Record (EHR) and Personal Health Record (PHR) approaches the chosen Personal Electronic Health Record (PEHR) architecture relies on the patient's consent in order to share documents and medical data with other care delivery organizations, with the additional requirement that the German legislation explicitly demands a patients' opt-in and does not allow opt-out solutions. This creates two issues: firstly the current IHE consent profile does not address this approach properly and secondly none of the employed intra- and inter-institutional information systems, like almost all systems on the market, offers consent management solutions at all. Hence, the objective of our work is to develop and introduce an extensible architecture for creating, managing and querying patient consents in an IHE-based environment. Based on the features offered by the IHE profile Basic Patient Privacy Consent (BPPC) and literature, the functionalities and components to meet the requirements of a centralized opt-in consent management solution compliant with German legislation have been analyzed. Two services have been developed and integrated into the Heidelberg PEHR. The standard-based Consent Management Suite consists of two services. The Consent Management Service is able to receive and store consent documents. It can receive queries concerning a dedicated patient consent, process it and return an answer. It represents a centralized policy enforcement point. The Consent Creator Service allows patients to create their consents electronically. Interfaces to a Master Patient Index (MPI) and a provider index allow to dynamically generate XACML-based policies which are

  17. Anne-Ly Võlli: Iga inimene ja asutus vajab omamoodi lähenemist / Anne-Ly Võlli ; intervjueerinud Jaanika Kressa

    Index Scriptorium Estoniae

    Võlli, Anne-Ly, 1976-

    2009-01-01

    MTÜ Jõgevamaa Omavalitsuste Aktiviseerimiskeskus kinnitas avaliku konkursi tulemusel juhatuse liikmeks Anne-Ly Võlli, kelle ülesandeks on keskuse tegevuse juhtimine ja koostöö arendamine partneromavalitsuste ja teiste koostööpartnerite vahel

  18. LFC based adaptive PID controller using ANN and ANFIS techniques

    Directory of Open Access Journals (Sweden)

    Mohamed I. Mosaad

    2014-12-01

    Full Text Available This paper presents an adaptive PID Load Frequency Control (LFC for power systems using Neuro-Fuzzy Inference Systems (ANFIS and Artificial Neural Networks (ANN oriented by Genetic Algorithm (GA. PID controller parameters are tuned off-line by using GA to minimize integral error square over a wide-range of load variations. The values of PID controller parameters obtained from GA are used to train both ANFIS and ANN. Therefore, the two proposed techniques could, online, tune the PID controller parameters for optimal response at any other load point within the operating range. Testing of the developed techniques shows that the adaptive PID-LFC could preserve optimal performance over the whole loading range. Results signify superiority of ANFIS over ANN in terms of performance measures.

  19. Playing tag with ANN: boosted top identification with pattern recognition

    International Nuclear Information System (INIS)

    Almeida, Leandro G.; Backović, Mihailo; Cliche, Mathieu; Lee, Seung J.; Perelstein, Maxim

    2015-01-01

    Many searches for physics beyond the Standard Model at the Large Hadron Collider (LHC) rely on top tagging algorithms, which discriminate between boosted hadronic top quarks and the much more common jets initiated by light quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively takes a “digital image" of each jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this way, top tagging becomes a canonical pattern recognition problem. With this motivation, we present a novel top tagging algorithm based on an Artificial Neural Network (ANN), one of the most popular approaches to pattern recognition. The ANN is trained on a large sample of boosted tops and light quark/gluon jets, and is then applied to independent test samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study: for example, for jets with p T in the 1100–1200 GeV range, 60% top-tag efficiency can be achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by the ANN tagger as the most important for classification, as well as correlations between the ANN tagger and some of the familiar top-tagging observables and algorithms.

  20. Playing tag with ANN: boosted top identification with pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Leandro G. [Institut de Biologie de l’École Normale Supérieure (IBENS), Inserm 1024- CNRS 8197,46 rue d’Ulm, 75005 Paris (France); Backović, Mihailo [Center for Cosmology, Particle Physics and Phenomenology - CP3,Universite Catholique de Louvain,Louvain-la-neuve (Belgium); Cliche, Mathieu [Laboratory for Elementary Particle Physics, Cornell University,Ithaca, NY 14853 (United States); Lee, Seung J. [Department of Physics, Korea Advanced Institute of Science and Technology,335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Perelstein, Maxim [Laboratory for Elementary Particle Physics, Cornell University,Ithaca, NY 14853 (United States)

    2015-07-17

    Many searches for physics beyond the Standard Model at the Large Hadron Collider (LHC) rely on top tagging algorithms, which discriminate between boosted hadronic top quarks and the much more common jets initiated by light quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively takes a “digital image' of each jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this way, top tagging becomes a canonical pattern recognition problem. With this motivation, we present a novel top tagging algorithm based on an Artificial Neural Network (ANN), one of the most popular approaches to pattern recognition. The ANN is trained on a large sample of boosted tops and light quark/gluon jets, and is then applied to independent test samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study: for example, for jets with p{sub T} in the 1100–1200 GeV range, 60% top-tag efficiency can be achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by the ANN tagger as the most important for classification, as well as correlations between the ANN tagger and some of the familiar top-tagging observables and algorithms.

  1. Success of Anomia Treatment in Aphasia Is Associated With Preserved Architecture of Global and Left Temporal Lobe Structural Networks.

    Science.gov (United States)

    Bonilha, Leonardo; Gleichgerrcht, Ezequiel; Nesland, Travis; Rorden, Chris; Fridriksson, Julius

    2016-03-01

    Targeted speech therapy can lead to substantial naming improvement in some subjects with anomia following dominant-hemisphere stroke. We investigated whether treatment-induced improvement in naming is associated with poststroke preservation of structural neural network architecture. Twenty-four patients with poststroke chronic aphasia underwent 30 hours of speech therapy over a 2-week period and were assessed at baseline and after therapy. Whole brain maps of neural architecture were constructed from pretreatment diffusion tensor magnetic resonance imaging to derive measures of global brain network architecture (network small-worldness) and regional network influence (nodal betweenness centrality). Their relationship with naming recovery was evaluated with multiple linear regressions. Treatment-induced improvement in correct naming was associated with poststroke preservation of global network small worldness and of betweenness centrality in temporal lobe cortical regions. Together with baseline aphasia severity, these measures explained 78% of the variability in treatment response. Preservation of global and left temporal structural connectivity broadly explains the variability in treatment-related naming improvement in aphasia. These findings corroborate and expand on previous classical lesion-symptom mapping studies by elucidating some of the mechanisms by which brain damage may relate to treated aphasia recovery. Favorable naming outcomes may result from the intact connections between spared cortical areas that are functionally responsive to treatment. © The Author(s) 2015.

  2. Implementation of time synchronized cryogenics control system network architecture for SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rakesh J., E-mail: rpatel@ipr.res.in; Mahesuria, Gaurang; Panchal, Pradip; Panchal, Rohit; Sonara, Dasarath; Tanna, Vipul; Pradhan, Subrata

    2016-11-15

    Highlights: • SST-1 cryogenics sub-systems are 1.3 kW HRL, LN2 distribution system, current feeders system and 80 K booster system. • GUI developed in SCADA and control program developed in PLC for automation of the above sub-systems. • Implemented the cryogenics control system network to communicate all systems to InSQL server. • InSQL server configured for real time centralized process data acquisition from all connected sub-systems control nodes. • Acquired the process parameters coming from different systems at same time stamp. - Abstract: Under the SST-1 mission mandate, the several cryogenic sub-systems have been developed, upgraded and procured in prior to the SST-1 operation. New developments include 80 K Bubble type thermal shields, LN2 distribution system, LN2 booster system and current feeders system (CFS).Graphical User Interface (GUI) program developed in Wonderware SCADA and control logic program developed in Schneider make PLC for the above sub-systems. Industrial SQL server (InSQL) configured for centralized storage of real time process data coming from various control nodes of cryogenics sub-systems. The cryogenics control system network for communicating all cryogenics sub-system control nodes to InSQL server for centralized data storage and time synchronization among cryogenic sub-systems with centralized InSQL server is successfully implemented. Due to implemented time synchronization among sub-systems control nodes, it is possible to analyze the process parameters coming from different sub-systems at same time stamp. This paper describes the overview of implemented cryogenics control system network architecture for real time cryogenic process data monitor, storage and retrieval.

  3. Implementation of time synchronized cryogenics control system network architecture for SST-1

    International Nuclear Information System (INIS)

    Patel, Rakesh J.; Mahesuria, Gaurang; Panchal, Pradip; Panchal, Rohit; Sonara, Dasarath; Tanna, Vipul; Pradhan, Subrata

    2016-01-01

    Highlights: • SST-1 cryogenics sub-systems are 1.3 kW HRL, LN2 distribution system, current feeders system and 80 K booster system. • GUI developed in SCADA and control program developed in PLC for automation of the above sub-systems. • Implemented the cryogenics control system network to communicate all systems to InSQL server. • InSQL server configured for real time centralized process data acquisition from all connected sub-systems control nodes. • Acquired the process parameters coming from different systems at same time stamp. - Abstract: Under the SST-1 mission mandate, the several cryogenic sub-systems have been developed, upgraded and procured in prior to the SST-1 operation. New developments include 80 K Bubble type thermal shields, LN2 distribution system, LN2 booster system and current feeders system (CFS).Graphical User Interface (GUI) program developed in Wonderware SCADA and control logic program developed in Schneider make PLC for the above sub-systems. Industrial SQL server (InSQL) configured for centralized storage of real time process data coming from various control nodes of cryogenics sub-systems. The cryogenics control system network for communicating all cryogenics sub-system control nodes to InSQL server for centralized data storage and time synchronization among cryogenic sub-systems with centralized InSQL server is successfully implemented. Due to implemented time synchronization among sub-systems control nodes, it is possible to analyze the process parameters coming from different sub-systems at same time stamp. This paper describes the overview of implemented cryogenics control system network architecture for real time cryogenic process data monitor, storage and retrieval.

  4. Coastal Ocean Observing Network - Open Source Architecture for Data Management and Web-Based Data Services

    Science.gov (United States)

    Pattabhi Rama Rao, E.; Venkat Shesu, R.; Udaya Bhaskar, T. V. S.

    2012-07-01

    The observations from the oceans are the backbone for any kind of operational services, viz. potential fishing zone advisory services, ocean state forecast, storm surges, cyclones, monsoon variability, tsunami, etc. Though it is important to monitor open Ocean, it is equally important to acquire sufficient data in the coastal ocean through coastal ocean observing systems for re-analysis, analysis and forecast of coastal ocean by assimilating different ocean variables, especially sub-surface information; validation of remote sensing data, ocean and atmosphere model/analysis and to understand the processes related to air-sea interaction and ocean physics. Accurate information and forecast of the state of the coastal ocean at different time scales is vital for the wellbeing of the coastal population as well as for the socio-economic development of the country through shipping, offshore oil and energy etc. Considering the importance of ocean observations in terms of understanding our ocean environment and utilize them for operational oceanography, a large number of platforms were deployed in the Indian Ocean including coastal observatories, to acquire data on ocean variables in and around Indian Seas. The coastal observation network includes HF Radars, wave rider buoys, sea level gauges, etc. The surface meteorological and oceanographic data generated by these observing networks are being translated into ocean information services through analysis and modelling. Centralized data management system is a critical component in providing timely delivery of Ocean information and advisory services. In this paper, we describe about the development of open-source architecture for real-time data reception from the coastal observation network, processing, quality control, database generation and web-based data services that includes on-line data visualization and data downloads by various means.

  5. Annely Peebo kutsus presidendi kontserdile / Maria Ulfsak

    Index Scriptorium Estoniae

    Ulfsak, Maria, 1981-

    2003-01-01

    Laulja Anneli Peebo kohtus president Arnold Rüütliga, et anda üle kutse Andrea Bocelli ja Annely Peebo ühiskontserdile. Vt. samas: Andrea Bocelli ja Annely Peebo kontsert Tallinna lauluväljakul 23. augustil; Andrea Bocelli

  6. An Efficient Radio Access Control Mechanism for Wireless Network-On-Chip Architectures

    Directory of Open Access Journals (Sweden)

    Maurizio Palesi

    2015-03-01

    Full Text Available Modern systems-on-chip (SoCs today contain hundreds of cores, and this number is predicted to reach the thousands by the year 2020. As the number of communicating elements increases, there is a need for an efficient, scalable and reliable communication infrastructure. As technology geometries shrink to the deep submicron regime, however, the communication delay and power consumption of global interconnections become the major bottleneck. The network-on-chip (NoC design paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues, such as the performance limitations of long interconnects and integration of large number of cores on a chip. Recently, new communication technologies based on the NoC concept have emerged with the aim of improving the scalability limitations of conventional NoC-based architectures. Among them, wireless NoCs (WiNoCs use the radio medium for reducing the performance and energy penalties of long-range and multi-hop communications. As the radio medium can be accessed by a single transmitter at a time, a radio access control mechanism (RACM is needed. In this paper, we present a novel RACM, which allows one to improve both the performance and energy figures of the WiNoC. Experiments, carried out on both synthetic and real traffic scenarios, have shown the effectiveness of the proposed RACM. On average, a 30% reduction in communication delay and a 25% energy savings have been observed when the proposed RACM is applied to a known WiNoC architecture.

  7. A CDMA Spotbeam Architecture for the Next Generation Satellite System (NGSS) for the Aeronautical Telecommunications Network (ATN)

    Science.gov (United States)

    Raghavan, Rajesh S.; Shamma, Mohammed A.

    2003-01-01

    This paper will present work being done to model and simulate a CDMA based Mobile Satellite System architecture for providing all or part of the future Air Traffic Management (ATM) services. Such a system, will help in relieving the dependence on ground based networks, if not eliminate it. Additionally such an architecture can be used in parallel or as a supplementary service along with ground based links to help alleviate any capacity bottlenecks, or in areas where such services are difficult to make available such as in oceanic, remote areas outside the jet highways, or in developing countries where ground services are less available.

  8. Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures

    Science.gov (United States)

    Vijayakumaran, Vineeth

    Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol

  9. Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; SubbaRao; Harish, N.; Lokesha

    Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models...

  10. A new evolutionary system for evolving artificial neural networks.

    Science.gov (United States)

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.

  11. A neural network approach to burst detection.

    Science.gov (United States)

    Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J

    2002-01-01

    This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.

  12. PDMS Network Structure-Property Relationships: Influence of Molecular Architecture on Mechanical and Wetting Properties

    Science.gov (United States)

    Melillo, Matthew Joseph

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine-antifouling coatings to medical devices and absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into and leach out of PDMS networks is of critical importance for the design and use in another application - microfluidic devices. The growing use of PDMS in microfluidic devices raises the concern that some researchers may use this material without fully understanding all of its advantages, drawbacks, and intricacies. The primary goal of this Ph.D. dissertation is to elucidate PDMS network molecular structure to macroscopic property relationships and to demonstrate how molecular architecture can alter dynamic mechanical and wetting characteristics. We prepare PDMS materials by using vinyl/ tetrakis(dimethylsiloxy)silane (TDSS) and silanol/ tetraethylorthosilicate (TEOS) combinations of PDMS end-groups and crosslinkers as two model systems. Under constant curing conditions, we systematically study the effects of polymer molecular weight, loading of crosslinker, and end-group chemical functionality on the extent of gelation and the dynamic mechanical and water wetting properties of end-linked PDMS networks. The extent of the gelation reaction is determined using the Soxhlet extraction to quantify the amount of material that did and did not participate in the crosslinking reactions, termed the gel and sol fractions, respectively. We use the Miller-Macosko model in conjunction with the gel fraction and precise chemical composition (i.e., stoichiometric ratio and molecular weight) to determine the fractions of elastic and pendant material, the molecular weight between chemical crosslinks, and the average effective functionality of the crosslinker molecule. Based on dynamic mechanical testing, we find that the maximum storage moduli are achieved at optimal stoichiometric conditions in the vinyl

  13. A survey of system architecture requirements for health care-based wireless sensor networks.

    Science.gov (United States)

    Egbogah, Emeka E; Fapojuwo, Abraham O

    2011-01-01

    Wireless Sensor Networks (WSNs) have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs) that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera). However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera) to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC) protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted.

  14. A Survey of System Architecture Requirements for Health Care-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Abraham O. Fapojuwo

    2011-05-01

    Full Text Available Wireless Sensor Networks (WSNs have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera. However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted.

  15. Abnormal functional architecture of amygdala-centered networks in adolescent posttraumatic stress disorder.

    Science.gov (United States)

    Aghajani, Moji; Veer, Ilya M; van Hoof, Marie-José; Rombouts, Serge A R B; van der Wee, Nic J; Vermeiren, Robert R J M

    2016-03-01

    Posttraumatic stress disorder (PTSD) is a prevalent, debilitating, and difficult to treat psychiatric disorder. Very little is known of how PTSD affects neuroplasticity in the developing adolescent brain. Whereas multiple lines of research implicate amygdala-centered network dysfunction in the pathophysiology of adult PTSD, no study has yet examined the functional architecture of amygdala subregional networks in adolescent PTSD. Using intrinsic functional connectivity analysis, we investigated functional connectivity of the basolateral (BLA) and centromedial (CMA) amygdala in 19 sexually abused adolescents with PTSD relative to 23 matched controls. Additionally, we examined whether altered amygdala subregional connectivity coincides with abnormal grey matter volume of the amygdaloid complex. Our analysis revealed abnormal amygdalar connectivity and morphology in adolescent PTSD patients. More specifically, PTSD patients showed diminished right BLA connectivity with a cluster including dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices (p < 0.05, corrected). In contrast, PTSD patients showed increased left CMA connectivity with a cluster including the orbitofrontal and subcallosal cortices (p < 0.05, corrected). Critically, these connectivity changes coincided with diminished grey matter volume within BLA and CMA subnuclei (p < 0.05, corrected), with CMA connectivity shifts additionally relating to more severe symptoms of PTSD. These findings provide unique insights into how perturbations in major amygdalar circuits could hamper fear regulation and drive excessive acquisition and expression of fear in PTSD. As such, they represent an important step toward characterizing the neurocircuitry of adolescent PTSD, thereby informing the development of reliable biomarkers and potential therapeutic targets. © 2016 Wiley Periodicals, Inc.

  16. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network

    Directory of Open Access Journals (Sweden)

    Susel Fernandez

    2016-08-01

    Full Text Available Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors.

  17. An artificial neural network architecture for non-parametric visual odometry in wireless capsule endoscopy

    International Nuclear Information System (INIS)

    Dimas, George; Iakovidis, Dimitris K; Karargyris, Alexandros; Ciuti, Gastone; Koulaouzidis, Anastasios

    2017-01-01

    Wireless capsule endoscopy is a non-invasive screening procedure of the gastrointestinal (GI) tract performed with an ingestible capsule endoscope (CE) of the size of a large vitamin pill. Such endoscopes are equipped with a usually low-frame-rate color camera which enables the visualization of the GI lumen and the detection of pathologies. The localization of the commercially available CEs is performed in the 3D abdominal space using radio-frequency (RF) triangulation from external sensor arrays, in combination with transit time estimation. State-of-the-art approaches, such as magnetic localization, which have been experimentally proved more accurate than the RF approach, are still at an early stage. Recently, we have demonstrated that CE localization is feasible using solely visual cues and geometric models. However, such approaches depend on camera parameters, many of which are unknown. In this paper the authors propose a novel non-parametric visual odometry (VO) approach to CE localization based on a feed-forward neural network architecture. The effectiveness of this approach in comparison to state-of-the-art geometric VO approaches is validated using a robotic-assisted in vitro experimental setup. (paper)

  18. An artificial neural network architecture for non-parametric visual odometry in wireless capsule endoscopy

    Science.gov (United States)

    Dimas, George; Iakovidis, Dimitris K.; Karargyris, Alexandros; Ciuti, Gastone; Koulaouzidis, Anastasios

    2017-09-01

    Wireless capsule endoscopy is a non-invasive screening procedure of the gastrointestinal (GI) tract performed with an ingestible capsule endoscope (CE) of the size of a large vitamin pill. Such endoscopes are equipped with a usually low-frame-rate color camera which enables the visualization of the GI lumen and the detection of pathologies. The localization of the commercially available CEs is performed in the 3D abdominal space using radio-frequency (RF) triangulation from external sensor arrays, in combination with transit time estimation. State-of-the-art approaches, such as magnetic localization, which have been experimentally proved more accurate than the RF approach, are still at an early stage. Recently, we have demonstrated that CE localization is feasible using solely visual cues and geometric models. However, such approaches depend on camera parameters, many of which are unknown. In this paper the authors propose a novel non-parametric visual odometry (VO) approach to CE localization based on a feed-forward neural network architecture. The effectiveness of this approach in comparison to state-of-the-art geometric VO approaches is validated using a robotic-assisted in vitro experimental setup.

  19. ANN modelling of sediment concentration in the dynamic glacial environment of Gangotri in Himalaya.

    Science.gov (United States)

    Singh, Nandita; Chakrapani, G J

    2015-08-01

    The present study explores for the first time the possibility of modelling sediment concentration with artificial neural networks (ANNs) at Gangotri, the source of Bhagirathi River in the Himalaya. Discharge, rainfall and temperature have been considered as the main controlling factors of variations in sediment concentration in the dynamic glacial environment of Gangotri. Fourteen feed forward neural networks with error back propagation algorithm have been created, trained and tested for prediction of sediment concentration. Seven models (T1-T7) have been trained and tested in the non-updating mode whereas remaining seven models (T1a-T7a) have been trained in the updating mode. The non-updating mode refers to the scenario where antecedent time (previous time step) values are not used as input to the model. In case of the updating mode, antecedent time values are used as network inputs. The inputs applied in the models are either the variables mentioned above as individual factors (single input networks) or a combination of them (multi-input networks). The suitability of employing antecedent time-step values as network inputs has hence been checked by comparative analysis of model performance in the two modes. The simple feed forward network has been improvised with a series parallel non-linear autoregressive with exogenous input (NARX) architecture wherein true values of sediment concentration have been fed as input during training. In the glacial scenario of Gangotri, maximum sediment movement takes place during the melt period (May-October). Hence, daily data of discharge, rainfall, temperature and sediment concentration for five consecutive melt periods (May-October, 2000-2004) have been used for modelling. High Coefficient of determination values [0.77-0.88] have been obtained between observed and ANN-predicted values of sediment concentration. The study has brought out relationships between variables that are not reflected in normal statistical analysis. A

  20. Nuclear power plant status diagnostics using a neural network with dynamic node architecture

    International Nuclear Information System (INIS)

    Basu, A.

    1992-01-01

    This thesis is part of an ongoing project at Iowa State University to develop ANN based fault diagnostic systems to detect and classify operational transients at nuclear power plants. The project envisages the deployment of such an advisor at Iowa Electric Light and Power Company's Duane Arnold Energy Center nuclear power plant located at Palo, IA. This advisor is expected to make status diagnosis in real time, thus providing the operators with more time for corrective measures

  1. Prediction of hydrate formation temperature by both statistical models and artificial neural network approaches

    International Nuclear Information System (INIS)

    Zahedi, Gholamreza; Karami, Zohre; Yaghoobi, Hamed

    2009-01-01

    In this study, various estimation methods have been reviewed for hydrate formation temperature (HFT) and two procedures have been presented. In the first method, two general correlations have been proposed for HFT. One of the correlations has 11 parameters, and the second one has 18 parameters. In order to obtain constants in proposed equations, 203 experimental data points have been collected from literatures. The Engineering Equation Solver (EES) and Statistical Package for the Social Sciences (SPSS) soft wares have been employed for statistical analysis of the data. Accuracy of the obtained correlations also has been declared by comparison with experimental data and some recent common used correlations. In the second method, HFT is estimated by artificial neural network (ANN) approach. In this case, various architectures have been checked using 70% of experimental data for training of ANN. Among the various architectures multi layer perceptron (MLP) network with trainlm training algorithm was found as the best architecture. Comparing the obtained ANN model results with 30% of unseen data confirms ANN excellent estimation performance. It was found that ANN is more accurate than traditional methods and even our two proposed correlations for HFT estimation.

  2. SCinet Architecture: Featured at the International Conference for High Performance Computing,Networking, Storage and Analysis 2016

    Energy Technology Data Exchange (ETDEWEB)

    Lyonnais, Marc; Smith, Matt; Mace, Kate P.

    2017-02-06

    SCinet is the purpose-built network that operates during the International Conference for High Performance Computing,Networking, Storage and Analysis (Super Computing or SC). Created each year for the conference, SCinet brings to life a high-capacity network that supports applications and experiments that are a hallmark of the SC conference. The network links the convention center to research and commercial networks around the world. This resource serves as a platform for exhibitors to demonstrate the advanced computing resources of their home institutions and elsewhere by supporting a wide variety of applications. Volunteers from academia, government and industry work together to design and deliver the SCinet infrastructure. Industry vendors and carriers donate millions of dollars in equipment and services needed to build and support the local and wide area networks. Planning begins more than a year in advance of each SC conference and culminates in a high intensity installation in the days leading up to the conference. The SCinet architecture for SC16 illustrates a dramatic increase in participation from the vendor community, particularly those that focus on network equipment. Software-Defined Networking (SDN) and Data Center Networking (DCN) are present in nearly all aspects of the design.

  3. Mobility-Aware Modeling and Analysis of Dense Cellular Networks With $C$ -Plane/ $U$ -Plane Split Architecture

    KAUST Repository

    Ibrahim, Hazem

    2016-09-19

    The unrelenting increase in the population of mobile users and their traffic demands drive cellular network operators to densify their network infrastructure. Network densification shrinks the footprint of base stations (BSs) and reduces the number of users associated with each BS, leading to an improved spatial frequency reuse and spectral efficiency, and thus, higher network capacity. However, the densification gain comes at the expense of higher handover rates and network control overhead. Hence, user’s mobility can diminish or even nullifies the foreseen densification gain. In this context, splitting the control plane ( C -plane) and user plane ( U -plane) is proposed as a potential solution to harvest densification gain with reduced cost in terms of handover rate and network control overhead. In this paper, we use stochastic geometry to develop a tractable mobility-aware model for a two-tier downlink cellular network with ultra-dense small cells and C -plane/ U -plane split architecture. The developed model is then used to quantify the effect of mobility on the foreseen densification gain with and without C -plane/ U -plane split. To this end, we shed light on the handover problem in dense cellular environments, show scenarios where the network fails to support certain mobility profiles, and obtain network design insights.

  4. A Simple Network Architecture Accounts for Diverse Reward Time Responses in Primary Visual Cortex.

    Science.gov (United States)

    Huertas, Marco A; Hussain Shuler, Marshall G; Shouval, Harel Z

    2015-09-16

    Many actions performed by animals and humans depend on an ability to learn, estimate, and produce temporal intervals of behavioral relevance. Exemplifying such learning of cued expectancies is the observation of reward-timing activity in the primary visual cortex (V1) of rodents, wherein neural responses to visual cues come to predict the time of future reward as behaviorally experienced in the past. These reward-timing responses exhibit significant heterogeneity in at least three qualitatively distinct classes: sustained increase or sustained decrease in firing rate until the time of expected reward, and a class of cells that reach a peak in firing at the expected delay. We elaborate upon our existing model by including inhibitory and excitatory units while imposing simple connectivity rules to demonstrate what role these inhibitory elements and the simple architectures play in sculpting the response dynamics of the network. We find that simply adding inhibition is not sufficient for obtaining the different distinct response classes, and that a broad distribution of inhibitory projections is necessary for obtaining peak-type responses. Furthermore, although changes in connection strength that modulate the effects of inhibition onto excitatory units have a strong impact on the firing rate profile of these peaked responses, the network exhibits robustness in its overall ability to predict the expected time of reward. Finally, we demonstrate how the magnitude of expected reward can be encoded at the expected delay in the network and how peaked responses express this reward expectancy. Heterogeneity in single-neuron responses is a common feature of neuronal systems, although sometimes, in theoretical approaches, it is treated as a nuisance and seldom considered as conveying a different aspect of a signal. In this study, we focus on the heterogeneous responses in the primary visual cortex of rodents trained with a predictable delayed reward time. We describe under what

  5. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding.

    Science.gov (United States)

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.

  6. Modeling of policies for reduction of GHG emissions in energy sector using ANN: case study-Croatia (EU).

    Science.gov (United States)

    Bolanča, Tomislav; Strahovnik, Tomislav; Ukić, Šime; Stankov, Mirjana Novak; Rogošić, Marko

    2017-07-01

    This study describes the development of tool for testing different policies for reduction of greenhouse gas (GHG) emissions in energy sector using artificial neural networks (ANNs). The case study of Croatia was elaborated. Two different energy consumption scenarios were used as a base for calculations and predictions of GHG emissions: the business as usual (BAU) scenario and sustainable scenario. Both of them are based on predicted energy consumption using different growth rates; the growth rates within the second scenario resulted from the implementation of corresponding energy efficiency measures in final energy consumption and increasing share of renewable energy sources. Both ANN architecture and training methodology were optimized to produce network that was able to successfully describe the existing data and to achieve reliable prediction of emissions in a forward time sense. The BAU scenario was found to produce continuously increasing emissions of all GHGs. The sustainable scenario was found to decrease the GHG emission levels of all gases with respect to BAU. The observed decrease was attributed to the group of measures termed the reduction of final energy consumption through energy efficiency measures.

  7. Annäherung Approaching

    Directory of Open Access Journals (Sweden)

    Carola Hilmes

    2007-03-01

    Full Text Available Das von Stefan Moses zusammengestellte „Bilderbuch“ zeigt Fotos von Ilse Aichinger. Sie selbst kommt durch eine Reihe von Geschichten und Gedichten zu Wort. In diesen intimen Dialog werden auch die Leser/-innen einbezogen. Das ermöglicht Annäherung.This “Picture Book”, compiled by Stefan Moses, displays photographs of Ilse Aichinger. She is also given voice through a series of stories and poems. The reader is also drawn into this intimate dialogue, thus making it possible for image, text, and reader to converge.

  8. Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain

    Science.gov (United States)

    Barrett, Lisa Feldman; Satpute, Ajay

    2013-01-01

    Understanding how a human brain creates a human mind ultimately depends on mapping psychological categories and concepts to physical measurements of neural response. Although it has long been assumed that emotional, social, and cognitive phenomena are realized in the operations of separate brain regions or brain networks, we demonstrate that it is possible to understand the body of neuroimaging evidence using a framework that relies on domain general, distributed structure-function mappings. We review current research in affective and social neuroscience and argue that the emerging science of large-scale intrinsic brain networks provides a coherent framework for a domain-general functional architecture of the human brain. PMID:23352202

  9. Resource-aware system architecture model for implementation of quantum aided Byzantine agreement on quantum repeater networks

    Science.gov (United States)

    Taherkhani, Mohammand Amin; Navi, Keivan; Van Meter, Rodney

    2018-01-01

    Quantum aided Byzantine agreement is an important distributed quantum algorithm with unique features in comparison to classical deterministic and randomized algorithms, requiring only a constant expected number of rounds in addition to giving a higher level of security. In this paper, we analyze details of the high level multi-party algorithm, and propose elements of the design for the quantum architecture and circuits required at each node to run the algorithm on a quantum repeater network (QRN). Our optimization techniques have reduced the quantum circuit depth by 44% and the number of qubits in each node by 20% for a minimum five-node setup compared to the design based on the standard arithmetic circuits. These improvements lead to a quantum system architecture with 160 qubits per node, space-time product (an estimate of the required fidelity) {KQ}≈ 1.3× {10}5 per node and error threshold 1.1× {10}-6 for the total nodes in the network. The evaluation of the designed architecture shows that to execute the algorithm once on the minimum setup, we need to successfully distribute a total of 648 Bell pairs across the network, spread evenly between all pairs of nodes. This framework can be considered a starting point for establishing a road-map for light-weight demonstration of a distributed quantum application on QRNs.

  10. Comparison of Conventional and ANN Models for River Flow Forecasting

    Science.gov (United States)

    Jain, A.; Ganti, R.

    2011-12-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.

  11. Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy

    Directory of Open Access Journals (Sweden)

    Maytham S. Ahmed

    2016-09-01

    Full Text Available Demand response (DR program can shift peak time load to off-peak time, thereby reducing greenhouse gas emissions and allowing energy conservation. In this study, the home energy management scheduling controller of the residential DR strategy is proposed using the hybrid lightning search algorithm (LSA-based artificial neural network (ANN to predict the optimal ON/OFF status for home appliances. Consequently, the scheduled operation of several appliances is improved in terms of cost savings. In the proposed approach, a set of the most common residential appliances are modeled, and their activation is controlled by the hybrid LSA-ANN based home energy management scheduling controller. Four appliances, namely, air conditioner, water heater, refrigerator, and washing machine (WM, are developed by Matlab/Simulink according to customer preferences and priority of appliances. The ANN controller has to be tuned properly using suitable learning rate value and number of nodes in the hidden layers to schedule the appliances optimally. Given that finding proper ANN tuning parameters is difficult, the LSA optimization is hybridized with ANN to improve the ANN performances by selecting the optimum values of neurons in each hidden layer and learning rate. Therefore, the ON/OFF estimation accuracy by ANN can be improved. Results of the hybrid LSA-ANN are compared with those of hybrid particle swarm optimization (PSO based ANN to validate the developed algorithm. Results show that the hybrid LSA-ANN outperforms the hybrid PSO based ANN. The proposed scheduling algorithm can significantly reduce the peak-hour energy consumption during the DR event by up to 9.7138% considering four appliances per 7-h period.

  12. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, John Patrick [Iowa State Univ., Ames, IA (United States)

    1992-01-01

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  13. A graphical user interface for a method to infer kinetics and network architecture (MIKANA).

    Science.gov (United States)

    Mourão, Márcio A; Srividhya, Jeyaraman; McSharry, Patrick E; Crampin, Edmund J; Schnell, Santiago

    2011-01-01

    One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis-Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1).

  14. Do design rules facilitate or complicate architectural innovation in innovation alliance networks?

    NARCIS (Netherlands)

    Hofman, Erwin; Halman, Johannes I.M.; van Looy, Bart

    2016-01-01

    Architectural innovation is fundamental to the renewal of technological systems. However, it can be a real challenge to organize architectural innovation, all the more so when success hinges upon close collaboration with other firms that are responsible for different subsystems of the end product.

  15. Network contingencies in the relationship between design rules and architectural innovation performance

    NARCIS (Netherlands)

    Hofman, Erwin; Halman, Johannes; van Looy, Bart

    2016-01-01

    Architectural innovation is fundamental to the renewal of technological systems. However, it can be a real challenge to organize architectural innovation, all the more so when success hinges upon close collaboration with other firms that are responsible for different subsystems of the end product.

  16. ReNoC: A Network-on-Chip Architecture with Reconfigurable Topology

    DEFF Research Database (Denmark)

    Stensgaard, Mikkel Bystrup; Sparsø, Jens

    2008-01-01

    links and direct links between IP-blocks. The configurability is inserted as a layer between routers and links, and the architecture can therefore be used in combination with existing NoC routers, making it a general architecture. The topology is configured using energy-efficient topology switches based...

  17. The Salience Network and Its Functional Architecture in a Perceptual Decision: An Effective Connectivity Study.

    Science.gov (United States)

    Lamichhane, Bidhan; Dhamala, Mukesh

    2015-08-01

    The anterior insulae (INSs) are involved in accumulating sensory evidence in perceptual decision-making independent of the motor response, whereas the dorsal anterior cingulate cortex (dACC) is known to play a role in choosing appropriate behavioral responses. Recent evidence suggests that INSs and dACC are part of the salience network (SN), a key network known to be involved in decision-making and thought to be important for the coordination of behavioral responses. However, how these nodes in the SN contribute to the decision-making process from segregation of stimuli to the generation of an appropriate behavioral response remains unknown. In this study, the authors scanned 33 participants in functional magnetic resonance imaging and asked them to decide whether the presented pairs of audio (a beep of sound) and visual (a flash of light) stimuli were synchronous or asynchronous. Participants reported their perception with a button press. Stimuli were presented in block of eight pairs with a temporal lag (ΔT) between the first (audio) and the second (visual) stimulus in each pair. They used dynamic causal modeling (DCM) and the Bayesian model evidence technique to elucidate the functional architecture between the nodes of SN. Both the synchrony and the asynchrony perception resulted in strong activation in the SN. Most importantly, the DCM analyses demonstrated that the INSs were integrating as well as driving hubs in the SN. The INSs were found to a play an important role in the integration of sensory information; input to the SN is most likely through INSs. Furthermore, significant INSs to dACC intrinsic connectivity established by these task conditions help us conclude that INSs drive the dACC to guide the behavior of choosing the appropriate response. The authors therefore argue that the dACC and INS are part of a system involved in the decision-making process from perception to planning of a motor response, and that this observed functional mechanism might

  18. Solar radiation modelling using ANNs for different climates in China

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Yang, Liu

    2008-01-01

    Artificial neural networks (ANNs) were used to develop prediction models for daily global solar radiation using measured sunshine duration for 40 cities covering nine major thermal climatic zones and sub-zones in China. Coefficients of determination (R 2 ) for all the 40 cities and nine climatic zones/sub-zones are 0.82 or higher, indicating reasonably strong correlation between daily solar radiation and the corresponding sunshine hours. Mean bias error (MBE) varies from -3.3 MJ/m 2 in Ruoqiang (cold climates) to 2.19 MJ/m 2 in Anyang (cold climates). Root mean square error (RMSE) ranges from 1.4 MJ/m 2 in Altay (severe cold climates) to 4.01 MJ/m 2 in Ruoqiang. The three principal statistics (i.e., R 2 , MBE and RMSE) of the climatic zone/sub-zone ANN models are very close to the corresponding zone/sub-zone averages of the individual city ANN models, suggesting that climatic zone ANN models could be used to estimate global solar radiation for locations within the respective zones/sub-zones where only measured sunshine duration data are available. (author)

  19. [Anne Arold. Kontrastive Analyse...] / Paul Alvre

    Index Scriptorium Estoniae

    Alvre, Paul, 1921-2008

    2001-01-01

    Arvustus: Arold, Anne. Kontrastive analyse der Wortbildungsmuster im Deutschen und im Estnischen (am Beispiel der Aussehensadjektive). Tartu, 2000. (Dissertationes philologiae germanicae Universitatis Tartuensis)

  20. Statistical learning problem of artificial neural network to control roofing process

    Directory of Open Access Journals (Sweden)

    Lapidus Azariy

    2017-01-01

    Full Text Available Now software developed on the basis of artificial neural networks (ANN has been actively implemented in construction companies to support decision-making in organization and management of construction processes. ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy. Also designing of ANN architecture is related to learning problem known as “curse of dimensionality”. This problem is important for the study of construction process management because of the difficulty to get training data from construction sites. In previous studies the authors have designed a 4-layer feedforward ANN with a unit model of 12-5-4-1 to approximate estimation and prediction of roofing process. This paper presented the statistical learning side of created ANN with simple-error-minimization algorithm. The sample size to efficient training and the confidence interval of network outputs defined. In conclusion the authors predicted successful ANN learning in a large construction business company within a short space of time.

  1. An e-consent-based shared EHR system architecture for integrated healthcare networks.

    Science.gov (United States)

    Bergmann, Joachim; Bott, Oliver J; Pretschner, Dietrich P; Haux, Reinhold

    2007-01-01

    Virtual integration of distributed patient data promises advantages over a consolidated health record, but raises questions mainly about practicability and authorization concepts. Our work aims on specification and development of a virtual shared health record architecture using a patient-centred integration and authorization model. A literature survey summarizes considerations of current architectural approaches. Complemented by a methodical analysis in two regional settings, a formal architecture model was specified and implemented. Results presented in this paper are a survey of architectural approaches for shared health records and an architecture model for a virtual shared EHR, which combines a patient-centred integration policy with provider-oriented document management. An electronic consent system assures, that access to the shared record remains under control of the patient. A corresponding system prototype has been developed and is currently being introduced and evaluated in a regional setting. The proposed architecture is capable of partly replacing message-based communications. Operating highly available provider repositories for the virtual shared EHR requires advanced technology and probably means additional costs for care providers. Acceptance of the proposed architecture depends on transparently embedding document validation and digital signature into the work processes. The paradigm shift from paper-based messaging to a "pull model" needs further evaluation.

  2. Comparison of Communication Architectures and Network Topologies for Distributed Propulsion Controls (Preprint)

    Science.gov (United States)

    2013-05-01

    Interconnection ( OSI ) network model for the engine control application. Figure 1 summarizes the OSI network model, which is comprised by 7 layers [21]. In...59th International Instrumentation Symposium; http://www.isa.org Approved for public release; distribution unlimited. 7 Figure 1: OSI Network...21st International Conference on, pages 3–7. IEEE, 2011. [9] LAN Network Topologies. http://www.firewall.cx/networking-topics/general- networking/103

  3. SNAVA-A real-time multi-FPGA multi-model spiking neural network simulation architecture.

    Science.gov (United States)

    Sripad, Athul; Sanchez, Giovanny; Zapata, Mireya; Pirrone, Vito; Dorta, Taho; Cambria, Salvatore; Marti, Albert; Krishnamourthy, Karthikeyan; Madrenas, Jordi

    2018-01-01

    Spiking Neural Networks (SNN) for Versatile Applications (SNAVA) simulation platform is a scalable and programmable parallel architecture that supports real-time, large-scale, multi-model SNN computation. This parallel architecture is implemented in modern Field-Programmable Gate Arrays (FPGAs) devices to provide high performance execution and flexibility to support large-scale SNN models. Flexibility is defined in terms of programmability, which allows easy synapse and neuron implementation. This has been achieved by using a special-purpose Processing Elements (PEs) for computing SNNs, and analyzing and customizing the instruction set according to the processing needs to achieve maximum performance with minimum resources. The parallel architecture is interfaced with customized Graphical User Interfaces (GUIs) to configure the SNN's connectivity, to compile the neuron-synapse model and to monitor SNN's activity. Our contribution intends to provide a tool that allows to prototype SNNs faster than on CPU/GPU architectures but significantly cheaper than fabricating a customized neuromorphic chip. This could be potentially valuable to the computational neuroscience and neuromorphic engineering communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Artificial Neural Networks as an Architectural Design Tool-Generating New Detail Forms Based On the Roman Corinthian Order Capital

    Science.gov (United States)

    Radziszewski, Kacper

    2017-10-01

    The following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital. During the experiment, as an input training data set, five local geometry parameters combined has given the best results: Theta, Pi, Rho in spherical coordinate system based on the capital volume centroid, followed by Z value of the Cartesian coordinate system and a distance from vertical planes created based on the capital symmetry. Additionally during the experiment, artificial neural network hidden layers optimal count and structure was found, giving results of the error below 0.2% for the mentioned before input parameters. Once successfully trained artificial network, was able to mimic the details composition on any other geometry type given. Despite of calculating the transformed geometry locally and separately for each of the thousands of surface points, system could create visually attractive and diverse, complex patterns. Designed tool, based on the supervised learning method of machine learning, gives possibility of generating new architectural forms- free of the designer’s imagination bounds. Implementing the infinitely broad computational methods of machine learning, or Artificial Intelligence in general, not only could accelerate and simplify the design process, but give an opportunity to explore never seen before, unpredictable forms or everyday architectural practice solutions.

  5. Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN

    International Nuclear Information System (INIS)

    Peter, Josephine; Doloi, B.; Bhattacharyya, B.

    2011-01-01

    The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actual experimental observations.

  6. Modeling of methane emissions using artificial neural network approach

    Directory of Open Access Journals (Sweden)

    Stamenković Lidija J.

    2015-01-01

    Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007

  7. ANN based optimization of a solar assisted hybrid cooling system in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozgur, Arif; Yetik, Ozge; Arslan, Oguz [Mechanical Eng. Dept., Engineering Faculty, Dumlupinar University (Turkey)], email: maozgur@dpu.edu.tr, email: ozgeyetik@dpu.edu.tr, email: oarslan@dpu.edu.tr

    2011-07-01

    This study achieved optimization of a solar assisted hybrid cooling system with refrigerants such as R717, R141b, R134a and R123 using an artificial neural network (ANN) model based on average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and fluid types. ANN is a new tool; it works rapidly and can thus be a solution for design and optimization of complex power cycles. A unique flexible ANN algorithm was introduced to evaluate the solar ejector cooling systems because of the nonlinearity of neural networks. The conclusion was that the best COPs value obtained with the ANN is 1.35 and COPc is 3.03 when the average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and algorithm are respectively 674.72 W/m2, 17.9, 80, 15 and 13 degree celsius and LM with 14 neurons in single hidden layer, for R717.

  8. Gap Filling of Daily Sea Levels by Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Lyubka Pashova

    2013-06-01

    Full Text Available In the recent years, intelligent methods as artificial neural networks are successfully applied for data analysis from different fields of the geosciences. One of the encountered practical problems is the availability of gaps in the time series that prevent their comprehensive usage for the scientific and practical purposes. The article briefly describes two types of the artificial neural network (ANN architectures - Feed-Forward Backpropagation (FFBP and recurrent Echo state network (ESN. In some cases, the ANN can be used as an alternative on the traditional methods, to fill in missing values in the time series. We have been conducted several experiments to fill the missing values of daily sea levels spanning a 5-years period using both ANN architectures. A multiple linear regression for the same purpose has been also applied. The sea level data are derived from the records of the tide gauge Burgas, which is located on the western Black Sea coast. The achieved results have shown that the performance of ANN models is better than that of the classical one and they are very promising for the real-time interpolation of missing data in the time series.

  9. Exploring multiple feature combination strategies with a recurrent neural network architecture for off-line handwriting recognition

    Science.gov (United States)

    Mioulet, L.; Bideault, G.; Chatelain, C.; Paquet, T.; Brunessaux, S.

    2015-01-01

    The BLSTM-CTC is a novel recurrent neural network architecture that has outperformed previous state of the art algorithms in tasks such as speech recognition or handwriting recognition. It has the ability to process long term dependencies in temporal signals in order to label unsegmented data. This paper describes different ways of combining features using a BLSTM-CTC architecture. Not only do we explore the low level combination (feature space combination) but we also explore high level combination (decoding combination) and mid-level (internal system representation combination). The results are compared on the RIMES word database. Our results show that the low level combination works best, thanks to the powerful data modeling of the LSTM neurons.

  10. Mary Anne Chambers | IDRC - International Development Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    A former Member of Provincial Parliament, Mary Anne served as Minister of Training, Colleges and Universities, and Minister of Children and Youth Services in the Government of Ontario. She is also a former senior vice-president of Scotiabank. A graduate of the University of Toronto, Mary Anne has received honorary ...

  11. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.

    Science.gov (United States)

    Garro, Beatriz A; Vázquez, Roberto A

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.

  12. Prediction of heat transfer coefficients for forced convective boiling of N2-hydrocarbon mixtures at cryogenic conditions using artificial neural networks

    Science.gov (United States)

    Barroso-Maldonado, J. M.; Belman-Flores, J. M.; Ledesma, S.; Aceves, S. M.

    2018-06-01

    A key problem faced in the design of heat exchangers, especially for cryogenic applications, is the determination of convective heat transfer coefficients in two-phase flow such as condensation and boiling of non-azeotropic refrigerant mixtures. This paper proposes and evaluates three models for estimating the convective coefficient during boiling. These models are developed using computational intelligence techniques. The performance of the proposed models is evaluated using the mean relative error (mre), and compared to two existing models: the modified Granryd's correlation and the Silver-Bell-Ghaly method. The three proposed models are distinguished by their architecture. The first is based on directly measured parameters (DMP-ANN), the second is based on equivalent Reynolds and Prandtl numbers (eq-ANN), and the third on effective Reynolds and Prandtl numbers (eff-ANN). The results demonstrate that the proposed artificial neural network (ANN)-based approaches greatly outperform available methodologies. While Granryd's correlation predicts experimental data within a mean relative error mre = 44% and the S-B-G method produces mre = 42%, DMP-ANN has mre = 7.4% and eff-ANN has mre = 3.9%. Considering that eff-ANN has the lowest mean relative error (one tenth of previously available methodologies) and the broadest range of applicability, it is recommended for future calculations. Implementation is straightforward within a variety of platforms and the matrices with the ANN weights are given in the appendix for efficient programming.

  13. Assessment of ANN and SVM models for estimating normal direct irradiation (H_b)

    International Nuclear Information System (INIS)

    Santos, Cícero Manoel dos; Escobedo, João Francisco; Teramoto, Érico Tadao; Modenese Gorla da Silva, Silvia Helena

    2016-01-01

    Highlights: • The performance of SVM and ANN in estimating Normal Direct Irradiation (H_b) was evaluated. • 12 models using different input variables are developed (hourly and daily partitions). • The most relevant input variables for DNI are kt, H_s_c and insolation ratio (r′ = n/N). • Support Vector Machine (SVM) provides accurate estimates and outperforms the Artificial Neural Network (ANN). - Abstract: This study evaluates the estimation of hourly and daily normal direct irradiation (H_b) using machine learning techniques (ML): Artificial Neural Network (ANN) and Support Vector Machine (SVM). Time series of different meteorological variables measured over thirteen years in Botucatu were used for training and validating ANN and SVM. Seven different sets of input variables were tested and evaluated, which were chosen based on statistical models reported in the literature. Relative Mean Bias Error (rMBE), Relative Root Mean Square Error (rRMSE), determination coefficient (R"2) and “d” Willmott index were used to evaluate ANN and SVM models. When compared to statistical models which use the same set of input variables (R"2 between 0.22 and 0.78), ANN and SVM show higher values of R"2 (hourly models between 0.52 and 0.88; daily models between 0.42 and 0.91). Considering the input variables, atmospheric transmissivity of global radiation (kt), integrated solar constant (H_s_c) and insolation ratio (n/N, n is sunshine duration and N is photoperiod) were the most relevant in ANN and SVM models. The rMBE and rRMSE values in the two time partitions of SVM models are lower than those obtained with ANN. Hourly ANN and SVM models have higher rRMSE values than daily models. Optimal performance with hourly models was obtained with ANN4"h (rMBE = 12.24%, rRMSE = 23.99% and “d” = 0.96) and SVM4"h (rMBE = 1.75%, rRMSE = 20.10% and “d” = 0.96). Optimal performance with daily models was obtained with ANN2"d (rMBE = −3.09%, rRMSE = 18.95% and “d” = 0

  14. Selection of an optimal neural network architecture for computer-aided detection of microcalcifications - Comparison of automated optimization techniques

    International Nuclear Information System (INIS)

    Gurcan, Metin N.; Sahiner, Berkman; Chan Heangping; Hadjiiski, Lubomir; Petrick, Nicholas

    2001-01-01

    Many computer-aided diagnosis (CAD) systems use neural networks (NNs) for either detection or classification of abnormalities. Currently, most NNs are 'optimized' by manual search in a very limited parameter space. In this work, we evaluated the use of automated optimization methods for selecting an optimal convolution neural network (CNN) architecture. Three automated methods, the steepest descent (SD), the simulated annealing (SA), and the genetic algorithm (GA), were compared. We used as an example the CNN that classifies true and false microcalcifications detected on digitized mammograms by a prescreening algorithm. Four parameters of the CNN architecture were considered for optimization, the numbers of node groups and the filter kernel sizes in the first and second hidden layers, resulting in a search space of 432 possible architectures. The area A z under the receiver operating characteristic (ROC) curve was used to design a cost function. The SA experiments were conducted with four different annealing schedules. Three different parent selection methods were compared for the GA experiments. An available data set was split into two groups with approximately equal number of samples. By using the two groups alternately for training and testing, two different cost surfaces were evaluated. For the first cost surface, the SD method was trapped in a local minimum 91% (392/432) of the time. The SA using the Boltzman schedule selected the best architecture after evaluating, on average, 167 architectures. The GA achieved its best performance with linearly scaled roulette-wheel parent selection; however, it evaluated 391 different architectures, on average, to find the best one. The second cost surface contained no local minimum. For this surface, a simple SD algorithm could quickly find the global minimum, but the SA with the very fast reannealing schedule was still the most efficient. The same SA scheme, however, was trapped in a local minimum on the first cost

  15. Robust artificial neural network for reliability and sensitivity analyses of complex non-linear systems.

    Science.gov (United States)

    Oparaji, Uchenna; Sheu, Rong-Jiun; Bankhead, Mark; Austin, Jonathan; Patelli, Edoardo

    2017-12-01

    Artificial Neural Networks (ANNs) are commonly used in place of expensive models to reduce the computational burden required for uncertainty quantification, reliability and sensitivity analyses. ANN with selected architecture is trained with the back-propagation algorithm from few data representatives of the input/output relationship of the underlying model of interest. However, different performing ANNs might be obtained with the same training data as a result of the random initialization of the weight parameters in each of the network, leading to an uncertainty in selecting the best performing ANN. On the other hand, using cross-validation to select the best performing ANN based on the ANN with the highest R 2 value can lead to biassing in the prediction. This is as a result of the fact that the use of R 2 cannot determine if the prediction made by ANN is biased. Additionally, R 2 does not indicate if a model is adequate, as it is possible to have a low R 2 for a good model and a high R 2 for a bad model. Hence, in this paper, we propose an approach to improve the robustness of a prediction made by ANN. The approach is based on a systematic combination of identical trained ANNs, by coupling the Bayesian framework and model averaging. Additionally, the uncertainties of the robust prediction derived from the approach are quantified in terms of confidence intervals. To demonstrate the applicability of the proposed approach, two synthetic numerical examples are presented. Finally, the proposed approach is used to perform a reliability and sensitivity analyses on a process simulation model of a UK nuclear effluent treatment plant developed by National Nuclear Laboratory (NNL) and treated in this study as a black-box employing a set of training data as a test case. This model has been extensively validated against plant and experimental data and used to support the UK effluent discharge strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Intelligent MRTD testing for thermal imaging system using ANN

    Science.gov (United States)

    Sun, Junyue; Ma, Dongmei

    2006-01-01

    The Minimum Resolvable Temperature Difference (MRTD) is the most widely accepted figure for describing the performance of a thermal imaging system. Many models have been proposed to predict it. The MRTD testing is a psychophysical task, for which biases are unavoidable. It requires laboratory conditions such as normal air condition and a constant temperature. It also needs expensive measuring equipments and takes a considerable period of time. Especially when measuring imagers of the same type, the test is time consuming. So an automated and intelligent measurement method should be discussed. This paper adopts the concept of automated MRTD testing using boundary contour system and fuzzy ARTMAP, but uses different methods. It describes an Automated MRTD Testing procedure basing on Back-Propagation Network. Firstly, we use frame grabber to capture the 4-bar target image data. Then according to image gray scale, we segment the image to get 4-bar place and extract feature vector representing the image characteristic and human detection ability. These feature sets, along with known target visibility, are used to train the ANN (Artificial Neural Networks). Actually it is a nonlinear classification (of input dimensions) of the image series using ANN. Our task is to justify if image is resolvable or uncertainty. Then the trained ANN will emulate observer performance in determining MRTD. This method can reduce the uncertainties between observers and long time dependent factors by standardization. This paper will introduce the feature extraction algorithm, demonstrate the feasibility of the whole process and give the accuracy of MRTD measurement.

  17. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    Science.gov (United States)

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.

    2016-09-01

    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  18. CogWnet: A Resource Management Architecture for Cognitive Wireless Networks

    KAUST Repository

    Alqerm, Ismail

    2013-07-01

    With the increasing adoption of wireless communication technologies, there is a need to improve management of existing radio resources. Cognitive radio is a promising technology to improve the utilization of wireless spectrum. Its operating principle is based on building an integrated hardware and software architecture that configures the radio to meet application requirements within the constraints of spectrum policy regulations. However, such an architecture must be able to cope with radio environment heterogeneity. In this paper, we propose a cognitive resource management architecture, called CogWnet, that allocates channels, re-configures radio transmission parameters to meet QoS requirements, ensures reliability, and mitigates interference. The architecture consists of three main layers: Communication Layer, which includes generic interfaces to facilitate the communication between the cognitive architecture and TCP/IP stack layers; Decision-Making Layer, which classifies the stack layers input parameters and runs decision-making optimization algorithms to output optimal transmission parameters; and Policy Layer to enforce policy regulations on the selected part of the spectrum. The efficiency of CogWnet is demonstrated through a testbed implementation and evaluation.

  19. Prediction of scour below submerged pipeline crossing a river using ANN.

    Science.gov (United States)

    Azamathulla, H M; Zakaria, Nor Azazi

    2011-01-01

    The process involved in the local scour below pipelines is so complex that it makes it difficult to establish a general empirical model to provide accurate estimation for scour. This paper describes the use of artificial neural networks (ANN) to estimate the pipeline scour depth. The data sets of laboratory measurements were collected from published works and used to train the network or evolve the program. The developed networks were validated by using the observations that were not involved in training. The performance of ANN was found to be more effective when compared with the results of regression equations in predicting the scour depth around pipelines.

  20. Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce.

    Science.gov (United States)

    Lamara, Mebarek; Raherison, Elie; Lenz, Patrick; Beaulieu, Jean; Bousquet, Jean; MacKay, John

    2016-04-01

    Association studies are widely utilized to analyze complex traits but their ability to disclose genetic architectures is often limited by statistical constraints, and functional insights are usually minimal in nonmodel organisms like forest trees. We developed an approach to integrate association mapping results with co-expression networks. We tested single nucleotide polymorphisms (SNPs) in 2652 candidate genes for statistical associations with wood density, stiffness, microfibril angle and ring width in a population of 1694 white spruce trees (Picea glauca). Associations mapping identified 229-292 genes per wood trait using a statistical significance level of P wood associated genes and several known MYB and NAC regulators were identified as network hubs. The network revealed a link between the gene PgNAC8, wood stiffness and microfibril angle, as well as considerable within-season variation for both genetic control of wood traits and gene expression. Trait associations were distributed throughout the network suggesting complex interactions and pleiotropic effects. Our findings indicate that integration of association mapping and co-expression networks enhances our understanding of complex wood traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.