WorldWideScience

Sample records for network analysis revealed

  1. Mathematical Analysis of Biomolecular Network Reveals Connections Between Diseases

    Science.gov (United States)

    Wang, Guanyu

    2012-02-01

    Connections between cancer and metabolic diseases may consist in the complex network of interactions among a common set of biomolecules. By applying singularity and bifurcation analysis, the phenotypes constrained by the AKT signaling pathway are identified and mapped onto the parameter space, which include cancer and certain metabolic diseases. By considering physiologic properties (sensitivity, robustness and adaptivity) the AKT pathway must possess in order to efficiently sense growth factors and nutrients, the region of normal responses is located. The analysis illuminates the parameter space and reveals system-level mechanisms in regulating biological functions (cell growth, survival, proliferation and metabolism) and how their deregulation may lead to the development of diseases. The analytical expressions summarize the synergistic interactions among many molecules, which provides valuable insights into therapeutic interventions.

  2. Network analysis reveals multiscale controls on streamwater chemistry

    Science.gov (United States)

    Kevin J. McGuire; Christian E. Torgersen; Gene E. Likens; Donald C. Buso; Winsor H. Lowe; Scott W. Bailey

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in...

  3. Dependency Network Analysis (DEPNA) Reveals Context Related Influence of Brain Network Nodes.

    Science.gov (United States)

    Jacob, Yael; Winetraub, Yonatan; Raz, Gal; Ben-Simon, Eti; Okon-Singer, Hadas; Rosenberg-Katz, Keren; Hendler, Talma; Ben-Jacob, Eshel

    2016-06-07

    Communication between and within brain regions is essential for information processing within functional networks. The current methods to determine the influence of one region on another are either based on temporal resolution, or require a predefined model for the connectivity direction. However these requirements are not always achieved, especially in fMRI studies, which have poor temporal resolution. We thus propose a new graph theory approach that focuses on the correlation influence between selected brain regions, entitled Dependency Network Analysis (DEPNA). Partial correlations are used to quantify the level of influence of each node during task performance. As a proof of concept, we conducted the DEPNA on simulated datasets and on two empirical motor and working memory fMRI tasks. The simulations revealed that the DEPNA correctly captures the network's hierarchy of influence. Applying DEPNA to the functional tasks reveals the dynamics between specific nodes as would be expected from prior knowledge. To conclude, we demonstrate that DEPNA can capture the most influencing nodes in the network, as they emerge during specific cognitive processes. This ability opens a new horizon for example in delineating critical nodes for specific clinical interventions.

  4. Representational Similarity Analysis Reveals Heterogeneous Networks Supporting Speech Motor Control

    DEFF Research Database (Denmark)

    Zheng, Zane; Cusack, Rhodri; Johnsrude, Ingrid

    The everyday act of speaking involves the complex processes of speech motor control. One important feature of such control is regulation of articulation when auditory concomitants of speech do not correspond to the intended motor gesture. While theoretical accounts of speech monitoring posit...... is supported by a complex neural network that is involved in linguistic, motoric and sensory processing. With the aid of novel real-time acoustic analyses and representational similarity analyses of fMRI signals, our data show functionally differentiated networks underlying auditory feedback control of speech....... multiple functional components required for detection of errors in speech planning (e.g., Levelt, 1983), neuroimaging studies generally indicate either single brain regions sensitive to speech production errors, or small, discrete networks. Here we demonstrate that the complex system controlling speech...

  5. Heart morphogenesis gene regulatory networks revealed by temporal expression analysis.

    Science.gov (United States)

    Hill, Jonathon T; Demarest, Bradley; Gorsi, Bushra; Smith, Megan; Yost, H Joseph

    2017-10-01

    During embryogenesis the heart forms as a linear tube that then undergoes multiple simultaneous morphogenetic events to obtain its mature shape. To understand the gene regulatory networks (GRNs) driving this phase of heart development, during which many congenital heart disease malformations likely arise, we conducted an RNA-seq timecourse in zebrafish from 30 hpf to 72 hpf and identified 5861 genes with altered expression. We clustered the genes by temporal expression pattern, identified transcription factor binding motifs enriched in each cluster, and generated a model GRN for the major gene batteries in heart morphogenesis. This approach predicted hundreds of regulatory interactions and found batteries enriched in specific cell and tissue types, indicating that the approach can be used to narrow the search for novel genetic markers and regulatory interactions. Subsequent analyses confirmed the GRN using two mutants, Tbx5 and nkx2-5, and identified sets of duplicated zebrafish genes that do not show temporal subfunctionalization. This dataset provides an essential resource for future studies on the genetic/epigenetic pathways implicated in congenital heart defects and the mechanisms of cardiac transcriptional regulation. © 2017. Published by The Company of Biologists Ltd.

  6. Social Network Analysis: Applied Tool to Enhance Effective Collaboration between Child Protection Organisations by Revealing and Strengthening Work Relationships

    National Research Council Canada - National Science Library

    Beáta Dávid

    2013-01-01

    .... The qualitative approach was complemented by social network analysis. Revealing the mechanism based on the actors' perception on how the child protection network operates, we identifi ed and named the strengths and weaknesses of its structure...

  7. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    Directory of Open Access Journals (Sweden)

    Lingling Zhang

    Full Text Available Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  8. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics.

    Science.gov (United States)

    Tan, Shangjin; Zhou, Jin; Zhu, Xiaoshan; Yu, Shichen; Zhan, Wugen; Wang, Bo; Cai, Zhonghua

    2015-02-01

    Algal blooms are a worldwide phenomenon and the biological interactions that underlie their regulation are only just beginning to be understood. It is established that algal microorganisms associate with many other ubiquitous, oceanic organisms, but the interactions that lead to the dynamics of bloom formation are currently unknown. To address this gap, we used network approaches to investigate the association patterns among microeukaryotes and bacterioplankton in response to a natural Scrippsiella trochoidea bloom. This is the first study to apply network approaches to bloom dynamics. To this end, terminal restriction fragment (T-RF) length polymorphism analysis showed dramatic changes in community compositions of microeukaryotes and bacterioplankton over the blooming period. A variance ratio test revealed significant positive overall associations both within and between microeukaryotic and bacterioplankton communities. An association network generated from significant correlations between T-RFs revealed that S. trochoidea had few connections to other microeukaryotes and bacterioplankton and was placed on the edge. This lack of connectivity allowed for the S. trochoidea sub-network to break off from the overall network. These results allowed us to propose a conceptual model for explaining how changes in microbial associations regulate the dynamics of an algal bloom. In addition, key T-RFs were screened by principal components analysis, correlation coefficients, and network analysis. Dominant T-RFs were then identified through 18S and 16S rRNA gene clone libraries. Results showed that microeukaryotes clustered predominantly with Dinophyceae and Perkinsea while the majority of bacterioplankton identified were Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. The ecologi-cal roles of both were discussed in the context of these findings. © 2014 Phycological Society of America.

  9. Network Analysis of a Comprehensive Knowledge Repository Reveals a Dual Role for Ceramide in Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Satoshi Mizuno

    Full Text Available Alzheimer's disease (AD is the most common cause of senile dementia. Many inflammatory factors such as amyloid-β and pro-inflammatory cytokines are known to contribute to the inflammatory response in the AD brain. Sphingolipids are widely known to have roles in the pathogenesis of inflammatory diseases, where the precise roles for sphingolipids in inflammation-associated pathogenesis of AD are not well understood. Here we performed a network analysis to clarify the importance of sphingolipids and to model relationships among inflammatory factors and sphingolipids in AD. In this study, we have updated sphingolipid signaling and metabolic cascades in a map of AD signaling networks that we named "AlzPathway," a comprehensive knowledge repository of signaling pathways in AD. Our network analysis of the updated AlzPathway indicates that the pathways related to ceramide are one of the primary pathways and that ceramide is one of the important players in the pathogenesis of AD. The results of our analysis suggest the following two prospects about inflammation in AD: (1 ceramide could play important roles in both inflammatory and anti-inflammatory pathways of AD, and (2 several factors such as Sphingomyelinase and Siglec-11 may be associated with ceramide related inflammation and anti-inflammation pathways in AD. In this study, network analysis of comprehensive knowledge repository reveals a dual role for ceramide in AD. This result provides a clue to clarify sphingolipids related inflammatory and anti-inflammatory pathways in AD.

  10. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus

    Science.gov (United States)

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S.

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites. PMID:27588023

  11. Differential network analysis reveals evolutionary complexity in secondary metabolism of Rauvolfia serpentina over Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Shivalika Pathania

    2016-08-01

    Full Text Available Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Towards these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These mechanisms may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of Rauvolfia serpentina, and key genes that contribute towards diversification of specific metabolites.

  12. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    Science.gov (United States)

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis.

    Science.gov (United States)

    López-Barroso, Diana; Ripollés, Pablo; Marco-Pallarés, Josep; Mohammadi, Bahram; Münte, Thomas F; Bachoud-Lévi, Anne-Catherine; Rodriguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2015-04-15

    Although neuroimaging studies using standard subtraction-based analysis from functional magnetic resonance imaging (fMRI) have suggested that frontal and temporal regions are involved in word learning from fluent speech, the possible contribution of different brain networks during this type of learning is still largely unknown. Indeed, univariate fMRI analyses cannot identify the full extent of distributed networks that are engaged by a complex task such as word learning. Here we used Independent Component Analysis (ICA) to characterize the different brain networks subserving word learning from an artificial language speech stream. Results were replicated in a second cohort of participants with a different linguistic background. Four spatially independent networks were associated with the task in both cohorts: (i) a dorsal Auditory-Premotor network; (ii) a dorsal Sensory-Motor network; (iii) a dorsal Fronto-Parietal network; and (iv) a ventral Fronto-Temporal network. The level of engagement of these networks varied through the learning period with only the dorsal Auditory-Premotor network being engaged across all blocks. In addition, the connectivity strength of this network in the second block of the learning phase correlated with the individual variability in word learning performance. These findings suggest that: (i) word learning relies on segregated connectivity patterns involving dorsal and ventral networks; and (ii) specifically, the dorsal auditory-premotor network connectivity strength is directly correlated with word learning performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Network analysis reveals a causal role of mitochondrial gene activity in atherosclerotic lesion formation.

    Science.gov (United States)

    Vilne, Baiba; Skogsberg, Josefin; Foroughi Asl, Hassan; Talukdar, Husain Ahammad; Kessler, Thorsten; Björkegren, Johan L M; Schunkert, Heribert

    2017-12-01

    Mitochondrial damage and augmented production of reactive oxygen species (ROS) may represent an intermediate step by which hypercholesterolemia exacerbates atherosclerotic lesion formation. To test this hypothesis, in mice with severe but genetically reversible hypercholesterolemia (i.e. the so called Reversa mouse model), we performed time-resolved analyses of mitochondrial transcriptome in the aortic arch employing a systems-level network approach. During hypercholesterolemia, we observed a massive down-regulation (>28%) of mitochondrial genes, specifically at the time of rapid atherosclerotic lesion expansion and foam cell formation, i.e. between 30 and 40 weeks of age. Both phenomena - down-regulation of mitochondrial genes and lesion expansion - were largely reversible by genetically lowering plasma cholesterol (by >80%, from 427 to 54 ± 31 mg/L) at 30 weeks. Co-expression network analysis revealed that both mitochondrial signature genes were highly connected in two modules, negatively correlating with lesion size and supported as causal for coronary artery disease (CAD) in humans, as expression-associated single nucleotide polymorphisms (eSNPs) representing their genes overlapped markedly with established disease risk loci. Within these modules, we identified the transcription factor estrogen related receptor (ERR)-α and its co-factors PGC1-α and -β, i.e. two members of the peroxisome proliferator-activated receptor γ co-activator 1 family of transcription regulators, as key regulatory genes. Together, these factors are known as major orchestrators of mitochondrial biogenesis and antioxidant responses. Using a network approach, we demonstrate how hypercholesterolemia could hamper mitochondrial activity during atherosclerosis progression and pinpoint potential therapeutic targets to counteract these processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    Science.gov (United States)

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production.

  16. Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance

    NARCIS (Netherlands)

    Lee, Sunjae; Zhang, Cheng; Kilicarslan, Murat; Piening, Brian D.; Bjornson, Elias; Hallstrom, Bjorn M.; Groen, Albert K.; Ferrannini, Ele; Laakso, Markku; Snyder, Michael; Bluher, Matthias; Uhlen, Mathias; Nielsen, Jens; Smith, Ulf; Serlie, Mireille J.; Boren, Jan; Mardinoglu, Adil

    2016-01-01

    To investigate the biological processes that are altered in obese subjects, we generated cell-specific integrated networks (INs) by merging genome-scale metabolic, transcriptional regulatory and protein-protein interaction networks. We performed genome-wide transcriptomics analysis to determine the

  17. Network analysis of ChIP-Seq data reveals key genes in prostate cancer.

    Science.gov (United States)

    Zhang, Yu; Huang, Zhen; Zhu, Zhiqiang; Liu, Jianwei; Zheng, Xin; Zhang, Yuhai

    2014-09-03

    Prostate cancer (PC) is the second most common cancer among men in the United States, and it imposes a considerable threat to human health. A deep understanding of its underlying molecular mechanisms is the premise for developing effective targeted therapies. Recently, deep transcriptional sequencing has been used as an effective genomic assay to obtain insights into diseases and may be helpful in the study of PC. In present study, ChIP-Seq data for PC and normal samples were compared, and differential peaks identified, based upon fold changes (with P-values calculated with t-tests). Annotations of these peaks were performed. Protein-protein interaction (PPI) network analysis was performed with BioGRID and constructed with Cytoscape, following which the highly connected genes were screened. We obtained a total of 5,570 differential peaks, including 3,726 differentially enriched peaks in tumor samples and 1,844 differentially enriched peaks in normal samples. There were eight significant regions of the peaks. The intergenic region possessed the highest score (51%), followed by intronic (31%) and exonic (11%) regions. The analysis revealed the top 35 highly connected genes, which comprised 33 differential genes (such as YWHAQ, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein and θ polypeptide) from ChIP-Seq data and 2 differential genes retrieved from the PPI network: UBA52 (ubiquitin A-52 residue ribosomal protein fusion product (1) and SUMO2 (SMT3 suppressor of mif two 3 homolog (2) . Our findings regarding potential PC-related genes increase the understanding of PC and provides direction for future research.

  18. Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae)

    National Research Council Canada - National Science Library

    Hans Jacquemyn; Vincent Merckx; Rein Brys; Daniel Tyteca; Bruno P. A. Cammue; Olivier Honnay; Bart Lievens

    2011-01-01

    ... of the mycorrhizal specificity of orchids. Here, we used a network analysis approach to investigate orchid mycorrhizal associations in 16 species of the genus Orchis sampled across 11 different regions in Europe...

  19. Structural network topology revealed by white matter tractography in cannabis users: a graph theoretical analysis.

    Science.gov (United States)

    Kim, Dae-Jin; Skosnik, Patrick D; Cheng, Hu; Pruce, Ben J; Brumbaugh, Margaret S; Vollmer, Jennifer M; Hetrick, William P; O'Donnell, Brian F; Sporns, Olaf; Puce, Aina; Newman, Sharlene D

    2011-01-01

    Endocannabinoid receptors modulate synaptic plasticity in the brain and may therefore impact cortical connectivity not only during development but also in response to substance abuse in later life. Such alterations may not be evident in volumetric measures utilized in brain imaging, but could affect the local and global organization of brain networks. To test this hypothesis, we used a novel computational approach to estimate network measures of structural brain connectivity derived from diffusion tensor imaging (DTI) and white matter tractography. Twelve adult cannabis (CB) users and 13 healthy subjects were evaluated using a graph theoretic analysis of both global and local brain network properties. Structural brain networks in both CB subjects and controls exhibited robust small-world network attributes in both groups. However, CB subjects showed significantly decreased global network efficiency and significantly increased clustering coefficients (degree to which nodes tend to cluster around individual nodes). CB subjects also exhibited altered patterns of local network organization in the cingulate region. Among all subjects, schizotypal and impulsive personality characteristics correlated with global efficiency but not with the clustering coefficient. Our data indicate that structural brain networks in CB subjects are less efficiently integrated and exhibit altered regional connectivity. These differences in network properties may reflect physiological processes secondary to substance abuse-induced synaptic plasticity, or differences in brain organization that increase vulnerability to substance use.

  20. Brain connectivity in late-life depression and aging revealed by network analysis.

    Science.gov (United States)

    Charlton, Rebecca A; Leow, Alex; GadElkarim, Johnson; Zhang, Aifeng; Ajilore, Olusola; Yang, Shaolin; Lamar, Melissa; Kumar, Anand

    2015-06-01

    To use novel methods to examine age associations across an integrated brain network in healthy older adults (HOA) and individuals with late-life depression (LLD). Graph theory metrics describe the organizational configuration of both the global network and specified brain regions. Cross-sectional data were acquired. Graph theory was used to explore diffusion tensor imaging-derived white matter networks. Forty-eight HOA and 28 adults with LLD were recruited from the community. Global and local metrics in prefrontal, cingulate, and temporal regions were calculated. Group differences and associations with age were explored. Group differences were noted in local metrics of the right prefrontal and temporal regions, but no significant differences were observed on global metrics. Local (not global) metrics were associated with age differently across groups. For HOA, local metrics across all regions correlated with age, whereas in adults with LLD, correlations were only observed within temporal regions. In keeping with hypothesized regions impacted by LLD, stronger hubs in right temporal regions were observed among HOA, whereas LLD individuals were characterized by robust hubs in frontal regions. We demonstrate widespread age-related changes in local network properties among HOA with different and more restricted local changes in LLD. Although a preliminary analysis, different patterns of correlations in local networks coupled with equivalent global metrics may reflect altered local structural brain networks in patients with LLD. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Network-based analysis reveals functional connectivity related to internet addiction tendency

    Directory of Open Access Journals (Sweden)

    Tanya eWen

    2016-02-01

    Full Text Available IntroductionPreoccupation and compulsive use of the internet can have negative psychological effects, such that it is increasingly being recognized as a mental disorder. The present study employed network-based statistics to explore how whole-brain functional connections at rest is related to the extent of individual’s level of internet addiction, indexed by a self-rated questionnaire. We identified two topologically significant networks, one with connections that are positively correlated with internet addiction tendency, and one with connections negatively correlated with internet addiction tendency. The two networks are interconnected mostly at frontal regions, which might reflect alterations in the frontal region for different aspects of cognitive control (i.e., for control of internet usage and gaming skills. Next, we categorized the brain into several large regional subgroupings, and found that the majority of proportions of connections in the two networks correspond to the cerebellar model of addiction which encompasses the four-circuit model. Lastly, we observed that the brain regions with the most inter-regional connections associated with internet addiction tendency replicate those often seen in addiction literature, and is corroborated by our meta-analysis of internet addiction studies. This research provides a better understanding of large-scale networks involved in internet addiction tendency and shows that pre-clinical levels of internet addiction are associated with similar regions and connections as clinical cases of addiction.

  2. Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins

    Science.gov (United States)

    Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team

    The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  3. Altered white matter connectivity and network organization in polymicrogyria revealed by individual gyral topology-based analysis.

    Science.gov (United States)

    Im, Kiho; Paldino, Michael J; Poduri, Annapurna; Sporns, Olaf; Grant, P Ellen

    2014-02-01

    Polymicrogyria (PMG) is a cortical malformation characterized by multiple small gyri and altered cortical lamination, which may be associated with disrupted white matter connectivity. However, little is known about the topological patterns of white matter networks in PMG. We examined structural connectivity and network topology using individual primary gyral pattern-based nodes in PMG patients, overcoming the limitations of an atlas-based approach. Structural networks were constructed from structural and diffusion magnetic resonance images in 25 typically developing and 14 PMG subjects. The connectivity analysis for different fiber groups divided based on gyral topology revealed severely reduced connectivity between neighboring primary gyri (short U-fibers) in PMG, which was highly correlated with the regional involvement and extent of abnormal gyral folding. The patients also showed significantly reduced connectivity between distant gyri (long association fibers) and between the two cortical hemispheres. In relation to these results, gyral node-based graph theoretical analysis revealed significantly altered topological organization of the network (lower clustering and higher modularity) and disrupted network hub architecture in cortical association areas involved in cognitive and language functions in PMG patients. Furthermore, the network segregation in PMG patients decreased with the extent of PMG and the degree of language impairment. Our approach provides the first detailed findings and interpretations on altered cortical network topology in PMG related to abnormal cortical structure and brain function, and shows the potential for an individualized method to characterize network properties and alterations in connections that are associated with malformations of cortical development. © 2013 Elsevier Inc. All rights reserved.

  4. Transcriptional Network Analysis Reveals Drought Resistance Mechanisms of AP2/ERF Transgenic Rice

    Directory of Open Access Journals (Sweden)

    Hongryul Ahn

    2017-06-01

    Full Text Available This study was designed to investigate at the molecular level how a transgenic version of rice “Nipponbare” obtained a drought-resistant phenotype. Using multi-omics sequencing data, we compared wild-type rice (WT and a transgenic version (erf71 that had obtained a drought-resistant phenotype by overexpressing OsERF71, a member of the AP2/ERF transcription factor (TF family. A comprehensive bioinformatics analysis pipeline, including TF networks and a cascade tree, was developed for the analysis of multi-omics data. The results of the analysis showed that the presence of OsERF71 at the source of the network controlled global gene expression levels in a specific manner to make erf71 survive longer than WT. Our analysis of the time-series transcriptome data suggests that erf71 diverted more energy to survival-critical mechanisms related to translation, oxidative response, and DNA replication, while further suppressing energy-consuming mechanisms, such as photosynthesis. To support this hypothesis further, we measured the net photosynthesis level under physiological conditions, which confirmed the further suppression of photosynthesis in erf71. In summary, our work presents a comprehensive snapshot of transcriptional modification in transgenic rice and shows how this induced the plants to acquire a drought-resistant phenotype.

  5. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    Directory of Open Access Journals (Sweden)

    Henry D Priest

    Full Text Available Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  6. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    Directory of Open Access Journals (Sweden)

    Anna Bauer-Mehren

    Full Text Available BACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and

  7. Gene-Disease Network Analysis Reveals Functional Modules in Mendelian, Complex and Environmental Diseases

    Science.gov (United States)

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A.; Sanz, Ferran; Furlong, Laura I.

    2011-01-01

    Background Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. Principal Findings We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. Conclusions For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors

  8. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies.

    Directory of Open Access Journals (Sweden)

    Hongwei Chu

    Full Text Available Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE. Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., "presynaptic nicotinic acetylcholine receptors", "signaling by insulin receptor". Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1 located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy.

  9. Meta-analysis reveals conserved cell cycle transcriptional network across multiple human cell types.

    Science.gov (United States)

    Giotti, Bruno; Joshi, Anagha; Freeman, Tom C

    2017-01-05

    Cell division is central to the physiology and pathology of all eukaryotic organisms. The molecular machinery underpinning the cell cycle has been studied extensively in a number of species and core aspects of it have been found to be highly conserved. Similarly, the transcriptional changes associated with this pathway have been studied in different organisms and different cell types. In each case hundreds of genes have been reported to be regulated, however there seems to be little consensus in the genes identified across different studies. In a recent comparison of transcriptomic studies of the cell cycle in different human cell types, only 96 cell cycle genes were reported to be the same across all studies examined. Here we perform a systematic re-examination of published human cell cycle expression data by using a network-based approach to identify groups of genes with a similar expression profile and therefore function. Two clusters in particular, containing 298 transcripts, showed patterns of expression consistent with cell cycle occurrence across the four human cell types assessed. Our analysis shows that there is a far greater conservation of cell cycle-associated gene expression across human cell types than reported previously, which can be separated into two distinct transcriptional networks associated with the G 1 /S-S and G 2 -M phases of the cell cycle. This work also highlights the benefits of performing a re-analysis on combined datasets.

  10. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies.

    Science.gov (United States)

    Chu, Hongwei; Sun, Pin; Yin, Jiahui; Liu, Guangming; Wang, Yiwei; Zhao, Pengyao; Zhu, Yizhun; Yang, Xiaohan; Zheng, Tiezheng; Zhou, Xuezhong; Jin, Weilin; Sun, Changkai

    2017-01-01

    Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE). Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI) network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., "presynaptic nicotinic acetylcholine receptors", "signaling by insulin receptor"). Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1) located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy.

  11. Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Cox regression is commonly used to predict the outcome by the time to an event of interest and in addition, identify relevant features for survival analysis in cancer genomics. Due to the high-dimensionality of high-throughput genomic data, existing Cox models trained on any particular dataset usually generalize poorly to other independent datasets. In this paper, we propose a network-based Cox regression model called Net-Cox and applied Net-Cox for a large-scale survival analysis across multiple ovarian cancer datasets. Net-Cox integrates gene network information into the Cox's proportional hazard model to explore the co-expression or functional relation among high-dimensional gene expression features in the gene network. Net-Cox was applied to analyze three independent gene expression datasets including the TCGA ovarian cancer dataset and two other public ovarian cancer datasets. Net-Cox with the network information from gene co-expression or functional relations identified highly consistent signature genes across the three datasets, and because of the better generalization across the datasets, Net-Cox also consistently improved the accuracy of survival prediction over the Cox models regularized by L(2 or L(1. This study focused on analyzing the death and recurrence outcomes in the treatment of ovarian carcinoma to identify signature genes that can more reliably predict the events. The signature genes comprise dense protein-protein interaction subnetworks, enriched by extracellular matrix receptors and modulators or by nuclear signaling components downstream of extracellular signal-regulated kinases. In the laboratory validation of the signature genes, a tumor array experiment by protein staining on an independent patient cohort from Mayo Clinic showed that the protein expression of the signature gene FBN1 is a biomarker significantly associated with the early recurrence after 12 months of the treatment in the ovarian cancer patients who are

  12. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors

    DEFF Research Database (Denmark)

    Österlund, Tobias; Bordel, Sergio; Nielsen, Jens

    2015-01-01

    we analyze the topology and organization of nine transcriptional regulatory networks for E. coli, yeast, mouse and human, and we evaluate how the structure of these networks influences two of their key properties, namely controllability and stability. We calculate the controllability for each network......% for the human network. The high controllability (low number of drivers needed to control the system) in yeast, mouse and human is due to the presence of internal loops in their regulatory networks where the TFs regulate each other in a circular fashion. We refer to these internal loops as circular control...... motifs (CCM). The E. coli transcriptional regulatory network, which does not have any CCMs, shows a hierarchical structure of the transcriptional regulatory network in contrast to the eukaryal networks. The presence of CCMs also has influence on the stability of these networks, as the presence of cycles...

  13. Group independent component analysis reveals consistent resting-state networks across multiple sessions.

    Science.gov (United States)

    Chen, Sharon; Ross, Thomas J; Zhan, Wang; Myers, Carol S; Chuang, Keh-Shih; Heishman, Stephen J; Stein, Elliot A; Yang, Yihong

    2008-11-06

    Group independent component analysis (gICA) was performed on resting-state data from 14 healthy subjects scanned on 5 fMRI scan sessions across 16 days. The data were reduced and aggregated in 3 steps using Principal Components Analysis (PCA, within scan, within session and across session) and subjected to gICA procedures. The amount of reduction was estimated by an improved method that utilizes a first-order autoregressive fitting technique to the PCA spectrum. Analyses were performed using all sessions in order to maximize sensitivity and alleviate the problem of component identification across session. Across-session consistency was examined by three methods, all using back-reconstruction of the single-session or single-subject/session maps from the grand (5-session) maps. The gICA analysis produced 55 spatially independent maps. Obvious artifactual maps were eliminated and the remainder were grouped based upon physiological recognizability. Biologically relevant component maps were found, including sensory, motor and a 'default-mode' map. All analysis methods showed that components were remarkably consistent across session. Critically, the components with the most obvious physiological relevance were the most consistent. The consistency of these maps suggests that, at least over a period of several weeks, these networks would be useful to follow longitudinal treatment-related manipulations.

  14. Dynamics of Disagreement: Large-Scale Temporal Network Analysis Reveals Negative Interactions in Online Collaboration

    Science.gov (United States)

    Tsvetkova, Milena; García-Gavilanes, Ruth; Yasseri, Taha

    2016-11-01

    Disagreement and conflict are a fact of social life. However, negative interactions are rarely explicitly declared and recorded and this makes them hard for scientists to study. In an attempt to understand the structural and temporal features of negative interactions in the community, we use complex network methods to analyze patterns in the timing and configuration of reverts of article edits to Wikipedia. We investigate how often and how fast pairs of reverts occur compared to a null model in order to control for patterns that are natural to the content production or are due to the internal rules of Wikipedia. Our results suggest that Wikipedia editors systematically revert the same person, revert back their reverter, and come to defend a reverted editor. We further relate these interactions to the status of the involved editors. Even though the individual reverts might not necessarily be negative social interactions, our analysis points to the existence of certain patterns of negative social dynamics within the community of editors. Some of these patterns have not been previously explored and carry implications for the knowledge collection practice conducted on Wikipedia. Our method can be applied to other large-scale temporal collaboration networks to identify the existence of negative social interactions and other social processes.

  15. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi.

    Directory of Open Access Journals (Sweden)

    Björn Hoppe

    Full Text Available Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa.

  16. Network Analysis Reveals Ecological Links between N-Fixing Bacteria and Wood-Decaying Fungi

    Science.gov (United States)

    Hoppe, Björn; Kahl, Tiemo; Karasch, Peter; Wubet, Tesfaye; Bauhus, Jürgen; Buscot, François; Krüger, Dirk

    2014-01-01

    Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase) genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa. PMID:24505405

  17. Network Centrality Analysis in Fungi Reveals Complex Regulation of Lost and Gained Genes.

    Science.gov (United States)

    Coulombe-Huntington, Jasmin; Xia, Yu

    2017-01-01

    Gene gain and loss shape both proteomes and the networks they form. The increasing availability of closely related sequenced genomes and of genome-wide network data should enable a better understanding of the evolutionary forces driving gene gain, gene loss and evolutionary network rewiring. Using orthology mappings across 23 ascomycete fungi genomes, we identified proteins that were lost, gained or universally conserved across the tree, enabling us to compare genes across all stages of their life-cycle. Based on a collection of genome-wide network and gene expression datasets from baker's yeast, as well as a few from fission yeast, we found that gene loss is more strongly associated with network and expression features of closely related species than that of distant species, consistent with the evolutionary modulation of gene loss propensity through network rewiring. We also discovered that lost and gained genes, as compared to universally conserved "core" genes, have more regulators, more complex expression patterns and are much more likely to encode for transcription factors. Finally, we found that the relative rate of network integration of new genes into the different types of networks agrees with experimentally measured rates of network rewiring. This systems-level view of the life-cycle of eukaryotic genes suggests that the gain and loss of genes is tightly coupled to the gain and loss of network interactions, that lineage-specific adaptations drive regulatory complexity and that the relative rates of integration of new genes are consistent with network rewiring rates.

  18. A network analysis of ¹⁵O-H₂O PET reveals deep brain stimulation effects on brain network of Parkinson's disease.

    Science.gov (United States)

    Park, Hae-Jeong; Park, Bumhee; Kim, Hae Yu; Oh, Maeng-Keun; Kim, Joong Il; Yoon, Misun; Lee, Jong Doo; Chang, Jin Woo

    2015-05-01

    As Parkinson's disease (PD) can be considered a network abnormality, the effects of deep brain stimulation (DBS) need to be investigated in the aspect of networks. This study aimed to examine how DBS of the bilateral subthalamic nucleus (STN) affects the motor networks of patients with idiopathic PD during motor performance and to show the feasibility of the network analysis using cross-sectional positron emission tomography (PET) images in DBS studies. We obtained [¹⁵O]H₂O PET images from ten patients with PD during a sequential finger-to-thumb opposition task and during the resting state, with DBS-On and DBS-Off at STN. To identify the alteration of motor networks in PD and their changes due to STN-DBS, we applied independent component analysis (ICA) to all the cross-sectional PET images. We analysed the strength of each component according to DBS effects, task effects and interaction effects. ICA blindly decomposed components of functionally associated distributed clusters, which were comparable to the results of univariate statistical parametric mapping. ICA further revealed that STN-DBS modifies usage-strengths of components corresponding to the basal ganglia-thalamo-cortical circuits in PD patients by increasing the hypoactive basal ganglia and by suppressing the hyperactive cortical motor areas, ventrolateral thalamus and cerebellum. Our results suggest that STN-DBS may affect not only the abnormal local activity, but also alter brain networks in patients with PD. This study also demonstrated the usefulness of ICA for cross-sectional PET data to reveal network modifications due to DBS, which was not observable using the subtraction method.

  19. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases

    National Research Council Canada - National Science Library

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A; Sanz, Ferran; Furlong, Laura I

    2011-01-01

    .... For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes...

  20. Grapevine immune signaling network in response to drought stress as revealed by transcriptomic analysis.

    Science.gov (United States)

    Haider, Muhammad S; Kurjogi, Mahantesh M; Khalil-Ur-Rehman, M; Fiaz, Muhammad; Pervaiz, Tariq; Jiu, Songtao; Haifeng, Jia; Chen, Wang; Fang, Jinggui

    2017-12-01

    Drought is a ubiquitous abiotic factor that severely impedes growth and development of horticulture crops. The challenge postured by global climate change is the evolution of drought-tolerant cultivars that could cope with concurrent stress. Hence, in this study, biochemical, physiological and transcriptome analysis were investigated in drought-treated grapevine leaves. The results revealed that photosynthetic activity and reducing sugars were significantly diminished which were positively correlated with low stomatal conductance and CO2 exchange in drought-stressed leaves. Further, the activities of superoxide dismutase, peroxidase, and catalase were significantly actuated in the drought-responsive grapevine leaves. Similarly, the levels of abscisic acid and jasmonic acid were also significantly increased in the drought-stressed leaves. In transcriptome analysis, 12,451 differentially-expressed genes (DEGs) were annotated, out of which 8021 DEGs were up-regulated and 4430 DEGs were down-regulated in response to drought stress. In addition, the genes encoding pathogen-associated molecular pattern (PAMP) triggered immunity (PTI), including calcium signals, protein phosphatase 2C, calcineurin B-like proteins, MAPKs, and phosphorylation (FLS2 and MEKK1) cascades were up-regulated in response to drought stress. Several genes related to plant-pathogen interaction pathway (RPM1, PBS1, RPS5, RIN4, MIN7, PR1, and WRKYs) were also found up-regulated in response to drought stress. Overall the results of present study showed the dynamic interaction of DEG in grapevine physiology which provides the premise for selection of defense-related genes against drought stress for subsequent grapevine breeding programs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Correction: An integrated anti-arrhythmic target network of compound Chinese medicine Wenxin Keli revealed by combined machine learning and molecular pathway analysis.

    Science.gov (United States)

    Wang, Taiyi; Lu, Ming; Du, Qunqun; Yao, Xi; Zhang, Peng; Chen, Xiaonan; Xie, Weiwei; Li, Zheng; Ma, Yuling; Zhu, Yan

    2017-09-26

    Correction for 'An integrated anti-arrhythmic target network of a Chinese medicine compound, Wenxin Keli, revealed by combined machine learning and molecular pathway analysis' by Taiyi Wang et al., Mol. BioSyst., 2017, 13, 1018-1030.

  2. Analysis of HRCT-derived xylem network reveals reverse flow in some vessels.

    Science.gov (United States)

    Lee, Eric F; Matthews, Mark A; McElrone, Andrew J; Phillips, Ronald J; Shackel, Kenneth A; Brodersen, Craig R

    2013-09-21

    Long distance water and nutrient transport in plants is dependent on the proper functioning of xylem networks, a series of interconnected pipe-like cells that are vulnerable to hydraulic dysfunction as a result of drought-induced embolism and/or xylem-dwelling pathogens. Here, flow in xylem vessels was modeled to determine the role of vessel connectivity by using three dimensional xylem networks derived from High Resolution Computed Tomography (HRCT) images of grapevine (Vitis vinifera cv. 'Chardonnay') stems. Flow in 4-27% of the vessel segments (i.e. any section of vessel elements between connection points associated with intervessel pits) was found to be oriented in the direction opposite to the bulk flow under normal transpiration conditions. In order for the flow in a segment to be in the reverse direction, specific requirements were determined for the location of connections, distribution of vessel endings, diameters of the connected vessels, and the conductivity of the connections. Increasing connectivity and decreasing vessel length yielded increasing numbers of reverse flow segments until a maximum value was reached, after which more interconnected networks and smaller average vessel lengths yielded a decrease in the number of reverse flow segments. Xylem vessel relays also encouraged the formation of reverse flow segments. Based on the calculated flow rates in the xylem network, the downward spread of Xylella fastidiosa bacteria in grape stems was modeled, and reverse flow was shown to be an additional mechanism for the movement of bacteria to the trunk of grapevine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Network analysis reveals strongly localized impacts of El Niño

    Science.gov (United States)

    Fan, Jingfang; Meng, Jun; Ashkenazy, Yosef; Havlin, Shlomo; Schellnhuber, Hans Joachim

    2017-07-01

    Climatic conditions influence the culture and economy of societies and the performance of economies. Specifically, El Niño as an extreme climate event is known to have notable effects on health, agriculture, industry, and conflict. Here, we construct directed and weighted climate networks based on near-surface air temperature to investigate the global impacts of El Niño and La Niña. We find that regions that are characterized by higher positive/negative network “in”-weighted links are exhibiting stronger correlations with the El Niño basin and are warmer/cooler during El Niño/La Niña periods. In contrast to non-El Niño periods, these stronger in-weighted activities are found to be concentrated in very localized areas, whereas a large fraction of the globe is not influenced by the events. The regions of localized activity vary from one El Niño (La Niña) event to another; still, some El Niño (La Niña) events are more similar to each other. We quantify this similarity using network community structure. The results and methodology reported here may be used to improve the understanding and prediction of El Niño/La Niña events and also may be applied in the investigation of other climate variables.

  4. Revealing effective classifiers through network comparison

    Science.gov (United States)

    Gallos, Lazaros K.; Fefferman, Nina H.

    2014-11-01

    The ability to compare complex systems can provide new insight into the fundamental nature of the processes captured, in ways that are otherwise inaccessible to observation. Here, we introduce the n-tangle method to directly compare two networks for structural similarity, based on the distribution of edge density in network subgraphs. We demonstrate that this method can efficiently introduce comparative analysis into network science and opens the road for many new applications. For example, we show how the construction of a “phylogenetic tree” across animal taxa according to their social structure can reveal commonalities in the behavioral ecology of the populations, or how students create similar networks according to the University size. Our method can be expanded to study many additional properties, such as network classification, changes during time evolution, convergence of growth models, and detection of structural changes during damage.

  5. Revealing effective classifiers through network comparison

    CERN Document Server

    Gallos, Lazaros K

    2014-01-01

    The ability to compare complex systems can provide new insight into the fundamental nature of the processes captured in ways that are otherwise inaccessible to observation. Here, we introduce the $n$-tangle method to directly compare two networks for structural similarity, based on the distribution of edge density in network subgraphs. We demonstrate that this method can efficiently introduce comparative analysis into network science and opens the road for many new applications. For example, we show how the construction of a phylogenetic tree across animal taxa according to their social structure can reveal commonalities in the behavioral ecology of the populations, or how students create similar networks according to the University size. Our method can be expanded to study a multitude of additional properties, such as network classification, changes during time evolution, convergence of growth models, and detection of structural changes during damage.

  6. Network information analysis reveals risk perception transmission in a behaviour-influenza dynamics system.

    Science.gov (United States)

    Liao, C-M; You, S-H; Cheng, Y-H

    2015-01-01

    Influenza poses a significant public health burden worldwide. Understanding how and to what extent people would change their behaviour in response to influenza outbreaks is critical for formulating public health policies. We incorporated the information-theoretic framework into a behaviour-influenza (BI) transmission dynamics system in order to understand the effects of individual behavioural change on influenza epidemics. We showed that information transmission of risk perception played a crucial role in the spread of health-seeking behaviour throughout influenza epidemics. Here a network BI model provides a new approach for understanding the risk perception spread and human behavioural change during disease outbreaks. Our study allows simultaneous consideration of epidemiological, psychological, and social factors as predictors of individual perception rates in behaviour-disease transmission systems. We suggest that a monitoring system with precise information on risk perception should be constructed to effectively promote health behaviours in preparation for emerging disease outbreaks.

  7. Social Network Analysis Reveals Potential Fission-Fusion Behavior in a Shark

    Science.gov (United States)

    Haulsee, Danielle E.; Fox, Dewayne A.; Breece, Matthew W.; Brown, Lori M.; Kneebone, Jeff; Skomal, Gregory B.; Oliver, Matthew J.

    2016-09-01

    Complex social networks and behaviors are difficult to observe for free-living marine species, especially those that move great distances. Using implanted acoustic transceivers to study the inter- and intraspecific interactions of sand tiger sharks Carcharias taurus, we observed group behavior that has historically been associated with higher order mammals. We found evidence strongly suggestive of fission-fusion behavior, or changes in group size and composition of sand tigers, related to five behavioral modes (summering, south migration, community bottleneck, dispersal, north migration). Our study shows sexually dimorphic behavior during migration, in addition to presenting evidence of a potential solitary phase for these typically gregarious sharks. Sand tigers spent up to 95 consecutive and 335 cumulative hours together, with the strongest relationships occurring between males. Species that exhibit fission-fusion group dynamics pose a particularly challenging issue for conservation and management because changes in group size and composition affect population estimates and amplify anthropogenic impacts.

  8. Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network

    Science.gov (United States)

    Galhardo, Mafalda; Sinkkonen, Lasse; Berninger, Philipp; Lin, Jake; Sauter, Thomas; Heinäniemi, Merja

    2014-01-01

    Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways. Motivated by increasing availability of deep sequencing studies, we obtained ChIP-seq data from widely studied human umbilical vein endothelial cells. Interestingly, we found that association of metabolic genes with multiple transcription factors (TFs) enriched disease-associated genes. To demonstrate further extensions enabled by examining these networks together, constraint-based modeling was applied to data from human preadipocyte differentiation. In parallel, data on gene expression, genome-wide ChIP-seq profiles for peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (CEBP) α, liver X receptor (LXR) and H3K4me3 and microRNA target identification for miR-27a, miR-29a and miR-222 were collected. Disease-relevant key nodes, including mitochondrial glycerol-3-phosphate acyltransferase (GPAM), were exposed from metabolic pathways predicted to change activity by focusing on association with multiple regulators. In both cell types, our analysis reveals the convergence of microRNAs and TFs within the branched chain amino acid (BCAA) metabolic pathway, possibly providing an explanation for its downregulation in obese and diabetic conditions. PMID:24198249

  9. Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network.

    Science.gov (United States)

    Galhardo, Mafalda; Sinkkonen, Lasse; Berninger, Philipp; Lin, Jake; Sauter, Thomas; Heinäniemi, Merja

    2014-02-01

    Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways. Motivated by increasing availability of deep sequencing studies, we obtained ChIP-seq data from widely studied human umbilical vein endothelial cells. Interestingly, we found that association of metabolic genes with multiple transcription factors (TFs) enriched disease-associated genes. To demonstrate further extensions enabled by examining these networks together, constraint-based modeling was applied to data from human preadipocyte differentiation. In parallel, data on gene expression, genome-wide ChIP-seq profiles for peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (CEBP) α, liver X receptor (LXR) and H3K4me3 and microRNA target identification for miR-27a, miR-29a and miR-222 were collected. Disease-relevant key nodes, including mitochondrial glycerol-3-phosphate acyltransferase (GPAM), were exposed from metabolic pathways predicted to change activity by focusing on association with multiple regulators. In both cell types, our analysis reveals the convergence of microRNAs and TFs within the branched chain amino acid (BCAA) metabolic pathway, possibly providing an explanation for its downregulation in obese and diabetic conditions.

  10. Group Independent Component Analysis Reveals Consistent Resting-State Networks across Multiple Sessions

    OpenAIRE

    Chen, Sharon; Ross, Thomas J.; Zhan, Wang; Myers, Carol S.; Chuang, Keh-Shih; Heishman, Stephen J.; Stein, Elliot A.; Yang, Yihong

    2008-01-01

    Group independent component analysis (gICA) was performed on resting-state data from 14 healthy subjects scanned on 5 fMRI scan sessions across 16 days. The data were reduced and aggregated in 3 steps using Principal Components Analysis (PCA, within scan, within session and across session) and subjected to gICA procedures. The amount of reduction was estimated by an improved method that utilizes a first-order autoregressive fitting technique to the PCA spectrum. Analyses were performed using ...

  11. Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot.

    Science.gov (United States)

    Wang, Ronghua; Mei, Yi; Xu, Liang; Zhu, Xianwen; Wang, Yan; Guo, Jun; Liu, Liwang

    2018-01-24

    Differential abundance protein species (DAPS) involved in reducing damage and enhancing thermotolerance in radish were firstly identified. Proteomic analysis and omics association analysis revealed a HS-responsive regulatory network in radish. Heat stress (HS) is a major destructive factor influencing radish production and supply in summer, for radish is a cool season vegetable crop being susceptible to high temperature. In this study, the proteome changes of radish taproots under 40 °C treatment at 0 h (Control), 12 h (Heat12) and 24 h (Heat24) were analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification) approach. In total, 2258 DAPS representing 1542 differentially accumulated uniprotein species which respond to HS were identified. A total of 604, 910 and 744 DAPS was detected in comparison of Control vs. Heat12, Control vs. Heat24, and Heat12 vs. Heat24, respectively. Gene ontology and pathway analysis showed that annexin, ubiquitin-conjugating enzyme, ATP synthase, heat shock protein (HSP) and other stress-related proteins were predominately enriched in signal transduction, stress and defense pathways, photosynthesis and energy metabolic pathways, working cooperatively to reduce stress-induced damage in radish. Based on iTRAQ combined with the transcriptomics analysis, a schematic model of a sequential HS-responsive regulatory network was proposed. The initial sensing of HS occurred at the plasma membrane, and then key components of stress signal transduction triggered heat-responsive genes in the plant protective metabolism to re-establish homeostasis and enhance thermotolerance. These results provide new insights into characteristics of HS-responsive DAPS and facilitate dissecting the molecular mechanisms underlying heat tolerance in radish and other root crops.

  12. Genomic context analysis reveals dense interaction network between vertebrate ultraconserved non-coding elements.

    Science.gov (United States)

    Dimitrieva, Slavica; Bucher, Philipp

    2012-09-15

    Genomic context analysis, also known as phylogenetic profiling, is widely used to infer functional interactions between proteins but rarely applied to non-coding cis-regulatory DNA elements. We were wondering whether this approach could provide insights about utlraconserved non-coding elements (UCNEs). These elements are organized as large clusters, so-called gene regulatory blocks (GRBs) around key developmental genes. Their molecular functions and the reasons for their high degree of conservation remain enigmatic. In a special setting of genomic context analysis, we analyzed the fate of GRBs after a whole-genome duplication event in five fish genomes. We found that in most cases all UCNEs were retained together as a single block, whereas the corresponding target genes were often retained in two copies, one completely devoid of UCNEs. This 'winner-takes-all' pattern suggests that UCNEs of a GRB function in a highly cooperative manner. We propose that the multitude of interactions between UCNEs is the reason for their extreme sequence conservation. Supplementary data are available at Bioinformatics online and at http://ccg.vital-it.ch/ucne/

  13. Social Network Analysis Reveals the Negative Effects of Attention-Deficit/Hyperactivity Disorder (ADHD) Symptoms on Friend-Based Student Networks

    OpenAIRE

    Jun Won Kim; Bung-Nyun Kim; Johanna Inhyang Kim; Young Sik Lee; Kyung Joon Min; Hyun-Jin Kim; Jaewon Lee

    2015-01-01

    Introduction Social network analysis has emerged as a promising tool in modern social psychology. This method can be used to examine friend-based social relationships in terms of network theory, with nodes representing individual students and ties representing relationships between students (e.g., friendships and kinships). Using social network analysis, we investigated whether greater severity of ADHD symptoms is correlated with weaker peer relationships among elementary school students. Met...

  14. Cross-species transcriptional network analysis reveals conservation and variation in response to metal stress in cyanobacteria

    Science.gov (United States)

    2013-01-01

    Background As one of the most dominant bacterial groups on Earth, cyanobacteria play a pivotal role in the global carbon cycling and the Earth atmosphere composition. Understanding their molecular responses to environmental perturbations has important scientific and environmental values. Since important biological processes or networks are often evolutionarily conserved, the cross-species transcriptional network analysis offers a useful strategy to decipher conserved and species-specific transcriptional mechanisms that cells utilize to deal with various biotic and abiotic disturbances, and it will eventually lead to a better understanding of associated adaptation and regulatory networks. Results In this study, the Weighted Gene Co-expression Network Analysis (WGCNA) approach was used to establish transcriptional networks for four important cyanobacteria species under metal stress, including iron depletion and high copper conditions. Cross-species network comparison led to discovery of several core response modules and genes possibly essential to metal stress, as well as species-specific hub genes for metal stresses in different cyanobacteria species, shedding light on survival strategies of cyanobacteria responding to different environmental perturbations. Conclusions The WGCNA analysis demonstrated that the application of cross-species transcriptional network analysis will lead to novel insights to molecular response to environmental changes which will otherwise not be achieved by analyzing data from a single species. PMID:23421563

  15. Genetic alterations in mesiodens as revealed by targeted next-generation sequencing and gene co-occurrence network analysis.

    Science.gov (United States)

    Kim, Y Y; Hwang, J; Kim, H-S; Kwon, H J; Kim, S; Lee, J H; Lee, J H

    2017-10-01

    Mesiodens is the most common type of supernumerary tooth which includes a population prevalence of 0.15%-1.9%. Alongside evidence that the condition is heritable, mutations in single genes have been reported in few human supernumerary tooth cases. Gene sequencing methods in tradition way are time-consuming and labor-intensive, whereas next-generation sequencing and bioinformatics are cost-effective for large samples and target sizes. We describe the application of a targeted next-generation sequencing (NGS) and bioinformatics approach to samples from 17 mesiodens patients. Subjects were diagnosed on the basis of panoramic radiograph. A total of 101 candidate genes which were captured custom genes were sequenced on the Illumina HiSeq 2500. Multistep bioinformatics processing was performed including variant identification, base calling, and in silico analysis of putative disease-causing variants. Targeted capture identified 88 non-synonymous, rare, exonic variants involving 42 of the 101 candidate genes. Moreover, we investigated gene co-occurrence relationships between the genomic alterations and identified 88 significant relationships among 18 most recurrent driver alterations. Our search for co-occurring genetic alterations revealed that such alterations interact cooperatively to drive mesiodens. We discovered a gene co-occurrence network in mesiodens patients with functionally enriched gene groups in the sonic hedgehog (SHH), bone morphogenetic proteins (BMP), and wingless integrated (WNT) signaling pathways. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Integrated analysis of multiomic data reveals the role of the antioxidant network in the quality of sea buckthorn berry.

    Science.gov (United States)

    He, Caiyun; Zhang, Guoyun; Zhang, Jianguo; Zeng, Yanfei; Liu, Juanjuan

    2017-05-01

    Berries of sea buckthorn, known as the "king of vitamin C," are abundant in antioxidants, have attractive colors, and are an excellent material with which to study the relationships between berry color, antioxidants, and berry quality. No study has yet determined the molecular basis of the relationship between sea buckhorn berries and their color and antioxidant levels. By using RNA-seq, LC-MS/MS, and LC/GC-MS technology and selecting red (darkest colored) and yellow (lightest colored) sea buckthorn berries at different development stages, this study showed that the red and yellow berry resulted from a higher ratio of lycopene to β-carotene and of β-carotene to lycopene content, respectively. The uronic acid pathway-a known animal pathway-in ascorbic acid synthesis was found in sea buckthorn berries, and the higher expression of UDP-glucuronosyltransferase in red berries was consistent with the higher content of ascorbic acid. In summary, multiomic data showed that the color of sea buckthorn berries is mainly determined by β-carotene and lycopene; red sea buckthorn berries were richer than yellow berries in antioxidants, such as carotenoids, flavonoids, and ascorbic acid; and the animal pathway might be operating in sea buckthorn.-He, C., Zhang, G., Zhang, J., Zeng, Y., Liu, J. Integrated analysis of multiomic data reveals the role of the antioxidant network in the quality of sea buckthorn berry. © FASEB.

  17. Network analysis reveals the relationship among wood properties, gene expression levels and genotypes of natural Populus trichocarpa accessions.

    Science.gov (United States)

    Porth, Ilga; Klápště, Jaroslav; Skyba, Oleksandr; Friedmann, Michael C; Hannemann, Jan; Ehlting, Juergen; El-Kassaby, Yousry A; Mansfield, Shawn D; Douglas, Carl J

    2013-11-01

    High-throughput approaches have been widely applied to elucidate the genetic underpinnings of industrially important wood properties. Wood traits are polygenic in nature, but gene hierarchies can be assessed to identify the most important gene variants controlling specific traits within complex networks defining the overall wood phenotype. We tested a large set of genetic, genomic, and phenotypic information in an integrative approach to predict wood properties in Populus trichocarpa. Nine-yr-old natural P. trichocarpa trees including accessions with high contrasts in six traits related to wood chemistry and ultrastructure were profiled for gene expression on 49k Nimblegen (Roche NimbleGen Inc., Madison, WI, USA) array elements and for 28,831 polymorphic single nucleotide polymorphisms (SNPs). Pre-selected transcripts and SNPs with high statistical dependence on phenotypic traits were used in Bayesian network learning procedures with a stepwise K2 algorithm to infer phenotype-centric networks. Transcripts were pre-selected at a much lower logarithm of Bayes factor (logBF) threshold than SNPs and were not accommodated in the networks. Using persistent variables, we constructed cross-validated networks for variability in wood attributes, which contained four to six variables with 94-100% predictive accuracy. Accommodated gene variants revealed the hierarchy in the genetic architecture that underpins substantial phenotypic variability, and represent new tools to support the maximization of response to selection. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Large-scale network analysis of imagination reveals extended but limited top-down components in human visual cognition.

    Directory of Open Access Journals (Sweden)

    Verkhlyutov V.M.

    2014-12-01

    Full Text Available We investigated whole-brain functional magnetic resonance imaging (fMRI activation in a group of 21 healthy adult subjects during perception, imagination and remembering of two dynamic visual scenarios. Activation of the posterior parts of the cortex prevailed when watching videos. The cognitive tasks of imagination and remembering were accompanied by a predominant activity in the anterior parts of the cortex. An independent component analysis identified seven large-scale cortical networks with relatively invariant spatial distributions across all experimental conditions. The time course of their activation over experimental sessions was task-dependent. These detected networks can be interpreted as a recombination of resting state networks. Both central and peripheral networks were identified within the primary visual cortex. The central network around the caudal pole of BA17 and centers of other visual areas was activated only by direct visual stimulation, while the peripheral network responded to the presentation of visual information as well as to the cognitive tasks of imagination and remembering. The latter result explains the particular susceptibility of peripheral and twilight vision to cognitive top-down influences that often result in false-alarm detections.

  19. Graph theoretical analysis reveals the reorganization of the brain network pattern in primary open angle glaucoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jieqiong [Chinese Academy of Sciences, State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing (China); Li, Ting; Xian, Junfang [Capital Medical University, Department of Radiology, Beijing Tongren Hospital, Beijing (China); Wang, Ningli [Capital Medical University, Department of Ophthalmology, Beijing Tongren Hospital, Beijing (China); He, Huiguang [Chinese Academy of Sciences, State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing (China); Chinese Academy of Sciences, Research Center for Brain-Inspired Intelligence, Institute of Automation, Beijing (China)

    2016-11-15

    Most previous glaucoma studies with resting-state fMRI have focused on the neuronal activity in the individual structure of the brain, yet ignored the functional communication of anatomically separated structures. The purpose of this study is to investigate the efficiency of the functional communication change or not in glaucoma patients. We applied the resting-state fMRI data to construct the connectivity network of 25 normal controls and 25 age-gender-matched primary open angle glaucoma patients. Graph theoretical analysis was performed to assess brain network pattern differences between the two groups. No significant differences of the global network measures were found between the two groups. However, the local measures were radically reorganized in glaucoma patients. Comparing with the hub regions in normal controls' network, we found that six hub regions disappeared and nine hub regions appeared in the network of patients. In addition, the betweenness centralities of two altered hub regions, right fusiform gyrus and right lingual gyrus, were significantly correlated with the visual field mean deviation. Although the efficiency of functional communication is preserved in the brain network of the glaucoma at the global level, the efficiency of functional communication is altered in some specialized regions of the glaucoma. (orig.)

  20. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates

    DEFF Research Database (Denmark)

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima

    2015-01-01

    Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high...

  1. Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential.

    Science.gov (United States)

    Asplund-Samuelsson, Johannes; Janasch, Markus; Hudson, Elton P

    2017-12-23

    Introducing biosynthetic pathways into an organism is both reliant on and challenged by endogenous biochemistry. Here we compared the expansion potential of the metabolic network in the photoautotroph Synechocystis with that of the heterotroph E. coli using the novel workflow POPPY (Prospecting Optimal Pathways with PYthon). First, E. coli and Synechocystis metabolomic and fluxomic data were combined with metabolic models to identify thermodynamic constraints on metabolite concentrations (NET analysis). Then, thousands of automatically constructed pathways were placed within each network and subjected to a network-embedded variant of the max-min driving force analysis (NEM). We found that the networks had different capabilities for imparting thermodynamic driving forces toward certain compounds. Key metabolites were constrained differently in Synechocystis due to opposing flux directions in glycolysis and carbon fixation, the forked tri-carboxylic acid cycle, and photorespiration. Furthermore, the lysine biosynthesis pathway in Synechocystis was identified as thermodynamically constrained, impacting both endogenous and heterologous reactions through low 2-oxoglutarate levels. Our study also identified important yet poorly covered areas in existing metabolomics data and provides a reference for future thermodynamics-based engineering in Synechocystis and beyond. The POPPY methodology represents a step in making optimal pathway-host matches, which is likely to become important as the practical range of host organisms is diversified. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Social Network Analysis Reveals the Negative Effects of Attention-Deficit/Hyperactivity Disorder (ADHD Symptoms on Friend-Based Student Networks.

    Directory of Open Access Journals (Sweden)

    Jun Won Kim

    Full Text Available Social network analysis has emerged as a promising tool in modern social psychology. This method can be used to examine friend-based social relationships in terms of network theory, with nodes representing individual students and ties representing relationships between students (e.g., friendships and kinships. Using social network analysis, we investigated whether greater severity of ADHD symptoms is correlated with weaker peer relationships among elementary school students.A total of 562 sixth-graders from two elementary schools (300 males provided the names of their best friends (maximum 10 names. Their teachers rated each student's ADHD symptoms using an ADHD rating scale.The results showed that 10.2% of the students were at high risk for ADHD. Significant group differences were observed between the high-risk students and other students in two of the three network parameters (degree, centrality and closeness used to assess friendship quality, with the high-risk group showing significantly lower values of degree and closeness compared to the other students. Moreover, negative correlations were found between the ADHD rating and two social network analysis parameters.Our findings suggest that the severity of ADHD symptoms is strongly correlated with the quality of social and interpersonal relationships in students with ADHD symptoms.

  3. Social Network Analysis Reveals the Negative Effects of Attention-Deficit/Hyperactivity Disorder (ADHD) Symptoms on Friend-Based Student Networks.

    Science.gov (United States)

    Kim, Jun Won; Kim, Bung-Nyun; Kim, Johanna Inhyang; Lee, Young Sik; Min, Kyung Joon; Kim, Hyun-Jin; Lee, Jaewon

    2015-01-01

    Social network analysis has emerged as a promising tool in modern social psychology. This method can be used to examine friend-based social relationships in terms of network theory, with nodes representing individual students and ties representing relationships between students (e.g., friendships and kinships). Using social network analysis, we investigated whether greater severity of ADHD symptoms is correlated with weaker peer relationships among elementary school students. A total of 562 sixth-graders from two elementary schools (300 males) provided the names of their best friends (maximum 10 names). Their teachers rated each student's ADHD symptoms using an ADHD rating scale. The results showed that 10.2% of the students were at high risk for ADHD. Significant group differences were observed between the high-risk students and other students in two of the three network parameters (degree, centrality and closeness) used to assess friendship quality, with the high-risk group showing significantly lower values of degree and closeness compared to the other students. Moreover, negative correlations were found between the ADHD rating and two social network analysis parameters. Our findings suggest that the severity of ADHD symptoms is strongly correlated with the quality of social and interpersonal relationships in students with ADHD symptoms.

  4. Large-scale functional network reorganization in 22q11.2 deletion syndrome revealed by modularity analysis.

    Science.gov (United States)

    Scariati, Elisa; Schaer, Marie; Karahanoglu, Isik; Schneider, Maude; Richiardi, Jonas; Debbané, Martin; Van De Ville, Dimitri; Eliez, Stephan

    2016-09-01

    The 22q11.2 deletion syndrome (22q11DS) is associated with cognitive impairments and a 41% risk of developing schizophrenia. While several studies performed on patients with 22q11DS showed the presence of abnormal functional connectivity in this syndrome, how these alterations affect large-scale network organization is still unknown. Here we performed a network modularity analysis on whole-brain functional connectomes derived from the resting-state fMRI of 40 patients with 22q11DS and 41 healthy control participants, aged between 9 and 30 years old. We then split the sample at 18 years old to obtain two age subgroups and repeated the modularity analyses. We found alterations of modular communities affecting the visuo-spatial network and the anterior cingulate cortex (ACC) in both age groups. These results corroborate previous structural and functional studies in 22q11DS that showed early impairment of visuo-spatial processing regions. Furthermore, as ACC has been linked to the development of psychotic symptoms in 22q11DS, the early impairment of its functional connectivity provide further support that ACC alterations may provide potential biomarkers for an increased risk of schizophrenia. Finally, we found an abnormal modularity partition of the dorsolateral prefrontal cortex (DLPFC) only in adults with 22q11DS, suggesting the presence of an abnormal development of functional network communities during adolescence in 22q11DS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Molecular ecological network analysis reveals the effects of probiotics and florfenicol on intestinal microbiota homeostasis: An example of sea cucumber.

    Science.gov (United States)

    Yang, Gang; Peng, Mo; Tian, Xiangli; Dong, Shuanglin

    2017-07-06

    Animal gut harbors diverse microbes that play crucial roles in the nutrition uptake, metabolism, and the regulation of host immune responses. The intestinal microbiota homeostasis is critical for health but poorly understood. Probiotics Paracoccus marcusii DB11 and Bacillus cereus G19, and antibiotics florfenicol did not significantly impact species richness and the diversity of intestinal microbiota of sea cucumber, in comparison with those in the control group by high-throughput sequencing. Molecular ecological network analysis indicated that P. marcusii DB11 supplementation may lead to sub-module integration and the formation of a large, new sub-module, and enhance species-species interactions and connecter and module hub numbers. B. cereus G19 supplementation decreased sub-module numbers, and increased the number of species-species interactions and module hubs. Sea cucumber treated with florfenicol were shown to have only one connecter and the lowest number of operational taxonomic units (OTUs) and species-species interactions within the ecological network. These results suggested that P. marcusii DB11 or B. cereus G19 may promote intestinal microbiota homeostasis by improving modularity, enhancing species-species interactions and increasing the number of connecters and/or module hubs within the network. In contrast, the use of florfenicol can lead to homeostatic collapse through the deterioration of the ecological network.

  6. Coexpression network analysis in abdominal and gluteal adipose tissue reveals regulatory genetic loci for metabolic syndrome and related phenotypes.

    Directory of Open Access Journals (Sweden)

    Josine L Min

    Full Text Available Metabolic Syndrome (MetS is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD and gluteal (GLU adipose tissue, and whole blood (WB, from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS-associated modules of coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6% were expressed in ABD and 51 (0.6% in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (D(ABD-GLU = 0.89, seven of which were associated with MetS (FDR P100,000 individuals; rs10282458, affecting expression of RARRES2 (encoding chemerin, was associated with body mass index (BMI (P = 6.0×10(-4; and rs2395185, affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (P = 8.7×10(-4 and BMI-adjusted waist-to-hip ratio (P = 2.4×10(-4. Since many genes and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations.

  7. Revealing the hidden language of complex networks.

    Science.gov (United States)

    Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Davis, Darren; Levnajic, Zoran; Janjic, Vuk; Karapandza, Rasa; Stojmirovic, Aleksandar; Pržulj, Nataša

    2014-04-01

    Sophisticated methods for analysing complex networks promise to be of great benefit to almost all scientific disciplines, yet they elude us. In this work, we make fundamental methodological advances to rectify this. We discover that the interaction between a small number of roles, played by nodes in a network, can characterize a network's structure and also provide a clear real-world interpretation. Given this insight, we develop a framework for analysing and comparing networks, which outperforms all existing ones. We demonstrate its strength by uncovering novel relationships between seemingly unrelated networks, such as Facebook, metabolic, and protein structure networks. We also use it to track the dynamics of the world trade network, showing that a country's role of a broker between non-trading countries indicates economic prosperity, whereas peripheral roles are associated with poverty. This result, though intuitive, has escaped all existing frameworks. Finally, our approach translates network topology into everyday language, bringing network analysis closer to domain scientists.

  8. Differential RNA-seq, Multi-Network Analysis and Metabolic Regulation Analysis of Kluyveromyces marxianus Reveals a Compartmentalised Response to Xylose.

    Directory of Open Access Journals (Sweden)

    Du Toit W P Schabort

    Full Text Available We investigated the transcriptomic response of a new strain of the yeast Kluyveromyces marxianus, in glucose and xylose media using RNA-seq. The data were explored in a number of innovative ways using a variety of networks types, pathway maps, enrichment statistics, reporter metabolites and a flux simulation model, revealing different aspects of the genome-scale response in an integrative systems biology manner. The importance of the subcellular localisation in the transcriptomic response is emphasised here, revealing new insights. As was previously reported by others using a rich medium, we show that peroxisomal fatty acid catabolism was dramatically up-regulated in a defined xylose mineral medium without fatty acids, along with mechanisms to activate fatty acids and transfer products of β-oxidation to the mitochondria. Notably, we observed a strong up-regulation of the 2-methylcitrate pathway, supporting capacity for odd-chain fatty acid catabolism. Next we asked which pathways would respond to the additional requirement for NADPH for xylose utilisation, and rationalised the unexpected results using simulations with Flux Balance Analysis. On a fundamental level, we investigated the contribution of the hierarchical and metabolic regulation levels to the regulation of metabolic fluxes. Metabolic regulation analysis suggested that genetic level regulation plays a major role in regulating metabolic fluxes in adaptation to xylose, even for the high capacity reactions, which is unexpected. In addition, isozyme switching may play an important role in re-routing of metabolic fluxes in subcellular compartments in K. marxianus.

  9. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Andrea eVega

    2015-11-01

    Full Text Available Nitrogen (N is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.

  10. Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks

    Science.gov (United States)

    2012-01-01

    Background Age-related macular degeneration (AMD) is a leading cause of blindness that affects the central region of the retinal pigmented epithelium (RPE), choroid, and neural retina. Initially characterized by an accumulation of sub-RPE deposits, AMD leads to progressive retinal degeneration, and in advanced cases, irreversible vision loss. Although genetic analysis, animal models, and cell culture systems have yielded important insights into AMD, the molecular pathways underlying AMD's onset and progression remain poorly delineated. We sought to better understand the molecular underpinnings of this devastating disease by performing the first comparative transcriptome analysis of AMD and normal human donor eyes. Methods RPE-choroid and retina tissue samples were obtained from a common cohort of 31 normal, 26 AMD, and 11 potential pre-AMD human donor eyes. Transcriptome profiles were generated for macular and extramacular regions, and statistical and bioinformatic methods were employed to identify disease-associated gene signatures and functionally enriched protein association networks. Selected genes of high significance were validated using an independent donor cohort. Results We identified over 50 annotated genes enriched in cell-mediated immune responses that are globally over-expressed in RPE-choroid AMD phenotypes. Using a machine learning model and a second donor cohort, we show that the top 20 global genes are predictive of AMD clinical diagnosis. We also discovered functionally enriched gene sets in the RPE-choroid that delineate the advanced AMD phenotypes, neovascular AMD and geographic atrophy. Moreover, we identified a graded increase of transcript levels in the retina related to wound response, complement cascade, and neurogenesis that strongly correlates with decreased levels of phototransduction transcripts and increased AMD severity. Based on our findings, we assembled protein-protein interactomes that highlight functional networks likely to be

  11. Correlation Network Analysis reveals a sequential reorganization of metabolic and transcriptional states during germination and gene-metabolite relationships in developing seedlings of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Tomos A Deri

    2010-05-01

    Full Text Available Abstract Background Holistic profiling and systems biology studies of nutrient availability are providing more and more insight into the mechanisms by which gene expression responds to diverse nutrients and metabolites. Less is known about the mechanisms by which gene expression is affected by endogenous metabolites, which can change dramatically during development. Multivariate statistics and correlation network analysis approaches were applied to non-targeted profiling data to investigate transcriptional and metabolic states and to identify metabolites potentially influencing gene expression during the heterotrophic to autotrophic transition of seedling establishment. Results Microarray-based transcript profiles were obtained from extracts of Arabidopsis seeds or seedlings harvested from imbibition to eight days-old. 1H-NMR metabolite profiles were obtained for corresponding samples. Analysis of transcript data revealed high differential gene expression through seedling emergence followed by a period of less change. Differential gene expression increased gradually to day 8, and showed two days, 5 and 7, with a very high proportion of up-regulated genes, including transcription factor/signaling genes. Network cartography using spring embedding revealed two primary clusters of highly correlated metabolites, which appear to reflect temporally distinct metabolic states. Principle Component Analyses of both sets of profiling data produced a chronological spread of time points, which would be expected of a developmental series. The network cartography of the transcript data produced two distinct clusters comprising days 0 to 2 and days 3 to 8, whereas the corresponding analysis of metabolite data revealed a shift of day 2 into the day 3 to 8 group. A metabolite and transcript pair-wise correlation analysis encompassing all time points gave a set of 237 highly significant correlations. Of 129 genes correlated to sucrose, 44 of them were known to be

  12. Resting-state brain organization revealed by functional covariance networks.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhang

    Full Text Available BACKGROUND: Brain network studies using techniques of intrinsic connectivity network based on fMRI time series (TS-ICN and structural covariance network (SCN have mapped out functional and structural organization of human brain at respective time scales. However, there lacks a meso-time-scale network to bridge the ICN and SCN and get insights of brain functional organization. METHODOLOGY AND PRINCIPAL FINDINGS: We proposed a functional covariance network (FCN method by measuring the covariance of amplitude of low-frequency fluctuations (ALFF in BOLD signals across subjects, and compared the patterns of ALFF-FCNs with the TS-ICNs and SCNs by mapping the brain networks of default network, task-positive network and sensory networks. We demonstrated large overlap among FCNs, ICNs and SCNs and modular nature in FCNs and ICNs by using conjunctional analysis. Most interestingly, FCN analysis showed a network dichotomy consisting of anti-correlated high-level cognitive system and low-level perceptive system, which is a novel finding different from the ICN dichotomy consisting of the default-mode network and the task-positive network. CONCLUSION: The current study proposed an ALFF-FCN approach to measure the interregional correlation of brain activity responding to short periods of state, and revealed novel organization patterns of resting-state brain activity from an intermediate time scale.

  13. Single-Cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks Involved in the Central Circadian Clock.

    Science.gov (United States)

    Park, James; Zhu, Haisun; O'Sullivan, Sean; Ogunnaike, Babatunde A; Weaver, David R; Schwaber, James S; Vadigepalli, Rajanikanth

    2016-01-01

    Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN). Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies toward understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.

  14. Single-cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks involved In the Central Circadian Clock

    Directory of Open Access Journals (Sweden)

    James Park

    2016-10-01

    Full Text Available Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN. Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies towards understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.

  15. A role for the septation initiation network in septum assembly revealed by genetic analysis of sid2-250 suppressors.

    Science.gov (United States)

    Jin, Quan-Wen; Zhou, Mian; Bimbo, Andrea; Balasubramanian, Mohan K; McCollum, Dannel

    2006-04-01

    In the fission yeast Schizosaccharomyces pombe the septation initiation network (SIN) is required for stabilization of the actomyosin ring in late mitosis as well as for ring constriction and septum deposition. In a genetic screen for suppressors of the SIN mutant sid2-250, we isolated a mutation, ace2-35, in the transcription factor Ace2p. Both ace2Delta and ace2-35 show defects in cell separation, and both can rescue the growth defects of some SIN mutants at low restrictive temperatures, where the SIN single mutants lyse at the time of cytokinesis. By detailed analysis of the formation and constriction of the actomyosin ring and septum in the sid2-250 mutant at low restrictive temperatures, we show that the lysis phenotype of the sid2-250 mutant is likely due to a weak cell wall and septum combined with enzymatic activity of septum-degrading enzymes. Consistent with the recent findings that Ace2p controls transcription of genes involved in cell separation, we show that disruption of some of these genes can also rescue sid2-250 mutants. Consistent with SIN mutants having defects in septum formation, many SIN mutants can be rescued at the low restrictive temperature by the osmotic stabilizer sorbitol. The small GTPase Rho1 is known to promote cell wall formation, and we find that Rho1p expressed from a multi-copy plasmid can also rescue sid2-250 at the low restrictive temperature. Together these results suggest that the SIN has a role in promoting proper cell wall formation at the division septa.

  16. Preventing necrotizing enterocolitis by food additives in neonates: A network meta-analysis revealing the efficacy and safety.

    Science.gov (United States)

    Yu, Wentao; Sui, Wu; Mu, Linsong; Yi, Wenying; Li, Haijuan; Wei, Liqin; Yin, Weihong

    2017-05-01

    Necrotizing enterocolitis (NEC) is a serious multifactorial gastrointestinal disease which is often discovered in premature infants. Various additives have been used to prevent NEC; yet, their relative efficacy and safety remain disputed. This study aims to compare the efficacy and safety of 5 food additives, namely, probiotics, probiotics + fructo-oligosaccharides, pentoxifylline, arginine, and lactoferrin in preventing NEC in neonates. Embase, PubMed, and Cochrane Library had been searched for all eligible randomized control trials. Odds ratios (ORs) were estimated for dichotomous data and mean differences with 95% credible intervals (CrIs) were estimated for continuous data. Surface under the cumulative ranking curve was used to rank efficacy and safety of the prevention methods on each endpoint. A total of 27 eligible studies with 4649 preterm infants were included in this network meta-analysis (NMA), and the efficacy and safety of 5 food additives were evaluated. Probiotic and arginine exhibited better preventive efficacy compared with placebo (OR = 0.50, 95% CrIs: 0.32-0.73; OR = 0.30, 95% CrIs: 0.12-0.73, respectively). Only probiotic achieved a considerable decrease in the risk of mortality compared to placebo (OR = 0.68, 95% CrIs: 0.46-0.98). NEC patients with lactoferrin appeared to have lower incidence of sepsis than those of placebo (OR = 0.13, 95% CrIs: 0.03-0.61) or probiotic (OR = 0.18, 95% CrIs: 0.03-0.83). Based on this NMA, probiotics had the potential to be the most preferable additive, since it exhibited a significant superiority for NEC and mortality as well as a relatively balanced performance in safety.

  17. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress.

    Directory of Open Access Journals (Sweden)

    Xiujing He

    Full Text Available Nitrogen (N is an essential nutrient for plants, and it directly affects grain yield and protein content in cereal crops. Plant root systems are not only critical for anchorage in the soil, but also for N acquisition. Therefore, genes controlling root development might also affect N uptake by plants. In this study, the responses of nitrogen on root architecture of mutant rtcs and wild-type of maize were investigated by morphological and physiological analysis. Subsequently, we performed a comparative RNA-Seq analysis to compare gene expression profiles between mutant rtcs roots and wild-type roots under different N conditions. We identified 786 co-modulated differentially expressed genes (DEGs related to root development. These genes participated in various metabolic processes. A co-expression cluster analysis and a cis-regulatory motifs analysis revealed the importance of the AP2-EREBP transcription factor family in the rtcs-dependent regulatory network. Some genotype-specific DEGs contained at least one LBD motif in their promoter region. Further analyses of the differences in gene transcript levels between rtcs and wild-type under different N conditions revealed 403 co-modulated DEGs with distinct functions. A comparative analysis revealed that the regulatory network controlling root development also controlled gene expression in response to N-deficiency. Several AP2-EREBP family members involved in multiple hormone signaling pathways were among the DEGs. These transcription factors might play important roles in the rtcs-dependent regulatory network related to root development and the N-deficiency response. Genes encoding the nitrate transporters NRT2-1, NAR2.1, NAR2.2, and NAR2.3 showed much higher transcript levels in rtcs than in wild-type under normal-N conditions. This result indicated that the LBD gene family mainly functions as transcriptional repressors, as noted in other studies. In summary, using a comparative RNA-Seq-based approach

  18. Transcriptome analysis of Callery pear (Pyrus calleryana reveals a comprehensive signalling network in response to Alternaria alternata.

    Directory of Open Access Journals (Sweden)

    Jialiang Kan

    Full Text Available The pear is an important temperate fruit worldwide that is produced by a group of species in the genus Pyrus. Callery pear (Pyrus calleryana Decne is characterized by high resistance to multiple diseases, good adaptability, and high ornamental value, and is therefore widely planted in pear orchards for edible fruit production or as stock. Plant pathogens are a major threat to pear yield. Black spot disease, caused by the filamentous fungus Alternaria alternata, is one of the most serious diseases in pear. Elucidation of resistant genes to black spot disease is extremely important for understanding the underlying mechanisms as well as for the development of resistant cultivars. In this study, high-throughput single-strand RNA-sequencing was used to compare the transcriptome profiles of Callery pear leaves before and after A. alternata incubation for 7 days. The analysis yielded 73.3 Gb of clean data that were mapped onto the reference genome of the Chinese pear, and differentially expressed gene(DEGs were identified with |log2FC| ≥ 1. Functional annotation demonstrated that black spot disease promoted great changes in the overall metabolism, and enrichment analysis of gene ontology terms showed that most of them are closely linked to signalling network and photosynthesis. Specifically, the genes included mainly transcription factors and genes involved in calcium signalling and ethylene and jasmonate pathways. Eight members of the ethylene response factor transcription factor gene family Group IX, including ERF1, ERF7, and ERF105, were up-regulated to 2.03-3.37-fold compared with CK, suggesting their role in the defence response to pathogen infection. Additionally, multiple transcription factors involved in biotic stresses, such as NAC78, NAC2, MYB44, and bHLH28, were up-regulated. Furthermore, we identified 144 long non-coding (lncRNAs, providing new insight into the involvement of lncRNAs in the response to black spot disease. Our study

  19. K-shell Analysis Reveals Distinct Functional Parts in an Electron Transfer Network and Its Implications for Extracellular Electron Transfer

    Directory of Open Access Journals (Sweden)

    Dewu eDing

    2016-04-01

    Full Text Available Shewanella oneidensis MR-1 is capable of extracellular electron transfer (EET and hence has attracted considerable attention. The EET pathways mainly consist of c-type cytochromes, along with some other proteins involved in electron transfer processes. By whole genome study and protein interactions inquisition, we constructed a large-scale electron transfer network containing 2276 interactions among 454 electron transfer related proteins in S. oneidensis MR-1. Using the k-shell decomposition method, we identified and analyzed distinct parts of the electron transfer network. We found that there was a negative correlation between the ks (k-shell values and the average DR_100 (disordered regions per 100 amino acids in every shell, which suggested that disordered regions of proteins played an important role during the formation and extension of the electron transfer network. Furthermore, proteins in the top three shells of the network are mainly located in the cytoplasm and inner membrane; these proteins can be responsible for transfer of electrons into the quinone pool in a wide variety of environmental conditions. In most of the other shells, proteins are broadly located throughout the five cellular compartments (cytoplasm, inner membrane, periplasm, outer membrane and extracellular, which ensures the important EET ability of S. oneidensis MR-1. Specifically, the fourth shell was responsible for EET and the c-type cytochromes in the remaining shells of the electron transfer network were involved in aiding EET. Taken together, these results show that there are distinct functional parts in the electron transfer network of S. oneidensis MR-1, and the EET processes could achieve high efficiency through cooperation through such an electron transfer network.

  20. Network analysis of host-virus communities in bats and rodents reveals determinants of cross-species transmission.

    Science.gov (United States)

    Luis, Angela D; O'Shea, Thomas J; Hayman, David T S; Wood, James L N; Cunningham, Andrew A; Gilbert, Amy T; Mills, James N; Webb, Colleen T

    2015-08-24

    Bats are natural reservoirs of several important emerging viruses. Cross-species transmission appears to be quite common among bats, which may contribute to their unique reservoir potential. Therefore, understanding the importance of bats as reservoirs requires examining them in a community context rather than concentrating on individual species. Here, we use a network approach to identify ecological and biological correlates of cross-species virus transmission in bats and rodents, another important host group. We show that given our current knowledge the bat viral sharing network is more connected than the rodent network, suggesting viruses may pass more easily between bat species. We identify host traits associated with important reservoir species: gregarious bats are more likely to share more viruses and bats which migrate regionally are important for spreading viruses through the network. We identify multiple communities of viral sharing within bats and rodents and highlight potential species traits that can help guide studies of novel pathogen emergence. © 2015 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  1. Coexpression network analysis in abdominal and gluteal adipose tissue reveals regulatory genetic loci for metabolic syndrome and related phenotypes

    DEFF Research Database (Denmark)

    Min, Josine L; Nicholson, George; Halgrimsdottir, Ingileif

    2012-01-01

    Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, ...

  2. Metabolic Network Analysis and Metatranscriptomics Reveal Auxotrophies and Nutrient Sources of the Cosmopolitan Freshwater Microbial Lineage acI.

    Science.gov (United States)

    Hamilton, Joshua J; Garcia, Sarahi L; Brown, Brittany S; Oyserman, Ben O; Moya-Flores, Francisco; Bertilsson, Stefan; Malmstrom, Rex R; Forest, Katrina T; McMahon, Katherine D

    2017-01-01

    An explosion in the number of available genome sequences obtained through metagenomics and single-cell genomics has enabled a new view of the diversity of microbial life, yet we know surprisingly little about how microbes interact with each other or their environment. In fact, the majority of microbial species remain uncultivated, while our perception of their ecological niches is based on reconstruction of their metabolic potential. In this work, we demonstrate how the "seed set framework," which computes the set of compounds that an organism must acquire from its environment (E. Borenstein, M. Kupiec, M. W. Feldman, and E. Ruppin, Proc Natl Acad Sci U S A 105:14482-14487, 2008, https://doi.org/10.1073/pnas.0806162105), enables computational analysis of metabolic reconstructions while providing new insights into a microbe's metabolic capabilities, such as nutrient use and auxotrophies. We apply this framework to members of the ubiquitous freshwater actinobacterial lineage acI, confirming and extending previous experimental and genomic observations implying that acI bacteria are heterotrophs reliant on peptides and saccharides. We also present the first metatranscriptomic study of the acI lineage, revealing high expression of transport proteins and the light-harvesting protein actinorhodopsin. Putative transport proteins complement predictions of nutrients and essential metabolites while providing additional support of the hypothesis that members of the acI are photoheterotrophs. IMPORTANCE The metabolic activity of uncultivated microorganisms contributes to numerous ecosystem processes, ranging from nutrient cycling in the environment to influencing human health and disease. Advances in sequencing technology have enabled the assembly of genomes for these microorganisms, but our ability to generate reference genomes far outstrips our ability to analyze them. Common approaches to analyzing microbial metabolism require reconstructing the entirety of an organism

  3. MicroRNA and transcription factor mediated regulatory network analysis reveals critical regulators and regulatory modules in myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Guangde Zhang

    Full Text Available Myocardial infarction (MI is a severe coronary artery disease and a leading cause of mortality and morbidity worldwide. However, the molecular mechanisms of MI have yet to be fully elucidated. In this study, we compiled MI-related genes, MI-related microRNAs (miRNAs and known human transcription factors (TFs, and we then identified 1,232 feed-forward loops (FFLs among these miRNAs, TFs and their co-regulated target genes through integrating target prediction. By merging these FFLs, the first miRNA and TF mediated regulatory network for MI was constructed, from which four regulators (SP1, ESR1, miR-21-5p and miR-155-5p and three regulatory modules that might play crucial roles in MI were then identified. Furthermore, based on the miRNA and TF mediated regulatory network and literature survey, we proposed a pathway model for miR-21-5p, the miR-29 family and SP1 to demonstrate their potential co-regulatory mechanisms in cardiac fibrosis, apoptosis and angiogenesis. The majority of the regulatory relations in the model were confirmed by previous studies, which demonstrated the reliability and validity of this miRNA and TF mediated regulatory network. Our study will aid in deciphering the complex regulatory mechanisms involved in MI and provide putative therapeutic targets for MI.

  4. Machine Learning and Network Analysis of Molecular Dynamics Trajectories Reveal Two Chains of Red/Ox-specific Residue Interactions in Human Protein Disulfide Isomerase.

    Science.gov (United States)

    Karamzadeh, Razieh; Karimi-Jafari, Mohammad Hossein; Sharifi-Zarchi, Ali; Chitsaz, Hamidreza; Salekdeh, Ghasem Hosseini; Moosavi-Movahedi, Ali Akbar

    2017-06-16

    The human protein disulfide isomerase (hPDI), is an essential four-domain multifunctional enzyme. As a result of disulfide shuffling in its terminal domains, hPDI exists in two oxidation states with different conformational preferences which are important for substrate binding and functional activities. Here, we address the redox-dependent conformational dynamics of hPDI through molecular dynamics (MD) simulations. Collective domain motions are identified by the principal component analysis of MD trajectories and redox-dependent opening-closing structure variations are highlighted on projected free energy landscapes. Then, important structural features that exhibit considerable differences in dynamics of redox states are extracted by statistical machine learning methods. Mapping the structural variations to time series of residue interaction networks also provides a holistic representation of the dynamical redox differences. With emphasizing on persistent long-lasting interactions, an approach is proposed that compiled these time series networks to a single dynamic residue interaction network (DRIN). Differential comparison of DRIN in oxidized and reduced states reveals chains of residue interactions that represent potential allosteric paths between catalytic and ligand binding sites of hPDI.

  5. Potential language and attentional networks revealed through factor analysis of rCBF data measured with SPECT

    DEFF Research Database (Denmark)

    McLaughlin, T; Steinberg, B; Christensen, B

    1992-01-01

    stimuli to ten healthy, young volunteers: (a) diotically presented Danish speech, (b) dichotic word stimulation, and (c) white noise. Wilcoxon's signed ranks sum test revealed increased rCBF in language-related areas of cortex, viz., Wernicke's area and its right-sided homologous area as well as in Broca......We used changes in regional cerebral blood flow (rCBF) to disclose regions involved in central auditory and language processing in the normal brain. rCBF was quantified with a fast-rotating, single-photon emission computerized tomograph (SPECT) and inhalation of 133Xe. rCBF data were obtained...

  6. Soil analysis reveals the presence of an extended mycelial network in a Tuber magnatum truffle-ground.

    Science.gov (United States)

    Zampieri, Elisa; Murat, Claude; Cagnasso, Matteo; Bonfante, Paola; Mello, Antonietta

    2010-01-01

    Truffles are hypogeous ectomycorrhizal fungi. They belong to the genus Tuber and are currently considered a hot spot in fungal biology due to their ecological and economic relevance. Among all the species, Tuber magnatum is the most appreciated because of its special taste and aroma. The aim of this work was to set up a protocol to detect T. magnatum in soil and to assess its distribution in a natural truffle-ground. We used the beta-tubulin gene as a marker to identify T. magnatum in the soil. This gene allowed us to trace the distribution of the fungus over the entire truffle-ground. Tuber magnatum was found, in one case, 100 m from the productive host plant. This study highlights that T. magnatum mycelium is more widespread than can be inferred from the distribution of truffles and ectomycorrhizas. Interestingly, a new haplotype - never described from fruiting body material - was identified. The specific detection of T. magnatum in the soil will allow to unravel the ecology of this fungus, following its mycelial network. Moreover, this new tool may have practical importance in projects aimed to increase large-scale truffle production, checking for T. magnatum persistence in plantations.

  7. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes.

    Science.gov (United States)

    Subramanian, Devika; Natarajan, Jeyakumar

    2015-12-10

    Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Single-molecule kinetic analysis of HP1-chromatin binding reveals a dynamic network of histone modification and DNA interactions.

    Science.gov (United States)

    Bryan, Louise C; Weilandt, Daniel R; Bachmann, Andreas L; Kilic, Sinan; Lechner, Carolin C; Odermatt, Pascal D; Fantner, Georg E; Georgeon, Sandrine; Hantschel, Oliver; Hatzimanikatis, Vassily; Fierz, Beat

    2017-10-13

    Chromatin recruitment of effector proteins involved in gene regulation depends on multivalent interaction with histone post-translational modifications (PTMs) and structural features of the chromatin fiber. Due to the complex interactions involved, it is currently not understood how effectors dynamically sample the chromatin landscape. Here, we dissect the dynamic chromatin interactions of a family of multivalent effectors, heterochromatin protein 1 (HP1) proteins, using single-molecule fluorescence imaging and computational modeling. We show that the three human HP1 isoforms are recruited and retained on chromatin by a dynamic exchange between histone PTM and DNA bound states. These interactions depend on local chromatin structure, the HP1 isoforms as well as on PTMs on HP1 itself. Of the HP1 isoforms, HP1α exhibits the longest residence times and fastest binding rates due to DNA interactions in addition to PTM binding. HP1α phosphorylation further increases chromatin retention through strengthening of multivalency while reducing DNA binding. As DNA binding in combination with specific PTM recognition is found in many chromatin effectors, we propose a general dynamic capture mechanism for effector recruitment. Multiple weak protein and DNA interactions result in a multivalent interaction network that targets effectors to a specific chromatin modification state, where their activity is required. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Social networks dynamics revealed by temporal analysis: An example in a non-human primate (Macaca sylvanus) in "La Forêt des Singes".

    Science.gov (United States)

    Sosa, Sebastian; Zhang, Peng; Cabanes, Guénaël

    2017-06-01

    This study applied a temporal social network analysis model to describe three affiliative social networks (allogrooming, sleep in contact, and triadic interaction) in a non-human primate species, Macaca sylvanus. Three main social mechanisms were examined to determine interactional patterns among group members, namely preferential attachment (i.e., highly connected individuals are more likely to form new connections), triadic closure (new connections occur via previous close connections), and homophily (individuals interact preferably with others with similar attributes). Preferential attachment was only observed for triadic interaction network. Triadic closure was significant in allogrooming and triadic interaction networks. Finally, gender homophily was seasonal for allogrooming and sleep in contact networks, and observed in each period for triadic interaction network. These individual-based behaviors are based on individual reactions, and their analysis can shed light on the formation of the affiliative networks determining ultimate coalition networks, and how these networks may evolve over time. A focus on individual behaviors is necessary for a global interactional approach to understanding social behavior rules and strategies. When combined, these social processes could make animal social networks more resilient, thus enabling them to face drastic environmental changes. This is the first study to pinpoint some of the processes underlying the formation of a social structure in a non-human primate species, and identify common mechanisms with humans. The approach used in this study provides an ideal tool for further research seeking to answer long-standing questions about social network dynamics. © 2017 Wiley Periodicals, Inc.

  10. Proteomic analysis of proteins surrounding occludin and claudin-4 reveals their proximity to signaling and trafficking networks.

    Directory of Open Access Journals (Sweden)

    Karin Fredriksson

    Full Text Available Tight junctions are complex membrane structures that regulate paracellular movement of material across epithelia and play a role in cell polarity, signaling and cytoskeletal organization. In order to expand knowledge of the tight junction proteome, we used biotin ligase (BioID fused to occludin and claudin-4 to biotinylate their proximal proteins in cultured MDCK II epithelial cells. We then purified the biotinylated proteins on streptavidin resin and identified them by mass spectrometry. Proteins were ranked by relative abundance of recovery by mass spectrometry, placed in functional categories, and compared not only among the N- and C- termini of occludin and the N-terminus of claudin-4, but also with our published inventory of proteins proximal to the adherens junction protein E-cadherin and the tight junction protein ZO-1. When proteomic results were analyzed, the relative distribution among functional categories was similar between occludin and claudin-4 proximal proteins. Apart from already known tight junction- proteins, occludin and claudin-4 proximal proteins were enriched in signaling and trafficking proteins, especially endocytic trafficking proteins. However there were significant differences in the specific proteins comprising the functional categories near each of the tagging proteins, revealing spatial compartmentalization within the junction complex. Taken together, these results expand the inventory of known and unknown proteins at the tight junction to inform future studies of the organization and physiology of this complex structure.

  11. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer

    DEFF Research Database (Denmark)

    Joshi, Tejal; Elias, Daniel; Stenvang, Jan

    2016-01-01

    Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of mi......RNA-mediated gene regulation in three clinically-relevant tamoxifen-resistant breast cancer cell lines (TamRs) compared to their parental tamoxifen-sensitive cell line. Alterations in the expression of 131 miRNAs in tamoxifen-resistant vs. parental cell lines were identified, 22 of which were common to all Tam...... and 14-3-3 family genes. Integrating the inferred miRNA-target relationships, we investigated the functional importance of 2 central genes, SNAI2 and FYN, which showed increased expression in TamR cells, while their corresponding regulatory miRNA were downregulated. Using specific chemical inhibitors...

  12. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer

    DEFF Research Database (Denmark)

    Joshi, Tejal; Elias, Daniel; Stenvang, Jan

    2016-01-01

    Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of mi......RNA-mediated gene regulation in three clinically-relevant tamoxifen-resistant breast cancer cell lines (TamRs) compared to their parental tamoxifen-sensitive cell line. Alterations in the expression of 131 miRNAs in tamoxifen-resistant vs. parental cell lines were identified, 22 of which were common to all Tam......+ breast cancer patients receiving adjuvant tamoxifen mono-therapy. Our results provide new insight into the molecular mechanisms of tamoxifen resistance and may form the basis for future medical intervention for the large number of women with tamoxifen-resistant ER+ breast cancer....

  13. Comparative transcriptomic analysis of two Brassica napus near-isogenic lines reveals a network of genes that influences seed oil accumulation

    Directory of Open Access Journals (Sweden)

    Jingxue Wang

    2016-09-01

    Full Text Available Rapeseed (Brassica napus is an important oil seed crop, providing more than 13% of the world’s supply of edible oils. An in-depth knowledge of the gene network involved in biosynthesis and accumulation of seed oil is critical for the improvement of B. napus. Using available genomic and transcriptomic resources, we identified 1,750 acyl lipid metabolism (ALM genes that are distributed over 19 chromosomes in the B. napus genome. B. rapa and B. oleracea, two diploid progenitors of B. napus, contributed almost equally to the ALM genes. Genome collinearity analysis demonstrated that the majority of the ALM genes have arisen due to genome duplication or segmental duplication events. In addition, we profiled the expression patterns of the ALM genes in four different developmental stages. Furthermore, we developed two B. napus near isogenic lines (NILs. The high oil NIL, YC13-559, accumulates more than 10% of seed oil compared to the other, YC13-554. Comparative gene expression analysis revealed upregulation of lipid biosynthesis-related regulatory genes in YC13-559, including SHOOTMERISTEMLESS, LEAFY COTYLEDON 1 (LEC1, LEC2, FUSCA3, ABSCISIC ACID INSENSITIVE 3 (ABI3, ABI4, ABI5, and WRINKLED1, as well as structural genes, such as ACETYL-CoA CARBOXYLASE, ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE, and LONG-CHAIN ACYL-CoA SYNTHETASES. We observed that several genes related to the phytohormones, gibberellins, jasmonate, and indole acetic acid, were differentially expressed in the NILs. Our findings provide a broad account of the numbers, distribution, and expression profiles of acyl lipid metabolism genes, as well as gene networks that potentially control oil accumulation in B. napus seeds. The upregulation of key regulatory and structural genes related to lipid biosynthesis likely plays a major role for the increased seed oil in YC13-559.

  14. Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Syed, Maleeha F; Lindquist, Martin A; Pillai, Jay J; Agarwal, Shruti; Gujar, Sachin K; Choe, Ann S; Caffo, Brian; Sair, Haris I

    2017-12-01

    Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.

  15. ChIP-seq analysis of the LuxR-type regulator VjbR reveals novel insights into the Brucella virulence gene expression network.

    Science.gov (United States)

    Kleinman, Claudia L; Sycz, Gabriela; Bonomi, Hernán R; Rodríguez, Romina M; Zorreguieta, Angeles; Sieira, Rodrigo

    2017-06-02

    LuxR-type transcription factors control diverse physiological functions necessary for bacterial adaptation to environmental changes. In the intracellular pathogen Brucella, the LuxR homolog VjbR has been shown to regulate the expression of virulence factors acting at early stages of the intracellular infection and, directly or indirectly, hundreds of additional genes. However, the precise determination of VjbR direct targets has so far proved elusive. Here, we performed chromatin immunoprecipitation of VjbR followed by next-generation sequencing (ChIP-seq). We detected a large amount of VjbR-binding sites distributed across the Brucella genome and determined a markedly asymmetric binding consensus motif, an unusual feature among LuxR-type regulators. RNA-seq analysis performed under conditions mimicking the eukaryotic intracellular environment revealed that, among all loci associated to VjbR-binding, this regulator directly modulated the expression of only a subset of genes encoding functions consistent with an intracellular adaptation strategy for survival during the initial stages of the host cell infection. Other VjbR-binding events, however, showed to be dissociated from transcription and may require different environmental signals to produce a transcriptional output. Taken together, our results bring new insights into the extent and functionality of LuxR-type-related transcriptional networks. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. ChIP-seq analysis of the LuxR-type regulator VjbR reveals novel insights into the Brucella virulence gene expression network

    Science.gov (United States)

    Sycz, Gabriela; Bonomi, Hernán R.; Rodríguez, Romina M.; Zorreguieta, Angeles

    2017-01-01

    Abstract LuxR-type transcription factors control diverse physiological functions necessary for bacterial adaptation to environmental changes. In the intracellular pathogen Brucella, the LuxR homolog VjbR has been shown to regulate the expression of virulence factors acting at early stages of the intracellular infection and, directly or indirectly, hundreds of additional genes. However, the precise determination of VjbR direct targets has so far proved elusive. Here, we performed chromatin immunoprecipitation of VjbR followed by next-generation sequencing (ChIP-seq). We detected a large amount of VjbR-binding sites distributed across the Brucella genome and determined a markedly asymmetric binding consensus motif, an unusual feature among LuxR-type regulators. RNA-seq analysis performed under conditions mimicking the eukaryotic intracellular environment revealed that, among all loci associated to VjbR-binding, this regulator directly modulated the expression of only a subset of genes encoding functions consistent with an intracellular adaptation strategy for survival during the initial stages of the host cell infection. Other VjbR-binding events, however, showed to be dissociated from transcription and may require different environmental signals to produce a transcriptional output. Taken together, our results bring new insights into the extent and functionality of LuxR-type-related transcriptional networks. PMID:28334833

  17. In silico target network analysis of de novo-discovered, tick saliva-specific microRNAs reveals important combinatorial effects in their interference with vertebrate host physiology.

    Science.gov (United States)

    Hackenberg, Michael; Langenberger, David; Schwarz, Alexandra; Erhart, Jan; Kotsyfakis, Michail

    2017-08-01

    The hard tick Ixodes ricinus is an important disease vector whose salivary secretions mediate blood-feeding success on vertebrate hosts, including humans. Here we describe the expression profiles and downstream analysis of de novo-discovered microRNAs (miRNAs) expressed in I. ricinus salivary glands and saliva. Eleven tick-derived libraries were sequenced to produce 67,375,557 Illumina reads. De novo prediction yielded 67 bona fide miRNAs out of which 35 are currently not present in miRBase. We report for the first time the presence of microRNAs in tick saliva, obtaining furthermore molecular indicators that those might be of exosomal origin. Ten out of these microRNAs are at least 100 times more represented in saliva. For the four most expressed microRNAs from this subset, we analyzed their combinatorial effects upon their host transcriptome using a novel in silico target network approach. We show that only the inclusion of combinatorial effects reveals the functions in important pathways related to inflammation and pain sensing. A control set of highly abundant microRNAs in both saliva and salivary glands indicates no significant pathways and a far lower number of shared target genes. Therefore, the analysis of miRNAs from pure tick saliva strongly supports the hypothesis that tick saliva miRNAs can modulate vertebrate host homeostasis and represents the first direct evidence of tick miRNA-mediated regulation of vertebrate host gene expression at the tick-host interface. As such, the herein described miRNAs may support future drug discovery and development projects that will also experimentally question their predicted molecular targets in the vertebrate host. © 2017 Hackenberg et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Differential network entropy reveals cancer system hallmarks

    Science.gov (United States)

    West, James; Bianconi, Ginestra; Severini, Simone; Teschendorff, Andrew E.

    2012-01-01

    The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network we here demonstrate that cancer cells are characterised by an increase in network entropy. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local network entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local correlation patterns. In particular, we find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in network entropy. These findings may have potential implications for identifying novel drug targets. PMID:23150773

  19. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks*

    Science.gov (United States)

    Krumholz, Elias W.; Libourel, Igor G. L.

    2015-01-01

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. PMID:26041773

  20. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs

    Science.gov (United States)

    Hu, Hongtao; Rashotte, Aaron M.; Singh, Narendra K.; Weaver, David B.; Goertzen, Leslie R.; Singh, Shree R.; Locy, Robert D.

    2015-01-01

    MicroRNAs (miRNAs) and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs) are two distinct subfamilies of small RNAs (sRNAs) that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs) are processed from longer RNA precursors by DICER-LIKE proteins (DCLs). Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs) and 108 novel lineage-specific miRNAs (ls-miRNAs). Along with miRNAs, 2,033 miRNA variants (isomiRNAs) were identified as well. Those isomiRNAs with variation at the 3’-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs) were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers of a

  1. Social network analysis: Applied tool to enhance effective collaboration between child protection organisations by revealing and strengthening work relationships/Netzwerkanalyse: eine angewandte methode fur die effektive zusammenarbeit von kinderschutzorganisationen/Analiza mreze odnosa: primijenjena metoda za ucinkovitu suradnju organizacija za zastitu djece

    National Research Council Canada - National Science Library

    David, Beata

    2013-01-01

    .... The qualitative approach was complemented by social network analysis. Revealing the mechanism based on the actors' perception on how the child protection network operates, we identified and named the strengths and weaknesses of its structure...

  2. Brain rhythms reveal a hierarchical network organization.

    Directory of Open Access Journals (Sweden)

    G Karl Steinke

    2011-10-01

    Full Text Available Recordings of ongoing neural activity with EEG and MEG exhibit oscillations of specific frequencies over a non-oscillatory background. The oscillations appear in the power spectrum as a collection of frequency bands that are evenly spaced on a logarithmic scale, thereby preventing mutual entrainment and cross-talk. Over the last few years, experimental, computational and theoretical studies have made substantial progress on our understanding of the biophysical mechanisms underlying the generation of network oscillations and their interactions, with emphasis on the role of neuronal synchronization. In this paper we ask a very different question. Rather than investigating how brain rhythms emerge, or whether they are necessary for neural function, we focus on what they tell us about functional brain connectivity. We hypothesized that if we were able to construct abstract networks, or "virtual brains", whose dynamics were similar to EEG/MEG recordings, those networks would share structural features among themselves, and also with real brains. Applying mathematical techniques for inverse problems, we have reverse-engineered network architectures that generate characteristic dynamics of actual brains, including spindles and sharp waves, which appear in the power spectrum as frequency bands superimposed on a non-oscillatory background dominated by low frequencies. We show that all reconstructed networks display similar topological features (e.g. structural motifs and dynamics. We have also reverse-engineered putative diseased brains (epileptic and schizophrenic, in which the oscillatory activity is altered in different ways, as reported in clinical studies. These reconstructed networks show consistent alterations of functional connectivity and dynamics. In particular, we show that the complexity of the network, quantified as proposed by Tononi, Sporns and Edelman, is a good indicator of brain fitness, since virtual brains modeling diseased states

  3. Network-based analysis of differentially expressed genes in cerebrospinal fluid (CSF and blood reveals new candidate genes for multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Nahid Safari-Alighiarloo

    2016-12-01

    Full Text Available Background The involvement of multiple genes and missing heritability, which are dominant in complex diseases such as multiple sclerosis (MS, entail using network biology to better elucidate their molecular basis and genetic factors. We therefore aimed to integrate interactome (protein–protein interaction (PPI and transcriptomes data to construct and analyze PPI networks for MS disease. Methods Gene expression profiles in paired cerebrospinal fluid (CSF and peripheral blood mononuclear cells (PBMCs samples from MS patients, sampled in relapse or remission and controls, were analyzed. Differentially expressed genes which determined only in CSF (MS vs. control and PBMCs (relapse vs. remission separately integrated with PPI data to construct the Query-Query PPI (QQPPI networks. The networks were further analyzed to investigate more central genes, functional modules and complexes involved in MS progression. Results The networks were analyzed and high centrality genes were identified. Exploration of functional modules and complexes showed that the majority of high centrality genes incorporated in biological pathways driving MS pathogenesis. Proteasome and spliceosome were also noticeable in enriched pathways in PBMCs (relapse vs. remission which were identified by both modularity and clique analyses. Finally, STK4, RB1, CDKN1A, CDK1, RAC1, EZH2, SDCBP genes in CSF (MS vs. control and CDC37, MAP3K3, MYC genes in PBMCs (relapse vs. remission were identified as potential candidate genes for MS, which were the more central genes involved in biological pathways. Discussion This study showed that network-based analysis could explicate the complex interplay between biological processes underlying MS. Furthermore, an experimental validation of candidate genes can lead to identification of potential therapeutic targets.

  4. Multi-modal analysis of functional connectivity and cerebral blood flow reveals shared and unique effects of propofol in large-scale brain networks.

    Science.gov (United States)

    Qiu, Maolin; Scheinost, Dustin; Ramani, Ramachandran; Constable, R Todd

    2017-03-01

    Anesthesia-induced changes in functional connectivity and cerebral blow flow (CBF) in large-scale brain networks have emerged as key markers of reduced consciousness. However, studies of functional connectivity disagree on which large-scale networks are altered or preserved during anesthesia, making it difficult to find a consensus amount studies. Additionally, pharmacological alterations in CBF could amplify or occlude changes in connectivity due to the shared variance between CBF and connectivity. Here, we used data-driven connectivity methods and multi-modal imaging to investigate shared and unique neural correlates of reduced consciousness for connectivity in large-scale brain networks. Rs-fMRI and CBF data were collected from the same subjects during an awake and deep sedation condition induced by propofol. We measured whole-brain connectivity using the intrinsic connectivity distribution (ICD), a method not reliant on pre-defined seed regions, networks of interest, or connectivity thresholds. The shared and unique variance between connectivity and CBF were investigated. Finally, to account for shared variance, we present a novel extension to ICD that incorporates cerebral blood flow (CBF) as a scaling factor in the calculation of global connectivity, labeled CBF-adjusted ICD). We observed altered connectivity in multiple large-scale brain networks including the default mode (DMN), salience, visual, and motor networks and reduced CBF in the DMN, frontoparietal network, and thalamus. Regional connectivity and CBF were significantly correlated during both the awake and propofol condition. Nevertheless changes in connectivity and CBF between the awake and deep sedation condition were only significantly correlated in a subsystem of the DMN, suggesting that, while there is significant shared variance between the modalities, changes due to propofol are relatively unique. Similar, but less significant, results were observed in the CBF-adjusted ICD analysis, providing

  5. Network topology reveals key cardiovascular disease genes.

    Directory of Open Access Journals (Sweden)

    Anida Sarajlić

    Full Text Available The structure of protein-protein interaction (PPI networks has already been successfully used as a source of new biological information. Even though cardiovascular diseases (CVDs are a major global cause of death, many CVD genes still await discovery. We explore ways to utilize the structure of the human PPI network to find important genes for CVDs that should be targeted by drugs. The hope is to use the properties of such important genes to predict new ones, which would in turn improve a choice of therapy. We propose a methodology that examines the PPI network wiring around genes involved in CVDs. We use the methodology to identify a subset of CVD-related genes that are statistically significantly enriched in drug targets and "driver genes." We seek such genes, since driver genes have been proposed to drive onset and progression of a disease. Our identified subset of CVD genes has a large overlap with the Core Diseasome, which has been postulated to be the key to disease formation and hence should be the primary object of therapeutic intervention. This indicates that our methodology identifies "key" genes responsible for CVDs. Thus, we use it to predict new CVD genes and we validate over 70% of our predictions in the literature. Finally, we show that our predicted genes are functionally similar to currently known CVD drug targets, which confirms a potential utility of our methodology towards improving therapy for CVDs.

  6. A Network Based Methodology to Reveal Patterns in Knowledge Transfer

    Directory of Open Access Journals (Sweden)

    Orlando López-Cruz

    2015-12-01

    Full Text Available This paper motivates, presents and demonstrates in use a methodology based in complex network analysis to support research aimed at identification of sources in the process of knowledge transfer at the interorganizational level. The importance of this methodology is that it states a unified model to reveal knowledge sharing patterns and to compare results from multiple researches on data from different periods of time and different sectors of the economy. This methodology does not address the underlying statistical processes. To do this, national statistics departments (NSD provide documents and tools at their websites. But this proposal provides a guide to model information inferences gathered from data processing revealing links between sources and recipients of knowledge being transferred and that the recipient detects as main source to new knowledge creation. Some national statistics departments set as objective for these surveys the characterization of innovation dynamics in firms and to analyze the use of public support instruments. From this characterization scholars conduct different researches. Measures of dimensions of the network composed by manufacturing firms and other organizations conform the base to inquiry the structure that emerges from taking ideas from other organizations to incept innovations. These two sets of data are actors of a two- mode-network. The link between two actors (network nodes, one acting as the source of the idea. The second one acting as the destination comes from organizations or events organized by organizations that “provide” ideas to other group of firms. The resulting demonstrated design satisfies the objective of being a methodological model to identify sources in knowledge transfer of knowledge effectively used in innovation.

  7. Phylogenetic Network Analysis Revealed the Occurrence of Horizontal Gene Transfer of 16S rRNA in the GenusEnterobacter.

    Science.gov (United States)

    Sato, Mitsuharu; Miyazaki, Kentaro

    2017-01-01

    Horizontal gene transfer (HGT) is a ubiquitous genetic event in bacterial evolution, but it seldom occurs for genes involved in highly complex supramolecules (or biosystems), which consist of many gene products. The ribosome is one such supramolecule, but several bacteria harbor dissimilar and/or chimeric 16S rRNAs in their genomes, suggesting the occurrence of HGT of this gene. However, we know little about whether the genes actually experience HGT and, if so, the frequency of such a transfer. This is primarily because the methods currently employed for phylogenetic analysis (e.g., neighbor-joining, maximum likelihood, and maximum parsimony) of 16S rRNA genes assume point mutation-driven tree-shape evolution as an evolutionary model, which is intrinsically inappropriate to decipher the evolutionary history for genes driven by recombination. To address this issue, we applied a phylogenetic network analysis, which has been used previously for detection of genetic recombination in homologous alleles, to the 16S rRNA gene. We focused on the genus Enterobacter , whose phylogenetic relationships inferred by multi-locus sequence alignment analysis and 16S rRNA sequences are incompatible. All 10 complete genomic sequences were retrieved from the NCBI database, in which 71 16S rRNA genes were included. Neighbor-joining analysis demonstrated that the genes residing in the same genomes clustered, indicating the occurrence of intragenomic recombination. However, as suggested by the low bootstrap values, evolutionary relationships between the clusters were uncertain. We then applied phylogenetic network analysis to representative sequences from each cluster. We found three ancestral 16S rRNA groups; the others were likely created through recursive recombination between the ancestors and chimeric descendants. Despite the large sequence changes caused by the recombination events, the RNA secondary structures were conserved. Successive intergenomic and intragenomic recombination

  8. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof Poterlowicz

    2017-09-01

    Full Text Available Mammalian genomes contain several dozens of large (>0.5 Mbp lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene

  9. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

    Science.gov (United States)

    Poterlowicz, Krzysztof; Yarker, Joanne L; Malashchuk, Igor; Lajoie, Brian R; Mardaryev, Andrei N; Gdula, Michal R; Sharov, Andrey A; Kohwi-Shigematsu, Terumi; Botchkarev, Vladimir A; Fessing, Michael Y

    2017-09-01

    Mammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and

  10. Molecular dynamics simulations and structure-based network analysis reveal structural and functional aspects of G-protein coupled receptor dimer interactions

    Science.gov (United States)

    Baltoumas, Fotis A.; Theodoropoulou, Margarita C.; Hamodrakas, Stavros J.

    2016-06-01

    A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.

  11. Social network analysis

    NARCIS (Netherlands)

    de Nooy, W.; Crothers, C.

    2009-01-01

    Social network analysis (SNA) focuses on the structure of ties within a set of social actors, e.g., persons, groups, organizations, and nations, or the products of human activity or cognition such as web sites, semantic concepts, and so on. It is linked to structuralism in sociology stressing the

  12. Power graph compression reveals dominant relationships in genetic transcription networks.

    Science.gov (United States)

    Ahnert, Sebastian E

    2013-11-01

    We introduce a framework for the discovery of dominant relationship patterns in transcription networks, by compressing the network into a power graph with overlapping power nodes. Our application of this approach to the transcription networks of S. cerevisiae and E. coli, paired with GO term enrichment analysis, provides a highly informative overview of the most prominent relationships in the gene regulatory networks of these two organisms.

  13. Network performance analysis

    CERN Document Server

    Bonald, Thomas

    2013-01-01

    The book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples i

  14. Statistical Analysis of Bus Networks in India

    CERN Document Server

    Chatterjee, Atanu; Ramadurai, Gitakrishnan

    2015-01-01

    Through the past decade the field of network science has established itself as a common ground for the cross-fertilization of exciting inter-disciplinary studies which has motivated researchers to model almost every physical system as an interacting network consisting of nodes and links. Although public transport networks such as airline and railway networks have been extensively studied, the status of bus networks still remains in obscurity. In developing countries like India, where bus networks play an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer some of the basic questions on its evolution, growth, robustness and resiliency. In this paper, we model the bus networks of major Indian cities as graphs in \\textit{L}-space, and evaluate their various statistical properties using concepts from network science. Our analysis reveals a wide spectrum of network topology with the common underlying feature of small-world property. We observe tha...

  15. Construction and analysis of cardiac hypertrophy-associated lncRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in cardiac hypertrophy.

    Science.gov (United States)

    Song, Chao; Zhang, Jian; Liu, Yan; Pan, Hao; Qi, Han-Ping; Cao, Yong-Gang; Zhao, Jian-Mei; Li, Shang; Guo, Jing; Sun, Hong-Li; Li, Chun-Quan

    2016-03-08

    Cardiac hypertrophy (CH) could increase cardiac after-load and lead to heart failure. Recent studies have suggested that long non-coding RNA (lncRNA) played a crucial role in the process of the cardiac hypertrophy, such as Mhrt, TERMINATOR. Some studies have further found a new interacting mechanism, competitive endogenous RNA (ceRNA), of which lncRNA could interact with micro-RNAs (miRNA) and indirectly interact with mRNAs through competing interactions. However, the mechanism of ceRNA regulated by lncRNA in the CH remained unclear. In our study, we generated a global triple network containing mRNA, miRNA and lncRNA, and extracted a CH related lncRNA-mRNA network (CHLMN) through integrating the data from starbase, miRanda database and gene expression profile. Based on the ceRNA mechanism, we analyzed the characters of CHLMN and found that 3 lncRNAs (SLC26A4-AS1, RP11-344E13.3 and MAGI1-IT1) were high related to CH. We further performed cluster module analysis and random walk with restart for the CHLMN, finally 14 lncRNAs had been discovered as the potential CH related disease genes. Our results showed that lncRNA played an important role in the CH and could shed new light to the understanding underlying mechanisms of the CH.

  16. Social network analysis and dual rover communications

    Science.gov (United States)

    Litaker, Harry L.; Howard, Robert L.

    2013-10-01

    Social network analysis (SNA) refers to the collection of techniques, tools, and methods used in sociometry aiming at the analysis of social networks to investigate decision making, group communication, and the distribution of information. Human factors engineers at the National Aeronautics and Space Administration (NASA) conducted a social network analysis on communication data collected during a 14-day field study operating a dual rover exploration mission to better understand the relationships between certain network groups such as ground control, flight teams, and planetary science. The analysis identified two communication network structures for the continuous communication and Twice-a-Day Communication scenarios as a split network and negotiated network respectfully. The major nodes or groups for the networks' architecture, transmittal status, and information were identified using graphical network mapping, quantitative analysis of subjective impressions, and quantified statistical analysis using Sociometric Statue and Centrality. Post-questionnaire analysis along with interviews revealed advantages and disadvantages of each network structure with team members identifying the need for a more stable continuous communication network, improved robustness of voice loops, and better systems training/capabilities for scientific imagery data and operational data during Twice-a-Day Communications.

  17. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  18. Mesoscopic structures reveal the network between the layers of multiplex data sets

    Science.gov (United States)

    Iacovacci, Jacopo; Wu, Zhihao; Bianconi, Ginestra

    2015-10-01

    Multiplex networks describe a large variety of complex systems, whose elements (nodes) can be connected by different types of interactions forming different layers (networks) of the multiplex. Multiplex networks include social networks, transportation networks, or biological networks in the cell or in the brain. Extracting relevant information from these networks is of crucial importance for solving challenging inference problems and for characterizing the multiplex networks microscopic and mesoscopic structure. Here we propose an information theory method to extract the network between the layers of multiplex data sets, forming a "network of networks." We build an indicator function, based on the entropy of network ensembles, to characterize the mesoscopic similarities between the layers of a multiplex network, and we use clustering techniques to characterize the communities present in this network of networks. We apply the proposed method to study the Multiplex Collaboration Network formed by scientists collaborating on different subjects and publishing in the American Physical Society journals. The analysis of this data set reveals the interplay between the collaboration networks and the organization of knowledge in physics.

  19. An integrated anti-arrhythmic target network of a Chinese medicine compound, Wenxin Keli, revealed by combined machine learning and molecular pathway analysis.

    Science.gov (United States)

    Wang, Taiyi; Lu, Ming; Du, Qunqun; Yao, Xi; Zhang, Peng; Chen, Xiaonan; Xie, Weiwei; Li, Zheng; Ma, Yuling; Zhu, Yan

    2017-05-02

    Wenxin Keli (WK), a Chinese patent medicine, is known to be effective against cardiac arrhythmias and heart failure. Although a number of electrophysiological findings regarding its therapeutic effect have been reported, the active components and system-level characterizations of the component-target interactions of WK have yet to be elucidated. In the current study, we present the first report of a new protective effect of WK on suppressing anti-arrhythmic-agent-induced arrhythmias. In a model of isolated guinea pig hearts, rapid perfusion of quinidine altered the heart rate and prolonged the Q-T interval. Pretreatment with WK significantly prevented quinidine-induced arrhythmias. To explain the therapeutic and protective effects of WK, we constructed an integrated multi-target pharmacological mechanism prediction workflow in combination with machine learning and molecular pathway analysis. This workflow had the ability to predict and rank the probability of each compound interacting with 1715 target proteins simultaneously. The ROC value statistics showed that 97.786% of the values for target prediction were larger than 0.8. We applied this model to carry out target prediction and network analysis for the identified components of 5 herbs in WK. Using the 124 potential anti-arrhythmic components and the 30 corresponding protein targets obtained, an integrative anti-arrhythmic molecular mechanism of WK was proposed. Emerging drug/target networks suggested ion channel and intracellular calcium and autonomic nervous and hormonal regulation had critical roles in WK-mediated anti-arrhythmic activity. A validation of the proposed mechanisms was achieved by demonstrating that calaxin, one of the WK components from Gansong, dose-dependently blocked its predicted target Ca V 1.2 channel in an electrophysiological assay.

  20. Multi-voxel pattern analysis (MVPA reveals abnormal fMRI activity in both the core and extended face network in congenital prosopagnosia

    Directory of Open Access Journals (Sweden)

    Davide eRivolta

    2014-11-01

    Full Text Available The ability to identify faces is mediated by a network of cortical and subcortical brain regions in humans. It is still a matter of debate which regions represent the functional substrate of congenital prosopagnosia (CP, a condition characterized by a lifelong impairment in face recognition, and affecting around 2.5% of the general population. Here, we used functional Magnetic Resonance Imaging (fMRI to measure neural responses to faces, objects, bodies and body-parts in a group of seven CPs and ten healthy control participants. Using multi-voxel pattern analysis (MVPA of the fMRI data we demonstrate that neural activity within the core (i.e., occipital face area and fusiform face area and extended (i.e., anterior temporal cortex face regions in CPs showed reduced discriminability between faces and objects. Reduced differentiation between faces and objects in CP was also seen in the right parahippocampal cortex. In contrast, discriminability between faces and bodies/body-parts and objects and bodies/body-parts across the ventral visual system was typical in CPs. In addition to MVPA analysis, we also ran traditional mass-univariate analysis, which failed to show any group differences in face and object discriminability. In sum, these findings demonstrate (i face-object representations impairments in CP which encompass both the core and extended face regions, and (ii superior power of MVPA in detecting group differences.

  1. Maps of random walks on complex networks reveal community structure.

    Science.gov (United States)

    Rosvall, Martin; Bergstrom, Carl T

    2008-01-29

    To comprehend the multipartite organization of large-scale biological and social systems, we introduce an information theoretic approach that reveals community structure in weighted and directed networks. We use the probability flow of random walks on a network as a proxy for information flows in the real system and decompose the network into modules by compressing a description of the probability flow. The result is a map that both simplifies and highlights the regularities in the structure and their relationships. We illustrate the method by making a map of scientific communication as captured in the citation patterns of >6,000 journals. We discover a multicentric organization with fields that vary dramatically in size and degree of integration into the network of science. Along the backbone of the network-including physics, chemistry, molecular biology, and medicine-information flows bidirectionally, but the map reveals a directional pattern of citation from the applied fields to the basic sciences.

  2. Analysis of computer networks

    CERN Document Server

    Gebali, Fayez

    2015-01-01

    This textbook presents the mathematical theory and techniques necessary for analyzing and modeling high-performance global networks, such as the Internet. The three main building blocks of high-performance networks are links, switching equipment connecting the links together, and software employed at the end nodes and intermediate switches. This book provides the basic techniques for modeling and analyzing these last two components. Topics covered include, but are not limited to: Markov chains and queuing analysis, traffic modeling, interconnection networks and switch architectures and buffering strategies.   ·         Provides techniques for modeling and analysis of network software and switching equipment; ·         Discusses design options used to build efficient switching equipment; ·         Includes many worked examples of the application of discrete-time Markov chains to communication systems; ·         Covers the mathematical theory and techniques necessary for ana...

  3. Electron tomography reveals unbranched networks of actin filaments in lamellipodia.

    Science.gov (United States)

    Urban, Edit; Jacob, Sonja; Nemethova, Maria; Resch, Guenter P; Small, J Victor

    2010-05-01

    Eukaryotic cells can initiate movement using the forces exerted by polymerizing actin filaments to extend lamellipodial and filopodial protrusions. In the current model, actin filaments in lamellipodia are organized in a branched, dendritic network. We applied electron tomography to vitreously frozen 'live' cells, fixed cells and cytoskeletons, embedded in vitreous ice or in deep-negative stain. In lamellipodia from four cell types, including rapidly migrating fish keratocytes, we found that actin filaments are almost exclusively unbranched. The vast majority of apparent filament junctions proved to be overlapping filaments, rather than branched end-to-side junctions. Analysis of the tomograms revealed that actin filaments terminate at the membrane interface within a zone several hundred nanometres wide at the lamellipodium front, and yielded the first direct measurements of filament densities. Actin filament pairs were also identified as lamellipodium components and bundle precursors. These data provide a new structural basis for understanding actin-driven protrusion during cell migration.

  4. Inheritance Patterns in Citation Networks Reveal Scientific Memes

    Directory of Open Access Journals (Sweden)

    Tobias Kuhn

    2014-11-01

    Full Text Available Memes are the cultural equivalent of genes that spread across human culture by means of imitation. What makes a meme and what distinguishes it from other forms of information, however, is still poorly understood. Our analysis of memes in the scientific literature reveals that they are governed by a surprisingly simple relationship between frequency of occurrence and the degree to which they propagate along the citation graph. We propose a simple formalization of this pattern and validate it with data from close to 50 million publication records from the Web of Science, PubMed Central, and the American Physical Society. Evaluations relying on human annotators, citation network randomizations, and comparisons with several alternative approaches confirm that our formula is accurate and effective, without a dependence on linguistic or ontological knowledge and without the application of arbitrary thresholds or filters.

  5. Inheritance Patterns in Citation Networks Reveal Scientific Memes

    Science.gov (United States)

    Kuhn, Tobias; Perc, Matjaž; Helbing, Dirk

    2014-10-01

    Memes are the cultural equivalent of genes that spread across human culture by means of imitation. What makes a meme and what distinguishes it from other forms of information, however, is still poorly understood. Our analysis of memes in the scientific literature reveals that they are governed by a surprisingly simple relationship between frequency of occurrence and the degree to which they propagate along the citation graph. We propose a simple formalization of this pattern and validate it with data from close to 50 million publication records from the Web of Science, PubMed Central, and the American Physical Society. Evaluations relying on human annotators, citation network randomizations, and comparisons with several alternative approaches confirm that our formula is accurate and effective, without a dependence on linguistic or ontological knowledge and without the application of arbitrary thresholds or filters.

  6. Network Analysis of the Systemic Response to Fasciola hepatica Infection in Sheep Reveals Changes in Fibrosis, Apoptosis, Toll-Like Receptors 3/4, and B Cell Function

    Directory of Open Access Journals (Sweden)

    Yan Fu

    2017-04-01

    Full Text Available The Trematode Fasciola hepatica is an important cause of disease in livestock and in man. Modulation of immunity is a critical strategy used by this parasite to facilitate its long-term survival in the host. Understanding the underlying mechanisms at a system level is important for the development of novel control strategies, such as vaccination, as well as for increasing general understanding of helminth-mediated immunoregulation and its consequences. Our previous RNA sequencing work identified a large number of differentially expressed genes (DEG from ovine peripheral blood mononuclear cells (PBMCs at acute and chronic stages of F. hepatica infection, and yielded important information on host–parasite interaction, with particular reference to the immune response. To extend our understanding of the immunoregulatory effects of this parasite, we employed InnateDB to further analyze the DEG dataset and identified 2,458 and 224 molecular interactions in the context of innate immunity from the acute and chronic stages of infection, respectively. Notably, 458 interactions at the acute stage of infection were manually curated from studies involving PBMC-related cell-types, which guaranteed confident hypothesis generation. NetworkAnalyst was subsequently used to construct and visualize molecular networks. Two complementary strategies (function-first and connection-first were conducted to interpret the networks. The function-first approach highlighted subnetworks implicated in regulation of Toll-like receptor 3/4 signaling in both acute and chronic infections. The connection-first approach highlighted regulation of intrinsic apoptosis and B-cell receptor-signaling during acute and chronic infections, respectively. To the best of our knowledge, this study is the first system level analysis of the regulation of host innate immunity during F. hepatica infection. It provides insights into the profound changes induced by F. hepatica infection that not only

  7. Genetic and systems level analysis of Drosophila sticky/citron kinase and dFmr1 mutants reveals common regulation of genetic networks

    Directory of Open Access Journals (Sweden)

    Zarnescu Daniela C

    2008-11-01

    Full Text Available Abstract Background In Drosophila, the genes sticky and dFmr1 have both been shown to regulate cytoskeletal dynamics and chromatin structure. These genes also genetically interact with Argonaute family microRNA regulators. Furthermore, in mammalian systems, both genes have been implicated in neuronal development. Given these genetic and functional similarities, we tested Drosophila sticky and dFmr1 for a genetic interaction and measured whole genome expression in both mutants to assess similarities in gene regulation. Results We found that sticky mutations can dominantly suppress a dFmr1 gain-of-function phenotype in the developing eye, while phenotypes produced by RNAi knock-down of sticky were enhanced by dFmr1 RNAi and a dFmr1 loss-of-function mutation. We also identified a large number of transcripts that were misexpressed in both mutants suggesting that sticky and dFmr1 gene products similarly regulate gene expression. By integrating gene expression data with a protein-protein interaction network, we found that mutations in sticky and dFmr1 resulted in misexpression of common gene networks, and consequently predicted additional specific phenotypes previously not known to be associated with either gene. Further phenotypic analyses validated these predictions. Conclusion These findings establish a functional link between two previously unrelated genes. Microarray analysis indicates that sticky and dFmr1 are both required for regulation of many developmental genes in a variety of cell types. The diversity of transcripts regulated by these two genes suggests a clear cause of the pleiotropy that sticky and dFmr1 mutants display and provides many novel, testable hypotheses about the functions of these genes. As both of these genes are implicated in the development and function of the mammalian brain, these results have relevance to human health as well as to understanding more general biological processes.

  8. Egocentric social network analysis of pathological gambling.

    Science.gov (United States)

    Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S

    2013-03-01

    To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  9. A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy.

    Directory of Open Access Journals (Sweden)

    Nathaniel D Maynard

    2010-07-01

    Full Text Available Latently infecting viruses are an important class of virus that plays a key role in viral evolution and human health. Here we report a genome-scale forward-genetics screen for host-dependencies of the latently-infecting bacteriophage lambda. This screen identified 57 Escherichia coli (E. coli genes--over half of which have not been previously associated with infection--that when knocked out inhibited lambda phage's ability to replicate. Our results demonstrate a highly integrated network between lambda and its host, in striking contrast to the results from a similar screen using the lytic-only infecting T7 virus. We then measured the growth of E. coli under normal and infected conditions, using wild-type and knockout strains deficient in one of the identified host genes, and found that genes from the same pathway often exhibited similar growth dynamics. This observation, combined with further computational and experimental analysis, led us to identify a previously unannotated gene, yneJ, as a novel regulator of lamB gene expression. A surprising result of this work was the identification of two highly conserved pathways involved in tRNA thiolation-one pathway is required for efficient lambda replication, while the other has anti-viral properties inhibiting lambda replication. Based on our data, it appears that 2-thiouridine modification of tRNAGlu, tRNAGln, and tRNALys is particularly important for the efficient production of infectious lambda phage particles.

  10. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm.

    Directory of Open Access Journals (Sweden)

    Alexandra Saudemont

    2010-12-01

    Full Text Available Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood. Here, we report a large-scale analysis of the GRN deployed in response to the activity of this signaling center in the embryos of the Mediterranean sea urchin Paracentrotus lividus, in which studies with high spatial resolution are possible. By using a combination of in situ hybridization screening, overexpression of mRNA, recombinant ligand treatments, and morpholino-based loss-of-function studies, we identified a cohort of transcription factors and signaling molecules expressed in the ventral ectoderm, dorsal ectoderm, and interposed neurogenic ("ciliary band" region in response to the known key signaling molecules Nodal and BMP2/4 and defined the epistatic relationships between the most important genes. The resultant GRN showed a number of striking features. First, Nodal was found to be essential for the expression of all ventral and dorsal marker genes, and BMP2/4 for all dorsal genes. Second, goosecoid was identified as a central player in a regulatory sub-circuit controlling mouth formation, while tbx2/3 emerged as a critical factor for differentiation of the dorsal ectoderm. Finally, and unexpectedly, a neurogenic ectoderm regulatory circuit characterized by expression of "ciliary band" genes was triggered in the absence of TGF beta signaling. We propose a novel model for ectoderm regionalization, in which neural ectoderm is the default fate in the absence of TGF beta signaling, and suggest that the stomodeal and neural subcircuits that we

  11. Disparity between dorsal and ventral networks in patients with obsessive-compulsive disorder: Evidence revealed by graph theoretical analysis based on cortical thickness from MRI

    Directory of Open Access Journals (Sweden)

    Seung-Goo eKim

    2013-07-01

    Full Text Available As one of the most widely accepted neuroanatomical models on OCD, it has been hypothesized that imbalance between an excitatory direct (ventral pathway and an inhibitory indirect (dorsal pathway in cortico-striato-thalamic circuit underlies the emergence of OCD. Here we examine the structural network in drug-free patients with OCD in terms of graph theoretical measures for the first time. We used a measure called efficiency which quantifies how a node transfers information efficiently. To construct brain networks, cortical thickness was automatically estimated using T1-weighted magnetic resonance imaging. We found that the network of the OCD patients was as efficient as that of healthy controls so that the both networks were in the small-world regime. More importantly, however, disparity between the dorsal and the ventral networks in the OCD patients was found, suggesting a positive evidence to the imbalance theory on the underlying pathophysiology of OCD.

  12. A novel network analysis approach reveals DNA damage, oxidative stress and calcium/cAMP homeostasis-associated biomarkers in frontotemporal dementia.

    Directory of Open Access Journals (Sweden)

    Fernando Palluzzi

    Full Text Available Frontotemporal Dementia (FTD is the form of neurodegenerative dementia with the highest prevalence after Alzheimer's disease, equally distributed in men and women. It includes several variants, generally characterized by behavioural instability and language impairments. Although few mendelian genes (MAPT, GRN, and C9orf72 have been associated to the FTD phenotype, in most cases there is only evidence of multiple risk loci with relatively small effect size. To date, there are no comprehensive studies describing FTD at molecular level, highlighting possible genetic interactions and signalling pathways at the origin FTD-associated neurodegeneration. In this study, we designed a broad FTD genetic interaction map of the Italian population, through a novel network-based approach modelled on the concepts of disease-relevance and interaction perturbation, combining Steiner tree search and Structural Equation Model (SEM analysis. Our results show a strong connection between Calcium/cAMP metabolism, oxidative stress-induced Serine/Threonine kinases activation, and postsynaptic membrane potentiation, suggesting a possible combination of neuronal damage and loss of neuroprotection, leading to cell death. In our model, Calcium/cAMP homeostasis and energetic metabolism impairments are primary causes of loss of neuroprotection and neural cell damage, respectively. Secondly, the altered postsynaptic membrane potentiation, due to the activation of stress-induced Serine/Threonine kinases, leads to neurodegeneration. Our study investigates the molecular underpinnings of these processes, evidencing key genes and gene interactions that may account for a significant fraction of unexplained FTD aetiology. We emphasized the key molecular actors in these processes, proposing them as novel FTD biomarkers that could be crucial for further epidemiological and molecular studies.

  13. Gene expression profiling and network analysis reveals lipid and steroid metabolism to be the most favored by TNFalpha in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Amit K Pandey

    Full Text Available BACKGROUND: The proinflammatory cytokine, TNFalpha, is a crucial mediator of the pathogenesis of several diseases, more so in cases involving the liver wherein it is critical in maintaining liver homeostasis since it is a major determiner of hepatocyte life and death. Gene expression profiling serves as an appropriate strategy to unravel the underlying signatures to envisage such varied responses and considering this, gene transcription profiling was examined in control and TNFalpha treated HepG2 cells. METHODS AND FINDINGS: Microarray experiments between control and TNFalpha treated HepG2 cells indicated that TNFalpha could significantly alter the expression profiling of 140 genes; among those up-regulated, several GO (Gene Ontology terms related to lipid and fat metabolism were significantly (p<0.01 overrepresented indicating a global preference of fat metabolism within the hepatocyte and those within the down-regulated dataset included genes involved in several aspects of the immune response like immunoglobulin receptor activity and IgE binding thereby indicating a compromise in the immune defense mechanism(s. Conserved transcription factor binding sites were identified in identically clustered genes within a common GO term and SREBP-1 and FOXJ2 depicted increased occupation of their respective binding elements in the presence of TNFalpha. The interacting network of "lipid metabolism, small molecule biochemistry" was derived to be significantly overrepresented that correlated well with the top canonical pathway of "biosynthesis of steroids". CONCLUSIONS: TNFalpha alters the transcriptome profiling within HepG2 cells with an interesting catalog of genes being affected and those involved in lipid and steroid metabolism to be the most favored. This study represents a composite analysis of the effects of TNFalpha in HepG2 cells that encompasses the altered transcriptome profiling, the functional analysis of the up- and down- regulated genes and

  14. Analysis of regulatory networks constructed based on gene ...

    Indian Academy of Sciences (India)

    Gene coexpression patterns can reveal gene collections with functional consistency. This study systematically constructs regulatory networks for pituitary tumours by integrating gene coexpression, transcriptional and posttranscriptional regulation. Through network analysis, we elaborate the incidence mechanism of pituitary ...

  15. Analysis of regulatory networks constructed based on gene ...

    Indian Academy of Sciences (India)

    2013-12-09

    Dec 9, 2013 ... Abstract. Gene coexpression patterns can reveal gene collections with functional consistency. This study systematically constructs regulatory networks for pituitary tumours by integrating gene coexpression, transcriptional and posttranscriptional regulation. Through network analysis, we elaborate the ...

  16. An integrative analysis of cellular contexts, miRNAs and mRNAs reveals network clusters associated with antiestrogen-resistant breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nam Seungyoon

    2012-12-01

    Full Text Available Abstract Background A major goal of the field of systems biology is to translate genome-wide profiling data (e.g., mRNAs, miRNAs into interpretable functional networks. However, employing a systems biology approach to better understand the complexities underlying drug resistance phenotypes in cancer continues to represent a significant challenge to the field. Previously, we derived two drug-resistant breast cancer sublines (tamoxifen- and fulvestrant-resistant cell lines from the MCF7 breast cancer cell line and performed genome-wide mRNA and microRNA profiling to identify differential molecular pathways underlying acquired resistance to these important antiestrogens. In the current study, to further define molecular characteristics of acquired antiestrogen resistance we constructed an “integrative network”. We combined joint miRNA-mRNA expression profiles, cancer contexts, miRNA-target mRNA relationships, and miRNA upstream regulators. In particular, to reduce the probability of false positive connections in the network, experimentally validated, rather than prediction-oriented, databases were utilized to obtain connectivity. Also, to improve biological interpretation, cancer contexts were incorporated into the network connectivity. Results Based on the integrative network, we extracted “substructures” (network clusters representing the drug resistant states (tamoxifen- or fulvestrant-resistance cells compared to drug sensitive state (parental MCF7 cells. We identified un-described network clusters that contribute to antiestrogen resistance consisting of miR-146a, -27a, -145, -21, -155, -15a, -125b, and let-7s, in addition to the previously described miR-221/222. Conclusions By integrating miRNA-related network, gene/miRNA expression and text-mining, the current study provides a computational-based systems biology approach for further investigating the molecular mechanism underlying antiestrogen resistance in breast cancer cells. In

  17. Multidimensional Analysis of Linguistic Networks

    Science.gov (United States)

    Araújo, Tanya; Banisch, Sven

    Network-based approaches play an increasingly important role in the analysis of data even in systems in which a network representation is not immediately apparent. This is particularly true for linguistic networks, which use to be induced from a linguistic data set for which a network perspective is only one out of several options for representation. Here we introduce a multidimensional framework for network construction and analysis with special focus on linguistic networks. Such a framework is used to show that the higher is the abstraction level of network induction, the harder is the interpretation of the topological indicators used in network analysis. Several examples are provided allowing for the comparison of different linguistic networks as well as to networks in other fields of application of network theory. The computation and the intelligibility of some statistical indicators frequently used in linguistic networks are discussed. It suggests that the field of linguistic networks, by applying statistical tools inspired by network studies in other domains, may, in its current state, have only a limited contribution to the development of linguistic theory.

  18. Correlation-based network analysis of metabolite and enzyme profiles reveals a role of citrate biosynthesis in modulating N and C metabolism in zea mays

    Science.gov (United States)

    To investigate the natural variability of leaf metabolism and enzymatic activity in a maize inbred population, statistical and network analyses were employed on metabolite and enzyme profiles. The test of coefficient of variation showed that sugars and amino acids displayed opposite trends in their ...

  19. Communicability reveals a transition to coordinated behavior in multiplex networks

    Science.gov (United States)

    Estrada, Ernesto; Gómez-Gardeñes, Jesús

    2014-04-01

    We analyze the flow of information in multiplex networks by means of the communicability function. First, we generalize this measure from its definition from simple graphs to multiplex networks. Then, we study its relevance for the analysis of real-world systems by studying a social multiplex where information flows using formal-informal channels and an air transportation system where the layers represent different air companies. Accordingly, the communicability, which is essential for the good performance of these complex systems, emerges at a systemic operation point in the multiplex where the performance of the layers operates in a coordinated way very differently from the state represented by a collection of unconnected networks.

  20. CRISPR loci reveal networks of gene exchange in archaea.

    Science.gov (United States)

    Brodt, Avital; Lurie-Weinberger, Mor N; Gophna, Uri

    2011-12-21

    CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats) loci provide prokaryotes with an adaptive immunity against viruses and other mobile genetic elements. CRISPR arrays can be transcribed and processed into small crRNA molecules, which are then used by the cell to target the foreign nucleic acid. Since spacers are accumulated by active CRISPR/Cas systems, the sequences of these spacers provide a record of the past "infection history" of the organism. Here we analyzed all currently known spacers present in archaeal genomes and identified their source by DNA similarity. While nearly 50% of archaeal spacers matched mobile genetic elements, such as plasmids or viruses, several others matched chromosomal genes of other organisms, primarily other archaea. Thus, networks of gene exchange between archaeal species were revealed by the spacer analysis, including many cases of inter-genus and inter-species gene transfer events. Spacers that recognize viral sequences tend to be located further away from the leader sequence, implying that there exists a selective pressure for their retention. CRISPR spacers provide direct evidence for extensive gene exchange in archaea, especially within genera, and support the current dogma where the primary role of the CRISPR/Cas system is anti-viral and anti-plasmid defense. This article was reviewed by: Profs. W. Ford Doolittle, John van der Oost, Christa Schleper (nominated by board member Prof. J Peter Gogarten).

  1. CRISPR loci reveal networks of gene exchange in archaea

    Directory of Open Access Journals (Sweden)

    Brodt Avital

    2011-12-01

    Full Text Available Abstract Background CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats loci provide prokaryotes with an adaptive immunity against viruses and other mobile genetic elements. CRISPR arrays can be transcribed and processed into small crRNA molecules, which are then used by the cell to target the foreign nucleic acid. Since spacers are accumulated by active CRISPR/Cas systems, the sequences of these spacers provide a record of the past "infection history" of the organism. Results Here we analyzed all currently known spacers present in archaeal genomes and identified their source by DNA similarity. While nearly 50% of archaeal spacers matched mobile genetic elements, such as plasmids or viruses, several others matched chromosomal genes of other organisms, primarily other archaea. Thus, networks of gene exchange between archaeal species were revealed by the spacer analysis, including many cases of inter-genus and inter-species gene transfer events. Spacers that recognize viral sequences tend to be located further away from the leader sequence, implying that there exists a selective pressure for their retention. Conclusions CRISPR spacers provide direct evidence for extensive gene exchange in archaea, especially within genera, and support the current dogma where the primary role of the CRISPR/Cas system is anti-viral and anti-plasmid defense. Open peer review This article was reviewed by: Profs. W. Ford Doolittle, John van der Oost, Christa Schleper (nominated by board member Prof. J Peter Gogarten

  2. Revealing gene regulation and association through biological networks

    Science.gov (United States)

    This review had first summarized traditional methods used by plant breeders for genetic improvement, such as QTL analysis and transcriptomic analysis. With accumulating data, we can draw a network that comprises all possible links between members of a community, including protein–protein interaction...

  3. Network-based analysis reveals stronger local diffusion-based connectivity and different correlations with oral language skills in brains of children with high functioning autism spectrum disorders.

    Science.gov (United States)

    Li, Hai; Xue, Zhong; Ellmore, Timothy M; Frye, Richard E; Wong, Stephen T C

    2014-02-01

    Neuroimaging has uncovered both long-range and short-range connectivity abnormalities in the brains of individuals with autism spectrum disorders (ASD). However, the precise connectivity abnormalities and the relationship between these abnormalities and cognition and ASD symptoms have been inconsistent across studies. Indeed, studies find both increases and decreases in connectivity, suggesting that connectivity changes in the ASD brain are not merely due to abnormalities in specific connections, but rather, due to changes in the structure of the network in which the brain areas interact (i.e., network topology). In this study, we examined the differences in the network topology between high-functioning ASD patients and age and gender matched typically developing (TD) controls. After quantitatively characterizing the whole-brain connectivity network using diffusion tensor imaging (DTI) data, we searched for brain regions with different connectivity between ASD and TD. A measure of oral language ability was then correlated with the connectivity changes to determine the functional significance of such changes. Whole-brain connectivity measures demonstrated greater local connectivity and shorter path length in ASD as compared to TD. Stronger local connectivity was found in ASD, especially in regions such as the left superior parietal lobule, the precuneus and angular gyrus, and the right supramarginal gyrus. The relationship between oral language ability and local connectivity within these regions was significantly different between ASD and TD. Stronger local connectivity was associated with better performance in ASD and poorer performance in TD. This study supports the notion that increased local connectivity is compensatory for supporting cognitive function in ASD. Copyright © 2012 Wiley Periodicals, Inc.

  4. Diffusion tractography and graph theory analysis reveal the disrupted rich-club organization of white matter structural networks in early Tourette Syndrome children

    Science.gov (United States)

    Wen, Hongwei; Liu, Yue; Wang, Shengpei; Zhang, Jishui; Peng, Yun; He, Huiguang

    2017-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. At present, the topological disruptions of the whole brain white matter (WM) structural networks remain poorly understood in TS children. Considering the unique position of the topologically central role of densely interconnected brain hubs, namely the rich club regions, therefore, we aimed to investigate whether the rich club regions and their related connections would be particularly vulnerable in early TS children. In our study, we used diffusion tractography and graph theoretical analyses to explore the rich club structures in 44 TS children and 48 healthy children. The structural networks of TS children exhibited significantly increased normalized rich club coefficient, suggesting that TS is characterized by increased structural integrity of this centrally embedded rich club backbone, potentially resulting in increased global communication capacity. In addition, TS children showed a reorganization of rich club regions, as well as significantly increased density and decreased number in feeder connections. Furthermore, the increased rich club coefficients and feeder connections density of TS children were significantly positively correlated to tic severity, indicating that TS may be characterized by a selective alteration of the structural connectivity of the rich club regions, tending to have higher bridging with non-rich club regions, which may increase the integration among tic-related brain circuits with more excitability but less inhibition for information exchanges between highly centered brain regions and peripheral areas. In all, our results suggest the disrupted rich club organization in early TS children and provide structural insights into the brain networks.

  5. Network Analysis, Architecture, and Design

    CERN Document Server

    McCabe, James D

    2007-01-01

    Traditionally, networking has had little or no basis in analysis or architectural development, with designers relying on technologies they are most familiar with or being influenced by vendors or consultants. However, the landscape of networking has changed so that network services have now become one of the most important factors to the success of many third generation networks. It has become an important feature of the designer's job to define the problems that exist in his network, choose and analyze several optimization parameters during the analysis process, and then prioritize and evalua

  6. Network topology analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, Jeffrey L.; Lee, David S.

    2008-01-01

    Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.

  7. Hierarchicality of trade flow networks reveals complexity of products.

    Directory of Open Access Journals (Sweden)

    Peiteng Shi

    Full Text Available With globalization, countries are more connected than before by trading flows, which amounts to at least 36 trillion dollars today. Interestingly, around 30-60 percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent η can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely.

  8. Network-based bioinformatics analysis of spatio-temporal RNA-Seq data reveals transcriptional programs underpinning normal and aberrant retinal development

    OpenAIRE

    Karunakaran, Devi Krishna Priya; Al Seesi, Sahar; Banday, Abdul Rouf; Baumgartner, Marybeth; Olthof, Anouk; Lemoine, Christopher; M?ndoiu, Ion I.; Kanadia, Rahul N

    2016-01-01

    Background The retina as a model system with extensive information on genes involved in development/maintenance is of great value for investigations employing deep sequencing to capture transcriptome change over time. This in turn could enable us to find patterns in gene expression across time to reveal transition in biological processes. Methods We developed a bioinformatics pipeline to categorize genes based on their differential expression and their alternative splicing status across time ...

  9. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease.

    Science.gov (United States)

    Hamede, Rodrigo K; Bashford, Jim; McCallum, Hamish; Jones, Menna

    2009-11-01

    The structure of the contact network between individuals has a profound effect on the transmission of infectious disease. Using a novel technology--proximity sensing radio collars--we described the contact network in a population of Tasmanian devils. This largest surviving marsupial carnivore is threatened by a novel infectious cancer. All devils were connected in a single giant component, which would permit disease to spread throughout the network from any single infected individual. Unlike the contact networks for many human diseases, the degree distribution was not highly aggregated. Nevertheless, the empirically derived networks differed from random networks. Contact networks differed between the mating and non-mating seasons, with more extended male-female associations in the mating season and a greater frequency of female-female associations outside the mating season. Our results suggest that there is limited potential to control the disease by targeting highly connected age or sex classes.

  10. Listening to the noise: random fluctuations reveal gene network parameters

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory; Khammash, Mustafa [UCSB

    2009-01-01

    The cellular environment is abuzz with noise. The origin of this noise is attributed to the inherent random motion of reacting molecules that take part in gene expression and post expression interactions. In this noisy environment, clonal populations of cells exhibit cell-to-cell variability that frequently manifests as significant phenotypic differences within the cellular population. The stochastic fluctuations in cellular constituents induced by noise can be measured and their statistics quantified. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. This establishes a potentially powerful approach for the identification of gene networks and offers a new window into the workings of these networks.

  11. Statistical Analysis of Bus Networks in India.

    Science.gov (United States)

    Chatterjee, Atanu; Manohar, Manju; Ramadurai, Gitakrishnan

    2016-01-01

    In this paper, we model the bus networks of six major Indian cities as graphs in L-space, and evaluate their various statistical properties. While airline and railway networks have been extensively studied, a comprehensive study on the structure and growth of bus networks is lacking. In India, where bus transport plays an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer basic questions on its evolution, growth, robustness and resiliency. Although the common feature of small-world property is observed, our analysis reveals a wide spectrum of network topologies arising due to significant variation in the degree-distribution patterns in the networks. We also observe that these networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, such as Internet, WWW and airline, that are virtual, bus networks are physically constrained. Our findings therefore, throw light on the evolution of such geographically and constrained networks that will help us in designing more efficient bus networks in the future.

  12. Tourism Destinations Network Analysis, Social Network Analysis Approach

    Directory of Open Access Journals (Sweden)

    2015-09-01

    Full Text Available The tourism industry is becoming one of the world's largest economical sources, and is expected to become the world's first industry by 2020. Previous studies have focused on several aspects of this industry including sociology, geography, tourism management and development, but have paid less attention to analytical and quantitative approaches. This study introduces some network analysis techniques and measures aiming at studying the structural characteristics of tourism networks. More specifically, it presents a methodology to analyze tourism destinations network. We apply the methodology to analyze mazandaran’s Tourism destination network, one of the most famous tourism areas of Iran.

  13. Introduction to Social Network Analysis

    Science.gov (United States)

    Zaphiris, Panayiotis; Ang, Chee Siang

    Social Network analysis focuses on patterns of relations between and among people, organizations, states, etc. It aims to describe networks of relations as fully as possible, identify prominent patterns in such networks, trace the flow of information through them, and discover what effects these relations and networks have on people and organizations. Social network analysis offers a very promising potential for analyzing human-human interactions in online communities (discussion boards, newsgroups, virtual organizations). This Tutorial provides an overview of this analytic technique and demonstrates how it can be used in Human Computer Interaction (HCI) research and practice, focusing especially on Computer Mediated Communication (CMC). This topic acquires particular importance these days, with the increasing popularity of social networking websites (e.g., youtube, myspace, MMORPGs etc.) and the research interest in studying them.

  14. Social Network Analysis with sna

    Directory of Open Access Journals (Sweden)

    Carter T. Butts

    2007-12-01

    Full Text Available Modern social network analysis---the analysis of relational data arising from social systems---is a computationally intensive area of research. Here, we provide an overview of a software package which provides support for a range of network analytic functionality within the R statistical computing environment. General categories of currently supported functionality are described, and brief examples of package syntax and usage are shown.

  15. Computational Social Network Analysis

    CERN Document Server

    Hassanien, Aboul-Ella

    2010-01-01

    Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks

  16. Network analysis applications in hydrology

    Science.gov (United States)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  17. Time-Varying Networks of Inter-Ictal Discharging Reveal Epileptogenic Zone

    Directory of Open Access Journals (Sweden)

    Luyan Zhang

    2017-08-01

    Full Text Available The neuronal synchronous discharging may cause an epileptic seizure. Currently, most of the studies conducted to investigate the mechanism of epilepsy are based on EEGs or functional magnetic resonance imaging (fMRI recorded during the ictal discharging or the resting-state, and few studies have probed into the dynamic patterns during the inter-ictal discharging that are much easier to record in clinical applications. Here, we propose a time-varying network analysis based on adaptive directed transfer function to uncover the dynamic brain network patterns during the inter-ictal discharging. In addition, an algorithm based on the time-varying outflow of information derived from the network analysis is developed to detect the epileptogenic zone. The analysis performed revealed the time-varying network patterns during different stages of inter-ictal discharging; the epileptogenic zone was activated prior to the discharge onset then worked as the source to propagate the activity to other brain regions. Consistence between the epileptogenic zones detected by our proposed approach and the actual epileptogenic zones proved that time-varying network analysis could not only reveal the underlying neural mechanism of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based on the EEGs in the inter-ictal discharging.

  18. Quantitative interactome analysis reveals a chemoresistant edgotype.

    Science.gov (United States)

    Chavez, Juan D; Schweppe, Devin K; Eng, Jimmy K; Zheng, Chunxiang; Taipale, Alex; Zhang, Yiyi; Takara, Kohji; Bruce, James E

    2015-08-03

    Chemoresistance is a common mode of therapy failure for many cancers. Tumours develop resistance to chemotherapeutics through a variety of mechanisms, with proteins serving pivotal roles. Changes in protein conformations and interactions affect the cellular response to environmental conditions contributing to the development of new phenotypes. The ability to understand how protein interaction networks adapt to yield new function or alter phenotype is limited by the inability to determine structural and protein interaction changes on a proteomic scale. Here, chemical crosslinking and mass spectrometry were employed to quantify changes in protein structures and interactions in multidrug-resistant human carcinoma cells. Quantitative analysis of the largest crosslinking-derived, protein interaction network comprising 1,391 crosslinked peptides allows for 'edgotype' analysis in a cell model of chemoresistance. We detect consistent changes to protein interactions and structures, including those involving cytokeratins, topoisomerase-2-alpha, and post-translationally modified histones, which correlate with a chemoresistant phenotype.

  19. Topological analysis of telecommunications networks

    Directory of Open Access Journals (Sweden)

    Milojko V. Jevtović

    2011-01-01

    Full Text Available A topological analysis of the structure of telecommunications networks is a very interesting topic in the network research, but also a key issue in their design and planning. Satisfying multiple criteria in terms of locations of switching nodes as well as their connectivity with respect to the requests for capacity, transmission speed, reliability, availability and cost are the main research objectives. There are three ways of presenting the topology of telecommunications networks: table, matrix or graph method. The table method is suitable for a network of a relatively small number of nodes in relation to the number of links. The matrix method involves the formation of a connection matrix in which its columns present source traffic nodes and its rows are the switching systems that belong to the destination. The method of the topology graph means that the network nodes are connected via directional or unidirectional links. We can thus easily analyze the structural parameters of telecommunications networks. This paper presents the mathematical analysis of the star-, ring-, fully connected loop- and grid (matrix-shaped topology as well as the topology based on the shortest path tree. For each of these topologies, the expressions for determining the number of branches, the middle level of reliability, the medium length and the average length of the link are given in tables. For the fully connected loop network with five nodes the values of all topological parameters are calculated. Based on the topological parameters, the relationships that represent integral and distributed indicators of reliability are given in this work as well as the values of the particular network. The main objectives of the topology optimization of telecommunications networks are: achieving the minimum complexity, maximum capacity, the shortest path message transfer, the maximum speed of communication and maximum economy. The performance of telecommunications networks is

  20. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  1. Metagenomics reveals flavour metabolic network of cereal vinegar microbiota.

    Science.gov (United States)

    Wu, Lin-Huan; Lu, Zhen-Ming; Zhang, Xiao-Juan; Wang, Zong-Min; Yu, Yong-Jian; Shi, Jin-Song; Xu, Zheng-Hong

    2017-04-01

    Multispecies microbial community formed through centuries of repeated batch acetic acid fermentation (AAF) is crucial for the flavour quality of traditional vinegar produced from cereals. However, the metabolism to generate and/or formulate the essential flavours by the multispecies microbial community is hardly understood. Here we used metagenomic approach to clarify in situ metabolic network of key microbes responsible for flavour synthesis of a typical cereal vinegar, Zhenjiang aromatic vinegar, produced by solid-state fermentation. First, we identified 3 organic acids, 7 amino acids, and 20 volatiles as dominant vinegar metabolites. Second, we revealed taxonomic and functional composition of the microbiota by metagenomic shotgun sequencing. A total of 86 201 predicted protein-coding genes from 35 phyla (951 genera) were involved in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of Metabolism (42.3%), Genetic Information Processing (28.3%), and Environmental Information Processing (10.1%). Furthermore, a metabolic network for substrate breakdown and dominant flavour formation in vinegar microbiota was constructed, and microbial distribution discrepancy in different metabolic pathways was charted. This study helps elucidating different metabolic roles of microbes during flavour formation in vinegar microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social...... and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs...

  3. Network analysis of eight industrial symbiosis systems

    Science.gov (United States)

    Zhang, Yan; Zheng, Hongmei; Shi, Han; Yu, Xiangyi; Liu, Gengyuan; Su, Meirong; Li, Yating; Chai, Yingying

    2016-06-01

    Industrial symbiosis is the quintessential characteristic of an eco-industrial park. To divide parks into different types, previous studies mostly focused on qualitative judgments, and failed to use metrics to conduct quantitative research on the internal structural or functional characteristics of a park. To analyze a park's structural attributes, a range of metrics from network analysis have been applied, but few researchers have compared two or more symbioses using multiple metrics. In this study, we used two metrics (density and network degree centralization) to compare the degrees of completeness and dependence of eight diverse but representative industrial symbiosis networks. Through the combination of the two metrics, we divided the networks into three types: weak completeness, and two forms of strong completeness, namely "anchor tenant" mutualism and "equality-oriented" mutualism. The results showed that the networks with a weak degree of completeness were sparse and had few connections among nodes; for "anchor tenant" mutualism, the degree of completeness was relatively high, but the affiliated members were too dependent on core members; and the members in "equality-oriented" mutualism had equal roles, with diverse and flexible symbiotic paths. These results revealed some of the systems' internal structure and how different structures influenced the exchanges of materials, energy, and knowledge among members of a system, thereby providing insights into threats that may destabilize the network. Based on this analysis, we provide examples of the advantages and effectiveness of recent improvement projects in a typical Chinese eco-industrial park (Shandong Lubei).

  4. Inheritance patterns in citation networks reveal scientific memes

    OpenAIRE

    Tobias Kuhn; Matjaž Perc; Dirk Helbing

    2014-01-01

    Memes are the cultural equivalent of genes that spread across human culture by means of imitation. What makes a meme and what distinguishes it from other forms of information, however, is still poorly understood. Our analysis of memes in the scientific literature reveals that they are governed by a surprisingly simple relationship between frequency of occurrence and the degree to which they propagate along the citation graph. We propose a simple formalization of this pattern and we validate i...

  5. Elastic network normal mode dynamics reveal the GPCR activation mechanism.

    Science.gov (United States)

    Kolan, Dikla; Fonar, Gennadiy; Samson, Abraham O

    2014-04-01

    G-protein-coupled receptors (GPCR) are a family of membrane-embedded metabotropic receptors which translate extracellular ligand binding into an intracellular response. Here, we calculate the motion of several GPCR family members such as the M2 and M3 muscarinic acetylcholine receptors, the A2A adenosine receptor, the β2 -adrenergic receptor, and the CXCR4 chemokine receptor using elastic network normal modes. The normal modes reveal a dilation and a contraction of the GPCR vestibule associated with ligand passage, and activation, respectively. Contraction of the vestibule on the extracellular side is correlated with cavity formation of the G-protein binding pocket on the intracellular side, which initiates intracellular signaling. Interestingly, the normal modes of rhodopsin do not correlate well with the motion of other GPCR family members. Electrostatic potential calculation of the GPCRs reveal a negatively charged field around the ligand binding site acting as a siphon to draw-in positively charged ligands on the membrane surface. Altogether, these results expose the GPCR activation mechanism and show how conformational changes on the cell surface side of the receptor are allosterically translated into structural changes on the inside. Copyright © 2013 Wiley Periodicals, Inc.

  6. NEAT : an efficient network enrichment analysis test

    NARCIS (Netherlands)

    Signorelli, Mirko; Vinciotti, Veronica; Wit, Ernst C

    2016-01-01

    BACKGROUND: Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be

  7. Analysis of Layered Social Networks

    Science.gov (United States)

    2006-09-01

    xiii List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv I. Introduction ...Islamiya JP Joint Publication JTC Joint Targeting Cycle KPP Key Player Problem MCDM Multi-Criteria Decision Making MP Mathematical Programming MST...ANALYSIS OF LAYERED SOCIAL NETWORKS I. Introduction “To know them means to eliminate them” - Colonel Mathieu in the movie, Battle of Algiers

  8. Identifying changes in the support networks of end-of-life carers using social network analysis.

    Science.gov (United States)

    Leonard, Rosemary; Horsfall, Debbie; Noonan, Kerrie

    2015-06-01

    End-of-life caring is often associated with reduced social networks for both the dying person and for the carer. However, those adopting a community participation and development approach, see the potential for the expansion and strengthening of networks. This paper uses Knox, Savage and Harvey's definitions of three generations social network analysis to analyse the caring networks of people with a terminal illness who are being cared for at home and identifies changes in these caring networks that occurred over the period of caring. Participatory network mapping of initial and current networks was used in nine focus groups. The analysis used key concepts from social network analysis (size, density, transitivity, betweenness and local clustering) together with qualitative analyses of the group's reflections on the maps. The results showed an increase in the size of the networks and that ties between the original members of the network strengthened. The qualitative data revealed the importance between core and peripheral network members and the diverse contributions of the network members. The research supports the value of third generation social network analysis and the potential for end-of-life caring to build social capital. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Social network analysis and network connectedness analysis for industrial symbiotic systems: model development and case study

    Science.gov (United States)

    Zhang, Yan; Zheng, Hongmei; Chen, Bin; Yang, Naijin

    2013-06-01

    An important and practical pattern of industrial symbiosis is rapidly developing: eco-industrial parks. In this study, we used social network analysis to study the network connectedness (i.e., the proportion of the theoretical number of connections that had been achieved) and related attributes of these hybrid ecological and industrial symbiotic systems. This approach provided insights into details of the network's interior and analyzed the overall degree of connectedness and the relationships among the nodes within the network. We then characterized the structural attributes of the network and subnetwork nodes at two levels (core and periphery), thereby providing insights into the operational problems within each eco-industrial park. We chose ten typical ecoindustrial parks in China and around the world and compared the degree of network connectedness of these systems that resulted from exchanges of products, byproducts, and wastes. By analyzing the density and nodal degree, we determined the relative power and status of the nodes in these networks, as well as other structural attributes such as the core-periphery structure and the degree of sub-network connectedness. The results reveal the operational problems created by the structure of the industrial networks and provide a basis for improving the degree of completeness, thereby increasing their potential for sustainable development and enriching the methods available for the study of industrial symbiosis.

  10. Statistical analysis of network data with R

    CERN Document Server

    Kolaczyk, Eric D

    2014-01-01

    Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

  11. Transmission analysis in WDM networks

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    1999-01-01

    This thesis describes the development of a computer-based simulator for transmission analysis in optical wavelength division multiplexing networks. A great part of the work concerns fundamental optical network simulator issues. Among these issues are identification of the versatility and user......-friendliness demands which such a simulator must meet, development of the "spectral window representation" for representation of the optical signals and finding an effective way of handling the optical signals in the computer memory. One important issue more is the rules for the determination of the order in which...... the different component models are invoked during the simulation of a system. A simple set of rules which makes it possible to simulate any network architectures is laid down. The modelling of the nonlinear fibre and the optical receiver is also treated. The work on the fibre concerns the numerical solution...

  12. Spectral Analysis of Rich Network Topology in Social Networks

    Science.gov (United States)

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  13. Differential C3NET reveals disease networks of direct physical interactions

    Directory of Open Access Journals (Sweden)

    Markowetz Florian

    2011-07-01

    Full Text Available Abstract Background Genes might have different gene interactions in different cell conditions, which might be mapped into different networks. Differential analysis of gene networks allows spotting condition-specific interactions that, for instance, form disease networks if the conditions are a disease, such as cancer, and normal. This could potentially allow developing better and subtly targeted drugs to cure cancer. Differential network analysis with direct physical gene interactions needs to be explored in this endeavour. Results C3NET is a recently introduced information theory based gene network inference algorithm that infers direct physical gene interactions from expression data, which was shown to give consistently higher inference performances over various networks than its competitors. In this paper, we present, DC3net, an approach to employ C3NET in inferring disease networks. We apply DC3net on a synthetic and real prostate cancer datasets, which show promising results. With loose cutoffs, we predicted 18583 interactions from tumor and normal samples in total. Although there are no reference interactions databases for the specific conditions of our samples in the literature, we found verifications for 54 of our predicted direct physical interactions from only four of the biological interaction databases. As an example, we predicted that RAD50 with TRF2 have prostate cancer specific interaction that turned out to be having validation from the literature. It is known that RAD50 complex associates with TRF2 in the S phase of cell cycle, which suggests that this predicted interaction may promote telomere maintenance in tumor cells in order to allow tumor cells to divide indefinitely. Our enrichment analysis suggests that the identified tumor specific gene interactions may be potentially important in driving the growth in prostate cancer. Additionally, we found that the highest connected subnetwork of our predicted tumor specific network

  14. Aggregation algorithm towards large-scale Boolean network analysis

    OpenAIRE

    Zhao, Y.; Kim, J.; Filippone, M.

    2013-01-01

    The analysis of large-scale Boolean network dynamics is of great importance in understanding complex phenomena where systems are characterized by a large number of components. The computational cost to reveal the number of attractors and the period of each attractor increases exponentially as the number of nodes in the networks increases. This paper presents an efficient algorithm to find attractors for medium to large-scale networks. This is achieved by analyzing subnetworks within the netwo...

  15. Analysis of Semantic Networks using Complex Networks Concepts

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2013-01-01

    In this paper we perform a preliminary analysis of semantic networks to determine the most important terms that could be used to optimize a summarization task. In our experiments, we measure how the properties of a semantic network change, when the terms in the network are removed. Our preliminar...... results indicate that this approach provides good results on the semantic network analyzed in this paper....

  16. COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks

    NARCIS (Netherlands)

    Sie, Rory

    2012-01-01

    Sie, R. L. L. (2012). COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks (Unpublished doctoral dissertation). September, 28, 2012, Open Universiteit in the Netherlands (CELSTEC), Heerlen, The Netherlands.

  17. A parietal memory network revealed by multiple MRI methods.

    Science.gov (United States)

    Gilmore, Adrian W; Nelson, Steven M; McDermott, Kathleen B

    2015-09-01

    The manner by which the human brain learns and recognizes stimuli is a matter of ongoing investigation. Through examination of meta-analyses of task-based functional MRI and resting state functional connectivity MRI, we identified a novel network strongly related to learning and memory. Activity within this network at encoding predicts subsequent item memory, and at retrieval differs for recognized and unrecognized items. The direction of activity flips as a function of recent history: from deactivation for novel stimuli to activation for stimuli that are familiar due to recent exposure. We term this network the 'parietal memory network' (PMN) to reflect its broad involvement in human memory processing. We provide a preliminary framework for understanding the key functional properties of the network. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions.

    Directory of Open Access Journals (Sweden)

    Paul De Barro

    Full Text Available BACKGROUND: A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. METHODOLOGY/PRINCIPAL FINDINGS: Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010. Only two species proposed in Dinsdale et al. (2010 departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED and Middle East - Asia Minor 1 (MEAM1, showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for >80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. CONCLUSION/SIGNIFICANCE: The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of

  19. Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions.

    Science.gov (United States)

    Najafi, Mahshid; McMenamin, Brenton W; Simon, Jonathan Z; Pessoa, Luiz

    2016-07-15

    Large-scale analysis of functional MRI data has revealed that brain regions can be grouped into stable "networks" or communities. In many instances, the communities are characterized as relatively disjoint. Although recent work indicates that brain regions may participate in multiple communities (for example, hub regions), the extent of community overlap is poorly understood. To address these issues, here we investigated large-scale brain networks based on "rest" and task human functional MRI data by employing a mixed-membership Bayesian model that allows each brain region to belong to all communities simultaneously with varying membership strengths. The approach allowed us to 1) compare the structure of disjoint and overlapping communities; 2) determine the relationship between functional diversity (how diverse is a region's functional activation repertoire) and membership diversity (how diverse is a region's affiliation to communities); 3) characterize overlapping community structure; 4) characterize the degree of non-modularity in brain networks; 5) study the distribution of "bridges", including bottleneck and hub bridges. Our findings revealed the existence of dense community overlap that was not limited to "special" hubs. Furthermore, the findings revealed important differences between community organization during rest and during specific task states. Overall, we suggest that dense overlapping communities are well suited to capture the flexible and task dependent mapping between brain regions and their functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Algebraic Topology of Multi-Brain Connectivity Networks Reveals Dissimilarity in Functional Patterns during Spoken Communications.

    Science.gov (United States)

    Tadić, Bosiljka; Andjelković, Miroslav; Boshkoska, Biljana Mileva; Levnajić, Zoran

    2016-01-01

    Human behaviour in various circumstances mirrors the corresponding brain connectivity patterns, which are suitably represented by functional brain networks. While the objective analysis of these networks by graph theory tools deepened our understanding of brain functions, the multi-brain structures and connections underlying human social behaviour remain largely unexplored. In this study, we analyse the aggregate graph that maps coordination of EEG signals previously recorded during spoken communications in two groups of six listeners and two speakers. Applying an innovative approach based on the algebraic topology of graphs, we analyse higher-order topological complexes consisting of mutually interwoven cliques of a high order to which the identified functional connections organise. Our results reveal that the topological quantifiers provide new suitable measures for differences in the brain activity patterns and inter-brain synchronisation between speakers and listeners. Moreover, the higher topological complexity correlates with the listener's concentration to the story, confirmed by self-rating, and closeness to the speaker's brain activity pattern, which is measured by network-to-network distance. The connectivity structures of the frontal and parietal lobe consistently constitute distinct clusters, which extend across the listener's group. Formally, the topology quantifiers of the multi-brain communities exceed the sum of those of the participating individuals and also reflect the listener's rated attributes of the speaker and the narrated subject. In the broader context, the presented study exposes the relevance of higher topological structures (besides standard graph measures) for characterising functional brain networks under different stimuli.

  1. Algebraic Topology of Multi-Brain Connectivity Networks Reveals Dissimilarity in Functional Patterns during Spoken Communications.

    Directory of Open Access Journals (Sweden)

    Bosiljka Tadić

    Full Text Available Human behaviour in various circumstances mirrors the corresponding brain connectivity patterns, which are suitably represented by functional brain networks. While the objective analysis of these networks by graph theory tools deepened our understanding of brain functions, the multi-brain structures and connections underlying human social behaviour remain largely unexplored. In this study, we analyse the aggregate graph that maps coordination of EEG signals previously recorded during spoken communications in two groups of six listeners and two speakers. Applying an innovative approach based on the algebraic topology of graphs, we analyse higher-order topological complexes consisting of mutually interwoven cliques of a high order to which the identified functional connections organise. Our results reveal that the topological quantifiers provide new suitable measures for differences in the brain activity patterns and inter-brain synchronisation between speakers and listeners. Moreover, the higher topological complexity correlates with the listener's concentration to the story, confirmed by self-rating, and closeness to the speaker's brain activity pattern, which is measured by network-to-network distance. The connectivity structures of the frontal and parietal lobe consistently constitute distinct clusters, which extend across the listener's group. Formally, the topology quantifiers of the multi-brain communities exceed the sum of those of the participating individuals and also reflect the listener's rated attributes of the speaker and the narrated subject. In the broader context, the presented study exposes the relevance of higher topological structures (besides standard graph measures for characterising functional brain networks under different stimuli.

  2. Co-expression Network Approach Reveals Functional Similarities among Diseases Affecting Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Kavitha Mukund

    2017-12-01

    Full Text Available Diseases affecting skeletal muscle exhibit considerable heterogeneity in intensity, etiology, phenotypic manifestation and gene expression. Systems biology approaches using network theory, allows for a holistic understanding of functional similarities amongst diseases. Here we propose a co-expression based, network theoretic approach to extract functional similarities from 20 heterogeneous diseases comprising of dystrophinopathies, inflammatory myopathies, neuromuscular, and muscle metabolic diseases. Utilizing this framework we identified seven closely associated disease clusters with 20 disease pairs exhibiting significant correlation (p < 0.05. Mapping the diseases onto a human protein-protein interaction network enabled the inference of a common program of regulation underlying more than half the muscle diseases considered here and referred to as the “protein signature.” Enrichment analysis of 17 protein modules identified as part of this signature revealed a statistically non-random dysregulation of muscle bioenergetic pathways and calcium homeostasis. Further, analysis of mechanistic similarities of less explored significant disease associations [such as between amyotrophic lateral sclerosis (ALS and cerebral palsy (CP] using a proposed “functional module” framework revealed adaptation of the calcium signaling machinery. Integrating drug-gene information into the quantitative framework highlighted the presence of therapeutic opportunities through drug repurposing for diseases affecting the skeletal muscle.

  3. Networks and network analysis for defence and security

    CERN Document Server

    Masys, Anthony J

    2014-01-01

    Networks and Network Analysis for Defence and Security discusses relevant theoretical frameworks and applications of network analysis in support of the defence and security domains. This book details real world applications of network analysis to support defence and security. Shocks to regional, national and global systems stemming from natural hazards, acts of armed violence, terrorism and serious and organized crime have significant defence and security implications. Today, nations face an uncertain and complex security landscape in which threats impact/target the physical, social, economic

  4. Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

    Science.gov (United States)

    Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  5. Unraveling protein networks with power graph analysis.

    Science.gov (United States)

    Royer, Loïc; Reimann, Matthias; Andreopoulos, Bill; Schroeder, Michael

    2008-07-11

    Networks play a crucial role in computational biology, yet their analysis and representation is still an open problem. Power Graph Analysis is a lossless transformation of biological networks into a compact, less redundant representation, exploiting the abundance of cliques and bicliques as elementary topological motifs. We demonstrate with five examples the advantages of Power Graph Analysis. Investigating protein-protein interaction networks, we show how the catalytic subunits of the casein kinase II complex are distinguishable from the regulatory subunits, how interaction profiles and sequence phylogeny of SH3 domains correlate, and how false positive interactions among high-throughput interactions are spotted. Additionally, we demonstrate the generality of Power Graph Analysis by applying it to two other types of networks. We show how power graphs induce a clustering of both transcription factors and target genes in bipartite transcription networks, and how the erosion of a phosphatase domain in type 22 non-receptor tyrosine phosphatases is detected. We apply Power Graph Analysis to high-throughput protein interaction networks and show that up to 85% (56% on average) of the information is redundant. Experimental networks are more compressible than rewired ones of same degree distribution, indicating that experimental networks are rich in cliques and bicliques. Power Graphs are a novel representation of networks, which reduces network complexity by explicitly representing re-occurring network motifs. Power Graphs compress up to 85% of the edges in protein interaction networks and are applicable to all types of networks such as protein interactions, regulatory networks, or homology networks.

  6. Probabilistic diffusion tractography reveals improvement of structural network in musicians.

    Science.gov (United States)

    Li, Jianfu; Luo, Cheng; Peng, Yueheng; Xie, Qiankun; Gong, Jinnan; Dong, Li; Lai, Yongxiu; Li, Hong; Yao, Dezhong

    2014-01-01

    Musicians experience a large amount of information transfer and integration of complex sensory, motor, and auditory processes when training and playing musical instruments. Therefore, musicians are a useful model in which to investigate neural adaptations in the brain. Here, based on diffusion-weighted imaging, probabilistic tractography was used to determine the architecture of white matter anatomical networks in musicians and non-musicians. Furthermore, the features of the white matter networks were analyzed using graph theory. Small-world properties of the white matter network were observed in both groups. Compared with non-musicians, the musicians exhibited significantly increased connectivity strength in the left and right supplementary motor areas, the left calcarine fissure and surrounding cortex and the right caudate nucleus, as well as a significantly larger weighted clustering coefficient in the right olfactory cortex, the left medial superior frontal gyrus, the right gyrus rectus, the left lingual gyrus, the left supramarginal gyrus, and the right pallidum. Furthermore, there were differences in the node betweenness centrality in several regions. However, no significant differences in topological properties were observed at a global level. We illustrated preliminary findings to extend the network level understanding of white matter plasticity in musicians who have had long-term musical training. These structural, network-based findings may indicate that musicians have enhanced information transmission efficiencies in local white matter networks that are related to musical training.

  7. Probabilistic diffusion tractography reveals improvement of structural network in musicians.

    Directory of Open Access Journals (Sweden)

    Jianfu Li

    Full Text Available PURPOSE: Musicians experience a large amount of information transfer and integration of complex sensory, motor, and auditory processes when training and playing musical instruments. Therefore, musicians are a useful model in which to investigate neural adaptations in the brain. METHODS: Here, based on diffusion-weighted imaging, probabilistic tractography was used to determine the architecture of white matter anatomical networks in musicians and non-musicians. Furthermore, the features of the white matter networks were analyzed using graph theory. RESULTS: Small-world properties of the white matter network were observed in both groups. Compared with non-musicians, the musicians exhibited significantly increased connectivity strength in the left and right supplementary motor areas, the left calcarine fissure and surrounding cortex and the right caudate nucleus, as well as a significantly larger weighted clustering coefficient in the right olfactory cortex, the left medial superior frontal gyrus, the right gyrus rectus, the left lingual gyrus, the left supramarginal gyrus, and the right pallidum. Furthermore, there were differences in the node betweenness centrality in several regions. However, no significant differences in topological properties were observed at a global level. CONCLUSIONS: We illustrated preliminary findings to extend the network level understanding of white matter plasticity in musicians who have had long-term musical training. These structural, network-based findings may indicate that musicians have enhanced information transmission efficiencies in local white matter networks that are related to musical training.

  8. Signed Link Analysis in Social Media Networks

    OpenAIRE

    Beigi, Ghazaleh; Tang, Jiliang; Liu, Huan

    2016-01-01

    Numerous real-world relations can be represented by signed networks with positive links (e.g., trust) and negative links (e.g., distrust). Link analysis plays a crucial role in understanding the link formation and can advance various tasks in social network analysis such as link prediction. The majority of existing works on link analysis have focused on unsigned social networks. The existence of negative links determines that properties and principles of signed networks are substantially dist...

  9. Social network analysis in medical education

    OpenAIRE

    Isba, Rachel; Woolf, Katherine; Hanneman, Robert

    2016-01-01

    Content\\ud Humans are fundamentally social beings. The social systems within which we live our lives (families, schools, workplaces, professions, friendship groups) have a significant influence on our health, success and well-being. These groups can be characterised as networks and analysed using social network analysis.\\ud \\ud Social Network Analysis\\ud Social network analysis is a mainly quantitative method for analysing how relationships between individuals form and affect those individual...

  10. Revealing the hidden structure of dynamic ecological networks.

    Science.gov (United States)

    Miele, Vincent; Matias, Catherine

    2017-06-01

    In ecology, recent technological advances and long-term data studies now provide longitudinal interaction data (e.g. between individuals or species). Most often, time is the parameter along which interactions evolve but any other one-dimensional gradient (temperature, altitude, depth, humidity, etc.) can be considered. These data can be modelled through a sequence of different snapshots of an evolving ecological network, i.e. a dynamic network. Here, we present how the dynamic stochastic block model approach developed by Matias & Miele (Matias & Miele In press J. R. Stat. Soc. B (doi:10.1111/rssb.12200)) can capture the complexity and dynamics of these networks. First, we analyse a dynamic contact network of ants and we observe a clear high-level assembly with some variations in time at the individual level. Second, we explore the structure of a food web evolving during a year and we detect a stable predator-prey organization but also seasonal differences in the prey assemblage. Our approach, based on a rigorous statistical method implemented in the R package dynsbm, can pave the way for exploration of evolving ecological networks.

  11. Integration of metabolome data with metabolic networks reveals reporter reactions

    DEFF Research Database (Denmark)

    Çakir, Tunahan; Patil, Kiran Raosaheb; Önsan, Zeynep Ilsen

    2006-01-01

    Interpreting quantitative metabolome data is a difficult task owing to the high connectivity in metabolic networks and inherent interdependency between enzymatic regulation, metabolite levels and fluxes. Here we present a hypothesis-driven algorithm for the integration of such data with metabolic...... network topology. The algorithm thus enables identification of reporter reactions, which are reactions where there are significant coordinated changes in the level of surrounding metabolites following environmental/genetic perturbations. Applicability of the algorithm is demonstrated by using data from...... is measured. By combining the results with transcriptome data, we further show that it is possible to infer whether the reactions are hierarchically or metabolically regulated. Hereby, the reported approach represents an attempt to map different layers of regulation within metabolic networks through...

  12. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  13. Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks

    CERN Document Server

    Racah, Evan; Sadowski, Peter; Bhimji, Wahid; Tull, Craig; Oh, Sang-Yun; Baldi, Pierre; Prabhat,

    2016-01-01

    Experiments in particle physics produce enormous quantities of data that must be analyzed and interpreted by teams of physicists. This analysis is often exploratory, where scientists are unable to enumerate the possible types of signal prior to performing the experiment. Thus, tools for summarizing, clustering, visualizing and classifying high-dimensional data are essential. In this work, we show that meaningful physical content can be revealed by transforming the raw data into a learned high-level representation using deep neural networks, with measurements taken at the Daya Bay Neutrino Experiment as a case study. We further show how convolutional deep neural networks can provide an effective classification filter with greater than 97% accuracy across different classes of physics events, significantly better than other machine learning approaches.

  14. The reconstruction and analysis of tissue specific human metabolic networks.

    Science.gov (United States)

    Hao, Tong; Ma, Hong-Wu; Zhao, Xue-Ming; Goryanin, Igor

    2012-02-01

    Human tissues have distinct biological functions. Many proteins/enzymes are known to be expressed only in specific tissues and therefore the metabolic networks in various tissues are different. Though high quality global human metabolic networks and metabolic networks for certain tissues such as liver have already been studied, a systematic study of tissue specific metabolic networks for all main tissues is still missing. In this work, we reconstruct the tissue specific metabolic networks for 15 main tissues in human based on the previously reconstructed Edinburgh Human Metabolic Network (EHMN). The tissue information is firstly obtained for enzymes from Human Protein Reference Database (HPRD) and UniprotKB databases and transfers to reactions through the enzyme-reaction relationships in EHMN. As our knowledge of tissue distribution of proteins is still very limited, we replenish the tissue information of the metabolic network based on network connectivity analysis and thorough examination of the literature. Finally, about 80% of proteins and reactions in EHMN are determined to be in at least one of the 15 tissues. To validate the quality of the tissue specific network, the brain specific metabolic network is taken as an example for functional module analysis and the results reveal that the function of the brain metabolic network is closely related with its function as the centre of the human nervous system. The tissue specific human metabolic networks are available at .

  15. Network Catastrophe: Self-Organized Patterns Reveal both the Instability and the Structure of Complex Networks

    Science.gov (United States)

    Moon, Hankyu; Lu, Tsai-Ching

    2015-03-01

    Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of--how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description -- of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible.

  16. Characterizing Social Interaction in Tobacco-Oriented Social Networks: An Empirical Analysis

    National Research Council Canada - National Science Library

    Liang, Yunji; Zheng, Xiaolong; Zeng, Daniel Dajun; Zhou, Xingshe; Leischow, Scott James; Chung, Wingyan

    2015-01-01

    .... To reveal the impact of tobacco-related user-generated content, this paper characterizes user interaction and social influence utilizing social network analysis and information theoretic approaches...

  17. Topological Analysis of Wireless Networks (TAWN)

    Science.gov (United States)

    2016-05-31

    19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...mathematical literature on sheaves that describes how to draw global ( network -wide) inferences from them. Wireless network , local homology, sheaf...topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael

  18. Review Essay: Does Qualitative Network Analysis Exist?

    Directory of Open Access Journals (Sweden)

    Rainer Diaz-Bone

    2007-01-01

    Full Text Available Social network analysis was formed and established in the 1970s as a way of analyzing systems of social relations. In this review the theoretical-methodological standpoint of social network analysis ("structural analysis" is introduced and the different forms of social network analysis are presented. Structural analysis argues that social actors and social relations are embedded in social networks, meaning that action and perception of actors as well as the performance of social relations are influenced by the network structure. Since the 1990s structural analysis has integrated concepts such as agency, discourse and symbolic orientation and in this way structural analysis has opened itself. Since then there has been increasing use of qualitative methods in network analysis. They are used to include the perspective of the analyzed actors, to explore networks, and to understand network dynamics. In the reviewed book, edited by Betina HOLLSTEIN and Florian STRAUS, the twenty predominantly empirically orientated contributions demonstrate the possibilities of combining quantitative and qualitative methods in network analyses in different research fields. In this review we examine how the contributions succeed in applying and developing the structural analysis perspective, and the self-positioning of "qualitative network analysis" is evaluated. URN: urn:nbn:de:0114-fqs0701287

  19. Google matrix analysis of directed networks

    Science.gov (United States)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  20. Understanding resilience in industrial symbiosis networks: insights from network analysis.

    Science.gov (United States)

    Chopra, Shauhrat S; Khanna, Vikas

    2014-08-01

    Industrial symbiotic networks are based on the principles of ecological systems where waste equals food, to develop synergistic networks. For example, industrial symbiosis (IS) at Kalundborg, Denmark, creates an exchange network of waste, water, and energy among companies based on contractual dependency. Since most of the industrial symbiotic networks are based on ad-hoc opportunities rather than strategic planning, gaining insight into disruptive scenarios is pivotal for understanding the balance of resilience and sustainability and developing heuristics for designing resilient IS networks. The present work focuses on understanding resilience as an emergent property of an IS network via a network-based approach with application to the Kalundborg Industrial Symbiosis (KIS). Results from network metrics and simulated disruptive scenarios reveal Asnaes power plant as the most critical node in the system. We also observe a decrease in the vulnerability of nodes and reduction in single points of failure in the system, suggesting an increase in the overall resilience of the KIS system from 1960 to 2010. Based on our findings, we recommend design strategies, such as increasing diversity, redundancy, and multi-functionality to ensure flexibility and plasticity, to develop resilient and sustainable industrial symbiotic networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Social network analysis community detection and evolution

    CERN Document Server

    Missaoui, Rokia

    2015-01-01

    This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit

  2. Network analysis literacy a practical approach to the analysis of networks

    CERN Document Server

    Zweig, Katharina A

    2014-01-01

    Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.

  3. egoSlider: Visual Analysis of Egocentric Network Evolution.

    Science.gov (United States)

    Wu, Yanhong; Pitipornvivat, Naveen; Zhao, Jian; Yang, Sixiao; Huang, Guowei; Qu, Huamin

    2016-01-01

    Ego-network, which represents relationships between a specific individual, i.e., the ego, and people connected to it, i.e., alters, is a critical target to study in social network analysis. Evolutionary patterns of ego-networks along time provide huge insights to many domains such as sociology, anthropology, and psychology. However, the analysis of dynamic ego-networks remains challenging due to its complicated time-varying graph structures, for example: alters come and leave, ties grow stronger and fade away, and alter communities merge and split. Most of the existing dynamic graph visualization techniques mainly focus on topological changes of the entire network, which is not adequate for egocentric analytical tasks. In this paper, we present egoSlider, a visual analysis system for exploring and comparing dynamic ego-networks. egoSlider provides a holistic picture of the data through multiple interactively coordinated views, revealing ego-network evolutionary patterns at three different layers: a macroscopic level for summarizing the entire ego-network data, a mesoscopic level for overviewing specific individuals' ego-network evolutions, and a microscopic level for displaying detailed temporal information of egos and their alters. We demonstrate the effectiveness of egoSlider with a usage scenario with the DBLP publication records. Also, a controlled user study indicates that in general egoSlider outperforms a baseline visualization of dynamic networks for completing egocentric analytical tasks.

  4. Applications of Social Network Analysis

    Science.gov (United States)

    Thilagam, P. Santhi

    A social network [2] is a description of the social structure between actors, mostly persons, groups or organizations. It indicates the ways in which they are connected with each other by some relationship such as friendship, kinship, finance exchange etc. In a nutshell, when the person uses already known/unknown people to create new contacts, it forms social networking. The social network is not a new concept rather it can be formed when similar people interact with each other directly or indirectly to perform particular task. Examples of social networks include a friendship networks, collaboration networks, co-authorship networks, and co-employees networks which depict the direct interaction among the people. There are also other forms of social networks, such as entertainment networks, business Networks, citation networks, and hyperlink networks, in which interaction among the people is indirect. Generally, social networks operate on many levels, from families up to the level of nations and assists in improving interactive knowledge sharing, interoperability and collaboration.

  5. Understanding complex interactions using social network analysis.

    Science.gov (United States)

    Pow, Janette; Gayen, Kaberi; Elliott, Lawrie; Raeside, Robert

    2012-10-01

    The aim of this paper is to raise the awareness of social network analysis as a method to facilitate research in nursing research. The application of social network analysis in assessing network properties has allowed greater insight to be gained in many areas including sociology, politics, business organisation and health care. However, the use of social networks in nursing has not received sufficient attention. Review of literature and illustration of the application of the method of social network analysis using research examples. First, the value of social networks will be discussed. Then by using illustrative examples, the value of social network analysis to nursing will be demonstrated. The method of social network analysis is found to give greater insights into social situations involving interactions between individuals and has particular application to the study of interactions between nurses and between nurses and patients and other actors. Social networks are systems in which people interact. Two quantitative techniques help our understanding of these networks. The first is visualisation of the network. The second is centrality. Individuals with high centrality are key communicators in a network. Applying social network analysis to nursing provides a simple method that helps gain an understanding of human interaction and how this might influence various health outcomes. It allows influential individuals (actors) to be identified. Their influence on the formation of social norms and communication can determine the extent to which new interventions or ways of thinking are accepted by a group. Thus, working with key individuals in a network could be critical to the success and sustainability of an intervention. Social network analysis can also help to assess the effectiveness of such interventions for the recipient and the service provider. © 2012 Blackwell Publishing Ltd.

  6. Network meta-analysis, electrical networks and graph theory.

    Science.gov (United States)

    Rücker, Gerta

    2012-12-01

    Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior.

    Science.gov (United States)

    Romano, Sebastián A; Pietri, Thomas; Pérez-Schuster, Verónica; Jouary, Adrien; Haudrechy, Mathieu; Sumbre, Germán

    2015-03-04

    Spontaneous neuronal activity is spatiotemporally structured, influencing brain computations. Nevertheless, the neuronal interactions underlying these spontaneous activity patterns, and their biological relevance, remain elusive. Here, we addressed these questions using two-photon calcium imaging of intact zebrafish larvae to monitor the neuron-to-neuron spontaneous activity fine structure in the tectum, a region involved in visual spatial detection. Spontaneous activity was organized in topographically compact assemblies, grouping functionally similar neurons rather than merely neighboring ones, reflecting the tectal retinotopic map despite being independent of retinal drive. Assemblies represent all-or-none-like sub-networks shaped by competitive dynamics, mechanisms advantageous for visual detection in noisy natural environments. Notably, assemblies were tuned to the same angular sizes and spatial positions as prey-detection performance in behavioral assays, and their spontaneous activation predicted directional tail movements. Therefore, structured spontaneous activity represents "preferred" network states, tuned to behaviorally relevant features, emerging from the circuit's intrinsic non-linear dynamics, adapted for its functional role. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Revealing and exploiting hierarchical material structure through complex atomic networks

    Science.gov (United States)

    Ahnert, Sebastian E.; Grant, William P.; Pickard, Chris J.

    2017-08-01

    One of the great challenges of modern science is to faithfully model, and understand, matter at a wide range of scales. Starting with atoms, the vastness of the space of possible configurations poses a formidable challenge to any simulation of complex atomic and molecular systems. We introduce a computational method to reduce the complexity of atomic configuration space by systematically recognising hierarchical levels of atomic structure, and identifying the individual components. Given a list of atomic coordinates, a network is generated based on the distances between the atoms. Using the technique of modularity optimisation, the network is decomposed into modules. This procedure can be performed at different resolution levels, leading to a decomposition of the system at different scales, from which hierarchical structure can be identified. By considering the amount of information required to represent a given modular decomposition we can furthermore find the most succinct descriptions of a given atomic ensemble. Our straightforward, automatic and general approach is applied to complex crystal structures. We show that modular decomposition of these structures considerably simplifies configuration space, which in turn can be used in discovery of novel crystal structures, and opens up a pathway towards accelerated molecular dynamics of complex atomic ensembles. The power of this approach is demonstrated by the identification of a possible allotrope of boron containing 56 atoms in the primitive unit cell, which we uncover using an accelerated structure search, based on a modular decomposition of a known dense phase of boron, γ-B28.

  9. Analytical reasoning task reveals limits of social learning in networks.

    Science.gov (United States)

    Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François

    2014-04-06

    Social learning-by observing and copying others-is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an 'unreflective copying bias', which limits their social learning to the output, rather than the process, of their peers' reasoning-even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behaviour through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning.

  10. Analytical reasoning task reveals limits of social learning in networks

    Science.gov (United States)

    Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François

    2014-01-01

    Social learning—by observing and copying others—is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an ‘unreflective copying bias’, which limits their social learning to the output, rather than the process, of their peers’ reasoning—even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behaviour through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning. PMID:24501275

  11. Metabolic network topology reveals transcriptional regulatory signatures of type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Aleksej Zelezniak

    2010-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a disorder characterized by both insulin resistance and impaired insulin secretion. Recent transcriptomics studies related to T2DM have revealed changes in expression of a large number of metabolic genes in a variety of tissues. Identification of the molecular mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites--metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment of binding sites in the promoter regions of these genes. In addition to metabolites from TCA cycle, oxidative phosphorylation, and lipid metabolism (known to be associated with T2DM, we identified several reporter metabolites representing novel biomarker candidates. For example, the highly connected metabolites NAD+/NADH and ATP/ADP were also identified as reporter metabolites that are potentially contributing to the widespread gene expression changes observed in T2DM. An algorithm based on the analysis of the promoter regions of the genes associated with reporter metabolites revealed a transcription factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic and regulatory nodes potentially involved in the pathogenesis of T2DM.

  12. Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle.

    Directory of Open Access Journals (Sweden)

    Angela Cánovas

    Full Text Available Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium as well as tissues known to be relevant to growth and metabolism needed to achieve puberty (i.e., longissimus dorsi muscle, adipose, and liver. These tissues were collected from pre- and post-pubertal Brangus heifers (3/8 Brahman; Bos indicus x 5/8 Angus; Bos taurus derived from a population of cattle used to identify quantitative trait loci associated with fertility traits (i.e., age of first observed corpus luteum (ACL, first service conception (FSC, and heifer pregnancy (HPG. In order to exploit the power of complementary omics analyses, pre- and post-puberty co-expression gene networks were constructed by combining the results from genome-wide association studies (GWAS, RNA-Seq, and bovine transcription factors. Eight tissues among pre-pubertal and post-pubertal Brangus heifers revealed 1,515 differentially expressed and 943 tissue-specific genes within the 17,832 genes confirmed by RNA-Seq analysis. The hypothalamus experienced the most notable up-regulation of genes via puberty (i.e., 204 out of 275 genes. Combining the results of GWAS and RNA-Seq, we identified 25 loci containing a single nucleotide polymorphism (SNP associated with ACL, FSC, and (or HPG. Seventeen of these SNP were within a gene and 13 of the genes were expressed in uterus or endometrium. Multi-tissue omics analyses revealed 2,450 co-expressed genes relative to puberty. The pre-pubertal network had 372,861 connections whereas the post-pubertal network had 328,357 connections. A sub-network from this process revealed key transcriptional regulators (i.e., PITX2, FOXA1, DACH2, PROP1, SIX6, etc.. Results from these multi

  13. The brain's functional network architecture reveals human motives.

    Science.gov (United States)

    Hein, Grit; Morishima, Yosuke; Leiberg, Susanne; Sul, Sunhae; Fehr, Ernst

    2016-03-04

    Goal-directed human behaviors are driven by motives. Motives are, however, purely mental constructs that are not directly observable. Here, we show that the brain's functional network architecture captures information that predicts different motives behind the same altruistic act with high accuracy. In contrast, mere activity in these regions contains no information about motives. Empathy-based altruism is primarily characterized by a positive connectivity from the anterior cingulate cortex (ACC) to the anterior insula (AI), whereas reciprocity-based altruism additionally invokes strong positive connectivity from the AI to the ACC and even stronger positive connectivity from the AI to the ventral striatum. Moreover, predominantly selfish individuals show distinct functional architectures compared to altruists, and they only increase altruistic behavior in response to empathy inductions, but not reciprocity inductions. Copyright © 2016, American Association for the Advancement of Science.

  14. Combined Metabolomic and Correlation Networks Analyses Reveal Fumarase Insufficiency Altered Amino Acids Metabolism.

    Science.gov (United States)

    Hou, Entai; Li, Xian; Liu, Zerong; Zhang, Fuchang; Tian, Zhongmin

    2017-11-11

    Fumarase catalyzes the interconversion of fumarate and L-malate in the tricarboxylic acid cycle. Fumarase insufficiencies were associated with increased level of fumarate and decreased level of malate and exacerbated salt-induced hypertension. To gain insights into the metabolism profiles that induced by fumarase insufficiency and identify key regulatory metabolites, we applied a GC-MS based metabolomics platform coupled with a network approach to analyze fumarase insufficient HUVEC cells and negative controls. A total of 24 altered metabolites involved in 7 metabolic pathways were identified as significantly altered, and enriched for the biological module of amino acids metabolism. In addition, Pearson correlation network analysis revealed that fumaric acid, L-malic acid, L-aspartic acid, glycine and L-glutamic acid were hub metabolites according to Pagerank based on their three centrality indices. ALT and GDH activities increased significantly in fumarase deficiency HUVEC cells. These results confirmed that fumarase insufficiency altered amino acid metabolism. The combination of metabolomics and network methods would provide another perspective on expounding the molecular mechanism at metabolomics level. This article is protected by copyright. All rights reserved.

  15. Identification of unstable network modules reveals disease modules associated with the progression of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Masataka Kikuchi

    Full Text Available Alzheimer's disease (AD, the most common cause of dementia, is associated with aging, and it leads to neuron death. Deposits of amyloid β and aberrantly phosphorylated tau protein are known as pathological hallmarks of AD, but the underlying mechanisms have not yet been revealed. A high-throughput gene expression analysis previously showed that differentially expressed genes accompanying the progression of AD were more down-regulated than up-regulated in the later stages of AD. This suggested that the molecular networks and their constituent modules collapsed along with AD progression. In this study, by using gene expression profiles and protein interaction networks (PINs, we identified the PINs expressed in three brain regions: the entorhinal cortex (EC, hippocampus (HIP and superior frontal gyrus (SFG. Dividing the expressed PINs into modules, we examined the stability of the modules with AD progression and with normal aging. We found that in the AD modules, the constituent proteins, interactions and cellular functions were not maintained between consecutive stages through all brain regions. Interestingly, the modules were collapsed with AD progression, specifically in the EC region. By identifying the modules that were affected by AD pathology, we found the transcriptional regulation-associated modules that interact with the proteasome-associated module via UCHL5 hub protein, which is a deubiquitinating enzyme. Considering PINs as a system made of network modules, we found that the modules relevant to the transcriptional regulation are disrupted in the EC region, which affects the ubiquitin-proteasome system.

  16. Revealed preference analysis of noncooperative household consumption

    NARCIS (Netherlands)

    Cherchye, L.J.H.; Demuynck, T.; de Rock, B.

    2011-01-01

    We develop a revealed preference approach to analyse non-unitary household consumption behaviour that is not cooperative (or Pareto efficient). We derive global necessary and sufficient conditions for data consistency with the model. We show that the conditions can be verified by means of relatively

  17. Satellite image analysis using neural networks

    Science.gov (United States)

    Sheldon, Roger A.

    1990-01-01

    The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.

  18. Social Network Analysis and informal trade

    DEFF Research Database (Denmark)

    Walther, Olivier

    networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...

  19. Social network analysis and supply chain management

    Directory of Open Access Journals (Sweden)

    Raúl Rodríguez Rodríguez

    2016-01-01

    Full Text Available This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes.

  20. 4th International Conference in Network Analysis

    CERN Document Server

    Koldanov, Petr; Pardalos, Panos

    2016-01-01

    The contributions in this volume cover a broad range of topics including maximum cliques, graph coloring, data mining, brain networks, Steiner forest, logistic and supply chain networks. Network algorithms and their applications to market graphs, manufacturing problems, internet networks and social networks are highlighted. The "Fourth International Conference in Network Analysis," held at the Higher School of Economics, Nizhny Novgorod in May 2014, initiated joint research between scientists, engineers and researchers from academia, industry and government; the major results of conference participants have been reviewed and collected in this Work. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis.

  1. Genomic Perturbations Reveal Distinct Regulatory Networks in Intrahepatic Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Nepal, Chirag; O'Rourke, Colm J; Oliveira, Douglas Vnp

    2018-01-01

    -exome sequencing, targeted exome sequencing) and epigenomic data from 496 patients, and used the three most recurrently mutated genes to stratify patients (IDH, KRAS, TP53, 'undetermined'). Using this molecular dissection approach, each subgroup was determined to possess unique mutational signature preferences, co...... all 3 mutations ('undetermined') harbored the most extensive structural alterations while IDH mutant tumors displayed the most extensive DNA methylome dysregulation, consistent with previous findings. CONCLUSION: Stratification of iCCA patients based on occurrence of mutations in three classifier...... genes (IDH, KRAS, TP53) revealed unique oncogenic programs (mutational, structural, epi-mutational) that influence pharmacologic response in drug repositioning protocols. This genome dissection approach highlights the potential of individual mutations to induce extensive molecular heterogeneity...

  2. METHODOLOGY OF MATHEMATICAL ANALYSIS IN POWER NETWORK

    OpenAIRE

    Jerzy Szkutnik; Mariusz Kawecki

    2008-01-01

    Power distribution network analysis is taken into account. Based on correlation coefficient authors establish methodology of mathematical analysis useful in finding substations bear responsibility for power stoppage. Also methodology of risk assessment will be carried out.

  3. [Interaction of anti-thrombotic and anti-inflammatory activities of commonly used traditional Chinese medicine for promoting blood circulation and removing blood stasis revealed by network pharmacology analysis].

    Science.gov (United States)

    Lü, Ming; Wang, Tai-yi; Tian, Xiao-xuan; Shi, Xin-hui; Fan, Guan-wei; Zhang, Yan; Zhu, Yan

    2015-09-01

    Chinese traditional patent medicine for promoting blood circulation and removing blood stasis(PBCRBS) originated from traditional Chinese medicine theory and had approved efficacy and safety standards. However, its compatibility regularity and anti-thrombotic mechanism is not clear. To analyze the compatibility regularity and anti-thrombotic mechanism of Chinese traditional patent medicine for PBCRBS, a statistical and bioinformatics analysis was carried out using traditional Chinese medicine inheritance support system (TICMISS, V2.0) and ingenuity pathway analysis (IPA). The compatibility regularity analysis shows that the most commonly used herb combinations are Danshen (Salvia miltiorrhiza Bge.), Chuanxiong (Ligusticum chuanxiong Hort.) and Honghua (Carthamustinctorius L.). The anti-thrombotic mechanism analysis reveals that 25 ingredients have an effect on 29 thrombosis related molecules which 23 molecules are related to inflammation response. Furthermore, there are 5 inflammation molecules (NOS2, PTGS2, IL6, TNF, IL1β) served as major targets. At the same time, Danshen, Chuangxiong and Honghua mainly used as sovereign herb or minister herb in the application of cardiovascular and cerebrovascular diseases. Therefore, Chinese traditional patent medicine for PBCRBS probably has an effect on anti-thrombotic activity through inhibiting the inflammatory response. In summary, the most commonly used herb combinations of Chinese traditional patent medicine for PBCRBS are Danshen, Chuanxiong and Honghua. Inhibiting inflammatory response, especially inflammation related molecules (NOS2, PTGS2, IL6, TNF and IL1β), is probably a new starting point to clarify the anti-thrombotic mechanism of Chinese patent medicine for PBCRBS.

  4. Measuring Road Network Vulnerability with Sensitivity Analysis

    Science.gov (United States)

    Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin

    2017-01-01

    This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706

  5. Constructing an Intelligent Patent Network Analysis Method

    OpenAIRE

    Chao-Chan Wu; Ching-Bang Yao

    2012-01-01

    Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks...

  6. Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling.

    Directory of Open Access Journals (Sweden)

    Masanao Sato

    Full Text Available Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2. This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i the components of the network are highly interconnected; and (ii negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a "sector

  7. Network Reconstruction and Systems Analysis of Cardiac Myocyte Hypertrophy Signaling*

    Science.gov (United States)

    Ryall, Karen A.; Holland, David O.; Delaney, Kyle A.; Kraeutler, Matthew J.; Parker, Audrey J.; Saucerman, Jeffrey J.

    2012-01-01

    Cardiac hypertrophy is managed by a dense web of signaling pathways with many pathways influencing myocyte growth. A quantitative understanding of the contributions of individual pathways and their interactions is needed to better understand hypertrophy signaling and to develop more effective therapies for heart failure. We developed a computational model of the cardiac myocyte hypertrophy signaling network to determine how the components and network topology lead to differential regulation of transcription factors, gene expression, and myocyte size. Our computational model of the hypertrophy signaling network contains 106 species and 193 reactions, integrating 14 established pathways regulating cardiac myocyte growth. 109 of 114 model predictions were validated using published experimental data testing the effects of receptor activation on transcription factors and myocyte phenotypic outputs. Network motif analysis revealed an enrichment of bifan and biparallel cross-talk motifs. Sensitivity analysis was used to inform clustering of the network into modules and to identify species with the greatest effects on cell growth. Many species influenced hypertrophy, but only a few nodes had large positive or negative influences. Ras, a network hub, had the greatest effect on cell area and influenced more species than any other protein in the network. We validated this model prediction in cultured cardiac myocytes. With this integrative computational model, we identified the most influential species in the cardiac hypertrophy signaling network and demonstrate how different levels of network organization affect myocyte size, transcription factors, and gene expression. PMID:23091058

  8. Cohesion network analysis of CSCL participation.

    Science.gov (United States)

    Dascalu, Mihai; McNamara, Danielle S; Trausan-Matu, Stefan; Allen, Laura K

    2017-04-13

    The broad use of computer-supported collaborative-learning (CSCL) environments (e.g., instant messenger-chats, forums, blogs in online communities, and massive open online courses) calls for automated tools to support tutors in the time-consuming process of analyzing collaborative conversations. In this article, the authors propose and validate the cohesion network analysis (CNA) model, housed within the ReaderBench platform. CNA, grounded in theories of cohesion, dialogism, and polyphony, is similar to social network analysis (SNA), but it also considers text content and discourse structure and, uniquely, uses automated cohesion indices to generate the underlying discourse representation. Thus, CNA enhances the power of SNA by explicitly considering semantic cohesion while modeling interactions between participants. The primary purpose of this article is to describe CNA analysis and to provide a proof of concept, by using ten chat conversations in which multiple participants debated the advantages of CSCL technologies. Each participant's contributions were human-scored on the basis of their relevance in terms of covering the central concepts of the conversation. SNA metrics, applied to the CNA sociogram, were then used to assess the quality of each member's degree of participation. The results revealed that the CNA indices were strongly correlated to the human evaluations of the conversations. Furthermore, a stepwise regression analysis indicated that the CNA indices collectively predicted 54% of the variance in the human ratings of participation. The results provide promising support for the use of automated computational assessments of collaborative participation and of individuals' degrees of active involvement in CSCL environments.

  9. Altered anatomical network in early blindness revealed by diffusion tensor tractography.

    Directory of Open Access Journals (Sweden)

    Ni Shu

    Full Text Available The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. Diffusion MRI studies have revealed the efficient small-world properties and modular structure of the anatomical network in normal subjects. However, no previous study has used diffusion MRI to reveal changes in the brain anatomical network in early blindness. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 17 early blind subjects and 17 age- and gender-matched sighted controls. We established the existence of structural connections between any pair of the 90 cortical and sub-cortical regions using deterministic tractography. Compared with controls, early blind subjects showed a decreased degree of connectivity, a reduced global efficiency, and an increased characteristic path length in their brain anatomical network, especially in the visual cortex. Moreover, we revealed some regions with motor or somatosensory function have increased connections with other brain regions in the early blind, which suggested experience-dependent compensatory plasticity. This study is the first to show alterations in the topological properties of the anatomical network in early blindness. From the results, we suggest that analyzing the brain's anatomical network obtained using diffusion MRI data provides new insights into the understanding of the brain's re-organization in the specific population with early visual deprivation.

  10. Altered anatomical network in early blindness revealed by diffusion tensor tractography.

    Science.gov (United States)

    Shu, Ni; Liu, Yong; Li, Jun; Li, Yonghui; Yu, Chunshui; Jiang, Tianzi

    2009-09-28

    The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. Diffusion MRI studies have revealed the efficient small-world properties and modular structure of the anatomical network in normal subjects. However, no previous study has used diffusion MRI to reveal changes in the brain anatomical network in early blindness. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 17 early blind subjects and 17 age- and gender-matched sighted controls. We established the existence of structural connections between any pair of the 90 cortical and sub-cortical regions using deterministic tractography. Compared with controls, early blind subjects showed a decreased degree of connectivity, a reduced global efficiency, and an increased characteristic path length in their brain anatomical network, especially in the visual cortex. Moreover, we revealed some regions with motor or somatosensory function have increased connections with other brain regions in the early blind, which suggested experience-dependent compensatory plasticity. This study is the first to show alterations in the topological properties of the anatomical network in early blindness. From the results, we suggest that analyzing the brain's anatomical network obtained using diffusion MRI data provides new insights into the understanding of the brain's re-organization in the specific population with early visual deprivation.

  11. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    Full Text Available To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network--the optimal number of levels and modular partition at each level--with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks.

  12. Structure-Dynamics Relationships in Bursting Neuronal Networks Revealed Using a Prediction Framework

    Science.gov (United States)

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Ruohonen, Keijo; Linne, Marja-Leena

    2013-01-01

    The question of how the structure of a neuronal network affects its functionality has gained a lot of attention in neuroscience. However, the vast majority of the studies on structure-dynamics relationships consider few types of network structures and assess limited numbers of structural measures. In this in silico study, we employ a wide diversity of network topologies and search among many possibilities the aspects of structure that have the greatest effect on the network excitability. The network activity is simulated using two point-neuron models, where the neurons are activated by noisy fluctuation of the membrane potential and their connections are described by chemical synapse models, and statistics on the number and quality of the emergent network bursts are collected for each network type. We apply a prediction framework to the obtained data in order to find out the most relevant aspects of network structure. In this framework, predictors that use different sets of graph-theoretic measures are trained to estimate the activity properties, such as burst count or burst length, of the networks. The performances of these predictors are compared with each other. We show that the best performance in prediction of activity properties for networks with sharp in-degree distribution is obtained when the prediction is based on clustering coefficient. By contrast, for networks with broad in-degree distribution, the maximum eigenvalue of the connectivity graph gives the most accurate prediction. The results shown for small () networks hold with few exceptions when different neuron models, different choices of neuron population and different average degrees are applied. We confirm our conclusions using larger () networks as well. Our findings reveal the relevance of different aspects of network structure from the viewpoint of network excitability, and our integrative method could serve as a general framework for structure-dynamics studies in biosciences. PMID:23935998

  13. Integrated metabolic modelling reveals cell-type specific epigenetic control points of the macrophage metabolic network.

    Science.gov (United States)

    Pacheco, Maria Pires; John, Elisabeth; Kaoma, Tony; Heinäniemi, Merja; Nicot, Nathalie; Vallar, Laurent; Bueb, Jean-Luc; Sinkkonen, Lasse; Sauter, Thomas

    2015-10-19

    The reconstruction of context-specific metabolic models from easily and reliably measurable features such as transcriptomics data will be increasingly important in research and medicine. Current reconstruction methods suffer from high computational effort and arbitrary threshold setting. Moreover, understanding the underlying epigenetic regulation might allow the identification of putative intervention points within metabolic networks. Genes under high regulatory load from multiple enhancers or super-enhancers are known key genes for disease and cell identity. However, their role in regulation of metabolism and their placement within the metabolic networks has not been studied. Here we present FASTCORMICS, a fast and robust workflow for the creation of high-quality metabolic models from transcriptomics data. FASTCORMICS is devoid of arbitrary parameter settings and due to its low computational demand allows cross-validation assays. Applying FASTCORMICS, we have generated models for 63 primary human cell types from microarray data, revealing significant differences in their metabolic networks. To understand the cell type-specific regulation of the alternative metabolic pathways we built multiple models during differentiation of primary human monocytes to macrophages and performed ChIP-Seq experiments for histone H3 K27 acetylation (H3K27ac) to map the active enhancers in macrophages. Focusing on the metabolic genes under high regulatory load from multiple enhancers or super-enhancers, we found these genes to show the most cell type-restricted and abundant expression profiles within their respective pathways. Importantly, the high regulatory load genes are associated to reactions enriched for transport reactions and other pathway entry points, suggesting that they are critical regulatory control points for cell type-specific metabolism. By integrating metabolic modelling and epigenomic analysis we have identified high regulatory load as a common feature of metabolic

  14. Quantitative methods for ecological network analysis.

    Science.gov (United States)

    Ulanowicz, Robert E

    2004-12-01

    The analysis of networks of ecological trophic transfers is a useful complement to simulation modeling in the quest for understanding whole-ecosystem dynamics. Trophic networks can be studied in quantitative and systematic fashion at several levels. Indirect relationships between any two individual taxa in an ecosystem, which often differ in either nature or magnitude from their direct influences, can be assayed using techniques from linear algebra. The same mathematics can also be employed to ascertain where along the trophic continuum any individual taxon is operating, or to map the web of connections into a virtual linear chain that summarizes trophodynamic performance by the system. Backtracking algorithms with pruning have been written which identify pathways for the recycle of materials and energy within the system. The pattern of such cycling often reveals modes of control or types of functions exhibited by various groups of taxa. The performance of the system as a whole at processing material and energy can be quantified using information theory. In particular, the complexity of process interactions can be parsed into separate terms that distinguish organized, efficient performance from the capacity for further development and recovery from disturbance. Finally, the sensitivities of the information-theoretic system indices appear to identify the dynamical bottlenecks in ecosystem functioning.

  15. Dynamic Functional Network Connectivity Reveals Unique and Overlapping Profiles of Insula Subdivisions

    Science.gov (United States)

    Nomi, Jason S.; Farrant, Kristafor; Damaraju, Eswar; Rachakonda, Srinivas; Calhoun, Vince D.; Uddin, Lucina Q.

    2016-01-01

    The human insular cortex consists of functionally diverse subdivisions that engage during tasks ranging from interoception to cognitive control. The multiplicity of functions subserved by insular subdivisions calls for a nuanced investigation of their functional connectivity profiles. Four insula subdivisions (dorsal anterior, dAI; ventral, VI; posterior, PI; middle, MI) derived using a data-driven approach were subjected to static- and dynamic-functional network connectivity (s-FNC and d-FNC) analyses. Static-FNC analyses replicated previous work demonstrating a cognition-emotion-interoception division of the insula, where the dAI is functionally connected to frontal areas, the VI to limbic areas, and the PI and MI to sensorimotor areas. Dynamic-FNC analyses consisted of k-means clustering of sliding windows to identify variable insula connectivity states. The d-FNC analysis revealed that the most frequently occurring dynamic state mirrored the cognition-emotion-interoception division observed from the s-FNC analysis, with less frequently occurring states showing overlapping and unique subdivision connectivity profiles. In two of the states, all subdivisions exhibited largely overlapping profiles, consisting of subcortical, sensory, motor, and frontal connections. Two other states showed the dAI exhibited a unique connectivity profile compared with other insula subdivisions. Additionally, the dAI exhibited the most variable functional connections across the s-FNC and d-FNC analyses, and was the only subdivision to exhibit dynamic functional connections with regions of the default mode network. These results highlight how a d-FNC approach can capture functional dynamics masked by s-FNC approaches, and reveal dynamic functional connections enabling the functional flexibility of the insula across time. PMID:26880689

  16. Monosomic analysis reveals duplicated chromosomal segments in ...

    Indian Academy of Sciences (India)

    Monosomics for chromosome 2 expressed liguleless leaf phenotype due to hemizygous condition of recessive gene lg. Two monosomic-4 plants were identified after test crossing with monosomic tester (see table 2 in electronic supplemen- tary material). Monosomic-6 plants were identified by the cytological analysis (figure ...

  17. Weighted Complex Network Analysis of Pakistan Highways

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2013-01-01

    Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.

  18. Predictive structural dynamic network analysis.

    Science.gov (United States)

    Chen, Rong; Herskovits, Edward H

    2015-04-30

    Classifying individuals based on magnetic resonance data is an important task in neuroscience. Existing brain network-based methods to classify subjects analyze data from a cross-sectional study and these methods cannot classify subjects based on longitudinal data. We propose a network-based predictive modeling method to classify subjects based on longitudinal magnetic resonance data. Our method generates a dynamic Bayesian network model for each group which represents complex spatiotemporal interactions among brain regions, and then calculates a score representing that subject's deviation from expected network patterns. This network-derived score, along with other candidate predictors, are used to construct predictive models. We validated the proposed method based on simulated data and the Alzheimer's Disease Neuroimaging Initiative study. For the Alzheimer's Disease Neuroimaging Initiative study, we built a predictive model based on the baseline biomarker characterizing the baseline state and the network-based score which was constructed based on the state transition probability matrix. We found that this combined model achieved 0.86 accuracy, 0.85 sensitivity, and 0.87 specificity. For the Alzheimer's Disease Neuroimaging Initiative study, the model based on the baseline biomarkers achieved 0.77 accuracy. The accuracy of our model is significantly better than the model based on the baseline biomarkers (p-value=0.002). We have presented a method to classify subjects based on structural dynamic network model based scores. This method is of great importance to distinguish subjects based on structural network dynamics and the understanding of the network architecture of brain processes and disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARγ signaling as potential mechanism for the negative relationships between immune response and lipid metabolism

    Directory of Open Access Journals (Sweden)

    Rodriguez-Zas Sandra L

    2009-11-01

    Full Text Available Abstract Background Information generated via microarrays might uncover interactions between the mammary gland and Streptococcus uberis (S. uberis that could help identify control measures for the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare, and decrease economic losses to dairy farmers. The main objective of this study was to determine the most affected gene networks and pathways in mammary tissue in response to an intramammary infection (IMI with S. uberis and relate these with other physiological measurements associated with immune and/or metabolic responses to mastitis challenge with S. uberis O140J. Results Streptococcus uberis IMI resulted in 2,102 (1,939 annotated differentially expressed genes (DEG. Within this set of DEG, we uncovered 20 significantly enriched canonical pathways (with 20 to 61 genes each, the majority of which were signaling pathways. Among the most inhibited were LXR/RXR Signaling and PPARα/RXRα Signaling. Pathways activated by IMI were IL-10 Signaling and IL-6 Signaling which likely reflected counter mechanisms of mammary tissue to respond to infection. Of the 2,102 DEG, 1,082 were up-regulated during IMI and were primarily involved with the immune response, e.g., IL6, TNF, IL8, IL10, SELL, LYZ, and SAA3. Genes down-regulated (1,020 included those associated with milk fat synthesis, e.g., LPIN1, LPL, CD36, and BTN1A1. Network analysis of DEG indicated that TNF had positive relationships with genes involved with immune system function (e.g., CD14, IL8, IL1B, and TLR2 and negative relationships with genes involved with lipid metabolism (e.g., GPAM, SCD, FABP4, CD36, and LPL and antioxidant activity (SOD1. Conclusion Results provided novel information into the early signaling and metabolic pathways in mammary tissue that are associated with the innate immune response to S. uberis infection. Our study indicated that IMI challenge with S. uberis (strain O140J elicited

  20. NEAT: an efficient network enrichment analysis test.

    Science.gov (United States)

    Signorelli, Mirko; Vinciotti, Veronica; Wit, Ernst C

    2016-09-05

    Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be computationally slow and are based on normality assumptions. We propose NEAT, a test for network enrichment analysis. The test is based on the hypergeometric distribution, which naturally arises as the null distribution in this context. NEAT can be applied not only to undirected, but to directed and partially directed networks as well. Our simulations indicate that NEAT is considerably faster than alternative resampling-based methods, and that its capacity to detect enrichments is at least as good as the one of alternative tests. We discuss applications of NEAT to network analyses in yeast by testing for enrichment of the Environmental Stress Response target gene set with GO Slim and KEGG functional gene sets, and also by inspecting associations between functional sets themselves. NEAT is a flexible and efficient test for network enrichment analysis that aims to overcome some limitations of existing resampling-based tests. The method is implemented in the R package neat, which can be freely downloaded from CRAN ( https://cran.r-project.org/package=neat ).

  1. Reaction network analysis in biochemical signaling pathways

    OpenAIRE

    Martinez-Forero, I. (Iván); Pelaez, A. (Antonio); Villoslada, P. (Pablo)

    2010-01-01

    The aim of this thesis is to improve the understanding of signaling pathways through a theoretical study of chemical reaction networks. The equilibirum solution to the equations derived from chemical networks will be analytically resolved using tools from algebraic geometry. The chapters are organized as follows: 1. An introduction to chemical dynamics in biological systems with a special emphasis on steady state analysis 2. Complete description of the chemical reaction network theor...

  2. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Jonathan Wirsich

    2016-01-01

    In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  3. Industrial entrepreneurial network: Structural and functional analysis

    Science.gov (United States)

    Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.

    2016-12-01

    Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.

  4. 3rd International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2014-01-01

    This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications.  Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale...

  5. Social network analysis in medical education.

    Science.gov (United States)

    Isba, Rachel; Woolf, Katherine; Hanneman, Robert

    2017-01-01

    Humans are fundamentally social beings. The social systems within which we live our lives (families, schools, workplaces, professions, friendship groups) have a significant influence on our health, success and well-being. These groups can be characterised as networks and analysed using social network analysis. Social network analysis is a mainly quantitative method for analysing how relationships between individuals form and affect those individuals, but also how individual relationships build up into wider social structures that influence outcomes at a group level. Recent increases in computational power have increased the accessibility of social network analysis methods for application to medical education research. Social network analysis has been used to explore team-working, social influences on attitudes and behaviours, the influence of social position on individual success, and the relationship between social cohesion and power. This makes social network analysis theories and methods relevant to understanding the social processes underlying academic performance, workplace learning and policy-making and implementation in medical education contexts. Social network analysis is underused in medical education, yet it is a method that could yield significant insights that would improve experiences and outcomes for medical trainees and educators, and ultimately for patients. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  6. Generalised power graph compression reveals dominant relationship patterns in complex networks

    Science.gov (United States)

    Ahnert, Sebastian E.

    2014-03-01

    We introduce a framework for the discovery of dominant relationship patterns in complex networks, by compressing the networks into power graphs with overlapping power nodes. When paired with enrichment analysis of node classification terms, the most compressible sets of edges provide a highly informative sketch of the dominant relationship patterns that define the network. In addition, this procedure also gives rise to a novel, link-based definition of overlapping node communities in which nodes are defined by their relationships with sets of other nodes, rather than through connections within the community. We show that this completely general approach can be applied to undirected, directed, and bipartite networks, yielding valuable insights into the large-scale structure of real-world networks, including social networks and food webs. Our approach therefore provides a novel way in which network architecture can be studied, defined and classified.

  7. Analysis of complex networks using aggressive abstraction.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  8. Social Network Analysis and Critical Realism

    DEFF Research Database (Denmark)

    Buch-Hansen, Hubert

    2014-01-01

    Social network analysis ( SNA) is an increasingly popular approach that provides researchers with highly developed tools to map and analyze complexes of social relations. Although a number of network scholars have explicated the assumptions that underpin SNA, the approach has yet to be discussed ...

  9. Dynamic landscape of pancreatic carcinogenesis reveals early molecular networks of malignancy.

    Science.gov (United States)

    Kong, Bo; Bruns, Philipp; Behler, Nora A; Chang, Ligong; Schlitter, Anna Melissa; Cao, Jing; Gewies, Andreas; Ruland, Jürgen; Fritzsche, Sina; Valkovskaya, Nataliya; Jian, Ziying; Regel, Ivonne; Raulefs, Susanne; Irmler, Martin; Beckers, Johannes; Friess, Helmut; Erkan, Mert; Mueller, Nikola S; Roth, Susanne; Hackert, Thilo; Esposito, Irene; Theis, Fabian J; Kleeff, Jörg; Michalski, Christoph W

    2016-09-19

    The initial steps of pancreatic regeneration versus carcinogenesis are insufficiently understood. Although a combination of oncogenic Kras and inflammation has been shown to induce malignancy, molecular networks of early carcinogenesis remain poorly defined. We compared early events during inflammation, regeneration and carcinogenesis on histological and transcriptional levels with a high temporal resolution using a well-established mouse model of pancreatitis and of inflammation-accelerated KrasG12D-driven pancreatic ductal adenocarcinoma. Quantitative expression data were analysed and extensively modelled in silico. We defined three distinctive phases-termed inflammation, regeneration and refinement-following induction of moderate acute pancreatitis in wild-type mice. These corresponded to different waves of proliferation of mesenchymal, progenitor-like and acinar cells. Pancreas regeneration required a coordinated transition of proliferation between progenitor-like and acinar cells. In mice harbouring an oncogenic Kras mutation and challenged with pancreatitis, there was an extended inflammatory phase and a parallel, continuous proliferation of mesenchymal, progenitor-like and acinar cells. Analysis of high-resolution transcriptional data from wild-type animals revealed that organ regeneration relied on a complex interaction of a gene network that normally governs acinar cell homeostasis, exocrine specification and intercellular signalling. In mice with oncogenic Kras, a specific carcinogenic signature was found, which was preserved in full-blown mouse pancreas cancer. These data define a transcriptional signature of early pancreatic carcinogenesis and a molecular network driving formation of preneoplastic lesions, which allows for more targeted biomarker development in order to detect cancer earlier in patients with pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Master stability functions reveal diffusion-driven instabilities in multi-layer networks

    CERN Document Server

    Brechtel, Andreas; Ritterskamp, Daniel; Drossel, Barbara; Gross, Thilo

    2016-01-01

    Many systems in science and technology can be described as multilayer networks, which are known to exhibit phenomena such as catastrophic failure cascades and pattern-forming instabilities. A particular class of multilayer networks describes systems where different interacting copies of a local network exist in different spatial locations, including for instance regulatory and metabolic networks of identical cells and interacting habitats of ecological populations. Here, we show that such systems can be analyzed by a master stability function (MSF) approach, which reveals conditions for diffusion-driven instabilities (DDIs). We demonstrate the methodology on the example of state-of-the-art meta-foodweb models, where it reveals diffusion-driven instabilities that lead to localized dynamics and spatial patterns. This type of approach can be applied to a variety of systems from nature, science and engineering to aid the understanding and design of complex self-organizing systems.

  11. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    Science.gov (United States)

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  12. Complex Network Analysis of Guangzhou Metro

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2015-11-01

    Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.

  13. Extending Stochastic Network Calculus to Loss Analysis

    Directory of Open Access Journals (Sweden)

    Chao Luo

    2013-01-01

    Full Text Available Loss is an important parameter of Quality of Service (QoS. Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor.

  14. Mitochondrial DNA analysis reveals a low nucleotide diversity of ...

    African Journals Online (AJOL)

    Mitochondrial DNA analysis reveals a low nucleotide diversity of Caligula japonica in China. ... Mitochondrial DNA analysis reveals a low nucleotide diversity of Caligula japonica in China. Y Li, B Yang, H Wang, R Xia, L Wang, Z Zhang, L Qin, Y Liu ...

  15. Constructing an Intelligent Patent Network Analysis Method

    Directory of Open Access Journals (Sweden)

    Chao-Chan Wu

    2012-11-01

    Full Text Available Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks of the current method, this study proposes a novel patent analysis method, called the intelligent patent network analysis method, to make a visual network with great precision. Based on artificial intelligence techniques, the proposed method provides an automated procedure for searching patent documents, extracting patent keywords, and determining the weight of each patent keyword in order to generate a sophisticated visualization of the patent network. This study proposes a detailed procedure for generating an intelligent patent network that is helpful for improving the efficiency and quality of patent analysis. Furthermore, patents in the field of Carbon Nanotube Backlight Unit (CNT-BLU were analyzed to verify the utility of the proposed method.

  16. Social network analysis for program implementation.

    Science.gov (United States)

    Valente, Thomas W; Palinkas, Lawrence A; Czaja, Sara; Chu, Kar-Hai; Brown, C Hendricks

    2015-01-01

    This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach.

  17. Explosive synchronization in clustered scale-free networks: Revealing the existence of chimera state

    Science.gov (United States)

    Berec, V.

    2016-02-01

    The collective dynamics of Kuramoto oscillators with a positive correlation between the incoherent and fully coherent domains in clustered scale-free networks is studied. Emergence of chimera states for the onsets of explosive synchronization transition is observed during an intermediate coupling regime when degree-frequency correlation is established for the hubs with the highest degrees. Diagnostic of the abrupt synchronization is revealed by the intrinsic spectral properties of the network graph Laplacian encoded in the heterogeneous phase space manifold, through extensive analytical investigation, presenting realistic MC simulations of nonlocal interactions in discrete time dynamics evolving on the network.

  18. Multilayer motif analysis of brain networks

    Science.gov (United States)

    Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito

    2017-04-01

    In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.

  19. Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome.

    Science.gov (United States)

    Arrell, D Kent; Niederländer, Nicolas J; Faustino, Randolph S; Behfar, Atta; Terzic, Andre

    2008-02-01

    In the developing embryo, instructive guidance from the ventral endoderm secures cardiac program induction within the anterolateral mesoderm. Endoderm-guided cardiogenesis, however, has yet to be resolved at the proteome level. Here, through cardiopoietic priming of the endoderm with the reprogramming cytokine tumor necrosis factor alpha (TNFalpha), candidate effectors of embryonic stem cell cardiac differentiation were delineated by comparative proteomics. Differential two-dimensional gel electrophoretic mapping revealed that more than 75% of protein species increased >1.5-fold in the TNFalpha-primed versus unprimed endodermal secretome. Protein spot identification by linear ion trap quadrupole (LTQ) tandem mass spectrometry (MS/MS) and validation by shotgun LTQ-Fourier transform MS/MS following multidimensional chromatography mapped 99 unique proteins from 153 spot assignments. A definitive set of 48 secretome proteins was deduced by iterative bioinformatic screening using algorithms for detection of canonical and noncanonical indices of secretion. Protein-protein interaction analysis, in conjunction with respective expression level changes, revealed a nonstochastic TNFalpha-centric secretome network with a scale-free hierarchical architecture. Cardiovascular development was the primary developmental function of the resolved TNFalpha-anchored network. Functional cooperativity of the derived cardioinductive network was validated through direct application of the TNFalpha-primed secretome on embryonic stem cells, potentiating cardiac commitment and sarcomerogenesis. Conversely, inhibition of primary network hubs negated the procardiogenic effects of TNFalpha priming. Thus, proteomic cartography establishes a systems biology framework for the endodermal secretome network guiding stem cell cardiopoiesis.

  20. Multiplex networks of cortical and hippocampal neurons revealed at different timescales.

    Directory of Open Access Journals (Sweden)

    Nicholas Timme

    Full Text Available Recent studies have emphasized the importance of multiplex networks--interdependent networks with shared nodes and different types of connections--in systems primarily outside of neuroscience. Though the multiplex properties of networks are frequently not considered, most networks are actually multiplex networks and the multiplex specific features of networks can greatly affect network behavior (e.g. fault tolerance. Thus, the study of networks of neurons could potentially be greatly enhanced using a multiplex perspective. Given the wide range of temporally dependent rhythms and phenomena present in neural systems, we chose to examine multiplex networks of individual neurons with time scale dependent connections. To study these networks, we used transfer entropy--an information theoretic quantity that can be used to measure linear and nonlinear interactions--to systematically measure the connectivity between individual neurons at different time scales in cortical and hippocampal slice cultures. We recorded the spiking activity of almost 12,000 neurons across 60 tissue samples using a 512-electrode array with 60 micrometer inter-electrode spacing and 50 microsecond temporal resolution. To the best of our knowledge, this preparation and recording method represents a superior combination of number of recorded neurons and temporal and spatial recording resolutions to any currently available in vivo system. We found that highly connected neurons ("hubs" were localized to certain time scales, which, we hypothesize, increases the fault tolerance of the network. Conversely, a large proportion of non-hub neurons were not localized to certain time scales. In addition, we found that long and short time scale connectivity was uncorrelated. Finally, we found that long time scale networks were significantly less modular and more disassortative than short time scale networks in both tissue types. As far as we are aware, this analysis represents the first

  1. Using Citation Network Analysis in Educational Technology

    Science.gov (United States)

    Cho, Yonjoo; Park, Sunyoung

    2012-01-01

    Previous reviews in the field of Educational Technology (ET) have revealed some publication patterns according to authors, institutions, and affiliations. However, those previous reviews focused only on the rankings of individual authors and institutions, and did not provide qualitative details on relations and networks of scholars and scholarly…

  2. 1st International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2013-01-01

    This volume contains a selection of contributions from the "First International Conference in Network Analysis," held at the University of Florida, Gainesville, on December 14-16, 2011. The remarkable diversity of fields that take advantage of Network Analysis makes the endeavor of gathering up-to-date material in a single compilation a useful, yet very difficult, task. The purpose of this volume is to overcome this difficulty by collecting the major results found by the participants and combining them in one easily accessible compilation. Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network is bringing together researchers, practitioners and other scientific communities from numerous fields such as Operations Research, Computer Science, Transportation, Energy, Social Sciences, and more. The contributions not only come from different fields, but also cover a broad range of topics relevant to the...

  3. Dissecting the fission yeast regulatory network reveals phase-specific control elements of its cell cycle

    Directory of Open Access Journals (Sweden)

    Liu Liwen

    2009-09-01

    Full Text Available Abstract Background Fission yeast Schizosaccharomyces pombe and budding yeast Saccharomyces cerevisiae are among the original model organisms in the study of the cell-division cycle. Unlike budding yeast, no large-scale regulatory network has been constructed for fission yeast. It has only been partially characterized. As a result, important regulatory cascades in budding yeast have no known or complete counterpart in fission yeast. Results By integrating genome-wide data from multiple time course cell cycle microarray experiments we reconstructed a gene regulatory network. Based on the network, we discovered in addition to previously known regulatory hubs in M phase, a new putative regulatory hub in the form of the HMG box transcription factor SPBC19G7.04. Further, we inferred periodic activities of several less known transcription factors over the course of the cell cycle, identified over 500 putative regulatory targets and detected many new phase-specific and conserved cis-regulatory motifs. In particular, we show that SPBC19G7.04 has highly significant periodic activity that peaks in early M phase, which is coordinated with the late G2 activity of the forkhead transcription factor fkh2. Finally, using an enhanced Bayesian algorithm to co-cluster the expression data, we obtained 31 clusters of co-regulated genes 1 which constitute regulatory modules from different phases of the cell cycle, 2 whose phase order is coherent across the 10 time course experiments, and 3 which lead to identification of phase-specific control elements at both the transcriptional and post-transcriptional levels in S. pombe. In particular, the ribosome biogenesis clusters expressed in G2 phase reveal new, highly conserved RNA motifs. Conclusion Using a systems-level analysis of the phase-specific nature of the S. pombe cell cycle gene regulation, we have provided new testable evidence for post-transcriptional regulation in the G2 phase of the fission yeast cell cycle

  4. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  5. Modeling reveals bistability and low-pass filtering in the network module determining blood stem cell fate.

    Directory of Open Access Journals (Sweden)

    Jatin Narula

    2010-05-01

    Full Text Available Combinatorial regulation of gene expression is ubiquitous in eukaryotes with multiple inputs converging on regulatory control elements. The dynamic properties of these elements determine the functionality of genetic networks regulating differentiation and development. Here we propose a method to quantitatively characterize the regulatory output of distant enhancers with a biophysical approach that recursively determines free energies of protein-protein and protein-DNA interactions from experimental analysis of transcriptional reporter libraries. We apply this method to model the Scl-Gata2-Fli1 triad-a network module important for cell fate specification of hematopoietic stem cells. We show that this triad module is inherently bistable with irreversible transitions in response to physiologically relevant signals such as Notch, Bmp4 and Gata1 and we use the model to predict the sensitivity of the network to mutations. We also show that the triad acts as a low-pass filter by switching between steady states only in response to signals that persist for longer than a minimum duration threshold. We have found that the auto-regulation loops connecting the slow-degrading Scl to Gata2 and Fli1 are crucial for this low-pass filtering property. Taken together our analysis not only reveals new insights into hematopoietic stem cell regulatory network functionality but also provides a novel and widely applicable strategy to incorporate experimental measurements into dynamical network models.

  6. Trimming of mammalian transcriptional networks using network component analysis

    Directory of Open Access Journals (Sweden)

    Liao James C

    2010-10-01

    Full Text Available Abstract Background Network Component Analysis (NCA has been used to deduce the activities of transcription factors (TFs from gene expression data and the TF-gene binding relationship. However, the TF-gene interaction varies in different environmental conditions and tissues, but such information is rarely available and cannot be predicted simply by motif analysis. Thus, it is beneficial to identify key TF-gene interactions under the experimental condition based on transcriptome data. Such information would be useful in identifying key regulatory pathways and gene markers of TFs in further studies. Results We developed an algorithm to trim network connectivity such that the important regulatory interactions between the TFs and the genes were retained and the regulatory signals were deduced. Theoretical studies demonstrated that the regulatory signals were accurately reconstructed even in the case where only three independent transcriptome datasets were available. At least 80% of the main target genes were correctly predicted in the extreme condition of high noise level and small number of datasets. Our algorithm was tested with transcriptome data taken from mice under rapamycin treatment. The initial network topology from the literature contains 70 TFs, 778 genes, and 1423 edges between the TFs and genes. Our method retained 1074 edges (i.e. 75% of the original edge number and identified 17 TFs as being significantly perturbed under the experimental condition. Twelve of these TFs are involved in MAPK signaling or myeloid leukemia pathways defined in the KEGG database, or are known to physically interact with each other. Additionally, four of these TFs, which are Hif1a, Cebpb, Nfkb1, and Atf1, are known targets of rapamycin. Furthermore, the trimmed network was able to predict Eno1 as an important target of Hif1a; this key interaction could not be detected without trimming the regulatory network. Conclusions The advantage of our new algorithm

  7. Social network analysis applied to team sports analysis

    CERN Document Server

    Clemente, Filipe Manuel; Mendes, Rui Sousa

    2016-01-01

    Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.

  8. Network graph analysis of category fluency testing.

    Science.gov (United States)

    Lerner, Alan J; Ogrocki, Paula K; Thomas, Peter J

    2009-03-01

    Category fluency is impaired early in Alzheimer disease (AD). Graph theory is a technique to analyze complex relationships in networks. Features of interest in network analysis include the number of nodes and edges, and variables related to their interconnectedness. Other properties important in network analysis are "small world properties" and "scale-free" properties. The small world property (popularized as the so-called "6 degrees of separation") arises when the majority of connections are local, but a number of connections are to distant nodes. Scale-free networks are characterized by the presence of a few nodes with many connections, and many more nodes with fewer connections. To determine if category fluency data can be analyzed using graph theory. To compare normal elderly, mild cognitive impairment (MCI) and AD network graphs, and characterize changes seen with increasing cognitive impairment. Category fluency results ("animals" recorded over 60 s) from normals (n=38), MCI (n=33), and AD (n=40) completing uniform data set evaluations were converted to network graphs of all unique cooccurring neighbors, and compared for network variables. For Normal, MCI and AD, mean clustering coefficients were 0.21, 0.22, 0.30; characteristic path lengths were 3.27, 3.17, and 2.65; small world properties decreased with increasing cognitive impairment, and all graphs showed scale-free properties. Rank correlations of the 25 commonest items ranged from 0.75 to 0.83. Filtering of low-degree nodes in normal and MCI graphs resulted in properties similar to the AD network graph. Network graph analysis is a promising technique for analyzing changes in category fluency. Our technique results in nonrandom graphs consistent with well-characterized properties for these types of graphs.

  9. Complex network analysis of extreme precipitation over the Indian subcontinent.

    Science.gov (United States)

    Stolbova, Veronika; Kurths, Jürgen

    2013-04-01

    The Indian monsoon is a large scale pattern in the climate system of the Earth. The motivation of our work was to reveal spatial structures in strong precipitation over the Indian subcontinent, and their evolution during the year, because it is crucial as for understanding of monsoon regularities as well for India's agriculture and economy. We present an analysis of extreme rainfall over the Indian peninsula and Sri Lanka. Using the method of event synchronization we constructed networks of extreme rainfall events(heavier than the 90-th percentile) for three time periods: during the Indian summer monsoon (ISM, June-September), the Northeast monsoon (NEM, October - December, so called winter monsoon) and period before the summer monsoon (January - May). Obtained networks show how extreme rainfall for specific areas in India is synchronized with extreme rainfall for other areas in India. Analysis of degree centrality of the networks reveals clusters of extreme rainfall events in India which are strongly connected to maximal number of other areas with extreme rainfall events, e.g., North Pakistan and the Eastern Ghats. Additionally, betweenness centrality shows areas that are important in the sense of water transport in the networks (e.g. the Himalayas, Western Ghats, Eastern Ghats etc.). By comparison of networks before the summer monsoon, during summer and winter monsoon season we determined how spatial patterns of rainfalls synchronization change during the year. These changes play a crucial role in the organization of the rainfall all over the Indian subcontinent.

  10. Performance Analysis of 3G Communication Network

    Directory of Open Access Journals (Sweden)

    Toni Anwar

    2013-09-01

    Full Text Available In this project, third generation (3G technologies research had been carried out to design and optimization conditions for 3G network. The 3G wireless mobile communication networks are growing at an ever faster rate, and this is likely to continue in the foreseeable future. Some services such as e-mail, web browsing etc allow the transition of the network from circuit switched to packet switched operation, resulting in increased overall network performance. Higher reliability, better coverage and services, higher capacity, mobility management, and wireless multimedia are all parts of the network performance. Throughput and spectral efficiency are fundamental parameters in capacity planning for 3G cellular network deployments. This project investigates also the downlink (DL and uplink (UL throughput and spectral efficiency performance of the standard Universal Mobile Telecommunications system (UMTS system for different scenarios of user and different technologies. Power consumption comparison for different mobile technology is also discussed. The analysis can significantly help system engineers to obtain crucial performance characteristics of 3G network. At the end of the paper, coverage area of 3G from one of the mobile network in Malaysia is presented.

  11. Medical image analysis with artificial neural networks.

    Science.gov (United States)

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Fast network centrality analysis using GPUs

    Directory of Open Access Journals (Sweden)

    Shi Zhiao

    2011-05-01

    Full Text Available Abstract Background With the exploding volume of data generated by continuously evolving high-throughput technologies, biological network analysis problems are growing larger in scale and craving for more computational power. General Purpose computation on Graphics Processing Units (GPGPU provides a cost-effective technology for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in leveraging the power of GPUs. Results We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between 11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these algorithms available to the research community, we developed a software package gpu-fan (GPU-based Fast Analysis of Networks for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was observed for simulated scale-free networks and real world biological networks. Conclusions gpu-fan provides a significant performance improvement for centrality computation in large-scale networks. Source code is available under the GNU Public License (GPL at http://bioinfo.vanderbilt.edu/gpu-fan/.

  13. Kinetic analysis of complex metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, G. [MIT, Cambridge, MA (United States)

    1996-12-31

    A new methodology is presented for the analysis of complex metabolic networks with the goal of metabolite overproduction. The objective is to locate a small number of reaction steps in a network that have maximum impact on network flux amplification and whose rate can also be increased without functional network derangement. This method extends the concepts of Metabolic Control Analysis to groups of reactions and offers the means for calculating group control coefficients as measures of the control exercised by groups of reactions on the overall network fluxes and intracellular metabolite pools. It is further demonstrated that the optimal strategy for the effective increase of network fluxes, while maintaining an uninterrupted supply of intermediate metabolites, is through the coordinated amplification of multiple (as opposed to a single) reaction steps. Satisfying this requirement invokes the concept of the concentration control to coefficient, which emerges as a critical parameter in the identification of feasible enzymatic modifications with maximal impact on the network flux. A case study of aromatic aminoacid production is provided to illustrate these concepts.

  14. Dynamical Networks for Smog Pattern Analysis

    CERN Document Server

    Zong, Linqi; Zhu, Jia

    2015-01-01

    Smog, as a form of air pollution, poses as a serious problem to the environment, health, and economy of the world[1-4] . Previous studies on smog mostly focused on the components and the effects of smog [5-10]. However, as the smog happens with increased frequency and duration, the smog pattern which is critical for smog forecast and control, is rarely investigated, mainly due to the complexity of the components, the causes, and the spreading processes of smog. Here we report the first analysis on smog pattern applying the model of dynamical networks with spontaneous recovery. We show that many phenomena such as the sudden outbreak and dissipation of smog and the long duration smog can be revealed with the mathematical mechanism under a random walk simulation. We present real-world air quality index data in accord with the predictions of the model. Also we found that compared to external causes such as pollution spreading from nearby, internal causes such as industrial pollution and vehicle emission generated...

  15. Network graph analysis and visualization with Gephi

    CERN Document Server

    Cherven, Ken

    2013-01-01

    A practical, hands-on guide, that provides you with all the tools you need to visualize and analyze your data using network graphs with Gephi.This book is for data analysts who want to intuitively reveal patterns and trends, highlight outliers, and tell stories with their data using Gephi. It is great for anyone looking to explore interactions within network datasets, whether the data comes from social media or elsewhere. It is also a valuable resource for those seeking to learn more about Gephi without being overwhelmed by technical details.

  16. Exploration Knowledge Sharing Networks Using Social Network Analysis Methods

    Directory of Open Access Journals (Sweden)

    Győző Attila Szilágyi

    2017-10-01

    Full Text Available Knowledge sharing within organization is one of the key factor for success. The organization, where knowledge sharing takes place faster and more efficiently, is able to adapt to changes in the market environment more successfully, and as a result, it may obtain a competitive advantage. Knowledge sharing in an organization is carried out through formal and informal human communication contacts during work. This forms a multi-level complex network whose quantitative and topological characteristics largely determine how quickly and to what extent the knowledge travels within organization. The study presents how different networks of knowledge sharing in the organization can be explored by means of network analysis methods through a case study, and which role play the properties of these networks in fast and sufficient spread of knowledge in organizations. The study also demonstrates the practical applications of our research results. Namely, on the basis of knowledge sharing educational strategies can be developed in an organization, and further, competitiveness of an organization may increase due to those strategies’ application.

  17. Using Granular-Evidence-Based Adaptive Networks for Sensitivity Analysis

    OpenAIRE

    Vališevskis, A.

    2002-01-01

    This paper considers the possibility of using adaptive networks for sensitivity analysis. Adaptive network that processes fuzzy granules is described. The adaptive network training algorithm can be used for sensitivity analysis of decision making models. Furthermore, a case study concerning sensitivity analysis is described, which shows in what way the adaptive network can be used for sensitivity analysis.

  18. Revealing the Linkage Network Dynamic Structures of Chinese Maritime Ports through Automatic Information System Data

    Directory of Open Access Journals (Sweden)

    Hongchu Yu

    2017-10-01

    Full Text Available Marine economic cooperation has emerged as a major theme in this era of globalization; hence, maritime network connectivity and dynamics have attracted more and more attention. Port construction and maritime route improvements increase maritime trade and thus facilitate economic viability and resource sustainability. This paper reveals the regional dimension of inter-port linkage dynamic structure of Chinese maritime ports from a complex multilayer perspective that is meaningful for strategic forecasting and regional long-term economic development planning. In this research, Automatic Information System (AIS-derived traffic flows were used to construct a maritime network and subnetworks based on the geographical locations of ports. The linkage intensity between subnetworks, the linkage tightness within subnetworks, the spatial isolation between high-intensity backbones and tight skeleton networks, and a linkage concentration index for each port were calculated. The ports, in turn, were analyzed based on these network attributes. This study analyzed the external competitiveness and internal cohesion of each subnetwork. The results revealed problems in port management and planning, such as unclear divisions in port operations. More critically, weak complementary relationships between the backbone and skeleton networks among the ports reduce connectivity and must be strengthened. This research contributes to the body of work supporting strategic decision-making for future development.

  19. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Science.gov (United States)

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  20. Transcriptome Profiling of Taproot Reveals Complex Regulatory Networks during Taproot Thickening in Radish (Raphanus sativus L.).

    Science.gov (United States)

    Yu, Rugang; Wang, Jing; Xu, Liang; Wang, Yan; Wang, Ronghua; Zhu, Xianwen; Sun, Xiaochuan; Luo, Xiaobo; Xie, Yang; Everlyne, Muleke; Liu, Liwang

    2016-01-01

    Radish (Raphanus sativus L.) is one of the most important vegetable crops worldwide. Taproot thickening represents a critical developmental period that determines yield and quality in radish life cycle. To isolate differentially expressed genes (DGEs) involved in radish taproot thickening process and explore the molecular mechanism underlying taproot development, three cDNA libraries from radish taproot collected at pre-cortex splitting stage (L1), cortex splitting stage (L2), and expanding stage (L3) were constructed and sequenced by RNA-Seq technology. More than seven million clean reads were obtained from the three libraries, from which 4,717,617 (L1, 65.35%), 4,809,588 (L2, 68.24%) and 4,973,745 (L3, 69.45%) reads were matched to the radish reference genes, respectively. A total of 85,939 transcripts were generated from three libraries, from which 10,450, 12,325, and 7392 differentially expressed transcripts (DETs) were detected in L1 vs. L2, L1 vs. L3, and L2 vs. L3 comparisons, respectively. Gene Ontology and pathway analysis showed that many DEGs, including EXPA9, Cyclin, CaM, Syntaxin, MADS-box, SAUR, and CalS were involved in cell events, cell wall modification, regulation of plant hormone levels, signal transduction and metabolisms, which may relate to taproot thickening. Furthermore, the integrated analysis of mRNA-miRNA revealed that 43 miRNAs and 92 genes formed 114 miRNA-target mRNA pairs were co-expressed, and three miRNA-target regulatory networks of taproot were constructed from different libraries. Finally, the expression patterns of 16 selected genes were confirmed using RT-qPCR analysis. A hypothetical model of genetic regulatory network associated with taproot thickening in radish was put forward. The taproot formation of radish is mainly attributed to cell differentiation, division and expansion, which are regulated and promoted by certain specific signal transduction pathways and metabolism processes. These results could provide new insights

  1. Transcriptome profiling of taproot reveals complex regulatory networks during taproot thickening in radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Rugang Yu

    2016-08-01

    Full Text Available Radish (Raphanus sativus L., is one of the most important vegetable crops worldwide. Taproot thickening represents a critical developmental period that determines yield and quality in radish life cycle. To isolate differentially expressed genes (DGEs involved in radish taproot thickening process and explored the molecular mechanism in underlying taproot development, three cDNA libraries from radish taproot collected at pre-cortex splitting stage (L1, cortex splitting stage (L2 and expanding stage (L3 were constructed and sequenced by RNA-Seq technology. More than seven million clean reads were obtained from the three libraries, respectively, from which 4,717,617 (L1, 65.35%, 4,809,588 (L2, 68.24% and 4,973,745 (L3, 69.45% reads were matched to the radish reference genes. A total of 85,939 transcripts were generated from three libraries, from which 10,450, 12,325 and 7,392 differentially expressed transcripts (DETs were detected in L1 vs. L2, L1 vs. L3, and L2 vs. L3 comparisons, respectively. Gene Ontology and pathway analysis showed that many DEGs, including EXPA9, Cyclin, CaM, Syntaxin, MADS-box, SAUR and CalS were involved in cell events, cell wall modification, regulation of plant hormone levels, signal transduction and metabolisms, which may relate to taproot thickening. Furthermore, the integrated analysis of mRNA-miRNA revealed that 43 miRNAs and 92 genes that formed 114 miRNA-target mRNA pairs were co-expressed, and three miRNA-target regulatory networks of taproot were constructed from different libraries. Finally, the expression patterns of 16 selected genes were confirmed using RT-qPCR analysis. A hypothetical model of genetic regulatory network associated with taproot thickening in radish was put forward. The taproot formation of radish is mainly contributed to cell differentiation, division and expansion, which are regulated and promoted by certain specific signal transduction pathways and metabolism possesses. These results could

  2. Social network analysis of study environment

    Directory of Open Access Journals (Sweden)

    Blaženka Divjak

    2010-06-01

    Full Text Available Student working environment influences student learning and achievement level. In this respect social aspects of students’ formal and non-formal learning play special role in learning environment. The main research problem of this paper is to find out if students' academic performance influences their position in different students' social networks. Further, there is a need to identify other predictors of this position. In the process of problem solving we use the Social Network Analysis (SNA that is based on the data we collected from the students at the Faculty of Organization and Informatics, University of Zagreb. There are two data samples: in the basic sample N=27 and in the extended sample N=52. We collected data on social-demographic position, academic performance, learning and motivation styles, student status (full-time/part-time, attitudes towards individual and teamwork as well as informal cooperation. Afterwards five different networks (exchange of learning materials, teamwork, informal communication, basic and aggregated social network were constructed. These networks were analyzed with different metrics and the most important were betweenness, closeness and degree centrality. The main result is, firstly, that the position in a social network cannot be forecast only by academic success and, secondly, that part-time students tend to form separate groups that are poorly connected with full-time students. In general, position of a student in social networks in study environment can influence student learning as well as her/his future employability and therefore it is worthwhile to be investigated.

  3. Tensor Fusion Network for Multimodal Sentiment Analysis

    OpenAIRE

    Zadeh, Amir; Chen, Minghai; Poria, Soujanya; Cambria, Erik; Morency, Louis-Philippe

    2017-01-01

    Multimodal sentiment analysis is an increasingly popular research area, which extends the conventional language-based definition of sentiment analysis to a multimodal setup where other relevant modalities accompany language. In this paper, we pose the problem of multimodal sentiment analysis as modeling intra-modality and inter-modality dynamics. We introduce a novel model, termed Tensor Fusion Network, which learns both such dynamics end-to-end. The proposed approach is tailored for the vola...

  4. Automated Analysis of Security in Networking Systems

    DEFF Research Database (Denmark)

    Buchholtz, Mikael

    2004-01-01

    It has for a long time been a challenge to built secure networking systems. One way to counter this problem is to provide developers of software applications for networking systems with easy-to-use tools that can check security properties before the applications ever reach the marked. These tools...... will both help raise the general level of awareness of the problems and prevent the most basic flaws from occurring. This thesis contributes to the development of such tools. Networking systems typically try to attain secure communication by applying standard cryptographic techniques. In this thesis...... attacks, and attacks launched by insiders. Finally, the perspectives for the application of the analysis techniques are discussed, thereby, coming a small step closer to providing developers with easy- to-use tools for validating the security of networking applications....

  5. Functional stoichiometric analysis of metabolic networks.

    Science.gov (United States)

    Urbanczik, R; Wagner, C

    2005-11-15

    An important tool in Systems Biology is the stoichiometric modeling of metabolic networks, where the stationary states of the network are described by a high-dimensional polyhedral cone, the so-called flux cone. Exhaustive descriptions of the metabolism can be obtained by computing the elementary vectors of this cone but, owing to a combinatorial explosion of the number of elementary vectors, this approach becomes computationally intractable for genome scale networks. Hence, we propose to instead focus on the conversion cone, a projection of the flux cone, which describes the interaction of the metabolism with its external chemical environment. We present a direct method for calculating the elementary vectors of this cone and, by studying the metabolism of Saccharomyces cerevisiae, we demonstrate that such an analysis is computationally feasible even for genome scale networks.

  6. A statistical analysis of UK financial networks

    Science.gov (United States)

    Chu, J.; Nadarajah, S.

    2017-04-01

    In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.

  7. Visualization and Analysis of Complex Covert Networks

    DEFF Research Database (Denmark)

    Memon, Bisharat

    This report discusses and summarize the results of my work so far in relation to my Ph.D. project entitled "Visualization and Analysis of Complex Covert Networks". The focus of my research is primarily on development of methods and supporting tools for visualization and analysis of networked...... systems that are covert and hence inherently complex. My Ph.D. is positioned within the wider framework of CrimeFighter project. The framework envisions a number of key knowledge management processes that are involved in the workflow, and the toolbox provides supporting tools to assist human end...

  8. TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations

    National Research Council Canada - National Science Library

    Run-zhi Zhang; Shao-jun Yu; Hong Bai; Kang Ning

    2017-01-01

    ...” network, and revealing the regulation principles of small molecules in a high-throughput manner, thus would be very effective for the analysis of drug combinations, especially for TCM preparations...

  9. In silico Biochemical Reaction Network Analysis (IBRENA): a package for simulation and analysis of reaction networks.

    Science.gov (United States)

    Liu, Gang; Neelamegham, Sriram

    2008-04-15

    We present In silico Biochemical Reaction Network Analysis (IBRENA), a software package which facilitates multiple functions including cellular reaction network simulation and sensitivity analysis (both forward and adjoint methods), coupled with principal component analysis, singular-value decomposition and model reduction. The software features a graphical user interface that aids simulation and plotting of in silico results. While the primary focus is to aid formulation, testing and reduction of theoretical biochemical reaction networks, the program can also be used for analysis of high-throughput genomic and proteomic data. The software package, manual and examples are available at http://www.eng.buffalo.edu/~neel/ibrena

  10. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach

    Directory of Open Access Journals (Sweden)

    Buer Jan

    2004-12-01

    Full Text Available Abstract Background Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear. Results In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators. Conclusion The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E

  11. Organizational network analysis for two networks in the Washington State Department of Transportation.

    Science.gov (United States)

    2010-10-01

    Organizational network analysis (ONA) consists of gathering data on information sharing and : connectivity in a group, calculating network measures, creating network maps, and using this : information to analyze and improve the functionality of the g...

  12. Developing an intelligence analysis process through social network analysis

    Science.gov (United States)

    Waskiewicz, Todd; LaMonica, Peter

    2008-04-01

    Intelligence analysts are tasked with making sense of enormous amounts of data and gaining an awareness of a situation that can be acted upon. This process can be extremely difficult and time consuming. Trying to differentiate between important pieces of information and extraneous data only complicates the problem. When dealing with data containing entities and relationships, social network analysis (SNA) techniques can be employed to make this job easier. Applying network measures to social network graphs can identify the most significant nodes (entities) and edges (relationships) and help the analyst further focus on key areas of concern. Strange developed a model that identifies high value targets such as centers of gravity and critical vulnerabilities. SNA lends itself to the discovery of these high value targets and the Air Force Research Laboratory (AFRL) has investigated several network measures such as centrality, betweenness, and grouping to identify centers of gravity and critical vulnerabilities. Using these network measures, a process for the intelligence analyst has been developed to aid analysts in identifying points of tactical emphasis. Organizational Risk Analyzer (ORA) and Terrorist Modus Operandi Discovery System (TMODS) are the two applications used to compute the network measures and identify the points to be acted upon. Therefore, the result of leveraging social network analysis techniques and applications will provide the analyst and the intelligence community with more focused and concentrated analysis results allowing them to more easily exploit key attributes of a network, thus saving time, money, and manpower.

  13. Diffusion of Latent Semantic Analysis as a Research Tool: A Social Network Analysis Approach

    OpenAIRE

    Tonta, Yaşar; DARVISH, HAMID

    2010-01-01

    Latent semantic analysis (LSA) is a relatively new research tool with a wide range of applications in different fields ranging from discourse analysis to cognitive science, from information retrieval to machine learning and so on. In this paper, we chart the develop- ment and diffusion of LSA as a research tool using social network analysis (SNA) approach that reveals the social structure of a discipline in terms of collaboration among scientists. Using Thomson Reuters’ Web of Science (WoS), ...

  14. Phylodynamic analysis of a viral infection network

    Directory of Open Access Journals (Sweden)

    Teiichiro eShiino

    2012-07-01

    Full Text Available Viral infections by sexual and droplet transmission routes typically spread through a complex host-to-host contact network. Clarifying the transmission network and epidemiological parameters affecting the variations and dynamics of a specific pathogen is a major issue in the control of infectious diseases. However, conventional methods such as interview and/or classical phylogenetic analysis of viral gene sequences have inherent limitations and often fail to detect infectious clusters and transmission connections. Recent improvements in computational environments now permit the analysis of large datasets. In addition, novel analytical methods have been developed that serve to infer the evolutionary dynamics of virus genetic diversity using sample date information and sequence data. This type of framework, termed phylodynamics, helps connect some of the missing links on viral transmission networks, which are often hard to detect by conventional methods of epidemiology. With sufficient number of sequences available, one can use this new inference method to estimate theoretical epidemiological parameters such as temporal distributions of the primary infection, fluctuation of the pathogen population size, basic reproductive number, and the mean time span of disease infectiousness. Transmission networks estimated by this framework often have the properties of a scale-free network, which are characteristic of infectious and social communication processes. Network analysis based on phylodynamics has alluded to various suggestions concerning the infection dynamics associated with a given community and/or risk behavior. In this review, I will summarize the current methods available for identifying the transmission network using phylogeny, and present an argument on the possibilities of applying the scale-free properties to these existing frameworks.

  15. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  16. Graph analysis of structural brain networks in Alzheimer's disease: beyond small world properties.

    Science.gov (United States)

    John, Majnu; Ikuta, Toshikazu; Ferbinteanu, Janina

    2017-03-01

    Changes in brain connectivity in patients with early Alzheimer's disease (AD) have been investigated using graph analysis. However, these studies were based on small data sets, explored a limited range of network parameters, and did not focus on more restricted sub-networks, where neurodegenerative processes may introduce more prominent alterations. In this study, we constructed structural brain networks out of 87 regions using data from 135 healthy elders and 100 early AD patients selected from the Open Access Series of Imaging Studies (OASIS) database. We evaluated the graph properties of these networks by investigating metrics of network efficiency, small world properties, segregation, product measures of complexity, and entropy. Because degenerative processes take place at different rates in different brain areas, analysis restricted to sub-networks may reveal changes otherwise undetected. Therefore, we first analyzed the graph properties of a network encompassing all brain areas considered together, and then repeated the analysis after dividing the brain areas into two sub-networks constructed by applying a clustering algorithm. At the level of large scale network, the analysis did not reveal differences between AD patients and controls. In contrast, the same analysis performed on the two sub-networks revealed that small worldness diminished with AD only in the sub-network containing the areas of medial temporal lobe known to be heaviest and earliest affected. The second sub-network, which did not present significant AD-induced modifications of 'classical' small world parameters, nonetheless showed a trend towards an increase in small world propensity, a novel metric that unbiasedly quantifies small world structure. Beyond small world properties, complexity and entropy measures indicated that the intricacy of connection patterns and structural diversity decreased in both sub-networks. These results show that neurodegenerative processes impact volumetric

  17. Multifractal analysis of mobile social networks

    Science.gov (United States)

    Zheng, Wei; Zhang, Zifeng; Deng, Yufan

    2017-09-01

    As Wireless Fidelity (Wi-Fi)-enabled handheld devices have been widely used, the mobile social networks (MSNs) has been attracting extensive attention. Fractal approaches have also been widely applied to characterierize natural networks as useful tools to depict their spatial distribution and scaling properties. Moreover, when the complexity of the spatial distribution of MSNs cannot be properly charaterized by single fractal dimension, multifractal analysis is required. For further research, we introduced a multifractal analysis method based on box-covering algorithm to describe the structure of MSNs. Using this method, we find that the networks are multifractal at different time interval. The simulation results demonstrate that the proposed method is efficient for analyzing the multifractal characteristic of MSNs, which provides a distribution of singularities adequately describing both the heterogeneity of fractal patterns and the statistics of measurements across spatial scales in MSNs.

  18. Classification and Analysis of Computer Network Traffic

    DEFF Research Database (Denmark)

    Bujlow, Tomasz

    2014-01-01

    for traffic classification, which can be used for nearly real-time processing of big amounts of data using affordable CPU and memory resources. Other questions are related to methods for real-time estimation of the application Quality of Service (QoS) level based on the results obtained by the traffic......Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models...... classifier. This thesis is focused on topics connected with traffic classification and analysis, while the work on methods for QoS assessment is limited to defining the connections with the traffic classification and proposing a general algorithm. We introduced the already known methods for traffic...

  19. Bandwidth Analysis of Smart Meter Network Infrastructure

    DEFF Research Database (Denmark)

    Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2014-01-01

    Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... to utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...... of the bandwidth requirements are analysed. For this analysis the assumptions and limitations are defined. The results obtained by the analysis show, that the amount of data collected and transferred by a smart meter is very low compared to the available bandwidth of most internet connections. The results show...

  20. Diversity Performance Analysis on Multiple HAP Networks

    Directory of Open Access Journals (Sweden)

    Feihong Dong

    2015-06-01

    Full Text Available One of the main design challenges in wireless sensor networks (WSNs is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV. In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF and cumulative distribution function (CDF of the received signal-to-noise ratio (SNR are derived. In addition, the average symbol error rate (ASER with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.

  1. Mixed Methods Analysis of Enterprise Social Networks

    DEFF Research Database (Denmark)

    Behrendt, Sebastian; Richter, Alexander; Trier, Matthias

    2014-01-01

    The increasing use of enterprise social networks (ESN) generates vast amounts of data, giving researchers and managerial decision makers unprecedented opportunities for analysis. However, more transparency about the available data dimensions and how these can be combined is needed to yield accurate...

  2. Nonlinear Time Series Analysis via Neural Networks

    Science.gov (United States)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  3. Combining morphological analysis and Bayesian networks for ...

    African Journals Online (AJOL)

    Morphological analysis (MA) and Bayesian networks (BN) are two closely related modelling methods, each of which has its advantages and disadvantages for strategic decision support modelling. MA is a method for defining, linking and evaluating problem spaces. BNs are graphical models which consist of a qualitative ...

  4. Models of network reliability analysis, combinatorics, and Monte Carlo

    CERN Document Server

    Gertsbakh, Ilya B

    2009-01-01

    Unique in its approach, Models of Network Reliability: Analysis, Combinatorics, and Monte Carlo provides a brief introduction to Monte Carlo methods along with a concise exposition of reliability theory ideas. From there, the text investigates a collection of principal network reliability models, such as terminal connectivity for networks with unreliable edges and/or nodes, network lifetime distribution in the process of its destruction, network stationary behavior for renewable components, importance measures of network elements, reliability gradient, and network optimal reliability synthesis

  5. Differential Regulatory Analysis Based on Coexpression Network in Cancer Research

    Directory of Open Access Journals (Sweden)

    Junyi Li

    2016-01-01

    Full Text Available With rapid development of high-throughput techniques and accumulation of big transcriptomic data, plenty of computational methods and algorithms such as differential analysis and network analysis have been proposed to explore genome-wide gene expression characteristics. These efforts are aiming to transform underlying genomic information into valuable knowledges in biological and medical research fields. Recently, tremendous integrative research methods are dedicated to interpret the development and progress of neoplastic diseases, whereas differential regulatory analysis (DRA based on gene coexpression network (GCN increasingly plays a robust complement to regular differential expression analysis in revealing regulatory functions of cancer related genes such as evading growth suppressors and resisting cell death. Differential regulatory analysis based on GCN is prospective and shows its essential role in discovering the system properties of carcinogenesis features. Here we briefly review the paradigm of differential regulatory analysis based on GCN. We also focus on the applications of differential regulatory analysis based on GCN in cancer research and point out that DRA is necessary and extraordinary to reveal underlying molecular mechanism in large-scale carcinogenesis studies.

  6. EEG Cortical Connectivity Analysis of Working Memory Reveals Topological Reorganization in Theta and Alpha Bands

    Directory of Open Access Journals (Sweden)

    Zhongxiang Dai

    2017-05-01

    Full Text Available Numerous studies have revealed various working memory (WM-related brain activities that originate from various cortical regions and oscillate at different frequencies. However, multi-frequency band analysis of the brain network in WM in the cortical space remains largely unexplored. In this study, we employed a graph theoretical framework to characterize the topological properties of the brain functional network in the theta and alpha frequency bands during WM tasks. Twenty-eight subjects performed visual n-back tasks at two difficulty levels, i.e., 0-back (control task and 2-back (WM task. After preprocessing, Electroencephalogram (EEG signals were projected into the source space and 80 cortical brain regions were selected for further analysis. Subsequently, the theta- and alpha-band networks were constructed by calculating the Pearson correlation coefficients between the power series (obtained by concatenating the power values of all epochs in each session of all pairs of brain regions. Graph theoretical approaches were then employed to estimate the topological properties of the brain networks at different WM tasks. We found higher functional integration in the theta band and lower functional segregation in the alpha band in the WM task compared with the control task. Moreover, compared to the 0-back task, altered regional centrality was revealed in the 2-back task in various brain regions that mainly resided in the frontal, temporal and occipital lobes, with distinct presentations in the theta and alpha bands. In addition, significant negative correlations were found between the reaction time with the average path length of the theta-band network and the local clustering of the alpha-band network, which demonstrates the potential for using the brain network metrics as biomarkers for predicting the task performance during WM tasks.

  7. Narcissism and Social Networking Behavior: A Meta-Analysis.

    Science.gov (United States)

    Gnambs, Timo; Appel, Markus

    2017-02-07

    The increasing popularity of social networking sites (SNS) such as Facebook and Twitter has given rise to speculations that the intensity of using these platforms is associated with narcissistic tendencies. However, recent research on this issue has been all but conclusive. We present a three-level, random effects meta-analysis including 289 effect sizes from 57 studies (total N = 25,631) on the association between trait narcissism and social networking behavior. The meta-analysis identified a small to moderate effect of ρ = .17 (τ = .11), 95% CI [.13, .21], for grandiose narcissism that replicated across different social networking platforms, respondent characteristics, and time. Moderator analyses revealed pronounced cultural differences, with stronger associations in power-distant cultures. Moreover, social networking behaviors geared toward self-presentation and the number of SNS friends exhibited stronger effects than usage durations. Overall, the study not only supported but also refined the notion of a relationship between engaging in social networking sites and narcissistic personality traits. © 2017 Wiley Periodicals, Inc.

  8. Large-Scale Road Network Vulnerability Analysis

    OpenAIRE

    Jenelius, Erik

    2010-01-01

    Disruptions in the transport system can have severe impacts for affected individuals, businesses and the society as a whole. In this research, vulnerability is seen as the risk of unplanned system disruptions, with a focus on large, rare events. Vulnerability analysis aims to provide decision support regarding preventive and restorative actions, ideally as an integrated part of the planning process.The thesis specifically develops the methodology for vulnerability analysis of road networks an...

  9. Computer methods in electric network analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saver, P.; Hajj, I.; Pai, M.; Trick, T.

    1983-06-01

    The computational algorithms utilized in power system analysis have more than just a minor overlap with those used in electronic circuit computer aided design. This paper describes the computer methods that are common to both areas and highlights the differences in application through brief examples. Recognizing this commonality has stimulated the exchange of useful techniques in both areas and has the potential of fostering new approaches to electric network analysis through the interchange of ideas.

  10. Time series analysis of temporal networks

    Science.gov (United States)

    Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh

    2016-01-01

    A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue

  11. Statistics of weighted brain networks reveal hierarchical organization and Gaussian degree distribution.

    Science.gov (United States)

    Ivković, Miloš; Kuceyeski, Amy; Raj, Ashish

    2012-01-01

    Whole brain weighted connectivity networks were extracted from high resolution diffusion MRI data of 14 healthy volunteers. A statistically robust technique was proposed for the removal of questionable connections. Unlike most previous studies our methods are completely adapted for networks with arbitrary weights. Conventional statistics of these weighted networks were computed and found to be comparable to existing reports. After a robust fitting procedure using multiple parametric distributions it was found that the weighted node degree of our networks is best described by the normal distribution, in contrast to previous reports which have proposed heavy tailed distributions. We show that post-processing of the connectivity weights, such as thresholding, can influence the weighted degree asymptotics. The clustering coefficients were found to be distributed either as gamma or power-law distribution, depending on the formula used. We proposed a new hierarchical graph clustering approach, which revealed that the brain network is divided into a regular base-2 hierarchical tree. Connections within and across this hierarchy were found to be uncommonly ordered. The combined weight of our results supports a hierarchically ordered view of the brain, whose connections have heavy tails, but whose weighted node degrees are comparable.

  12. Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer

    Science.gov (United States)

    Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping

    2015-01-01

    Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity. PMID:25962957

  13. Identification and analysis of glutathione S-transferase gene family in sweet potato reveal divergent GST-mediated networks in aboveground and underground tissues in response to abiotic stresses.

    Science.gov (United States)

    Ding, Na; Wang, Aimin; Zhang, Xiaojun; Wu, Yunxiang; Wang, Ruyuan; Cui, Huihui; Huang, Rulin; Luo, Yonghai

    2017-11-28

    Sweet potato, a hexaploid species lacking a reference genome, is one of the most important crops in many developing countries, where abiotic stresses are a primary cause of reduction of crop yield. Glutathione S-transferases (GSTs) are multifunctional enzymes that play important roles in oxidative stress tolerance and cellular detoxification. A total of 42 putative full-length GST genes were identified from two local transcriptome databases and validated by molecular cloning and Sanger sequencing. Sequence and intraspecific phylogenetic analyses revealed extensive differentiation in their coding sequences and divided them into eight subfamilies. Interspecific phylogenetic and comparative analyses indicated that most examined GST paralogs might originate and diverge before the speciation of sweet potato. Results from large-scale RNA-seq and quantitative real-time PCR experiments exhibited extensive variation in gene-expression profiles across different tissues and varieties, which implied strong evolutionary divergence in their gene-expression regulation. Moreover, we performed five manipulated stress experiments and uncovered highly divergent stress-response patterns of sweet potato GST genes in aboveground and underground tissues. Our study identified a large number of sweet potato GST genes, systematically investigated their evolutionary diversification, and provides new insights into the GST-mediated stress-response mechanisms in this worldwide crop.

  14. Social network analysis to cluster sociobibliometric information

    Directory of Open Access Journals (Sweden)

    Jorge Ricardo Vivas

    Full Text Available This paper examines the benefits of using Social Network Analysis in the field of sociobibliometric exploration. There are considered practical and conceptual limits and reaches. The proposal is illustrated through a study about a journals network of behavior modification by Peiró and Carpintero (1981. In this context it is shown the utility of using reticular properties of Density, Centrality, Betweenness, Power and Clusterig as indicators that allow obtaining novel and complementary information to the one extracted by the classic methods of bibliometric exploration.

  15. Capacity analysis of vehicular communication networks

    CERN Document Server

    Lu, Ning

    2013-01-01

    This SpringerBrief focuses on the network capacity analysis of VANETs, a key topic as fundamental guidance on design and deployment of VANETs is very limited. Moreover, unique characteristics of VANETs impose distinguished challenges on such an investigation. This SpringerBrief first introduces capacity scaling laws for wireless networks and briefly reviews the prior arts in deriving the capacity of VANETs. It then studies the unicast capacity considering the socialized mobility model of VANETs. With vehicles communicating based on a two-hop relaying scheme, the unicast capacity bound is deriv

  16. Historical Network Analysis of the Web

    DEFF Research Database (Denmark)

    Brügger, Niels

    2013-01-01

    of the online web has for a number of years gained currency within Internet studies. However, the combination of these two phenomena—historical network analysis of material in web archives—can at best be characterized as an emerging new area of study. Most of the methodological challenges within this new area...... at the Danish parliamentary elections in 2011, 2007, and 2001. As the Internet grows older historical studies of networks on the web will probably become more widespread and therefore it may be about time to begin debating the methodological challenges within this emerging field....

  17. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Qiu eXiangzhe

    2016-05-01

    Full Text Available Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM. However, the DM-related changes in the topological properties in functional brain networks are almost unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs, followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized shortest path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing the functional evidence for the abnormalities of brain networks in DM.

  18. Revealing metabolic phenotypes in plants: inputs from NMR analysis.

    Science.gov (United States)

    Ratcliffe, R G; Shachar-Hill, Y

    2005-02-01

    Assessing the performance of the plant metabolic network, with its varied biosynthetic capacity and its characteristic subcellular compartmentation, remains a considerable challenge. The complexity of the network is such that it is not yet possible to build large-scale predictive models of the fluxes it supports, whether on the basis of genomic and gene expression analysis or on the basis of more traditional measurements of metabolites and their interconversions. This limits the agronomic and biotechnological exploitation of plant metabolism, and it undermines the important objective of establishing a rational metabolic engineering strategy. Metabolic analysis is central to removing this obstacle and currently there is particular interest in harnessing high-throughput and/or large-scale analyses to the task of defining metabolic phenotypes. Nuclear magnetic resonance (NMR) spectroscopy contributes to this objective by providing a versatile suite of analytical techniques for the detection of metabolites and the fluxes between them. The principles that underpin the analysis of plant metabolism by NMR are described, including a discussion of the measurement options for the detection of metabolites in vivo and in vitro, and a description of the stable isotope labelling experiments that provide the basis for metabolic flux analysis. Despite a relatively low sensitivity, NMR is suitable for high-throughput system-wide analyses of the metabolome, providing methods for both metabolite fingerprinting and metabolite profiling, and in these areas NMR can contribute to the definition of plant metabolic phenotypes that are based on metabolic composition. NMR can also be used to investigate the operation of plant metabolic networks. Labelling experiments provide information on the operation of specific pathways within the network, and the quantitative analysis of steady-state labelling experiments leads to the definition of large-scale flux maps for heterotrophic carbon

  19. Network topology reveals high connectance levels and few key microbial genera within soils

    NARCIS (Netherlands)

    Lupatini, M.; Suleiman, A.; Jacques, R.; Antoniolli, Z.; de Siqueira Ferreira, A.; Kuramae, E.E.; Roesch, L.

    2014-01-01

    Microbes have a central role in soil global biogeochemical process, yet specific microbe–microbe relationships are largely unknown. Analytical approaches as network analysis may shed new lights in understanding of microbial ecology and environmental microbiology. We investigated the soil bacterial

  20. Mathematical Analysis of Urban Spatial Networks

    CERN Document Server

    Blanchard, Philippe

    2009-01-01

    Cities can be considered to be among the largest and most complex artificial networks created by human beings. Due to the numerous and diverse human-driven activities, urban network topology and dynamics can differ quite substantially from that of natural networks and so call for an alternative method of analysis. The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan. Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.

  1. GEOMORPHOLOGIC ANALYSIS OF DRAINAGE NETWORKS ON MARS

    Directory of Open Access Journals (Sweden)

    KERESZTURI ÁKOS

    2012-06-01

    Full Text Available Altogether 327 valleys and their 314 cross-sectional profiles were analyzed on Mars, including width, depth, length, eroded volume, drainage and spatial density, as well as the network structure.According to this systematic analysis, five possible drainage network types were identified such as (a small valleys, (b integrated small valleys, (c individual, medium-sized valleys, (d unconfined,anastomosing outflow valleys, and (e confined outflow valleys. Measuring their various morphometric parameters, these five networks differ from each other in terms of parameters of the eroded volume, drainage density and depth values. This classification is more detailed than those described in the literature previously and correlated to several numerical parameters for the first time.These different types were probably formed during different periods of the evolution of Mars, and sprung from differently localized water sources, and they could be correlated to similar fluvialnetwork types from the Earth.

  2. A network analysis of Sibiu County, Romania

    CERN Document Server

    Grama, Cristina-Nicol

    2013-01-01

    Network science methods have proved to be able to provide useful insights from both a theoretical and a practical point of view in that they can better inform governance policies in complex dynamic environments. The tourism research community has provided an increasing number of works that analyse destinations from a network science perspective. However, most of the studies refer to relatively small samples of actors and linkages. With this note we provide a full network study, although at a preliminary stage, that reports a complete analysis of a Romanian destination (Sibiu). Our intention is to increase the set of similar studies with the aim of supporting the investigations in structural and dynamical characteristics of tourism destinations.

  3. Intentional risk management through complex networks analysis

    CERN Document Server

    Chapela, Victor; Moral, Santiago; Romance, Miguel

    2015-01-01

    This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution,  the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained  in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies a...

  4. Micro-macro analysis of complex networks.

    Science.gov (United States)

    Marchiori, Massimo; Possamai, Lino

    2015-01-01

    Complex systems have attracted considerable interest because of their wide range of applications, and are often studied via a "classic" approach: study a specific system, find a complex network behind it, and analyze the corresponding properties. This simple methodology has produced a great deal of interesting results, but relies on an often implicit underlying assumption: the level of detail on which the system is observed. However, in many situations, physical or abstract, the level of detail can be one out of many, and might also depend on intrinsic limitations in viewing the data with a different level of abstraction or precision. So, a fundamental question arises: do properties of a network depend on its level of observability, or are they invariant? If there is a dependence, then an apparently correct network modeling could in fact just be a bad approximation of the true behavior of a complex system. In order to answer this question, we propose a novel micro-macro analysis of complex systems that quantitatively describes how the structure of complex networks varies as a function of the detail level. To this extent, we have developed a new telescopic algorithm that abstracts from the local properties of a system and reconstructs the original structure according to a fuzziness level. This way we can study what happens when passing from a fine level of detail ("micro") to a different scale level ("macro"), and analyze the corresponding behavior in this transition, obtaining a deeper spectrum analysis. The obtained results show that many important properties are not universally invariant with respect to the level of detail, but instead strongly depend on the specific level on which a network is observed. Therefore, caution should be taken in every situation where a complex network is considered, if its context allows for different levels of observability.

  5. Analysis of cascading failure in gene networks

    Directory of Open Access Journals (Sweden)

    Shudong eWang

    2012-12-01

    Full Text Available It is an important subject to research the functional mechanism of cancer-related genes make in formation and development of cancers. The modern methodology of data analysis plays a very important role for deducing the relationship between cancers and cancer-related genes and analyzing functional mechanism of genome. In this research, we construct mutual information networks using gene expression profiles of glioblast and renal in normal condition and cancer conditions. We investigate the relationship between structure and robustness in gene networks of the two tissues using a cascading failure model based on betweenness centrality. Define some important parameters such as the percentage of failure nodes of the network, the average size-ratio of cascading failure and the cumulative probability of size-ratio of cascading failure to measure the robustness of the networks. By comparing control group and experiment groups, we find that the networks of experiment groups are more robust than that of control group. The gene that can cause large scale failure is called structural key gene (SKG. Some of them have been confirmed to be closely related to the formation and development of glioma and renal cancer respectively. Most of them are predicted to play important roles during the formation of glioma and renal cancer, maybe the oncogenes, suppressor genes, and other cancer candidate genes in the glioma and renal cancer cells. However, these studies provide little information about the detailed roles of identified cancer genes.

  6. Proteomic and transcriptomic analysis reveals evidence for the basis ...

    African Journals Online (AJOL)

    Proteomic and transcriptomic analysis reveals evidence for the basis of salt sensitivity in Thai jasmine rice ( Oryza sativa L. cv. ... African Journal of Biotechnology ... the posttranscriptional mechanisms controlling protein expression levels were not as efficient as in Pokkali, indicating targets for future genetic improvement.

  7. An exploratory data analysis method to reveal modular latent structures in high-throughput data

    Directory of Open Access Journals (Sweden)

    Yu Tianwei

    2010-08-01

    Full Text Available Abstract Background Modular structures are ubiquitous across various types of biological networks. The study of network modularity can help reveal regulatory mechanisms in systems biology, evolutionary biology and developmental biology. Identifying putative modular latent structures from high-throughput data using exploratory analysis can help better interpret the data and generate new hypotheses. Unsupervised learning methods designed for global dimension reduction or clustering fall short of identifying modules with factors acting in linear combinations. Results We present an exploratory data analysis method named MLSA (Modular Latent Structure Analysis to estimate modular latent structures, which can find co-regulative modules that involve non-coexpressive genes. Conclusions Through simulations and real-data analyses, we show that the method can recover modular latent structures effectively. In addition, the method also performed very well on data generated from sparse global latent factor models. The R code is available at http://userwww.service.emory.edu/~tyu8/MLSA/.

  8. An exploratory data analysis method to reveal modular latent structures in high-throughput data.

    Science.gov (United States)

    Yu, Tianwei

    2010-08-27

    Modular structures are ubiquitous across various types of biological networks. The study of network modularity can help reveal regulatory mechanisms in systems biology, evolutionary biology and developmental biology. Identifying putative modular latent structures from high-throughput data using exploratory analysis can help better interpret the data and generate new hypotheses. Unsupervised learning methods designed for global dimension reduction or clustering fall short of identifying modules with factors acting in linear combinations. We present an exploratory data analysis method named MLSA (Modular Latent Structure Analysis) to estimate modular latent structures, which can find co-regulative modules that involve non-coexpressive genes. Through simulations and real-data analyses, we show that the method can recover modular latent structures effectively. In addition, the method also performed very well on data generated from sparse global latent factor models. The R code is available at http://userwww.service.emory.edu/~tyu8/MLSA/.

  9. Structured teleconnections reveal the South American monsoon onset: A network approach

    Science.gov (United States)

    Ciemer, Catrin; Ekhtiari, Nikoo; Barbosa, Henrique; Boers, Niklas; Donner, Reik; Kurths, Jürgen; Rammig, Anja; Winkelmann, Ricarda

    2017-04-01

    The regional onset dates of the global monsoon systems are, to first order, determined by the seasonal shift of the intertropical convergence zone. However, precise onset dates vary substantially from year to year due to the complexity of the involved mechanisms. In this study, we investigate processes determining the onset of the South American monsoon system (SAMS). In recent years, a trend towards later onset dates of the SAMS has been observed. A later onset of the monsoon can have severe impacts on agriculture and infrastructure such as farming, water transport routes, and the stability of the Amazon rainforest in the long term. Possible reasons for this shift involve a multitude of climatic phenomena and variables relevant for the SAMS. To account for the highly interactive nature of the SAMS, we here investigate it with the help of complex networks. By studying the temporal changes of the correlation structure in spatial rainfall networks, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections in terms of strongly correlated areas, detect key regions for precipitation correlations, and finally reveal the monsoon onset by an abrupt shift from an unordered to an ordered correlation structure of the network. To further evaluate the shift in the monsoon onset, we couple our rainfall network to a network of climate networks using sea surface temperature as a second variable. We are thereby able to emphasize oceanic regions that are particularly important for the SAMS and anticipate the influence of future changes of sea-surface temperature on the SAMS.

  10. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion

    Science.gov (United States)

    Rosenthal, Sara Brin; Twomey, Colin R.; Hartnett, Andrew T.; Wu, Hai Shan; Couzin, Iain D.

    2015-01-01

    Coordination among social animals requires rapid and efficient transfer of information among individuals, which may depend crucially on the underlying structure of the communication network. Establishing the decision-making circuits and networks that give rise to individual behavior has been a central goal of neuroscience. However, the analogous problem of determining the structure of the communication network among organisms that gives rise to coordinated collective behavior, such as is exhibited by schooling fish and flocking birds, has remained almost entirely neglected. Here, we study collective evasion maneuvers, manifested through rapid waves, or cascades, of behavioral change (a ubiquitous behavior among taxa) in schooling fish (Notemigonus crysoleucas). We automatically track the positions and body postures, calculate visual fields of all individuals in schools of ∼150 fish, and determine the functional mapping between socially generated sensory input and motor response during collective evasion. We find that individuals use simple, robust measures to assess behavioral changes in neighbors, and that the resulting networks by which behavior propagates throughout groups are complex, being weighted, directed, and heterogeneous. By studying these interaction networks, we reveal the (complex, fractional) nature of social contagion and establish that individuals with relatively few, but strongly connected, neighbors are both most socially influential and most susceptible to social influence. Furthermore, we demonstrate that we can predict complex cascades of behavioral change at their moment of initiation, before they actually occur. Consequently, despite the intrinsic stochasticity of individual behavior, establishing the hidden communication networks in large self-organized groups facilitates a quantitative understanding of behavioral contagion. PMID:25825752

  11. Timescale analysis of rule-based biochemical reaction networks.

    Science.gov (United States)

    Klinke, David J; Finley, Stacey D

    2012-01-01

    The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed on reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of interleukin-12 (IL-12) signaling in naïve CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based on the available data. The analysis correctly predicted that reactions associated with Janus Kinase 2 and Tyrosine Kinase 2 binding to their corresponding receptor exist at a pseudo-equilibrium. By contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  12. Network analysis of time-lapse microscopy recordings.

    Science.gov (United States)

    Smedler, Erik; Malmersjö, Seth; Uhlén, Per

    2014-01-01

    Multicellular organisms rely on intercellular communication to regulate important cellular processes critical to life. To further our understanding of those processes there is a need to scrutinize dynamical signaling events and their functions in both cells and organisms. Here, we report a method and provide MATLAB code that analyzes time-lapse microscopy recordings to identify and characterize network structures within large cell populations, such as interconnected neurons. The approach is demonstrated using intracellular calcium (Ca(2+)) recordings in neural progenitors and cardiac myocytes, but could be applied to a wide variety of biosensors employed in diverse cell types and organisms. In this method, network structures are analyzed by applying cross-correlation signal processing and graph theory to single-cell recordings. The goal of the analysis is to determine if the single cell activity constitutes a network of interconnected cells and to decipher the properties of this network. The method can be applied in many fields of biology in which biosensors are used to monitor signaling events in living cells. Analyzing intercellular communication in cell ensembles can reveal essential network structures that provide important biological insights.

  13. Network Analysis of Time-Lapse Microscopy Recordings

    Directory of Open Access Journals (Sweden)

    Erik eSmedler

    2014-09-01

    Full Text Available Multicellular organisms rely on intercellular communication to regulate important cellular processes critical to life. To further our understanding of those processes there is a need to scrutinize dynamical signaling events and their functions in both cells and organisms. Here, we report a method and provide MATLAB code that analyzes time-lapse microscopy recordings to identify and characterize network structures within large cell populations, such as interconnected neurons. The approach is demonstrated using intracellular calcium (Ca2+ recordings in neural progenitors and cardiac myocytes, but could be applied to a wide variety of biosensors employed in diverse cell types and organisms. In this method, network structures are analyzed by applying cross-correlation signal processing and graph theory to single-cell recordings. The goal of the analysis is to determine if the single cell activity constitutes a network of interconnected cells and to decipher the properties of this network. The method can be applied in many fields of biology in which biosensors are used to monitor signaling events in living cells. Analyzing intercellular communication in cell ensembles can reveal essential network structures that provide important biological insights.

  14. Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing.

    Science.gov (United States)

    Cao, Suying; Han, Jianyong; Wu, Jun; Li, Qiuyan; Liu, Shichao; Zhang, Wei; Pei, Yangli; Ruan, Xiaoan; Liu, Zhonghua; Wang, Xumin; Lim, Bing; Li, Ning

    2014-01-03

    Because few studies exist to describe the unique molecular network regulation behind pig pre-implantation embryonic development (PED), genetic engineering in the pig embryo is limited. Also, this lack of research has hindered derivation and application of porcine embryonic stem cells and porcine induced pluripotent stem cells (iPSCs). We identified and analyzed the genome wide transcriptomes of pig in vivo-derived and somatic cell nuclear transferred (SCNT) as well as mouse in vivo-derived pre-implantation embryos at different stages using mRNA deep sequencing. Comparison of the pig embryonic transcriptomes with those of mouse and human pre-implantation embryos revealed unique gene expression patterns during pig PED. Pig zygotic genome activation was confirmed to occur at the 4-cell stage via genome-wide gene expression analysis. This activation was delayed to the 8-cell stage in SCNT embryos. Specific gene expression analysis of the putative inner cell mass (ICM) and the trophectoderm (TE) revealed that pig and mouse pre-implantation embryos share regulatory networks during the first lineage segregation and primitive endoderm differentiation, but not during ectoderm commitment. Also, fatty acid metabolism appears to be a unique characteristic of pig pre-implantation embryonic development. In addition, the global gene expression patterns in the pig SCNT embryos were different from those in in vivo-derived pig embryos. Our results provide a resource for pluripotent stem cell engineering and for understanding pig development.

  15. Revealing a brain network endophenotype in families with idiopathic generalised epilepsy.

    Directory of Open Access Journals (Sweden)

    Fahmida A Chowdhury

    Full Text Available Idiopathic generalised epilepsy (IGE has a genetic basis. The mechanism of seizure expression is not fully known, but is assumed to involve large-scale brain networks. We hypothesised that abnormal brain network properties would be detected using EEG in patients with IGE, and would be manifest as a familial endophenotype in their unaffected first-degree relatives. We studied 117 participants: 35 patients with IGE, 42 unaffected first-degree relatives, and 40 normal controls, using scalp EEG. Graph theory was used to describe brain network topology in five frequency bands for each subject. Frequency bands were chosen based on a published Spectral Factor Analysis study which demonstrated these bands to be optimally robust and independent. Groups were compared, using Bonferroni correction to account for nonindependent measures and multiple groups. Degree distribution variance was greater in patients and relatives than controls in the 6-9 Hz band (p = 0.0005, p = 0.0009 respectively. Mean degree was greater in patients than healthy controls in the 6-9 Hz band (p = 0.0064. Clustering coefficient was higher in patients and relatives than controls in the 6-9 Hz band (p = 0.0025, p = 0.0013. Characteristic path length did not differ between groups. No differences were found between patients and unaffected relatives. These findings suggest brain network topology differs between patients with IGE and normal controls, and that some of these network measures show similar deviations in patients and in unaffected relatives who do not have epilepsy. This suggests brain network topology may be an inherited endophenotype of IGE, present in unaffected relatives who do not have epilepsy, as well as in affected patients. We propose that abnormal brain network topology may be an endophenotype of IGE, though not in itself sufficient to cause epilepsy.

  16. Introduction to stream network habitat analysis

    Science.gov (United States)

    Bartholow, John M.; Waddle, Terry J.

    1986-01-01

    Increasing demands on stream resources by a variety of users have resulted in an increased emphasis on studies that evaluate the cumulative effects of basinwide water management programs. Network habitat analysis refers to the evaluation of an entire river basin (or network) by predicting its habitat response to alternative management regimes. The analysis principally focuses on the biological and hydrological components of the riv er basin, which include both micro- and macrohabitat. (The terms micro- and macrohabitat are further defined and discussed later in this document.) Both conceptual and analytic models are frequently used for simplifying and integrating the various components of the basin. The model predictions can be used in developing management recommendations to preserve, restore, or enhance instream fish habitat. A network habitat analysis should begin with a clear and concise statement of the study objectives and a thorough understanding of the institutional setting in which the study results will be applied. This includes the legal, social, and political considerations inherent in any water management setting. The institutional environment may dictate the focus and level of detail required of the study to a far greater extent than the technical considerations. After the study objectives, including species on interest, and institutional setting are collectively defined, the technical aspects should be scoped to determine the spatial and temporal requirements of the analysis. A macro level approach should be taken first to identify critical biological elements and requirements. Next, habitat availability is quantified much as in a "standard" river segment analysis, with the likely incorporation of some macrohabitat components, such as stream temperature. Individual river segments may be aggregated to represent the networkwide habitat response of alternative water management schemes. Things learned about problems caused or opportunities generated may

  17. Principal component analysis networks and algorithms

    CERN Document Server

    Kong, Xiangyu; Duan, Zhansheng

    2017-01-01

    This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.

  18. Network modularity reveals critical scales for connectivity in ecology and evolution

    Science.gov (United States)

    Fletcher, Robert J.; Revell, Andre; Reichert, Brian E.; Kitchens, Wiley M.; Dixon, J.; Austin, James D.

    2013-01-01

    For nearly a century, biologists have emphasized the profound importance of spatial scale for ecology, evolution and conservation. Nonetheless, objectively identifying critical scales has proven incredibly challenging. Here we extend new techniques from physics and social sciences that estimate modularity on networks to identify critical scales for movement and gene flow in animals. Using four species that vary widely in dispersal ability and include both mark-recapture and population genetic data, we identify significant modularity in three species, two of which cannot be explained by geographic distance alone. Importantly, the inclusion of modularity in connectivity and population viability assessments alters conclusions regarding patch importance to connectivity and suggests higher metapopulation viability than when ignoring this hidden spatial scale. We argue that network modularity reveals critical meso-scales that are probably common in populations, providing a powerful means of identifying fundamental scales for biology and for conservation strategies aimed at recovering imperilled species.

  19. Network modularity reveals critical scales for connectivity in ecology and evolution.

    Science.gov (United States)

    Fletcher, Robert J; Revell, Andre; Reichert, Brian E; Kitchens, Wiley M; Dixon, Jeremy D; Austin, James D

    2013-01-01

    For nearly a century, biologists have emphasized the profound importance of spatial scale for ecology, evolution and conservation. Nonetheless, objectively identifying critical scales has proven incredibly challenging. Here we extend new techniques from physics and social sciences that estimate modularity on networks to identify critical scales for movement and gene flow in animals. Using four species that vary widely in dispersal ability and include both mark-recapture and population genetic data, we identify significant modularity in three species, two of which cannot be explained by geographic distance alone. Importantly, the inclusion of modularity in connectivity and population viability assessments alters conclusions regarding patch importance to connectivity and suggests higher metapopulation viability than when ignoring this hidden spatial scale. We argue that network modularity reveals critical meso-scales that are probably common in populations, providing a powerful means of identifying fundamental scales for biology and for conservation strategies aimed at recovering imperilled species.

  20. Service network analysis for agricultural mental health

    Directory of Open Access Journals (Sweden)

    Fuller Jeffrey D

    2009-05-01

    Full Text Available Abstract Background Farmers represent a subgroup of rural and remote communities at higher risk of suicide attributed to insecure economic futures, self-reliant cultures and poor access to health services. Early intervention models are required that tap into existing farming networks. This study describes service networks in rural shires that relate to the mental health needs of farming families. This serves as a baseline to inform service network improvements. Methods A network survey of mental health related links between agricultural support, health and other human services in four drought declared shires in comparable districts in rural New South Wales, Australia. Mental health links covered information exchange, referral recommendations and program development. Results 87 agencies from 111 (78% completed a survey. 79% indicated that two thirds of their clients needed assistance for mental health related problems. The highest mean number of interagency links concerned information exchange and the frequency of these links between sectors was monthly to three monthly. The effectiveness of agricultural support and health sector links were rated as less effective by the agricultural support sector than by the health sector (p Conclusion Aligning with agricultural agencies is important to build effective mental health service pathways to address the needs of farming populations. Work is required to ensure that these agricultural support agencies have operational and effective links to primary mental health care services. Network analysis provides a baseline to inform this work. With interventions such as local mental health training and joint service planning to promote network development we would expect to see over time an increase in the mean number of links, the frequency in which these links are used and the rated effectiveness of these links.

  1. Network Analysis and Modeling in Systems Biology

    OpenAIRE

    Bosque Chacón, Gabriel

    2017-01-01

    This thesis is dedicated to the study and comprehension of biological networks at the molecular level. The objectives were to analyse their topology, integrate it in a genotype-phenotype analysis, develop richer mathematical descriptions for them, study their community structure and compare different methodologies for estimating their internal fluxes. The work presented in this document moves around three main axes. The first one is the biological. Which organisms were studied in this ...

  2. A user’s guide to network analysis in R

    CERN Document Server

    Luke, Douglas

    2015-01-01

    Presenting a comprehensive resource for the mastery of network analysis in R, the goal of Network Analysis with R is to introduce modern network analysis techniques in R to social, physical, and health scientists. The mathematical foundations of network analysis are emphasized in an accessible way and readers are guided through the basic steps of network studies: network conceptualization, data collection and management, network description, visualization, and building and testing statistical models of networks. As with all of the books in the Use R! series, each chapter contains extensive R code and detailed visualizations of datasets. Appendices will describe the R network packages and the datasets used in the book. An R package developed specifically for the book, available to readers on GitHub, contains relevant code and real-world network datasets as well.

  3. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections.

    Directory of Open Access Journals (Sweden)

    Ettie M Lipner

    Full Text Available Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.

  4. Network value and optimum analysis on the mode of networked marketing in TV media

    Directory of Open Access Journals (Sweden)

    Xiao Dongpo

    2012-12-01

    Full Text Available Purpose: With the development of the networked marketing in TV media, it is important to do the research on network value and optimum analysis in this field.Design/methodology/approach: According to the research on the mode of networked marketing in TV media and Correlation theory, the essence of media marketing is creating, spreading and transferring values. The Participants of marketing value activities are in network, and value activities proceed in networked form. Network capability is important to TV media marketing activities.Findings: This article raises the direction of research of analysis and optimization about network based on the mode of networked marketing in TV media by studying TV media marketing Development Mechanism , network analysis and network value structure.

  5. Analysis and design of networked control systems

    CERN Document Server

    You, Keyou; Xie, Lihua

    2015-01-01

    This monograph focuses on characterizing the stability and performance consequences of inserting limited-capacity communication networks within a control loop. The text shows how integration of the ideas of control and estimation with those of communication and information theory can be used to provide important insights concerning several fundamental problems such as: ·         minimum data rate for stabilization of linear systems over noisy channels; ·         minimum network requirement for stabilization of linear systems over fading channels; and ·         stability of Kalman filtering with intermittent observations. A fundamental link is revealed between the topological entropy of linear dynamical systems and the capacities of communication channels. The design of a logarithmic quantizer for the stabilization of linear systems under various network environments is also extensively discussed and solutions to many problems of Kalman filtering with intermittent observations are de...

  6. Complex network models reveal correlations among network metrics, exercise intensity and role of body changes in the fatigue process.

    Science.gov (United States)

    Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado-Gobatto, Fúlvia Barros

    2015-05-21

    The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications.

  7. Complex network models reveal correlations among network metrics, exercise intensity and role of body changes in the fatigue process

    Science.gov (United States)

    Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado-Gobatto, Fúlvia Barros

    2015-05-01

    The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications.

  8. Positive and negative forms of replicability in gene network analysis.

    Science.gov (United States)

    Verleyen, W; Ballouz, S; Gillis, J

    2016-04-01

    Gene networks have become a central tool in the analysis of genomic data but are widely regarded as hard to interpret. This has motivated a great deal of comparative evaluation and research into best practices. We explore the possibility that this may lead to overfitting in the field as a whole. We construct a model of 'research communities' sampling from real gene network data and machine learning methods to characterize performance trends. Our analysis reveals an important principle limiting the value of replication, namely that targeting it directly causes 'easy' or uninformative replication to dominate analyses. We find that when sampling across network data and algorithms with similar variability, the relationship between replicability and accuracy is positive (Spearman's correlation, rs ∼0.33) but where no such constraint is imposed, the relationship becomes negative for a given gene function (rs ∼ -0.13). We predict factors driving replicability in some prior analyses of gene networks and show that they are unconnected with the correctness of the original result, instead reflecting replicable biases. Without these biases, the original results also vanish replicably. We show these effects can occur quite far upstream in network data and that there is a strong tendency within protein-protein interaction data for highly replicable interactions to be associated with poor quality control. Algorithms, network data and a guide to the code available at: https://github.com/wimverleyen/AggregateGeneFunctionPrediction jgillis@cshl.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. The Application of Social Network Analysis to Team Sports

    Science.gov (United States)

    Lusher, Dean; Robins, Garry; Kremer, Peter

    2010-01-01

    This article reviews how current social network analysis might be used to investigate individual and group behavior in sporting teams. Social network analysis methods permit researchers to explore social relations between team members and their individual-level qualities simultaneously. As such, social network analysis can be seen as augmenting…

  10. Network analysis reveals why Xylella fastidiosa will persist in Europe.

    Science.gov (United States)

    Strona, Giovanni; Carstens, Corrie Jacobien; Beck, Pieter S A

    2017-03-06

    The insect vector borne bacterium Xylella fastidiosa was first detected in olive trees in Southern Italy in 2013, and identified as the main culprit behind the 'olive quick decline syndrome'. Since then, the disease has spread rapidly through Italy's main olive oil producing region. The epidemiology of the outbreak is largely unstudied, with the list of X. fastidiosa hosts and vectors in Europe likely incomplete, and the role humans play in dispersal unknown. These knowledge gaps have led to management strategies based on general assumptions that require, among others, local vector control and, in certain areas, the destruction of infected plants and healthy ones around them in an attempt to eradicate or halt the spreading pest. Here we show that, regardless of epidemiological uncertainties, the mere distribution of olive orchards in Southern Italy makes the chances of eradicating X. fastidiosa from the region extremely slim. Our results imply that Southern Italy is becoming a reservoir for X. fastidiosa. As a consequence, management strategies should keep the prevalence of X. fastidiosa in the region as low as possible, primarily through vector control, lest the pathogen, that has also been detected in southern France and the island of Mallorca (Spain), continues spreading through Italy and Europe.

  11. Quantitative time-course metabolomics in human red blood cells reveal the temperature dependence of human metabolic networks.

    Science.gov (United States)

    Yurkovich, James T; Zielinski, Daniel C; Yang, Laurence; Paglia, Giuseppe; Rolfsson, Ottar; Sigurjónsson, Ólafur E; Broddrick, Jared T; Bordbar, Aarash; Wichuk, Kristine; Brynjólfsson, Sigurður; Palsson, Sirus; Gudmundsson, Sveinn; Palsson, Bernhard O

    2017-12-01

    The temperature dependence of biological processes has been studied at the levels of individual biochemical reactions and organism physiology (e.g. basal metabolic rates) but has not been examined at the metabolic network level. Here, we used a systems biology approach to characterize the temperature dependence of the human red blood cell (RBC) metabolic network between 4 and 37 °C through absolutely quantified exo- and endometabolomics data. We used an Arrhenius-type model (Q10) to describe how the rate of a biochemical process changes with every 10 °C change in temperature. Multivariate statistical analysis of the metabolomics data revealed that the same metabolic network-level trends previously reported for RBCs at 4 °C were conserved but accelerated with increasing temperature. We calculated a median Q10 coefficient of 2.89 ± 1.03, within the expected range of 2-3 for biological processes, for 48 individual metabolite concentrations. We then integrated these metabolomics measurements into a cell-scale metabolic model to study pathway usage, calculating a median Q10 coefficient of 2.73 ± 0.75 for 35 reaction fluxes. The relative fluxes through glycolysis and nucleotide metabolism pathways were consistent across the studied temperature range despite the non-uniform distributions of Q10 coefficients of individual metabolites and reaction fluxes. Together, these results indicate that the rate of change of network-level responses to temperature differences in RBC metabolism is consistent between 4 and 37 °C. More broadly, we provide a baseline characterization of a biochemical network given no transcriptional or translational regulation that can be used to explore the temperature dependence of metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Analysis and visualization of citation networks

    CERN Document Server

    Zhao, Dangzhi

    2015-01-01

    Citation analysis-the exploration of reference patterns in the scholarly and scientific literature-has long been applied in a number of social sciences to study research impact, knowledge flows, and knowledge networks. It has important information science applications as well, particularly in knowledge representation and in information retrieval.Recent years have seen a burgeoning interest in citation analysis to help address research, management, or information service issues such as university rankings, research evaluation, or knowledge domain visualization. This renewed and growing interest

  13. Ensemble approach to the analysis of weighted networks

    Science.gov (United States)

    Ahnert, S. E.; Garlaschelli, D.; Fink, T. M. A.; Caldarelli, G.

    2007-07-01

    We present an approach to the analysis of weighted networks, by providing a straightforward generalization of any network measure defined on unweighted networks, such as the average degree of the nearest neighbors, the clustering coefficient, the “betweenness,” the distance between two nodes, and the diameter of a network. All these measures are well established for unweighted networks but have hitherto proven difficult to define for weighted networks. Our approach is based on the translation of a weighted network into an ensemble of edges. Further introducing this approach we demonstrate its advantages by applying the clustering coefficient constructed in this way to two real-world weighted networks.

  14. Protein interaction networks reveal novel autism risk genes within GWAS statistical noise.

    Directory of Open Access Journals (Sweden)

    Catarina Correia

    Full Text Available Genome-wide association studies (GWAS for Autism Spectrum Disorder (ASD thus far met limited success in the identification of common risk variants, consistent with the notion that variants with small individual effects cannot be detected individually in single SNP analysis. To further capture disease risk gene information from ASD association studies, we applied a network-based strategy to the Autism Genome Project (AGP and the Autism Genetics Resource Exchange GWAS datasets, combining family-based association data with Human Protein-Protein interaction (PPI data. Our analysis showed that autism-associated proteins at higher than conventional levels of significance (P<0.1 directly interact more than random expectation and are involved in a limited number of interconnected biological processes, indicating that they are functionally related. The functionally coherent networks generated by this approach contain ASD-relevant disease biology, as demonstrated by an improved positive predictive value and sensitivity in retrieving known ASD candidate genes relative to the top associated genes from either GWAS, as well as a higher gene overlap between the two ASD datasets. Analysis of the intersection between the networks obtained from the two ASD GWAS and six unrelated disease datasets identified fourteen genes exclusively present in the ASD networks. These are mostly novel genes involved in abnormal nervous system phenotypes in animal models, and in fundamental biological processes previously implicated in ASD, such as axon guidance, cell adhesion or cytoskeleton organization. Overall, our results highlighted novel susceptibility genes previously hidden within GWAS statistical "noise" that warrant further analysis for causal variants.

  15. Protein interaction networks reveal novel autism risk genes within GWAS statistical noise.

    Science.gov (United States)

    Correia, Catarina; Oliveira, Guiomar; Vicente, Astrid M

    2014-01-01

    Genome-wide association studies (GWAS) for Autism Spectrum Disorder (ASD) thus far met limited success in the identification of common risk variants, consistent with the notion that variants with small individual effects cannot be detected individually in single SNP analysis. To further capture disease risk gene information from ASD association studies, we applied a network-based strategy to the Autism Genome Project (AGP) and the Autism Genetics Resource Exchange GWAS datasets, combining family-based association data with Human Protein-Protein interaction (PPI) data. Our analysis showed that autism-associated proteins at higher than conventional levels of significance (P<0.1) directly interact more than random expectation and are involved in a limited number of interconnected biological processes, indicating that they are functionally related. The functionally coherent networks generated by this approach contain ASD-relevant disease biology, as demonstrated by an improved positive predictive value and sensitivity in retrieving known ASD candidate genes relative to the top associated genes from either GWAS, as well as a higher gene overlap between the two ASD datasets. Analysis of the intersection between the networks obtained from the two ASD GWAS and six unrelated disease datasets identified fourteen genes exclusively present in the ASD networks. These are mostly novel genes involved in abnormal nervous system phenotypes in animal models, and in fundamental biological processes previously implicated in ASD, such as axon guidance, cell adhesion or cytoskeleton organization. Overall, our results highlighted novel susceptibility genes previously hidden within GWAS statistical "noise" that warrant further analysis for causal variants.

  16. Generalized spike and waves: effect of discharge duration on brain networks as revealed by BOLD fMRI.

    Science.gov (United States)

    Pugnaghi, Matteo; Carmichael, David W; Vaudano, Anna E; Chaudhary, Umair J; Benuzzi, Francesca; Di Bonaventura, Carlo; Giallonardo, Anna T; Rodionov, Roman; Walker, Matthew C; Duncan, John S; Meletti, Stefano; Lemieux, Louis

    2014-01-01

    In the past decade, the possibility of combining recordings of EEG and functional MRI (EEG-fMRI), has brought a new insight into the brain network underlying generalized spike wave discharges (GSWD). Nevertheless, how GSWD duration influences this network is not fully understood. In this study we aim to investigate whether GSWD duration had a threshold (non-linear) and/or a linear effect on the amplitude of the associated BOLD changes in any brain regions. This could help in elucidating if there is an hemodynamic background supporting the differentiation between interictal and ictal events. We studied a population of 42 patients with idiopathic generalized epilepsies (IGE) who underwent resting-state EEG-fMRI recordings in three centres (London, UK; Modena, Italy; Rome, Italy), applying a parametric analysis of the GSWD duration. Patients were classified as having Childhood Absence epilepsy, Juvenile Absence Epilepsy, or Juvenile Myoclonic Epilepsy. At the population level linear GSWD duration-related BOLD signal changes were found in a network of brain regions: mainly BOLD increase in thalami and cerebral ventricles, and BOLD decrease in posterior cingulate, precuneus and bilateral parietal regions. No region of significant BOLD change was found in the group analysis for the non-linear effect of GSWD duration. To explore the possible effect of both the different IGE sub-syndromes and the different protocols and scanning equipment used in the study, a full-factorial ANOVA design was performed revealing no significant differences. These findings support the idea that the amplitude of the BOLD changes is linearly related to the GSWD duration with no universal threshold effect of spike and wave duration on the brain network supporting this activity.

  17. Hearing health network: a spatial analysis

    Directory of Open Access Journals (Sweden)

    Camila Ferreira de Rezende

    2015-06-01

    Full Text Available INTRODUCTION: In order to meet the demands of the patient population with hearing impairment, the Hearing Health Care Network was created, consisting of primary care actions of medium and high complexity. Spatial analysis through geoprocessing is a way to understand the organization of such services. OBJECTIVE: To analyze the organization of the Hearing Health Care Network of the State of Minas Gerais. METHODS: Cross-sectional analytical study using geoprocessing techniques. The absolute frequency and the frequency per 1000 inhabitants of the following variables were analyzed: assessment and diagnosis, selection and adaptation of hearing aids, follow-up, and speech therapy. The spatial analysis unit was the health micro-region. RESULTS: The assessment and diagnosis, selection, and adaptation of hearing aids and follow-up had a higher absolute number in the micro-regions with hearing health services. The follow-up procedure showed the lowest occurrence. Speech therapy showed higher occurrence in the state, both in absolute numbers, as well as per population. CONCLUSION: The use of geoprocessing techniques allowed the identification of the care flow as a function of the procedure performance frequency, population concentration, and territory distribution. All procedures offered by the Hearing Health Care Network are performed for users of all micro-regions of the state.

  18. Design Criteria For Networked Image Analysis System

    Science.gov (United States)

    Reader, Cliff; Nitteberg, Alan

    1982-01-01

    Image systems design is currently undergoing a metamorphosis from the conventional computing systems of the past into a new generation of special purpose designs. This change is motivated by several factors, notably among which is the increased opportunity for high performance with low cost offered by advances in semiconductor technology. Another key issue is a maturing in understanding of problems and the applicability of digital processing techniques. These factors allow the design of cost-effective systems that are functionally dedicated to specific applications and used in a utilitarian fashion. Following an overview of the above stated issues, the paper presents a top-down approach to the design of networked image analysis systems. The requirements for such a system are presented, with orientation toward the hospital environment. The three main areas are image data base management, viewing of image data and image data processing. This is followed by a survey of the current state of the art, covering image display systems, data base techniques, communications networks and software systems control. The paper concludes with a description of the functional subystems and architectural framework for networked image analysis in a production environment.

  19. Capacity analysis of wireless mesh networks | Gumel | Nigerian ...

    African Journals Online (AJOL)

    The next generation wireless· netWorks experienced agreat development with emergence of wireless mesh networks (WMNs), which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network ...

  20. Linear stability analysis reveals exclusion zone for sliding bed transport

    Directory of Open Access Journals (Sweden)

    Talmon Arnold M.

    2015-06-01

    Full Text Available A bend or any another pipe component disturbs solids transport in pipes. Longitudinal pressure profiles downstream of such a component may show a stationary transient harmonic wave, as revealed by a recent settling slurry laboratory experiment. Therefore the fundamental transient response of the two-layer model for fully stratified flow is investigated as a first approach. A linear stability analysis of the sliding bed configuration is conducted. No stationary transient harmonic waves are found in this analysis, but adaptation lengths for exponential recovery are quantified. An example calculation is given for a 0.1 m diameter pipeline.

  1. Activity Recognition Using Complex Network Analysis.

    Science.gov (United States)

    Jalloul, Nahed; Poree, Fabienne; Viardot, Geoffrey; L'Hostis, Phillipe; Carrault, Guy

    2017-10-12

    In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consists of the correlation between each pair of modules. A number of network measures are then computed followed by the application of statistical significance and feature selection methods. These methods were implemented for the purpose of reducing the total number of modules in the monitoring system required to provide accurate activity classification. The obtained results show that an overall accuracy of 84.6% for activity classification is achieved, using a Random Forest (RF) classifier, and when considering a monitoring system composed of only two modules positioned at the Neck and Thigh of the subject's body.

  2. Internal Acoustic Transceivers Reveal the Annual Social Network Patterns in a Coastal Top Predator

    Science.gov (United States)

    Haulsee, D.; Fox, D. A.; Breece, M.; Wetherbee, B.; Brown, L.; Kneebone, J.; Skomal, G.; Oliver, M. J.

    2016-02-01

    Sand Tigers (Carcharias taurus) are large apex predators resident in the coastal ocean along the Eastern US Coast. Although Delaware Bay and surrounding coastal waters are known summer "hot spots" for Sand Tigers, our understanding of their seasonal movements is less well known. Since 2007, we have implanted more than 300 VEMCO acoustic transmitters in Sand Tigers, which have been detected from Cape Canaveral, Florida to Long Island, New York by collaborators in the Atlantic Cooperative Telemetry (ACT) Network. During the summer of 2012, 20 Sand Tigers were implanted with VEMCO Mobile Transceivers (VMTs), which are capable of both transmitting and receiving coded acoustic pings. To date, two of the 20 sharks have been recaptured, and their VMTs recovered. VMTs recorded detections of 350 individuals, from 8 different species. We analyzed their intra- and interspecific social network, which allowed us to reconstruct the approximate locations of Sand Tigers throughout the year. Changes in the interspecific population dynamics throughout the year revealed evidence of fission-fusion social behavior, which is common in mammals, but rarely documented in non-mammalian species. This project is a unique look at the social network of an apex predator and is a useful model for studies quantifying the social structures of marine animals. In addition, understanding how the aggregations of this species changes (in terms of sex and size class segregation) on spatiotemporal scales is critical for effective protection of the species and will be useful as managers develop conservation plans along the East Coast.

  3. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders

    Directory of Open Access Journals (Sweden)

    Qingying Meng

    2016-05-01

    Full Text Available Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient–host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control and hippocampus (cognitive processing from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.

  4. Rhythms of consciousness: binocular rivalry reveals large-scale oscillatory network dynamics mediating visual perception.

    Science.gov (United States)

    Doesburg, Sam M; Green, Jessica J; McDonald, John J; Ward, Lawrence M

    2009-07-03

    Consciousness has been proposed to emerge from functionally integrated large-scale ensembles of gamma-synchronous neural populations that form and dissolve at a frequency in the theta band. We propose that discrete moments of perceptual experience are implemented by transient gamma-band synchronization of relevant cortical regions, and that disintegration and reintegration of these assemblies is time-locked to ongoing theta oscillations. In support of this hypothesis we provide evidence that (1) perceptual switching during binocular rivalry is time-locked to gamma-band synchronizations which recur at a theta rate, indicating that the onset of new conscious percepts coincides with the emergence of a new gamma-synchronous assembly that is locked to an ongoing theta rhythm; (2) localization of the generators of these gamma rhythms reveals recurrent prefrontal and parietal sources; (3) theta modulation of gamma-band synchronization is observed between and within the activated brain regions. These results suggest that ongoing theta-modulated-gamma mechanisms periodically reintegrate a large-scale prefrontal-parietal network critical for perceptual experience. Moreover, activation and network inclusion of inferior temporal cortex and motor cortex uniquely occurs on the cycle immediately preceding responses signaling perceptual switching. This suggests that the essential prefrontal-parietal oscillatory network is expanded to include additional cortical regions relevant to tasks and perceptions furnishing consciousness at that moment, in this case image processing and response initiation, and that these activations occur within a time frame consistent with the notion that conscious processes directly affect behaviour.

  5. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    Science.gov (United States)

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Sequence similarity network reveals the imprints of major diversification events in the evolution of microbial life

    Directory of Open Access Journals (Sweden)

    Shu eCheng

    2014-11-01

    Full Text Available Ancient transitions, such as between life that evolved in a reducing versus an oxidizing atmosphere precipitated by the Great Oxygenation Event (GOE ca. 2.4 billion years ago, fundamentally altered the space in which prokaryotes could derive metabolic energy. Despite fundamental changes in Earth’s redox state, there are very few comprehensive, proteome-wide analyses about the effects of these changes on gene content and evolution. Here, using a pan-proteome sequence similarity network applied to broadly sampled lifestyles of 84 prokaryotes that were categorized into four different redox groups (i.e., methanogens, obligate anaerobes, facultative anaerobes, and obligate aerobes, we reconstructed the genetic inventory of major respiratory communities. We show that a set of putative core homologs that is highly conserved in prokaryotic proteomes is characterized by the loss of canonical network connections and low conductance that correlates with differences in respiratory phenotypes. We suggest these different network patterns observed for different respiratory communities could be explained by two major evolutionary diversification events in the history of microbial life. The first event (M is a divergence between methanogenesis and other anaerobic lifestyles in prokaryotes (archaebacteria and eubacteria. The second diversification event (OX is from anaerobic to aerobic lifestyles that left a proteome-wide footprint among prokaryotes. Additional analyses revealed that oxidoreductase evolution played a central role in these two diversification events. Distinct cofactor binding domains were frequently recombined, allowing these enzymes to utilize increasingly oxidized substrates with high specificity.

  7. Integrated Adaptive Analysis and Visualization of Satellite Network Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a system that enables integrated and adaptive analysis and visualization of satellite network management data. Integrated analysis and...

  8. Analysis of Ego Network Structure in Online Social Networks

    OpenAIRE

    Arnaboldi, Valerio; Conti, Marco; Passarella, Andrea; Pezzoni, Fabio

    2012-01-01

    Results about offline social networks demonstrated that the social relationships that an individual (ego) maintains with other people (alters) can be organised into different groups according to the ego network model. In this model the ego can be seen as the centre of a series of layers of increasing size. Social relationships between ego and alters in layers close to ego are stronger than those belonging to more external layers. Online Social Networks are becoming a fundamental medium for hu...

  9. Using data- and network science to reveal iterations and phase-transitions in the design process

    DEFF Research Database (Denmark)

    Piccolo, Sebastiano; Jørgensen, Sune Lehmann; Maier, Anja

    2017-01-01

    Understanding the role of iterations is a prevalent topic in both design research and design practice. Furthermore, the increasing amount of data produced and stored by companies leaves traces and enables the application of data science to learn from past design processes. In this article, we...... analyse a documentlog to show the temporal evolution of a real design process of a power plant by using exploratory data analysis and network analysis. We show how the iterative nature of the design process is reflected in archival data and how one might re-construct the design process, involving...

  10. Synchronization analysis of coloured delayed networks under ...

    Indian Academy of Sciences (India)

    Up to now, many network models on synchronization have been put forward, such as, the small-world network, directed network, neural network etc. Previous efforts were mainly to study the outer relationship between the nodes. But, the inner interaction is always overlooked. Afterwards, the coloured network model has ...

  11. Lifespan Development of the Human Brain Revealed by Large-Scale Network Eigen-Entropy

    Directory of Open Access Journals (Sweden)

    Yiming Fan

    2017-09-01

    Full Text Available Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying functional connectivity patterns of the developing and aging brain. Normal brain development is characterized by continuous and significant network evolution through infancy, childhood, and adolescence, following specific maturational patterns. Normal aging is related to some resting state brain networks disruption, which are associated with certain cognitive decline. It is a big challenge to design an integral metric to track connectome evolution patterns across the lifespan, which is to understand the principles of network organization in the human brain. In this study, we first defined a brain network eigen-entropy (NEE based on the energy probability (EP of each brain node. Next, we used the NEE to characterize the lifespan orderness trajectory of the whole-brain functional connectivity of 173 healthy individuals ranging in age from 7 to 85 years. The results revealed that during the lifespan, the whole-brain NEE exhibited a significant non-linear decrease and that the EP distribution shifted from concentration to wide dispersion, implying orderness enhancement of functional connectome over age. Furthermore, brain regions with significant EP changes from the flourishing (7–20 years to the youth period (23–38 years were mainly located in the right prefrontal cortex and basal ganglia, and were involved in emotion regulation and executive function in coordination with the action of the sensory system, implying that self-awareness and voluntary control performance significantly changed during neurodevelopment. However, the changes from the youth period to middle age (40–59 years were located in the mesial temporal lobe and caudate, which are associated with long-term memory, implying that the memory of the human brain begins to decline with age during this period. Overall, the findings suggested that the human connectome

  12. Social network analysis of duplicative prescriptions: One-month analysis of medical facilities in Japan.

    Science.gov (United States)

    Takahashi, Yoshimitsu; Ishizaki, Tatsuro; Nakayama, Takeo; Kawachi, Ichiro

    2016-03-01

    Duplicative prescriptions refer to situations in which patients receive medications for the same condition from two or more sources. Health officials in Japan have expressed concern about medical "waste" resulting from this practices. We sought to conduct descriptive analysis of duplicative prescriptions using social network analysis and to report their prevalence across ages. We analyzed a health insurance claims database including 1.24 million people from December 2012. Through social network analysis, we examined the duplicative prescription networks, representing each medical facility as nodes, and individual prescriptions for patients as edges. The prevalence of duplicative prescription for any drug class was strongly correlated with its frequency of prescription (r=0.90). Among patients aged 0-19, cough and colds drugs showed the highest prevalence of duplicative prescriptions (10.8%). Among people aged 65 and over, antihypertensive drugs had the highest frequency of prescriptions, but the prevalence of duplicative prescriptions was low (0.2-0.3%). Social network analysis revealed clusters of facilities connected via duplicative prescriptions, e.g., psychotropic drugs showed clustering due to a few patients receiving drugs from 10 or more facilities. Overall, the prevalence of duplicative prescriptions was quite low - less than 10% - although the extent of the problem varied by drug class and age group. Our approach illustrates the potential utility of using a social network approach to understand these practices. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Network meta-analysis: an introduction for clinicians.

    Science.gov (United States)

    Rouse, Benjamin; Chaimani, Anna; Li, Tianjing

    2017-02-01

    Network meta-analysis is a technique for comparing multiple treatments simultaneously in a single analysis by combining direct and indirect evidence within a network of randomized controlled trials. Network meta-analysis may assist assessing the comparative effectiveness of different treatments regularly used in clinical practice and, therefore, has become attractive among clinicians. However, if proper caution is not taken in conducting and interpreting network meta-analysis, inferences might be biased. The aim of this paper is to illustrate the process of network meta-analysis with the aid of a working example on first-line medical treatment for primary open-angle glaucoma. We discuss the key assumption of network meta-analysis, as well as the unique considerations for developing appropriate research questions, conducting the literature search, abstracting data, performing qualitative and quantitative synthesis, presenting results, drawing conclusions, and reporting the findings in a network meta-analysis.

  14. Applications of social media and social network analysis

    CERN Document Server

    Kazienko, Przemyslaw

    2015-01-01

    This collection of contributed chapters demonstrates a wide range of applications within two overlapping research domains: social media analysis and social network analysis. Various methodologies were utilized in the twelve individual chapters including static, dynamic and real-time approaches to graph, textual and multimedia data analysis. The topics apply to reputation computation, emotion detection, topic evolution, rumor propagation, evaluation of textual opinions, friend ranking, analysis of public transportation networks, diffusion in dynamic networks, analysis of contributors to commun

  15. A system of recurrent neural networks for modularising, parameterising and dynamic analysis of cell signalling networks.

    Science.gov (United States)

    Samarasinghe, S; Ling, H

    In this paper, we show how to extend our previously proposed novel continuous time Recurrent Neural Networks (RNN) approach that retains the advantage of continuous dynamics offered by Ordinary Differential Equations (ODE) while enabling parameter estimation through adaptation, to larger signalling networks using a modular approach. Specifically, the signalling network is decomposed into several sub-models based on important temporal events in the network. Each sub-model is represented by the proposed RNN and trained using data generated from the corresponding ODE model. Trained sub-models are assembled into a whole system RNN which is then subjected to systems dynamics and sensitivity analyses. The concept is illustrated by application to G1/S transition in cell cycle using Iwamoto et al. (2008) ODE model. We decomposed the G1/S network into 3 sub-models: (i) E2F transcription factor release; (ii) E2F and CycE positive feedback loop for elevating cyclin levels; and (iii) E2F and CycA negative feedback to degrade E2F. The trained sub-models accurately represented system dynamics and parameters were in good agreement with the ODE model. The whole system RNN however revealed couple of parameters contributing to compounding errors due to feedback and required refinement to sub-model 2. These related to the reversible reaction between CycE/CDK2 and p27, its inhibitor. The revised whole system RNN model very accurately matched dynamics of the ODE system. Local sensitivity analysis of the whole system model further revealed the most dominant influence of the above two parameters in perturbing G1/S transition, giving support to a recent hypothesis that the release of inhibitor p27 from Cyc/CDK complex triggers cell cycle stage transition. To make the model useful in a practical setting, we modified each RNN sub-model with a time relay switch to facilitate larger interval input data (≈20min) (original model used data for 30s or less) and retrained them that produced

  16. Network-based analysis of proteomic profiles

    KAUST Repository

    Wong, Limsoon

    2016-01-26

    Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.

  17. Multivoxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    DEFF Research Database (Denmark)

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection, and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations...... presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple...... within a multivoxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was used to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while...

  18. Social sciences via network analysis and computation

    CERN Document Server

    Kanduc, Tadej

    2015-01-01

    In recent years information and communication technologies have gained significant importance in the social sciences. Because there is such rapid growth of knowledge, methods and computer infrastructure, research can now seamlessly connect interdisciplinary fields such as business process management, data processing and mathematics. This study presents some of the latest results, practices and state-of-the-art approaches in network analysis, machine learning, data mining, data clustering and classifications in the contents of social sciences. It also covers various real-life examples such as t

  19. Microbiota analysis to reveal temperature abuse of fresh pork

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Bahl, Martin Iain; Hansen, Tina Beck

    Violations of temperature regulations in the meat chain may affect meat safety. Methods are lacking to estimate whether meat has been subjected to temperature abuse. Exposure to too high temperatures may lead to systematic changes in the diverse bacterial communities of fresh meat. We investigated...... whether temperature induced changes in the community composition on fresh meat surfaces can reflect the temperature-history (combination of time and temperature). Sterile pieces of pork were inoculated with a carcass swab homogenate, to which Salmonella was added. Changes in the meat microbiota were...... was dominated by Pseudomonas only. We also showed that the initial community affects subsequent changes during storage. The results suggest that principal coordinate analysis of beta diversity could be a useful tool to reveal temperature abused meat. Sequence data and culturing data revealed a strong positive...

  20. The Importance of Networking in Autism Gaze Analysis.

    Directory of Open Access Journals (Sweden)

    Quentin Guillon

    Full Text Available Visual scanning of faces in individuals with Autism Spectrum Disorder (ASD has been intensively studied using eye-tracking technology. However, most of studies have relied on the same analytic approach based on the quantification of fixation time, which may have failed to reveal some important features of the scanning strategies employed by individuals with ASD. In the present study, we examined the scanning of faces in a group of 20 preschoolers with ASD and their typically developing (TD peers, using both classical fixation time approach and a new developed approach based on transition matrices and network analysis. We found between group differences in the eye region in terms of fixation time, with increased right eye fixation time for the ASD group and increased left eye fixation time for the TD group. Our complementary network approach revealed that the left eye might play the role of an anchor in the scanning strategies of TD children but not in that of children with ASD. In ASD, fixation time on the different facial parts was almost exclusively dependent on exploratory activity. Our study highlights the importance of developing innovative measures that bear the potential of revealing new properties of the scanning strategies employed by individuals with ASD.

  1. Models as Tools of Analysis of a Network Organisation

    Directory of Open Access Journals (Sweden)

    Wojciech Pająk

    2013-06-01

    Full Text Available The paper presents models which may be applied as tools of analysis of a network organisation. The starting point of the discussion is defining the following terms: supply chain and network organisation. Further parts of the paper present basic assumptions analysis of a network organisation. Then the study characterises the best known models utilised in analysis of a network organisation. The purpose of the article is to define the notion and the essence of network organizations and to present the models used for their analysis.

  2. The features of Drosophila core promoters revealed by statistical analysis

    Directory of Open Access Journals (Sweden)

    Trifonov Edward N

    2006-06-01

    Full Text Available Abstract Background Experimental investigation of transcription is still a very labor- and time-consuming process. Only a few transcription initiation scenarios have been studied in detail. The mechanism of interaction between basal machinery and promoter, in particular core promoter elements, is not known for the majority of identified promoters. In this study, we reveal various transcription initiation mechanisms by statistical analysis of 3393 nonredundant Drosophila promoters. Results Using Drosophila-specific position-weight matrices, we identified promoters containing TATA box, Initiator, Downstream Promoter Element (DPE, and Motif Ten Element (MTE, as well as core elements discovered in Human (TFIIB Recognition Element (BRE and Downstream Core Element (DCE. Promoters utilizing known synergetic combinations of two core elements (TATA_Inr, Inr_MTE, Inr_DPE, and DPE_MTE were identified. We also establish the existence of promoters with potentially novel synergetic combinations: TATA_DPE and TATA_MTE. Our analysis revealed several motifs with the features of promoter elements, including possible novel core promoter element(s. Comparison of Human and Drosophila showed consistent percentages of promoters with TATA, Inr, DPE, and synergetic combinations thereof, as well as most of the same functional and mutual positions of the core elements. No statistical evidence of MTE utilization in Human was found. Distinct nucleosome positioning in particular promoter classes was revealed. Conclusion We present lists of promoters that potentially utilize the aforementioned elements/combinations. The number of these promoters is two orders of magnitude larger than the number of promoters in which transcription initiation was experimentally studied. The sequences are ready to be experimentally tested or used for further statistical analysis. The developed approach may be utilized for other species.

  3. Violence-related content in video game may lead to functional connectivity changes in brain networks as revealed by fMRI-ICA in young men.

    Science.gov (United States)

    Zvyagintsev, M; Klasen, M; Weber, R; Sarkheil, P; Esposito, F; Mathiak, K A; Schwenzer, M; Mathiak, K

    2016-04-21

    In violent video games, players engage in virtual aggressive behaviors. Exposure to virtual aggressive behavior induces short-term changes in players' behavior. In a previous study, a violence-related version of the racing game "Carmageddon TDR2000" increased aggressive affects, cognitions, and behaviors compared to its non-violence-related version. This study investigates the differences in neural network activity during the playing of both versions of the video game. Functional magnetic resonance imaging (fMRI) recorded ongoing brain activity of 18 young men playing the violence-related and the non-violence-related version of the video game Carmageddon. Image time series were decomposed into functional connectivity (FC) patterns using independent component analysis (ICA) and template-matching yielded a mapping to established functional brain networks. The FC patterns revealed a decrease in connectivity within 6 brain networks during the violence-related compared to the non-violence-related condition: three sensory-motor networks, the reward network, the default mode network (DMN), and the right-lateralized frontoparietal network. Playing violent racing games may change functional brain connectivity, in particular and even after controlling for event frequency, in the reward network and the DMN. These changes may underlie the short-term increase of aggressive affects, cognitions, and behaviors as observed after playing violent video games. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Robustness Analysis of Real Network Topologies Under Multiple Failure Scenarios

    DEFF Research Database (Denmark)

    Manzano, M.; Marzo, J. L.; Calle, E.

    2012-01-01

    on topological characteristics. Recently approaches also consider the services supported by such networks. In this paper we carry out a robustness analysis of five real backbone telecommunication networks under defined multiple failure scenarios, taking into account the consequences of the loss of established......Nowadays the ubiquity of telecommunication networks, which underpin and fulfill key aspects of modern day living, is taken for granted. Significant large-scale failures have occurred in the last years affecting telecommunication networks. Traditionally, network robustness analysis has been focused...... connections. Results show which networks are more robust in response to a specific type of failure....

  5. Will HIV vaccination reshape HIV risk behavior networks? A social network analysis of drug users' anticipated risk compensation.

    Science.gov (United States)

    Young, April M; Halgin, Daniel S; DiClemente, Ralph J; Sterk, Claire E; Havens, Jennifer R

    2014-01-01

    An HIV vaccine could substantially impact the epidemic. However, risk compensation (RC), or post-vaccination increase in risk behavior, could present a major challenge. The methodology used in previous studies of risk compensation has been almost exclusively individual-level in focus, and has not explored how increased risk behavior could affect the connectivity of risk networks. This study examined the impact of anticipated HIV vaccine-related RC on the structure of high-risk drug users' sexual and injection risk network. A sample of 433 rural drug users in the US provided data on their risk relationships (i.e., those involving recent unprotected sex and/or injection equipment sharing). Dyad-specific data were collected on likelihood of increasing/initiating risk behavior if they, their partner, or they and their partner received an HIV vaccine. Using these data and social network analysis, a "post-vaccination network" was constructed and compared to the current network on measures relevant to HIV transmission, including network size, cohesiveness (e.g., diameter, component structure, density), and centrality. Participants reported 488 risk relationships. Few reported an intention to decrease condom use or increase equipment sharing (4% and 1%, respectively). RC intent was reported in 30 existing risk relationships and vaccination was anticipated to elicit the formation of five new relationships. RC resulted in a 5% increase in risk network size (n = 142 to n = 149) and a significant increase in network density. The initiation of risk relationships resulted in the connection of otherwise disconnected network components, with the largest doubling in size from five to ten. This study demonstrates a new methodological approach to studying RC and reveals that behavior change following HIV vaccination could potentially impact risk network connectivity. These data will be valuable in parameterizing future network models that can determine if network-level change

  6. Advantages of Social Network Analysis in Educational Research

    Science.gov (United States)

    Ushakov, K. M.; Kukso, K. N.

    2015-01-01

    Currently one of the main tools for the large scale studies of schools is statistical analysis. Although it is the most common method and it offers greatest opportunities for analysis, there are other quantitative methods for studying schools, such as network analysis. We discuss the potential advantages that network analysis has for educational…

  7. Multiplex lexical networks reveal patterns in early word acquisition in children

    Science.gov (United States)

    Stella, Massimo; Beckage, Nicole M.; Brede, Markus

    2017-04-01

    Network models of language have provided a way of linking cognitive processes to language structure. However, current approaches focus only on one linguistic relationship at a time, missing the complex multi-relational nature of language. In this work, we overcome this limitation by modelling the mental lexicon of English-speaking toddlers as a multiplex lexical network, i.e. a multi-layered network where N = 529 words/nodes are connected according to four relationship: (i) free association, (ii) feature sharing, (iii) co-occurrence, and (iv) phonological similarity. We investigate the topology of the resulting multiplex and then proceed to evaluate single layers and the full multiplex structure on their ability to predict empirically observed age of acquisition data of English speaking toddlers. We find that the multiplex topology is an important proxy of the cognitive processes of acquisition, capable of capturing emergent lexicon structure. In fact, we show that the multiplex structure is fundamentally more powerful than individual layers in predicting the ordering with which words are acquired. Furthermore, multiplex analysis allows for a quantification of distinct phases of lexical acquisition in early learners: while initially all the multiplex layers contribute to word learning, after about month 23 free associations take the lead in driving word acquisition.

  8. Novel Loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis.

    Science.gov (United States)

    Inouye, Michael; Ripatti, Samuli; Kettunen, Johannes; Lyytikäinen, Leo-Pekka; Oksala, Niku; Laurila, Pirkka-Pekka; Kangas, Antti J; Soininen, Pasi; Savolainen, Markku J; Viikari, Jorma; Kähönen, Mika; Perola, Markus; Salomaa, Veikko; Raitakari, Olli; Lehtimäki, Terho; Taskinen, Marja-Riitta; Järvelin, Marjo-Riitta; Ala-Korpela, Mika; Palotie, Aarno; de Bakker, Paul I W

    2012-01-01

    Association testing of multiple correlated phenotypes offers better power than univariate analysis of single traits. We analyzed 6,600 individuals from two population-based cohorts with both genome-wide SNP data and serum metabolomic profiles. From the observed correlation structure of 130 metabolites measured by nuclear magnetic resonance, we identified 11 metabolic networks and performed a multivariate genome-wide association analysis. We identified 34 genomic loci at genome-wide significance, of which 7 are novel. In comparison to univariate tests, multivariate association analysis identified nearly twice as many significant associations in total. Multi-tissue gene expression studies identified variants in our top loci, SERPINA1 and AQP9, as eQTLs and showed that SERPINA1 and AQP9 expression in human blood was associated with metabolites from their corresponding metabolic networks. Finally, liver expression of AQP9 was associated with atherosclerotic lesion area in mice, and in human arterial tissue both SERPINA1 and AQP9 were shown to be upregulated (6.3-fold and 4.6-fold, respectively) in atherosclerotic plaques. Our study illustrates the power of multi-phenotype GWAS and highlights candidate genes for atherosclerosis.

  9. Novel Loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Michael Inouye

    Full Text Available Association testing of multiple correlated phenotypes offers better power than univariate analysis of single traits. We analyzed 6,600 individuals from two population-based cohorts with both genome-wide SNP data and serum metabolomic profiles. From the observed correlation structure of 130 metabolites measured by nuclear magnetic resonance, we identified 11 metabolic networks and performed a multivariate genome-wide association analysis. We identified 34 genomic loci at genome-wide significance, of which 7 are novel. In comparison to univariate tests, multivariate association analysis identified nearly twice as many significant associations in total. Multi-tissue gene expression studies identified variants in our top loci, SERPINA1 and AQP9, as eQTLs and showed that SERPINA1 and AQP9 expression in human blood was associated with metabolites from their corresponding metabolic networks. Finally, liver expression of AQP9 was associated with atherosclerotic lesion area in mice, and in human arterial tissue both SERPINA1 and AQP9 were shown to be upregulated (6.3-fold and 4.6-fold, respectively in atherosclerotic plaques. Our study illustrates the power of multi-phenotype GWAS and highlights candidate genes for atherosclerosis.

  10. Spectral Analysis Methods of Social Networks

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2017-01-01

    Full Text Available Online social networks (such as Facebook, Twitter, VKontakte, etc. being an important channel for disseminating information are often used to arrange an impact on the social consciousness for various purposes - from advertising products or services to the full-scale information war thereby making them to be a very relevant object of research. The paper reviewed the analysis methods of social networks (primarily, online, based on the spectral theory of graphs. Such methods use the spectrum of the social graph, i.e. a set of eigenvalues of its adjacency matrix, and also the eigenvectors of the adjacency matrix.Described measures of centrality (in particular, centrality based on the eigenvector and PageRank, which reflect a degree of impact one or another user of the social network has. A very popular PageRank measure uses, as a measure of centrality, the graph vertices, the final probabilities of the Markov chain, whose matrix of transition probabilities is calculated on the basis of the adjacency matrix of the social graph. The vector of final probabilities is an eigenvector of the matrix of transition probabilities.Presented a method of dividing the graph vertices into two groups. It is based on maximizing the network modularity by computing the eigenvector of the modularity matrix.Considered a method for detecting bots based on the non-randomness measure of a graph to be computed using the spectral coordinates of vertices - sets of eigenvector components of the adjacency matrix of a social graph.In general, there are a number of algorithms to analyse social networks based on the spectral theory of graphs. These algorithms show very good results, but their disadvantage is the relatively high (albeit polynomial computational complexity for large graphs.At the same time it is obvious that the practical application capacity of the spectral graph theory methods is still underestimated, and it may be used as a basis to develop new methods.The work

  11. Rhythms of consciousness: binocular rivalry reveals large-scale oscillatory network dynamics mediating visual perception.

    Directory of Open Access Journals (Sweden)

    Sam M Doesburg

    Full Text Available Consciousness has been proposed to emerge from functionally integrated large-scale ensembles of gamma-synchronous neural populations that form and dissolve at a frequency in the theta band. We propose that discrete moments of perceptual experience are implemented by transient gamma-band synchronization of relevant cortical regions, and that disintegration and reintegration of these assemblies is time-locked to ongoing theta oscillations. In support of this hypothesis we provide evidence that (1 perceptual switching during binocular rivalry is time-locked to gamma-band synchronizations which recur at a theta rate, indicating that the onset of new conscious percepts coincides with the emergence of a new gamma-synchronous assembly that is locked to an ongoing theta rhythm; (2 localization of the generators of these gamma rhythms reveals recurrent prefrontal and parietal sources; (3 theta modulation of gamma-band synchronization is observed between and within the activated brain regions. These results suggest that ongoing theta-modulated-gamma mechanisms periodically reintegrate a large-scale prefrontal-parietal network critical for perceptual experience. Moreover, activation and network inclusion of inferior temporal cortex and motor cortex uniquely occurs on the cycle immediately preceding responses signaling perceptual switching. This suggests that the essential prefrontal-parietal oscillatory network is expanded to include additional cortical regions relevant to tasks and perceptions furnishing consciousness at that moment, in this case image processing and response initiation, and that these activations occur within a time frame consistent with the notion that conscious processes directly affect behaviour.

  12. Visualising the invisible: a network approach to reveal the informal social side of student learning.

    Science.gov (United States)

    Hommes, J; Rienties, B; de Grave, W; Bos, G; Schuwirth, L; Scherpbier, A

    2012-12-01

    World-wide, universities in health sciences have transformed their curriculum to include collaborative learning and facilitate the students' learning process. Interaction has been acknowledged to be the synergistic element in this learning context. However, students spend the majority of their time outside their classroom and interaction does not stop outside the classroom. Therefore we studied how informal social interaction influences student learning. Moreover, to explore what really matters in the students learning process, a model was tested how the generally known important constructs-prior performance, motivation and social integration-relate to informal social interaction and student learning. 301 undergraduate medical students participated in this cross-sectional quantitative study. Informal social interaction was assessed using self-reported surveys following the network approach. Students' individual motivation, social integration and prior performance were assessed by the Academic Motivation Scale, the College Adaption Questionnaire and students' GPA respectively. A factual knowledge test represented student' learning. All social networks were positively associated with student learning significantly: friendships (β = 0.11), providing information to other students (β = 0.16), receiving information from other students (β = 0.25). Structural equation modelling revealed a model in which social networks increased student learning (r = 0.43), followed by prior performance (r = 0.31). In contrast to prior literature, students' academic motivation and social integration were not associated with students' learning. Students' informal social interaction is strongly associated with students' learning. These findings underline the need to change our focus from the formal context (classroom) to the informal context to optimize student learning and deliver modern medics.

  13. Revealing the cerebral regions and networks mediating vulnerability to depression: oxidative metabolism mapping of rat brain.

    Science.gov (United States)

    Harro, Jaanus; Kanarik, Margus; Kaart, Tanel; Matrov, Denis; Kõiv, Kadri; Mällo, Tanel; Del Río, Joaquin; Tordera, Rosa M; Ramirez, Maria J

    2014-07-01

    The large variety of available animal models has revealed much on the neurobiology of depression, but each model appears as specific to a significant extent, and distinction between stress response, pathogenesis of depression and underlying vulnerability is difficult to make. Evidence from epidemiological studies suggests that depression occurs in biologically predisposed subjects under impact of adverse life events. We applied the diathesis-stress concept to reveal brain regions and functional networks that mediate vulnerability to depression and response to chronic stress by collapsing data on cerebral long term neuronal activity as measured by cytochrome c oxidase histochemistry in distinct animal models. Rats were rendered vulnerable to depression either by partial serotonergic lesion or by maternal deprivation, or selected for a vulnerable phenotype (low positive affect, low novelty-related activity or high hedonic response). Environmental adversity was brought about by applying chronic variable stress or chronic social defeat. Several brain regions, most significantly median raphe, habenula, retrosplenial cortex and reticular thalamus, were universally implicated in long-term metabolic stress response, vulnerability to depression, or both. Vulnerability was associated with higher oxidative metabolism levels as compared to resilience to chronic stress. Chronic stress, in contrast, had three distinct patterns of effect on oxidative metabolism in vulnerable vs. resilient animals. In general, associations between regional activities in several brain circuits were strongest in vulnerable animals, and chronic stress disrupted this interrelatedness. These findings highlight networks that underlie resilience to stress, and the distinct response to stress that occurs in vulnerable subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. NetworkAnalyst--integrative approaches for protein-protein interaction network analysis and visual exploration.

    Science.gov (United States)

    Xia, Jianguo; Benner, Maia J; Hancock, Robert E W

    2014-07-01

    Biological network analysis is a powerful approach to gain systems-level understanding of patterns of gene expression in different cell types, disease states and other biological/experimental conditions. Three consecutive steps are required--identification of genes or proteins of interest, network construction and network analysis and visualization. To date, researchers have to learn to use a combination of several tools to accomplish this task. In addition, interactive visualization of large networks has been primarily restricted to locally installed programs. To address these challenges, we have developed NetworkAnalyst, taking advantage of state-of-the-art web technologies, to enable high performance network analysis with rich user experience. NetworkAnalyst integrates all three steps and presents the results via a powerful online network visualization framework. Users can upload gene or protein lists, single or multiple gene expression datasets to perform comprehensive gene annotation and differential expression analysis. Significant genes are mapped to our manually curated protein-protein interaction database to construct relevant networks. The results are presented through standard web browsers for network analysis and interactive exploration. NetworkAnalyst supports common functions for network topology and module analyses. Users can easily search, zoom and highlight nodes or modules, as well as perform functional enrichment analysis on these selections. The networks can be customized with different layouts, colors or node sizes, and exported as PNG, PDF or GraphML files. Comprehensive FAQs, tutorials and context-based tips and instructions are provided. NetworkAnalyst currently supports protein-protein interaction network analysis for human and mouse and is freely available at http://www.networkanalyst.ca. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Co-occurrence network analysis of Chinese and English poems

    Science.gov (United States)

    Liang, Wei; Wang, Yanli; Shi, Yuming; Chen, Guanrong

    2015-02-01

    A total of 572 co-occurrence networks of Chinese characters and words as well as English words are constructed from both Chinese and English poems. It is found that most of the networks have small-world features; more Chinese networks have scale-free properties and hierarchical structures as compared with the English networks; all the networks are disassortative, and the disassortativeness of the Chinese word networks is more prominent than those of the English networks; the spectral densities of the Chinese word networks and English networks are similar, but they are different from those of the ER, BA, and WS networks. For the above observed phenomena, analysis is provided with interpretation from a linguistic perspective.

  16. Comparative analysis of quantitative efficiency evaluation methods for transportation networks.

    Science.gov (United States)

    He, Yuxin; Qin, Jin; Hong, Jian

    2017-01-01

    An effective evaluation of transportation network efficiency could offer guidance for the optimal control of urban traffic. Based on the introduction and related mathematical analysis of three quantitative evaluation methods for transportation network efficiency, this paper compares the information measured by them, including network structure, traffic demand, travel choice behavior and other factors which affect network efficiency. Accordingly, the applicability of various evaluation methods is discussed. Through analyzing different transportation network examples it is obtained that Q-H method could reflect the influence of network structure, traffic demand and user route choice behavior on transportation network efficiency well. In addition, the transportation network efficiency measured by this method and Braess's Paradox can be explained with each other, which indicates a better evaluation of the real operation condition of transportation network. Through the analysis of the network efficiency calculated by Q-H method, it can also be drawn that a specific appropriate demand is existed to a given transportation network. Meanwhile, under the fixed demand, both the critical network structure that guarantees the stability and the basic operation of the network and a specific network structure contributing to the largest value of the transportation network efficiency can be identified.

  17. Gender differences of brain glucose metabolic networks revealed by FDG-PET: evidence from a large cohort of 400 young adults.

    Directory of Open Access Journals (Sweden)

    Yuxiao Hu

    Full Text Available BACKGROUND: Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. MATERIALS AND METHODS: FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25:45 years, mean age ± SD: 40.9 ± 3.9 years and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. RESULTS: Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. CONCLUSION: This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic

  18. Node Identification Using Inter-Regional Correlation Analysis for Mapping Detailed Connections in Resting State Networks

    Directory of Open Access Journals (Sweden)

    Yong Jeong

    2017-05-01

    Full Text Available Brain function is often characterized by the connections and interactions between highly interconnected brain regions. Pathological disruptions in these networks often result in brain dysfunction, which manifests as brain disease. Typical analysis investigates disruptions in network connectivity based correlations between large brain regions. To obtain a more detailed description of disruptions in network connectivity, we propose a new method where functional nodes are identified in each region based on their maximum connectivity to another brain region in a given network. Since this method provides a unique approach to identifying functionally relevant nodes in a given network, we can provide a more detailed map of brain connectivity and determine new measures of network connectivity. We applied this method to resting state fMRI of Alzheimer's disease patients to validate our method and found decreased connectivity within the default mode network. In addition, new measure of network connectivity revealed a more detailed description of how the network connections deteriorate with disease progression. This suggests that analysis using key relative network hub regions based on regional correlation can be used to detect detailed changes in resting state network connectivity.

  19. Analysis and monitoring design for networks

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, V.; Flanagan, D.; Rowan, T.; Batsell, S.

    1998-06-01

    The idea of applying experimental design methodologies to develop monitoring systems for computer networks is relatively novel even though it was applied in other areas such as meteorology, seismology, and transportation. One objective of a monitoring system should always be to collect as little data as necessary to be able to monitor specific parameters of the system with respect to assigned targets and objectives. This implies a purposeful monitoring where each piece of data has a reason to be collected and stored for future use. When a computer network system as large and complex as the Internet is the monitoring subject, providing an optimal and parsimonious observing system becomes even more important. Many data collection decisions must be made by the developers of a monitoring system. These decisions include but are not limited to the following: (1) The type data collection hardware and software instruments to be used; (2) How to minimize interruption of regular network activities during data collection; (3) Quantification of the objectives and the formulation of optimality criteria; (4) The placement of data collection hardware and software devices; (5) The amount of data to be collected in a given time period, how large a subset of the available data to collect during the period, the length of the period, and the frequency of data collection; (6) The determination of the data to be collected (for instance, selection of response and explanatory variables); (7) Which data will be retained and how long (i.e., data storage and retention issues); and (8) The cost analysis of experiments. Mathematical statistics, and, in particular, optimal experimental design methods, may be used to address the majority of problems generated by 3--7. In this study, the authors focus their efforts on topics 3--5.

  20. A Novel Brain Decoding Method: a Correlation Network Framework for Revealing Brain Connections

    OpenAIRE

    Yu, Siyu; Zheng, Nanning; Ma, Yongqiang; Wu, Hao; Chen, Badong

    2017-01-01

    Brain decoding is a hot spot in cognitive science, which focuses on reconstructing perceptual images from brain activities. Analyzing the correlations of collected data from human brain activities and representing activity patterns are two problems in brain decoding based on functional magnetic resonance imaging (fMRI) signals. However, existing correlation analysis methods mainly focus on the strength information of voxel, which reveals functional connectivity in the cerebral cortex. They te...

  1. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks

    National Research Council Canada - National Science Library

    Kelman, Ilan; Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H; Evers, Yvette; Curran, Marina Martin; Williams, Richard J; Berlow, Eric L

    2016-01-01

    This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics...

  2. 6th International Conference on Network Analysis

    CERN Document Server

    Nikolaev, Alexey; Pardalos, Panos; Prokopyev, Oleg

    2017-01-01

    This valuable source for graduate students and researchers provides a comprehensive introduction to current theories and applications in optimization methods and network models. Contributions to this book are focused on new efficient algorithms and rigorous mathematical theories, which can be used to optimize and analyze mathematical graph structures with massive size and high density induced by natural or artificial complex networks. Applications to social networks, power transmission grids, telecommunication networks, stock market networks, and human brain networks are presented. Chapters in this book cover the following topics: Linear max min fairness Heuristic approaches for high-quality solutions Efficient approaches for complex multi-criteria optimization problems Comparison of heuristic algorithms New heuristic iterative local search Power in network structures Clustering nodes in random graphs Power transmission grid structure Network decomposition problems Homogeneity hypothesis testing Network analy...

  3. Dynamic analysis of biochemical network using complex network method

    Directory of Open Access Journals (Sweden)

    Wang Shuqiang

    2015-01-01

    Full Text Available In this study, the stochastic biochemical reaction model is proposed based on the law of mass action and complex network theory. The dynamics of biochemical reaction system is presented as a set of non-linear differential equations and analyzed at the molecular-scale. Given the initial state and the evolution rules of the biochemical reaction system, the system can achieve homeostasis. Compared with random graph, the biochemical reaction network has larger information capacity and is more efficient in information transmission. This is consistent with theory of evolution.

  4. Temporal ChIP-on-chip reveals Biniou as a universal regulator of the visceral muscle transcriptional network.

    Science.gov (United States)

    Jakobsen, Janus S; Braun, Martina; Astorga, Jeanette; Gustafson, E Hilary; Sandmann, Thomas; Karzynski, Michal; Carlsson, Peter; Furlong, Eileen E M

    2007-10-01

    Smooth muscle plays a prominent role in many fundamental processes and diseases, yet our understanding of the transcriptional network regulating its development is very limited. The FoxF transcription factors are essential for visceral smooth muscle development in diverse species, although their direct regulatory role remains elusive. We present a transcriptional map of Biniou (a FoxF transcription factor) and Bagpipe (an Nkx factor) activity, as a first step to deciphering the developmental program regulating Drosophila visceral muscle development. A time course of chromatin immunoprecipitatation followed by microarray analysis (ChIP-on-chip) experiments and expression profiling of mutant embryos reveal a dynamic map of in vivo bound enhancers and direct target genes. While Biniou is broadly expressed, it regulates enhancers driving temporally and spatially restricted expression. In vivo reporter assays indicate that the timing of Biniou binding is a key trigger for the time span of enhancer activity. Although bagpipe and biniou mutants phenocopy each other, their regulatory potential is quite different. This network architecture was not apparent from genetic studies, and highlights Biniou as a universal regulator in all visceral muscle, regardless of its developmental origin or subsequent function. The regulatory connection of a number of Biniou target genes is conserved in mice, suggesting an ancient wiring of this developmental program.

  5. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    Science.gov (United States)

    Castet, Jean-Francois; Saleh, Joseph H

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the

  6. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    Directory of Open Access Journals (Sweden)

    Jean-Francois Castet

    Full Text Available This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also

  7. Multiscale analysis of river networks using the R package linbin

    Science.gov (United States)

    Welty, Ethan Z.; Torgersen, Christian E.; Brenkman, Samuel J.; Duda, Jeffrey J.; Armstrong, Jonathan B.

    2015-01-01

    Analytical tools are needed in riverine science and management to bridge the gap between GIS and statistical packages that were not designed for the directional and dendritic structure of streams. We introduce linbin, an R package developed for the analysis of riverscapes at multiple scales. With this software, riverine data on aquatic habitat and species distribution can be scaled and plotted automatically with respect to their position in the stream network or—in the case of temporal data—their position in time. The linbin package aggregates data into bins of different sizes as specified by the user. We provide case studies illustrating the use of the software for (1) exploring patterns at different scales by aggregating variables at a range of bin sizes, (2) comparing repeat observations by aggregating surveys into bins of common coverage, and (3) tailoring analysis to data with custom bin designs. Furthermore, we demonstrate the utility of linbin for summarizing patterns throughout an entire stream network, and we analyze the diel and seasonal movements of tagged fish past a stationary receiver to illustrate how linbin can be used with temporal data. In short, linbin enables more rapid analysis of complex data sets by fisheries managers and stream ecologists and can reveal underlying spatial and temporal patterns of fish distribution and habitat throughout a riverscape.

  8. Analysis of Computer Network Information Based on "Big Data"

    Science.gov (United States)

    Li, Tianli

    2017-11-01

    With the development of the current era, computer network and large data gradually become part of the people's life, people use the computer to provide convenience for their own life, but at the same time there are many network information problems has to pay attention. This paper analyzes the information security of computer network based on "big data" analysis, and puts forward some solutions.

  9. Road Transport Network Analysis In Port-Harcourt Metropolics ...

    African Journals Online (AJOL)

    Road transport network contributes to the economy of an area as it connects points of origin to destinations. The thrust of this article therefore, is on the analysis of the road networks in Port – Harcourt metropolis with the aim of determining the connectivity of the road networks and the most accessible node. Consequently ...

  10. Neural network analysis of varying trends in real exchange rates

    NARCIS (Netherlands)

    J.F. Kaashoek (Johan); H.K. van Dijk (Herman)

    1999-01-01

    textabstractIn this paper neural networks are fitted to the real exchange rates of seven industrialized countries. The size and topology of the used networks is found by reducing the size of the network through the use of multiple correlation coefficients, principal component analysis of residuals

  11. Method and tool for network vulnerability analysis

    Science.gov (United States)

    Swiler, Laura Painton [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM

    2006-03-14

    A computer system analysis tool and method that will allow for qualitative and quantitative assessment of security attributes and vulnerabilities in systems including computer networks. The invention is based on generation of attack graphs wherein each node represents a possible attack state and each edge represents a change in state caused by a single action taken by an attacker or unwitting assistant. Edges are weighted using metrics such as attacker effort, likelihood of attack success, or time to succeed. Generation of an attack graph is accomplished by matching information about attack requirements (specified in "attack templates") to information about computer system configuration (contained in a configuration file that can be updated to reflect system changes occurring during the course of an attack) and assumed attacker capabilities (reflected in "attacker profiles"). High risk attack paths, which correspond to those considered suited to application of attack countermeasures given limited resources for applying countermeasures, are identified by finding "epsilon optimal paths."

  12. Co-occurrence network analysis of modern Chinese poems

    Science.gov (United States)

    Liang, Wei; Wang, Yanli; Shi, Yuming; Chen, Guanrong

    2015-02-01

    A total of 606 co-occurrence networks of Chinese characters and words are constructed from rhymes, free verses, and prose poems. It is found that 98.5 % of networks have scale-free properties, while 19.8 % of networks do not have small-world features, especially the clustering coefficients in 5.6 % of networks are zero. In addition, 61.4 % of networks have significant hierarchical structures, and 98 % of networks are disassortative. For the above observed phenomena, analysis is provided with interpretation from a linguistic perspective.

  13. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks.

    Science.gov (United States)

    Meyer-Bäse, Anke; Roberts, Rodney G; Illan, Ignacio A; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja

    2017-01-01

    Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary

  14. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks

    Directory of Open Access Journals (Sweden)

    Anke Meyer-Bäse

    2017-10-01

    Full Text Available Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and

  15. Complex Network Analysis of Brazilian Power Grid

    CERN Document Server

    Martins, Gabriela C; Ribeiro, Fabiano L; Forgerini, Fabricio L

    2016-01-01

    Power Grids and other delivery networks has been attracted some attention by the network literature last decades. Despite the Power Grids dynamics has been controlled by computer systems and human operators, the static features of this type of network can be studied and analyzed. The topology of the Brazilian Power Grid (BPG) was studied in this work. We obtained the spatial structure of the BPG from the ONS (electric systems national operator), consisting of high-voltage transmission lines, generating stations and substations. The local low-voltage substations and local power delivery as well the dynamic features of the network were neglected. We analyze the complex network of the BPG and identify the main topological information, such as the mean degree, the degree distribution, the network size and the clustering coefficient to caracterize the complex network. We also detected the critical locations on the network and, therefore, the more susceptible points to lead to a cascading failure and even to a blac...

  16. Advanced functional network analysis in the geosciences: The pyunicorn package

    Science.gov (United States)

    Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen

    2013-04-01

    Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.

  17. The network researchers' network: A social network analysis of the IMP Group 1985-2006

    DEFF Research Database (Denmark)

    Henneberg, Stephan C. M.; Ziang, Zhizhong; Naudé, Peter

    ). In this paper, based upon the papers presented at the 22 conferences held to date, we undertake a Social Network Analysis in order to examine the degree of co-publishing that has taken place between this group of researchers. We identify the different components in this database, and examine the large main...... components in some detail. The egonets of three of the original 'founding fathers' are examined in detail, and we draw comparisons as to how their publishing strategies vary. Finally, the paper draws some more general conclusions as to the insights that SNA can bring to those working within business...

  18. Transcriptomic analysis of autistic brain reveals convergent molecular pathology.

    Science.gov (United States)

    Voineagu, Irina; Wang, Xinchen; Johnston, Patrick; Lowe, Jennifer K; Tian, Yuan; Horvath, Steve; Mill, Jonathan; Cantor, Rita M; Blencowe, Benjamin J; Geschwind, Daniel H

    2011-05-25

    Autism spectrum disorder (ASD) is a common, highly heritable neurodevelopmental condition characterized by marked genetic heterogeneity. Thus, a fundamental question is whether autism represents an aetiologically heterogeneous disorder in which the myriad genetic or environmental risk factors perturb common underlying molecular pathways in the brain. Here, we demonstrate consistent differences in transcriptome organization between autistic and normal brain by gene co-expression network analysis. Remarkably, regional patterns of gene expression that typically distinguish frontal and temporal cortex are significantly attenuated in the ASD brain, suggesting abnormalities in cortical patterning. We further identify discrete modules of co-expressed genes associated with autism: a neuronal module enriched for known autism susceptibility genes, including the neuronal specific splicing factor A2BP1 (also known as FOX1), and a module enriched for immune genes and glial markers. Using high-throughput RNA sequencing we demonstrate dysregulated splicing of A2BP1-dependent alternative exons in the ASD brain. Moreover, using a published autism genome-wide association study (GWAS) data set, we show that the neuronal module is enriched for genetically associated variants, providing independent support for the causal involvement of these genes in autism. In contrast, the immune-glial module showed no enrichment for autism GWAS signals, indicating a non-genetic aetiology for this process. Collectively, our results provide strong evidence for convergent molecular abnormalities in ASD, and implicate transcriptional and splicing dysregulation as underlying mechanisms of neuronal dysfunction in this disorder.

  19. Genome-wide mRNA and miRNA expression profiling reveal multiple regulatory networks in colorectal cancer

    DEFF Research Database (Denmark)

    Vishnubalaji, R; Hamam, R; Abdulla, M-H

    2015-01-01

    Despite recent advances in cancer management, colorectal cancer (CRC) remains the third most common cancer and a major health-care problem worldwide. MicroRNAs have recently emerged as key regulators of cancer development and progression by targeting multiple cancer-related genes; however......, such regulatory networks are not well characterized in CRC. Thus, the aim of this study was to perform global messenger RNA (mRNA) and microRNA expression profiling in the same CRC samples and adjacent normal tissues and to identify potential miRNA-mRNA regulatory networks. Our data revealed 1273 significantly...... in cell proliferation, and migration in vitro. Concordantly, small interfering RNA-mediated knockdown of EZH2 led to similar effects on CRC cell growth in vitro. Therefore, our data have revealed several hundred potential miRNA-mRNA regulatory networks in CRC and suggest targeting relevant networks...

  20. Hidden information revealed by optimal community structure from a protein-complex bipartite network improves protein function prediction.

    Science.gov (United States)

    Lee, Juyong; Lee, Jooyoung

    2013-01-01

    The task of extracting the maximal amount of information from a biological network has drawn much attention from researchers, for example, predicting the function of a protein from a protein-protein interaction (PPI) network. It is well known that biological networks consist of modules/communities, a set of nodes that are more densely inter-connected among themselves than with the rest of the network. However, practical applications of utilizing the community information have been rather limited. For protein function prediction on a network, it has been shown that none of the existing community-based protein function prediction methods outperform a simple neighbor-based method. Recently, we have shown that proper utilization of a highly optimal modularity community structure for protein function prediction can outperform neighbor-assisted methods. In this study, we propose two function prediction approaches on bipartite networks that consider the community structure information as well as the neighbor information from the network: 1) a simple screening method and 2) a random forest based method. We demonstrate that our community-assisted methods outperform neighbor-assisted methods and the random forest method yields the best performance. In addition, we show that using the optimal community structure information is essential for more accurate function prediction for the protein-complex bipartite network of Saccharomyces cerevisiae. Community detection can be carried out either using a modified modularity for dealing with the original bipartite network or first projecting the network into a single-mode network (i.e., PPI network) and then applying community detection to the reduced network. We find that the projection leads to the loss of information in a significant way. Since our prediction methods rely only on the network topology, they can be applied to various fields where an efficient network-based analysis is required.

  1. Analysis of neural networks through base functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  2. Synchronization analysis of coloured delayed networks under ...

    Indian Academy of Sciences (India)

    This paper investigates synchronization of coloured delayed networks under decentralized pinning intermittent control. To begin with, the time delays are taken into account in the coloured networks. In addition, we propose a decentralized pinning intermittent control for coloured delayed networks, which is different from that ...

  3. Spectral Modelling for Spatial Network Analysis

    NARCIS (Netherlands)

    Nourian, P.; Rezvani, S.; Sariyildiz, I.S.; van der Hoeven, F.D.; Attar, Ramtin; Chronis, Angelos; Hanna, Sean; Turrin, Michela

    2016-01-01

    Spatial Networks represent the connectivity structure between units of space as a weighted graph whose links are weighted as to the strength of connections. In case of urban spatial networks, the units of space correspond closely to streets and in architectural spatial networks the units correspond

  4. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn.

    Directory of Open Access Journals (Sweden)

    Yongbin Dong

    Full Text Available The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize.

  5. Network analyses reveal pervasive functional regulation between proteases in the human protease web.

    Directory of Open Access Journals (Sweden)

    Nikolaus Fortelny

    2014-05-01

    Full Text Available Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8 and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8-/- versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically

  6. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn.

    Science.gov (United States)

    Dong, Yongbin; Wang, Qilei; Zhang, Long; Du, Chunguang; Xiong, Wenwei; Chen, Xinjian; Deng, Fei; Ma, Zhiyan; Qiao, Dahe; Hu, Chunhui; Ren, Yangliu; Li, Yuling

    2015-01-01

    The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize.

  7. scMRI reveals large-scale brain network abnormalities in autism.

    Directory of Open Access Journals (Sweden)

    Brandon A Zielinski

    Full Text Available Autism is a complex neurological condition characterized by childhood onset of dysfunction in multiple cognitive domains including socio-emotional function, speech and language, and processing of internally versus externally directed stimuli. Although gross brain anatomic differences in autism are well established, recent studies investigating regional differences in brain structure and function have yielded divergent and seemingly contradictory results. How regional abnormalities relate to the autistic phenotype remains unclear. We hypothesized that autism exhibits distinct perturbations in network-level brain architecture, and that cognitive dysfunction may be reflected by abnormal network structure. Network-level anatomic abnormalities in autism have not been previously described. We used structural covariance MRI to investigate network-level differences in gray matter structure within two large-scale networks strongly implicated in autism, the salience network and the default mode network, in autistic subjects and age-, gender-, and IQ-matched controls. We report specific perturbations in brain network architecture in the salience and default-mode networks consistent with clinical manifestations of autism. Extent and distribution of the salience network, involved in social-emotional regulation of environmental stimuli, is restricted in autism. In contrast, posterior elements of the default mode network have increased spatial distribution, suggesting a 'posteriorization' of this network. These findings are consistent with a network-based model of autism, and suggest a unifying interpretation of previous work. Moreover, we provide evidence of specific abnormalities in brain network architecture underlying autism that are quantifiable using standard clinical MRI.

  8. Data Farming Process and Initial Network Analysis Capabilities

    Directory of Open Access Journals (Sweden)

    Gary Horne

    2016-01-01

    Full Text Available Data Farming, network applications and approaches to integrate network analysis and processes to the data farming paradigm are presented as approaches to address complex system questions. Data Farming is a quantified approach that examines questions in large possibility spaces using modeling and simulation. It evaluates whole landscapes of outcomes to draw insights from outcome distributions and outliers. Social network analysis and graph theory are widely used techniques for the evaluation of social systems. Incorporation of these techniques into the data farming process provides analysts examining complex systems with a powerful new suite of tools for more fully exploring and understanding the effect of interactions in complex systems. The integration of network analysis with data farming techniques provides modelers with the capability to gain insight into the effect of network attributes, whether the network is explicitly defined or emergent, on the breadth of the model outcome space and the effect of model inputs on the resultant network statistics.

  9. Formal Food-related Networks in Ireland: A Case Study Analysis

    Directory of Open Access Journals (Sweden)

    Maeve Henchion

    2012-03-01

    Full Text Available  Strategic networking is of crucial importance for innovation in small and medium sized enterprises (SMEs as it enables these companies access external resources and overcome internal constraints. However, SMEs often lack the skills and competencies to engage in and benefit from networks. Consequently SMEs often fail in establishing strategic and efficient networks. To date, there is limited guidance available on the optimal design of such networks. Furthermore, limited guidance is available on the number of networks, and level of engagement therein, that companies should be involved with. Using case studies across a range of formal networks within the food sector in Ireland, insights into the success factors and barriers to network learning are presented, which provide a foundation for such guidelines. Three case studies were selected for analysis in Ireland. Up to ten in-depth interviews were scheduled with the network managers and key informants from the triple helix (i.e. policy, research and industry sectors within each formal network. Initially, interviewees were identified as a result of a review of secondary sources and personal knowledge of the authors. The snowball sampling technique was then employed to identify additional interviewees within each network. The findings from this study revealed that some formal networks had a strong institutional influence, including significant financial inputs, whilst others had bottom-up origins. Many networks had strong levels of interaction prior to formalisation, which provided solid trust-based foundations. Innovation and/or learning were not the expressed objectives of all networks at the outset. However, interviewees across all three networks felt that positive impacts had been achieved in these areas. Whilst being involved in a broad network can provide access to a wider range of ideas, these case studies suggest that being involved in a smaller, dense network, with high levels of IP

  10. How Relations are Built within a SNS World -- Social Network Analysis on Mixi --

    Science.gov (United States)

    Matsuo, Yutaka; Yasud, Yuki

    Our purpose here is to (1) investigate the structure of the personal networks developed on mixi, a Japanese social networking service (SNS), and (2) to consider the governing mechanism which guides participants of a SNS to form an aggregate network. Our findings are as follows:the clustering coefficient of the network is as high as 0.33 while the characteristic path lenght is as low as 5.5. A network among central users (over 300 edges) consist of two cliques, which seems to be very fragile. Community-affiliation network suggests there are several easy-entry communities which later lead users to more high-entry, unique-theme communities. The analysis on connectedness within a community reveals the importance of real-world interaction. Lastly, we depict a probable image of the entire ecology on {\\\\em mixi} among users and communities, which contributes broadly to social systems on the Web.

  11. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    Science.gov (United States)

    Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr

    2017-10-01

    Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  12. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    Directory of Open Access Journals (Sweden)

    Chernoded Andrey

    2017-01-01

    Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  13. Privacy Breach Analysis in Social Networks

    Science.gov (United States)

    Nagle, Frank

    This chapter addresses various aspects of analyzing privacy breaches in social networks. We first review literature that defines three types of privacy breaches in social networks: interactive, active, and passive. We then survey the various network anonymization schemes that have been constructed to address these privacy breaches. After exploring these breaches and anonymization schemes, we evaluate a measure for determining the level of anonymity inherent in a network graph based on its topological structure. Finally, we close by emphasizing the difficulty of anonymizing social network data while maintaining usability for research purposes and offering areas for future work.

  14. Multivariate pattern analysis reveals anatomical connectivity differences between the left and right mesial temporal lobe epilepsy.

    Science.gov (United States)

    Fang, Peng; An, Jie; Zeng, Ling-Li; Shen, Hui; Chen, Fanglin; Wang, Wensheng; Qiu, Shijun; Hu, Dewen

    2015-01-01

    Previous studies have demonstrated differences of clinical signs and functional brain network organizations between the left and right mesial temporal lobe epilepsy (mTLE), but the anatomical connectivity differences underlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22 left, 21 right) mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging. After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was applied to classify the left mTLE from the right mTLE and extract the anatomical connectivity differences between the left and right mTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls. Compared with the right mTLE, the left mTLE exhibited a different connectivity pattern in the cortical-limbic network and cerebellum. The majority of the most discriminating anatomical connections were located within or across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical network alterations may give rise to a portion of the complex of emotional and memory deficit between the left and right mTLE. Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The current study demonstrated that anatomical connectivity differences between the left mTLE and the right mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left and right mTLE.

  15. Asymmetry of Hemispheric Network Topology Reveals Dissociable Processes between Functional and Structural Brain Connectome in Community-Living Elders

    OpenAIRE

    Yu Sun; Junhua Li; John Suckling; Lei Feng

    2017-01-01

    Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between struct...

  16. Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells

    Science.gov (United States)

    Johard, Helena; Mahdessian, Diana; Fedr, Radek; Marks, Carolyn; Medalová, Jiřina; Souček, Karel; Lundberg, Emma; Linnarsson, Sten; Bryja, Vítězslav; Sekyrova, Petra; Altun, Mikael; Andäng, Michael

    2017-01-01

    The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development. PMID:29228002

  17. RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells.

    Science.gov (United States)

    Chia, Joanne; Goh, Germaine; Racine, Victor; Ng, Susanne; Kumar, Pankaj; Bard, Frederic

    2012-01-01

    The Golgi apparatus has many important physiological functions, including sorting of secretory cargo and biosynthesis of complex glycans. These functions depend on the intricate and compartmentalized organization of the Golgi apparatus. To investigate the mechanisms that regulate Golgi architecture, we developed a quantitative morphological assay using three different Golgi compartment markers and quantitative image analysis, and performed a kinome- and phosphatome-wide RNAi screen in HeLa cells. Depletion of 159 signaling genes, nearly 20% of genes assayed, induced strong and varied perturbations in Golgi morphology. Using bioinformatics data, a large regulatory network could be constructed. Specific subnetworks are involved in phosphoinositides regulation, acto-myosin dynamics and mitogen activated protein kinase signaling. Most gene depletion also affected Golgi functions, in particular glycan biosynthesis, suggesting that signaling cascades can control glycosylation directly at the Golgi level. Our results provide a genetic overview of the signaling pathways that control the Golgi apparatus in human cells.

  18. Abnormal brain white matter network in young smokers: a graph theory analysis study.

    Science.gov (United States)

    Zhang, Yajuan; Li, Min; Wang, Ruonan; Bi, Yanzhi; Li, Yangding; Yi, Zhang; Liu, Jixin; Yu, Dahua; Yuan, Kai

    2017-03-13

    Previous diffusion tensor imaging (DTI) studies had investigated the white matter (WM) integrity abnormalities in some specific fiber bundles in smokers. However, little is known about the changes in topological organization of WM structural network in young smokers. In current study, we acquired DTI datasets from 58 male young smokers and 51 matched nonsmokers and constructed the WM networks by the deterministic fiber tracking approach. Graph theoretical analysis was used to compare the topological parameters of WM network (global and nodal) and the inter-regional fractional anisotropy (FA) weighted WM connections between groups. The results demonstrated that both young smokers and nonsmokers had small-world topology in WM network. Further analysis revealed that the young smokers exhibited the abnormal topological organization, i.e., increased network strength, global efficiency, and decreased shortest path length. In addition, the increased nodal efficiency predominately was located in frontal cortex, striatum and anterior cingulate gyrus (ACG) in smokers. Moreover, based on network-based statistic (NBS) approach, the significant increased FA-weighted WM connections were mainly found in the PFC, ACG and supplementary motor area (SMA) regions. Meanwhile, the network parameters were correlated with the nicotine dependence severity (FTND) scores, and the nodal efficiency of orbitofrontal cortex was positive correlation with the cigarette per day (CPD) in young smokers. We revealed the abnormal topological organization of WM network in young smokers, which may improve our understanding of the neural mechanism of young smokers form WM topological organization level.

  19. RNA-Sequencing Reveals Biological Networks during Table Grapevine ('Fujiminori' Fruit Development.

    Directory of Open Access Journals (Sweden)

    Lingfei Shangguan

    Full Text Available Grapevine berry development is a complex and genetically controlled process, with many morphological, biochemical and physiological changes occurring during the maturation process. Research carried out on grapevine berry development has been mainly concerned with wine grape, while barely focusing on table grape. 'Fujiminori' is an important table grapevine cultivar, which is cultivated in most provinces of China. In order to uncover the dynamic networks involved in anthocyanin biosynthesis, cell wall development, lipid metabolism and starch-sugar metabolism in 'Fujiminori' fruit, we employed RNA-sequencing (RNA-seq and analyzed the whole transcriptome of grape berry during development at the expanding period (40 days after full bloom, 40DAF, véraison period (65DAF, and mature period (90DAF. The sequencing depth in each sample was greater than 12×, and the expression level of nearly half of the expressed genes were greater than 1. Moreover, greater than 64% of the clean reads were aligned to the Vitis vinifera reference genome, and 5,620, 3,381, and 5,196 differentially expressed genes (DEGs were identified between different fruit stages, respectively. Results of the analysis of DEGs showed that the most significant changes in various processes occurred from the expanding stage to the véraison stage. The expression patterns of F3'H and F3'5'H were crucial in determining red or blue color of the fruit skin. The dynamic networks of cell wall development, lipid metabolism and starch-sugar metabolism were also constructed. A total of 4,934 SSR loci were also identified from 4,337 grapevine genes, which may be helpful for the development of phylogenetic analysis in grapevine and other fruit trees. Our work provides the foundation for developmental research of grapevine fruit as well as other non-climacteric fruits.

  20. RNA-Sequencing Reveals Biological Networks during Table Grapevine ('Fujiminori') Fruit Development.

    Science.gov (United States)

    Shangguan, Lingfei; Mu, Qian; Fang, Xiang; Zhang, Kekun; Jia, Haifeng; Li, Xiaoying; Bao, Yiqun; Fang, Jinggui

    2017-01-01

    Grapevine berry development is a complex and genetically controlled process, with many morphological, biochemical and physiological changes occurring during the maturation process. Research carried out on grapevine berry development has been mainly concerned with wine grape, while barely focusing on table grape. 'Fujiminori' is an important table grapevine cultivar, which is cultivated in most provinces of China. In order to uncover the dynamic networks involved in anthocyanin biosynthesis, cell wall development, lipid metabolism and starch-sugar metabolism in 'Fujiminori' fruit, we employed RNA-sequencing (RNA-seq) and analyzed the whole transcriptome of grape berry during development at the expanding period (40 days after full bloom, 40DAF), véraison period (65DAF), and mature period (90DAF). The sequencing depth in each sample was greater than 12×, and the expression level of nearly half of the expressed genes were greater than 1. Moreover, greater than 64% of the clean reads were aligned to the Vitis vinifera reference genome, and 5,620, 3,381, and 5,196 differentially expressed genes (DEGs) were identified between different fruit stages, respectively. Results of the analysis of DEGs showed that the most significant changes in various processes occurred from the expanding stage to the véraison stage. The expression patterns of F3'H and F3'5'H were crucial in determining red or blue color of the fruit skin. The dynamic networks of cell wall development, lipid metabolism and starch-sugar metabolism were also constructed. A total of 4,934 SSR loci were also identified from 4,337 grapevine genes, which may be helpful for the development of phylogenetic analysis in grapevine and other fruit trees. Our work provides the foundation for developmental research of grapevine fruit as well as other non-climacteric fruits.

  1. Regional frequency analysis using Growing Neural Gas network

    Science.gov (United States)

    Abdi, Amin; Hassanzadeh, Yousef; Ouarda, Taha B. M. J.

    2017-07-01

    The delineation of hydrologically homogeneous regions is an important issue in regional hydrological frequency analysis. In the present study, an application of the Growing Neural Gas (GNG) network for hydrological data clustering is presented. The GNG is an incremental and unsupervised neural network, which is able to adapt its structure during the training procedure without using a prior knowledge of the size and shape of the network. In the GNG algorithm, the Minimum Description Length (MDL) measure as the cluster validity index is utilized for determining the optimal number of clusters (sub-regions). The capability of the proposed algorithm is illustrated by regionalizing drought severities for 40 synoptic weather stations in Iran. To fulfill this aim, first a clustering method is applied to form the sub-regions and then a heterogeneity measure is used to test the degree of heterogeneity of the delineated sub-regions. According to the MDL measure and considering two different indices namely CS and Davies-Bouldin (DB) in the GNG network, the entire study area is subdivided in two sub-regions located in the eastern and western sides of Iran. In order to evaluate the performance of the GNG algorithm, a number of other commonly used clustering methods, like K-means, fuzzy C-means, self-organizing map and Ward method are utilized in this study. The results of the heterogeneity measure based on the L-moments approach reveal that only the GNG algorithm successfully yields homogeneous sub-regions in comparison to the other methods.

  2. In Vivo Phosphoproteomics Analysis Reveals the Cardiac Targets of β-Adrenergic Receptor Signaling

    DEFF Research Database (Denmark)

    Lundby, Alicia; Andersen, Martin N; Steffensen, Annette B

    2013-01-01

    used quantitative in vivo phosphoproteomics to identify 670 site-specific phosphorylation changes in murine hearts in response to acute treatment with specific βAR agonists. The residues adjacent to the regulated phosphorylation sites exhibited a sequence-specific preference (R......) of the potassium channel KV7.1, increased current amplitude. Our data set represents a quantitative analysis of phosphorylated proteins regulated in vivo upon stimulation of seven-transmembrane receptors, and our findings reveal previously unknown phosphorylation sites that regulate myocardial contractility......-X-X-pS/T), and integrative analysis of sequence motifs and interaction networks suggested that the kinases AMPK (adenosine 5'-monophosphate-activated protein kinase), Akt, and mTOR (mammalian target of rapamycin) mediate βAR signaling, in addition to the well-established pathways mediated by PKA (cyclic adenosine...

  3. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal.

    Science.gov (United States)

    Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia

    2015-05-18

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transformation. Cbx3 is up-regulated during gonad reversal and is likely to have a role in spermatogenesis. Rab37 is down-regulated during the reversal and is mainly associated with oogenesis. Both Cbx3 and Rab37 are linked up in a protein network. These datasets in gonadal proteomes provide a new resource for further studies in gonadal development.

  4. Network analysis and synthesis a modern systems theory approach

    CERN Document Server

    Anderson, Brian D O

    2006-01-01

    Geared toward upper-level undergraduates and graduate students, this book offers a comprehensive look at linear network analysis and synthesis. It explores state-space synthesis as well as analysis, employing modern systems theory to unite the classical concepts of network theory. The authors stress passive networks but include material on active networks. They avoid topology in dealing with analysis problems and discuss computational techniques. The concepts of controllability, observability, and degree are emphasized in reviewing the state-variable description of linear systems. Explorations

  5. Sensor Network Information Analytical Methods: Analysis of Similarities and Differences

    Directory of Open Access Journals (Sweden)

    Chen Jian

    2014-04-01

    Full Text Available In the Sensor Network information engineering literature, few references focus on the definition and design of Sensor Network information analytical methods. Among those that do are Munson, et al. and the ISO standards on functional size analysis. To avoid inconsistent vocabulary and potentially incorrect interpretation of data, Sensor Network information analytical methods must be better designed, including definitions, analysis principles, analysis rules, and base units. This paper analyzes the similarities and differences across three different views of analytical methods, and uses a process proposed for the design of Sensor Network information analytical methods to analyze two examples of such methods selected from the literature.

  6. State of the art applications of social network analysis

    CERN Document Server

    Can, Fazli; Polat, Faruk

    2014-01-01

    Social network analysis increasingly bridges the discovery of patterns in diverse areas of study as more data becomes available and complex. Yet the construction of huge networks from large data often requires entirely different approaches for analysis including; graph theory, statistics, machine learning and data mining. This work covers frontier studies on social network analysis and mining from different perspectives such as social network sites, financial data, e-mails, forums, academic research funds, XML technology, blog content, community detection and clique finding, prediction of user

  7. Investigating communication networks contextually: Qualitative network analysis as cross-media research

    Directory of Open Access Journals (Sweden)

    Andreas Hepp

    2016-06-01

    Full Text Available This article introduces the approach of contextualised communication network analysis as a qualitative procedure for researching communicative relationships realised through the media. It combines qualitative interviews on media appropriation, egocentric network maps, and media diaries. Through the triangulation of these methods of data collection, it is possible to gain a differentiated insight into the specific meanings, structures and processes of communication networks across a variety of media. The approach is illustrated using a recent study dealing with the mediatisation of community building among young people. In this context, the qualitative communication network analysis has been applied to distinguish “localists” from “centrists”, “multilocalists”, and “pluralists”. These different “horizons of mediatised communitisation” are connected to distinct communication networks. Since this involves today a variety of different media, the contextual analysis of communication networks necessarily has to imply a cross-media perspective.

  8. Integrative Single-Cell Transcriptomics Reveals Molecular Networks Defining Neuronal Maturation During Postnatal Neurogenesis.

    Science.gov (United States)

    Gao, Yu; Wang, Feifei; Eisinger, Brian E; Kelnhofer, Laurel E; Jobe, Emily M; Zhao, Xinyu

    2017-03-01

    In mammalian hippocampus, new neurons are continuously produced from neural stem cells throughout life. This postnatal neurogenesis may contribute to information processing critical for cognition, adaptation, learning, and memory, and is implicated in numerous neurological disorders. During neurogenesis, the immature neuron stage defined by doublecortin (DCX) expression is the most sensitive to regulation by extrinsic factors. However, little is known about the dynamic biology within this critical interval that drives maturation and confers susceptibility to regulatory signals. This study aims to test the hypothesis that DCX-expressing immature neurons progress through developmental stages via activity of specific transcriptional networks. Using single-cell RNA-seq combined with a novel integrative bioinformatics approach, we discovered that individual immature neurons can be classified into distinct developmental subgroups based on characteristic gene expression profiles and subgroup-specific markers. Comparisons between immature and more mature subgroups revealed novel pathways involved in neuronal maturation. Genes enriched in less mature cells shared significant overlap with genes implicated in neurodegenerative diseases, while genes positively associated with neuronal maturation were enriched for autism-related gene sets. Our study thus discovers molecular signatures of individual immature neurons and unveils potential novel targets for therapeutic approaches to treat neurodevelopmental and neurological diseases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras.

    Science.gov (United States)

    Wang, Tim; Yu, Haiyan; Hughes, Nicholas W; Liu, Bingxu; Kendirli, Arek; Klein, Klara; Chen, Walter W; Lander, Eric S; Sabatini, David M

    2017-02-23

    The genetic dependencies of human cancers widely vary. Here, we catalog this heterogeneity and use it to identify functional gene interactions and genotype-dependent liabilities in cancer. By using genome-wide CRISPR-based screens, we generate a gene essentiality dataset across 14 human acute myeloid leukemia (AML) cell lines. Sets of genes with correlated patterns of essentiality across the lines reveal new gene relationships, the essential substrates of enzymes, and the molecular functions of uncharacterized proteins. Comparisons of differentially essential genes between Ras-dependent and -independent lines uncover synthetic lethal partners of oncogenic Ras. Screens in both human AML and engineered mouse pro-B cells converge on a surprisingly small number of genes in the Ras processing and MAPK pathways and pinpoint PREX1 as an AML-specific activator of MAPK signaling. Our findings suggest general strategies for defining mammalian gene networks and synthetic lethal interactions by exploiting the natural genetic and epigenetic diversity of human cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex

    Science.gov (United States)

    Gray, Lucas T; Yao, Zizhen; Nguyen, Thuc Nghi; Kim, Tae Kyung; Zeng, Hongkui; Tasic, Bosiljka

    2017-01-01

    Mammalian cortex is a laminar structure, with each layer composed of a characteristic set of cell types with different morphological, electrophysiological, and connectional properties. Here, we define chromatin accessibility landscapes of major, layer-specific excitatory classes of neurons, and compare them to each other and to inhibitory cortical neurons using the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq). We identify a large number of layer-specific accessible sites, and significant association with genes that are expressed in specific cortical layers. Integration of these data with layer-specific transcriptomic profiles and transcription factor binding motifs enabled us to construct a regulatory network revealing potential key layer-specific regulators, including Cux1/2, Foxp2, Nfia, Pou3f2, and Rorb. This dataset is a valuable resource for identifying candidate layer-specific cis-regulatory elements in adult mouse cortex. DOI: http://dx.doi.org/10.7554/eLife.21883.001 PMID:28112643

  11. A window on emergent European social network analysis

    OpenAIRE

    Cronin, Bruce

    2011-01-01

    This paper introduces the collection of papers in this issue, providing context in the recent development of social network analysis in Europe and the catalytic contributions of the Essex University Summer School and latterly the UK Social Networks Association. While these organisations have provided important focuses for social network analysis in the UK their reach has been much broader, principally among graduate students across Europe and the emergent research agenda they are forging. Fiv...

  12. Methodologies and techniques for analysis of network flow data

    Energy Technology Data Exchange (ETDEWEB)

    Bobyshev, A.; Grigoriev, M.; /Fermilab

    2004-12-01

    Network flow data gathered at the border routers and core switches is used at Fermilab for statistical analysis of traffic patterns, passive network monitoring, and estimation of network performance characteristics. Flow data is also a critical tool in the investigation of computer security incidents. Development and enhancement of flow based tools is an on-going effort. This paper describes the most recent developments in flow analysis at Fermilab.

  13. Statistical Network Analysis for Functional MRI: Mean Networks and Group Comparisons.

    Directory of Open Access Journals (Sweden)

    Cedric E Ginestet

    2014-05-01

    Full Text Available Comparing networks in neuroscience is hard, because the topological properties of a given network are necessarily dependent on the number of edges of that network. This problem arises in the analysis of both weighted and unweighted networks. The term density is often used in this context, in order to refer to the mean edge weight of a weighted network, or to the number of edges in an unweighted one. Comparing families of networks is therefore statistically difficult because differences in topology are necessarily associated with differences in density. In this review paper, we consider this problem from two different perspectives, which include (i the construction of summary networks, such as how to compute and visualize the mean network from a sample of network-valued data points; and (ii how to test for topological differences, when two families of networks also exhibit significant differences in density. In the first instance, we show that the issue of summarizing a family of networks can be conducted by either adopting a mass-univariate approach, which produces a statistical parametric network (SPN, or by directly computing the mean network, provided that a metric has been specified on the space of all networks with a given number of nodes. In the second part of this review, we then highlight the inherent problems associated with the comparison of topological functions of families of networks that differ in density. In particular, we show that a wide range of topological summaries, such as global efficiency and network modularity are highly sensitive to differences in density. Moreover, these problems are not restricted to unweighted metrics, as we demonstrate that the same issues remain present when considering the weighted versions of these metrics. We conclude by encouraging caution, when reporting such statistical comparisons, and by emphasizing the importance of constructing summary networks.

  14. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets

    NARCIS (Netherlands)

    Levering, J.; Fiedler, T.; Sieg, A.; van Grinsven, K.W.A.; Hering, S.; Veith, N.; Olivier, B.G.; Klett, L.; Hugenholtz, J.; Teusink, B.; Kreikemeyer, B.; Kummer, U.

    2016-01-01

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes

  15. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  16. Centrality measures in temporal networks with time series analysis

    Science.gov (United States)

    Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun

    2017-05-01

    The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.

  17. Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution

    NARCIS (Netherlands)

    Peyrache, A.; Benchenane, K.; Khamassi, M.; Wiener, S.I.; Battaglia, F.P.

    2010-01-01

    Simultaneous recordings of many single neurons reveals unique insights into network processing spanning the timescale from single spikes to global oscillations. Neurons dynamically self-organize in subgroups of coactivated elements referred to as cell assemblies. Furthermore, these cell assemblies

  18. Exploratory social network analysis with Pajek. - 2nd ed.

    NARCIS (Netherlands)

    de Nooy, W.; Mrvar, A.; Batagelj, V.

    2011-01-01

    This is an extensively revised and expanded second edition of the successful textbook on social network analysis integrating theory, applications, and network analysis using Pajek. The main structural concepts and their applications in social research are introduced with exercises. Pajek software

  19. Efficient health care service delivery using network analysis: a case ...

    African Journals Online (AJOL)

    Efficient health care service delivery using network analysis: a case study of Kwara State, Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... This paper addresses challenges with prompt health care delivery using Network Analysis of Critical Path Model (CPM) to plan the hospital capacity with a ...

  20. A Social Network Analysis of Occupational Segregation

    OpenAIRE

    Buhai, Sebastian; van der Leij, Marco

    2006-01-01

    We develop a social network model of occupational segregation between different social groups, generated by the existence of positive inbreeding bias among individuals from the same group. If network referrals are important in getting a job, then expected inbreeding bias in the contact network structure induces different career choices for individuals from different social groups. This further translates into stable occupational segregation equilibria in the labour market. We derive the condi...

  1. Complex Network Analysis of Pakistan Railways

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2014-01-01

    Full Text Available We study the structural properties of Pakistan railway network (PRN, where railway stations are considered as nodes while edges are represented by trains directly linking two stations. The network displays small world properties and is assortative in nature. Based on betweenness and closeness centralities of the nodes, the most important cities are identified with respect to connectivity as this could help in identifying the potential congestion points in the network.

  2. Look Together: Analyzing Gaze Coordination with Epistemic Network Analysis

    Directory of Open Access Journals (Sweden)

    Sean eAndrist

    2015-07-01

    Full Text Available When conversing and collaborating in everyday situations, people naturally and interactively align their behaviors with each other across various communication channels, including speech, gesture, posture, and gaze. Having access to a partner's referential gaze behavior has been shown to be particularly important in achieving collaborative outcomes, but the process in which people's gaze behaviors unfold over the course of an interaction and become tightly coordinated is not well understood. In this paper, we present work to develop a deeper and more nuanced understanding of coordinated referential gaze in collaborating dyads. We recruited 13 dyads to participate in a collaborative sandwich-making task and used dual mobile eye tracking to synchronously record each participant's gaze behavior. We used a relatively new analysis technique—epistemic network analysis—to jointly model the gaze behaviors of both conversational participants. In this analysis, network nodes represent gaze targets for each participant, and edge strengths convey the likelihood of simultaneous gaze to the connected target nodes during a given time-slice. We divided collaborative task sequences into discrete phases to examine how the networks of shared gaze evolved over longer time windows. We conducted three separate analyses of the data to reveal (1 properties and patterns of how gaze coordination unfolds throughout an interaction sequence, (2 optimal time lags of gaze alignment within a dyad at different phases of the interaction, and (3 differences in gaze coordination patterns for interaction sequences that lead to breakdowns and repairs. In addition to contributing to the growing body of knowledge on the coordination of gaze behaviors in joint activities, this work has implications for the design of future technologies that engage in situated interactions with human users.

  3. Analysis of gene regulatory networks in the mammalian circadian rhythm.

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2008-10-01

    Full Text Available Circadian rhythm is fundamental in regulating a wide range of cellular, metabolic, physiological, and behavioral activities in mammals. Although a small number of key circadian genes have been identified through extensive molecular and genetic studies in the past, the existence of other key circadian genes and how they drive the genomewide circadian oscillation of gene expression in different tissues still remains unknown. Here we try to address these questions by integrating all available circadian microarray data in mammals. We identified 41 common circadian genes that showed circadian oscillation in a wide range of mouse tissues with a remarkable consistency of circadian phases across tissues. Comparisons across mouse, rat, rhesus macaque, and human showed that the circadian phases of known key circadian genes were delayed for 4-5 hours in rat compared to mouse and 8-12 hours in macaque and human compared to mouse. A systematic gene regulatory network for the mouse circadian rhythm was constructed after incorporating promoter analysis and transcription factor knockout or mutant microarray data. We observed the significant association of cis-regulatory elements: EBOX, DBOX, RRE, and HSE with the different phases of circadian oscillating genes. The analysis of the network structure revealed the paths through which light, food, and heat can entrain the circadian clock and identified that NR3C1 and FKBP/HSP90 complexes are central to the control of circadian genes through diverse environmental signals. Our study improves our understanding of the structure, design principle, and evolution of gene regulatory networks involved in the mammalian circadian rhythm.

  4. Sequence analysis reveals mosaic genome of Aichi virus

    Directory of Open Access Journals (Sweden)

    Han Xiaohong

    2011-08-01

    Full Text Available Abstract Aichi virus is a positive-sense and single-stranded RNA virus, which demonstrated to be related to diarrhea of Children. In the present study, phylogenetic and recombination analysis based on the Aichi virus complete genomes available in GenBank reveal a mosaic genome sequence [GenBank: FJ890523], of which the nt 261-852 region (the nt position was based on the aligned sequence file shows close relationship with AB010145/Japan with 97.9% sequence identity, while the other genomic regions show close relationship with AY747174/German with 90.1% sequence identity. Our results will provide valuable hints for future research on Aichi virus diversity. Aichi virus is a member of the Kobuvirus genus of the Picornaviridae family 12 and belongs to a positive-sense and single-stranded RNA virus. Its presence in fecal specimens of children suffering from diarrhea has been demonstrated in several Asian countries 3456, in Brazil and German 7, in France 8 and in Tunisia 9. Some reports showed the high level of seroprevalence in adults 710, suggesting the widespread exposure to Aichi virus during childhood. The genome of Aichi virus contains 8,280 nucleotides and a poly(A tail. The single large open reading frame (nt 713-8014 according to the strain AB010145 encodes a polyprotein of 2,432 amino acids that is cleaved into the typical picornavirus structural proteins VP0, VP3, VP1, and nonstructural proteins 2A, 2B, 2C, 3A, 3B, 3C and 3D 211. Based on the phylogenetic analysis of 519-bp sequences at the 3C-3D (3CD junction, Aichi viruses can be divided into two genotypes A and B with approximately 90% sequence homology 12. Although only six complete genomes of Aichi virus were deposited in GenBank at present, mosaic genomes can be found in strains from different countries.

  5. Sequence analysis reveals mosaic genome of Aichi virus.

    Science.gov (United States)

    Han, Xiaohong; Zhang, Wen; Xue, Yanjun; Shao, Shihe

    2011-08-05

    Aichi virus is a positive-sense and single-stranded RNA virus, which demonstrated to be related to diarrhea of Children. In the present study, phylogenetic and recombination analysis based on the Aichi virus complete genomes available in GenBank reveal a mosaic genome sequence [GenBank: FJ890523], of which the nt 261-852 region (the nt position was based on the aligned sequence file) shows close relationship with AB010145/Japan with 97.9% sequence identity, while the other genomic regions show close relationship with AY747174/German with 90.1% sequence identity. Our results will provide valuable hints for future research on Aichi virus diversity.Aichi virus is a member of the Kobuvirus genus of the Picornaviridae family 12 and belongs to a positive-sense and single-stranded RNA virus. Its presence in fecal specimens of children suffering from diarrhea has been demonstrated in several Asian countries 3456, in Brazil and German 7, in France 8 and in Tunisia 9. Some reports showed the high level of seroprevalence in adults 710, suggesting the widespread exposure to Aichi virus during childhood.The genome of Aichi virus contains 8,280 nucleotides and a poly(A) tail. The single large open reading frame (nt 713-8014 according to the strain AB010145) encodes a polyprotein of 2,432 amino acids that is cleaved into the typical picornavirus structural proteins VP0, VP3, VP1, and nonstructural proteins 2A, 2B, 2C, 3A, 3B, 3C and 3D 211. Based on the phylogenetic analysis of 519-bp sequences at the 3C-3D (3CD) junction, Aichi viruses can be divided into two genotypes A and B with approximately 90% sequence homology 12. Although only six complete genomes of Aichi virus were deposited in GenBank at present, mosaic genomes can be found in strains from different countries.

  6. Simultaneous EEG and fMRI reveals a causally connected subcortical-cortical network during reward anticipation.

    Science.gov (United States)

    Plichta, Michael M; Wolf, Isabella; Hohmann, Sarah; Baumeister, Sarah; Boecker, Regina; Schwarz, Adam J; Zangl, Maria; Mier, Daniela; Diener, Carsten; Meyer, Patric; Holz, Nathalie; Ruf, Matthias; Gerchen, Martin F; Bernal-Casas, David; Kolev, Vasil; Yordanova, Juliana; Flor, Herta; Laucht, Manfred; Banaschewski, Tobias; Kirsch, Peter; Meyer-Lindenberg, Andreas; Brandeis, Daniel

    2013-09-04

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been used to study the neural correlates of reward anticipation, but the interrelation of EEG and fMRI measures remains unknown. The goal of the present study was to investigate this relationship in response to a well established reward anticipation paradigm using simultaneous EEG-fMRI recording in healthy human subjects. Analysis of causal interactions between the thalamus (THAL), ventral-striatum (VS), and supplementary motor area (SMA), using both mediator analysis and dynamic causal modeling, revealed that (1) THAL fMRI blood oxygenation level-dependent (BOLD) activity is mediating intermodal correlations between the EEG contingent negative variation (CNV) signal and the fMRI BOLD signal in SMA and VS, (2) the underlying causal connectivity network consists of top-down regulation from SMA to VS and SMA to THAL along with an excitatory information flow through a THAL→VS→SMA route during reward anticipation, and (3) the EEG CNV signal is best predicted by a combination of THAL fMRI BOLD response and strength of top-down regulation from SMA to VS and SMA to THAL. Collectively, these findings represent a likely neurobiological mechanism mapping a primarily subcortical process, i.e., reward anticipation, onto a cortical signature.

  7. Analysis of friendship network from MMORPG based data

    OpenAIRE

    Črnigoj, Dean

    2016-01-01

    This work analyzes friendship network from a Massively Multiplayer Online Role-Playing Game (MMORPG). The network is based on data from a private server that was active from 2007 until 2011. The work conducts a standard analysis of the network and then divides players according to different groups based on their activity. Work checks how friendship network can be correlated to the clan (a self-organized group of players who often form a league and play on the same side in a match) network. Ma...

  8. Applying temporal network analysis to the venture capital market

    Science.gov (United States)

    Zhang, Xin; Feng, Ling; Zhu, Rongqian; Stanley, H. Eugene

    2015-10-01

    Using complex network theory to study the investment relationships of venture capital firms has produced a number of significant results. However, previous studies have often neglected the temporal properties of those relationships, which in real-world scenarios play a pivotal role. Here we examine the time-evolving dynamics of venture capital investment in China by constructing temporal networks to represent (i) investment relationships between venture capital firms and portfolio companies and (ii) the syndication ties between venture capital investors. The evolution of the networks exhibits rich variations in centrality, connectivity and local topology. We demonstrate that a temporal network approach provides a dynamic and comprehensive analysis of real-world networks.

  9. Fractal and multifractal analysis of complex networks: Estonian network of payments

    Science.gov (United States)

    Rendón de la Torre, Stephanie; Kalda, Jaan; Kitt, Robert; Engelbrecht, Jüri

    2017-12-01

    Complex networks have gained much attention from different areas of knowledge in recent years. Particularly, the structures and dynamics of such systems have attracted considerable interest. Complex networks may have characteristics of multifractality. In this study, we analyze fractal and multifractal properties of a novel network: the large scale economic network of payments of Estonia, where companies are represented by nodes and the payments done between companies are represented by links. We present a fractal scaling analysis and examine the multifractal behavior of this network by using a sandbox algorithm. Our results indicate the existence of multifractality in this network and consequently, the existence of multifractality in the Estonian economy. To the best of our knowledge, this is the first study that analyzes multifractality of a complex network of payments.

  10. A Social Network Analysis of Occupational Segregation

    NARCIS (Netherlands)

    I.S. Buhai (Sebastian); M.J. van der Leij (Marco)

    2006-01-01

    textabstractThis paper proposes a simple social network model of occupational segregation, generated by the existence of inbreeding bias among individuals of the same social group. If network referrals are important in getting a job, then expected inbreeding bias in the social structure results in

  11. Contextualized Network Analysis: Theory and Methods for Networks with Node Covariates

    Science.gov (United States)

    Binkiewicz, Norbert M.

    Biological and social systems consist of myriad interacting units. The interactions can be intuitively represented in the form of a graph or network. Measurements of these graphs can reveal the underlying structure of these interactions, which provides insight into the systems that generated the graphs. Moreover, in applications such as neuroconnectomics, social networks, and genomics, graph data is accompanied by contextualizing measures on each node. We leverage these node covariates to help uncover latent communities, using a modification of spectral clustering. Statistical guarantees are provided under a joint mixture model called the node contextualized stochastic blockmodel, including a bound on the mis-clustering rate. For most simulated conditions, covariate assisted spectral clustering yields superior results relative to both regularized spectral clustering without node covariates and an adaptation of canonical correlation analysis. We apply covariate assisted spectral clustering to large brain graphs derived from diffusion MRI, using the node locations or neurological regions as covariates. In both cases, covariate assisted spectral clustering yields clusters that are easier to interpret neurologically. A low rank update algorithm is developed to reduce the computational cost of determining the tuning parameter for covariate assisted spectral clustering. As simulations demonstrate, the low rank update algorithm increases the speed of covariate assisted spectral clustering up to ten-fold, while practically matching the clustering performance of the standard algorithm. Graphs with node attributes are sometimes accompanied by ground truth labels that align closely with the latent communities in the graph. We consider the example of a mouse retina neuron network accompanied by the neuron spatial location and neuronal cell types. In this example, the neuronal cell type is considered a ground truth label. Current approaches for defining neuronal cell type vary

  12. Task-Related Edge Density (TED-A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain.

    Directory of Open Access Journals (Sweden)

    Gabriele Lohmann

    Full Text Available The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED. TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.

  13. Task-Related Edge Density (TED)-A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain.

    Science.gov (United States)

    Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus

    2016-01-01

    The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.

  14. "Us and them": a social network analysis of physicians' professional networks and their attitudes towards EBM.

    Science.gov (United States)

    Mascia, Daniele; Cicchetti, Americo; Damiani, Gianfranco

    2013-10-22

    Extant research suggests that there is a strong social component to Evidence-Based Medicine (EBM) adoption since professional networks amongst physicians are strongly associated with their attitudes towards EBM. Despite this evidence, it is still unknown whether individual attitudes to use scientific evidence in clinical decision-making influence the position that physicians hold in their professional network. This paper explores how physicians' attitudes towards EBM is related to the network position they occupy within healthcare organizations. Data pertain to a sample of Italian physicians, whose professional network relationships, demographics and work-profile characteristics were collected. A social network analysis was performed to capture the structural importance of physicians in the collaboration network by the means of a core-periphery analysis and the computation of network centrality indicators. Then, regression analysis was used to test the association between the network position of individual clinicians and their attitudes towards EBM. Findings documented that the overall network structure is made up of a dense cohesive core of physicians and of less connected clinicians who occupy the periphery. A negative association between the physicians' attitudes towards EBM and the coreness they exhibited in the professional network was also found. Network centrality indicators confirmed these results documenting a negative association between physicians' propensity to use EBM and their structural importance in the professional network. Attitudes that physicians show towards EBM are related to the part (core or periphery) of the professional networks to which they belong as well as to their structural importance. By identifying virtuous attitudes and behaviors of professionals within their organizations, policymakers and executives may avoid marginalization and stimulate integration and continuity of care, both within and across the boundaries of healthcare

  15. NEXCADE: perturbation analysis for complex networks.

    Directory of Open Access Journals (Sweden)

    Gitanjali Yadav

    Full Text Available Recent advances in network theory have led to considerable progress in our understanding of complex real world systems and their behavior in response to external threats or fluctuations. Much of this research has been invigorated by demonstration of the 'robust, yet fragile' nature of cellular and large-scale systems transcending biology, sociology, and ecology, through application of the network theory to diverse interactions observed in nature such as plant-pollinator, seed-dispersal agent and host-parasite relationships. In this work, we report the development of NEXCADE, an automated and interactive program for inducing disturbances into complex systems defined by networks, focusing on the changes in global network topology and connectivity as a function of the perturbation. NEXCADE uses a graph theoretical approach to simulate perturbations in a user-defined manner, singly, in clusters, or sequentially. To demonstrate the promise it holds for broader adoption by the research community, we provide pre-simulated examples from diverse real-world networks including eukaryotic protein-protein interaction networks, fungal biochemical networks, a variety of ecological food webs in nature as well as social networks. NEXCADE not only enables network visualization at every step of the targeted attacks, but also allows risk assessment, i.e. identification of nodes critical for the robustness of the system of interest, in order to devise and implement context-based strategies for restructuring a network, or to achieve resilience against link or node failures. Source code and license for the software, designed to work on a Linux-based operating system (OS can be downloaded at http://www.nipgr.res.in/nexcade_download.html. In addition, we have developed NEXCADE as an OS-independent online web server freely available to the scientific community without any login requirement at http://www.nipgr.res.in/nexcade.html.

  16. Assessing a Sport/Cultural Events Network: An Application of Social Network Analysis

    OpenAIRE

    Ziakas, V; Costa, CA

    2009-01-01

    The purpose of this study was to assess the complexity of a sport/cultural events network. To that intent, a social network analysis was conducted in a small community in the US. The study had three main objectives: (1) Examine relationships among organisations involved in planning and implementing sport and cultural events based on their communication, exchange of resources, and assistance; (2) Identify the most important actors within the events network and their relationships; (3) Investig...

  17. Social Network Analysis of a Supply Network Structural Investigation of the South Korean Automotive Industry

    OpenAIRE

    Kim, Jin-Baek

    2015-01-01

    Part 3: Knowledge Based Production Management; International audience; In this paper, we analyzed the structure of the South Korean automotive industry using social network analysis (SNA) metrics. Based on the data collected from 275 companies, a social network