Communication Network Analysis Methods.
Farace, Richard V.; Mabee, Timothy
This paper reviews a variety of analytic procedures that can be applied to network data, discussing the assumptions and usefulness of each procedure when applied to the complexity of human communication. Special attention is paid to the network properties measured or implied by each procedure. Factor analysis and multidimensional scaling are among…
Constructing an Intelligent Patent Network Analysis Method
Directory of Open Access Journals (Sweden)
Chao-Chan Wu
2012-11-01
Full Text Available Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks of the current method, this study proposes a novel patent analysis method, called the intelligent patent network analysis method, to make a visual network with great precision. Based on artificial intelligence techniques, the proposed method provides an automated procedure for searching patent documents, extracting patent keywords, and determining the weight of each patent keyword in order to generate a sophisticated visualization of the patent network. This study proposes a detailed procedure for generating an intelligent patent network that is helpful for improving the efficiency and quality of patent analysis. Furthermore, patents in the field of Carbon Nanotube Backlight Unit (CNT-BLU were analyzed to verify the utility of the proposed method.
Spectral Analysis Methods of Social Networks
Directory of Open Access Journals (Sweden)
P. G. Klyucharev
2017-01-01
Full Text Available Online social networks (such as Facebook, Twitter, VKontakte, etc. being an important channel for disseminating information are often used to arrange an impact on the social consciousness for various purposes - from advertising products or services to the full-scale information war thereby making them to be a very relevant object of research. The paper reviewed the analysis methods of social networks (primarily, online, based on the spectral theory of graphs. Such methods use the spectrum of the social graph, i.e. a set of eigenvalues of its adjacency matrix, and also the eigenvectors of the adjacency matrix.Described measures of centrality (in particular, centrality based on the eigenvector and PageRank, which reflect a degree of impact one or another user of the social network has. A very popular PageRank measure uses, as a measure of centrality, the graph vertices, the final probabilities of the Markov chain, whose matrix of transition probabilities is calculated on the basis of the adjacency matrix of the social graph. The vector of final probabilities is an eigenvector of the matrix of transition probabilities.Presented a method of dividing the graph vertices into two groups. It is based on maximizing the network modularity by computing the eigenvector of the modularity matrix.Considered a method for detecting bots based on the non-randomness measure of a graph to be computed using the spectral coordinates of vertices - sets of eigenvector components of the adjacency matrix of a social graph.In general, there are a number of algorithms to analyse social networks based on the spectral theory of graphs. These algorithms show very good results, but their disadvantage is the relatively high (albeit polynomial computational complexity for large graphs.At the same time it is obvious that the practical application capacity of the spectral graph theory methods is still underestimated, and it may be used as a basis to develop new methods.The work
Method and tool for network vulnerability analysis
Swiler, Laura Painton [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM
2006-03-14
A computer system analysis tool and method that will allow for qualitative and quantitative assessment of security attributes and vulnerabilities in systems including computer networks. The invention is based on generation of attack graphs wherein each node represents a possible attack state and each edge represents a change in state caused by a single action taken by an attacker or unwitting assistant. Edges are weighted using metrics such as attacker effort, likelihood of attack success, or time to succeed. Generation of an attack graph is accomplished by matching information about attack requirements (specified in "attack templates") to information about computer system configuration (contained in a configuration file that can be updated to reflect system changes occurring during the course of an attack) and assumed attacker capabilities (reflected in "attacker profiles"). High risk attack paths, which correspond to those considered suited to application of attack countermeasures given limited resources for applying countermeasures, are identified by finding "epsilon optimal paths."
Social network analysis: Presenting an underused method for nursing research.
Parnell, James Michael; Robinson, Jennifer C
2018-06-01
This paper introduces social network analysis as a versatile method with many applications in nursing research. Social networks have been studied for years in many social science fields. The methods continue to advance but remain unknown to most nursing scholars. Discussion paper. English language and interpreted literature was searched from Ovid Healthstar, CINAHL, PubMed Central, Scopus and hard copy texts from 1965 - 2017. Social network analysis first emerged in nursing literature in 1995 and appears minimally through present day. To convey the versatility and applicability of social network analysis in nursing, hypothetical scenarios are presented. The scenarios are illustrative of three approaches to social network analysis and include key elements of social network research design. The methods of social network analysis are underused in nursing research, primarily because they are unknown to most scholars. However, there is methodological flexibility and epistemological versatility capable of supporting quantitative and qualitative research. The analytic techniques of social network analysis can add new insight into many areas of nursing inquiry, especially those influenced by cultural norms. Furthermore, visualization techniques associated with social network analysis can be used to generate new hypotheses. Social network analysis can potentially uncover findings not accessible through methods commonly used in nursing research. Social networks can be analysed based on individual-level attributes, whole networks and subgroups within networks. Computations derived from social network analysis may stand alone to answer a research question or incorporated as variables into robust statistical models. © 2018 John Wiley & Sons Ltd.
Geometrical methods for power network analysis
Energy Technology Data Exchange (ETDEWEB)
Bellucci, Stefano; Tiwari, Bhupendra Nath [Istituto Nazioneale di Fisica Nucleare, Frascati, Rome (Italy). Lab. Nazionali di Frascati; Gupta, Neeraj [Indian Institute of Technology, Kanpur (India). Dept. of Electrical Engineering
2013-02-01
Uses advanced geometrical methods to analyse power networks. Provides a self-contained and tutorial introduction. Includes a fully worked-out example for the IEEE 5 bus system. This book is a short introduction to power system planning and operation using advanced geometrical methods. The approach is based on well-known insights and techniques developed in theoretical physics in the context of Riemannian manifolds. The proof of principle and robustness of this approach is examined in the context of the IEEE 5 bus system. This work addresses applied mathematicians, theoretical physicists and power engineers interested in novel mathematical approaches to power network theory.
Vulnerability analysis methods for road networks
Bíl, Michal; Vodák, Rostislav; Kubeček, Jan; Rebok, Tomáš; Svoboda, Tomáš
2014-05-01
Road networks rank among the most important lifelines of modern society. They can be damaged by either random or intentional events. Roads are also often affected by natural hazards, the impacts of which are both direct and indirect. Whereas direct impacts (e.g. roads damaged by a landslide or due to flooding) are localized in close proximity to the natural hazard occurrence, the indirect impacts can entail widespread service disabilities and considerable travel delays. The change in flows in the network may affect the population living far from the places originally impacted by the natural disaster. These effects are primarily possible due to the intrinsic nature of this system. The consequences and extent of the indirect costs also depend on the set of road links which were damaged, because the road links differ in terms of their importance. The more robust (interconnected) the road network is, the less time is usually needed to secure the serviceability of an area hit by a disaster. These kinds of networks also demonstrate a higher degree of resilience. Evaluating road network structures is therefore essential in any type of vulnerability and resilience analysis. There are a range of approaches used for evaluation of the vulnerability of a network and for identification of the weakest road links. Only few of them are, however, capable of simulating the impacts of the simultaneous closure of numerous links, which often occurs during a disaster. The primary problem is that in the case of a disaster, which usually has a large regional extent, the road network may remain disconnected. The majority of the commonly used indices use direct computation of the shortest paths or time between OD (origin - destination) pairs and therefore cannot be applied when the network breaks up into two or more components. Since extensive break-ups often occur in cases of major disasters, it is important to study the network vulnerability in these cases as well, so that appropriate
Mixed Methods Analysis of Enterprise Social Networks
DEFF Research Database (Denmark)
Behrendt, Sebastian; Richter, Alexander; Trier, Matthias
2014-01-01
The increasing use of enterprise social networks (ESN) generates vast amounts of data, giving researchers and managerial decision makers unprecedented opportunities for analysis. However, more transparency about the available data dimensions and how these can be combined is needed to yield accurate...
Pavlogiannis, Andreas; Mozhayskiy, Vadim; Tagkopoulos, Ilias
2013-04-24
Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition- specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context. This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data. The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various "omics" levels.
Momentum integral network method for thermal-hydraulic transient analysis
International Nuclear Information System (INIS)
Van Tuyle, G.J.
1983-01-01
A new momentum integral network method has been developed, and tested in the MINET computer code. The method was developed in order to facilitate the transient analysis of complex fluid flow and heat transfer networks, such as those found in the balance of plant of power generating facilities. The method employed in the MINET code is a major extension of a momentum integral method reported by Meyer. Meyer integrated the momentum equation over several linked nodes, called a segment, and used a segment average pressure, evaluated from the pressures at both ends. Nodal mass and energy conservation determined nodal flows and enthalpies, accounting for fluid compression and thermal expansion
Utilization of Selected Data Mining Methods for Communication Network Analysis
Directory of Open Access Journals (Sweden)
V. Ondryhal
2011-06-01
Full Text Available The aim of the project was to analyze the behavior of military communication networks based on work with real data collected continuously since 2005. With regard to the nature and amount of the data, data mining methods were selected for the purpose of analyses and experiments. The quality of real data is often insufficient for an immediate analysis. The article presents the data cleaning operations which have been carried out with the aim to improve the input data sample to obtain reliable models. Gradually, by means of properly chosen SW, network models were developed to verify generally valid patterns of network behavior as a bulk service. Furthermore, unlike the commercially available communication networks simulators, the models designed allowed us to capture nonstandard models of network behavior under an increased load, verify the correct sizing of the network to the increased load, and thus test its reliability. Finally, based on previous experience, the models enabled us to predict emergency situations with a reasonable accuracy.
Decomposition method for analysis of closed queuing networks
Directory of Open Access Journals (Sweden)
Yu. G. Nesterov
2014-01-01
Full Text Available This article deals with the method to estimate the average residence time in nodes of closed queuing networks with priorities and a wide range of conservative disciplines to be served. The method is based on a decomposition of entire closed queuing network into a set of simple basic queuing systems such as M|GI|m|N for each node. The unknown average residence times in the network nodes are interrelated through a system of nonlinear equations. The fact that there is a solution of this system has been proved. An iterative procedure based on Newton-Kantorovich method is proposed for finding the solution of such system. This procedure provides fast convergence to solution. Today possibilities of proposed method are limited by known analytical solutions for simple basic queuing systems of M|GI|m|N type.
Application of Network Analysis Method to VHTR core
International Nuclear Information System (INIS)
Lee, Jeong Hun; Yoon, Su Jong; Park, Goon Cherl
2012-01-01
A Very High Temperature Reactor (VHTR) is currently envisioned as a promising future reactor concept because of its high-efficiency and capability of generating hydrogen. Prismatic Modular Reactor (PMR) is one of the main VHTR concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear grade graphite. However their shape could be changed by neutron damage during the reactor operation and the shape change can makes the gaps between the blocks inducing bypass flow. Most of reactor coolant flows through the coolant channel within the fuel block, but some portion of the reactor coolant bypasses to the interstitial gaps. The vertical gap and horizontal gap are called bypass gap and cross gap, respectively. CFD simulation for the full core of VHTR might be possible but it requires vast computational cost and time. Therefore, fast, flexible and reliable code is required to predict the flow distribution corresponding to the various bypass gap distribution. Consequently in this study, the flow network analysis method is applied to analyze the core flow of VHTR. The applied method was validated by comparing with SNU VHTR multiblock experiment. As a result, the calculated results show good agreements with experimental data although computational time and cost of the developed code was very small
Spatial Analysis Along Networks Statistical and Computational Methods
Okabe, Atsuyuki
2012-01-01
In the real world, there are numerous and various events that occur on and alongside networks, including the occurrence of traffic accidents on highways, the location of stores alongside roads, the incidence of crime on streets and the contamination along rivers. In order to carry out analyses of those events, the researcher needs to be familiar with a range of specific techniques. Spatial Analysis Along Networks provides a practical guide to the necessary statistical techniques and their computational implementation. Each chapter illustrates a specific technique, from Stochastic Point Process
International Nuclear Information System (INIS)
Proriol, J.
1994-01-01
Five different methods are compared for selecting the most important variables with a view to classifying high energy physics events with neural networks. The different methods are: the F-test, Principal Component Analysis (PCA), a decision tree method: CART, weight evaluation, and Optimal Cell Damage (OCD). The neural networks use the variables selected with the different methods. We compare the percentages of events properly classified by each neural network. The learning set and the test set are the same for all the neural networks. (author)
Social network analysis using k-Path centrality method
Taniarza, Natya; Adiwijaya; Maharani, Warih
2018-03-01
k-Path centrality is deemed as one of the effective methods to be applied in centrality measurement in which the influential node is estimated as the node that is being passed by information path frequently. Regarding this, k-Path centrality has been employed in the analysis of this paper specifically by adapting random-algorithm approach in order to: (1) determine the influential user’s ranking in a social media Twitter; and (2) ascertain the influence of parameter α in the numeration of k-Path centrality. According to the analysis, the findings showed that the method of k-Path centrality with random-algorithm approach can be used to determine user’s ranking which influences in the dissemination of information in Twitter. Furthermore, the findings also showed that parameter α influenced the duration and the ranking results: the less the α value, the longer the duration, yet the ranking results were more stable.
Network reliability analysis of complex systems using a non-simulation-based method
International Nuclear Information System (INIS)
Kim, Youngsuk; Kang, Won-Hee
2013-01-01
Civil infrastructures such as transportation, water supply, sewers, telecommunications, and electrical and gas networks often establish highly complex networks, due to their multiple source and distribution nodes, complex topology, and functional interdependence between network components. To understand the reliability of such complex network system under catastrophic events such as earthquakes and to provide proper emergency management actions under such situation, efficient and accurate reliability analysis methods are necessary. In this paper, a non-simulation-based network reliability analysis method is developed based on the Recursive Decomposition Algorithm (RDA) for risk assessment of generic networks whose operation is defined by the connections of multiple initial and terminal node pairs. The proposed method has two separate decomposition processes for two logical functions, intersection and union, and combinations of these processes are used for the decomposition of any general system event with multiple node pairs. The proposed method is illustrated through numerical network examples with a variety of system definitions, and is applied to a benchmark gas transmission pipe network in Memphis TN to estimate the seismic performance and functional degradation of the network under a set of earthquake scenarios.
Application of Looped Network Analysis Method to Core of Prismatic VHTR
International Nuclear Information System (INIS)
Lee, Jeong-Hun; Cho, Hyoung-Kyu; Park, Goon-Cherl
2016-01-01
Most of reactor coolant flows through the coolant channel within the fuel block, but some portion of the reactor coolant bypasses to the interstitial gaps. The vertical gap and horizontal gap are called bypass gap and cross gap, respectively as shown in Fig. 1. CFD simulation for the full core of VHTR might be possible but it requires vast computational cost and time. Moreover, it is hard to cover whole cases corresponding to the various bypass gap distribution in the whole VHTR core. In order to solve this problem, in this study, the flow network analysis code, FastNet (Flow Analysis for Steady-state Network), was developed using the Looped Network Analysis Method. The applied method was validated by comparing with SNU VHTR multi-block experiment. A 3-demensional network modeling was conducted representing flow paths as flow resistances. Flow network analysis code, FastNet, was developed to evaluate the core bypass flow distribution by using looped network analysis method. Complex flow network could be solved simply by converting the non-linear momentum equation to the linearized equation. The FastNet code predicted the flow distribution of the SNU multi-block experiment accurately
The QAP weighted network analysis method and its application in international services trade
Xu, Helian; Cheng, Long
2016-04-01
Based on QAP (Quadratic Assignment Procedure) correlation and complex network theory, this paper puts forward a new method named QAP Weighted Network Analysis Method. The core idea of the method is to analyze influences among relations in a social or economic group by building a QAP weighted network of networks of relations. In the QAP weighted network, a node depicts a relation and an undirect edge exists between any pair of nodes if there is significant correlation between relations. As an application of the QAP weighted network, we study international services trade by using the QAP weighted network, in which nodes depict 10 kinds of services trade relations. After the analysis of international services trade by QAP weighted network, and by using distance indicators, hierarchy tree and minimum spanning tree, the conclusion shows that: Firstly, significant correlation exists in all services trade, and the development of any one service trade will stimulate the other nine. Secondly, as the economic globalization goes deeper, correlations in all services trade have been strengthened continually, and clustering effects exist in those services trade. Thirdly, transportation services trade, computer and information services trade and communication services trade have the most influence and are at the core in all services trade.
Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks
White, Forest M.; Wolf-Yadlin, Alejandro
2016-06-01
Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.
Artificial Neural Network methods applied to sentiment analysis
Ebert, Sebastian
2017-01-01
Sentiment Analysis (SA) is the study of opinions and emotions that are conveyed by text. This field of study has commercial applications for example in market research (e.g., “What do customers like and dislike about a product?”) and consumer behavior (e.g., “Which book will a customer buy next when he wrote a positive review about book X?”). A private person can benefit from SA by automatic movie or restaurant recommendations, or from applications on the computer or smart phone that adapt to...
Directory of Open Access Journals (Sweden)
Pengyu Gao
2016-03-01
Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.
Method in analysis of CdZnTe γ spectrum with artificial neural network
International Nuclear Information System (INIS)
Ai Xianyun; Wei Yixiang; Xiao Wuyun
2005-01-01
The analysis of gamma-ray spectra to identify lines and their intensities usually requires expert knowledge and time consuming calculations with complex fitting functions. CdZnTe detector often exhibits asymmetric peak shape particularly at high energies making peak fitting methods and sophisticated isotope identification programs difficult to use. This paper investigates the use of the neural network to process gamma spectra measured with CdZnTe detector to verify nuclear materials. Results show that the neural network method gives advantages, in particular, when large low-energetic peak tailings are observed. (authors)
Application of a data-mining method based on Bayesian networks to lesion-deficit analysis
Herskovits, Edward H.; Gerring, Joan P.
2003-01-01
Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.
International Nuclear Information System (INIS)
Gadalla, Mamdouh A.
2015-01-01
Energy integration is a key solution in chemical process and crude refining industries to minimise external fuel consumption and to face the impact of growing energy crises. Typical energy integration projects can reach a reduction of heating fuels and cold utilities by up to 40% compared with original designs or existing installations. Pinch Analysis is a leading tool and regarded as an efficient method to increase energy efficiency and minimise fuel flow consumptions. It is valid for both natures of design, grassroots and retrofit situations. It can practically be applied to synthesise a HEN (heat exchanger network) or modify an existing preheat train for minimum energy consumption. Heat recovery systems or HENs are networks for exchanging heat between hot and cold process sources. All heat transferred from hot process sources into cold process sinks represent the scope for energy integration. On the other hand, energies required beyond this integrated amount are to be satisfied by external utilities. Graphical representations of Pinch Analysis, such as Composite and Grand Composite Curves are very useful for grassroots designs. Nevertheless, in retrofit situation the analysis is not adequate and besides it is graphically tedious to represent existing exchangers on such graphs. This research proposes a new graphical method for the analysis of heat recovery systems, applicable to HEN retrofit. The new graphical method is based on plotting temperatures of process hot streams versus temperatures of process cold streams. A new graph is constructed for representing existing HENs. For a given network, each existing exchanger is represented by a straight line, whose slope is proportional to the ratio of heat capacities and flows. Further, the length of each exchanger line is related to the heat flow transferred across this exchanger. This new graphical representation can easily identify exchangers across the pinch, Network Pinch, pinching matches and improper placement
Sensitivity Analysis of Dynamic Tariff Method for Congestion Management in Distribution Networks
DEFF Research Database (Denmark)
Huang, Shaojun; Wu, Qiuwei; Liu, Zhaoxi
2015-01-01
The dynamic tariff (DT) method is designed for the distribution system operator (DSO) to alleviate the congestions that might occur in a distribution network with high penetration of distribute energy resources (DERs). Sensitivity analysis of the DT method is crucial because of its decentralized...... control manner. The sensitivity analysis can obtain the changes of the optimal energy planning and thereby the line loading profiles over the infinitely small changes of parameters by differentiating the KKT conditions of the convex quadratic programming, over which the DT method is formed. Three case...
A method for under-sampled ecological network data analysis: plant-pollination as case study
Directory of Open Access Journals (Sweden)
Peter B. Sorensen
2012-01-01
Full Text Available In this paper, we develop a method, termed the Interaction Distribution (ID method, for analysis of quantitative ecological network data. In many cases, quantitative network data sets are under-sampled, i.e. many interactions are poorly sampled or remain unobserved. Hence, the output of statistical analyses may fail to differentiate between patterns that are statistical artefacts and those which are real characteristics of ecological networks. The ID method can support assessment and inference of under-sampled ecological network data. In the current paper, we illustrate and discuss the ID method based on the properties of plant-animal pollination data sets of flower visitation frequencies. However, the ID method may be applied to other types of ecological networks. The method can supplement existing network analyses based on two definitions of the underlying probabilities for each combination of pollinator and plant species: (1, pi,j: the probability for a visit made by the i’th pollinator species to take place on the j’th plant species; (2, qi,j: the probability for a visit received by the j’th plant species to be made by the i’th pollinator. The method applies the Dirichlet distribution to estimate these two probabilities, based on a given empirical data set. The estimated mean values for pi,j and qi,j reflect the relative differences between recorded numbers of visits for different pollinator and plant species, and the estimated uncertainty of pi,j and qi,j decreases with higher numbers of recorded visits.
Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye
2016-03-01
Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.
International Nuclear Information System (INIS)
Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelbergh, Stephane; Porter, Edward K.
2003-01-01
Network data analysis methods are the only way to properly separate real gravitational wave (GW) transient events from detector noise. They can be divided into two generic classes: the coincidence method and the coherent analysis. The former uses lists of selected events provided by each interferometer belonging to the network and tries to correlate them in time to identify a physical signal. Instead of this binary treatment of detector outputs (signal present or absent), the latter method involves first the merging of the interferometer data and looks for a common pattern, consistent with an assumed GW waveform and a given source location in the sky. The thresholds are only applied later, to validate or not the hypothesis made. As coherent algorithms use more complete information than coincidence methods, they are expected to provide better detection performances, but at a higher computational cost. An efficient filter must yield a good compromise between a low false alarm rate (hence triggering on data at a manageable rate) and a high detection efficiency. Therefore, the comparison of the two approaches is achieved using so-called receiving operating characteristics (ROC), giving the relationship between the false alarm rate and the detection efficiency for a given method. This paper investigates this question via Monte Carlo simulations, using the network model developed in a previous article. Its main conclusions are the following. First, a three-interferometer network such as Virgo-LIGO is found to be too small to reach good detection efficiencies at low false alarm rates: larger configurations are suitable to reach a confidence level high enough to validate as true GW a detected event. In addition, an efficient network must contain interferometers with comparable sensitivities: studying the three-interferometer LIGO network shows that the 2-km interferometer with half sensitivity leads to a strong reduction of performances as compared to a network of three
Wang, Ting; Plecháč, Petr
2017-12-01
Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.
Wang, Ting; Plecháč, Petr
2017-12-21
Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.
Multiobjective flux balancing using the NISE method for metabolic network analysis.
Oh, Young-Gyun; Lee, Dong-Yup; Lee, Sang Yup; Park, Sunwon
2009-01-01
Flux balance analysis (FBA) is well acknowledged as an analysis tool of metabolic networks in the framework of metabolic engineering. However, FBA has a limitation for solving a multiobjective optimization problem which considers multiple conflicting objectives. In this study, we propose a novel multiobjective flux balance analysis method, which adapts the noninferior set estimation (NISE) method (Solanki et al., 1993) for multiobjective linear programming (MOLP) problems. NISE method can generate an approximation of the Pareto curve for conflicting objectives without redundant iterations of single objective optimization. Furthermore, the flux distributions at each Pareto optimal solution can be obtained for understanding the internal flux changes in the metabolic network. The functionality of this approach is shown by applying it to a genome-scale in silico model of E. coli. Multiple objectives for the poly(3-hydroxybutyrate) [P(3HB)] production are considered simultaneously, and relationships among them are identified. The Pareto curve for maximizing succinic acid production vs. maximizing biomass production is used for the in silico analysis of various combinatorial knockout strains. This proposed method accelerates the strain improvement in the metabolic engineering by reducing computation time of obtaining the Pareto curve and analysis time of flux distribution at each Pareto optimal solution. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.
Spectral methods for the detection of network community structure: a comparative analysis
International Nuclear Information System (INIS)
Shen, Hua-Wei; Cheng, Xue-Qi
2010-01-01
Spectral analysis has been successfully applied to the detection of community structure of networks, respectively being based on the adjacency matrix, the standard Laplacian matrix, the normalized Laplacian matrix, the modularity matrix, the correlation matrix and several other variants of these matrices. However, the comparison between these spectral methods is less reported. More importantly, it is still unclear which matrix is more appropriate for the detection of community structure. This paper answers the question by evaluating the effectiveness of these five matrices against benchmark networks with heterogeneous distributions of node degree and community size. Test results demonstrate that the normalized Laplacian matrix and the correlation matrix significantly outperform the other three matrices at identifying the community structure of networks. This indicates that it is crucial to take into account the heterogeneous distribution of node degree when using spectral analysis for the detection of community structure. In addition, to our surprise, the modularity matrix exhibits very similar performance to the adjacency matrix, which indicates that the modularity matrix does not gain benefits from using the configuration model as a reference network with the consideration of the node degree heterogeneity
Study on shielded pump system failure analysis method based on Bayesian network
International Nuclear Information System (INIS)
Bao Yilan; Huang Gaofeng; Tong Lili; Cao Xuewu
2012-01-01
This paper applies Bayesian network to the system failure analysis, with an aim to improve knowledge representation of the uncertainty logic and multi-fault states in system failure analysis. A Bayesian network for shielded pump failure analysis is presented, conducting fault parameter learning, updating Bayesian network parameter based on new samples. Finally, through the Bayesian network inference, vulnerability in this system, the largest possible failure modes, and the fault probability are obtained. The powerful ability of Bayesian network to analyze system fault is illustrated by examples. (authors)
A moment-convergence method for stochastic analysis of biochemical reaction networks.
Zhang, Jiajun; Nie, Qing; Zhou, Tianshou
2016-05-21
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.
A moment-convergence method for stochastic analysis of biochemical reaction networks
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jiajun [School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China); Nie, Qing [Department of Mathematics, University of California at Irvine, Irvine, California 92697 (United States); Zhou, Tianshou, E-mail: mcszhtsh@mail.sysu.edu.cn [School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Province Key Laboratory of Computational Science and School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China)
2016-05-21
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.
Proposal of Constraints Analysis Method Based on Network Model for Task Planning
Tomiyama, Tomoe; Sato, Tatsuhiro; Morita, Toyohisa; Sasaki, Toshiro
Deregulation has been accelerating several activities toward reengineering business processes, such as railway through service and modal shift in logistics. Making those activities successful, business entities have to regulate new business rules or know-how (we call them ‘constraints’). According to the new constraints, they need to manage business resources such as instruments, materials, workers and so on. In this paper, we propose a constraint analysis method to define constraints for task planning of the new business processes. To visualize each constraint's influence on planning, we propose a network model which represents allocation relations between tasks and resources. The network can also represent task ordering relations and resource grouping relations. The proposed method formalizes the way of defining constraints manually as repeatedly checking the network structure and finding conflicts between constraints. Being applied to crew scheduling problems shows that the method can adequately represent and define constraints of some task planning problems with the following fundamental features, (1) specifying work pattern to some resources, (2) restricting the number of resources for some works, (3) requiring multiple resources for some works, (4) prior allocation of some resources to some works and (5) considering the workload balance between resources.
Abramenko, Oleksii
2017-01-01
The current research focuses on the perturbations within the electrical network of the LHC and its subsystems by analyzing measurements collected from oscilloscopes installed across different CERN sites, and alarms by electrical equipments. We analyze amplitude and duration of the glitches and, together with other relevant variables, correlate them with beam stopping events. The work also tries to identify assets affected by such perturbations using data mining and, in particular, frequent pattern mining methods. On the practical side we summarize results of our work by putting forward a prototype of a software tool enabling online monitoring of the alarms coming from the electrical network and facilitating glitch detection and analysis by a technical operator.
Approximation methods for the stability analysis of complete synchronization on duplex networks
Han, Wenchen; Yang, Junzhong
2018-01-01
Recently, the synchronization on multi-layer networks has drawn a lot of attention. In this work, we study the stability of the complete synchronization on duplex networks. We investigate effects of coupling function on the complete synchronization on duplex networks. We propose two approximation methods to deal with the stability of the complete synchronization on duplex networks. In the first method, we introduce a modified master stability function and, in the second method, we only take into consideration the contributions of a few most unstable transverse modes to the stability of the complete synchronization. We find that both methods work well for predicting the stability of the complete synchronization for small networks. For large networks, the second method still works pretty well.
Yucel, Abdulkadir C.; Bagci, Hakan; Michielssen, Eric
2015-01-01
An efficient method for statistically characterizing multiconductor transmission line (MTL) networks subject to a large number of manufacturing uncertainties is presented. The proposed method achieves its efficiency by leveraging a high
A neural network construction method for surrogate modeling of physics-based analysis
Sung, Woong Je
In this thesis existing methodologies related to the developmental methods of neural networks have been surveyed and their approaches to network sizing and structuring are carefully observed. This literature review covers the constructive methods, the pruning methods, and the evolutionary methods and questions about the basic assumption intrinsic to the conventional neural network learning paradigm, which is primarily devoted to optimization of connection weights (or synaptic strengths) for the pre-determined connection structure of the network. The main research hypothesis governing this thesis is that, without breaking a prevailing dichotomy between weights and connectivity of the network during learning phase, the efficient design of a task-specific neural network is hard to achieve because, as long as connectivity and weights are searched by separate means, a structural optimization of the neural network requires either repetitive re-training procedures or computationally expensive topological meta-search cycles. The main contribution of this thesis is designing and testing a novel learning mechanism which efficiently learns not only weight parameters but also connection structure from a given training data set, and positioning this learning mechanism within the surrogate modeling practice. In this work, a simple and straightforward extension to the conventional error Back-Propagation (BP) algorithm has been formulated to enable a simultaneous learning for both connectivity and weights of the Generalized Multilayer Perceptron (GMLP) in supervised learning tasks. A particular objective is to achieve a task-specific network having reasonable generalization performance with a minimal training time. The dichotomy between architectural design and weight optimization is reconciled by a mechanism establishing a new connection for a neuron pair which has potentially higher error-gradient than one of the existing connections. Interpreting an instance of the absence of
Izhari, F.; Dhany, H. W.; Zarlis, M.; Sutarman
2018-03-01
A good age in optimizing aspects of development is at the age of 4-6 years, namely with psychomotor development. Psychomotor is broader, more difficult to monitor but has a meaningful value for the child's life because it directly affects his behavior and deeds. Therefore, there is a problem to predict the child's ability level based on psychomotor. This analysis uses backpropagation method analysis with artificial neural network to predict the ability of the child on the psychomotor aspect by generating predictions of the child's ability on psychomotor and testing there is a mean squared error (MSE) value at the end of the training of 0.001. There are 30% of children aged 4-6 years have a good level of psychomotor ability, excellent, less good, and good enough.
A comparative analysis on computational methods for fitting an ERGM to biological network data
Directory of Open Access Journals (Sweden)
Sudipta Saha
2015-03-01
Full Text Available Exponential random graph models (ERGM based on graph theory are useful in studying global biological network structure using its local properties. However, computational methods for fitting such models are sensitive to the type, structure and the number of the local features of a network under study. In this paper, we compared computational methods for fitting an ERGM with local features of different types and structures. Two commonly used methods, such as the Markov Chain Monte Carlo Maximum Likelihood Estimation and the Maximum Pseudo Likelihood Estimation are considered for estimating the coefficients of network attributes. We compared the estimates of observed network to our random simulated network using both methods under ERGM. The motivation was to ascertain the extent to which an observed network would deviate from a randomly simulated network if the physical numbers of attributes were approximately same. Cut-off points of some common attributes of interest for different order of nodes were determined through simulations. We implemented our method to a known regulatory network database of Escherichia coli (E. coli.
Artificial neural network and classical least-squares methods for neurotransmitter mixture analysis.
Schulze, H G; Greek, L S; Gorzalka, B B; Bree, A V; Blades, M W; Turner, R F
1995-02-01
Identification of individual components in biological mixtures can be a difficult problem regardless of the analytical method employed. In this work, Raman spectroscopy was chosen as a prototype analytical method due to its inherent versatility and applicability to aqueous media, making it useful for the study of biological samples. Artificial neural networks (ANNs) and the classical least-squares (CLS) method were used to identify and quantify the Raman spectra of the small-molecule neurotransmitters and mixtures of such molecules. The transfer functions used by a network, as well as the architecture of a network, played an important role in the ability of the network to identify the Raman spectra of individual neurotransmitters and the Raman spectra of neurotransmitter mixtures. Specifically, networks using sigmoid and hyperbolic tangent transfer functions generalized better from the mixtures in the training data set to those in the testing data sets than networks using sine functions. Networks with connections that permit the local processing of inputs generally performed better than other networks on all the testing data sets. and better than the CLS method of curve fitting, on novel spectra of some neurotransmitters. The CLS method was found to perform well on noisy, shifted, and difference spectra.
International Nuclear Information System (INIS)
Balino, Jorge L.; Larreteguy, Axel E.; Andrade Lima, Fernando R.
1995-01-01
The differential method was applied to the sensitivity analysis for water hammer problems in hydraulic networks. Starting from the classical water hammer equations in a single-phase liquid with friction, the state vector comprising the piezometric head and the velocity was defined. Applying the differential method the adjoint operator, the adjoint equations with the general form of their boundary conditions, and the general form of the bilinear concomitant were calculated. The discretized adjoint equations and the corresponding boundary conditions were programmed and solved by using the so called method of characteristics. As an example, a constant-level tank connected through a pipe to a valve discharging to atmosphere was considered. The bilinear concomitant was calculated for this particular case. The corresponding sensitivity coefficients due to the variation of different parameters by using both the differential method and the response surface generated by the computer code WHAT were also calculated. The results obtained with these methods show excellent agreement. (author). 11 refs, 2 figs, 2 tabs
Directory of Open Access Journals (Sweden)
Jixin Wang
2014-06-01
Full Text Available This paper presents a rational prediction of temperature field on the differential hybrid system (DHS based on the thermal network method (TNM. The whole thermal network model is built by considering both the contact thermal resistance between gasket and planet gear and the temperature effect on the physical property parameters of lubricant. The contact thermal resistance is obtained by using the concept of contact branch thermal resistance and G-W elastic model. By building an elaborate thermal network model and computing models for power losses and thermal resistances between components, the whole temperature field of DHS under typical operating condition is predicted. Results show that thermal network method can be effectively used to predict the temperature distribution and the rule of temperature variation, the surface roughness significantly affects contact thermal conduction, and the decrease in the thermal resistance of the natural convection between air and DHS housing can effectively improve the thermal environment of DHS.
International Nuclear Information System (INIS)
Thomas, J.R. Jr.; Adams, J.T.
1994-01-01
A neural network was trained with data for the frequency response function between in-core neutron noise and core-exit thermocouple noise in a pressurized water reactor, with the moderator temperature coefficient (MTC) as target. The trained network was subsequently used to predict the MTC at other points in the same fuel cycle. Results support use of the method for operating pressurized water reactors provided noise data can be accumulated for several fuel cycles to provide a training base
Valentini, Giorgio; Paccanaro, Alberto; Caniza, Horacio; Romero, Alfonso E.; Re, Matteo
2014-01-01
Objective In the context of “network medicine”, gene prioritization methods represent one of the main tools to discover candidate disease genes by exploiting the large amount of data covering different types of functional relationships between genes. Several works proposed to integrate multiple sources of data to improve disease gene prioritization, but to our knowledge no systematic studies focused on the quantitative evaluation of the impact of network integration on gene prioritization. In this paper, we aim at providing an extensive analysis of gene-disease associations not limited to genetic disorders, and a systematic comparison of different network integration methods for gene prioritization. Materials and methods We collected nine different functional networks representing different functional relationships between genes, and we combined them through both unweighted and weighted network integration methods. We then prioritized genes with respect to each of the considered 708 medical subject headings (MeSH) diseases by applying classical guilt-by-association, random walk and random walk with restart algorithms, and the recently proposed kernelized score functions. Results The results obtained with classical random walk algorithms and the best single network achieved an average area under the curve (AUC) across the 708 MeSH diseases of about 0.82, while kernelized score functions and network integration boosted the average AUC to about 0.89. Weighted integration, by exploiting the different “informativeness” embedded in different functional networks, outperforms unweighted integration at 0.01 significance level, according to the Wilcoxon signed rank sum test. For each MeSH disease we provide the top-ranked unannotated candidate genes, available for further bio-medical investigation. Conclusions Network integration is necessary to boost the performances of gene prioritization methods. Moreover the methods based on kernelized score functions can further
Yucel, Abdulkadir C.
2015-05-05
An efficient method for statistically characterizing multiconductor transmission line (MTL) networks subject to a large number of manufacturing uncertainties is presented. The proposed method achieves its efficiency by leveraging a high-dimensional model representation (HDMR) technique that approximates observables (quantities of interest in MTL networks, such as voltages/currents on mission-critical circuits) in terms of iteratively constructed component functions of only the most significant random variables (parameters that characterize the uncertainties in MTL networks, such as conductor locations and widths, and lumped element values). The efficiency of the proposed scheme is further increased using a multielement probabilistic collocation (ME-PC) method to compute the component functions of the HDMR. The ME-PC method makes use of generalized polynomial chaos (gPC) expansions to approximate the component functions, where the expansion coefficients are expressed in terms of integrals of the observable over the random domain. These integrals are numerically evaluated and the observable values at the quadrature/collocation points are computed using a fast deterministic simulator. The proposed method is capable of producing accurate statistical information pertinent to an observable that is rapidly varying across a high-dimensional random domain at a computational cost that is significantly lower than that of gPC or Monte Carlo methods. The applicability, efficiency, and accuracy of the method are demonstrated via statistical characterization of frequency-domain voltages in parallel wire, interconnect, and antenna corporate feed networks.
Valentini, Giorgio; Paccanaro, Alberto; Caniza, Horacio; Romero, Alfonso E; Re, Matteo
2014-06-01
In the context of "network medicine", gene prioritization methods represent one of the main tools to discover candidate disease genes by exploiting the large amount of data covering different types of functional relationships between genes. Several works proposed to integrate multiple sources of data to improve disease gene prioritization, but to our knowledge no systematic studies focused on the quantitative evaluation of the impact of network integration on gene prioritization. In this paper, we aim at providing an extensive analysis of gene-disease associations not limited to genetic disorders, and a systematic comparison of different network integration methods for gene prioritization. We collected nine different functional networks representing different functional relationships between genes, and we combined them through both unweighted and weighted network integration methods. We then prioritized genes with respect to each of the considered 708 medical subject headings (MeSH) diseases by applying classical guilt-by-association, random walk and random walk with restart algorithms, and the recently proposed kernelized score functions. The results obtained with classical random walk algorithms and the best single network achieved an average area under the curve (AUC) across the 708 MeSH diseases of about 0.82, while kernelized score functions and network integration boosted the average AUC to about 0.89. Weighted integration, by exploiting the different "informativeness" embedded in different functional networks, outperforms unweighted integration at 0.01 significance level, according to the Wilcoxon signed rank sum test. For each MeSH disease we provide the top-ranked unannotated candidate genes, available for further bio-medical investigation. Network integration is necessary to boost the performances of gene prioritization methods. Moreover the methods based on kernelized score functions can further enhance disease gene ranking results, by adopting both
A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.
Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang
2015-11-13
Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.
A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks
Directory of Open Access Journals (Sweden)
Xuerong Cui
2015-11-01
Full Text Available Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR environments.
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
Czech Academy of Sciences Publication Activity Database
Liao, S.; Vejchodský, Tomáš; Erban, R.
2015-01-01
Roč. 12, č. 108 (2015), s. 20150233 ISSN 1742-5689 EU Projects: European Commission(XE) 328008 - STOCHDETBIOMODEL Institutional support: RVO:67985840 Keywords : gene regulatory networks * stochastic modelling * parametric analysis Subject RIV: BA - General Mathematics Impact factor: 3.818, year: 2015 http://rsif.royalsocietypublishing.org/content/12/108/20150233
Transient Analysis of Lumped Circuit Networks Loaded Thin Wires By DGTD Method
Li, Ping
2016-03-31
With the purpose of avoiding very fine mesh cells in the proximity of a thin wire, the modified telegrapher’s equations (MTEs) are employed to describe the thin wire voltage and current distributions, which consequently results in reduced number of unknowns and augmented Courant-Friedrichs-Lewy (CFL) number. As hyperbolic systems, both the MTEs and the Maxwell’s equations are solved by the discontinuous Galerkin time-domain (DGTD) method. In realistic situations, the thin wires could be either driven or loaded by circuit networks. The thin wire-circuit interface performs as a boundary condition for the thin wire solver, where the thin wire voltage and current used for the incoming flux evaluation involved in the DGTD analyzed MTEs are not available. To obtain this voltage and current, an auxiliary current flowing through the thin wire-circuit interface is introduced at each interface. Corresponding auxiliary equations derived from the invariable property of characteristic variable for hyperbolic systems are developed and solved together with the circuit equations established by the modified nodal analysis (MNA) modality. Furthermore, in order to characterize the field and thin wire interactions, a weighted electric field and a volume current density are added into the MTEs and Maxwell-Ampere’s law equation, respectively. To validate the proposed algorithm, three representative examples are presented.
Transient Analysis of Lumped Circuit Networks Loaded Thin Wires By DGTD Method
Li, Ping; Shi, Yifei; Jiang, Li Jun; Bagci, Hakan
2016-01-01
With the purpose of avoiding very fine mesh cells in the proximity of a thin wire, the modified telegrapher’s equations (MTEs) are employed to describe the thin wire voltage and current distributions, which consequently results in reduced number of unknowns and augmented Courant-Friedrichs-Lewy (CFL) number. As hyperbolic systems, both the MTEs and the Maxwell’s equations are solved by the discontinuous Galerkin time-domain (DGTD) method. In realistic situations, the thin wires could be either driven or loaded by circuit networks. The thin wire-circuit interface performs as a boundary condition for the thin wire solver, where the thin wire voltage and current used for the incoming flux evaluation involved in the DGTD analyzed MTEs are not available. To obtain this voltage and current, an auxiliary current flowing through the thin wire-circuit interface is introduced at each interface. Corresponding auxiliary equations derived from the invariable property of characteristic variable for hyperbolic systems are developed and solved together with the circuit equations established by the modified nodal analysis (MNA) modality. Furthermore, in order to characterize the field and thin wire interactions, a weighted electric field and a volume current density are added into the MTEs and Maxwell-Ampere’s law equation, respectively. To validate the proposed algorithm, three representative examples are presented.
Ecological network analysis: network construction
Fath, B.D.; Scharler, U.M.; Ulanowicz, R.E.; Hannon, B.
2007-01-01
Ecological network analysis (ENA) is a systems-oriented methodology to analyze within system interactions used to identify holistic properties that are otherwise not evident from the direct observations. Like any analysis technique, the accuracy of the results is as good as the data available, but
Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy
Directory of Open Access Journals (Sweden)
Nouri S.
2017-03-01
Full Text Available Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients. Objective: This study evaluates the accuracy of some artificial intelligence methods including neural network and those of combination with genetic algorithm as well as particle swarm optimization (PSO estimating tumor positions in real-time radiotherapy. Method: One hundred recorded signals of three external markers were used as input data. The signals from 3 markers thorough 10 breathing cycles of a patient treated via a cyber-knife for a lung tumor were used as data input. Then, neural network method and its combination with genetic or PSO algorithms were applied determining the tumor locations using MATLAB© software program. Results: The accuracies were obtained 0.8%, 12% and 14% in neural network, genetic and particle swarm optimization algorithms, respectively. Conclusion: The internal target volume (ITV should be determined based on the applied neural network algorithm on training steps.
Devolatilization Analysis in a Twin Screw Extruder by using the Flow Analysis Network (FAN) Method
Tomiyama, Hideki; Takamoto, Seiji; Shintani, Hiroaki; Inoue, Shigeki
We derived the theoretical formulas for three mechanisms of devolatilization in a twin screw extruder. These are flash, surface refreshment and forced expansion. The method for flash devolatilization is based on the equation of equilibrium concentration which shows that volatiles break off from polymer when they are relieved from high pressure condition. For surface refreshment devolatilization, we applied Latinen's model to allow estimation of polymer behavior in the unfilled screw conveying condition. Forced expansion devolatilization is based on the expansion theory in which foams are generated under reduced pressure and volatiles are diffused on the exposed surface layer after mixing with the injected devolatilization agent. Based on these models, we developed the simulation software of twin-screw extrusion by the FAN method and it allows us to quantitatively estimate volatile concentration and polymer temperature with a high accuracy in the actual multi-vent extrusion process for LDPE + n-hexane.
Directory of Open Access Journals (Sweden)
Mohammad Zounemat-Kermani
2018-03-01
Full Text Available Chlorination unit is widely used to supply safe drinking water and removal of pathogens from water distribution networks. Data-driven approach is one appropriate method for analyzing performance of chlorine in water supply network. In this study, multi-layer perceptron neural network (MLP with three training algorithms (gradient descent, conjugate gradient and BFGS and support vector machine (SVM with RBF kernel function were used to predict the concentration of residual chlorine in water supply networks of Ahmadabad Dafeh and Ahruiyeh villages in Kerman Province. Daily data including discharge (flow, chlorine consumption and residual chlorine were employed from the beginning of 1391 Hijri until the end of 1393 Hijri (for 3 years. To assess the performance of studied models, the criteria such as Nash-Sutcliffe efficiency (NS, root mean square error (RMSE, mean absolute percentage error (MAPE and correlation coefficient (CORR were used that in best modeling situation were 0.9484, 0.0255, 1.081, and 0.974 respectively which resulted from BFGS algorithm. The criteria indicated that MLP model with BFGS and conjugate gradient algorithms were better than all other models in 90 and 10 percent of cases respectively; while the MLP model based on gradient descent algorithm and the SVM model were better in none of the cases. According to the results of this study, proper management of chlorine concentration can be implemented by predicted values of residual chlorine in water supply network. Thus, decreased performance of perceptron network and support vector machine in water supply network of Ahruiyeh in comparison to Ahmadabad Dafeh can be inferred from improper management of chlorination.
A Short-Circuit Method for Networks.
Ong, P. P.
1983-01-01
Describes a method of network analysis that allows avoidance of Kirchoff's Laws (providing the network is symmetrical) by reduction to simple series/parallel resistances. The method can be extended to symmetrical alternating current, capacitance or inductance if corresponding theorems are used. Symmetric cubic network serves as an example. (JM)
Directory of Open Access Journals (Sweden)
Patricia Rice Doran
2011-12-01
Full Text Available Social network analysis software such as NodeXL has been used to describe participation and interaction in numerous social networks, but it has not yet been widely used to examine dynamics in online classes, where participation is frequently required rather than optional and participation patterns may be impacted by the requirements of the class, the instructor’s activities, or participants’ intrinsic engagement with the subject matter. Such social network analysis, which examines the dynamics and interactions among groups of participants in a social network or learning group, can be valuable in programs focused on teaching collaborative and communicative skills, including teacher preparation programs. Applied to these programs, social network analysis can provide information about instructional practices likely to facilitate student interaction and collaboration across diverse student populations. This exploratory study used NodeXL to visualize students’ participation in an online course, with the goal of identifying (1 ways in which NodeXL could be used to describe patterns in participant interaction within an instructional setting and (2 identifying specific patterns in participant interaction among students in this particular course. In this sample, general education teachers demonstrated higher measures of connection and interaction with other participants than did those from specialist (ESOL or special education backgrounds, and tended to interact more frequently with all participants than the majority of participants from specialist backgrounds. We recommend further research to delineate specific applications of NodeXL within an instructional context, particularly to identify potential patterns in student participation based on variables such as gender, background, cultural and linguistic heritage, prior training and education, and prior experience so that instructors can ensure their practice helps to facilitate student interaction
Meyer, Bernd J.; Sellers, Jeffrey P.; Thomsen, Jan U.
1993-01-01
Apparatus and processes for recognizing and identifying materials. Characteristic spectra are obtained for the materials via spectroscopy techniques including nuclear magnetic resonance spectroscopy, infrared absorption analysis, x-ray analysis, mass spectroscopy and gas chromatography. Desired portions of the spectra may be selected and then placed in proper form and format for presentation to a number of input layer neurons in an offline neural network. The network is first trained according to a predetermined training process; it may then be employed to identify particular materials. Such apparatus and processes are particularly useful for recognizing and identifying organic compounds such as complex carbohydrates, whose spectra conventionally require a high level of training and many hours of hard work to identify, and are frequently indistinguishable from one another by human interpretation.
Bonald, Thomas
2013-01-01
The book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples i
Development of flow network analysis code for block type VHTR core by linear theory method
International Nuclear Information System (INIS)
Lee, J. H.; Yoon, S. J.; Park, J. W.; Park, G. C.
2012-01-01
VHTR (Very High Temperature Reactor) is high-efficiency nuclear reactor which is capable of generating hydrogen with high temperature of coolant. PMR (Prismatic Modular Reactor) type reactor consists of hexagonal prismatic fuel blocks and reflector blocks. The flow paths in the prismatic VHTR core consist of coolant holes, bypass gaps and cross gaps. Complicated flow paths are formed in the core since the coolant holes and bypass gap are connected by the cross gap. Distributed coolant was mixed in the core through the cross gap so that the flow characteristics could not be modeled as a simple parallel pipe system. It requires lot of effort and takes very long time to analyze the core flow with CFD analysis. Hence, it is important to develop the code for VHTR core flow which can predict the core flow distribution fast and accurate. In this study, steady state flow network analysis code is developed using flow network algorithm. Developed flow network analysis code was named as FLASH code and it was validated with the experimental data and CFD simulation results. (authors)
Network modelling methods for FMRI.
Smith, Stephen M; Miller, Karla L; Salimi-Khorshidi, Gholamreza; Webster, Matthew; Beckmann, Christian F; Nichols, Thomas E; Ramsey, Joseph D; Woolrich, Mark W
2011-01-15
There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution. Copyright © 2010 Elsevier Inc. All rights reserved.
Dudar, O. I.; Dudar, E. S.
2017-11-01
The features of application of the 1D dimensional finite element method (FEM) in combination with the laminar solutions method (LSM) for the calculation of underground ventilating networks are considered. In this case the processes of heat and mass transfer change the properties of a fluid (binary vapour-air mix). Under the action of gravitational forces it leads to such phenomena as natural draft, local circulation, etc. The FEM relations considering the action of gravity, the mass conservation law, the dependence of vapour-air mix properties on the thermodynamic parameters are derived so that it allows one to model the mentioned phenomena. The analogy of the elastic and plastic rod deformation processes to the processes of laminar and turbulent flow in a pipe is described. Owing to this analogy, the guaranteed convergence of the elastic solutions method for the materials of plastic type means the guaranteed convergence of the LSM for any regime of a turbulent flow in a rough pipe. By means of numerical experiments the convergence rate of the FEM - LSM is investigated. This convergence rate appeared much higher than the convergence rate of the Cross - Andriyashev method. Data of other authors on the convergence rate comparison for the finite element method, the Newton method and the method of gradient are provided. These data allow one to conclude that the FEM in combination with the LSM is one of the most effective methods of calculation of hydraulic and ventilating networks. The FEM - LSM has been used for creation of the research application programme package “MineClimate” allowing to calculate the microclimate parameters in the underground ventilating networks.
Evolutionary analysis of apolipoprotein E by Maximum Likelihood and complex network methods
Directory of Open Access Journals (Sweden)
Leandro de Jesus Benevides
Full Text Available Abstract Apolipoprotein E (apo E is a human glycoprotein with 299 amino acids, and it is a major component of very low density lipoproteins (VLDL and a group of high-density lipoproteins (HDL. Phylogenetic studies are important to clarify how various apo E proteins are related in groups of organisms and whether they evolved from a common ancestor. Here, we aimed at performing a phylogenetic study on apo E carrying organisms. We employed a classical and robust method, such as Maximum Likelihood (ML, and compared the results using a more recent approach based on complex networks. Thirty-two apo E amino acid sequences were downloaded from NCBI. A clear separation could be observed among three major groups: mammals, fish and amphibians. The results obtained from ML method, as well as from the constructed networks showed two different groups: one with mammals only (C1 and another with fish (C2, and a single node with the single sequence available for an amphibian. The accordance in results from the different methods shows that the complex networks approach is effective in phylogenetic studies. Furthermore, our results revealed the conservation of apo E among animal groups.
Comparative analysis of methods for extracting vessel network on breast MRI images
Gaizer, Bence T.; Vassiou, Katerina G.; Lavdas, Eleftherios; Arvanitis, Dimitrios L.; Fezoulidis, Ioannis V.; Glotsos, Dimitris T.
2017-11-01
Digital processing of MRI images aims to provide an automatized diagnostic evaluation of regular health screenings. Cancerous lesions are proven to cause an alteration in the vessel structure of the diseased organ. Currently there are several methods used for extraction of the vessel network in order to quantify its properties. In this work MRI images (Signa HDx 3.0T, GE Healthcare, courtesy of University Hospital of Larissa) of 30 female breasts were subjected to three different vessel extraction algorithms to determine the location of their vascular network. The first method is an experiment to build a graph over known points of the vessel network; the second algorithm aims to determine the direction and diameter of vessels at these points; the third approach is a seed growing algorithm, spreading selection to neighbors of the known vessel pixels. The possibilities shown by the different methods were analyzed, and quantitative measurements were performed. The data provided by these measurements showed no clear correlation with the presence or malignancy of tumors, based on the radiological diagnosis of skilled physicians.
Method of analysis of populations exposure and radio coverage of GSM and UMTS mobile phone networks
International Nuclear Information System (INIS)
Gaudaire, Francois; Noe, Nicolas; Dufour, Jean Benoit; De Seze, Rene; Cagnon, Patrice; Selmaoui, Brahim; Mauger, Samuel; Thuroczy, Georges; Mazet, Paul
2012-01-01
We present a description and preliminary results of a large-scale project (COMOP) started in 2009 by the Ministry for Ecology, Sustainable Development and Energy and the National Agency of Frequencies (ANFR). This work is collaborative between the government, municipalities, associations, network operators and agencies. This project concerns GSM and UMTS mobile phone networks. Sixteen voluntary pilot communes were selected to carry out the experiments. This work is based on numerical modeling methods associated with various innovative measurement campaigns. It consists of: - determination of current status of exposure to radiofrequency electromagnetic fields emitted by base station antennas by modeling and measurements. - investigations on reducing this exposure while assessing the impact of parallel territorial coverage and quality of service of mobile networks. This study has established a comprehensive scientific realization of human exposure to radio-frequencies from base station antennas. These results constitute an innovative approach and are relevant in terms of dialogue in the current debate about positioning of base stations. (authors)
Directory of Open Access Journals (Sweden)
Ichiro IWASAKI
2010-06-01
Full Text Available Michael Porter’s concept of competitive advantages emphasizes the importance of regional cooperation of various actors in order to gain competitiveness on globalized markets. Foreign investors may play an important role in forming such cooperation networks. Their local suppliers tend to concentrate regionally. They can form, together with local institutions of education, research, financial and other services, development agencies, the nucleus of cooperative clusters. This paper deals with the relationship between supplier networks and clusters. Two main issues are discussed in more detail: the interest of multinational companies in entering regional clusters and the spillover effects that may stem from their participation. After the discussion on the theoretical background, the paper introduces a relatively new analytical method: “cluster mapping” - a method that can spot regional hot spots of specific economic activities with cluster building potential. Experience with the method was gathered in the US and in the European Union. After the discussion on the existing empirical evidence, the authors introduce their own cluster mapping results, which they obtained by using a refined version of the original methodology.
Performance Analysis of Classification Methods for Indoor Localization in Vlc Networks
Sánchez-Rodríguez, D.; Alonso-González, I.; Sánchez-Medina, J.; Ley-Bosch, C.; Díaz-Vilariño, L.
2017-09-01
Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.
PERFORMANCE ANALYSIS OF CLASSIFICATION METHODS FOR INDOOR LOCALIZATION IN VLC NETWORKS
Directory of Open Access Journals (Sweden)
D. Sánchez-Rodríguez
2017-09-01
Full Text Available Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.
Hindhede, Anette Lykke; Aagaard-Hansen, Jens
2017-03-01
This article provides an example of the application of social network analysis method to assess community participation thereby strengthening planning and implementation of health promotion programming. Community health promotion often takes the form of services that reach out to or are located within communities. The concept of community reflects the idea that people's behavior and well-being are influenced by interaction with others, and here, health promotion requires participation and local leadership to facilitate transmission and uptake of interventions for the overall community to achieve social change. However, considerable uncertainty exists over exact levels of participation in these interventions. The article draws on a mixed methods research within a community development project in a vulnerable neighborhood of a town in Denmark. It presents a detailed analysis of the way in which social network analysis can be used as a tool to display participation and nonparticipation in community development and health promotion activities, to help identify capacities and assets, mobilize resources, and finally to evaluate the achievements. The article concludes that identification of interpersonal ties among people who know one another well as well as more tenuous relationships in networks can be used by community development workers to foster greater cohesion and cooperation within an area.
An Examination of Research Collaboration in Psychometrics Utilizing Social Network Analysis Methods
DiCrecchio, Nicole C.
2016-01-01
Co-authorship networks have been studied in many fields as a way to understand collaboration patterns. However, a comprehensive exploration of the psychometrics field has not been conducted. Also, few studies on co-author networks have included longitudinal analyses as well as data on the characteristics of authors in the network. Including both…
The minimum spanning tree : An unbiased method for brain network analysis
Tewarie, P.; van Dellen, E.; Hillebrand, A.; Stam, C. J.
2015-01-01
The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the
Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network
International Nuclear Information System (INIS)
Wang Xiaojia; Mao Qirong; Zhan Yongzhao
2008-01-01
There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions. The experiments show that this method can improve the recognition rate and the time of feature extraction
Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong
2016-01-11
Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher's exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO's usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher.
Directory of Open Access Journals (Sweden)
Xiao-Hong Zhang
2018-04-01
Full Text Available Background/Aims: We performed a network meta-analysis (NMA to investigate and compare the diagnostic value of 19 different imaging methods used for breast cancer (BC. Methods: Cochrane Library, PubMed and EMBASE were searched to collect the relevant literature from the inception of the study until November 2016. A combination of direct and indirect comparisons was performed using an NMA to evaluate the combined odd ratios (OR and draw the surface under the cumulative ranking curves (SUCRA of the diagnostic value of different imaging methods for BC. Results: A total of 39 eligible diagnostic tests regarding 19 imaging methods (mammography [MG], breast-specific gamma imaging [BSGI], color Doppler sonography [CD], contrast-enhanced magnetic resonance imaging [CE-MRI], digital breast tomosynthesis [DBT], fluorodeoxyglucose positron-emission tomography/computed tomography [FDG PET/CT], fluorodeoxyglucose positron-emission tomography [FDG-PET], full field digital mammography [FFDM], handheld breast ultrasound [HHUS], magnetic resonance imaging [MRI], automated breast volume scanner [ABUS], magnetic resonance mammography [MRM], scintimammography [SMM], single photon emission computed tomography scintimammography [SPECT SMM], ultrasound elastography [UE], ultrasonography [US], mammography + ultrasonography [MG + US], mammography + scintimammography [MG + SMM], and ultrasound elastography + ultrasonography [UE + US] were included in the study. According to this network meta-analysis, in comparison to the MG method, the CE-MRI, MRI, MRM, MG + SMM and UE + US methods exhibited relatively higher sensitivity, and the specificity of the FDG PET/CT method was higher, while the BSGI and MRI methods exhibited higher accuracy. Conclusion: The results from this NMA indicate that the diagnostic value of the BSGI, MG + SMM, MRI and CE-MRI methods for BC were relatively higher in terms of sensitivity, specificity and accuracy.
Directory of Open Access Journals (Sweden)
Chih-Ta Yen
2015-01-01
Full Text Available This study proposes novel three-dimensional (3D matrices of wavelength/time/spatial code for code-division multiple-access (OCDMA networks, with a double balanced detection mechanism. We construct 3D carrier-hopping prime/modified prime (CHP/MP codes by extending a two-dimensional (2D CHP code integrated with a one-dimensional (1D MP code. The corresponding coder/decoder pairs were based on fiber Bragg gratings (FBGs and tunable optical delay lines integrated with splitters/combiners. System performance was enhanced by the low cross correlation properties of the 3D code designed to avoid the beat noise phenomenon. The CHP/MP code cardinality increased significantly compared to the CHP code under the same bit error rate (BER. The results indicate that the 3D code method can enhance system performance because both the beating terms and multiple-access interference (MAI were reduced by the double balanced detection mechanism. Additionally, the optical component can also be relaxed for high transmission scenery.
Mbakwe, Anthony C; Saka, Anthony A; Choi, Keechoo; Lee, Young-Jae
2016-08-01
Highway traffic accidents all over the world result in more than 1.3 million fatalities annually. An alarming number of these fatalities occurs in developing countries. There are many risk factors that are associated with frequent accidents, heavy loss of lives, and property damage in developing countries. Unfortunately, poor record keeping practices are very difficult obstacle to overcome in striving to obtain a near accurate casualty and safety data. In light of the fact that there are numerous accident causes, any attempts to curb the escalating death and injury rates in developing countries must include the identification of the primary accident causes. This paper, therefore, seeks to show that the Delphi Technique is a suitable alternative method that can be exploited in generating highway traffic accident data through which the major accident causes can be identified. In order to authenticate the technique used, Korea, a country that underwent similar problems when it was in its early stages of development in addition to the availability of excellent highway safety records in its database, is chosen and utilized for this purpose. Validation of the methodology confirms the technique is suitable for application in developing countries. Furthermore, the Delphi Technique, in combination with the Bayesian Network Model, is utilized in modeling highway traffic accidents and forecasting accident rates in the countries of research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Network Slicing in Industry 4.0 Applications: Abstraction Methods and End-to-End Analysis
DEFF Research Database (Denmark)
Nielsen, Jimmy Jessen; Popovski, Petar; Kalør, Anders Ellersgaard
2018-01-01
Industry 4.0 refers to the fourth industrial revolution, and introduces modern communication and computation technologies such as 5G, cloud computing and Internet of Things to industrial manufacturing systems. As a result, many devices, machines and applications will rely on connectivity, while...... having different requirements from the network, ranging from high reliability and low latency to high data rates. Furthermore, these industrial networks will be highly heterogeneous as they will feature a number of diverse communication technologies. In this article, we propose network slicing...
The method in γ spectrum analysis with artificial neural network based on MATLAB
International Nuclear Information System (INIS)
Bai Lixin; Zhang Yiyun; Xu Jiayun; Wu Liping
2003-01-01
Analyzing γ spectrum with artificial neural network have the advantage of using the information of whole spectrum and having high analyzing precision. A convenient realization based on MATLAB was present in this
An investigation and comparison on network performance analysis
Lanxiaopu, Mi
2012-01-01
This thesis is generally about network performance analysis. It contains two parts. The theory part summarizes what network performance is and inducts the methods of doing network performance analysis. To answer what network performance is, a study into what network services are is done. And based on the background research, there are two important network performance metrics: Network delay and Throughput should be included in network performance analysis. Among the methods of network a...
Statistical analysis of network data with R
Kolaczyk, Eric D
2014-01-01
Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).
Pang, Jincheng; Özkucur, Nurdan; Ren, Michael; Kaplan, David L; Levin, Michael; Miller, Eric L
2015-11-01
Phase Contrast Microscopy (PCM) is an important tool for the long term study of living cells. Unlike fluorescence methods which suffer from photobleaching of fluorophore or dye molecules, PCM image contrast is generated by the natural variations in optical index of refraction. Unfortunately, the same physical principles which allow for these studies give rise to complex artifacts in the raw PCM imagery. Of particular interest in this paper are neuron images where these image imperfections manifest in very different ways for the two structures of specific interest: cell bodies (somas) and dendrites. To address these challenges, we introduce a novel parametric image model using the level set framework and an associated variational approach which simultaneously restores and segments this class of images. Using this technique as the basis for an automated image analysis pipeline, results for both the synthetic and real images validate and demonstrate the advantages of our approach.
Multidisciplinary Collaboration in Professional Networks for PD A Mixed-Method Analysis
Eijk, M. van; Bloem, B.R.; Nijhuis, F.A.P.; Koetsenruijter, J.; Vrijhoef, H.J.; Munneke, M.; Wensing, M.; Faber, M.J.
2015-01-01
BACKGROUND: ParkinsonNet, a nationwide organization with regionally oriented professional health networks in TheNetherlands, aims to improve the quality of Parkinson care. Facilitation of multidisciplinary collaboration is a key objective of ParkinsonNet. OBJECTIVES: This study examined whether the
Network analysis applications in hydrology
Price, Katie
2017-04-01
Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain underexplored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five longterm USGS streamflow and water quality gages, allowing network application of longterm flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long term and eventbased hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwatersurface water interactions.
Logic-based models in systems biology: a predictive and parameter-free network analysis method.
Wynn, Michelle L; Consul, Nikita; Merajver, Sofia D; Schnell, Santiago
2012-11-01
Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network's dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples.
Spectral Analysis of Rich Network Topology in Social Networks
Wu, Leting
2013-01-01
Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…
Methods for analysis of passenger trip performance in a complex networked transportation system
Wang, Danyi
2007-12-01
The purpose of the Air Transportation System (ATS) is to provide safe and efficient transportation service of passengers and cargo. The on-time performance of a passenger's trip is a critical performance measurement of the Quality of Service (QOS) provided by any Air Transportation System. QOS has been correlated with airline profitability, productivity, customer loyalty and customer satisfaction (Heskett et al. 1994). Btatu and Barnhart have shown that official government and airline on-time performance metrics (i.e. flight-centric measures of air transportation) fail to accurately reflect the passenger experience (Btatu and Barnhart, 2005). Flight-based metrics do not include the trip delays accrued by passengers who were re-booked due to cancelled flights or missed connections. Also, flight-based metrics do not quantify the magnitude of the delay (only the likelihood) and thus fails to provide the consumer with a useful assessment of the impact of a delay. Passenger-centric metrics have not been developed because of the unavailability of airline proprietary data, which is also protected by anti-trust collusion concerns and civil liberty privacy restrictions. Moveover, the growth of the ATS is trending out of the historical range. The objectives of this research were to (1) estimate ATS-wide passenger trip delay using publicly accessible flight data, and (2) investigate passenger trip dynamics out of the range of historical data by building a passenger flow simulation model to predict impact on passenger trip time given anticipated changes in the future. The first objective enables researchers to conduct historical analysis on passenger on-time performance without proprietary itinerary data, and the second objective enables researchers to conduct experiments outside the range of historic data. The estimated passenger trip delay was for 1,030 routes between the 35 busiest airports in the United States in 2006. The major findings of this research are listed as
Smitha, K A; Akhil Raja, K; Arun, K M; Rajesh, P G; Thomas, Bejoy; Kapilamoorthy, T R; Kesavadas, Chandrasekharan
2017-08-01
The inquisitiveness about what happens in the brain has been there since the beginning of humankind. Functional magnetic resonance imaging is a prominent tool which helps in the non-invasive examination, localisation as well as lateralisation of brain functions such as language, memory, etc. In recent years, there is an apparent shift in the focus of neuroscience research to studies dealing with a brain at 'resting state'. Here the spotlight is on the intrinsic activity within the brain, in the absence of any sensory or cognitive stimulus. The analyses of functional brain connectivity in the state of rest have revealed different resting state networks, which depict specific functions and varied spatial topology. However, different statistical methods have been introduced to study resting state functional magnetic resonance imaging connectivity, yet producing consistent results. In this article, we introduce the concept of resting state functional magnetic resonance imaging in detail, then discuss three most widely used methods for analysis, describe a few of the resting state networks featuring the brain regions, associated cognitive functions and clinical applications of resting state functional magnetic resonance imaging. This review aims to highlight the utility and importance of studying resting state functional magnetic resonance imaging connectivity, underlining its complementary nature to the task-based functional magnetic resonance imaging.
Network analysis literacy a practical approach to the analysis of networks
Zweig, Katharina A
2014-01-01
Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.
Binary Classification Method of Social Network Users
Directory of Open Access Journals (Sweden)
I. A. Poryadin
2017-01-01
Full Text Available The subject of research is a binary classification method of social network users based on the data analysis they have placed. Relevance of the task to gain information about a person by examining the content of his/her pages in social networks is exemplified. The most common approach to its solution is a visual browsing. The order of the regional authority in our country illustrates that its using in school education is needed. The article shows restrictions on the visual browsing of pupil’s pages in social networks as a tool for the teacher and the school psychologist and justifies that a process of social network users’ data analysis should be automated. Explores publications, which describe such data acquisition, processing, and analysis methods and considers their advantages and disadvantages. The article also gives arguments to support a proposal to study the classification method of social network users. One such method is credit scoring, which is used in banks and credit institutions to assess the solvency of clients. Based on the high efficiency of the method there is a proposal for significant expansion of its using in other areas of society. The possibility to use logistic regression as the mathematical apparatus of the proposed method of binary classification has been justified. Such an approach enables taking into account the different types of data extracted from social networks. Among them: the personal user data, information about hobbies, friends, graphic and text information, behaviour characteristics. The article describes a number of existing methods of data transformation that can be applied to solve the problem. An experiment of binary gender-based classification of social network users is described. A logistic model obtained for this example includes multiple logical variables obtained by transforming the user surnames. This experiment confirms the feasibility of the proposed method. Further work is to define a system
International Nuclear Information System (INIS)
Nasser, Hassan; Cessac, Bruno; Marre, Olivier
2013-01-01
Understanding the dynamics of neural networks is a major challenge in experimental neuroscience. For that purpose, a modelling of the recorded activity that reproduces the main statistics of the data is required. In the first part, we present a review on recent results dealing with spike train statistics analysis using maximum entropy models (MaxEnt). Most of these studies have focused on modelling synchronous spike patterns, leaving aside the temporal dynamics of the neural activity. However, the maximum entropy principle can be generalized to the temporal case, leading to Markovian models where memory effects and time correlations in the dynamics are properly taken into account. In the second part, we present a new method based on Monte Carlo sampling which is suited for the fitting of large-scale spatio-temporal MaxEnt models. The formalism and the tools presented here will be essential to fit MaxEnt spatio-temporal models to large neural ensembles. (paper)
Richards, William D., Jr.
Previous methods for determining the communication structure of organizations work well for small or simple organizations, but are either inadequate or unwieldy for use with large complex organizations. An improved method uses a number of different measures and a series of successive approximations to order the communication matrix such that…
International Nuclear Information System (INIS)
Inakollu, Prasanthi; Philip, Thomas; Rai, Awadhesh K.; Yueh Fangyu; Singh, Jagdish P.
2009-01-01
A comparative study of analysis methods (traditional calibration method and artificial neural networks (ANN) prediction method) for laser induced breakdown spectroscopy (LIBS) data of different Al alloy samples was performed. In the calibration method, the intensity of the analyte lines obtained from different samples are plotted against their concentration to form calibration curves for different elements from which the concentrations of unknown elements were deduced by comparing its LIBS signal with the calibration curves. Using ANN, an artificial neural network model is trained with a set of input data of known composition samples. The trained neural network is then used to predict the elemental concentration from the test spectra. The present results reveal that artificial neural networks are capable of predicting values better than traditional method in most cases
Google matrix analysis of directed networks
Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.
2015-10-01
In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.
The standard deviation method: data analysis by classical means and by neural networks
International Nuclear Information System (INIS)
Bugmann, G.; Stockar, U. von; Lister, J.B.
1989-08-01
The Standard Deviation Method is a method for determining particle size which can be used, for instance, to determine air-bubble sizes in a fermentation bio-reactor. The transmission coefficient of an ultrasound beam through a gassy liquid is measured repetitively. Due to the displacements and random positions of the bubbles, the measurements show a scatter whose standard deviation is dependent on the bubble-size. The precise relationship between the measured standard deviation, the transmission and the particle size has been obtained from a set of computer-simulated data. (author) 9 figs., 5 refs
Multiple network interface core apparatus and method
Underwood, Keith D [Albuquerque, NM; Hemmert, Karl Scott [Albuquerque, NM
2011-04-26
A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.
Pulse shape analysis based on similarity and neural network with digital-analog fusion method
International Nuclear Information System (INIS)
Mardiyanto, M.P.; Uritani, A.; Sakai, H.; Kawarabayashi, J.; Iguchi, T.
2000-01-01
Through the measurement of 22 Na γ-rays, it has been demonstrated that the correction process was well done by fusing the similarity values with the pulse heights measured by the analog system, where at least four improvements in the energy spectrum characteristics were recognized, i.e., the increase of the peak-to-valley ratio, the photopeak area, the photopeak sharpness without discarding any events, and the 1,275 keV γ-ray photopeak was seen. The use of a slow digitizer was the main problem for this method. However, it can be solved easily using a faster digitizer. The fusion method was also applied for the beta-gamma mixed spectra separation. Mixed spectra of beta-gamma of the 137 Cs- 90 Sr mixed source could be separated well. We made a comparison between the energy spectrum of 137 Cs as a result of independent measurement with the result of the separation. After being compared, both FWHM agreed quite well. However, there was a slight difference between the two spectra on the peak-to-valley ratio. This separation method is simple and useful so that it can be applied for many other similar applications. (S.Y.)
Directory of Open Access Journals (Sweden)
Dewei Tang
2017-03-01
Full Text Available The main task of the third Chinese lunar exploration project is to obtain soil samples that are greater than two meters in length and to acquire bedding information from the surface of the moon. The driving component is the power output unit of the drilling system in the lander; it provides drilling power for core drilling tools. High temperatures can cause the sensors, permanent magnet, gears, and bearings to suffer irreversible damage. In this paper, a thermal analysis model for this driving component, based on the thermal network method (TNM was established and the model was solved using the quasi-Newton method. A vacuum test platform was built and an experimental verification method (EVM was applied to measure the surface temperature of the driving component. Then, the TNM was optimized, based on the principle of heat distribution. Through comparative analyses, the reasonableness of the TNM is validated. Finally, the static temperature field of the driving component was predicted and the “safe working times” of every mode are given.
International Nuclear Information System (INIS)
Han, Sang Min; Kim, Ar Ryum; Seong, Poong Hyun
2016-01-01
In this study, team safety culture competency of a team was estimated through SNA, as a team safety culture index. To overcome the limit of existing safety culture evaluation methods, the concept of competency and SNA were adopted. To estimate team safety culture competency, we defined the definition, range and goal of team safety culture competencies. Derivation of core team safety culture competencies is performed and its behavioral characteristics were derived for each safety culture competency, from the procedures used in NPPs and existing criteria to assess safety culture. Then observation was chosen as a method to provide the input data for the SNA matrix of team members versus insufficient team safety culture competencies. Then through matrix operation, the matrix was converted into the two meaningful values, which are density of team members and degree centralities of each team safety culture competency. Density of tem members and degree centrality of each team safety culture competency represent the team safety culture index and the priority of team safety culture competency to be improved
Energy Technology Data Exchange (ETDEWEB)
Han, Sang Min; Kim, Ar Ryum; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)
2016-05-15
In this study, team safety culture competency of a team was estimated through SNA, as a team safety culture index. To overcome the limit of existing safety culture evaluation methods, the concept of competency and SNA were adopted. To estimate team safety culture competency, we defined the definition, range and goal of team safety culture competencies. Derivation of core team safety culture competencies is performed and its behavioral characteristics were derived for each safety culture competency, from the procedures used in NPPs and existing criteria to assess safety culture. Then observation was chosen as a method to provide the input data for the SNA matrix of team members versus insufficient team safety culture competencies. Then through matrix operation, the matrix was converted into the two meaningful values, which are density of team members and degree centralities of each team safety culture competency. Density of tem members and degree centrality of each team safety culture competency represent the team safety culture index and the priority of team safety culture competency to be improved.
Network systems security analysis
Yilmaz, Ä.°smail
2015-05-01
Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.
Functional Module Analysis for Gene Coexpression Networks with Network Integration.
Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K
2015-01-01
Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.
Gebali, Fayez
2015-01-01
This textbook presents the mathematical theory and techniques necessary for analyzing and modeling high-performance global networks, such as the Internet. The three main building blocks of high-performance networks are links, switching equipment connecting the links together, and software employed at the end nodes and intermediate switches. This book provides the basic techniques for modeling and analyzing these last two components. Topics covered include, but are not limited to: Markov chains and queuing analysis, traffic modeling, interconnection networks and switch architectures and buffering strategies. · Provides techniques for modeling and analysis of network software and switching equipment; · Discusses design options used to build efficient switching equipment; · Includes many worked examples of the application of discrete-time Markov chains to communication systems; · Covers the mathematical theory and techniques necessary for ana...
Spencer, S.; Ogle, S.; Borch, T.; Rock, B.
2008-12-01
Monitoring soil C stocks is critical to assess the impact of future climate and land use change on carbon sinks and sources in agricultural lands. A benchmark network for soil carbon monitoring of stock changes is being designed for US agricultural lands with 3000-5000 sites anticipated and re-sampling on a 5- to10-year basis. Approximately 1000 sites would be sampled per year producing around 15,000 soil samples to be processed for total, organic, and inorganic carbon, as well as bulk density and nitrogen. Laboratory processing of soil samples is cost and time intensive, therefore we are testing the efficacy of using near-infrared (NIR) and mid-infrared (MIR) spectral methods for estimating soil carbon. As part of an initial implementation of national soil carbon monitoring, we collected over 1800 soil samples from 45 cropland sites in the mid-continental region of the U.S. Samples were processed using standard laboratory methods to determine the variables above. Carbon and nitrogen were determined by dry combustion and inorganic carbon was estimated with an acid-pressure test. 600 samples are being scanned using a bench- top NIR reflectance spectrometer (30 g of 2 mm oven-dried soil and 30 g of 8 mm air-dried soil) and 500 samples using a MIR Fourier-Transform Infrared Spectrometer (FTIR) with a DRIFT reflectance accessory (0.2 g oven-dried ground soil). Lab-measured carbon will be compared to spectrally-estimated carbon contents using Partial Least Squares (PLS) multivariate statistical approach. PLS attempts to develop a soil C predictive model that can then be used to estimate C in soil samples not lab-processed. The spectral analysis of soil samples either whole or partially processed can potentially save both funding resources and time to process samples. This is particularly relevant for the implementation of a national monitoring network for soil carbon. This poster will discuss our methods, initial results and potential for using NIR and MIR spectral
Review Essay: Does Qualitative Network Analysis Exist?
Directory of Open Access Journals (Sweden)
Rainer Diaz-Bone
2007-01-01
Full Text Available Social network analysis was formed and established in the 1970s as a way of analyzing systems of social relations. In this review the theoretical-methodological standpoint of social network analysis ("structural analysis" is introduced and the different forms of social network analysis are presented. Structural analysis argues that social actors and social relations are embedded in social networks, meaning that action and perception of actors as well as the performance of social relations are influenced by the network structure. Since the 1990s structural analysis has integrated concepts such as agency, discourse and symbolic orientation and in this way structural analysis has opened itself. Since then there has been increasing use of qualitative methods in network analysis. They are used to include the perspective of the analyzed actors, to explore networks, and to understand network dynamics. In the reviewed book, edited by Betina HOLLSTEIN and Florian STRAUS, the twenty predominantly empirically orientated contributions demonstrate the possibilities of combining quantitative and qualitative methods in network analyses in different research fields. In this review we examine how the contributions succeed in applying and developing the structural analysis perspective, and the self-positioning of "qualitative network analysis" is evaluated. URN: urn:nbn:de:0114-fqs0701287
Arcos-García, Álvaro; Álvarez-García, Juan A; Soria-Morillo, Luis M
2018-03-01
This paper presents a Deep Learning approach for traffic sign recognition systems. Several classification experiments are conducted over publicly available traffic sign datasets from Germany and Belgium using a Deep Neural Network which comprises Convolutional layers and Spatial Transformer Networks. Such trials are built to measure the impact of diverse factors with the end goal of designing a Convolutional Neural Network that can improve the state-of-the-art of traffic sign classification task. First, different adaptive and non-adaptive stochastic gradient descent optimisation algorithms such as SGD, SGD-Nesterov, RMSprop and Adam are evaluated. Subsequently, multiple combinations of Spatial Transformer Networks placed at distinct positions within the main neural network are analysed. The recognition rate of the proposed Convolutional Neural Network reports an accuracy of 99.71% in the German Traffic Sign Recognition Benchmark, outperforming previous state-of-the-art methods and also being more efficient in terms of memory requirements. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantitative Efficiency Evaluation Method for Transportation Networks
Directory of Open Access Journals (Sweden)
Jin Qin
2014-11-01
Full Text Available An effective evaluation of transportation network efficiency/performance is essential to the establishment of sustainable development in any transportation system. Based on a redefinition of transportation network efficiency, a quantitative efficiency evaluation method for transportation network is proposed, which could reflect the effects of network structure, traffic demands, travel choice, and travel costs on network efficiency. Furthermore, the efficiency-oriented importance measure for network components is presented, which can be used to help engineers identify the critical nodes and links in the network. The numerical examples show that, compared with existing efficiency evaluation methods, the network efficiency value calculated by the method proposed in this paper can portray the real operation situation of the transportation network as well as the effects of main factors on network efficiency. We also find that the network efficiency and the importance values of the network components both are functions of demands and network structure in the transportation network.
Datta, Sumona; Shah, Lena; Gilman, Robert H; Evans, Carlton A
2017-08-01
The performance of laboratory tests to diagnose pulmonary tuberculosis is dependent on the quality of the sputum sample tested. The relative merits of sputum collection methods to improve tuberculosis diagnosis are poorly characterised. We therefore aimed to investigate the effects of sputum collection methods on tuberculosis diagnosis. We did a systematic review and meta-analysis to investigate whether non-invasive sputum collection methods in people aged at least 12 years improve the diagnostic performance of laboratory testing for pulmonary tuberculosis. We searched PubMed, Google Scholar, ProQuest, Web of Science, CINAHL, and Embase up to April 14, 2017, to identify relevant experimental, case-control, or cohort studies. We analysed data by pairwise meta-analyses with a random-effects model and by network meta-analysis. All diagnostic performance data were calculated at the sputum-sample level, except where authors only reported data at the individual patient-level. Heterogeneity was assessed, with potential causes identified by logistic meta-regression. We identified 23 eligible studies published between 1959 and 2017, involving 8967 participants who provided 19 252 sputum samples. Brief, on-demand spot sputum collection was the main reference standard. Pooled sputum collection increased tuberculosis diagnosis by microscopy (odds ratio [OR] 1·6, 95% CI 1·3-1·9, pmeta-analysis confirmed these findings, and revealed that both pooled and instructed spot sputum collections were similarly effective techniques for increasing the diagnostic performance of microscopy. Tuberculosis diagnoses were substantially increased by either pooled collection or by providing instruction on how to produce a sputum sample taken at any time of the day. Both interventions had a similar effect to that reported for the introduction of new, expensive laboratory tests, and therefore warrant further exploration in the drive to end the global tuberculosis epidemic. Wellcome Trust
Directory of Open Access Journals (Sweden)
Valavanis Ioannis K
2010-09-01
Full Text Available Abstract Background Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD. The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total, gender, and nutrition (38 in total, e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI as normal (BMI ≤ 25 or overweight (BMI > 25. Two artificial neural network (ANN based methods were designed and used towards the analysis of the available data. These corresponded to i a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN, and ii a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN which combines genetic algorithms and the popular back-propagation training algorithm. Results PDM-ANN and GA-ANN were comparatively assessed in terms of their ability to identify the most important factors among the initial 63 variables describing genetic variations, nutrition and gender, able to classify a subject into one of the BMI related classes: normal and overweight. The methods were designed and evaluated using appropriate training and testing sets provided by 3-fold Cross Validation (3-CV resampling. Classification accuracy, sensitivity, specificity and area under receiver operating characteristics curve were utilized to evaluate the resulted predictive ANN models. The most parsimonious set of factors was obtained by the GA-ANN method and included gender, six genetic variations and 18 nutrition-related variables. The corresponding predictive model was characterized by a mean accuracy equal of 61.46% in the 3-CV testing sets
Valavanis, Ioannis K; Mougiakakou, Stavroula G; Grimaldi, Keith A; Nikita, Konstantina S
2010-09-08
Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI ≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm. PDM-ANN and GA-ANN were comparatively assessed in terms of their ability to identify the most important factors among the initial 63 variables describing genetic variations, nutrition and gender, able to classify a subject into one of the BMI related classes: normal and overweight. The methods were designed and evaluated using appropriate training and testing sets provided by 3-fold Cross Validation (3-CV) resampling. Classification accuracy, sensitivity, specificity and area under receiver operating characteristics curve were utilized to evaluate the resulted predictive ANN models. The most parsimonious set of factors was obtained by the GA-ANN method and included gender, six genetic variations and 18 nutrition-related variables. The corresponding predictive model was characterized by a mean accuracy equal of 61.46% in the 3-CV testing sets. The ANN based methods revealed factors
International Nuclear Information System (INIS)
Esquivel E, J.; Ramirez S, J. R.; Palacios H, J. C.
2011-11-01
The present work shows predicted prices of the uranium, using a neural network. The importance of predicting financial indexes of an energy resource, in this case, allows establishing budgetary measures, as well as the costs of the resource to medium period. The uranium is part of the main energy generating fuels and as such, its price rebounds in the financial analyses, due to this is appealed to predictive methods to obtain an outline referent to the financial behaviour that will have in a certain time. In this study, two methodologies are used for the prediction of the uranium price: the Monte Carlo method and the neural networks. These methods allow predicting the indexes of monthly costs, for a two years period, starting from the second bimonthly of 2011. For the prediction the uranium costs are used, registered from the year 2005. (Author)
Hahn, P; Dullweber, F; Unglaub, F; Spies, C K
2014-06-01
Searching for relevant publications is becoming more difficult with the increasing number of scientific articles. Text mining as a specific form of computer-based data analysis may be helpful in this context. Highlighting relations between authors and finding relevant publications concerning a specific subject using text analysis programs are illustrated graphically by 2 performed examples. © Georg Thieme Verlag KG Stuttgart · New York.
Statistical network analysis for analyzing policy networks
DEFF Research Database (Denmark)
Robins, Garry; Lewis, Jenny; Wang, Peng
2012-01-01
and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs......To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social......), and stochastic actor-oriented models. We focus most attention on ERGMs by providing an illustrative example of a model for a strategic information network within a local government. We draw inferences about the structural role played by individuals recognized as key innovators and conclude that such an approach...
Multifractal analysis of complex networks
International Nuclear Information System (INIS)
Wang Dan-Ling; Yu Zu-Guo; Anh V
2012-01-01
Complex networks have recently attracted much attention in diverse areas of science and technology. Many networks such as the WWW and biological networks are known to display spatial heterogeneity which can be characterized by their fractal dimensions. Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we introduce a new box-covering algorithm for multifractal analysis of complex networks. This algorithm is used to calculate the generalized fractal dimensions D q of some theoretical networks, namely scale-free networks, small world networks, and random networks, and one kind of real network, namely protein—protein interaction networks of different species. Our numerical results indicate the existence of multifractality in scale-free networks and protein—protein interaction networks, while the multifractal behavior is not clear-cut for small world networks and random networks. The possible variation of D q due to changes in the parameters of the theoretical network models is also discussed. (general)
Basic general concepts in the network analysis
Directory of Open Access Journals (Sweden)
Boja Nicolae
2004-01-01
Full Text Available This survey is concerned oneself with the study of those types of material networks which can be met both in civil engineering and also in electrotechnics, in mechanics, or in hydrotechnics, and of which behavior lead to linear problems, solvable by means of Finite Element Method and adequate algorithms. Here, it is presented a unitary theory of networks met in the domains mentioned above and this one is illustrated with examples for the structural networks in civil engineering, electric circuits, and water supply networks, but also planar or spatial mechanisms can be comprised in this theory. The attention is focused to make evident the essential proper- ties and concepts in the network analysis, which differentiate the networks under force from other types of material networks. To such a network a planar, connected, and directed or undirected graph is associated, and with some vector fields on the vertex set this graph is endowed. .
Network Analysis, Architecture, and Design
McCabe, James D
2007-01-01
Traditionally, networking has had little or no basis in analysis or architectural development, with designers relying on technologies they are most familiar with or being influenced by vendors or consultants. However, the landscape of networking has changed so that network services have now become one of the most important factors to the success of many third generation networks. It has become an important feature of the designer's job to define the problems that exist in his network, choose and analyze several optimization parameters during the analysis process, and then prioritize and evalua
Energy Technology Data Exchange (ETDEWEB)
Kalb, Jeffrey L.; Lee, David S.
2008-01-01
Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.
Structural Analysis of Complex Networks
Dehmer, Matthias
2011-01-01
Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,
DEFF Research Database (Denmark)
Sindbæk, Søren Michael
2015-01-01
preserve patterns of thisinteraction. Formal network analysis and modelling holds the potential to identify anddemonstrate such patterns, where traditional methods often prove inadequate. Thearchaeological study of communication networks in the past, however, calls for radically different analytical...... this is not a problem of network analysis, but network synthesis: theclassic problem of cracking codes or reconstructing black-box circuits. It is proposedthat archaeological approaches to network synthesis must involve a contextualreading of network data: observations arising from individual contexts, morphologies...
Energy Technology Data Exchange (ETDEWEB)
Sasaki, K.; Miyakoshi, H. (Akita Univ., Akita (Japan). Mining College); Kinoshita, H.; Onozuka, T. (Hanaoka Mining Co. Ltd., Akita (Japan))
1990-09-25
In this report, the method of analyzing mine ventilation networks is explained in which the direct matric operation method is applied to the solution of the linear equation system introduced from the fundamental equation of the nodal head method. In other words, the fundamental equation was expressed by genelarized equation composition by using connecting functions between nodes and the algorism of a computer program was clarified. And the calculation method necessary for other ventilation netwrks analysis was shown in a concrete form. For solving the linear equation system, the matric operation method based on the modified Choleski's method was used in order to speed up the calculation and stabilize the convergence process of the solution. As examples, calculation was made on the ventilation networks of total numbers of the nodes of 8, 14, 51 and 141. From these ventilation network analyses, using a linear equation system concerning the nodal pressure correction, it was found that in the system with convergence acceleration coefficient of 1.4, the number of sequential repeating frequency of approximation Mc which was required for convergence was in the order of Mc {approx equal} 13 (cycle) for the condition that the fan pressure was constant and the convergence condition was {vert bar} AQi {vert bar}{sub max} {lt} 0.1m {sup 3}/min. 14 refs., 12 figs., 3 tabs.
Lu, Tao
2016-01-01
The gene regulation network (GRN) evaluates the interactions between genes and look for models to describe the gene expression behavior. These models have many applications; for instance, by characterizing the gene expression mechanisms that cause certain disorders, it would be possible to target those genes to block the progress of the disease. Many biological processes are driven by nonlinear dynamic GRN. In this article, we propose a nonparametric differential equation (ODE) to model the nonlinear dynamic GRN. Specially, we address following questions simultaneously: (i) extract information from noisy time course gene expression data; (ii) model the nonlinear ODE through a nonparametric smoothing function; (iii) identify the important regulatory gene(s) through a group smoothly clipped absolute deviation (SCAD) approach; (iv) test the robustness of the model against possible shortening of experimental duration. We illustrate the usefulness of the model and associated statistical methods through a simulation and a real application examples.
Directory of Open Access Journals (Sweden)
Emre Guney
Full Text Available Complex biological systems usually pose a trade-off between robustness and fragility where a small number of perturbations can substantially disrupt the system. Although biological systems are robust against changes in many external and internal conditions, even a single mutation can perturb the system substantially, giving rise to a pathophenotype. Recent advances in identifying and analyzing the sequential variations beneath human disorders help to comprehend a systemic view of the mechanisms underlying various disease phenotypes. Network-based disease-gene prioritization methods rank the relevance of genes in a disease under the hypothesis that genes whose proteins interact with each other tend to exhibit similar phenotypes. In this study, we have tested the robustness of several network-based disease-gene prioritization methods with respect to the perturbations of the system using various disease phenotypes from the Online Mendelian Inheritance in Man database. These perturbations have been introduced either in the protein-protein interaction network or in the set of known disease-gene associations. As the network-based disease-gene prioritization methods are based on the connectivity between known disease-gene associations, we have further used these methods to categorize the pathophenotypes with respect to the recoverability of hidden disease-genes. Our results have suggested that, in general, disease-genes are connected through multiple paths in the human interactome. Moreover, even when these paths are disturbed, network-based prioritization can reveal hidden disease-gene associations in some pathophenotypes such as breast cancer, cardiomyopathy, diabetes, leukemia, parkinson disease and obesity to a greater extend compared to the rest of the pathophenotypes tested in this study. Gene Ontology (GO analysis highlighted the role of functional diversity for such diseases.
Industrial entrepreneurial network: Structural and functional analysis
Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.
2016-12-01
Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.
Directory of Open Access Journals (Sweden)
Yuyang Gao
2016-09-01
Full Text Available With increasing importance being attached to big data mining, analysis, and forecasting in the field of wind energy, how to select an optimization model to improve the forecasting accuracy of the wind speed time series is not only an extremely challenging problem, but also a problem of concern for economic forecasting. The artificial intelligence model is widely used in forecasting and data processing, but the individual back-propagation artificial neural network cannot always satisfy the time series forecasting needs. Thus, a hybrid forecasting approach has been proposed in this study, which consists of data preprocessing, parameter optimization and a neural network for advancing the accuracy of short-term wind speed forecasting. According to the case study, in which the data are collected from Peng Lai, a city located in China, the simulation results indicate that the hybrid forecasting method yields better predictions compared to the individual BP, which indicates that the hybrid method exhibits stronger forecasting ability.
Topological Analysis of Wireless Networks (TAWN)
2016-05-31
19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...Release, Distribution Unlimited) N/A The goal of this project was to develop topological methods to detect and localize vulnerabilities of wireless... topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael
Web Page Classification Method Using Neural Networks
Selamat, Ali; Omatu, Sigeru; Yanagimoto, Hidekazu; Fujinaka, Toru; Yoshioka, Michifumi
Automatic categorization is the only viable method to deal with the scaling problem of the World Wide Web (WWW). In this paper, we propose a news web page classification method (WPCM). The WPCM uses a neural network with inputs obtained by both the principal components and class profile-based features (CPBF). Each news web page is represented by the term-weighting scheme. As the number of unique words in the collection set is big, the principal component analysis (PCA) has been used to select the most relevant features for the classification. Then the final output of the PCA is combined with the feature vectors from the class-profile which contains the most regular words in each class before feeding them to the neural networks. We have manually selected the most regular words that exist in each class and weighted them using an entropy weighting scheme. The fixed number of regular words from each class will be used as a feature vectors together with the reduced principal components from the PCA. These feature vectors are then used as the input to the neural networks for classification. The experimental evaluation demonstrates that the WPCM method provides acceptable classification accuracy with the sports news datasets.
Diagnosis method utilizing neural networks
International Nuclear Information System (INIS)
Watanabe, K.; Tamayama, K.
1990-01-01
Studies have been made on the technique of neural networks, which will be used to identify a cause of a small anomalous state in the reactor coolant system of the ATR (Advance Thermal Reactor). Three phases of analyses were carried out in this study. First, simulation for 100 seconds was made to determine how the plant parameters respond after the occurence of a transient decrease in reactivity, flow rate and temperature of feed water and increase in the steam flow rate and steam pressure, which would produce a decrease of water level in a steam drum of the ATR. Next, the simulation data was analysed utilizing an autoregressive model. From this analysis, a total of 36 coherency functions up to 0.5 Hz in each transient were computed among nine important and detectable plant parameters: neutron flux, flow rate of coolant, steam or feed water, water level in the steam drum, pressure and opening area of control valve in a steam pipe, feed water temperature and electrical power. Last, learning of neural networks composed of 96 input, 4-9 hidden and 5 output layer units was done by use of the generalized delta rule, namely a back-propagation algorithm. These convergent computations were continued as far as the difference between the desired outputs, 1 for direct cause or 0 for four other ones and actual outputs reached less than 10%. (1) Coherency functions were not governed by decreasing rate of reactivity in the range of 0.41x10 -2 dollar/s to 1.62x10 -2 dollar /s or by decreasing depth of the feed water temperature in the range of 3 deg C to 10 deg C or by a change of 10% or less in the three other causes. Change in coherency functions only depended on the type of cause. (2) The direct cause from the other four ones could be discriminated with 0.94+-0.01 of output level. A maximum of 0.06 output height was found among the other four causes. (3) Calculation load which is represented as products of learning times and numbers of the hidden units did not depend on the
Analysis and Testing of Mobile Wireless Networks
Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)
2002-01-01
Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.
Artificial Neural Network Analysis System
2001-02-27
Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis
A divisive spectral method for network community detection
International Nuclear Information System (INIS)
Cheng, Jianjun; Li, Longjie; Yao, Yukai; Chen, Xiaoyun; Leng, Mingwei; Lu, Weiguo
2016-01-01
Community detection is a fundamental problem in the domain of complex network analysis. It has received great attention, and many community detection methods have been proposed in the last decade. In this paper, we propose a divisive spectral method for identifying community structures from networks which utilizes a sparsification operation to pre-process the networks first, and then uses a repeated bisection spectral algorithm to partition the networks into communities. The sparsification operation makes the community boundaries clearer and sharper, so that the repeated spectral bisection algorithm extract high-quality community structures accurately from the sparsified networks. Experiments show that the combination of network sparsification and a spectral bisection algorithm is highly successful, the proposed method is more effective in detecting community structures from networks than the others. (paper: interdisciplinary statistical mechanics)
Visualization and Analysis of Complex Covert Networks
DEFF Research Database (Denmark)
Memon, Bisharat
systems that are covert and hence inherently complex. My Ph.D. is positioned within the wider framework of CrimeFighter project. The framework envisions a number of key knowledge management processes that are involved in the workflow, and the toolbox provides supporting tools to assist human end......This report discusses and summarize the results of my work so far in relation to my Ph.D. project entitled "Visualization and Analysis of Complex Covert Networks". The focus of my research is primarily on development of methods and supporting tools for visualization and analysis of networked......-users (intelligence analysts) in harvesting, filtering, storing, managing, structuring, mining, analyzing, interpreting, and visualizing data about offensive networks. The methods and tools proposed and discussed in this work can also be applied to analysis of more generic complex networks....
IntNetLncSim: an integrative network analysis method to infer human lncRNA functional similarity.
Cheng, Liang; Shi, Hongbo; Wang, Zhenzhen; Hu, Yang; Yang, Haixiu; Zhou, Chen; Sun, Jie; Zhou, Meng
2016-07-26
Increasing evidence indicated that long non-coding RNAs (lncRNAs) were involved in various biological processes and complex diseases by communicating with mRNAs/miRNAs each other. Exploiting interactions between lncRNAs and mRNA/miRNAs to lncRNA functional similarity (LFS) is an effective method to explore function of lncRNAs and predict novel lncRNA-disease associations. In this article, we proposed an integrative framework, IntNetLncSim, to infer LFS by modeling the information flow in an integrated network that comprises both lncRNA-related transcriptional and post-transcriptional information. The performance of IntNetLncSim was evaluated by investigating the relationship of LFS with the similarity of lncRNA-related mRNA sets (LmRSets) and miRNA sets (LmiRSets). As a result, LFS by IntNetLncSim was significant positively correlated with the LmRSet (Pearson correlation γ2=0.8424) and LmiRSet (Pearson correlation γ2=0.2601). Particularly, the performance of IntNetLncSim is superior to several previous methods. In the case of applying the LFS to identify novel lncRNA-disease relationships, we achieved an area under the ROC curve (0.7300) in experimentally verified lncRNA-disease associations based on leave-one-out cross-validation. Furthermore, highly-ranked lncRNA-disease associations confirmed by literature mining demonstrated the excellent performance of IntNetLncSim. Finally, a web-accessible system was provided for querying LFS and potential lncRNA-disease relationships: http://www.bio-bigdata.com/IntNetLncSim.
Molloy Elreda, Lauren; Coatsworth, J Douglas; Gest, Scott D; Ram, Nilam; Bamberger, Katharine
2016-11-01
Although the majority of evidence-based programs are designed for group delivery, group process and its role in participant outcomes have received little empirical attention. Data were collected from 20 groups of participants (94 early adolescents, 120 parents) enrolled in an efficacy trial of a mindfulness-based adaptation of the Strengthening Families Program (MSFP). Following each weekly session, participants reported on their relations to group members. Social network analysis and methods sensitive to intraindividual variability were integrated to examine weekly covariation between group process and participant progress, and to predict post-intervention outcomes from levels and changes in group process. Results demonstrate hypothesized links between network indices of group process and intervention outcomes and highlight the value of this unique analytic approach to studying intervention group process.
The Application of Social Network Analysis to Team Sports
Lusher, Dean; Robins, Garry; Kremer, Peter
2010-01-01
This article reviews how current social network analysis might be used to investigate individual and group behavior in sporting teams. Social network analysis methods permit researchers to explore social relations between team members and their individual-level qualities simultaneously. As such, social network analysis can be seen as augmenting…
Computational Social Network Analysis
Hassanien, Aboul-Ella
2010-01-01
Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks
Xiang, Zheng; Sun, Hao; Cai, Xiaojun; Chen, Dahui
2016-04-01
Transmission of biological information is a biochemical process of multistep cascade from genes/proteins to metabolites. However, because most metabolites reflect the terminal information of the biochemical process, it is difficult to describe the transmission process of disease information in terms of the metabolomics strategy. In this paper, by incorporating network and metabolomics methods, an integrated approach was proposed to systematically investigate and explain the molecular mechanism of renal interstitial fibrosis. Through analysis of the network, the cascade transmission process of disease information starting from genes/proteins to metabolites was putatively identified and uncovered. The results indicated that renal fibrosis was involved in metabolic pathways of glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and arachidonic acid metabolism, riboflavin metabolism, tyrosine metabolism, and sphingolipid metabolism. These pathways involve kidney disease genes such as TGF-β1 and P2RX7. Our results showed that combining metabolomics and network analysis can provide new strategies and ideas for the interpretation of pathogenesis of disease with full consideration of "gene-protein-metabolite."
Cut Based Method for Comparing Complex Networks.
Liu, Qun; Dong, Zhishan; Wang, En
2018-03-23
Revealing the underlying similarity of various complex networks has become both a popular and interdisciplinary topic, with a plethora of relevant application domains. The essence of the similarity here is that network features of the same network type are highly similar, while the features of different kinds of networks present low similarity. In this paper, we introduce and explore a new method for comparing various complex networks based on the cut distance. We show correspondence between the cut distance and the similarity of two networks. This correspondence allows us to consider a broad range of complex networks and explicitly compare various networks with high accuracy. Various machine learning technologies such as genetic algorithms, nearest neighbor classification, and model selection are employed during the comparison process. Our cut method is shown to be suited for comparisons of undirected networks and directed networks, as well as weighted networks. In the model selection process, the results demonstrate that our approach outperforms other state-of-the-art methods with respect to accuracy.
A random network based, node attraction facilitated network evolution method
Directory of Open Access Journals (Sweden)
WenJun Zhang
2016-03-01
Full Text Available In present study, I present a method of network evolution that based on random network, and facilitated by node attraction. In this method, I assume that the initial network is a random network, or a given initial network. When a node is ready to connect, it tends to link to the node already owning the most connections, which coincides with the general rule (Barabasi and Albert, 1999 of node connecting. In addition, a node may randomly disconnect a connection i.e., the addition of connections in the network is accompanied by the pruning of some connections. The dynamics of network evolution is determined of the attraction factor Lamda of nodes, the probability of node connection, the probability of node disconnection, and the expected initial connectance. The attraction factor of nodes, the probability of node connection, and the probability of node disconnection are time and node varying. Various dynamics can be achieved by adjusting these parameters. Effects of simplified parameters on network evolution are analyzed. The changes of attraction factor Lamda can reflect various effects of the node degree on connection mechanism. Even the changes of Lamda only will generate various networks from the random to the complex. Therefore, the present algorithm can be treated as a general model for network evolution. Modeling results show that to generate a power-law type of network, the likelihood of a node attracting connections is dependent upon the power function of the node's degree with a higher-order power. Matlab codes for simplified version of the method are provided.
Social network analysis applied to team sports analysis
Clemente, Filipe Manuel; Mendes, Rui Sousa
2016-01-01
Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.
Baker-Doyle, Kira J.
2015-01-01
Social network research on teachers and schools has risen exponentially in recent years as an innovative method to reveal the role of social networks in education. However, scholars are still exploring ways to incorporate traditional quantitative methods of Social Network Analysis (SNA) with qualitative approaches to social network research. This…
Heiden, Uwe
1980-01-01
The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica ted throughout the text. However, they are not explored in de tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be havior of neurons or neuron pools. In this respect the essay is writt...
Transmission analysis in WDM networks
DEFF Research Database (Denmark)
Rasmussen, Christian Jørgen
1999-01-01
This thesis describes the development of a computer-based simulator for transmission analysis in optical wavelength division multiplexing networks. A great part of the work concerns fundamental optical network simulator issues. Among these issues are identification of the versatility and user...... the different component models are invoked during the simulation of a system. A simple set of rules which makes it possible to simulate any network architectures is laid down. The modelling of the nonlinear fibre and the optical receiver is also treated. The work on the fibre concerns the numerical solution...
Modular analysis of biological networks.
Kaltenbach, Hans-Michael; Stelling, Jörg
2012-01-01
The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.
Sampling of temporal networks: Methods and biases
Rocha, Luis E. C.; Masuda, Naoki; Holme, Petter
2017-11-01
Temporal networks have been increasingly used to model a diversity of systems that evolve in time; for example, human contact structures over which dynamic processes such as epidemics take place. A fundamental aspect of real-life networks is that they are sampled within temporal and spatial frames. Furthermore, one might wish to subsample networks to reduce their size for better visualization or to perform computationally intensive simulations. The sampling method may affect the network structure and thus caution is necessary to generalize results based on samples. In this paper, we study four sampling strategies applied to a variety of real-life temporal networks. We quantify the biases generated by each sampling strategy on a number of relevant statistics such as link activity, temporal paths and epidemic spread. We find that some biases are common in a variety of networks and statistics, but one strategy, uniform sampling of nodes, shows improved performance in most scenarios. Given the particularities of temporal network data and the variety of network structures, we recommend that the choice of sampling methods be problem oriented to minimize the potential biases for the specific research questions on hand. Our results help researchers to better design network data collection protocols and to understand the limitations of sampled temporal network data.
Method and system for mesh network embedded devices
Wang, Ray (Inventor)
2009-01-01
A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.
Antenna analysis using neural networks
Smith, William T.
1992-01-01
Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern
An Intelligent technical analysis using neural network
Directory of Open Access Journals (Sweden)
Reza Raei
2011-07-01
Full Text Available Technical analysis has been one of the most popular methods for stock market predictions for the past few decades. There have been enormous technical analysis methods to study the behavior of stock market for different kinds of trading markets such as currency, commodity or stock. In this paper, we propose two different methods based on volume adjusted moving average and ease of movement for stock trading. These methods are used with and without generalized regression neural network methods and the results are compared with each other. The preliminary results on historical stock price of 20 firms indicate that there is no meaningful difference between various proposed models of this paper.
A Systematic, Automated Network Planning Method
DEFF Research Database (Denmark)
Holm, Jens Åge; Pedersen, Jens Myrup
2006-01-01
This paper describes a case study conducted to evaluate the viability of a systematic, automated network planning method. The motivation for developing the network planning method was that many data networks are planned in an adhoc manner with no assurance of quality of the solution with respect...... structures, that are ready to implement in a real world scenario, are discussed in the end of the paper. These are in the area of ensuring line independence and complexity of the design rules for the planning method....
An improved sampling method of complex network
Gao, Qi; Ding, Xintong; Pan, Feng; Li, Weixing
2014-12-01
Sampling subnet is an important topic of complex network research. Sampling methods influence the structure and characteristics of subnet. Random multiple snowball with Cohen (RMSC) process sampling which combines the advantages of random sampling and snowball sampling is proposed in this paper. It has the ability to explore global information and discover the local structure at the same time. The experiments indicate that this novel sampling method could keep the similarity between sampling subnet and original network on degree distribution, connectivity rate and average shortest path. This method is applicable to the situation where the prior knowledge about degree distribution of original network is not sufficient.
Complex networks principles, methods and applications
Latora, Vito; Russo, Giovanni
2017-01-01
Networks constitute the backbone of complex systems, from the human brain to computer communications, transport infrastructures to online social systems and metabolic reactions to financial markets. Characterising their structure improves our understanding of the physical, biological, economic and social phenomena that shape our world. Rigorous and thorough, this textbook presents a detailed overview of the new theory and methods of network science. Covering algorithms for graph exploration, node ranking and network generation, among the others, the book allows students to experiment with network models and real-world data sets, providing them with a deep understanding of the basics of network theory and its practical applications. Systems of growing complexity are examined in detail, challenging students to increase their level of skill. An engaging presentation of the important principles of network science makes this the perfect reference for researchers and undergraduate and graduate students in physics, ...
NET-2 Network Analysis Program
International Nuclear Information System (INIS)
Malmberg, A.F.
1974-01-01
The NET-2 Network Analysis Program is a general purpose digital computer program which solves the nonlinear time domain response and the linearized small signal frequency domain response of an arbitrary network of interconnected components. NET-2 is capable of handling a variety of components and has been applied to problems in several engineering fields, including electronic circuit design and analysis, missile flight simulation, control systems, heat flow, fluid flow, mechanical systems, structural dynamics, digital logic, communications network design, solid state device physics, fluidic systems, and nuclear vulnerability due to blast, thermal, gamma radiation, neutron damage, and EMP effects. Network components may be selected from a repertoire of built-in models or they may be constructed by the user through appropriate combinations of mathematical, empirical, and topological functions. Higher-level components may be defined by subnetworks composed of any combination of user-defined components and built-in models. The program provides a modeling capability to represent and intermix system components on many levels, e.g., from hole and electron spatial charge distributions in solid state devices through discrete and integrated electronic components to functional system blocks. NET-2 is capable of simultaneous computation in both the time and frequency domain, and has statistical and optimization capability. Network topology may be controlled as a function of the network solution. (U.S.)
Link Prediction Methods and Their Accuracy for Different Social Networks and Network Metrics
Directory of Open Access Journals (Sweden)
Fei Gao
2015-01-01
Full Text Available Currently, we are experiencing a rapid growth of the number of social-based online systems. The availability of the vast amounts of data gathered in those systems brings new challenges that we face when trying to analyse it. One of the intensively researched topics is the prediction of social connections between users. Although a lot of effort has been made to develop new prediction approaches, the existing methods are not comprehensively analysed. In this paper we investigate the correlation between network metrics and accuracy of different prediction methods. We selected six time-stamped real-world social networks and ten most widely used link prediction methods. The results of the experiments show that the performance of some methods has a strong correlation with certain network metrics. We managed to distinguish “prediction friendly” networks, for which most of the prediction methods give good performance, as well as “prediction unfriendly” networks, for which most of the methods result in high prediction error. Correlation analysis between network metrics and prediction accuracy of prediction methods may form the basis of a metalearning system where based on network characteristics it will be able to recommend the right prediction method for a given network.
Methods for Analyzing Pipe Networks
DEFF Research Database (Denmark)
Nielsen, Hans Bruun
1989-01-01
to formulate the flow equations in terms of pipe discharges than in terms of energy heads. The behavior of some iterative methods is compared in the initial phase with large errors. It is explained why the linear theory method oscillates when the iteration gets close to the solution, and it is further...... demonstrated that this method offers good starting values for a Newton-Raphson iteration....
A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network
Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.
2018-02-01
Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.
Network Analysis Tools: from biological networks to clusters and pathways.
Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques
2008-01-01
Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.
Mathematical Analysis of Urban Spatial Networks
Blanchard, Philippe
2009-01-01
Cities can be considered to be among the largest and most complex artificial networks created by human beings. Due to the numerous and diverse human-driven activities, urban network topology and dynamics can differ quite substantially from that of natural networks and so call for an alternative method of analysis. The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan. Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.
Li, Haibin; He, Yun; Nie, Xiaobo
2018-01-01
Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.
A statistical analysis of UK financial networks
Chu, J.; Nadarajah, S.
2017-04-01
In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.
Artificial neural network intelligent method for prediction
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
Zabinski, Joseph W; Garcia-Vargas, Gonzalo; Rubio-Andrade, Marisela; Fry, Rebecca C; Gibson, Jacqueline MacDonald
2016-05-10
Dose-response functions used in regulatory risk assessment are based on studies of whole organisms and fail to incorporate genetic and metabolomic data. Bayesian belief networks (BBNs) could provide a powerful framework for incorporating such data, but no prior research has examined this possibility. To address this gap, we develop a BBN-based model predicting birthweight at gestational age from arsenic exposure via drinking water and maternal metabolic indicators using a cohort of 200 pregnant women from an arsenic-endemic region of Mexico. We compare BBN predictions to those of prevailing slope-factor and reference-dose approaches. The BBN outperforms prevailing approaches in balancing false-positive and false-negative rates. Whereas the slope-factor approach had 2% sensitivity and 99% specificity and the reference-dose approach had 100% sensitivity and 0% specificity, the BBN's sensitivity and specificity were 71% and 30%, respectively. BBNs offer a promising opportunity to advance health risk assessment by incorporating modern genetic and metabolomic data.
Reduction Method for Active Distribution Networks
DEFF Research Database (Denmark)
Raboni, Pietro; Chen, Zhe
2013-01-01
On-line security assessment is traditionally performed by Transmission System Operators at the transmission level, ignoring the effective response of distributed generators and small loads. On the other hand the required computation time and amount of real time data for including Distribution...... Networks also would be too large. In this paper an adaptive aggregation method for subsystems with power electronic interfaced generators and voltage dependant loads is proposed. With this tool may be relatively easier including distribution networks into security assessment. The method is validated...... by comparing the results obtained in PSCAD® with the detailed network model and with the reduced one. Moreover the control schemes of a wind turbine and a photovoltaic plant included in the detailed network model are described....
Control and estimation methods over communication networks
Mahmoud, Magdi S
2014-01-01
This book provides a rigorous framework in which to study problems in the analysis, stability and design of networked control systems. Four dominant sources of difficulty are considered: packet dropouts, communication bandwidth constraints, parametric uncertainty, and time delays. Past methods and results are reviewed from a contemporary perspective, present trends are examined, and future possibilities proposed. Emphasis is placed on robust and reliable design methods. New control strategies for improving the efficiency of sensor data processing and reducing associated time delay are presented. The coverage provided features: · an overall assessment of recent and current fault-tolerant control algorithms; · treatment of several issues arising at the junction of control and communications; · key concepts followed by their proofs and efficient computational methods for their implementation; and · simulation examples (including TrueTime simulations) to...
Information flow analysis of interactome networks.
Directory of Open Access Journals (Sweden)
Patrycja Vasilyev Missiuro
2009-04-01
Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we
Criado, Regino; García, Esther; Pedroche, Francisco; Romance, Miguel
2013-12-01
In this paper, we show a new technique to analyze families of rankings. In particular, we focus on sports rankings and, more precisely, on soccer leagues. We consider that two teams compete when they change their relative positions in consecutive rankings. This allows to define a graph by linking teams that compete. We show how to use some structural properties of this competitivity graph to measure to what extend the teams in a league compete. These structural properties are the mean degree, the mean strength, and the clustering coefficient. We give a generalization of the Kendall's correlation coefficient to more than two rankings. We also show how to make a dynamic analysis of a league and how to compare different leagues. We apply this technique to analyze the four major European soccer leagues: Bundesliga, Italian Lega, Spanish Liga, and Premier League. We compare our results with the classical analysis of sport ranking based on measures of competitive balance.
Principal component analysis networks and algorithms
Kong, Xiangyu; Duan, Zhansheng
2017-01-01
This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.
Network analysis for the visualization and analysis of qualitative data.
Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D
2018-03-01
We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Analysis of Semantic Networks using Complex Networks Concepts
DEFF Research Database (Denmark)
Ortiz-Arroyo, Daniel
2013-01-01
In this paper we perform a preliminary analysis of semantic networks to determine the most important terms that could be used to optimize a summarization task. In our experiments, we measure how the properties of a semantic network change, when the terms in the network are removed. Our preliminar...
Network Analysis of Rodent Transcriptomes in Spaceflight
Ramachandran, Maya; Fogle, Homer; Costes, Sylvain
2017-01-01
Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.
Trimming of mammalian transcriptional networks using network component analysis
Directory of Open Access Journals (Sweden)
Liao James C
2010-10-01
Full Text Available Abstract Background Network Component Analysis (NCA has been used to deduce the activities of transcription factors (TFs from gene expression data and the TF-gene binding relationship. However, the TF-gene interaction varies in different environmental conditions and tissues, but such information is rarely available and cannot be predicted simply by motif analysis. Thus, it is beneficial to identify key TF-gene interactions under the experimental condition based on transcriptome data. Such information would be useful in identifying key regulatory pathways and gene markers of TFs in further studies. Results We developed an algorithm to trim network connectivity such that the important regulatory interactions between the TFs and the genes were retained and the regulatory signals were deduced. Theoretical studies demonstrated that the regulatory signals were accurately reconstructed even in the case where only three independent transcriptome datasets were available. At least 80% of the main target genes were correctly predicted in the extreme condition of high noise level and small number of datasets. Our algorithm was tested with transcriptome data taken from mice under rapamycin treatment. The initial network topology from the literature contains 70 TFs, 778 genes, and 1423 edges between the TFs and genes. Our method retained 1074 edges (i.e. 75% of the original edge number and identified 17 TFs as being significantly perturbed under the experimental condition. Twelve of these TFs are involved in MAPK signaling or myeloid leukemia pathways defined in the KEGG database, or are known to physically interact with each other. Additionally, four of these TFs, which are Hif1a, Cebpb, Nfkb1, and Atf1, are known targets of rapamycin. Furthermore, the trimmed network was able to predict Eno1 as an important target of Hif1a; this key interaction could not be detected without trimming the regulatory network. Conclusions The advantage of our new algorithm
Complex Network Analysis of Guangzhou Metro
Yasir Tariq Mohmand; Fahad Mehmood; Fahd Amjad; Nedim Makarevic
2015-01-01
The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree...
Sie, Rory
2012-01-01
Sie, R. L. L. (2012). COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks (Unpublished doctoral dissertation). September, 28, 2012, Open Universiteit in the Netherlands (CELSTEC), Heerlen, The Netherlands.
Combining morphological analysis and Bayesian Networks for strategic decision support
CSIR Research Space (South Africa)
De Waal, AJ
2007-12-01
Full Text Available Morphological analysis (MA) and Bayesian networks (BN) are two closely related modelling methods, each of which has its advantages and disadvantages for strategic decision support modelling. MA is a method for defining, linking and evaluating...
Networks and network analysis for defence and security
Masys, Anthony J
2014-01-01
Networks and Network Analysis for Defence and Security discusses relevant theoretical frameworks and applications of network analysis in support of the defence and security domains. This book details real world applications of network analysis to support defence and security. Shocks to regional, national and global systems stemming from natural hazards, acts of armed violence, terrorism and serious and organized crime have significant defence and security implications. Today, nations face an uncertain and complex security landscape in which threats impact/target the physical, social, economic
Method Accelerates Training Of Some Neural Networks
Shelton, Robert O.
1992-01-01
Three-layer networks trained faster provided two conditions are satisfied: numbers of neurons in layers are such that majority of work done in synaptic connections between input and hidden layers, and number of neurons in input layer at least as great as number of training pairs of input and output vectors. Based on modified version of back-propagation method.
Hybrid recommendation methods in complex networks.
Fiasconaro, A; Tumminello, M; Nicosia, V; Latora, V; Mantegna, R N
2015-07-01
We propose two recommendation methods, based on the appropriate normalization of already existing similarity measures, and on the convex combination of the recommendation scores derived from similarity between users and between objects. We validate the proposed measures on three data sets, and we compare the performance of our methods to other recommendation systems recently proposed in the literature. We show that the proposed similarity measures allow us to attain an improvement of performances of up to 20% with respect to existing nonparametric methods, and that the accuracy of a recommendation can vary widely from one specific bipartite network to another, which suggests that a careful choice of the most suitable method is highly relevant for an effective recommendation on a given system. Finally, we study how an increasing presence of random links in the network affects the recommendation scores, finding that one of the two recommendation algorithms introduced here can systematically outperform the others in noisy data sets.
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
Directory of Open Access Journals (Sweden)
Chernoded Andrey
2017-01-01
Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
An Entropy-Based Network Anomaly Detection Method
Directory of Open Access Journals (Sweden)
Przemysław Bereziński
2015-04-01
Full Text Available Data mining is an interdisciplinary subfield of computer science involving methods at the intersection of artificial intelligence, machine learning and statistics. One of the data mining tasks is anomaly detection which is the analysis of large quantities of data to identify items, events or observations which do not conform to an expected pattern. Anomaly detection is applicable in a variety of domains, e.g., fraud detection, fault detection, system health monitoring but this article focuses on application of anomaly detection in the field of network intrusion detection.The main goal of the article is to prove that an entropy-based approach is suitable to detect modern botnet-like malware based on anomalous patterns in network. This aim is achieved by realization of the following points: (i preparation of a concept of original entropy-based network anomaly detection method, (ii implementation of the method, (iii preparation of original dataset, (iv evaluation of the method.
Time series analysis of temporal networks
Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh
2016-01-01
A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue
Advanced functional network analysis in the geosciences: The pyunicorn package
Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen
2013-04-01
Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.
Centrality measures in temporal networks with time series analysis
Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun
2017-05-01
The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.
Social Network Analysis and informal trade
DEFF Research Database (Denmark)
Walther, Olivier
networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...... approaches. The paper finally highlights some of the applications of social network analysis and their implications for trade policies....
A Network Reconfiguration Method Considering Data Uncertainties in Smart Distribution Networks
Directory of Open Access Journals (Sweden)
Ke-yan Liu
2017-05-01
Full Text Available This work presents a method for distribution network reconfiguration with the simultaneous consideration of distributed generation (DG allocation. The uncertainties of load fluctuation before the network reconfiguration are also considered. Three optimal objectives, including minimal line loss cost, minimum Expected Energy Not Supplied, and minimum switch operation cost, are investigated. The multi-objective optimization problem is further transformed into a single-objective optimization problem by utilizing weighting factors. The proposed network reconfiguration method includes two periods. The first period is to create a feasible topology network by using binary particle swarm optimization (BPSO. Then the DG allocation problem is solved by utilizing sensitivity analysis and a Harmony Search algorithm (HSA. In the meanwhile, interval analysis is applied to deal with the uncertainties of load and devices parameters. Test cases are studied using the standard IEEE 33-bus and PG&E 69-bus systems. Different scenarios and comparisons are analyzed in the experiments. The results show the applicability of the proposed method. The performance analysis of the proposed method is also investigated. The computational results indicate that the proposed network reconfiguration algorithm is feasible.
S-curve networks and an approximate method for estimating degree distributions of complex networks
International Nuclear Information System (INIS)
Guo Jin-Li
2010-01-01
In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference values for optimizing the distribution of IPv4 address resource and the development of IPv6. Based on the laws of IPv4 growth, that is, the bulk growth and the finitely growing limit, it proposes a finite network model with a bulk growth. The model is said to be an S-curve network. Analysis demonstrates that the analytic method based on uniform distributions (i.e., Barabási-Albert method) is not suitable for the network. It develops an approximate method to predict the growth dynamics of the individual nodes, and uses this to calculate analytically the degree distribution and the scaling exponents. The analytical result agrees with the simulation well, obeying an approximately power-law form. This method can overcome a shortcoming of Barabási-Albert method commonly used in current network research. (general)
S-curve networks and an approximate method for estimating degree distributions of complex networks
Guo, Jin-Li
2010-12-01
In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference values for optimizing the distribution of IPv4 address resource and the development of IPv6. Based on the laws of IPv4 growth, that is, the bulk growth and the finitely growing limit, it proposes a finite network model with a bulk growth. The model is said to be an S-curve network. Analysis demonstrates that the analytic method based on uniform distributions (i.e., Barabási-Albert method) is not suitable for the network. It develops an approximate method to predict the growth dynamics of the individual nodes, and uses this to calculate analytically the degree distribution and the scaling exponents. The analytical result agrees with the simulation well, obeying an approximately power-law form. This method can overcome a shortcoming of Barabási-Albert method commonly used in current network research.
A Network Thermodynamic Approach to Compartmental Analysis
Mikulecky, D. C.; Huf, E. G.; Thomas, S. R.
1979-01-01
We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc. PMID:262387
Analysis of Network Parameters Influencing Performance of Hybrid Multimedia Networks
Directory of Open Access Journals (Sweden)
Dominik Kovac
2013-10-01
Full Text Available Multimedia networks is an emerging subject that currently attracts the attention of research and industrial communities. This environment provides new entertainment services and business opportunities merged with all well-known network services like VoIP calls or file transfers. Such a heterogeneous system has to be able satisfy all network and end-user requirements which are increasing constantly. Therefore the simulation tools enabling deep analysis in order to find the key performance indicators and factors which influence the overall quality for specific network service the most are highly needed. This paper provides a study on the network parameters like communication technology, routing protocol, QoS mechanism, etc. and their effect on the performance of hybrid multimedia network. The analysis was performed in OPNET Modeler environment and the most interesting results are discussed at the end of this paper
International Nuclear Information System (INIS)
Deville, J.P.
1998-01-01
Nowadays, there are a lot of surfaces analysis methods, each having its specificity, its qualities, its constraints (for instance vacuum) and its limits. Expensive in time and in investment, these methods have to be used deliberately. This article appeals to non specialists. It gives some elements of choice according to the studied information, the sensitivity, the use constraints or the answer to a precise question. After having recalled the fundamental principles which govern these analysis methods, based on the interaction between radiations (ultraviolet, X) or particles (ions, electrons) with matter, two methods will be more particularly described: the Auger electron spectroscopy (AES) and x-rays photoemission spectroscopy (ESCA or XPS). Indeed, they are the most widespread methods in laboratories, the easier for use and probably the most productive for the analysis of surface of industrial materials or samples submitted to treatments in aggressive media. (O.M.)
Capacity Analysis of Wireless Mesh Networks
Directory of Open Access Journals (Sweden)
M. I. Gumel
2012-06-01
Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.
Directory of Open Access Journals (Sweden)
Antonio Braz de Oliveira e Silva
2006-07-01
Full Text Available This paper discusses the Social Network Analysis (SNA as a method to be broadly applied in researches in the Information Scienc (IS field. This science is, normally, presented as an interdisciplinary filed, but the reseaches lines conducted in Brazil have differents relationship with other disciplines, and doing so, dis-similars interdisciplinaries characteristics. The analysis of the co-authorship network of the professors of the PPGCI/UFMG emphasizes both, the strenght of the methodology and the characteristics of the colaboration in the IS. The article gives an overview of the theoretical basis of the SNA, and presents studies about subjects related to the Information Science field that are done applying SNA, mainly the coauthorship network analysis. Finally, the methodological approach of this research and the main results are presented.
Social network analysis community detection and evolution
Missaoui, Rokia
2015-01-01
This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit
WGCNA: an R package for weighted correlation network analysis.
Langfelder, Peter; Horvath, Steve
2008-12-29
Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.
Methods of Multivariate Analysis
Rencher, Alvin C
2012-01-01
Praise for the Second Edition "This book is a systematic, well-written, well-organized text on multivariate analysis packed with intuition and insight . . . There is much practical wisdom in this book that is hard to find elsewhere."-IIE Transactions Filled with new and timely content, Methods of Multivariate Analysis, Third Edition provides examples and exercises based on more than sixty real data sets from a wide variety of scientific fields. It takes a "methods" approach to the subject, placing an emphasis on how students and practitioners can employ multivariate analysis in real-life sit
A study of reactor monitoring method with neural network
Energy Technology Data Exchange (ETDEWEB)
Nabeshima, Kunihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-03-01
The purpose of this study is to investigate the methodology of Nuclear Power Plant (NPP) monitoring with neural networks, which create the plant models by the learning of the past normal operation patterns. The concept of this method is to detect the symptom of small anomalies by monitoring the deviations between the process signals measured from an actual plant and corresponding output signals from the neural network model, which might not be equal if the abnormal operational patterns are presented to the input of the neural network. Auto-associative network, which has same output as inputs, can detect an kind of anomaly condition by using normal operation data only. The monitoring tests of the feedforward neural network with adaptive learning were performed using the PWR plant simulator by which many kinds of anomaly conditions can be easily simulated. The adaptively trained feedforward network could follow the actual plant dynamics and the changes of plant condition, and then find most of the anomalies much earlier than the conventional alarm system during steady state and transient operations. Then the off-line and on-line test results during one year operation at the actual NPP (PWR) showed that the neural network could detect several small anomalies which the operators or the conventional alarm system didn't noticed. Furthermore, the sensitivity analysis suggests that the plant models by neural networks are appropriate. Finally, the simulation results show that the recurrent neural network with feedback connections could successfully model the slow behavior of the reactor dynamics without adaptive learning. Therefore, the recurrent neural network with adaptive learning will be the best choice for the actual reactor monitoring system. (author)
Application of OLAM network in X-ray spectral analysis
International Nuclear Information System (INIS)
Liu Yinbing; Zhou Rongsheng
2001-01-01
The author describes a new approach to the automatic radioisotope identification problem based on the use of OLAM network. Different from the traditional methods, the OLAM network takes the spectrum as a whole comparing its shape with the patterns learned during the training period of the network. It is found that the OLAM network, once adequately trained, is quite suitable to identify a given isotope present in a mixture of elements as well as the relative proportions of each identified substance. Preliminary results are good enough to consider OLAM network as powerful and simple tools in the automatic spectrum analysis
Method for assessing reliability of a network considering probabilistic safety assessment
International Nuclear Information System (INIS)
Cepin, M.
2005-01-01
A method for assessment of reliability of the network is developed, which uses the features of the fault tree analysis. The method is developed in a way that the increase of the network under consideration does not require significant increase of the model. The method is applied to small examples of network consisting of a small number of nodes and a small number of their connections. The results give the network reliability. They identify equipment, which is to be carefully maintained in order that the network reliability is not reduced, and equipment, which is a candidate for redundancy, as this would improve network reliability significantly. (author)
Directory of Open Access Journals (Sweden)
Galal A. Ali
1998-12-01
Full Text Available Traffic accidents are among the major causes of death in the Sultanate of Oman This is particularly the case in the age group of I6 to 25. Studies indicate that, in spite of Oman's high population-per-vehicle ratio, its fatality rate per l0,000 vehicles is one of the highest in the world. This alarming Situation underlines the importance of analyzing traffic accident data and predicting accident casualties. Such steps will lead to understanding the underlying causes of traffic accidents, and thereby to devise appropriate measures to reduce the number of car accidents and enhance safety standards. In this paper, a comparative study of car accident casualties in Oman was undertaken. Artificial Neural Networks (ANNs were used to analyze the data and make predictions of the number of accident casualties. The results were compared with those obtained from the analysis and predictions by regression techniques. Both approaches attempted to model accident casualties using historical data on related factors, such as population, number of cars on the road and so on, covering the period from I976 to 1994. Forecasts for the years 1995 to 2000 were made using ANNs and regression equations. The results from ANNs provided the best fit for the data. However, it was found that ANNs gave lower forecasts relative to those obtained by the regression methods used, indicating that ANNs are suitable for interpolation but their use for extrapolation may be limited. Nevertheless, the study showed that ANNs provide a potentially powerful tool in analyzing and forecasting traffic accidents and casualties.
Reliability Analysis of Wireless Sensor Networks Using Markovian Model
Directory of Open Access Journals (Sweden)
Jin Zhu
2012-01-01
Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.
Networks and Bargaining in Policy Analysis
DEFF Research Database (Denmark)
Bogason, Peter
2006-01-01
A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today.......A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today....
Service network analysis for agricultural mental health
Directory of Open Access Journals (Sweden)
Fuller Jeffrey D
2009-05-01
Full Text Available Abstract Background Farmers represent a subgroup of rural and remote communities at higher risk of suicide attributed to insecure economic futures, self-reliant cultures and poor access to health services. Early intervention models are required that tap into existing farming networks. This study describes service networks in rural shires that relate to the mental health needs of farming families. This serves as a baseline to inform service network improvements. Methods A network survey of mental health related links between agricultural support, health and other human services in four drought declared shires in comparable districts in rural New South Wales, Australia. Mental health links covered information exchange, referral recommendations and program development. Results 87 agencies from 111 (78% completed a survey. 79% indicated that two thirds of their clients needed assistance for mental health related problems. The highest mean number of interagency links concerned information exchange and the frequency of these links between sectors was monthly to three monthly. The effectiveness of agricultural support and health sector links were rated as less effective by the agricultural support sector than by the health sector (p Conclusion Aligning with agricultural agencies is important to build effective mental health service pathways to address the needs of farming populations. Work is required to ensure that these agricultural support agencies have operational and effective links to primary mental health care services. Network analysis provides a baseline to inform this work. With interventions such as local mental health training and joint service planning to promote network development we would expect to see over time an increase in the mean number of links, the frequency in which these links are used and the rated effectiveness of these links.
Analysis of Recurrent Analog Neural Networks
Directory of Open Access Journals (Sweden)
Z. Raida
1998-06-01
Full Text Available In this paper, an original rigorous analysis of recurrent analog neural networks, which are built from opamp neurons, is presented. The analysis, which comes from the approximate model of the operational amplifier, reveals causes of possible non-stable states and enables to determine convergence properties of the network. Results of the analysis are discussed in order to enable development of original robust and fast analog networks. In the analysis, the special attention is turned to the examination of the influence of real circuit elements and of the statistical parameters of processed signals to the parameters of the network.
The Analysis of User Behaviour of a Network Management Training Tool using a Neural Network
Directory of Open Access Journals (Sweden)
Helen Donelan
2005-10-01
Full Text Available A novel method for the analysis and interpretation of data that describes the interaction between trainee network managers and a network management training tool is presented. A simulation based approach is currently being used to train network managers, through the use of a simulated network. The motivation is to provide a tool for exposing trainees to a life like situation without disrupting a live network. The data logged by this system describes the detailed interaction between trainee network manager and simulated network. The work presented here provides an analysis of this interaction data that enables an assessment of the capabilities of the trainee network manager as well as an understanding of how the network management tasks are being approached. A neural network architecture is implemented in order to perform an exploratory data analysis of the interaction data. The neural network employs a novel form of continuous self-organisation to discover key features in the data and thus provide new insights into the learning and teaching strategies employed.
6th International Conference on Network Analysis
Nikolaev, Alexey; Pardalos, Panos; Prokopyev, Oleg
2017-01-01
This valuable source for graduate students and researchers provides a comprehensive introduction to current theories and applications in optimization methods and network models. Contributions to this book are focused on new efficient algorithms and rigorous mathematical theories, which can be used to optimize and analyze mathematical graph structures with massive size and high density induced by natural or artificial complex networks. Applications to social networks, power transmission grids, telecommunication networks, stock market networks, and human brain networks are presented. Chapters in this book cover the following topics: Linear max min fairness Heuristic approaches for high-quality solutions Efficient approaches for complex multi-criteria optimization problems Comparison of heuristic algorithms New heuristic iterative local search Power in network structures Clustering nodes in random graphs Power transmission grid structure Network decomposition problems Homogeneity hypothesis testing Network analy...
Egocentric Social Network Analysis of Pathological Gambling
Meisel, Matthew K.; Clifton, Allan D.; MacKillop, James; Miller, Joshua D.; Campbell, W. Keith; Goodie, Adam S.
2012-01-01
Aims To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family, and co-workers. is an innovative way to look at relationships among individuals; the current study was the first to our knowledge to apply SNA to gambling behaviors. Design Egocentric social network analysis was used to formally characterize the relationships between social network characteristics and gambling pathology. Setting Laboratory-based questionnaire and interview administration. Participants Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. Findings The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers, and drinkers in their social networks than did nonpathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked, and drank with than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked, and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Conclusions Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers, and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. PMID:23072641
Egocentric social network analysis of pathological gambling.
Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S
2013-03-01
To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.
DEFF Research Database (Denmark)
Olivarius, Signe
of the transcriptome, 5’ end capture of RNA is combined with next-generation sequencing for high-throughput quantitative assessment of transcription start sites by two different methods. The methods presented here allow for functional investigation of coding as well as noncoding RNA and contribute to future...... RNAs rely on interactions with proteins, the establishment of protein-binding profiles is essential for the characterization of RNAs. Aiming to facilitate RNA analysis, this thesis introduces proteomics- as well as transcriptomics-based methods for the functional characterization of RNA. First, RNA...
SOCIOLOGICAL UNDERSTANDING OF INTERNET: THEORETICAL APPROACHES TO THE NETWORK ANALYSIS
Directory of Open Access Journals (Sweden)
D. E. Dobrinskaya
2016-01-01
Full Text Available The network is an efficient way of social structure analysis for contemporary sociologists. It gives broad opportunities for detailed and fruitful research of different patterns of ties and social relations by quantitative analytical methods and visualization of network models. The network metaphor is used as the most representative tool for description of a new type of society. This new type is characterized by flexibility, decentralization and individualization. Network organizational form became the dominant form in modern societies. The network is also used as a mode of inquiry. Actually three theoretical network approaches in the Internet research case are the most relevant: social network analysis, “network society” theory and actor-network theory. Every theoretical approach has got its own notion of network. Their special methodological and theoretical features contribute to the Internet studies in different ways. The article represents a brief overview of these network approaches. This overview demonstrates the absence of a unified semantic space of the notion of “network” category. This fact, in turn, points out the need for detailed analysis of these approaches to reveal their theoretical and empirical possibilities in application to the Internet studies.
Isaacson, Eugene
1994-01-01
This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.
Social sciences via network analysis and computation
Kanduc, Tadej
2015-01-01
In recent years information and communication technologies have gained significant importance in the social sciences. Because there is such rapid growth of knowledge, methods and computer infrastructure, research can now seamlessly connect interdisciplinary fields such as business process management, data processing and mathematics. This study presents some of the latest results, practices and state-of-the-art approaches in network analysis, machine learning, data mining, data clustering and classifications in the contents of social sciences. It also covers various real-life examples such as t
Simultaneity Analysis In A Wireless Sensor Network
Directory of Open Access Journals (Sweden)
Malović Miodrag
2015-06-01
Full Text Available An original wireless sensor network for vibration measurements was designed. Its primary purpose is modal analysis of vibrations of large structures. A number of experiments have been performed to evaluate the system, with special emphasis on the influence of different effects on simultaneity of data acquired from remote nodes, which is essential for modal analysis. One of the issues is that quartz crystal oscillators, which provide time reading on the devices, are optimized for use in the room temperature and exhibit significant frequency variations if operated outside the 20–30°C range. Although much research was performed to optimize algorithms of synchronization in wireless networks, the subject of temperature fluctuations was not investigated and discussed in proportion to its significance. This paper describes methods used to evaluate data simultaneity and some algorithms suitable for its improvement in small to intermediate size ad-hoc wireless sensor networks exposed to varying temperatures often present in on-site civil engineering measurements.
Social network analysis and supply chain management
Directory of Open Access Journals (Sweden)
Raúl Rodríguez Rodríguez
2016-01-01
Full Text Available This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes.
The Network Protocol Analysis Technique in Snort
Wu, Qing-Xiu
Network protocol analysis is a network sniffer to capture data for further analysis and understanding of the technical means necessary packets. Network sniffing is intercepted by packet assembly binary format of the original message content. In order to obtain the information contained. Required based on TCP / IP protocol stack protocol specification. Again to restore the data packets at protocol format and content in each protocol layer. Actual data transferred, as well as the application tier.
Ecological network analysis for a virtual water network.
Fang, Delin; Chen, Bin
2015-06-02
The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.
Network Analysis on Attitudes: A Brief Tutorial.
Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L J
2017-07-01
In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs.
4th International Conference in Network Analysis
Koldanov, Petr; Pardalos, Panos
2016-01-01
The contributions in this volume cover a broad range of topics including maximum cliques, graph coloring, data mining, brain networks, Steiner forest, logistic and supply chain networks. Network algorithms and their applications to market graphs, manufacturing problems, internet networks and social networks are highlighted. The "Fourth International Conference in Network Analysis," held at the Higher School of Economics, Nizhny Novgorod in May 2014, initiated joint research between scientists, engineers and researchers from academia, industry and government; the major results of conference participants have been reviewed and collected in this Work. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis.
Directory of Open Access Journals (Sweden)
Santana Isabel
2011-08-01
Full Text Available Abstract Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI, but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing.
Analysis of robustness of urban bus network
Tao, Ren; Yi-Fan, Wang; Miao-Miao, Liu; Yan-Jie, Xu
2016-02-01
In this paper, the invulnerability and cascade failures are discussed for the urban bus network. Firstly, three static models(bus stop network, bus transfer network, and bus line network) are used to analyse the structure and invulnerability of urban bus network in order to understand the features of bus network comprehensively. Secondly, a new way is proposed to study the invulnerability of urban bus network by modelling two layered networks, i.e., the bus stop-line network and the bus line-transfer network and then the interactions between different models are analysed. Finally, by modelling a new layered network which can reflect the dynamic passenger flows, the cascade failures are discussed. Then a new load redistribution method is proposed to study the robustness of dynamic traffic. In this paper, the bus network of Shenyang City which is one of the biggest cities in China, is taken as a simulation example. In addition, some suggestions are given to improve the urban bus network and provide emergency strategies when traffic congestion occurs according to the numerical simulation results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61473073, 61374178, 61104074, and 61203329), the Fundamental Research Funds for the Central Universities (Grant Nos. N130417006, L1517004), and the Program for Liaoning Excellent Talents in University (Grant No. LJQ2014028).
Reliability analysis of cluster-based ad-hoc networks
International Nuclear Information System (INIS)
Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel
2008-01-01
The mobile ad-hoc wireless network (MAWN) is a new and emerging network scheme that is being employed in a variety of applications. The MAWN varies from traditional networks because it is a self-forming and dynamic network. The MAWN is free of infrastructure and, as such, only the mobile nodes comprise the network. Pairs of nodes communicate either directly or through other nodes. To do so, each node acts, in turn, as a source, destination, and relay of messages. The virtue of a MAWN is the flexibility this provides; however, the challenge for reliability analyses is also brought about by this unique feature. The variability and volatility of the MAWN configuration makes typical reliability methods (e.g. reliability block diagram) inappropriate because no single structure or configuration represents all manifestations of a MAWN. For this reason, new methods are being developed to analyze the reliability of this new networking technology. New published methods adapt to this feature by treating the configuration probabilistically or by inclusion of embedded mobility models. This paper joins both methods together and expands upon these works by modifying the problem formulation to address the reliability analysis of a cluster-based MAWN. The cluster-based MAWN is deployed in applications with constraints on networking resources such as bandwidth and energy. This paper presents the problem's formulation, a discussion of applicable reliability metrics for the MAWN, and illustration of a Monte Carlo simulation method through the analysis of several example networks
Investigating biofuels through network analysis
International Nuclear Information System (INIS)
Curci, Ylenia; Mongeau Ospina, Christian A.
2016-01-01
Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.
Detecting Network Communities: An Application to Phylogenetic Analysis
Andrade, Roberto F. S.; Rocha-Neto, Ivan C.; Santos, Leonardo B. L.; de Santana, Charles N.; Diniz, Marcelo V. C.; Lobão, Thierry Petit; Goés-Neto, Aristóteles; Pinho, Suani T. R.; El-Hani, Charbel N.
2011-01-01
This paper proposes a new method to identify communities in generally weighted complex networks and apply it to phylogenetic analysis. In this case, weights correspond to the similarity indexes among protein sequences, which can be used for network construction so that the network structure can be analyzed to recover phylogenetically useful information from its properties. The analyses discussed here are mainly based on the modular character of protein similarity networks, explored through the Newman-Girvan algorithm, with the help of the neighborhood matrix . The most relevant networks are found when the network topology changes abruptly revealing distinct modules related to the sets of organisms to which the proteins belong. Sound biological information can be retrieved by the computational routines used in the network approach, without using biological assumptions other than those incorporated by BLAST. Usually, all the main bacterial phyla and, in some cases, also some bacterial classes corresponded totally (100%) or to a great extent (>70%) to the modules. We checked for internal consistency in the obtained results, and we scored close to 84% of matches for community pertinence when comparisons between the results were performed. To illustrate how to use the network-based method, we employed data for enzymes involved in the chitin metabolic pathway that are present in more than 100 organisms from an original data set containing 1,695 organisms, downloaded from GenBank on May 19, 2007. A preliminary comparison between the outcomes of the network-based method and the results of methods based on Bayesian, distance, likelihood, and parsimony criteria suggests that the former is as reliable as these commonly used methods. We conclude that the network-based method can be used as a powerful tool for retrieving modularity information from weighted networks, which is useful for phylogenetic analysis. PMID:21573202
Measurement methods on the complexity of network
Institute of Scientific and Technical Information of China (English)
LIN Lin; DING Gang; CHEN Guo-song
2010-01-01
Based on the size of network and the number of paths in the network,we proposed a model of topology complexity of a network to measure the topology complexity of the network.Based on the analyses of the effects of the number of the equipment,the types of equipment and the processing time of the node on the complexity of the network with the equipment-constrained,a complexity model of equipment-constrained network was constructed to measure the integrated complexity of the equipment-constrained network.The algorithms for the two models were also developed.An automatic generator of the random single label network was developed to test the models.The results show that the models can correctly evaluate the topology complexity and the integrated complexity of the networks.
International Nuclear Information System (INIS)
Alverbro, Karin
2010-01-01
Many decision-making situations today affect humans and the environment. In practice, many such decisions are made without an overall view and prioritise one or other of the two areas. Now and then these two areas of regulation come into conflict, e.g. the best alternative as regards environmental considerations is not always the best from a human safety perspective and vice versa. This report was prepared within a major project with the aim of developing a framework in which both the environmental aspects and the human safety aspects are integrated, and decisions can be made taking both fields into consideration. The safety risks have to be analysed in order to be successfully avoided and one way of doing this is to use different kinds of risk analysis methods. There is an abundance of existing methods to choose from and new methods are constantly being developed. This report describes some of the risk analysis methods currently available for analysing safety and examines the relationships between them. The focus here is mainly on human safety aspects
Value Systems Alignment Analysis in Collaborative Networked Organizations Management
Directory of Open Access Journals (Sweden)
Patricia Macedo
2017-11-01
Full Text Available The assessment of value systems alignment can play an important role in the formation and evolution of collaborative networks, contributing to reduce potential risks of collaboration. For this purpose, an assessment tool is proposed as part of a collaborative networks information system, supporting both the formation and evolution of long-term strategic alliances and goal-oriented networks. An implementation approach for value system alignment analysis is described, which is intended to assist managers in virtual and networked organizations management. The implementation of the assessment and analysis methods is supported by a set of software services integrated in the information system that supports the management of the networked organizations. A case study in the solar energy sector was conducted, and the data collected through this study allow us to confirm the practical applicability of the proposed methods and the software services.
Artificial neural network for violation analysis
International Nuclear Information System (INIS)
Zhang, Z.; Polet, P.; Vanderhaegen, F.; Millot, P.
2004-01-01
Barrier removal (BR) is a safety-related violation, and it can be analyzed in terms of benefits, costs, and potential deficits. In order to allow designers to integrate BR into the risk analysis during the initial design phase or during re-design work, we propose a connectionist method integrating self-organizing maps (SOM). The basic SOM is an artificial neural network that, on the basis of the information contained in a multi-dimensional space, generates a space of lesser dimensions. Three algorithms--Unsupervised SOM, Supervised SOM, and Hierarchical SOM--have been developed to permit BR classification and prediction in terms of the different criteria. The proposed method can be used, on the one hand, to foresee/predict the possibility level of a new/changed barrier (prospective analysis), and on the other hand, to synthetically regroup/rearrange the BR of a given human-machine system (retrospective analysis). We applied this method to the BR analysis of an experimental railway simulator, and our preliminary results are presented here
Network-based analysis of proteomic profiles
Wong, Limsoon
2016-01-26
Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.
Network Analysis of Urban Traffic with Big Bus Data
Zhao, Kai
2016-01-01
Urban traffic analysis is crucial for traffic forecasting systems, urban planning and, more recently, various mobile and network applications. In this paper, we analyse urban traffic with network and statistical methods. Our analysis is based on one big bus dataset containing 45 million bus arrival samples in Helsinki. We mainly address following questions: 1. How can we identify the areas that cause most of the traffic in the city? 2. Why there is a urban traffic? Is bus traffic a key cause ...
Bode, Felix; Ferré, Ty; Zigelli, Niklas; Emmert, Martin; Nowak, Wolfgang
2018-03-01
Collaboration between academics and practitioners promotes knowledge transfer between research and industry, with both sides benefiting greatly. However, academic approaches are often not feasible given real-world limits on time, cost and data availability, especially for risk and uncertainty analyses. Although the need for uncertainty quantification and risk assessment are clear, there are few published studies examining how scientific methods can be used in practice. In this work, we introduce possible strategies for transferring and communicating academic approaches to real-world applications, countering the current disconnect between increasingly sophisticated academic methods and methods that work and are accepted in practice. We analyze a collaboration between academics and water suppliers in Germany who wanted to design optimal groundwater monitoring networks for drinking-water well catchments. Our key conclusions are: to prefer multiobjective over single-objective optimization; to replace Monte-Carlo analyses by scenario methods; and to replace data-hungry quantitative risk assessment by easy-to-communicate qualitative methods. For improved communication, it is critical to set up common glossaries of terms to avoid misunderstandings, use striking visualization to communicate key concepts, and jointly and continually revisit the project objectives. Ultimately, these approaches and recommendations are simple and utilitarian enough to be transferred directly to other practical water resource related problems.
Weighted Complex Network Analysis of Pakistan Highways
Directory of Open Access Journals (Sweden)
Yasir Tariq Mohmand
2013-01-01
Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.
Noise Analysis studies with neural networks
International Nuclear Information System (INIS)
Seker, S.; Ciftcioglu, O.
1996-01-01
Noise analysis studies with neural network are aimed. Stochastic signals at the input of the network are used to obtain an algorithmic multivariate stochastic signal modeling. To this end, lattice modeling of a stochastic signal is performed to obtain backward residual noise sources which are uncorrelated among themselves. There are applied together with an additional input to the network to obtain an algorithmic model which is used for signal detection for early failure in plant monitoring. The additional input provides the information to the network to minimize the difference between the signal and the network's one-step-ahead prediction. A stochastic algorithm is used for training where the errors reflecting the measurement error during the training are also modelled so that fast and consistent convergence of network's weights is obtained. The lattice structure coupled to neural network investigated with measured signals from an actual power plant. (authors)
An Analysis of Construction Accident Factors Based on Bayesian Network
Yunsheng Zhao; Jinyong Pei
2013-01-01
In this study, we have an analysis of construction accident factors based on bayesian network. Firstly, accidents cases are analyzed to build Fault Tree method, which is available to find all the factors causing the accidents, then qualitatively and quantitatively analyzes the factors with Bayesian network method, finally determines the safety management program to guide the safety operations. The results of this study show that bad condition of geological environment has the largest posterio...
Stability analysis for cellular neural networks with variable delays
International Nuclear Information System (INIS)
Zhang Qiang; Wei Xiaopeng; Xu Jin
2006-01-01
Some sufficient conditions for the global exponential stability of cellular neural networks with variable delay are obtained by means of a method based on delay differential inequality. The method, which does not make use of Lyapunov functionals, is simple and effective for the stability analysis of neural networks with delay. Some previously established results in the literature are shown to be special cases of the presented result
Fractal Analysis of Mobile Social Networks
International Nuclear Information System (INIS)
Zheng Wei; Pan Qian; Sun Chen; Deng Yu-Fan; Zhao Xiao-Kang; Kang Zhao
2016-01-01
Fractal and self similarity of complex networks have attracted much attention in recent years. The fractal dimension is a useful method to describe the fractal property of networks. However, the fractal features of mobile social networks (MSNs) are inadequately investigated. In this work, a box-covering method based on the ratio of excluded mass to closeness centrality is presented to investigate the fractal feature of MSNs. Using this method, we find that some MSNs are fractal at different time intervals. Our simulation results indicate that the proposed method is available for analyzing the fractal property of MSNs. (paper)
Validation of network communicability metrics for the analysis of brain structural networks.
Directory of Open Access Journals (Sweden)
Jennifer Andreotti
Full Text Available Computational network analysis provides new methods to analyze the brain's structural organization based on diffusion imaging tractography data. Networks are characterized by global and local metrics that have recently given promising insights into diagnosis and the further understanding of psychiatric and neurologic disorders. Most of these metrics are based on the idea that information in a network flows along the shortest paths. In contrast to this notion, communicability is a broader measure of connectivity which assumes that information could flow along all possible paths between two nodes. In our work, the features of network metrics related to communicability were explored for the first time in the healthy structural brain network. In addition, the sensitivity of such metrics was analysed using simulated lesions to specific nodes and network connections. Results showed advantages of communicability over conventional metrics in detecting densely connected nodes as well as subsets of nodes vulnerable to lesions. In addition, communicability centrality was shown to be widely affected by the lesions and the changes were negatively correlated with the distance from lesion site. In summary, our analysis suggests that communicability metrics that may provide an insight into the integrative properties of the structural brain network and that these metrics may be useful for the analysis of brain networks in the presence of lesions. Nevertheless, the interpretation of communicability is not straightforward; hence these metrics should be used as a supplement to the more standard connectivity network metrics.
Theodosiou, Theodosios; Efstathiou, Georgios; Papanikolaou, Nikolas; Kyrpides, Nikos C; Bagos, Pantelis G; Iliopoulos, Ioannis; Pavlopoulos, Georgios A
2017-07-14
Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in order to better understand a system, its topology and the relationships between its components is of a great importance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, are few of the examples captured in biological network representations where nodes represent certain bioentities and edges represent the connections between them. Today, many tools for network visualization and analysis are available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and calculation time depending on the network's size and (ii) focus on handling, editing and exploring a network interactively. While such functionality is of great importance, limited efforts have been made towards the comparison of the topological analysis of multiple networks. Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://bioinformatics.med.uoc.gr/NAP .
Classification and Analysis of Computer Network Traffic
Bujlow, Tomasz
2014-01-01
Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models of traffic for academic purposes. We define the objective of this thesis as finding a way to evaluate the performance of various applications in a high-speed Internet infrastructure. To satisfy the obje...
Wireless Sensor Network Security Analysis
Hemanta Kumar Kalita; Avijit Kar
2009-01-01
The emergence of sensor networks as one of the dominant technology trends in the coming decades hasposed numerous unique challenges to researchers. These networks are likely to be composed of hundreds,and potentially thousands of tiny sensor nodes, functioning autonomously, and in many cases, withoutaccess to renewable energy resources. Cost constraints and the need for ubiquitous, invisibledeployments will result in small sized, resource-constrained sensor nodes. While the set of challenges ...
Spatial analysis of bus transport networks using network theory
Shanmukhappa, Tanuja; Ho, Ivan Wang-Hei; Tse, Chi Kong
2018-07-01
In this paper, we analyze the bus transport network (BTN) structure considering the spatial embedding of the network for three cities, namely, Hong Kong (HK), London (LD), and Bengaluru (BL). We propose a novel approach called supernode graph structuring for modeling the bus transport network. A static demand estimation procedure is proposed to assign the node weights by considering the points of interests (POIs) and the population distribution in the city over various localized zones. In addition, the end-to-end delay is proposed as a parameter to measure the topological efficiency of the bus networks instead of the shortest distance measure used in previous works. With the aid of supernode graph representation, important network parameters are analyzed for the directed, weighted and geo-referenced bus transport networks. It is observed that the supernode concept has significant advantage in analyzing the inherent topological behavior. For instance, the scale-free and small-world behavior becomes evident with supernode representation as compared to conventional or regular graph representation for the Hong Kong network. Significant improvement in clustering, reduction in path length, and increase in centrality values are observed in all the three networks with supernode representation. The correlation between topologically central nodes and the geographically central nodes reveals the interesting fact that the proposed static demand estimation method for assigning node weights aids in better identifying the geographically significant nodes in the network. The impact of these geographically significant nodes on the local traffic behavior is demonstrated by simulation using the SUMO (Simulation of Urban Mobility) tool which is also supported by real-world empirical data, and our results indicate that the traffic speed around a particular bus stop can reach a jammed state from a free flow state due to the presence of these geographically important nodes. A comparison
Network Analysis in Community Psychology: Looking Back, Looking Forward.
Neal, Zachary P; Neal, Jennifer Watling
2017-09-01
Network analysis holds promise for community psychology given the field's aim to understand the interplay between individuals and their social contexts. Indeed, because network analysis focuses explicitly on patterns of relationships between actors, its theories and methods are inherently extra-individual in nature and particularly well suited to characterizing social contexts. But, to what extent has community psychology taken advantage of this network analysis as a tool for capturing context? To answer these questions, this study provides a review of the use network analysis in articles published in American Journal of Community Psychology. Looking back, we describe and summarize the ways that network analysis has been employed in community psychology research to understand the range of ways community psychologists have found the technique helpful. Looking forward and paying particular attention to analytic issues identified in past applications, we provide some recommendations drawn from the network analysis literature to facilitate future applications of network analysis in community psychology. © 2017 The Authors. American Journal of Community Psychology published by Wiley Periodicals, Inc. on behalf of Society for Community Research and Action.
A reliability analysis tool for SpaceWire network
Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou
2017-04-01
A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.
3rd International Conference on Network Analysis
Kalyagin, Valery; Pardalos, Panos
2014-01-01
This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications. Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale...
International Nuclear Information System (INIS)
Berthomier, Charles
1975-01-01
A method capable of handling the amplitude and the frequency time laws of a certain kind of geophysical signals is described here. This method is based upon the analytical signal idea of Gabor and Ville, which is constructed either in the time domain by adding an imaginary part to the real signal (in-quadrature signal), or in the frequency domain by suppressing negative frequency components. The instantaneous frequency of the initial signal is then defined as the time derivative of the phase of the analytical signal, and his amplitude, or envelope, as the modulus of this complex signal. The method is applied to three types of magnetospheric signals: chorus, whistlers and pearls. The results obtained by analog and numerical calculations are compared to results obtained by classical systems using filters, i.e. based upon a different definition of the concept of frequency. The precision with which the frequency-time laws are determined leads then to the examination of the principle of the method and to a definition of instantaneous power density spectrum attached to the signal, and to the first consequences of this definition. In this way, a two-dimensional representation of the signal is introduced which is less deformed by the analysis system properties than the usual representation, and which moreover has the advantage of being obtainable practically in real time [fr
A new hierarchical method to find community structure in networks
Saoud, Bilal; Moussaoui, Abdelouahab
2018-04-01
Community structure is very important to understand a network which represents a context. Many community detection methods have been proposed like hierarchical methods. In our study, we propose a new hierarchical method for community detection in networks based on genetic algorithm. In this method we use genetic algorithm to split a network into two networks which maximize the modularity. Each new network represents a cluster (community). Then we repeat the splitting process until we get one node at each cluster. We use the modularity function to measure the strength of the community structure found by our method, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our method are highly effective at discovering community structure in both computer-generated and real-world network data.
International Nuclear Information System (INIS)
Kang, Won-Hee; Kliese, Alyce
2014-01-01
Lifeline networks, such as transportation, water supply, sewers, telecommunications, and electrical and gas networks, are essential elements for the economic and societal functions of urban areas, but their components are highly susceptible to natural or man-made hazards. In this context, it is essential to provide effective pre-disaster hazard mitigation strategies and prompt post-disaster risk management efforts based on rapid system reliability assessment. This paper proposes a rapid reliability estimation method for node-pair connectivity analysis of lifeline networks especially when the network components are statistically correlated. Recursive procedures are proposed to compound all network nodes until they become a single super node representing the connectivity between the origin and destination nodes. The proposed method is applied to numerical network examples and benchmark interconnected power and water networks in Memphis, Shelby County. The connectivity analysis results show the proposed method's reasonable accuracy and remarkable efficiency as compared to the Monte Carlo simulations
Directory of Open Access Journals (Sweden)
Zhang ZH
2016-05-01
Full Text Available Zhihong Zhang,1,2 Yu Zhu,1 Yun Ling,3 Lijuan Zhang,1 Hongwei Wan1 1Department of Nursing, Shanghai Proton and Heavy Ion Center, 2Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 3Department of Human Resource, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China Abstract: Nasogastric tube (NGT and percutaneous endoscopic gastrostomy were frequently used in the head and neck cancer patients when malnutrition was present. Nevertheless, the evidence was inclusive in terms of the choice and the time of tube placement. The aim of this network meta-analysis was to evaluate the comparative effects of prophylactic percutaneous endoscopic gastrostomy (pPEG, reactive percutaneous endoscopic gastrostomy (rPEG, and NGT in the head and neck cancer patients receiving radiotherapy or chemoradiotherapy. Databases of PubMed, Web of Science, and Elsevier were searched from inception to October 2015. Thirteen studies enrolling 1,631 participants were included in this network meta-analysis. The results indicated that both pPEG and NGT were superior to rPEG in the management of weight loss. pPEG was associated with the least rate of treatment interruption and nutrition-related hospital admission among pPEG, rPEG, and NGT. Meanwhile, there was no difference in tube-related complications. Our study suggested that pPEG might be a better choice in malnutrition management in the head and neck cancer patients undergoing radiotherapy or chemoradiotherapy. However, its effects need to be further investigated in more randomized controlled trials. Keywords: malnutrition, tube feeding, weight loss, treatment interruption, readmission, complication
Mercken, Liesbeth; Snijders, Tom A. B.; Steglich, Christian; Vertiainen, Erkki; Vartiainen, E.; De Vries, H.
Aims The main goal of this study was to examine differences between adolescent male and female friendship networks regarding smoking-based selection and influence processes using newly developed social network analysis methods that allow the current state of continuously changing friendship networks
Custom Ontologies for Expanded Network Analysis
2006-12-01
for Expanded Network Analysis. In Visualising Network Information (pp. 6-1 – 6-10). Meeting Proceedings RTO-MP-IST-063, Paper 6. Neuilly-sur-Seine...Even to this day, current research groups are working to develop an approach that involves taking all available text, video, imagery and audio and
Analysis of complex networks using aggressive abstraction.
Energy Technology Data Exchange (ETDEWEB)
Colbaugh, Richard; Glass, Kristin.; Willard, Gerald
2008-10-01
This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.
Consistency analysis of network traffic repositories
Lastdrager, Elmer; Lastdrager, E.E.H.; Pras, Aiko
Traffic repositories with TCP/IP header information are very important for network analysis. Researchers often assume that such repositories reliably represent all traffic that has been flowing over the network; little thoughts are made regarding the consistency of these repositories. Still, for
Detecting Distributed Network Traffic Anomaly with Network-Wide Correlation Analysis
Directory of Open Access Journals (Sweden)
Yang Dan
2008-12-01
Full Text Available Distributed network traffic anomaly refers to a traffic abnormal behavior involving many links of a network and caused by the same source (e.g., DDoS attack, worm propagation. The anomaly transiting in a single link might be unnoticeable and hard to detect, while the anomalous aggregation from many links can be prevailing, and does more harm to the networks. Aiming at the similar features of distributed traffic anomaly on many links, this paper proposes a network-wide detection method by performing anomalous correlation analysis of traffic signals' instantaneous parameters. In our method, traffic signals' instantaneous parameters are firstly computed, and their network-wide anomalous space is then extracted via traffic prediction. Finally, an anomaly is detected by a global correlation coefficient of anomalous space. Our evaluation using Abilene traffic traces demonstrates the excellent performance of this approach for distributed traffic anomaly detection.
Social Network Analysis: a practical measurement and evaluation of Trust in a classroom environment
Giandini, Roxana Silvia; Kuz, Antonieta
2012-01-01
A social network is formed by a set of actors and the relationships established by them. SNA leads to distinct goals and perspectives of social network analysis and computer science. This paper introduces the study of social networks and their relationship with trust. We study the methods of detection and description of structural properties. This covers the concepts, methods and data analysis techniques of social networks analysis. After that, we introduce the concept of trust and its relati...
Directory of Open Access Journals (Sweden)
Jianhua Ni
2016-08-01
Full Text Available The spatial distribution of urban service facilities is largely constrained by the road network. In this study, network point pattern analysis and correlation analysis were used to analyze the relationship between road network and healthcare facility distribution. The weighted network kernel density estimation method proposed in this study identifies significant differences between the outside and inside areas of the Ming city wall. The results of network K-function analysis show that private hospitals are more evenly distributed than public hospitals, and pharmacy stores tend to cluster around hospitals along the road network. After computing the correlation analysis between different categorized hospitals and street centrality, we find that the distribution of these hospitals correlates highly with the street centralities, and that the correlations are higher with private and small hospitals than with public and large hospitals. The comprehensive analysis results could help examine the reasonability of existing urban healthcare facility distribution and optimize the location of new healthcare facilities.
Boolean Factor Analysis by Attractor Neural Network
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.
2007-01-01
Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007
Throughput Analysis of Large Wireless Networks with Regular Topologies
Directory of Open Access Journals (Sweden)
Hong Kezhu
2007-01-01
Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.
Throughput Analysis of Large Wireless Networks with Regular Topologies
Directory of Open Access Journals (Sweden)
Kezhu Hong
2007-04-01
Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.
Methods for geochemical analysis
Baedecker, Philip A.
1987-01-01
The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.
امیررضا اصنافی; الهه حسینی; سارا آمایه
2017-01-01
The present paper aims to visualize and analyze the co-authorship network of articles of national congress on family pathology using social network analysis (SNA) indicators. The present paper employed the descriptive research method with scientometrics approach and analyzed social network by micro and macro indicators. UCINET software was used to visualize and analyze the co-authorship network, and VOS viewer software was utilized to visualize a density network of the co-authorship. The 6th ...
Spectrum-Based and Collaborative Network Topology Analysis and Visualization
Hu, Xianlin
2013-01-01
Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…
Complex Network Analysis of Guangzhou Metro
Directory of Open Access Journals (Sweden)
Yasir Tariq Mohmand
2015-11-01
Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.
Extending Stochastic Network Calculus to Loss Analysis
Directory of Open Access Journals (Sweden)
Chao Luo
2013-01-01
Full Text Available Loss is an important parameter of Quality of Service (QoS. Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor.
Computer network environment planning and analysis
Dalphin, John F.
1989-01-01
The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.
UMA/GAN network architecture analysis
Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi
2009-07-01
This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.
Phylogenetic comparative methods on phylogenetic networks with reticulations.
Bastide, Paul; Solís-Lemus, Claudia; Kriebel, Ricardo; Sparks, K William; Ané, Cécile
2018-04-25
The goal of Phylogenetic Comparative Methods (PCMs) is to study the distribution of quantitative traits among related species. The observed traits are often seen as the result of a Brownian Motion (BM) along the branches of a phylogenetic tree. Reticulation events such as hybridization, gene flow or horizontal gene transfer, can substantially affect a species' traits, but are not modeled by a tree. Phylogenetic networks have been designed to represent reticulate evolution. As they become available for downstream analyses, new models of trait evolution are needed, applicable to networks. One natural extension of the BM is to use a weighted average model for the trait of a hybrid, at a reticulation point. We develop here an efficient recursive algorithm to compute the phylogenetic variance matrix of a trait on a network, in only one preorder traversal of the network. We then extend the standard PCM tools to this new framework, including phylogenetic regression with covariates (or phylogenetic ANOVA), ancestral trait reconstruction, and Pagel's λ test of phylogenetic signal. The trait of a hybrid is sometimes outside of the range of its two parents, for instance because of hybrid vigor or hybrid depression. These two phenomena are rather commonly observed in present-day hybrids. Transgressive evolution can be modeled as a shift in the trait value following a reticulation point. We develop a general framework to handle such shifts, and take advantage of the phylogenetic regression view of the problem to design statistical tests for ancestral transgressive evolution in the evolutionary history of a group of species. We study the power of these tests in several scenarios, and show that recent events have indeed the strongest impact on the trait distribution of present-day taxa. We apply those methods to a dataset of Xiphophorus fishes, to confirm and complete previous analysis in this group. All the methods developed here are available in the Julia package PhyloNetworks.
SCM: A method to improve network service layout efficiency with network evolution
Zhao, Qi; Zhang, Chuanhao
2017-01-01
Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of “software defined network + network function virtualization” (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently. PMID:29267299
SCM: A method to improve network service layout efficiency with network evolution.
Zhao, Qi; Zhang, Chuanhao; Zhao, Zheng
2017-01-01
Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of "software defined network + network function virtualization" (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently.
Techniques for Intelligence Analysis of Networks
National Research Council Canada - National Science Library
Cares, Jeffrey R
2005-01-01
...) there are significant intelligence analysis manifestations of these properties; and (4) a more satisfying theory of Networked Competition than currently exists for NCW/NCO is emerging from this research...
COMPUTER METHODS OF GENETIC ANALYSIS.
Directory of Open Access Journals (Sweden)
A. L. Osipov
2017-02-01
Full Text Available The basic statistical methods used in conducting the genetic analysis of human traits. We studied by segregation analysis, linkage analysis and allelic associations. Developed software for the implementation of these methods support.
Analysis of FOXO transcriptional networks
van der Vos, K.E.
2010-01-01
The PI3K-PKB-FOXO signalling module plays a pivotal role in a wide variety of cellular processes, including proliferation, survival, differentiation and metabolism. Inappropriate activation of this network is frequently observed in human cancer and causes uncontrolled proliferation and survival. In
Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.
2016-01-01
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845
Social network extraction based on Web: 1. Related superficial methods
Khairuddin Matyuso Nasution, Mahyuddin
2018-01-01
Often the nature of something affects methods to resolve the related issues about it. Likewise, methods to extract social networks from the Web, but involve the structured data types differently. This paper reveals several methods of social network extraction from the same sources that is Web: the basic superficial method, the underlying superficial method, the description superficial method, and the related superficial methods. In complexity we derive the inequalities between methods and so are their computations. In this case, we find that different results from the same tools make the difference from the more complex to the simpler: Extraction of social network by involving co-occurrence is more complex than using occurrences.
A new fault detection method for computer networks
International Nuclear Information System (INIS)
Lu, Lu; Xu, Zhengguo; Wang, Wenhai; Sun, Youxian
2013-01-01
Over the past few years, fault detection for computer networks has attracted extensive attentions for its importance in network management. Most existing fault detection methods are based on active probing techniques which can detect the occurrence of faults fast and precisely. But these methods suffer from the limitation of traffic overhead, especially in large scale networks. To relieve traffic overhead induced by active probing based methods, a new fault detection method, whose key is to divide the detection process into multiple stages, is proposed in this paper. During each stage, only a small region of the network is detected by using a small set of probes. Meanwhile, it also ensures that the entire network can be covered after multiple detection stages. This method can guarantee that the traffic used by probes during each detection stage is small sufficiently so that the network can operate without severe disturbance from probes. Several simulation results verify the effectiveness of the proposed method
Social network analysis of public health programs to measure partnership.
Schoen, Martin W; Moreland-Russell, Sarah; Prewitt, Kim; Carothers, Bobbi J
2014-12-01
In order to prevent chronic diseases, community-based programs are encouraged to take an ecological approach to public health promotion and involve many diverse partners. Little is known about measuring partnership in implementing public health strategies. We collected data from 23 Missouri communities in early 2012 that received funding from three separate programs to prevent obesity and/or reduce tobacco use. While all of these funding programs encourage partnership, only the Social Innovation for Missouri (SIM) program included a focus on building community capacity and enhancing collaboration. Social network analysis techniques were used to understand contact and collaboration networks in community organizations. Measurements of average degree, density, degree centralization, and betweenness centralization were calculated for each network. Because of the various sizes of the networks, we conducted comparative analyses with and without adjustment for network size. SIM programs had increased measurements of average degree for partner collaboration and larger networks. When controlling for network size, SIM groups had higher measures of network density and lower measures of degree centralization and betweenness centralization. SIM collaboration networks were more dense and less centralized, indicating increased partnership. The methods described in this paper can be used to compare partnership in community networks of various sizes. Further research is necessary to define causal mechanisms of partnership development and their relationship to public health outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
1st International Conference on Network Analysis
Kalyagin, Valery; Pardalos, Panos
2013-01-01
This volume contains a selection of contributions from the "First International Conference in Network Analysis," held at the University of Florida, Gainesville, on December 14-16, 2011. The remarkable diversity of fields that take advantage of Network Analysis makes the endeavor of gathering up-to-date material in a single compilation a useful, yet very difficult, task. The purpose of this volume is to overcome this difficulty by collecting the major results found by the participants and combining them in one easily accessible compilation. Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network is bringing together researchers, practitioners and other scientific communities from numerous fields such as Operations Research, Computer Science, Transportation, Energy, Social Sciences, and more. The contributions not only come from different fields, but also cover a broad range of topics relevant to the...
Artificial neural networks for plasma spectroscopy analysis
International Nuclear Information System (INIS)
Morgan, W.L.; Larsen, J.T.; Goldstein, W.H.
1992-01-01
Artificial neural networks have been applied to a variety of signal processing and image recognition problems. Of the several common neural models the feed-forward, back-propagation network is well suited for the analysis of scientific laboratory data, which can be viewed as a pattern recognition problem. The authors present a discussion of the basic neural network concepts and illustrate its potential for analysis of experiments by applying it to the spectra of laser produced plasmas in order to obtain estimates of electron temperatures and densities. Although these are high temperature and density plasmas, the neural network technique may be of interest in the analysis of the low temperature and density plasmas characteristic of experiments and devices in gaseous electronics
Historical Network Analysis of the Web
DEFF Research Database (Denmark)
Brügger, Niels
2013-01-01
This article discusses some of the fundamental methodological challenges related to doing historical network analyses of the web based on material in web archives. Since the late 1990s many countries have established extensive national web archives, and software supported network analysis...... of the online web has for a number of years gained currency within Internet studies. However, the combination of these two phenomena—historical network analysis of material in web archives—can at best be characterized as an emerging new area of study. Most of the methodological challenges within this new area...... revolve around the specific nature of archived web material. On the basis of an introduction to the processes involved in web archiving as well as of the characteristics of archived web material, the article outlines and scrutinizes some of the major challenges which may arise when doing network analysis...
Thorn, Graeme J; King, John R
2016-01-01
The Gram-positive bacterium Clostridium acetobutylicum is an anaerobic endospore-forming species which produces acetone, butanol and ethanol via the acetone-butanol (AB) fermentation process, leading to biofuels including butanol. In previous work we looked to estimate the parameters in an ordinary differential equation model of the glucose metabolism network using data from pH-controlled continuous culture experiments. Here we combine two approaches, namely the approximate Bayesian computation via an existing sequential Monte Carlo (ABC-SMC) method (to compute credible intervals for the parameters), and the profile likelihood estimation (PLE) (to improve the calculation of confidence intervals for the same parameters), the parameters in both cases being derived from experimental data from forward shift experiments. We also apply the ABC-SMC method to investigate which of the models introduced previously (one non-sporulation and four sporulation models) have the greatest strength of evidence. We find that the joint approximate posterior distribution of the parameters determines the same parameters as previously, including all of the basal and increased enzyme production rates and enzyme reaction activity parameters, as well as the Michaelis-Menten kinetic parameters for glucose ingestion, while other parameters are not as well-determined, particularly those connected with the internal metabolites acetyl-CoA, acetoacetyl-CoA and butyryl-CoA. We also find that the approximate posterior is strongly non-Gaussian, indicating that our previous assumption of elliptical contours of the distribution is not valid, which has the effect of reducing the numbers of pairs of parameters that are (linearly) correlated with each other. Calculations of confidence intervals using the PLE method back this up. Finally, we find that all five of our models are equally likely, given the data available at present. Copyright © 2015 Elsevier Inc. All rights reserved.
An outer approximation method for the road network design problem.
Asadi Bagloee, Saeed; Sarvi, Majid
2018-01-01
Best investment in the road infrastructure or the network design is perceived as a fundamental and benchmark problem in transportation. Given a set of candidate road projects with associated costs, finding the best subset with respect to a limited budget is known as a bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity. We engage with the complexity with a hybrid exact-heuristic methodology based on a two-stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by taking the network performance function of the upper level into the user equilibrium traffic assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer nonlinear programming (MINLP) problem which is then solved using the Outer Approximation (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This methodology has two main advantages: (i) the method is proven to be highly efficient to solve the DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a limited number of iterations (as termination criterion), global optimum solutions are quickly reached in most of the cases; otherwise, good solutions (close to global optimum solutions) are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls shows that for such a non-exact method the global optimum solutions are found in fewer iterations than those found in some analytically exact algorithms in the literature. (ii) Integration of the objective function among the constraints provides a commensurate capability to tackle the multi-objective (or multi-criteria) DNDP as well.
The International Trade Network: weighted network analysis and modelling
International Nuclear Information System (INIS)
Bhattacharya, K; Mukherjee, G; Manna, S S; Saramäki, J; Kaski, K
2008-01-01
Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the 'rich-club' coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the world's trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN
A Method for Upper Bounding on Network Access Speed
DEFF Research Database (Denmark)
Knudsen, Thomas Phillip; Patel, A.; Pedersen, Jens Myrup
2004-01-01
This paper presents a method for calculating an upper bound on network access speed growth and gives guidelines for further research experiments and simulations. The method is aimed at providing a basis for simulation of long term network development and resource management.......This paper presents a method for calculating an upper bound on network access speed growth and gives guidelines for further research experiments and simulations. The method is aimed at providing a basis for simulation of long term network development and resource management....
Analysis and monitoring design for networks
Energy Technology Data Exchange (ETDEWEB)
Fedorov, V.; Flanagan, D.; Rowan, T.; Batsell, S.
1998-06-01
The idea of applying experimental design methodologies to develop monitoring systems for computer networks is relatively novel even though it was applied in other areas such as meteorology, seismology, and transportation. One objective of a monitoring system should always be to collect as little data as necessary to be able to monitor specific parameters of the system with respect to assigned targets and objectives. This implies a purposeful monitoring where each piece of data has a reason to be collected and stored for future use. When a computer network system as large and complex as the Internet is the monitoring subject, providing an optimal and parsimonious observing system becomes even more important. Many data collection decisions must be made by the developers of a monitoring system. These decisions include but are not limited to the following: (1) The type data collection hardware and software instruments to be used; (2) How to minimize interruption of regular network activities during data collection; (3) Quantification of the objectives and the formulation of optimality criteria; (4) The placement of data collection hardware and software devices; (5) The amount of data to be collected in a given time period, how large a subset of the available data to collect during the period, the length of the period, and the frequency of data collection; (6) The determination of the data to be collected (for instance, selection of response and explanatory variables); (7) Which data will be retained and how long (i.e., data storage and retention issues); and (8) The cost analysis of experiments. Mathematical statistics, and, in particular, optimal experimental design methods, may be used to address the majority of problems generated by 3--7. In this study, the authors focus their efforts on topics 3--5.
Stochastic sensitivity analysis and Langevin simulation for neural network learning
International Nuclear Information System (INIS)
Koda, Masato
1997-01-01
A comprehensive theoretical framework is proposed for the learning of a class of gradient-type neural networks with an additive Gaussian white noise process. The study is based on stochastic sensitivity analysis techniques, and formal expressions are obtained for stochastic learning laws in terms of functional derivative sensitivity coefficients. The present method, based on Langevin simulation techniques, uses only the internal states of the network and ubiquitous noise to compute the learning information inherent in the stochastic correlation between noise signals and the performance functional. In particular, the method does not require the solution of adjoint equations of the back-propagation type. Thus, the present algorithm has the potential for efficiently learning network weights with significantly fewer computations. Application to an unfolded multi-layered network is described, and the results are compared with those obtained by using a back-propagation method
Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics.
Prescott, Aaron M; McCollough, Forest W; Eldreth, Bryan L; Binder, Brad M; Abel, Steven M
2016-01-01
Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene
Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics
Directory of Open Access Journals (Sweden)
Aaron M. Prescott
2016-08-01
Full Text Available Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. However, the dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB. In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB. Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms
Network Anomaly Detection Based on Wavelet Analysis
Directory of Open Access Journals (Sweden)
Ali A. Ghorbani
2008-11-01
Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
Network Anomaly Detection Based on Wavelet Analysis
Lu, Wei; Ghorbani, Ali A.
2008-12-01
Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
A novel community detection method in bipartite networks
Zhou, Cangqi; Feng, Liang; Zhao, Qianchuan
2018-02-01
Community structure is a common and important feature in many complex networks, including bipartite networks, which are used as a standard model for many empirical networks comprised of two types of nodes. In this paper, we propose a two-stage method for detecting community structure in bipartite networks. Firstly, we extend the widely-used Louvain algorithm to bipartite networks. The effectiveness and efficiency of the Louvain algorithm have been proved by many applications. However, there lacks a Louvain-like algorithm specially modified for bipartite networks. Based on bipartite modularity, a measure that extends unipartite modularity and that quantifies the strength of partitions in bipartite networks, we fill the gap by developing the Bi-Louvain algorithm that iteratively groups the nodes in each part by turns. This algorithm in bipartite networks often produces a balanced network structure with equal numbers of two types of nodes. Secondly, for the balanced network yielded by the first algorithm, we use an agglomerative clustering method to further cluster the network. We demonstrate that the calculation of the gain of modularity of each aggregation, and the operation of joining two communities can be compactly calculated by matrix operations for all pairs of communities simultaneously. At last, a complete hierarchical community structure is unfolded. We apply our method to two benchmark data sets and a large-scale data set from an e-commerce company, showing that it effectively identifies community structure in bipartite networks.
A systematic review protocol: social network analysis of tobacco use.
Maddox, Raglan; Davey, Rachel; Lovett, Ray; van der Sterren, Anke; Corbett, Joan; Cochrane, Tom
2014-08-08
Tobacco use is the single most preventable cause of death in the world. Evidence indicates that behaviours such as tobacco use can influence social networks, and that social network structures can influence behaviours. Social network analysis provides a set of analytic tools to undertake methodical analysis of social networks. We will undertake a systematic review to provide a comprehensive synthesis of the literature regarding social network analysis and tobacco use. The review will answer the following research questions: among participants who use tobacco, does social network structure/position influence tobacco use? Does tobacco use influence peer selection? Does peer selection influence tobacco use? We will follow the Preferred Reporting Items for Systemic Reviews and Meta-Analyses (PRISMA) guidelines and search the following databases for relevant articles: CINAHL (Cumulative Index to Nursing and Allied Health Literature); Informit Health Collection; PsycINFO; PubMed/MEDLINE; Scopus/Embase; Web of Science; and the Wiley Online Library. Keywords include tobacco; smoking; smokeless; cigarettes; cigar and 'social network' and reference lists of included articles will be hand searched. Studies will be included that provide descriptions of social network analysis of tobacco use.Qualitative, quantitative and mixed method data that meets the inclusion criteria for the review, including methodological rigour, credibility and quality standards, will be synthesized using narrative synthesis. Results will be presented using outcome statistics that address each of the research questions. This systematic review will provide a timely evidence base on the role of social network analysis of tobacco use, forming a basis for future research, policy and practice in this area. This systematic review will synthesise the evidence, supporting the hypothesis that social network structures can influence tobacco use. This will also include exploring the relationship between social
Fast network centrality analysis using GPUs
Directory of Open Access Journals (Sweden)
Shi Zhiao
2011-05-01
Full Text Available Abstract Background With the exploding volume of data generated by continuously evolving high-throughput technologies, biological network analysis problems are growing larger in scale and craving for more computational power. General Purpose computation on Graphics Processing Units (GPGPU provides a cost-effective technology for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in leveraging the power of GPUs. Results We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between 11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these algorithms available to the research community, we developed a software package gpu-fan (GPU-based Fast Analysis of Networks for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was observed for simulated scale-free networks and real world biological networks. Conclusions gpu-fan provides a significant performance improvement for centrality computation in large-scale networks. Source code is available under the GNU Public License (GPL at http://bioinfo.vanderbilt.edu/gpu-fan/.
Crawling Facebook for Social Network Analysis Purposes
Catanese, Salvatore A.; De Meo, Pasquale; Ferrara, Emilio; Fiumara, Giacomo; Provetti, Alessandro
2011-01-01
We describe our work in the collection and analysis of massive data describing the connections between participants to online social networks. Alternative approaches to social network data collection are defined and evaluated in practice, against the popular Facebook Web site. Thanks to our ad-hoc, privacy-compliant crawlers, two large samples, comprising millions of connections, have been collected; the data is anonymous and organized as an undirected graph. We describe a set of tools that w...
Major component analysis of dynamic networks of physiologic organ interactions
International Nuclear Information System (INIS)
Liu, Kang K L; Ma, Qianli D Y; Ivanov, Plamen Ch; Bartsch, Ronny P
2015-01-01
The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function. (paper)
Automated Analysis of Security in Networking Systems
DEFF Research Database (Denmark)
Buchholtz, Mikael
2004-01-01
such networking systems are modelled in the process calculus LySa. On top of this programming language based formalism an analysis is developed, which relies on techniques from data and control ow analysis. These are techniques that can be fully automated, which make them an ideal basis for tools targeted at non...
Fuzzy Entropy Method for Quantifying Supply Chain Networks Complexity
Zhang, Jihui; Xu, Junqin
Supply chain is a special kind of complex network. Its complexity and uncertainty makes it very difficult to control and manage. Supply chains are faced with a rising complexity of products, structures, and processes. Because of the strong link between a supply chain’s complexity and its efficiency the supply chain complexity management becomes a major challenge of today’s business management. The aim of this paper is to quantify the complexity and organization level of an industrial network working towards the development of a ‘Supply Chain Network Analysis’ (SCNA). By measuring flows of goods and interaction costs between different sectors of activity within the supply chain borders, a network of flows is built and successively investigated by network analysis. The result of this study shows that our approach can provide an interesting conceptual perspective in which the modern supply network can be framed, and that network analysis can handle these issues in practice.
Bellman, Richard Ernest
1970-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Network Analysis in Community Psychology: Looking Back, Looking Forward
Neal, Zachary P.; Neal, Jennifer Watling
2017-01-01
Highlights Network analysis is ideally suited for community psychology research because it focuses on context. Use of network analysis in community psychology is growing. Network analysis in community psychology has employed some potentially problematic practices. Recommended practices are identified to improve network analysis in community psychology.
Network analysis: An innovative framework for understanding eating disorder psychopathology.
Smith, Kathryn E; Crosby, Ross D; Wonderlich, Stephen A; Forbush, Kelsie T; Mason, Tyler B; Moessner, Markus
2018-03-01
Network theory and analysis is an emerging approach in psychopathology research that has received increasing attention across fields of study. In contrast to medical models or latent variable approaches, network theory suggests that psychiatric syndromes result from systems of causal and reciprocal symptom relationships. Despite the promise of this approach to elucidate key mechanisms contributing to the development and maintenance of eating disorders (EDs), thus far, few applications of network analysis have been tested in ED samples. We first present an overview of network theory, review the existing findings in the ED literature, and discuss the limitations of this literature to date. In particular, the reliance on cross-sectional designs, use of single-item self-reports of symptoms, and instability of results have raised concern about the inferences that can be made from network analyses. We outline several areas to address in future ED network analytic research, which include the use of prospective designs and adoption of multimodal assessment methods. Doing so will provide a clearer understanding of whether network analysis can enhance our current understanding of ED psychopathology and inform clinical interventions. © 2018 Wiley Periodicals, Inc.
Launay, C P; Rivière, H; Kabeshova, A; Beauchet, O
2015-09-01
To examine performance criteria (i.e., sensitivity, specificity, positive predictive value [PPV], negative predictive value [NPV], likelihood ratios [LR], area under receiver operating characteristic curve [AUROC]) of a 10-item brief geriatric assessment (BGA) for the prediction of prolonged length hospital stay (LHS) in older patients hospitalized in acute care wards after an emergency department (ED) visit, using artificial neural networks (ANNs); and to describe the contribution of each BGA item to the predictive accuracy using the AUROC value. A total of 993 geriatric ED users admitted to acute care wards were included in this prospective cohort study. Age >85years, gender male, polypharmacy, non use of formal and/or informal home-help services, history of falls, temporal disorientation, place of living, reasons and nature for ED admission, and use of psychoactive drugs composed the 10 items of BGA and were recorded at the ED admission. The prolonged LHS was defined as the top third of LHS. The ANNs were conducted using two feeds forward (multilayer perceptron [MLP] and modified MLP). The best performance was reported with the modified MLP involving the 10 items (sensitivity=62.7%; specificity=96.6%; PPV=87.1; NPV=87.5; positive LR=18.2; AUC=90.5). In this model, presence of chronic conditions had the highest contributions (51.3%) in AUROC value. The 10-item BGA appears to accurately predict prolonged LHS, using the ANN MLP method, showing the best criteria performance ever reported until now. Presence of chronic conditions was the main contributor for the predictive accuracy. Copyright © 2015 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Multilevel method for modeling large-scale networks.
Energy Technology Data Exchange (ETDEWEB)
Safro, I. M. (Mathematics and Computer Science)
2012-02-24
Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from
Do-it-yourself networks: a novel method of generating weighted networks.
Shanafelt, D W; Salau, K R; Baggio, J A
2017-11-01
Network theory is finding applications in the life and social sciences for ecology, epidemiology, finance and social-ecological systems. While there are methods to generate specific types of networks, the broad literature is focused on generating unweighted networks. In this paper, we present a framework for generating weighted networks that satisfy user-defined criteria. Each criterion hierarchically defines a feature of the network and, in doing so, complements existing algorithms in the literature. We use a general example of ecological species dispersal to illustrate the method and provide open-source code for academic purposes.
Analysis of the experimental positron lifetime spectra by neural networks
International Nuclear Information System (INIS)
Avdic, S.; Chakarova, R.; Pazsit, I.
2003-01-01
This paper deals with the analysis of experimental positron lifetime spectra in polymer materials by using various algorithms of neural networks. A method based on the use of artificial neural networks for unfolding the mean lifetime and intensity of the spectral components of simulated positron lifetime spectra was previously suggested and tested on simulated data [Pazsit et al., Applied Surface Science, 149 (1998), 97]. In this work, the applicability of the method to the analysis of experimental positron spectra has been verified in the case of spectra from polymer materials with three components. It has been demonstrated that the backpropagation neural network can determine the spectral parameters with a high accuracy and perform the decomposition of lifetimes which differ by 10% or more. The backpropagation network has not been suitable for the identification of both the parameters and the number of spectral components. Therefore, a separate artificial neural network module has been designed to solve the classification problem. Module types based on self-organizing map and learning vector quantization algorithms have been tested. The learning vector quantization algorithm was found to have better performance and reliability. A complete artificial neural network analysis tool of positron lifetime spectra has been constructed to include a spectra classification module and parameter evaluation modules for spectra with a different number of components. In this way, both flexibility and high resolution can be achieved. (author)
Directory of Open Access Journals (Sweden)
Kim Hyun
2011-12-01
Full Text Available Abstract Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.
Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup
2011-01-01
Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.
Anomaly-based Network Intrusion Detection Methods
Directory of Open Access Journals (Sweden)
Pavel Nevlud
2013-01-01
Full Text Available The article deals with detection of network anomalies. Network anomalies include everything that is quite different from the normal operation. For detection of anomalies were used machine learning systems. Machine learning can be considered as a support or a limited type of artificial intelligence. A machine learning system usually starts with some knowledge and a corresponding knowledge organization so that it can interpret, analyse, and test the knowledge acquired. There are several machine learning techniques available. We tested Decision tree learning and Bayesian networks. The open source data-mining framework WEKA was the tool we used for testing the classify, cluster, association algorithms and for visualization of our results. The WEKA is a collection of machine learning algorithms for data mining tasks.
Mean field methods for cortical network dynamics
DEFF Research Database (Denmark)
Hertz, J.; Lerchner, Alexander; Ahmadi, M.
2004-01-01
We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...
Social network analysis of study environment
Directory of Open Access Journals (Sweden)
Blaženka Divjak
2010-06-01
Full Text Available Student working environment influences student learning and achievement level. In this respect social aspects of students’ formal and non-formal learning play special role in learning environment. The main research problem of this paper is to find out if students' academic performance influences their position in different students' social networks. Further, there is a need to identify other predictors of this position. In the process of problem solving we use the Social Network Analysis (SNA that is based on the data we collected from the students at the Faculty of Organization and Informatics, University of Zagreb. There are two data samples: in the basic sample N=27 and in the extended sample N=52. We collected data on social-demographic position, academic performance, learning and motivation styles, student status (full-time/part-time, attitudes towards individual and teamwork as well as informal cooperation. Afterwards five different networks (exchange of learning materials, teamwork, informal communication, basic and aggregated social network were constructed. These networks were analyzed with different metrics and the most important were betweenness, closeness and degree centrality. The main result is, firstly, that the position in a social network cannot be forecast only by academic success and, secondly, that part-time students tend to form separate groups that are poorly connected with full-time students. In general, position of a student in social networks in study environment can influence student learning as well as her/his future employability and therefore it is worthwhile to be investigated.
A Method for Automated Planning of FTTH Access Network Infrastructures
DEFF Research Database (Denmark)
Riaz, Muhammad Tahir; Pedersen, Jens Myrup; Madsen, Ole Brun
2005-01-01
In this paper a method for automated planning of Fiber to the Home (FTTH) access networks is proposed. We introduced a systematic approach for planning access network infrastructure. The GIS data and a set of algorithms were employed to make the planning process more automatic. The method explains...... method. The method, however, does not fully automate the planning but make the planning process significantly fast. The results and discussion are presented and conclusion is given in the end....
NAPS: Network Analysis of Protein Structures
Chakrabarty, Broto; Parekh, Nita
2016-01-01
Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201
Directory of Open Access Journals (Sweden)
Firoozeh Zare-Farashbandi
2014-01-01
Full Text Available Background: Co-authorship is one of the most tangible forms of research collaboration. A co-authorship network is a social network in which the authors through participation in one or more publication through an indirect path have linked to each other. The present research using the social network analysis studied co-authorship network of 681 articles published in Journal of Research in Medical Sciences (JRMS during 2008-2012. Materials and Methods: The study was carried out with the scientometrics approach and using co-authorship network analysis of authors. The topology of the co-authorship network of 681 published articles in JRMS between 2008 and 2012 was analyzed using macro-level metrics indicators of network analysis such as density, clustering coefficient, components and mean distance. In addition, in order to evaluate the performance of each authors and countries in the network, the micro-level indicators such as degree centrality, closeness centrality and betweenness centrality as well as productivity index were used. The UCINET and NetDraw softwares were used to draw and analyze the co-authorship network of the papers. Results: The assessment of the authors productivity in this journal showed that the first ranks were belonged to only five authors, respectively. Furthermore, analysis of the co-authorship of the authors in the network demonstrated that in the betweenness centrality index, three authors of them had the good position in the network. They can be considered as the network leaders able to control the flow of information in the network compared with the other members based on the shortest paths. On the other hand, the key role of the network according to the productivity and centrality indexes was belonged to Iran, Malaysia and United States of America. Conclusion: Co-authorship network of JRMS has the characteristics of a small world network. In addition, the theory of 6° separation is valid in this network was also true.
Heuristic urban transportation network design method, a multilayer coevolution approach
Ding, Rui; Ujang, Norsidah; Hamid, Hussain bin; Manan, Mohd Shahrudin Abd; Li, Rong; Wu, Jianjun
2017-08-01
The design of urban transportation networks plays a key role in the urban planning process, and the coevolution of urban networks has recently garnered significant attention in literature. However, most of these recent articles are based on networks that are essentially planar. In this research, we propose a heuristic multilayer urban network coevolution model with lower layer network and upper layer network that are associated with growth and stimulate one another. We first use the relative neighbourhood graph and the Gabriel graph to simulate the structure of rail and road networks, respectively. With simulation we find that when a specific number of nodes are added, the total travel cost ratio between an expanded network and the initial lower layer network has the lowest value. The cooperation strength Λ and the changeable parameter average operation speed ratio Θ show that transit users' route choices change dramatically through the coevolution process and that their decisions, in turn, affect the multilayer network structure. We also note that the simulated relation between the Gini coefficient of the betweenness centrality, Θ and Λ have an optimal point for network design. This research could inspire the analysis of urban network topology features and the assessment of urban growth trends.
Stability analysis of impulsive parabolic complex networks
Energy Technology Data Exchange (ETDEWEB)
Wang Jinliang, E-mail: wangjinliang1984@yahoo.com.cn [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China); Wu Huaining [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China)
2011-11-15
Highlights: > Two impulsive parabolic complex network models are proposed. > The global exponential stability of impulsive parabolic complex networks are considered. > The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.
Stability analysis of impulsive parabolic complex networks
International Nuclear Information System (INIS)
Wang Jinliang; Wu Huaining
2011-01-01
Highlights: → Two impulsive parabolic complex network models are proposed. → The global exponential stability of impulsive parabolic complex networks are considered. → The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.
Directory of Open Access Journals (Sweden)
Ji Wei
2010-10-01
Full Text Available Abstract Background Microarray data discretization is a basic preprocess for many algorithms of gene regulatory network inference. Some common discretization methods in informatics are used to discretize microarray data. Selection of the discretization method is often arbitrary and no systematic comparison of different discretization has been conducted, in the context of gene regulatory network inference from time series gene expression data. Results In this study, we propose a new discretization method "bikmeans", and compare its performance with four other widely-used discretization methods using different datasets, modeling algorithms and number of intervals. Sensitivities, specificities and total accuracies were calculated and statistical analysis was carried out. Bikmeans method always gave high total accuracies. Conclusions Our results indicate that proper discretization methods can consistently improve gene regulatory network inference independent of network modeling algorithms and datasets. Our new method, bikmeans, resulted in significant better total accuracies than other methods.
AN IMPROVEMENT ON GEOMETRY-BASED METHODS FOR GENERATION OF NETWORK PATHS FROM POINTS
Directory of Open Access Journals (Sweden)
Z. Akbari
2014-10-01
Full Text Available Determining network path is important for different purposes such as determination of road traffic, the average speed of vehicles, and other network analysis. One of the required input data is information about network path. Nevertheless, the data collected by the positioning systems often lead to the discrete points. Conversion of these points to the network path have become one of the challenges which different researchers, presents many ways for solving it. This study aims at investigating geometry-based methods to estimate the network paths from the obtained points and improve an existing point to curve method. To this end, some geometry-based methods have been studied and an improved method has been proposed by applying conditions on the best method after describing and illustrating weaknesses of them.
Directory of Open Access Journals (Sweden)
De-Xin Yu
2013-01-01
Full Text Available Combined with improved Pallottino parallel algorithm, this paper proposes a large-scale route search method, which considers travelers’ route choice preferences. And urban road network is decomposed into multilayers effectively. Utilizing generalized travel time as road impedance function, the method builds a new multilayer and multitasking road network data storage structure with object-oriented class definition. Then, the proposed path search algorithm is verified by using the real road network of Guangzhou city as an example. By the sensitive experiments, we make a comparative analysis of the proposed path search method with the current advanced optimal path algorithms. The results demonstrate that the proposed method can increase the road network search efficiency by more than 16% under different search proportion requests, node numbers, and computing process numbers, respectively. Therefore, this method is a great breakthrough in the guidance field of urban road network.
Customer-oriented finite perturbation analysis for queueing networks
Heidergott, B.F.
2000-01-01
We consider queueing networks for which the performance measureJ ( ) depends on a parameter , which can be a service time parameter or a buffer size, and we are interested in sensitivity analysis of J ( ) with respect to . We introduce a new method, called customer-oriented finite perturbation
Improving Family Forest Knowledge Transfer through Social Network Analysis
Gorczyca, Erika L.; Lyons, Patrick W.; Leahy, Jessica E.; Johnson, Teresa R.; Straub, Crista L.
2012-01-01
To better engage Maine's family forest landowners our study used social network analysis: a computational social science method for identifying stakeholders, evaluating models of engagement, and targeting areas for enhanced partnerships. Interviews with researchers associated with a research center were conducted to identify how social network…
Dynamic baseline detection method for power data network service
Chen, Wei
2017-08-01
This paper proposes a dynamic baseline Traffic detection Method which is based on the historical traffic data for the Power data network. The method uses Cisco's NetFlow acquisition tool to collect the original historical traffic data from network element at fixed intervals. This method uses three dimensions information including the communication port, time, traffic (number of bytes or number of packets) t. By filtering, removing the deviation value, calculating the dynamic baseline value, comparing the actual value with the baseline value, the method can detect whether the current network traffic is abnormal.
A low complexity method for the optimization of network path length in spatially embedded networks
International Nuclear Information System (INIS)
Chen, Guang; Yang, Xu-Hua; Xu, Xin-Li; Ming, Yong; Chen, Sheng-Yong; Wang, Wan-Liang
2014-01-01
The average path length of a network is an important index reflecting the network transmission efficiency. In this paper, we propose a new method of decreasing the average path length by adding edges. A new indicator is presented, incorporating traffic flow demand, to assess the decrease in the average path length when a new edge is added during the optimization process. With the help of the indicator, edges are selected and added into the network one by one. The new method has a relatively small time computational complexity in comparison with some traditional methods. In numerical simulations, the new method is applied to some synthetic spatially embedded networks. The result shows that the method can perform competitively in decreasing the average path length. Then, as an example of an application of this new method, it is applied to the road network of Hangzhou, China. (paper)
Performability indicators for the traffic analysis of wide area networks
International Nuclear Information System (INIS)
Tsopelas, Panagiotis; Platis, Agapios
2003-01-01
In connecting computing networks, reliability term is strongly related to the availability of connections of Wide Area networks (WANs) or Local Area networks (LANs). In this paper we will examine the network connections activity of a Greek University in order to provide two sources of information: The Quantity of Information Not Delivered (QIND) and the Information Flow Interruption (IFI). These indicators will provide us with the inference of information from observable characteristics of data flow(s), even when the data is encrypted or otherwise not directly available (traffic), which is lost due to failures or upgrades inside this network. The reliability analysis is obtained by collecting the network failures data (duration and frequency) and traffic (total and average) for a specified period of 1 year. It is assumed that the numerical analysis is based on the fact that the lifetime follows and exponential distribution (here as we are working on discrete time the distribution must be the geometric distribution). Hence a Markov chain model seems suitable for modelling the functioning of this system. An algorithm concentrates the results in a transition probability matrix and calculates the reward functions for the QIND/IFI indicators with the use of the power method. Finally, the application part provides an example of how final results can be used to evaluate the observed network
Input data preprocessing method for exchange rate forecasting via neural network
Directory of Open Access Journals (Sweden)
Antić Dragan S.
2014-01-01
Full Text Available The aim of this paper is to present a method for neural network input parameters selection and preprocessing. The purpose of this network is to forecast foreign exchange rates using artificial intelligence. Two data sets are formed for two different economic systems. Each system is represented by six categories with 70 economic parameters which are used in the analysis. Reduction of these parameters within each category was performed by using the principal component analysis method. Component interdependencies are established and relations between them are formed. Newly formed relations were used to create input vectors of a neural network. The multilayer feed forward neural network is formed and trained using batch training. Finally, simulation results are presented and it is concluded that input data preparation method is an effective way for preprocessing neural network data. [Projekat Ministarstva nauke Republike Srbije, br.TR 35005, br. III 43007 i br. III 44006
Analysis of the atmospheric 7Be radioactivity by neural network
International Nuclear Information System (INIS)
Moroz, Z.; Myslek-Laurikainen, B.; Matul, M.; Mikolajewski, S.; Preibisz, Z.; Trzaskowaka, H.; Kownacki, C.
2002-01-01
Computational methods of artificial intelligence (neural networks) and modern signal processing (wavelet decomposition were applied for the analysis of atmospheric 7 Be radioactivity data. Measurements were performed each week during 1994-2001 in the sampling station placed at Swider Geophysical Observatory. Raw data as well as those averaged over 4 and 10 weeks were used. Ability of the neural networks for the purpose of representation, interpolation and prediction was tested. The corresponding relative errors are calculated. Next, the time sequences were decomposed using the wavelet method and eight components of different time scales were obtained. Neural networks were applied separately to each of those components. Application of such analysis and their possible extensions useful for the construction of phenomeno-logical models of atmospheric radioactivity are discussed. (author)
Complex network analysis of state spaces for random Boolean networks
Energy Technology Data Exchange (ETDEWEB)
Shreim, Amer [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Berdahl, Andrew [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Sood, Vishal [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Grassberger, Peter [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Paczuski, Maya [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada)
2008-01-15
We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 {<=} K {<=} 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2{sup N}, for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two.
Complex network analysis of state spaces for random Boolean networks
International Nuclear Information System (INIS)
Shreim, Amer; Berdahl, Andrew; Sood, Vishal; Grassberger, Peter; Paczuski, Maya
2008-01-01
We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 ≤ K ≤ 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2 N , for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two
An introduction to neural network methods for differential equations
Yadav, Neha; Kumar, Manoj
2015-01-01
This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks, and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed...
The Reconstruction and Analysis of Gene Regulatory Networks.
Zheng, Guangyong; Huang, Tao
2018-01-01
In post-genomic era, an important task is to explore the function of individual biological molecules (i.e., gene, noncoding RNA, protein, metabolite) and their organization in living cells. For this end, gene regulatory networks (GRNs) are constructed to show relationship between biological molecules, in which the vertices of network denote biological molecules and the edges of network present connection between nodes (Strogatz, Nature 410:268-276, 2001; Bray, Science 301:1864-1865, 2003). Biologists can understand not only the function of biological molecules but also the organization of components of living cells through interpreting the GRNs, since a gene regulatory network is a comprehensively physiological map of living cells and reflects influence of genetic and epigenetic factors (Strogatz, Nature 410:268-276, 2001; Bray, Science 301:1864-1865, 2003). In this paper, we will review the inference methods of GRN reconstruction and analysis approaches of network structure. As a powerful tool for studying complex diseases and biological processes, the applications of the network method in pathway analysis and disease gene identification will be introduced.
Directory of Open Access Journals (Sweden)
WenJun Zhang
2016-06-01
Full Text Available Some networks, including biological networks, consist of hierarchical sub-networks / modules. Based on my previous study, in present study a method for both identifying hierarchical sub-networks / modules and weighting network links is proposed. It is based on the cluster analysis in which between-node similarity in sets of adjacency nodes is used. Two matrices, linkWeightMat and linkClusterIDs, are achieved by using the algorithm. Two links with both the same weight in linkWeightMat and the same cluster ID in linkClusterIDs belong to the same sub-network / module. Two links with the same weight in linkWeightMat but different cluster IDs in linkClusterIDs belong to two sub-networks / modules at the same hirarchical level. However, a link with an unique cluster ID in linkClusterIDs does not belong to any sub-networks / modules. A sub-network / module of the greater weight is the more connected sub-network / modules. Matlab codes of the algorithm are presented.
Schaffter, Thomas; Marbach, Daniel; Floreano, Dario
2011-08-15
Over the last decade, numerous methods have been developed for inference of regulatory networks from gene expression data. However, accurate and systematic evaluation of these methods is hampered by the difficulty of constructing adequate benchmarks and the lack of tools for a differentiated analysis of network predictions on such benchmarks. Here, we describe a novel and comprehensive method for in silico benchmark generation and performance profiling of network inference methods available to the community as an open-source software called GeneNetWeaver (GNW). In addition to the generation of detailed dynamical models of gene regulatory networks to be used as benchmarks, GNW provides a network motif analysis that reveals systematic prediction errors, thereby indicating potential ways of improving inference methods. The accuracy of network inference methods is evaluated using standard metrics such as precision-recall and receiver operating characteristic curves. We show how GNW can be used to assess the performance and identify the strengths and weaknesses of six inference methods. Furthermore, we used GNW to provide the international Dialogue for Reverse Engineering Assessments and Methods (DREAM) competition with three network inference challenges (DREAM3, DREAM4 and DREAM5). GNW is available at http://gnw.sourceforge.net along with its Java source code, user manual and supporting data. Supplementary data are available at Bioinformatics online. dario.floreano@epfl.ch.
Learning Methods for Radial Basis Functions Networks
Czech Academy of Sciences Publication Activity Database
Neruda, Roman; Kudová, Petra
2005-01-01
Roč. 21, - (2005), s. 1131-1142 ISSN 0167-739X R&D Projects: GA ČR GP201/03/P163; GA ČR GA201/02/0428 Institutional research plan: CEZ:AV0Z10300504 Keywords : radial basis function networks * hybrid supervised learning * genetic algorithms * benchmarking Subject RIV: BA - General Mathematics Impact factor: 0.555, year: 2005
Classification Method in Integrated Information Network Using Vector Image Comparison
Directory of Open Access Journals (Sweden)
Zhou Yuan
2014-05-01
Full Text Available Wireless Integrated Information Network (WMN consists of integrated information that can get data from its surrounding, such as image, voice. To transmit information, large resource is required which decreases the service time of the network. In this paper we present a Classification Approach based on Vector Image Comparison (VIC for WMN that improve the service time of the network. The available methods for sub-region selection and conversion are also proposed.
Multivariate analysis: models and method
International Nuclear Information System (INIS)
Sanz Perucha, J.
1990-01-01
Data treatment techniques are increasingly used since computer methods result of wider access. Multivariate analysis consists of a group of statistic methods that are applied to study objects or samples characterized by multiple values. A final goal is decision making. The paper describes the models and methods of multivariate analysis
Multivariate analysis methods in physics
International Nuclear Information System (INIS)
Wolter, M.
2007-01-01
A review of multivariate methods based on statistical training is given. Several multivariate methods useful in high-energy physics analysis are discussed. Selected examples from current research in particle physics are discussed, both from the on-line trigger selection and from the off-line analysis. Also statistical training methods are presented and some new application are suggested [ru
Methods in algorithmic analysis
Dobrushkin, Vladimir A
2009-01-01
…helpful to any mathematics student who wishes to acquire a background in classical probability and analysis … This is a remarkably beautiful book that would be a pleasure for a student to read, or for a teacher to make into a year's course.-Harvey Cohn, Computing Reviews, May 2010
Spectral Methods for Immunization of Large Networks
Directory of Open Access Journals (Sweden)
Muhammad Ahmad
2017-11-01
Full Text Available Given a network of nodes, minimizing the spread of a contagion using a limited budget is a well-studied problem with applications in network security, viral marketing, social networks, and public health. In real graphs, virus may infect a node which in turn infects its neighbour nodes and this may trigger an epidemic in the whole graph. The goal thus is to select the best k nodes (budget constraint that are immunized (vaccinated, screened, filtered so as the remaining graph is less prone to the epidemic. It is known that the problem is, in all practical models, computationally intractable even for moderate sized graphs. In this paper we employ ideas from spectral graph theory to define relevance and importance of nodes. Using novel graph theoretic techniques, we then design an efficient approximation algorithm to immunize the graph. Theoretical guarantees on the running time of our algorithm show that it is more efficient than any other known solution in the literature. We test the performance of our algorithm on several real world graphs. Experiments show that our algorithm scales well for large graphs and outperforms state of the art algorithms both in quality (containment of epidemic and efficiency (runtime and space complexity.
Tensor network method for reversible classical computation
Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.
2018-03-01
We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.
Semigroup methods for evolution equations on networks
Mugnolo, Delio
2014-01-01
This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations. Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations. This book is specifically devoted to the study of evolution equations – i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) – bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphs has been devoted to ellip...
Complementing Gender Analysis Methods.
Kumar, Anant
2016-01-01
The existing gender analysis frameworks start with a premise that men and women are equal and should be treated equally. These frameworks give emphasis on equal distribution of resources between men and women and believe that this will bring equality which is not always true. Despite equal distribution of resources, women tend to suffer and experience discrimination in many areas of their lives such as the power to control resources within social relationships, and the need for emotional security and reproductive rights within interpersonal relationships. These frameworks believe that patriarchy as an institution plays an important role in women's oppression, exploitation, and it is a barrier in their empowerment and rights. Thus, some think that by ensuring equal distribution of resources and empowering women economically, institutions like patriarchy can be challenged. These frameworks are based on proposed equality principle which puts men and women in competing roles. Thus, the real equality will never be achieved. Contrary to the existing gender analysis frameworks, the Complementing Gender Analysis framework proposed by the author provides a new approach toward gender analysis which not only recognizes the role of economic empowerment and equal distribution of resources but suggests to incorporate the concept and role of social capital, equity, and doing gender in gender analysis which is based on perceived equity principle, putting men and women in complementing roles that may lead to equality. In this article the author reviews the mainstream gender theories in development from the viewpoint of the complementary roles of gender. This alternative view is argued based on existing literature and an anecdote of observations made by the author. While criticizing the equality theory, the author offers equity theory in resolving the gender conflict by using the concept of social and psychological capital.
Protocol design and analysis for cooperative wireless networks
Song, Wei; Jin, A-Long
2017-01-01
This book focuses on the design and analysis of protocols for cooperative wireless networks, especially at the medium access control (MAC) layer and for crosslayer design between the MAC layer and the physical layer. It highlights two main points that are often neglected in other books: energy-efficiency and spatial random distribution of wireless devices. Effective methods in stochastic geometry for the design and analysis of wireless networks are also explored. After providing a comprehensive review of existing studies in the literature, the authors point out the challenges that are worth further investigation. Then, they introduce several novel solutions for cooperative wireless network protocols that reduce energy consumption and address spatial random distribution of wireless nodes. For each solution, the book offers a clear system model and problem formulation, details of the proposed cooperative schemes, comprehensive performance analysis, and extensive numerical and simulation results that validate th...
Vibration analysis in nuclear power plant using neural networks
International Nuclear Information System (INIS)
Loskiewicz-Buczak, A.; Alguindigue, I.E.
1993-01-01
Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. This paper documents the authors' work on the design of a vibration monitoring methodology enhanced by neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to handle data which may be distorted or noisy. This paper describes three neural networks-based methods for the automation of some of the activities related to motion and vibration monitoring in engineering systems
Diversity Performance Analysis on Multiple HAP Networks
Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue
2015-01-01
One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques. PMID:26134102
Diversity Performance Analysis on Multiple HAP Networks
Directory of Open Access Journals (Sweden)
Feihong Dong
2015-06-01
Full Text Available One of the main design challenges in wireless sensor networks (WSNs is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV. In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF and cumulative distribution function (CDF of the received signal-to-noise ratio (SNR are derived. In addition, the average symbol error rate (ASER with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.
Efficient parsimony-based methods for phylogenetic network reconstruction.
Jin, Guohua; Nakhleh, Luay; Snir, Sagi; Tuller, Tamir
2007-01-15
Phylogenies--the evolutionary histories of groups of organisms-play a major role in representing relationships among biological entities. Although many biological processes can be effectively modeled as tree-like relationships, others, such as hybrid speciation and horizontal gene transfer (HGT), result in networks, rather than trees, of relationships. Hybrid speciation is a significant evolutionary mechanism in plants, fish and other groups of species. HGT plays a major role in bacterial genome diversification and is a significant mechanism by which bacteria develop resistance to antibiotics. Maximum parsimony is one of the most commonly used criteria for phylogenetic tree inference. Roughly speaking, inference based on this criterion seeks the tree that minimizes the amount of evolution. In 1990, Jotun Hein proposed using this criterion for inferring the evolution of sequences subject to recombination. Preliminary results on small synthetic datasets. Nakhleh et al. (2005) demonstrated the criterion's application to phylogenetic network reconstruction in general and HGT detection in particular. However, the naive algorithms used by the authors are inapplicable to large datasets due to their demanding computational requirements. Further, no rigorous theoretical analysis of computing the criterion was given, nor was it tested on biological data. In the present work we prove that the problem of scoring the parsimony of a phylogenetic network is NP-hard and provide an improved fixed parameter tractable algorithm for it. Further, we devise efficient heuristics for parsimony-based reconstruction of phylogenetic networks. We test our methods on both synthetic and biological data (rbcL gene in bacteria) and obtain very promising results.
Machine Learning Methods for Production Cases Analysis
Mokrova, Nataliya V.; Mokrov, Alexander M.; Safonova, Alexandra V.; Vishnyakov, Igor V.
2018-03-01
Approach to analysis of events occurring during the production process were proposed. Described machine learning system is able to solve classification tasks related to production control and hazard identification at an early stage. Descriptors of the internal production network data were used for training and testing of applied models. k-Nearest Neighbors and Random forest methods were used to illustrate and analyze proposed solution. The quality of the developed classifiers was estimated using standard statistical metrics, such as precision, recall and accuracy.
Application of neural networks to quantitative spectrometry analysis
International Nuclear Information System (INIS)
Pilato, V.; Tola, F.; Martinez, J.M.; Huver, M.
1999-01-01
Accurate quantitative analysis of complex spectra (fission and activation products), relies upon experts' knowledge. In some cases several hours, even days of tedious calculations are needed. This is because current software is unable to solve deconvolution problems when several rays overlap. We have shown that such analysis can be correctly handled by a neural network, and the procedure can be automated with minimum laboratory measurements for networks training, as long as all the elements of the analysed solution figure in the training set and provided that adequate scaling of input data is performed. Once the network has been trained, analysis is carried out in a few seconds. On submitting to a test between several well-known laboratories, where unknown quantities of 57 Co, 58 Co, 85 Sr, 88 Y, 131 I, 139 Ce, 141 Ce present in a sample had to be determined, the results yielded by our network classed it amongst the best. The method is described, including experimental device and measures, training set designing, relevant input parameters definition, input data scaling and networks training. Main results are presented together with a statistical model allowing networks error prediction
Nonlinear Time Series Analysis via Neural Networks
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Integrating neural network technology and noise analysis
International Nuclear Information System (INIS)
Uhrig, R.E.; Oak Ridge National Lab., TN
1995-01-01
The integrated use of neural network and noise analysis technologies offers advantages not available by the use of either technology alone. The application of neural network technology to noise analysis offers an opportunity to expand the scope of problems where noise analysis is useful and unique ways in which the integration of these technologies can be used productively. The two-sensor technique, in which the responses of two sensors to an unknown driving source are related, is used to demonstration such integration. The relationship between power spectral densities (PSDs) of accelerometer signals is derived theoretically using noise analysis to demonstrate its uniqueness. This relationship is modeled from experimental data using a neural network when the system is working properly, and the actual PSD of one sensor is compared with the PSD of that sensor predicted by the neural network using the PSD of the other sensor as an input. A significant deviation between the actual and predicted PSDs indicate that system is changing (i.e., failing). Experiments carried out on check values and bearings illustrate the usefulness of the methodology developed. (Author)
Recurrence Density Enhanced Complex Networks for Nonlinear Time Series Analysis
Costa, Diego G. De B.; Reis, Barbara M. Da F.; Zou, Yong; Quiles, Marcos G.; Macau, Elbert E. N.
We introduce a new method, which is entitled Recurrence Density Enhanced Complex Network (RDE-CN), to properly analyze nonlinear time series. Our method first transforms a recurrence plot into a figure of a reduced number of points yet preserving the main and fundamental recurrence properties of the original plot. This resulting figure is then reinterpreted as a complex network, which is further characterized by network statistical measures. We illustrate the computational power of RDE-CN approach by time series by both the logistic map and experimental fluid flows, which show that our method distinguishes different dynamics sufficiently well as the traditional recurrence analysis. Therefore, the proposed methodology characterizes the recurrence matrix adequately, while using a reduced set of points from the original recurrence plots.
International Nuclear Information System (INIS)
Wen Zhen; Sun Jitao
2009-01-01
In this paper, we investigate the existence and uniqueness of equilibrium point for delayed Cohen-Grossberg bidirectional associative memory (BAM) neural networks with impulses, based on nonsmooth analysis method. And we give the criteria of global exponential stability of the unique equilibrium point for the delayed BAM neural networks with impulses using Lyapunov method. The new sufficient condition generalizes and improves the previously known results. Finally, we present examples to illustrate that our results are effective.
Methods for extracting social network data from chatroom logs
Osesina, O. Isaac; McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.; Bartley, Cecilia; Tudoreanu, M. Eduard
2012-06-01
Identifying social network (SN) links within computer-mediated communication platforms without explicit relations among users poses challenges to researchers. Our research aims to extract SN links in internet chat with multiple users engaging in synchronous overlapping conversations all displayed in a single stream. We approached this problem using three methods which build on previous research. Response-time analysis builds on temporal proximity of chat messages; word context usage builds on keywords analysis and direct addressing which infers links by identifying the intended message recipient from the screen name (nickname) referenced in the message [1]. Our analysis of word usage within the chat stream also provides contexts for the extracted SN links. To test the capability of our methods, we used publicly available data from Internet Relay Chat (IRC), a real-time computer-mediated communication (CMC) tool used by millions of people around the world. The extraction performances of individual methods and their hybrids were assessed relative to a ground truth (determined a priori via manual scoring).
Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.
Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing
2017-01-01
Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.
Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.
Directory of Open Access Journals (Sweden)
Shameng Wen
Full Text Available Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.
Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant
International Nuclear Information System (INIS)
Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.
2006-09-01
The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks
Optimization-based Method for Automated Road Network Extraction
International Nuclear Information System (INIS)
Xiong, D
2001-01-01
Automated road information extraction has significant applicability in transportation. It provides a means for creating, maintaining, and updating transportation network databases that are needed for purposes ranging from traffic management to automated vehicle navigation and guidance. This paper is to review literature on the subject of road extraction and to describe a study of an optimization-based method for automated road network extraction
Diagrammatic perturbation methods in networks and sports ranking combinatorics
International Nuclear Information System (INIS)
Park, Juyong
2010-01-01
Analytic and computational tools developed in statistical physics are being increasingly applied to the study of complex networks. Here we present recent developments in the diagrammatic perturbation methods for the exponential random graph models, and apply them to the combinatoric problem of determining the ranking of nodes in directed networks that represent pairwise competitions
Capacity analysis of wireless mesh networks | Gumel | Nigerian ...
African Journals Online (AJOL)
... number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network. Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis, Bottleneck collision domain, Medium access control ...
Center of attention: A network text analysis of American Sniper
Directory of Open Access Journals (Sweden)
Starling Hunter
2016-06-01
Full Text Available Network Text Analysis (NTA is a term used to describe a variety of software - supported methods for modeling texts as networks of concepts. In this study we apply NTA to the screenplay of American Sniper, an Academy Award nominee for Best Adapted Screenplay in 2014. Specifically, we est ablish prior expectations as to the key themes associated with war films. We then empirically test whether words associated with the most influentially - positioned nodes in the network signify themes common to the war - film genre. As predicted, we find tha t words and concepts associated with the least constrained nodes in the text network were significantly more likely to be associated with the war genre and significantly less likely to be associated with genres to which the film did not belong.
[Weighted gene co-expression network analysis in biomedicine research].
Liu, Wei; Li, Li; Ye, Hua; Tu, Wei
2017-11-25
High-throughput biological technologies are now widely applied in biology and medicine, allowing scientists to monitor thousands of parameters simultaneously in a specific sample. However, it is still an enormous challenge to mine useful information from high-throughput data. The emergence of network biology provides deeper insights into complex bio-system and reveals the modularity in tissue/cellular networks. Correlation networks are increasingly used in bioinformatics applications. Weighted gene co-expression network analysis (WGCNA) tool can detect clusters of highly correlated genes. Therefore, we systematically reviewed the application of WGCNA in the study of disease diagnosis, pathogenesis and other related fields. First, we introduced principle, workflow, advantages and disadvantages of WGCNA. Second, we presented the application of WGCNA in disease, physiology, drug, evolution and genome annotation. Then, we indicated the application of WGCNA in newly developed high-throughput methods. We hope this review will help to promote the application of WGCNA in biomedicine research.
Bank-firm credit network in Japan: an analysis of a bipartite network.
Marotta, Luca; Miccichè, Salvatore; Fujiwara, Yoshi; Iyetomi, Hiroshi; Aoyama, Hideaki; Gallegati, Mauro; Mantegna, Rosario N
2015-01-01
We investigate the networked nature of the Japanese credit market. Our investigation is performed with tools of network science. In our investigation we perform community detection with an algorithm which is identifying communities composed of both banks and firms. We show that the communities obtained by directly working on the bipartite network carry information about the networked nature of the Japanese credit market. Our analysis is performed for each calendar year during the time period from 1980 to 2011. To investigate the time evolution of the networked structure of the credit market we introduce a new statistical method to track the time evolution of detected communities. We then characterize the time evolution of communities by detecting for each time evolving set of communities the over-expression of attributes of firms and banks. Specifically, we consider as attributes the economic sector and the geographical location of firms and the type of banks. In our 32-year-long analysis we detect a persistence of the over-expression of attributes of communities of banks and firms together with a slow dynamic of changes from some specific attributes to new ones. Our empirical observations show that the credit market in Japan is a networked market where the type of banks, geographical location of firms and banks, and economic sector of the firm play a role in shaping the credit relationships between banks and firms.
Bank-Firm Credit Network in Japan: An Analysis of a Bipartite Network
Marotta, Luca; Miccichè, Salvatore; Fujiwara, Yoshi; Iyetomi, Hiroshi; Aoyama, Hideaki; Gallegati, Mauro; Mantegna, Rosario N.
2015-01-01
We investigate the networked nature of the Japanese credit market. Our investigation is performed with tools of network science. In our investigation we perform community detection with an algorithm which is identifying communities composed of both banks and firms. We show that the communities obtained by directly working on the bipartite network carry information about the networked nature of the Japanese credit market. Our analysis is performed for each calendar year during the time period from 1980 to 2011. To investigate the time evolution of the networked structure of the credit market we introduce a new statistical method to track the time evolution of detected communities. We then characterize the time evolution of communities by detecting for each time evolving set of communities the over-expression of attributes of firms and banks. Specifically, we consider as attributes the economic sector and the geographical location of firms and the type of banks. In our 32-year-long analysis we detect a persistence of the over-expression of attributes of communities of banks and firms together with a slow dynamic of changes from some specific attributes to new ones. Our empirical observations show that the credit market in Japan is a networked market where the type of banks, geographical location of firms and banks, and economic sector of the firm play a role in shaping the credit relationships between banks and firms. PMID:25933413
Neural network analysis in pharmacogenetics of mood disorders
Directory of Open Access Journals (Sweden)
Serretti Alessandro
2004-12-01
Full Text Available Abstract Background The increasing number of available genotypes for genetic studies in humans requires more advanced techniques of analysis. We previously reported significant univariate associations between gene polymorphisms and antidepressant response in mood disorders. However the combined analysis of multiple gene polymorphisms and clinical variables requires the use of non linear methods. Methods In the present study we tested a neural network strategy for a combined analysis of two gene polymorphisms. A Multi Layer Perceptron model showed the best performance and was therefore selected over the other networks. One hundred and twenty one depressed inpatients treated with fluvoxamine in the context of previously reported pharmacogenetic studies were included. The polymorphism in the transcriptional control region upstream of the 5HTT coding sequence (SERTPR and in the Tryptophan Hydroxylase (TPH gene were analysed simultaneously. Results A multi layer perceptron network composed by 1 hidden layer with 7 nodes was chosen. 77.5 % of responders and 51.2% of non responders were correctly classified (ROC area = 0.731 – empirical p value = 0.0082. Finally, we performed a comparison with traditional techniques. A discriminant function analysis correctly classified 34.1 % of responders and 68.1 % of non responders (F = 8.16 p = 0.0005. Conclusions Overall, our findings suggest that neural networks may be a valid technique for the analysis of gene polymorphisms in pharmacogenetic studies. The complex interactions modelled through NN may be eventually applied at the clinical level for the individualized therapy.
Method of optimization onboard communication network
Platoshin, G. A.; Selvesuk, N. I.; Semenov, M. E.; Novikov, V. M.
2018-02-01
In this article the optimization levels of onboard communication network (OCN) are proposed. We defined the basic parameters, which are necessary for the evaluation and comparison of modern OCN, we identified also a set of initial data for possible modeling of the OCN. We also proposed a mathematical technique for implementing the OCN optimization procedure. This technique is based on the principles and ideas of binary programming. It is shown that the binary programming technique allows to obtain an inherently optimal solution for the avionics tasks. An example of the proposed approach implementation to the problem of devices assignment in OCN is considered.
Neural network for automatic analysis of motility data
DEFF Research Database (Denmark)
Jakobsen, Erik; Kruse-Andersen, S; Kolberg, Jens Godsk
1994-01-01
comparable. However, the neural network recognized pressure peaks clearly generated by muscular activity that had escaped detection by the conventional program. In conclusion, we believe that neurocomputing has potential advantages for automatic analysis of gastrointestinal motility data.......Continuous recording of intraluminal pressures for extended periods of time is currently regarded as a valuable method for detection of esophageal motor abnormalities. A subsequent automatic analysis of the resulting motility data relies on strict mathematical criteria for recognition of pressure...
Capacity analysis of vehicular communication networks
Lu, Ning
2013-01-01
This SpringerBrief focuses on the network capacity analysis of VANETs, a key topic as fundamental guidance on design and deployment of VANETs is very limited. Moreover, unique characteristics of VANETs impose distinguished challenges on such an investigation. This SpringerBrief first introduces capacity scaling laws for wireless networks and briefly reviews the prior arts in deriving the capacity of VANETs. It then studies the unicast capacity considering the socialized mobility model of VANETs. With vehicles communicating based on a two-hop relaying scheme, the unicast capacity bound is deriv
A systemic method for evaluating the potential impacts of floods on network infrastructures
Directory of Open Access Journals (Sweden)
J. Eleutério
2013-04-01
Full Text Available Understanding network infrastructures and their operation under exceptional circumstances is fundamental for dealing with flood risks and improving the resilience of a territory. This work presents a method for evaluating potential network infrastructure dysfunctions and damage in cases of flooding. In contrast to existing approaches, this method analyses network infrastructures on an elementary scale, by considering networks as a group of elements with specific functions and individual vulnerabilities. Our analysis places assets at the centre of the evaluation process, resulting in the construction of damage-dysfunction matrices based on expert interviews. These matrices permit summarising the different vulnerabilities of network infrastructures, describing how the different components are linked to each other and how they can disrupt the operation of the network. They also identify the actions and resources needed to restore the system to operational status following damage and dysfunctions, an essential point when dealing with the question of resilience. The method promotes multi-network analyses and is illustrated by a French case study. Sixty network experts were interviewed during the analysis of the following networks: drinking water supply, waste water, public lighting, gas distribution and electricity supply.
STOCHASTIC METHODS IN RISK ANALYSIS
Directory of Open Access Journals (Sweden)
Vladimíra OSADSKÁ
2017-06-01
Full Text Available In this paper, we review basic stochastic methods which can be used to extend state-of-the-art deterministic analytical methods for risk analysis. We can conclude that the standard deterministic analytical methods highly depend on the practical experience and knowledge of the evaluator and therefore, the stochastic methods should be introduced. The new risk analysis methods should consider the uncertainties in input values. We present how large is the impact on the results of the analysis solving practical example of FMECA with uncertainties modelled using Monte Carlo sampling.
Experimental method to predict avalanches based on neural networks
Directory of Open Access Journals (Sweden)
V. V. Zhdanov
2016-01-01
Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.
Methods for Reducing the Energy Consumption of Mobile Broadband Networks
DEFF Research Database (Denmark)
Micallef, Gilbert
2010-01-01
Up until recently, very little consideration has been given towards reducing the energy consumption of the networks supporting mobile communication. This has now become an important issue since with the predicted boost in traffic, network operators are required to upgrade and extend their networks......, increasing also their overall energy consumption. However, traffic analysis shows that during a 24 hour period, the volume of carried traffic varies continuously, with the network operating anywhere close to its full capacity for very short periods of time. The problem is that during hours of low network...... traffic the energy consumption remains high. This article proposes two major solutions for mitigating this problem. In the first case, an energy saving between 14% and 36% is observed by allowing the network to dynamically optimize its available capacity based on the traffic being carried. In the second...
Boundedness and convergence of online gradient method with penalty for feedforward neural networks.
Zhang, Huisheng; Wu, Wei; Liu, Fei; Yao, Mingchen
2009-06-01
In this brief, we consider an online gradient method with penalty for training feedforward neural networks. Specifically, the penalty is a term proportional to the norm of the weights. Its roles in the method are to control the magnitude of the weights and to improve the generalization performance of the network. By proving that the weights are automatically bounded in the network training with penalty, we simplify the conditions that are required for convergence of online gradient method in literature. A numerical example is given to support the theoretical analysis.
Energy and exergy analysis of low temperature district heating network
International Nuclear Information System (INIS)
Li, Hongwei; Svendsen, Svend
2012-01-01
Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand. The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply. -- Highlights: ► Exergy and energy analysis for low and medium temperature district heating systems. ► Different district heating network dimensioning methods are analyzed. ► Major exergy losses are identified in the district heating network and the in-house substations. ► Advantages to apply low temperature district heating are highlighted through exergy analysis. ► The influence of thermal by-pass on system exergy/energy performance is analyzed.
Network Forensics Method Based on Evidence Graph and Vulnerability Reasoning
Directory of Open Access Journals (Sweden)
Jingsha He
2016-11-01
Full Text Available As the Internet becomes larger in scale, more complex in structure and more diversified in traffic, the number of crimes that utilize computer technologies is also increasing at a phenomenal rate. To react to the increasing number of computer crimes, the field of computer and network forensics has emerged. The general purpose of network forensics is to find malicious users or activities by gathering and dissecting firm evidences about computer crimes, e.g., hacking. However, due to the large volume of Internet traffic, not all the traffic captured and analyzed is valuable for investigation or confirmation. After analyzing some existing network forensics methods to identify common shortcomings, we propose in this paper a new network forensics method that uses a combination of network vulnerability and network evidence graph. In our proposed method, we use vulnerability evidence and reasoning algorithm to reconstruct attack scenarios and then backtrack the network packets to find the original evidences. Our proposed method can reconstruct attack scenarios effectively and then identify multi-staged attacks through evidential reasoning. Results of experiments show that the evidence graph constructed using our method is more complete and credible while possessing the reasoning capability.
Intentional risk management through complex networks analysis
Chapela, Victor; Moral, Santiago; Romance, Miguel
2015-01-01
This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution, the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies a...
Fast analysis of spectral data using neural networks
International Nuclear Information System (INIS)
Roach, C.M.
1992-01-01
Fast analysis techniques are highly desirable in experiments where measurements are recorded at high rates. In fusion experiments the processing required to obtain plasma parameters is usually orders of magnitude slower than the data acquisition. Spectroscopic diagnostics suffer greatly from this problem. The extraction of plasma parameters from a measured spectrum typically corresponds to a nonlinear mapping between distinct multi-dimensional spaces. Where no analytic expression for the mapping exists, conventional analysis methods (e.g. least squares) are usually iterative and therefore slow. With this concern in mind a fast spectral analysis method involving neural networks has been investigated. (author) 6 refs., 3 figs
A network analysis of the Chinese stock market
Huang, Wei-Qiang; Zhuang, Xin-Tian; Yao, Shuang
2009-07-01
In many practical important cases, a massive dataset can be represented as a very large network with certain attributes associated with its vertices and edges. Stock markets generate huge amounts of data, which can be use for constructing the network reflecting the market’s behavior. In this paper, we use a threshold method to construct China’s stock correlation network and then study the network’s structural properties and topological stability. We conduct a statistical analysis of this network and show that it follows a power-law model. We also detect components, cliques and independent sets in this network. These analyses allows one to apply a new data mining technique of classifying financial instruments based on stock price data, which provides a deeper insight into the internal structure of the stock market. Moreover, we test the topological stability of this network and find that it displays a topological robustness against random vertex failures, but it is also fragile to intentional attacks. Such a network stability property would be also useful for portfolio investment and risk management.
The Analysis of Duocentric Social Networks: A Primer.
Kennedy, David P; Jackson, Grace L; Green, Harold D; Bradbury, Thomas N; Karney, Benjamin R
2015-02-01
Marriages and other intimate partnerships are facilitated or constrained by the social networks within which they are embedded. To date, methods used to assess the social networks of couples have been limited to global ratings of social network characteristics or network data collected from each partner separately. In the current article, the authors offer new tools for expanding on the existing literature by describing methods of collecting and analyzing duocentric social networks, that is, the combined social networks of couples. They provide an overview of the key considerations for measuring duocentric networks, such as how and why to combine separate network interviews with partners into one shared duocentric network, the number of network members to assess, and the implications of different network operationalizations. They illustrate these considerations with analyses of social network data collected from 57 low-income married couples, presenting visualizations and quantitative measures of network composition and structure.
Multilayer Network Analysis of Nuclear Reactions
Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding
2016-08-01
The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, 4He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.
Modelling, synthesis and analysis of biorefinery networks
DEFF Research Database (Denmark)
Bertran, Maria-Ona
for the conversion of biomass into chemicals, fuels and energy, because they have the potential to maximize biomass value while reducing emissions. The design of biorefinery networks is a complex decisionmaking problem that involves the selection of feedstocks, processing technologies, products, geographical...... locations, and operating conditions, among others. Unlike petroleumbased processing networks, biorefineries rely on feedstocks that are nonhomogeneous across geographical areas in terms of their availability, type and properties. For this reason, the performance of biorefinery networks depends...... of reactions to convert available biomassbased feedstocks into desired products, the selection of processing routes and technologies from a large set of alternatives, or the generation of hybrid technologies through process intensification. Systematic process synthesis and design methods have been developed...
High-resolution method for evolving complex interface networks
Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.
2018-04-01
In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.
Simulated, Emulated, and Physical Investigative Analysis (SEPIA) of networked systems.
Energy Technology Data Exchange (ETDEWEB)
Burton, David P.; Van Leeuwen, Brian P.; McDonald, Michael James; Onunkwo, Uzoma A.; Tarman, Thomas David; Urias, Vincent E.
2009-09-01
This report describes recent progress made in developing and utilizing hybrid Simulated, Emulated, and Physical Investigative Analysis (SEPIA) environments. Many organizations require advanced tools to analyze their information system's security, reliability, and resilience against cyber attack. Today's security analysis utilize real systems such as computers, network routers and other network equipment, computer emulations (e.g., virtual machines) and simulation models separately to analyze interplay between threats and safeguards. In contrast, this work developed new methods to combine these three approaches to provide integrated hybrid SEPIA environments. Our SEPIA environments enable an analyst to rapidly configure hybrid environments to pass network traffic and perform, from the outside, like real networks. This provides higher fidelity representations of key network nodes while still leveraging the scalability and cost advantages of simulation tools. The result is to rapidly produce large yet relatively low-cost multi-fidelity SEPIA networks of computers and routers that let analysts quickly investigate threats and test protection approaches.
Hybrid modeling and empirical analysis of automobile supply chain network
Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying
2017-05-01
Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.
Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui
2017-10-06
Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.
Basic methods of isotope analysis
International Nuclear Information System (INIS)
Ochkin, A.V.; Rozenkevich, M.B.
2000-01-01
The bases of the most applied methods of the isotope analysis are briefly presented. The possibilities and analytical characteristics of the mass-spectrometric, spectral, radiochemical and special methods of the isotope analysis, including application of the magnetic resonance, chromatography and refractometry, are considered [ru
Safeguards Network Analysis Procedure (SNAP): overview
International Nuclear Information System (INIS)
Chapman, L.D; Engi, D.
1979-08-01
Nuclear safeguards systems provide physical protection and control of nuclear materials. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system effectiveness. This is achieved through a standard set of symbols which characterize the various elements of safeguards systems and an analysis program to execute simulation models built using the SNAP symbology. The outputs provided by the SNAP simulation program supplements the safeguards analyst's evaluative capabilities and supports the evaluation of existing sites as well as alternative design possibilities. This paper describes the SNAP modeling technique and provides an example illustrating its use
Systems and methods for modeling and analyzing networks
Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W
2013-10-29
The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.
A Method for Assessing Quality of Service in Broadband Networks
DEFF Research Database (Denmark)
Bujlow, Tomasz; Riaz, M. Tahir; Pedersen, Jens Myrup
2012-01-01
Monitoring of Quality of Service (QoS) in high-speed Internet infrastructure is a challenging task. However, precise assessments must take into account the fact that the requirements for the given quality level are service-dependent. Backbone QoS monitoring and analysis requires processing of large...... taken from the description of system sockets. This paper proposes a new method for measuring the Quality of Service (QoS) level in broadband networks, based on our Volunteer-Based System for collecting the training data, Machine Learning Algorithms for generating the classification rules and application...... and provide C5.0 high-quality training data, divided into groups corresponding to different types of applications. It was found that currently existing means of collecting data (classification by ports, Deep Packet Inspection, statistical classification, public data sources) are not sufficient and they do...
Automated analysis of Physarum network structure and dynamics
Fricker, Mark D.; Akita, Dai; Heaton, Luke LM; Jones, Nick; Obara, Boguslaw; Nakagaki, Toshiyuki
2017-06-01
We evaluate different ridge-enhancement and segmentation methods to automatically extract the network architecture from time-series of Physarum plasmodia withdrawing from an arena via a single exit. Whilst all methods gave reasonable results, judged by precision-recall analysis against a ground-truth skeleton, the mean phase angle (Feature Type) from intensity-independent, phase-congruency edge enhancement and watershed segmentation was the most robust to variation in threshold parameters. The resultant single pixel-wide segmented skeleton was converted to a graph representation as a set of weighted adjacency matrices containing the physical dimensions of each vein, and the inter-vein regions. We encapsulate the complete image processing and network analysis pipeline in a downloadable software package, and provide an extensive set of metrics that characterise the network structure, including hierarchical loop decomposition to analyse the nested structure of the developing network. In addition, the change in volume for each vein and intervening plasmodial sheet was used to predict the net flow across the network. The scaling relationships between predicted current, speed and shear force with vein radius were consistent with predictions from Murray’s law. This work was presented at PhysNet 2015.
Static Voltage Stability Analysis by Using SVM and Neural Network
Directory of Open Access Journals (Sweden)
Mehdi Hajian
2013-01-01
Full Text Available Voltage stability is an important problem in power system networks. In this paper, in terms of static voltage stability, and application of Neural Networks (NN and Supported Vector Machine (SVM for estimating of voltage stability margin (VSM and predicting of voltage collapse has been investigated. This paper considers voltage stability in power system in two parts. The first part calculates static voltage stability margin by Radial Basis Function Neural Network (RBFNN. The advantage of the used method is high accuracy in online detecting the VSM. Whereas the second one, voltage collapse analysis of power system is performed by Probabilistic Neural Network (PNN and SVM. The obtained results in this paper indicate, that time and number of training samples of SVM, are less than NN. In this paper, a new model of training samples for detection system, using the normal distribution load curve at each load feeder, has been used. Voltage stability analysis is estimated by well-know L and VSM indexes. To demonstrate the validity of the proposed methods, IEEE 14 bus grid and the actual network of Yazd Province are used.
Automated analysis of Physarum network structure and dynamics
International Nuclear Information System (INIS)
Fricker, Mark D; Heaton, Luke LM; Akita, Dai; Jones, Nick; Obara, Boguslaw; Nakagaki, Toshiyuki
2017-01-01
We evaluate different ridge-enhancement and segmentation methods to automatically extract the network architecture from time-series of Physarum plasmodia withdrawing from an arena via a single exit. Whilst all methods gave reasonable results, judged by precision-recall analysis against a ground-truth skeleton, the mean phase angle (Feature Type) from intensity-independent, phase-congruency edge enhancement and watershed segmentation was the most robust to variation in threshold parameters. The resultant single pixel-wide segmented skeleton was converted to a graph representation as a set of weighted adjacency matrices containing the physical dimensions of each vein, and the inter-vein regions. We encapsulate the complete image processing and network analysis pipeline in a downloadable software package, and provide an extensive set of metrics that characterise the network structure, including hierarchical loop decomposition to analyse the nested structure of the developing network. In addition, the change in volume for each vein and intervening plasmodial sheet was used to predict the net flow across the network. The scaling relationships between predicted current, speed and shear force with vein radius were consistent with predictions from Murray’s law. This work was presented at PhysNet 2015. (paper)
Cut set-based risk and reliability analysis for arbitrarily interconnected networks
Wyss, Gregory D.
2000-01-01
Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.
Protocol independent transmission method in software defined optical network
Liu, Yuze; Li, Hui; Hou, Yanfang; Qiu, Yajun; Ji, Yuefeng
2016-10-01
With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.i., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). Using a proprietary protocol or encoding format is a way to improve information security. However, the flow, which carried by proprietary protocol or code, cannot go through the traditional IP network. In addition, ultra- high-definition video transmission service once again become a hot spot. Traditionally, in the IP network, the Serial Digital Interface (SDI) signal must be compressed. This approach offers additional advantages but also bring some disadvantages such as signal degradation and high latency. To some extent, HD-SDI can also be regard as a proprietary protocol, which need transparent transmission such as optical channel. However, traditional optical networks cannot support flexible traffics . In response to aforementioned challenges for future network, one immediate solution would be to use NFV technology to abstract the network infrastructure and provide an all-optical switching topology graph for the SDN control plane. This paper proposes a new service-based software defined optical network architecture, including an infrastructure layer, a virtualization layer, a service abstract layer and an application layer. We then dwell on the corresponding service providing method in order to implement the protocol-independent transport. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit the HD-SDI signal in the software-defined optical network.
An algebra-based method for inferring gene regulatory networks.
Vera-Licona, Paola; Jarrah, Abdul; Garcia-Puente, Luis David; McGee, John; Laubenbacher, Reinhard
2014-03-26
The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the
Electromagnetic field computation by network methods
Felsen, Leopold B; Russer, Peter
2009-01-01
This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.
Distribution network planning method considering distributed generation for peak cutting
International Nuclear Information System (INIS)
Ouyang Wu; Cheng Haozhong; Zhang Xiubin; Yao Liangzhong
2010-01-01
Conventional distribution planning method based on peak load brings about large investment, high risk and low utilization efficiency. A distribution network planning method considering distributed generation (DG) for peak cutting is proposed in this paper. The new integrated distribution network planning method with DG implementation aims to minimize the sum of feeder investments, DG investments, energy loss cost and the additional cost of DG for peak cutting. Using the solution techniques combining genetic algorithm (GA) with the heuristic approach, the proposed model determines the optimal planning scheme including the feeder network and the siting and sizing of DG. The strategy for the site and size of DG, which is based on the radial structure characteristics of distribution network, reduces the complexity degree of solving the optimization model and eases the computational burden substantially. Furthermore, the operation schedule of DG at the different load level is also provided.
Information loss method to measure node similarity in networks
Li, Yongli; Luo, Peng; Wu, Chong
2014-09-01
Similarity measurement for the network node has been paid increasing attention in the field of statistical physics. In this paper, we propose an entropy-based information loss method to measure the node similarity. The whole model is established based on this idea that less information loss is caused by seeing two more similar nodes as the same. The proposed new method has relatively low algorithm complexity, making it less time-consuming and more efficient to deal with the large scale real-world network. In order to clarify its availability and accuracy, this new approach was compared with some other selected approaches on two artificial examples and synthetic networks. Furthermore, the proposed method is also successfully applied to predict the network evolution and predict the unknown nodes' attributions in the two application examples.
Maximum entropy methods for extracting the learned features of deep neural networks.
Finnegan, Alex; Song, Jun S
2017-10-01
New architectures of multilayer artificial neural networks and new methods for training them are rapidly revolutionizing the application of machine learning in diverse fields, including business, social science, physical sciences, and biology. Interpreting deep neural networks, however, currently remains elusive, and a critical challenge lies in understanding which meaningful features a network is actually learning. We present a general method for interpreting deep neural networks and extracting network-learned features from input data. We describe our algorithm in the context of biological sequence analysis. Our approach, based on ideas from statistical physics, samples from the maximum entropy distribution over possible sequences, anchored at an input sequence and subject to constraints implied by the empirical function learned by a network. Using our framework, we demonstrate that local transcription factor binding motifs can be identified from a network trained on ChIP-seq data and that nucleosome positioning signals are indeed learned by a network trained on chemical cleavage nucleosome maps. Imposing a further constraint on the maximum entropy distribution also allows us to probe whether a network is learning global sequence features, such as the high GC content in nucleosome-rich regions. This work thus provides valuable mathematical tools for interpreting and extracting learned features from feed-forward neural networks.
A statistical framework for differential network analysis from microarray data
Directory of Open Access Journals (Sweden)
Datta Somnath
2010-02-01
Full Text Available Abstract Background It has been long well known that genes do not act alone; rather groups of genes act in consort during a biological process. Consequently, the expression levels of genes are dependent on each other. Experimental techniques to detect such interacting pairs of genes have been in place for quite some time. With the advent of microarray technology, newer computational techniques to detect such interaction or association between gene expressions are being proposed which lead to an association network. While most microarray analyses look for genes that are differentially expressed, it is of potentially greater significance to identify how entire association network structures change between two or more biological settings, say normal versus diseased cell types. Results We provide a recipe for conducting a differential analysis of networks constructed from microarray data under two experimental settings. At the core of our approach lies a connectivity score that represents the strength of genetic association or interaction between two genes. We use this score to propose formal statistical tests for each of following queries: (i whether the overall modular structures of the two networks are different, (ii whether the connectivity of a particular set of "interesting genes" has changed between the two networks, and (iii whether the connectivity of a given single gene has changed between the two networks. A number of examples of this score is provided. We carried out our method on two types of simulated data: Gaussian networks and networks based on differential equations. We show that, for appropriate choices of the connectivity scores and tuning parameters, our method works well on simulated data. We also analyze a real data set involving normal versus heavy mice and identify an interesting set of genes that may play key roles in obesity. Conclusions Examining changes in network structure can provide valuable information about the
Network Analysis of Time-Lapse Microscopy Recordings
Directory of Open Access Journals (Sweden)
Erik eSmedler
2014-09-01
Full Text Available Multicellular organisms rely on intercellular communication to regulate important cellular processes critical to life. To further our understanding of those processes there is a need to scrutinize dynamical signaling events and their functions in both cells and organisms. Here, we report a method and provide MATLAB code that analyzes time-lapse microscopy recordings to identify and characterize network structures within large cell populations, such as interconnected neurons. The approach is demonstrated using intracellular calcium (Ca2+ recordings in neural progenitors and cardiac myocytes, but could be applied to a wide variety of biosensors employed in diverse cell types and organisms. In this method, network structures are analyzed by applying cross-correlation signal processing and graph theory to single-cell recordings. The goal of the analysis is to determine if the single cell activity constitutes a network of interconnected cells and to decipher the properties of this network. The method can be applied in many fields of biology in which biosensors are used to monitor signaling events in living cells. Analyzing intercellular communication in cell ensembles can reveal essential network structures that provide important biological insights.
Haibe-Kains, Benjamin; Olsen, Catharina; Djebbari, Amira; Bontempi, Gianluca; Correll, Mick; Bouton, Christopher; Quackenbush, John
2012-01-01
Genomics provided us with an unprecedented quantity of data on the genes that are activated or repressed in a wide range of phenotypes. We have increasingly come to recognize that defining the networks and pathways underlying these phenotypes requires both the integration of multiple data types and the development of advanced computational methods to infer relationships between the genes and to estimate the predictive power of the networks through which they interact. To address these issues we have developed Predictive Networks (PN), a flexible, open-source, web-based application and data services framework that enables the integration, navigation, visualization and analysis of gene interaction networks. The primary goal of PN is to allow biomedical researchers to evaluate experimentally derived gene lists in the context of large-scale gene interaction networks. The PN analytical pipeline involves two key steps. The first is the collection of a comprehensive set of known gene interactions derived from a variety of publicly available sources. The second is to use these 'known' interactions together with gene expression data to infer robust gene networks. The PN web application is accessible from http://predictivenetworks.org. The PN code base is freely available at https://sourceforge.net/projects/predictivenets/.
Matthews, Luke J.; DeWan, Peter; Rula, Elizabeth Y.
2013-01-01
Studies of social networks, mapped using self-reported contacts, have demonstrated the strong influence of social connections on the propensity for individuals to adopt or maintain healthy behaviors and on their likelihood to adopt health risks such as obesity. Social network analysis may prove useful for businesses and organizations that wish to improve the health of their populations by identifying key network positions. Health traits have been shown to correlate across friendship ties, but evaluating network effects in large coworker populations presents the challenge of obtaining sufficiently comprehensive network data. The purpose of this study was to evaluate methods for using online communication data to generate comprehensive network maps that reproduce the health-associated properties of an offline social network. In this study, we examined three techniques for inferring social relationships from email traffic data in an employee population using thresholds based on: (1) the absolute number of emails exchanged, (2) logistic regression probability of an offline relationship, and (3) the highest ranked email exchange partners. As a model of the offline social network in the same population, a network map was created using social ties reported in a survey instrument. The email networks were evaluated based on the proportion of survey ties captured, comparisons of common network metrics, and autocorrelation of body mass index (BMI) across social ties. Results demonstrated that logistic regression predicted the greatest proportion of offline social ties, thresholding on number of emails exchanged produced the best match to offline network metrics, and ranked email partners demonstrated the strongest autocorrelation of BMI. Since each method had unique strengths, researchers should choose a method based on the aspects of offline behavior of interest. Ranked email partners may be particularly useful for purposes related to health traits in a social network. PMID
Matthews, Luke J; DeWan, Peter; Rula, Elizabeth Y
2013-01-01
Studies of social networks, mapped using self-reported contacts, have demonstrated the strong influence of social connections on the propensity for individuals to adopt or maintain healthy behaviors and on their likelihood to adopt health risks such as obesity. Social network analysis may prove useful for businesses and organizations that wish to improve the health of their populations by identifying key network positions. Health traits have been shown to correlate across friendship ties, but evaluating network effects in large coworker populations presents the challenge of obtaining sufficiently comprehensive network data. The purpose of this study was to evaluate methods for using online communication data to generate comprehensive network maps that reproduce the health-associated properties of an offline social network. In this study, we examined three techniques for inferring social relationships from email traffic data in an employee population using thresholds based on: (1) the absolute number of emails exchanged, (2) logistic regression probability of an offline relationship, and (3) the highest ranked email exchange partners. As a model of the offline social network in the same population, a network map was created using social ties reported in a survey instrument. The email networks were evaluated based on the proportion of survey ties captured, comparisons of common network metrics, and autocorrelation of body mass index (BMI) across social ties. Results demonstrated that logistic regression predicted the greatest proportion of offline social ties, thresholding on number of emails exchanged produced the best match to offline network metrics, and ranked email partners demonstrated the strongest autocorrelation of BMI. Since each method had unique strengths, researchers should choose a method based on the aspects of offline behavior of interest. Ranked email partners may be particularly useful for purposes related to health traits in a social network.
Directory of Open Access Journals (Sweden)
Luke J Matthews
Full Text Available Studies of social networks, mapped using self-reported contacts, have demonstrated the strong influence of social connections on the propensity for individuals to adopt or maintain healthy behaviors and on their likelihood to adopt health risks such as obesity. Social network analysis may prove useful for businesses and organizations that wish to improve the health of their populations by identifying key network positions. Health traits have been shown to correlate across friendship ties, but evaluating network effects in large coworker populations presents the challenge of obtaining sufficiently comprehensive network data. The purpose of this study was to evaluate methods for using online communication data to generate comprehensive network maps that reproduce the health-associated properties of an offline social network. In this study, we examined three techniques for inferring social relationships from email traffic data in an employee population using thresholds based on: (1 the absolute number of emails exchanged, (2 logistic regression probability of an offline relationship, and (3 the highest ranked email exchange partners. As a model of the offline social network in the same population, a network map was created using social ties reported in a survey instrument. The email networks were evaluated based on the proportion of survey ties captured, comparisons of common network metrics, and autocorrelation of body mass index (BMI across social ties. Results demonstrated that logistic regression predicted the greatest proportion of offline social ties, thresholding on number of emails exchanged produced the best match to offline network metrics, and ranked email partners demonstrated the strongest autocorrelation of BMI. Since each method had unique strengths, researchers should choose a method based on the aspects of offline behavior of interest. Ranked email partners may be particularly useful for purposes related to health traits in a
A link prediction method for heterogeneous networks based on BP neural network
Li, Ji-chao; Zhao, Dan-ling; Ge, Bing-Feng; Yang, Ke-Wei; Chen, Ying-Wu
2018-04-01
Most real-world systems, composed of different types of objects connected via many interconnections, can be abstracted as various complex heterogeneous networks. Link prediction for heterogeneous networks is of great significance for mining missing links and reconfiguring networks according to observed information, with considerable applications in, for example, friend and location recommendations and disease-gene candidate detection. In this paper, we put forward a novel integrated framework, called MPBP (Meta-Path feature-based BP neural network model), to predict multiple types of links for heterogeneous networks. More specifically, the concept of meta-path is introduced, followed by the extraction of meta-path features for heterogeneous networks. Next, based on the extracted meta-path features, a supervised link prediction model is built with a three-layer BP neural network. Then, the solution algorithm of the proposed link prediction model is put forward to obtain predicted results by iteratively training the network. Last, numerical experiments on the dataset of examples of a gene-disease network and a combat network are conducted to verify the effectiveness and feasibility of the proposed MPBP. It shows that the MPBP with very good performance is superior to the baseline methods.
CATHENA 4. A thermalhydraulics network analysis code
International Nuclear Information System (INIS)
Aydemir, N.U.; Hanna, B.N.
2009-01-01
Canadian Algorithm for THErmalhydraulic Network Analysis (CATHENA) is a one-dimensional, non-equilibrium, two-phase, two fluid network analysis code that has been in use for over two decades by various groups in Canada and around the world. The objective of the present paper is to describe the design, application and future development plans for the CATHENA 4 thermalhydraulics network analysis code, which is a modernized version of the present frozen CATHENA 3 code. The new code is designed in modular form, using the Fortran 95 (F95) programming language. The semi-implicit numerical integration scheme of CATHENA 3 is re-written to implement a fully-implicit methodology using Newton's iterative solution scheme suitable for nonlinear equations. The closure relations, as a first step, have been converted from the existing CATHENA 3 implementation to F95 but modularized to achieve ease of maintenance. The paper presents the field equations, followed by a description of the Newton's scheme used. The finite-difference form of the field equations is given, followed by a discussion of convergence criteria. Two applications of CATHENA 4 are presented to demonstrate the temporal and spatial convergence of the new code for problems with known solutions or available experimental data. (author)
Network value and optimum analysis on the mode of networked marketing in TV media
Directory of Open Access Journals (Sweden)
Xiao Dongpo
2012-12-01
Full Text Available Purpose: With the development of the networked marketing in TV media, it is important to do the research on network value and optimum analysis in this field.Design/methodology/approach: According to the research on the mode of networked marketing in TV media and Correlation theory, the essence of media marketing is creating, spreading and transferring values. The Participants of marketing value activities are in network, and value activities proceed in networked form. Network capability is important to TV media marketing activities.Findings: This article raises the direction of research of analysis and optimization about network based on the mode of networked marketing in TV media by studying TV media marketing Development Mechanism , network analysis and network value structure.
Multiscale Embedded Gene Co-expression Network Analysis.
Directory of Open Access Journals (Sweden)
Won-Min Song
2015-11-01
Full Text Available Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3, the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA by: i introducing quality control of co-expression similarities, ii parallelizing embedded network construction, and iii developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs. We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA. MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.
Multiscale Embedded Gene Co-expression Network Analysis.
Song, Won-Min; Zhang, Bin
2015-11-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.
Probabilistic methods for rotordynamics analysis
Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.
1991-01-01
This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.
NIF ICCS network design and loading analysis
International Nuclear Information System (INIS)
Tietbohl, G; Bryant, R
1998-01-01
The National Ignition Facility (NIF) is housed within a large facility about the size of two football fields. The Integrated Computer Control System (ICCS) is distributed throughout this facility and requires the integration of about 40,000 control points and over 500 video sources. This integration is provided by approximately 700 control computers distributed throughout the NIF facility and a network that provides the communication infrastructure. A main control room houses a set of seven computer consoles providing operator access and control of the various distributed front-end processors (FEPs). There are also remote workstations distributed within the facility that allow provide operator console functions while personnel are testing and troubleshooting throughout the facility. The operator workstations communicate with the FEPs which implement the localized control and monitoring functions. There are different types of FEPs for the various subsystems being controlled. This report describes the design of the NIF ICCS network and how it meets the traffic loads that will are expected and the requirements of the Sub-System Design Requirements (SSDR's). This document supersedes the earlier reports entitled Analysis of the National Ignition Facility Network, dated November 6, 1996 and The National Ignition Facility Digital Video and Control Network, dated July 9, 1996. For an overview of the ICCS, refer to the document NIF Integrated Computer Controls System Description (NIF-3738)
Distinguishing manipulated stocks via trading network analysis
Sun, Xiao-Qian; Cheng, Xue-Qi; Shen, Hua-Wei; Wang, Zhao-Yang
2011-10-01
Manipulation is an important issue for both developed and emerging stock markets. For the study of manipulation, it is critical to analyze investor behavior in the stock market. In this paper, an analysis of the full transaction records of over a hundred stocks in a one-year period is conducted. For each stock, a trading network is constructed to characterize the relations among its investors. In trading networks, nodes represent investors and a directed link connects a stock seller to a buyer with the total trade size as the weight of the link, and the node strength is the sum of all edge weights of a node. For all these trading networks, we find that the node degree and node strength both have tails following a power-law distribution. Compared with non-manipulated stocks, manipulated stocks have a high lower bound of the power-law tail, a high average degree of the trading network and a low correlation between the price return and the seller-buyer ratio. These findings may help us to detect manipulated stocks.
An algebraic topological method for multimodal brain networks comparison
Directory of Open Access Journals (Sweden)
Tiago eSimas
2015-07-01
Full Text Available Understanding brain connectivity is one of the most important issues in neuroscience. Nonetheless, connectivity data can reflect either functional relationships of brain activities or anatomical connections between brain areas. Although both representations should be related, this relationship is not straightforward. We have devised a powerful method that allows different operations between networks that share the same set of nodes, by embedding them in a common metric space, enforcing transitivity to the graph topology. Here, we apply this method to construct an aggregated network from a set of functional graphs, each one from a different subject. Once this aggregated functional network is constructed, we use again our method to compare it with the structural connectivity to identify particular brain regions that differ in both modalities (anatomical and functional. Remarkably, these brain regions include functional areas that form part of the classical resting state networks. We conclude that our method -based on the comparison of the aggregated functional network- reveals some emerging features that could not be observed when the comparison is performed with the classical averaged functional network.
Buttles, John W
2013-04-23
Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.
Analysis and visualization of citation networks
Zhao, Dangzhi
2015-01-01
Citation analysis-the exploration of reference patterns in the scholarly and scientific literature-has long been applied in a number of social sciences to study research impact, knowledge flows, and knowledge networks. It has important information science applications as well, particularly in knowledge representation and in information retrieval.Recent years have seen a burgeoning interest in citation analysis to help address research, management, or information service issues such as university rankings, research evaluation, or knowledge domain visualization. This renewed and growing interest
Analysis of Precision of Activation Analysis Method
DEFF Research Database (Denmark)
Heydorn, Kaj; Nørgaard, K.
1973-01-01
The precision of an activation-analysis method prescribes the estimation of the precision of a single analytical result. The adequacy of these estimates to account for the observed variation between duplicate results from the analysis of different samples and materials, is tested by the statistic T...
Analysis apparatus and method of analysis
International Nuclear Information System (INIS)
1976-01-01
A continuous streaming method developed for the excution of immunoassays is described in this patent. In addition, a suitable apparatus for the method was developed whereby magnetic particles are automatically employed for the consecutive analysis of a series of liquid samples via the RIA technique
Brain Network Analysis from High-Resolution EEG Signals
de Vico Fallani, Fabrizio; Babiloni, Fabio
Over the last decade, there has been a growing interest in the detection of the functional connectivity in the brain from different neuroelectromagnetic and hemodynamic signals recorded by several neuro-imaging devices such as the functional Magnetic Resonance Imaging (fMRI) scanner, electroencephalography (EEG) and magnetoencephalography (MEG) apparatus. Many methods have been proposed and discussed in the literature with the aim of estimating the functional relationships among different cerebral structures. However, the necessity of an objective comprehension of the network composed by the functional links of different brain regions is assuming an essential role in the Neuroscience. Consequently, there is a wide interest in the development and validation of mathematical tools that are appropriate to spot significant features that could describe concisely the structure of the estimated cerebral networks. The extraction of salient characteristics from brain connectivity patterns is an open challenging topic, since often the estimated cerebral networks have a relative large size and complex structure. Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory. Since a graph is a mathematical representation of a network, which is essentially reduced to nodes and connections between them, the use of a theoretical graph approach seems relevant and useful as firstly demonstrated on a set of anatomical brain networks. In those studies, the authors have employed two characteristic measures, the average shortest path L and the clustering index C, to extract respectively the global and local properties of the network structure. They have found that anatomical brain networks exhibit many local connections (i.e. a high C) and few random long distance connections (i.e. a low L). These values identify a particular model that interpolate between a regular
A new method to construct co-author networks
Liu, Jie; Li, Yunpeng; Ruan, Zichan; Fu, Guangyuan; Chen, Xiaowu; Sadiq, Rehan; Deng, Yong
2015-02-01
In this paper, we propose a new method to evaluate the importance of nodes in a given network. The proposed method is based on the PageRank algorithm. However, we have made necessary improvements to combine the importance of the node itself and that of its community status. First, we propose an improved method to better evaluate the real impact of a paper. The proposed method calibrates the real influence of a paper over time. Then we propose a scheme of evaluating the contribution of each author in a paper. We later develop a new method to combine the information of the author itself and the structure of the co-author network. We use the number of co-authorship to calculate the effective distance between two authors, and evaluate the strength of their influence to each other with the law of gravity. The strength of influence is used to build a new network of authors, which is a comprehensive topological representation of both the quality of the node and its role in network. Finally, we apply our method to the Erdos co-author community and AMiner Citation Network to identify the most influential authors.
The network researchers' network: A social network analysis of the IMP Group 1985-2006
DEFF Research Database (Denmark)
Henneberg, Stephan C. M.; Ziang, Zhizhong; Naudé, Peter
The Industrial Marketing and Purchasing (IMP) Group is a network of academic researchers working in the area of business-to-business marketing. The group meets every year to discuss and exchange ideas, with a conference having been held every year since 1984 (there was no meeting in 1987......). In this paper, based upon the papers presented at the 22 conferences held to date, we undertake a Social Network Analysis in order to examine the degree of co-publishing that has taken place between this group of researchers. We identify the different components in this database, and examine the large main...
Directory of Open Access Journals (Sweden)
Sapna Kumari
Full Text Available BACKGROUND: Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally different coexpression networks and provide different information, selecting the optimal gene association method is critical. METHODS AND RESULTS: In this study, we compared eight gene association methods - Spearman rank correlation, Weighted Rank Correlation, Kendall, Hoeffding's D measure, Theil-Sen, Rank Theil-Sen, Distance Covariance, and Pearson - and focused on their true knowledge discovery rates in associating pathway genes and construction coordination networks of regulatory genes. We also examined the behaviors of different methods to microarray data with different properties, and whether the biological processes affect the efficiency of different methods. CONCLUSIONS: We found that the Spearman, Hoeffding and Kendall methods are effective in identifying coexpressed pathway genes, whereas the Theil-sen, Rank Theil-Sen, Spearman, and Weighted Rank methods perform well in identifying coordinated transcription factors that control the same biological processes and traits. Surprisingly, the widely used Pearson method is generally less efficient, and so is the Distance Covariance method that can find gene pairs of multiple relationships. Some analyses we did clearly show Pearson and Distance Covariance methods have distinct behaviors as compared to all other six methods. The efficiencies of different methods vary with the data properties to some degree and are largely contingent upon the biological processes, which necessitates the pre-analysis to identify the best performing method for gene association and coexpression network construction.
Handwritten Javanese Character Recognition Using Several Artificial Neural Network Methods
Directory of Open Access Journals (Sweden)
Gregorius Satia Budhi
2015-07-01
Full Text Available Javanese characters are traditional characters that are used to write the Javanese language. The Javanese language is a language used by many people on the island of Java, Indonesia. The use of Javanese characters is diminishing more and more because of the difficulty of studying the Javanese characters themselves. The Javanese character set consists of basic characters, numbers, complementary characters, and so on. In this research we have developed a system to recognize Javanese characters. Input for the system is a digital image containing several handwritten Javanese characters. Preprocessing and segmentation are performed on the input image to get each character. For each character, feature extraction is done using the ICZ-ZCZ method. The output from feature extraction will become input for an artificial neural network. We used several artificial neural networks, namely a bidirectional associative memory network, a counterpropagation network, an evolutionary network, a backpropagation network, and a backpropagation network combined with chi2. From the experimental results it can be seen that the combination of chi2 and backpropagation achieved better recognition accuracy than the other methods.
Nonlinear programming analysis and methods
Avriel, Mordecai
2012-01-01
This text provides an excellent bridge between principal theories and concepts and their practical implementation. Topics include convex programming, duality, generalized convexity, analysis of selected nonlinear programs, techniques for numerical solutions, and unconstrained optimization methods.
Chemical methods of rock analysis
National Research Council Canada - National Science Library
Jeffery, P. G; Hutchison, D
1981-01-01
A practical guide to the methods in general use for the complete analysis of silicate rock material and for the determination of all those elements present in major, minor or trace amounts in silicate...
Dynamic Subsidy Method for Congestion Management in Distribution Networks
DEFF Research Database (Denmark)
Huang, Shaojun; Wu, Qiuwei
2016-01-01
Dynamic subsidy (DS) is a locational price paid by the distribution system operator (DSO) to its customers in order to shift energy consumption to designated hours and nodes. It is promising for demand side management and congestion management. This paper proposes a new DS method for congestion...... management in distribution networks, including the market mechanism, the mathematical formulation through a two-level optimization, and the method solving the optimization by tightening the constraints and linearization. Case studies were conducted with a one node system and the Bus 4 distribution network...... of the Roy Billinton Test System (RBTS) with high penetration of electric vehicles (EVs) and heat pumps (HPs). The case studies demonstrate the efficacy of the DS method for congestion management in distribution networks. Studies in this paper show that the DS method offers the customers a fair opportunity...
Network 'small-world-ness': a quantitative method for determining canonical network equivalence.
Directory of Open Access Journals (Sweden)
Mark D Humphries
Full Text Available BACKGROUND: Many technological, biological, social, and information networks fall into the broad class of 'small-world' networks: they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched random graph (same number of nodes and edges. This semi-quantitative definition leads to a categorical distinction ('small/not-small' rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network's small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical network model--the Watts-Strogatz (WS model. However, the process of establishing an equivalent WS model is imprecise and there is a pressing need to discover ways in which this equivalence may be quantified. METHODOLOGY/PRINCIPAL FINDINGS: We defined a precise measure of 'small-world-ness' S based on the trade off between high local clustering and short path length. A network is now deemed a 'small-world' if S>1--an assertion which may be tested statistically. We then examined the behavior of S on a large data-set of real-world systems. We found that all these systems were linked by a linear relationship between their S values and the network size n. Moreover, we show a method for assigning a unique Watts-Strogatz (WS model to any real-world network, and show analytically that the WS models associated with our sample of networks also show linearity between S and n. Linearity between S and n is not, however, inevitable, and neither is S maximal for an arbitrary network of given size. Linearity may, however, be explained by a common limiting growth process. CONCLUSIONS/SIGNIFICANCE: We have shown how the notion of a small-world network may be quantified. Several key properties of the metric are described and the use of WS canonical models is placed on a more secure footing.
Explicit integration of extremely stiff reaction networks: partial equilibrium methods
International Nuclear Information System (INIS)
Guidry, M W; Hix, W R; Billings, J J
2013-01-01
In two preceding papers (Guidry et al 2013 Comput. Sci. Disc. 6 015001 and Guidry and Harris 2013 Comput. Sci. Disc. 6 015002), we have shown that when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper, we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the approach to equilibrium and show that explicit asymptotic methods, combined with the new partial equilibrium methods, give an integration scheme that can plausibly deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that such explicit methods may offer alternatives to implicit integration of even extremely stiff systems and that these methods may permit integration of much larger networks than have been possible before in a number of fields. (paper)
A Global Network Alignment Method Using Discrete Particle Swarm Optimization.
Huang, Jiaxiang; Gong, Maoguo; Ma, Lijia
2016-10-19
Molecular interactions data increase exponentially with the advance of biotechnology. This makes it possible and necessary to comparatively analyse the different data at a network level. Global network alignment is an important network comparison approach to identify conserved subnetworks and get insight into evolutionary relationship across species. Network alignment which is analogous to subgraph isomorphism is known to be an NP-hard problem. In this paper, we introduce a novel heuristic Particle-Swarm-Optimization based Network Aligner (PSONA), which optimizes a weighted global alignment model considering both protein sequence similarity and interaction conservations. The particle statuses and status updating rules are redefined in a discrete form by using permutation. A seed-and-extend strategy is employed to guide the searching for the superior alignment. The proposed initialization method "seeds" matches with high sequence similarity into the alignment, which guarantees the functional coherence of the mapping nodes. A greedy local search method is designed as the "extension" procedure to iteratively optimize the edge conservations. PSONA is compared with several state-of-art methods on ten network pairs combined by five species. The experimental results demonstrate that the proposed aligner can map the proteins with high functional coherence and can be used as a booster to effectively refine the well-studied aligners.
A Newly Developed Method for Computing Reliability Measures in a Water Supply Network
Directory of Open Access Journals (Sweden)
Jacek Malinowski
2016-01-01
Full Text Available A reliability model of a water supply network has beens examined. Its main features are: a topology that can be decomposed by the so-called state factorization into a (relativelysmall number of derivative networks, each having a series-parallel structure (1, binary-state components (either operative or failed with given flow capacities (2, a multi-state character of the whole network and its sub-networks - a network state is defined as the maximal flow between a source (sources and a sink (sinks (3, all capacities (component, network, and sub-network have integer values (4. As the network operates, its state changes due to component failures, repairs, and replacements. A newly developed method of computing the inter-state transition intensities has been presented. It is based on the so-called state factorization and series-parallel aggregation. The analysis of these intensities shows that the failure-repair process of the considered system is an asymptotically homogenous Markov process. It is also demonstrated how certain reliability parameters useful for the network maintenance planning can be determined on the basis of the asymptotic intensities. For better understanding of the presented method, an illustrative example is given. (original abstract
Structural parameter identifiability analysis for dynamic reaction networks
DEFF Research Database (Denmark)
Davidescu, Florin Paul; Jørgensen, Sten Bay
2008-01-01
method based on Lie derivatives. The proposed systematic two phase methodology is illustrated on a mass action based model for an enzymatically catalyzed reaction pathway network where only a limited set of variables is measured. The methodology clearly pinpoints the structurally identifiable parameters...... where for a given set of measured variables it is desirable to investigate which parameters may be estimated prior to spending computational effort on the actual estimation. This contribution addresses the structural parameter identifiability problem for the typical case of reaction network models....... The proposed analysis is performed in two phases. The first phase determines the structurally identifiable reaction rates based on reaction network stoichiometry. The second phase assesses the structural parameter identifiability of the specific kinetic rate expressions using a generating series expansion...
Linear analysis of degree correlations in complex networks
Indian Academy of Sciences (India)
Many real-world networks such as the protein–protein interaction networks and metabolic networks often display nontrivial correlations between degrees of vertices connected by edges. Here, we analyse the statistical methods used usually to describe the degree correlation in the networks, and analytically give linear ...
Understanding resilience in industrial symbiosis networks: insights from network analysis.
Chopra, Shauhrat S; Khanna, Vikas
2014-08-01
Industrial symbiotic networks are based on the principles of ecological systems where waste equals food, to develop synergistic networks. For example, industrial symbiosis (IS) at Kalundborg, Denmark, creates an exchange network of waste, water, and energy among companies based on contractual dependency. Since most of the industrial symbiotic networks are based on ad-hoc opportunities rather than strategic planning, gaining insight into disruptive scenarios is pivotal for understanding the balance of resilience and sustainability and developing heuristics for designing resilient IS networks. The present work focuses on understanding resilience as an emergent property of an IS network via a network-based approach with application to the Kalundborg Industrial Symbiosis (KIS). Results from network metrics and simulated disruptive scenarios reveal Asnaes power plant as the most critical node in the system. We also observe a decrease in the vulnerability of nodes and reduction in single points of failure in the system, suggesting an increase in the overall resilience of the KIS system from 1960 to 2010. Based on our findings, we recommend design strategies, such as increasing diversity, redundancy, and multi-functionality to ensure flexibility and plasticity, to develop resilient and sustainable industrial symbiotic networks. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of JET charge exchange spectra using neural networks
International Nuclear Information System (INIS)
Svensson, J.; Hellermann, M. von; Koenig, R.W.T.
1999-01-01
Active charge exchange spectra representing the local interaction of injected neutral beams and fully stripped impurity ions are hard to analyse due to strong blending with passive emission from the plasma edge. As a result, the deduced plasma parameters (e.g. ion temperature, rotation velocity, impurity density) cannot always be determined unambiguously. Also, the speed of the analysis is limited by the time consuming nonlinear least-squares minimization procedure. In practice, semi-manual analysis is necessary and fast, automatic analysis, based on currently used techniques, does not seem feasible. In this paper the development of a robust and accurate analysis procedure based on multi-layer perceptron (MLP) neural networks is described. This procedure is fully automatic and fast, thus enabling a real-time analysis of charge exchange spectra. Accuracy has been increased in several ways as compared to earlier straightforward neural network implementations and is comparable to a standard least-squares based analysis. Robustness is achieved by using a combination of different confidence measures. A novel technique for the creation of training data, suitable for high-dimensional inverse problems has been developed and used extensively. A new method for fast calculation of error bars directly from the hidden neurons in a MLP network is also described, and used as part of the confidence calculations. For demonstration purposes, a real-time ion temperature profile diagnostic based on this work has been implemented. (author)
Analysis and Reduction of Complex Networks Under Uncertainty
Energy Technology Data Exchange (ETDEWEB)
Knio, Omar M
2014-04-09
This is a collaborative proposal that aims at developing new methods for the analysis and reduction of complex multiscale networks under uncertainty. The approach is based on combining methods of computational singular perturbation (CSP) and probabilistic uncertainty quantification. In deterministic settings, CSP yields asymptotic approximations of reduced-dimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing uncertainty raises fundamentally new issues, particularly concerning its impact on the topology of slow manifolds, and means to represent and quantify associated variability. To address these challenges, this project uses polynomial chaos (PC) methods to reformulate uncertain network models, and to analyze them using CSP in probabilistic terms. Specific objectives include (1) developing effective algorithms that can be used to illuminate fundamental and unexplored connections among model reduction, multiscale behavior, and uncertainty, and (2) demonstrating the performance of these algorithms through applications to model problems.
Invariant moments based convolutional neural networks for image analysis
Directory of Open Access Journals (Sweden)
Vijayalakshmi G.V. Mahesh
2017-01-01
Full Text Available The paper proposes a method using convolutional neural network to effectively evaluate the discrimination between face and non face patterns, gender classification using facial images and facial expression recognition. The novelty of the method lies in the utilization of the initial trainable convolution kernels coefficients derived from the zernike moments by varying the moment order. The performance of the proposed method was compared with the convolutional neural network architecture that used random kernels as initial training parameters. The multilevel configuration of zernike moments was significant in extracting the shape information suitable for hierarchical feature learning to carry out image analysis and classification. Furthermore the results showed an outstanding performance of zernike moment based kernels in terms of the computation time and classification accuracy.
Using structural equation modeling for network meta-analysis.
Tu, Yu-Kang; Wu, Yun-Chun
2017-07-14
Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison
Seismic design and analysis methods
International Nuclear Information System (INIS)
Varpasuo, P.
1993-01-01
Seismic load is in many areas of the world the most important loading situation from the point of view of structural strength. Taking this into account it is understandable, that there has been a strong allocation of resources in the seismic analysis during the past ten years. In this study there are three areas of the center of gravity: (1) Random vibrations; (2) Soil-structure interaction and (3) The methods for determining structural response. The solution of random vibration problems is clarified with the aid of applications in this study and from the point of view of mathematical treatment and mathematical formulations it is deemed sufficient to give the relevant sources. In the soil-structure interaction analysis the focus has been the significance of frequency dependent impedance functions. As a result it was obtained, that the description of the soil with the aid of frequency dependent impedance functions decreases the structural response and it is thus always the preferred method when compared to more conservative analysis types. From the methods to determine the C structural response the following four were tested: (1) The time history method; (2) The complex frequency-response method; (3) Response spectrum method and (4) The equivalent static force method. The time history appeared to be the most accurate method and the complex frequency-response method did have the widest area of application. (orig.). (14 refs., 35 figs.)
PyPathway: Python Package for Biological Network Analysis and Visualization.
Xu, Yang; Luo, Xiao-Chun
2018-05-01
Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.
NATbox: a network analysis toolbox in R.
Chavan, Shweta S; Bauer, Michael A; Scutari, Marco; Nagarajan, Radhakrishnan
2009-10-08
There has been recent interest in capturing the functional relationships (FRs) from high-throughput assays using suitable computational techniques. FRs elucidate the working of genes in concert as a system as opposed to independent entities hence may provide preliminary insights into biological pathways and signalling mechanisms. Bayesian structure learning (BSL) techniques and its extensions have been used successfully for modelling FRs from expression profiles. Such techniques are especially useful in discovering undocumented FRs, investigating non-canonical signalling mechanisms and cross-talk between pathways. The objective of the present study is to develop a graphical user interface (GUI), NATbox: Network Analysis Toolbox in the language R that houses a battery of BSL algorithms in conjunction with suitable statistical tools for modelling FRs in the form of acyclic networks from gene expression profiles and their subsequent analysis. NATbox is a menu-driven open-source GUI implemented in the R statistical language for modelling and analysis of FRs from gene expression profiles. It provides options to (i) impute missing observations in the given data (ii) model FRs and network structure from gene expression profiles using a battery of BSL algorithms and identify robust dependencies using a bootstrap procedure, (iii) present the FRs in the form of acyclic graphs for visualization and investigate its topological properties using network analysis metrics, (iv) retrieve FRs of interest from published literature. Subsequently, use these FRs as structural priors in BSL (v) enhance scalability of BSL across high-dimensional data by parallelizing the bootstrap routines. NATbox provides a menu-driven GUI for modelling and analysis of FRs from gene expression profiles. By incorporating readily available functions from existing R-packages, it minimizes redundancy and improves reproducibility, transparency and sustainability, characteristic of open-source environments
Energy Technology Data Exchange (ETDEWEB)
Samberg, Joshua P. [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Engineering Building I, Raleigh, NC 27695-7907 (United States); Kajbafvala, Amir, E-mail: amir.kajbafvala@gmail.com [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Engineering Building I, Raleigh, NC 27695-7907 (United States); Koolivand, Amir [Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695 (United States)
2014-03-01
Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction.
International Nuclear Information System (INIS)
Samberg, Joshua P.; Kajbafvala, Amir; Koolivand, Amir
2014-01-01
Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction
New Method for Leakage Detection by Using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Mohammad Attari
2018-03-01
Full Text Available Nowadays water loss has been turned into a global concern and on the other hand the demand for water is increasing. This problem has made the demand management and consumption pattern reform necessary. One of the most important methods for managing water consumption is to decrease the water loss. In this study by using neural networks, a new method is presented to specify the location and quantity of leakages in water distribution networks. In this method, by producing the training data and applying it to neural network, the network is able to determine approximate location and quantity of nodal leakage with receiving the nodal pressure. Production of training data is carried out by applying assumed leakage to specific nodes in the network and calculating the new nodal pressures. The results show that by minimum use of hydraulic data taken from pressures, not only this method can determine the location of nodal leakages, but also it can specify the amount of leakage on each node with reasonable accuracy.
Modified network simulation model with token method of bus access
Directory of Open Access Journals (Sweden)
L.V. Stribulevich
2013-08-01
Full Text Available Purpose. To study the characteristics of the local network with the marker method of access to the bus its modified simulation model was developed. Methodology. Defining characteristics of the network is carried out on the developed simulation model, which is based on the state diagram-layer network station with the mechanism of processing priorities, both in steady state and in the performance of control procedures: the initiation of a logical ring, the entrance and exit of the station network with a logical ring. Findings. A simulation model, on the basis of which can be obtained the dependencies of the application the maximum waiting time in the queue for different classes of access, and the reaction time usable bandwidth on the data rate, the number of network stations, the generation rate applications, the number of frames transmitted per token holding time, frame length was developed. Originality. The technique of network simulation reflecting its work in the steady condition and during the control procedures, the mechanism of priority ranking and handling was proposed. Practical value. Defining network characteristics in the real-time systems on railway transport based on the developed simulation model.
Applications of social media and social network analysis
Kazienko, Przemyslaw
2015-01-01
This collection of contributed chapters demonstrates a wide range of applications within two overlapping research domains: social media analysis and social network analysis. Various methodologies were utilized in the twelve individual chapters including static, dynamic and real-time approaches to graph, textual and multimedia data analysis. The topics apply to reputation computation, emotion detection, topic evolution, rumor propagation, evaluation of textual opinions, friend ranking, analysis of public transportation networks, diffusion in dynamic networks, analysis of contributors to commun
Analysis of complex systems using neural networks
International Nuclear Information System (INIS)
Uhrig, R.E.
1992-01-01
The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems
Stochastic analysis of complex reaction networks using binomial moment equations.
Barzel, Baruch; Biham, Ofer
2012-09-01
The stochastic analysis of complex reaction networks is a difficult problem because the number of microscopic states in such systems increases exponentially with the number of reactive species. Direct integration of the master equation is thus infeasible and is most often replaced by Monte Carlo simulations. While Monte Carlo simulations are a highly effective tool, equation-based formulations are more amenable to analytical treatment and may provide deeper insight into the dynamics of the network. Here, we present a highly efficient equation-based method for the analysis of stochastic reaction networks. The method is based on the recently introduced binomial moment equations [Barzel and Biham, Phys. Rev. Lett. 106, 150602 (2011)]. The binomial moments are linear combinations of the ordinary moments of the probability distribution function of the population sizes of the interacting species. They capture the essential combinatorics of the reaction processes reflecting their stoichiometric structure. This leads to a simple and transparent form of the equations, and allows a highly efficient and surprisingly simple truncation scheme. Unlike ordinary moment equations, in which the inclusion of high order moments is prohibitively complicated, the binomial moment equations can be easily constructed up to any desired order. The result is a set of equations that enables the stochastic analysis of complex reaction networks under a broad range of conditions. The number of equations is dramatically reduced from the exponential proliferation of the master equation to a polynomial (and often quadratic) dependence on the number of reactive species in the binomial moment equations. The aim of this paper is twofold: to present a complete derivation of the binomial moment equations; to demonstrate the applicability of the moment equations for a representative set of example networks, in which stochastic effects play an important role.
Analysis of Time Delay Simulation in Networked Control System
Nyan Phyo Aung; Zaw Min Naing; Hla Myo Tun
2016-01-01
The paper presents a PD controller for the Networked Control Systems (NCS) with delay. The major challenges in this networked control system (NCS) are the delay of the data transmission throughout the communication network. The comparative performance analysis is carried out for different delays network medium. In this paper, simulation is carried out on Ac servo motor control system using CAN Bus as communication network medium. The True Time toolbox of MATLAB is used for simulation to analy...
Hybrid digital signal processing and neural networks for automated diagnostics using NDE methods
International Nuclear Information System (INIS)
Upadhyaya, B.R.; Yan, W.
1993-11-01
The primary purpose of the current research was to develop an integrated approach by combining information compression methods and artificial neural networks for the monitoring of plant components using nondestructive examination data. Specifically, data from eddy current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the research was to develop and test various data compression methods (for eddy current data) and the performance of different neural network paradigms for defect classification and defect parameter estimation. Feedforward, fully-connected neural networks, that use the back-propagation algorithm for network training, were implemented for defect classification and defect parameter estimation using a modular network architecture. A large eddy current tube inspection database was acquired from the Metals and Ceramics Division of ORNL. These data were used to study the performance of artificial neural networks for defect type classification and for estimating defect parameters. A PC-based data preprocessing and display program was also developed as part of an expert system for data management and decision making. The results of the analysis showed that for effective (low-error) defect classification and estimation of parameters, it is necessary to identify proper feature vectors using different data representation methods. The integration of data compression and artificial neural networks for information processing was established as an effective technique for automation of diagnostics using nondestructive examination methods
Social Network Analysis and Critical Realism
DEFF Research Database (Denmark)
Buch-Hansen, Hubert
2014-01-01
in relation to established philosophies of science. This article argues that there is a tension between applied and methods-oriented SNA studies, on the one hand, and those addressing the social-theoretical nature and implications of networks, on the other. The former, in many cases, exhibits positivist...... tendencies, whereas the latter incorporate a number of assumptions that are directly compatible with core critical realist views on the nature of social reality and knowledge. This article suggests that SNA may be detached from positivist social science and come to constitute a valuable instrument...... in the critical realist toolbox....
Models as Tools of Analysis of a Network Organisation
Directory of Open Access Journals (Sweden)
Wojciech Pająk
2013-06-01
Full Text Available The paper presents models which may be applied as tools of analysis of a network organisation. The starting point of the discussion is defining the following terms: supply chain and network organisation. Further parts of the paper present basic assumptions analysis of a network organisation. Then the study characterises the best known models utilised in analysis of a network organisation. The purpose of the article is to define the notion and the essence of network organizations and to present the models used for their analysis.
Integrative analysis for finding genes and networks involved in diabetes and other complex diseases
DEFF Research Database (Denmark)
Bergholdt, R.; Størling, Zenia, Marian; Hansen, Kasper Lage
2007-01-01
We have developed an integrative analysis method combining genetic interactions, identified using type 1 diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We...... identified a number of new protein network modules and novel candidate genes/proteins for type 1 diabetes. We propose this type of integrative analysis as a general method for the elucidation of genes and networks involved in diabetes and other complex diseases....
Hybrid methods for cybersecurity analysis :
Energy Technology Data Exchange (ETDEWEB)
Davis, Warren Leon,; Dunlavy, Daniel M.
2014-01-01
Early 2010 saw a signi cant change in adversarial techniques aimed at network intrusion: a shift from malware delivered via email attachments toward the use of hidden, embedded hyperlinks to initiate sequences of downloads and interactions with web sites and network servers containing malicious software. Enterprise security groups were well poised and experienced in defending the former attacks, but the new types of attacks were larger in number, more challenging to detect, dynamic in nature, and required the development of new technologies and analytic capabilities. The Hybrid LDRD project was aimed at delivering new capabilities in large-scale data modeling and analysis to enterprise security operators and analysts and understanding the challenges of detection and prevention of emerging cybersecurity threats. Leveraging previous LDRD research e orts and capabilities in large-scale relational data analysis, large-scale discrete data analysis and visualization, and streaming data analysis, new modeling and analysis capabilities were quickly brought to bear on the problems in email phishing and spear phishing attacks in the Sandia enterprise security operational groups at the onset of the Hybrid project. As part of this project, a software development and deployment framework was created within the security analyst work ow tool sets to facilitate the delivery and testing of new capabilities as they became available, and machine learning algorithms were developed to address the challenge of dynamic threats. Furthermore, researchers from the Hybrid project were embedded in the security analyst groups for almost a full year, engaged in daily operational activities and routines, creating an atmosphere of trust and collaboration between the researchers and security personnel. The Hybrid project has altered the way that research ideas can be incorporated into the production environments of Sandias enterprise security groups, reducing time to deployment from months and
Performance analysis for gait in camera networks
Michela Goffredo; Imed Bouchrika; John Carter; Mark Nixon
2008-01-01
This paper deploys gait analysis for subject identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of directions of walking. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and their behaviour need to be tracked across a set of cameras. Tests on 300 synthetic and real...
Analysis and application of intelligence network based on FTTH
Feng, Xiancheng; Yun, Xiang
2008-12-01
With the continued rapid growth of Internet, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. The bandwidth requirement increase continuously. Network technique, optical device technical development is swift and violent. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network. Firstly, it introduces the main service which FTTH supports, main analysis key technology such as FTTH system composition way, topological structure, multiplexing, optical cable and device. It focus two kinds of realization methods - PON, P2P technology. Then it proposed that the solution of FTTH can support comprehensive access (service such as broadband data, voice, video and narrowband private line). Finally, it shows the engineering application for FTTH in the district and building. It brings enormous economic benefits and social benefit.
Network thermodynamic approach compartmental analysis. Na+ transients in frog skin.
Mikulecky, D C; Huf, E G; Thomas, S R
1979-01-01
We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc.
Using principal component analysis for selecting network behavioral anomaly metrics
Gregorio-de Souza, Ian; Berk, Vincent; Barsamian, Alex
2010-04-01
This work addresses new approaches to behavioral analysis of networks and hosts for the purposes of security monitoring and anomaly detection. Most commonly used approaches simply implement anomaly detectors for one, or a few, simple metrics and those metrics can exhibit unacceptable false alarm rates. For instance, the anomaly score of network communication is defined as the reciprocal of the likelihood that a given host uses a particular protocol (or destination);this definition may result in an unrealistically high threshold for alerting to avoid being flooded by false positives. We demonstrate that selecting and adapting the metrics and thresholds, on a host-by-host or protocol-by-protocol basis can be done by established multivariate analyses such as PCA. We will show how to determine one or more metrics, for each network host, that records the highest available amount of information regarding the baseline behavior, and shows relevant deviances reliably. We describe the methodology used to pick from a large selection of available metrics, and illustrate a method for comparing the resulting classifiers. Using our approach we are able to reduce the resources required to properly identify misbehaving hosts, protocols, or networks, by dedicating system resources to only those metrics that actually matter in detecting network deviations.
Bayesian-network-based safety risk analysis in construction projects
International Nuclear Information System (INIS)
Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie
2014-01-01
This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical
Lee, Nathaniel; Welch, Bryan W.
2018-01-01
NASA's SCENIC project aims to simplify and reduce the cost of space mission planning by replicating the analysis capabilities of commercially licensed software which are integrated with relevant analysis parameters specific to SCaN assets and SCaN supported user missions. SCENIC differs from current tools that perform similar analyses in that it 1) does not require any licensing fees, 2) will provide an all-in-one package for various analysis capabilities that normally requires add-ons or multiple tools to complete. As part of SCENIC's capabilities, the ITACA network loading analysis tool will be responsible for assessing the loading on a given network architecture and generating a network service schedule. ITACA will allow users to evaluate the quality of service of a given network architecture and determine whether or not the architecture will satisfy the mission's requirements. ITACA is currently under development, and the following improvements were made during the fall of 2017: optimization of runtime, augmentation of network asset pre-service configuration time, augmentation of Brent's method of root finding, augmentation of network asset FOV restrictions, augmentation of mission lifetimes, and the integration of a SCaN link budget calculation tool. The improvements resulted in (a) 25% reduction in runtime, (b) more accurate contact window predictions when compared to STK(Registered Trademark) contact window predictions, and (c) increased fidelity through the use of specific SCaN asset parameters.
Robustness Analysis of Real Network Topologies Under Multiple Failure Scenarios
DEFF Research Database (Denmark)
Manzano, M.; Marzo, J. L.; Calle, E.
2012-01-01
on topological characteristics. Recently approaches also consider the services supported by such networks. In this paper we carry out a robustness analysis of five real backbone telecommunication networks under defined multiple failure scenarios, taking into account the consequences of the loss of established......Nowadays the ubiquity of telecommunication networks, which underpin and fulfill key aspects of modern day living, is taken for granted. Significant large-scale failures have occurred in the last years affecting telecommunication networks. Traditionally, network robustness analysis has been focused...... connections. Results show which networks are more robust in response to a specific type of failure....
Zachariadis, Markos; Oborn, Eivor; Barrett, Michael; Zollinger-Read, Paul
2013-01-01
Objective To explore the relational challenges for general practitioner (GP) leaders setting up new network-centric commissioning organisations in the recent health policy reform in England, we use innovation network theory to identify key network leadership practices that facilitate healthcare innovation. Design Mixed-method, multisite and case study research. Setting Six clinical commissioning groups and local clusters in the East of England area, covering in total 208 GPs and 1 662 000 population. Methods Semistructured interviews with 56 lead GPs, practice managers and staff from the local health authorities (primary care trusts, PCT) as well as various healthcare professionals; 21 observations of clinical commissioning group (CCG) board and executive meetings; electronic survey of 58 CCG board members (these included GPs, practice managers, PCT employees, nurses and patient representatives) and subsequent social network analysis. Main outcome measures Collaborative relationships between CCG board members and stakeholders from their healthcare network; clarifying the role of GPs as network leaders; strengths and areas for development of CCGs. Results Drawing upon innovation network theory provides unique insights of the CCG leaders’ activities in establishing best practices and introducing new clinical pathways. In this context we identified three network leadership roles: managing knowledge flows, managing network coherence and managing network stability. Knowledge sharing and effective collaboration among GPs enable network stability and the alignment of CCG objectives with those of the wider health system (network coherence). Even though activities varied between commissioning groups, collaborative initiatives were common. However, there was significant variation among CCGs around the level of engagement with providers, patients and local authorities. Locality (sub) groups played an important role because they linked commissioning decisions with
Identifying changes in the support networks of end-of-life carers using social network analysis.
Leonard, Rosemary; Horsfall, Debbie; Noonan, Kerrie
2015-06-01
End-of-life caring is often associated with reduced social networks for both the dying person and for the carer. However, those adopting a community participation and development approach, see the potential for the expansion and strengthening of networks. This paper uses Knox, Savage and Harvey's definitions of three generations social network analysis to analyse the caring networks of people with a terminal illness who are being cared for at home and identifies changes in these caring networks that occurred over the period of caring. Participatory network mapping of initial and current networks was used in nine focus groups. The analysis used key concepts from social network analysis (size, density, transitivity, betweenness and local clustering) together with qualitative analyses of the group's reflections on the maps. The results showed an increase in the size of the networks and that ties between the original members of the network strengthened. The qualitative data revealed the importance between core and peripheral network members and the diverse contributions of the network members. The research supports the value of third generation social network analysis and the potential for end-of-life caring to build social capital. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Approximation methods for efficient learning of Bayesian networks
Riggelsen, C
2008-01-01
This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order to provide a coherent treatment of matters, thereby helping the reader to gain a thorough understanding of the whole concept of learning Bayesian networks from (in)complete data, this publication combines in a clarifying way all the issues presented in the papers with previously unpublished work.
Passenger flow analysis of Beijing urban rail transit network using fractal approach
Li, Xiaohong; Chen, Peiwen; Chen, Feng; Wang, Zijia
2018-04-01
To quantify the spatiotemporal distribution of passenger flow and the characteristics of an urban rail transit network, we introduce four radius fractal dimensions and two branch fractal dimensions by combining a fractal approach with passenger flow assignment model. These fractal dimensions can numerically describe the complexity of passenger flow in the urban rail transit network and its change characteristics. Based on it, we establish a fractal quantification method to measure the fractal characteristics of passenger follow in the rail transit network. Finally, we validate the reasonability of our proposed method by using the actual data of Beijing subway network. It has been shown that our proposed method can effectively measure the scale-free range of the urban rail transit network, network development and the fractal characteristics of time-varying passenger flow, which further provides a reference for network planning and analysis of passenger flow.
Artificial Neural Network Analysis of Xinhui Pericarpium Citri ...
African Journals Online (AJOL)
Methods: Artificial neural networks (ANN) models, including general regression neural network (GRNN) and multi-layer ... N-hexane (HPLC grade) was purchased from. Fisher Scientific. ..... Simultaneous Quantification of Seven Flavonoids in.
Network worlds : from link analysis to virtual places.
Energy Technology Data Exchange (ETDEWEB)
Joslyn, C. (Cliff)
2002-01-01
Significant progress is being made in knowledge systems through recent advances in the science of very large networks. Attention is now turning in many quarters to the potential impact on counter-terrorism methods. After reviewing some of these advances, we will discuss the difference between such 'network analytic' approaches, which focus on large, homogeneous graph strucures, and what we are calling 'link analytic' approaches, which focus on somewhat smaller graphs with heterogeneous link types. We use this venue to begin the process of rigorously defining link analysis methods, especially the concept of chaining of views of multidimensional databases. We conclude with some speculation on potential connections to virtual world architectures.
Grunspan, Daniel Z.; Wiggins, Benjamin L.; Goodreau, Steven M.
2014-01-01
Social interactions between students are a major and underexplored part of undergraduate education. Understanding how learning relationships form in undergraduate classrooms, as well as the impacts these relationships have on learning outcomes, can inform educators in unique ways and improve educational reform. Social network analysis (SNA)…
A hierarchical network modeling method for railway tunnels safety assessment
Zhou, Jin; Xu, Weixiang; Guo, Xin; Liu, Xumin
2017-02-01
Using network theory to model risk-related knowledge on accidents is regarded as potential very helpful in risk management. A large amount of defects detection data for railway tunnels is collected in autumn every year in China. It is extremely important to discover the regularities knowledge in database. In this paper, based on network theories and by using data mining techniques, a new method is proposed for mining risk-related regularities to support risk management in railway tunnel projects. A hierarchical network (HN) model which takes into account the tunnel structures, tunnel defects, potential failures and accidents is established. An improved Apriori algorithm is designed to rapidly and effectively mine correlations between tunnel structures and tunnel defects. Then an algorithm is presented in order to mine the risk-related regularities table (RRT) from the frequent patterns. At last, a safety assessment method is proposed by consideration of actual defects and possible risks of defects gained from the RRT. This method cannot only generate the quantitative risk results but also reveal the key defects and critical risks of defects. This paper is further development on accident causation network modeling methods which can provide guidance for specific maintenance measure.
Method and device for monitoring distortion in an optical network
2012-01-01
A method and a device for monitoring of distortion in an optical network are provided, wherein at least one reference signal and at least one data signal are conveyed via an optical link and wherein a distortion of the at least one data signal is determined based on the at least one reference
Improvement on the Performance of Canal Network and Method of ...
African Journals Online (AJOL)
This paper presents the required improvement on the performance of canal network and method of on-farm water application systems at Tunga-Kawo irrigation scheme, Wushishi, Niger state. The problems of poor delivery of water to the farmland were identified to include erosion of canal embarkment, lack of water ...
Zhong, Suyu; He, Yong; Gong, Gaolang
2015-05-01
Using diffusion MRI, a number of studies have investigated the properties of whole-brain white matter (WM) networks with differing network construction methods (node/edge definition). However, how the construction methods affect individual differences of WM networks and, particularly, if distinct methods can provide convergent or divergent patterns of individual differences remain largely unknown. Here, we applied 10 frequently used methods to construct whole-brain WM networks in a healthy young adult population (57 subjects), which involves two node definitions (low-resolution and high-resolution) and five edge definitions (binary, FA weighted, fiber-density weighted, length-corrected fiber-density weighted, and connectivity-probability weighted). For these WM networks, individual differences were systematically analyzed in three network aspects: (1) a spatial pattern of WM connections, (2) a spatial pattern of nodal efficiency, and (3) network global and local efficiencies. Intriguingly, we found that some of the network construction methods converged in terms of individual difference patterns, but diverged with other methods. Furthermore, the convergence/divergence between methods differed among network properties that were adopted to assess individual differences. Particularly, high-resolution WM networks with differing edge definitions showed convergent individual differences in the spatial pattern of both WM connections and nodal efficiency. For the network global and local efficiencies, low-resolution and high-resolution WM networks for most edge definitions consistently exhibited a highly convergent pattern in individual differences. Finally, the test-retest analysis revealed a decent temporal reproducibility for the patterns of between-method convergence/divergence. Together, the results of the present study demonstrated a measure-dependent effect of network construction methods on the individual difference of WM network properties. © 2015 Wiley
A Dynamic Linear Hashing Method for Redundancy Management in Train Ethernet Consist Network
Directory of Open Access Journals (Sweden)
Xiaobo Nie
2016-01-01
Full Text Available Massive transportation systems like trains are considered critical systems because they use the communication network to control essential subsystems on board. Critical system requires zero recovery time when a failure occurs in a communication network. The newly published IEC62439-3 defines the high-availability seamless redundancy protocol, which fulfills this requirement and ensures no frame loss in the presence of an error. This paper adopts these for train Ethernet consist network. The challenge is management of the circulating frames, capable of dealing with real-time processing requirements, fast switching times, high throughout, and deterministic behavior. The main contribution of this paper is the in-depth analysis it makes of network parameters imposed by the application of the protocols to train control and monitoring system (TCMS and the redundant circulating frames discarding method based on a dynamic linear hashing, using the fastest method in order to resolve all the issues that are dealt with.
Load management in electrical networks. Objectives, methods, prospects
International Nuclear Information System (INIS)
Gabioud, D.
2008-01-01
This illustrated article takes up the problems related to the variation of the load in electricity networks. How to handle the peak load? Different solutions in the energy demand management are discussed. Method based on the price, method based on the reduction of the load by electric utilities. Information systems are presented which gives the consumer the needed data to participate in the local load management.
CEO emotional bias and investment decision, Bayesian network method
Directory of Open Access Journals (Sweden)
Jarboui Anis
2012-08-01
Full Text Available This research examines the determinants of firms’ investment introducing a behavioral perspective that has received little attention in corporate finance literature. The following central hypothesis emerges from a set of recently developed theories: Investment decisions are influenced not only by their fundamentals but also depend on some other factors. One factor is the biasness of any CEO to their investment, biasness depends on the cognition and emotions, because some leaders use them as heuristic for the investment decision instead of fundamentals. This paper shows how CEO emotional bias (optimism, loss aversion and overconfidence affects the investment decisions. The proposed model of this paper uses Bayesian Network Method to examine this relationship. Emotional bias has been measured by means of a questionnaire comprising several items. As for the selected sample, it has been composed of some 100 Tunisian executives. Our results have revealed that the behavioral analysis of investment decision implies leader affected by behavioral biases (optimism, loss aversion, and overconfidence adjusts its investment choices based on their ability to assess alternatives (optimism and overconfidence and risk perception (loss aversion to create of shareholder value and ensure its place at the head of the management team.
Directory of Open Access Journals (Sweden)
TIMCHENKO, L.
2012-11-01
Full Text Available Propositions necessary for development of parallel-hierarchical (PH network training methods are discussed in this article. Unlike already known structures of the artificial neural network, where non-normalized (absolute similarity criteria are used for comparison, the suggested structure uses a normalized criterion. Based on the analysis of training rules, a conclusion is made that application of two training methods with a teacher is optimal for PH network training: error correction-based training and memory-based training. Mathematical models of training and a combined method of PH network training for recognition of static and dynamic patterns are developed.
2015-05-01
Because of this closure property on subsets, simplicial complexes are amenable to mathe - matical formalism in combinatorics, abstract algebra, and...Introduction. Oxford (United Kingdom): Oxford University Press. 7. Wasserman S, Faust K. 1994. Social Network Analysis: Methods and Applica- tions. New York (NY...Bollen J, Nelson ML, Van de Sompel H. Co-authorship networks in the digital library research community. Information Processing and Management. 2005;41
Quartet-based methods to reconstruct phylogenetic networks.
Yang, Jialiang; Grünewald, Stefan; Xu, Yifei; Wan, Xiu-Feng
2014-02-20
Phylogenetic networks are employed to visualize evolutionary relationships among a group of nucleotide sequences, genes or species when reticulate events like hybridization, recombination, reassortant and horizontal gene transfer are believed to be involved. In comparison to traditional distance-based methods, quartet-based methods consider more information in the reconstruction process and thus have the potential to be more accurate. We introduce QuartetSuite, which includes a set of new quartet-based methods, namely QuartetS, QuartetA, and QuartetM, to reconstruct phylogenetic networks from nucleotide sequences. We tested their performances and compared them with other popular methods on two simulated nucleotide sequence data sets: one generated from a tree topology and the other from a complicated evolutionary history containing three reticulate events. We further validated these methods to two real data sets: a bacterial data set consisting of seven concatenated genes of 36 bacterial species and an influenza data set related to recently emerging H7N9 low pathogenic avian influenza viruses in China. QuartetS, QuartetA, and QuartetM have the potential to accurately reconstruct evolutionary scenarios from simple branching trees to complicated networks containing many reticulate events. These methods could provide insights into the understanding of complicated biological evolutionary processes such as bacterial taxonomy and reassortant of influenza viruses.
Constructing financial network based on PMFG and threshold method
Nie, Chun-Xiao; Song, Fu-Tie
2018-04-01
Based on planar maximally filtered graph (PMFG) and threshold method, we introduced a correlation-based network named PMFG-based threshold network (PTN). We studied the community structure of PTN and applied ISOMAP algorithm to represent PTN in low-dimensional Euclidean space. The results show that the community corresponds well to the cluster in the Euclidean space. Further, we studied the dynamics of the community structure and constructed the normalized mutual information (NMI) matrix. Based on the real data in the market, we found that the volatility of the market can lead to dramatic changes in the community structure, and the structure is more stable during the financial crisis.
Neural network and area method interpretation of pulsed experiments
Energy Technology Data Exchange (ETDEWEB)
Dulla, S.; Picca, P.; Ravetto, P. [Politecnico di Torino, Dipartimento di Energetica, Corso Duca degli Abruzzi, 24 - 10129 Torino (Italy); Canepa, S. [Lab of Reactor Physics and Systems Behaviour LRS, Paul Scherrer Inst., 5232 Villigen (Switzerland)
2012-07-01
The determination of the subcriticality level is an important issue in accelerator-driven system technology. The area method, originally introduced by N. G. Sjoestrand, is a classical technique to interpret flux measurement for pulsed experiments in order to reconstruct the reactivity value. In recent times other methods have also been developed, to account for spatial and spectral effects, which were not included in the area method, since it is based on the point kinetic model. The artificial neural network approach can be an efficient technique to infer reactivities from pulsed experiments. In the present work, some comparisons between the two methods are carried out and discussed. (authors)
SWOT ANALYSIS ON SAMPLING METHOD
Directory of Open Access Journals (Sweden)
CHIS ANCA OANA
2014-07-01
Full Text Available Audit sampling involves the application of audit procedures to less than 100% of items within an account balance or class of transactions. Our article aims to study audit sampling in audit of financial statements. As an audit technique largely used, in both its statistical and nonstatistical form, the method is very important for auditors. It should be applied correctly for a fair view of financial statements, to satisfy the needs of all financial users. In order to be applied correctly the method must be understood by all its users and mainly by auditors. Otherwise the risk of not applying it correctly would cause loose of reputation and discredit, litigations and even prison. Since there is not a unitary practice and methodology for applying the technique, the risk of incorrectly applying it is pretty high. The SWOT analysis is a technique used that shows the advantages, disadvantages, threats and opportunities. We applied SWOT analysis in studying the sampling method, from the perspective of three players: the audit company, the audited entity and users of financial statements. The study shows that by applying the sampling method the audit company and the audited entity both save time, effort and money. The disadvantages of the method are difficulty in applying and understanding its insight. Being largely used as an audit method and being a factor of a correct audit opinion, the sampling method’s advantages, disadvantages, threats and opportunities must be understood by auditors.
de Andrade, Ricardo Lopes; Rêgo, Leandro Chaves
2018-02-01
The social network analysis (SNA) studies the interactions among actors in a network formed through some relationship (friendship, cooperation, trade, among others). The SNA is constantly approached from a binary point of view, i.e., it is only observed if a link between two actors is present or not regardless of the strength of this link. It is known that different information can be obtained in weighted and unweighted networks and that the information extracted from weighted networks is more accurate and detailed. Another rarely discussed approach in the SNA is related to the individual attributes of the actors (nodes), because such analysis is usually focused on the topological structure of networks. Features of the nodes are not incorporated in the SNA what implies that there is some loss or misperception of information in those analyze. This paper aims at exploring more precisely the complexities of a social network, initially developing a method that inserts the individual attributes in the topological structure of the network and then analyzing the network in four different ways: unweighted, edge-weighted and two methods for using both edge-weights and nodes' attributes. The international trade network was chosen in the application of this approach, where the nodes represent the countries, the links represent the cash flow in the trade transactions and countries' GDP were chosen as nodes' attributes. As a result, it is possible to observe which countries are most connected in the world economy and with higher cash flows, to point out the countries that are central to the intermediation of the wealth flow and those that are most benefited from being included in this network. We also made a principal component analysis to study which metrics are more influential in describing the data variability, which turn out to be mostly the weighted metrics which include the nodes' attributes.
Benefits analysis of Soft Open Points for electrical distribution network operation
International Nuclear Information System (INIS)
Cao, Wanyu; Wu, Jianzhong; Jenkins, Nick; Wang, Chengshan; Green, Timothy
2016-01-01
Highlights: • An analysis framework was developed to quantify the operational benefits. • The framework considers both network reconfiguration and SOP control. • Benefits were analyzed through both quantitative and sensitivity analysis. - Abstract: Soft Open Points (SOPs) are power electronic devices installed in place of normally-open points in electrical power distribution networks. They are able to provide active power flow control, reactive power compensation and voltage regulation under normal network operating conditions, as well as fast fault isolation and supply restoration under abnormal conditions. A steady state analysis framework was developed to quantify the operational benefits of a distribution network with SOPs under normal network operating conditions. A generic power injection model was developed and used to determine the optimal SOP operation using an improved Powell’s Direct Set method. Physical limits and power losses of the SOP device (based on back to back voltage-source converters) were considered in the model. Distribution network reconfiguration algorithms, with and without SOPs, were developed and used to identify the benefits of using SOPs. Test results on a 33-bus distribution network compared the benefits of using SOPs, traditional network reconfiguration and the combination of both. The results showed that using only one SOP achieved a similar improvement in network operation compared to the case of using network reconfiguration with all branches equipped with remotely controlled switches. A combination of SOP control and network reconfiguration provided the optimal network operation.
The Design and Analysis of Virtual Network Configuration for a Wireless Mobile ATM Network
Bush, Stephen F.
1999-01-01
This research concentrates on the design and analysis of an algorithm referred to as Virtual Network Configuration (VNC) which uses predicted future states of a system for faster network configuration and management. VNC is applied to the configuration of a wireless mobile ATM network. VNC is built on techniques from parallel discrete event simulation merged with constraints from real-time systems and applied to mobile ATM configuration and handoff. Configuration in a mobile network is a dyna...
A novel word spotting method based on recurrent neural networks.
Frinken, Volkmar; Fischer, Andreas; Manmatha, R; Bunke, Horst
2012-02-01
Keyword spotting refers to the process of retrieving all instances of a given keyword from a document. In the present paper, a novel keyword spotting method for handwritten documents is described. It is derived from a neural network-based system for unconstrained handwriting recognition. As such it performs template-free spotting, i.e., it is not necessary for a keyword to appear in the training set. The keyword spotting is done using a modification of the CTC Token Passing algorithm in conjunction with a recurrent neural network. We demonstrate that the proposed systems outperform not only a classical dynamic time warping-based approach but also a modern keyword spotting system, based on hidden Markov models. Furthermore, we analyze the performance of the underlying neural networks when using them in a recognition task followed by keyword spotting on the produced transcription. We point out the advantages of keyword spotting when compared to classic text line recognition.
International Nuclear Information System (INIS)
Nedic, Vladimir; Despotovic, Danijela; Cvetanovic, Slobodan; Despotovic, Milan; Babic, Sasa
2014-01-01
Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. The output variable of the network is the equivalent noise level in the given time period L eq . Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model
Energy Technology Data Exchange (ETDEWEB)
Nedic, Vladimir, E-mail: vnedic@kg.ac.rs [Faculty of Philology and Arts, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac (Serbia); Despotovic, Danijela, E-mail: ddespotovic@kg.ac.rs [Faculty of Economics, University of Kragujevac, Djure Pucara Starog 3, 34000 Kragujevac (Serbia); Cvetanovic, Slobodan, E-mail: slobodan.cvetanovic@eknfak.ni.ac.rs [Faculty of Economics, University of Niš, Trg kralja Aleksandra Ujedinitelja, 18000 Niš (Serbia); Despotovic, Milan, E-mail: mdespotovic@kg.ac.rs [Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac (Serbia); Babic, Sasa, E-mail: babicsf@yahoo.com [College of Applied Mechanical Engineering, Trstenik (Serbia)
2014-11-15
Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. The output variable of the network is the equivalent noise level in the given time period L{sub eq}. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model.
Automatic analysis of attack data from distributed honeypot network
Safarik, Jakub; Voznak, MIroslav; Rezac, Filip; Partila, Pavol; Tomala, Karel
2013-05-01
There are many ways of getting real data about malicious activity in a network. One of them relies on masquerading monitoring servers as a production one. These servers are called honeypots and data about attacks on them brings us valuable information about actual attacks and techniques used by hackers. The article describes distributed topology of honeypots, which was developed with a strong orientation on monitoring of IP telephony traffic. IP telephony servers can be easily exposed to various types of attacks, and without protection, this situation can lead to loss of money and other unpleasant consequences. Using a distributed topology with honeypots placed in different geological locations and networks provides more valuable and independent results. With automatic system of gathering information from all honeypots, it is possible to work with all information on one centralized point. Communication between honeypots and centralized data store use secure SSH tunnels and server communicates only with authorized honeypots. The centralized server also automatically analyses data from each honeypot. Results of this analysis and also other statistical data about malicious activity are simply accessible through a built-in web server. All statistical and analysis reports serve as information basis for an algorithm which classifies different types of used VoIP attacks. The web interface then brings a tool for quick comparison and evaluation of actual attacks in all monitored networks. The article describes both, the honeypots nodes in distributed architecture, which monitor suspicious activity, and also methods and algorithms used on the server side for analysis of gathered data.
Neural node network and model, and method of teaching same
Parlos, Alexander G. (Inventor); Atiya, Amir F. (Inventor); Fernandez, Benito (Inventor); Tsai, Wei K. (Inventor); Chong, Kil T. (Inventor)
1995-01-01
The present invention is a fully connected feed forward network that includes at least one hidden layer 16. The hidden layer 16 includes nodes 20 in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device 24 occurring in the feedback path 22 (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit 36 from all the other nodes within the same layer 16. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing.
Optimised Design and Analysis of All-Optical Networks
DEFF Research Database (Denmark)
Glenstrup, Arne John
2002-01-01
through various experiments and is shown to produce good results and to be able to scale up to networks of realistic sizes. A novel method, subpath wavelength grouping, for routing connections in a multigranular all-optical network where several wavelengths can be grouped and switched at band and fibre......This PhD thesis presents a suite of methods for optimising design and for analysing blocking probabilities of all-optical networks. It thus contributes methodical knowledge to the field of computer assisted planning of optical networks. A two-stage greenfield optical network design optimiser...... is developed, based on shortest-path algorithms and a comparatively new metaheuristic called simulated allocation. It is able to handle design of all-optical mesh networks with optical cross-connects, considers duct as well as fibre and node costs, and can also design protected networks. The method is assessed...
Network-Based Visual Analysis of Tabular Data
Liu, Zhicheng
2012-01-01
Tabular data is pervasive in the form of spreadsheets and relational databases. Although tables often describe multivariate data without explicit network semantics, it may be advantageous to explore the data modeled as a graph or network for analysis. Even when a given table design conveys some static network semantics, analysts may want to look…
Analysis of Computer Network Information Based on "Big Data"
Li, Tianli
2017-11-01
With the development of the current era, computer network and large data gradually become part of the people's life, people use the computer to provide convenience for their own life, but at the same time there are many network information problems has to pay attention. This paper analyzes the information security of computer network based on "big data" analysis, and puts forward some solutions.
Road Transport Network Analysis In Port-Harcourt Metropolics ...
African Journals Online (AJOL)
Road transport network contributes to the economy of an area as it connects points of origin to destinations. The thrust of this article therefore, is on the analysis of the road networks in Port – Harcourt metropolis with the aim of determining the connectivity of the road networks and the most accessible node. Consequently ...
Non-criticality of interaction network over system's crises: A percolation analysis.
Shirazi, Amir Hossein; Saberi, Abbas Ali; Hosseiny, Ali; Amirzadeh, Ehsan; Toranj Simin, Pourya
2017-11-20
Extraction of interaction networks from multi-variate time-series is one of the topics of broad interest in complex systems. Although this method has a wide range of applications, most of the previous analyses have focused on the pairwise relations. Here we establish the potential of such a method to elicit aggregated behavior of the system by making a connection with the concepts from percolation theory. We study the dynamical interaction networks of a financial market extracted from the correlation network of indices, and build a weighted network. In correspondence with the percolation model, we find that away from financial crises the interaction network behaves like a critical random network of Erdős-Rényi, while close to a financial crisis, our model deviates from the critical random network and behaves differently at different size scales. We perform further analysis to clarify that our observation is not a simple consequence of the growth in correlations over the crises.
Reliability analysis with linguistic data: An evidential network approach
International Nuclear Information System (INIS)
Zhang, Xiaoge; Mahadevan, Sankaran; Deng, Xinyang
2017-01-01
In practical applications of reliability assessment of a system in-service, information about the condition of a system and its components is often available in text form, e.g., inspection reports. Estimation of the system reliability from such text-based records becomes a challenging problem. In this paper, we propose a four-step framework to deal with this problem. In the first step, we construct an evidential network with the consideration of available knowledge and data. Secondly, we train a Naive Bayes text classification algorithm based on the past records. By using the trained Naive Bayes algorithm to classify the new records, we build interval basic probability assignments (BPA) for each new record available in text form. Thirdly, we combine the interval BPAs of multiple new records using an evidence combination approach based on evidence theory. Finally, we propagate the interval BPA through the evidential network constructed earlier to obtain the system reliability. Two numerical examples are used to demonstrate the efficiency of the proposed method. We illustrate the effectiveness of the proposed method by comparing with Monte Carlo Simulation (MCS) results. - Highlights: • We model reliability analysis with linguistic data using evidential network. • Two examples are used to demonstrate the efficiency of the proposed method. • We compare the results with Monte Carlo Simulation (MCS).
Differential network analysis with multiply imputed lipidomic data.
Directory of Open Access Journals (Sweden)
Maiju Kujala
Full Text Available The importance of lipids for cell function and health has been widely recognized, e.g., a disorder in the lipid composition of cells has been related to atherosclerosis caused cardiovascular disease (CVD. Lipidomics analyses are characterized by large yet not a huge number of mutually correlated variables measured and their associations to outcomes are potentially of a complex nature. Differential network analysis provides a formal statistical method capable of inferential analysis to examine differences in network structures of the lipids under two biological conditions. It also guides us to identify potential relationships requiring further biological investigation. We provide a recipe to conduct permutation test on association scores resulted from partial least square regression with multiple imputed lipidomic data from the LUdwigshafen RIsk and Cardiovascular Health (LURIC study, particularly paying attention to the left-censored missing values typical for a wide range of data sets in life sciences. Left-censored missing values are low-level concentrations that are known to exist somewhere between zero and a lower limit of quantification. To make full use of the LURIC data with the missing values, we utilize state of the art multiple imputation techniques and propose solutions to the challenges that incomplete data sets bring to differential network analysis. The customized network analysis helps us to understand the complexities of the underlying biological processes by identifying lipids and lipid classes that interact with each other, and by recognizing the most important differentially expressed lipids between two subgroups of coronary artery disease (CAD patients, the patients that had a fatal CVD event and the ones who remained stable during two year follow-up.
Analysis of Municipal Pipe Network Franchise Institution
Yong, Sun; Haichuan, Tian; Feng, Xu; Huixia, Zhou
Franchise institution of municipal pipe network has some particularity due to the characteristic of itself. According to the exposition of Chinese municipal pipe network industry franchise institution, the article investigates the necessity of implementing municipal pipe network franchise institution in China, the role of government in the process and so on. And this offers support for the successful implementation of municipal pipe network franchise institution in China.
Constraint likelihood analysis for a network of gravitational wave detectors
International Nuclear Information System (INIS)
Klimenko, S.; Rakhmanov, M.; Mitselmakher, G.; Mohanty, S.
2005-01-01
We propose a coherent method for detection and reconstruction of gravitational wave signals with a network of interferometric detectors. The method is derived by using the likelihood ratio functional for unknown signal waveforms. In the likelihood analysis, the global maximum of the likelihood ratio over the space of waveforms is used as the detection statistic. We identify a problem with this approach. In the case of an aligned pair of detectors, the detection statistic depends on the cross correlation between the detectors as expected, but this dependence disappears even for infinitesimally small misalignments. We solve the problem by applying constraints on the likelihood functional and obtain a new class of statistics. The resulting method can be applied to data from a network consisting of any number of detectors with arbitrary detector orientations. The method allows us reconstruction of the source coordinates and the waveforms of two polarization components of a gravitational wave. We study the performance of the method with numerical simulations and find the reconstruction of the source coordinates to be more accurate than in the standard likelihood method
Jin, Nana; Wu, Deng; Gong, Yonghui; Bi, Xiaoman; Jiang, Hong; Li, Kongning; Wang, Qianghu
2014-01-01
An increasing number of experiments have been designed to detect intracellular and intercellular molecular interactions. Based on these molecular interactions (especially protein interactions), molecular networks have been built for using in several typical applications, such as the discovery of new disease genes and the identification of drug targets and molecular complexes. Because the data are incomplete and a considerable number of false-positive interactions exist, protein interactions from different sources are commonly integrated in network analyses to build a stable molecular network. Although various types of integration strategies are being applied in current studies, the topological properties of the networks from these different integration strategies, especially typical applications based on these network integration strategies, have not been rigorously evaluated. In this paper, systematic analyses were performed to evaluate 11 frequently used methods using two types of integration strategies: empirical and machine learning methods. The topological properties of the networks of these different integration strategies were found to significantly differ. Moreover, these networks were found to dramatically affect the outcomes of typical applications, such as disease gene predictions, drug target detections, and molecular complex identifications. The analysis presented in this paper could provide an important basis for future network-based biological researches. PMID:25243127
Analysis of neural networks through base functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.
Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more
Synchronization analysis of coloured delayed networks under ...
Indian Academy of Sciences (India)
This paper investigates synchronization of coloured delayed networks under decentralized pinning intermittent control. To begin with, the time delays are taken into account in the coloured networks. In addition, we propose a decentralized pinning intermittent control for coloured delayed networks, which is different from that ...
A Social Network Analysis of Occupational Segregation
DEFF Research Database (Denmark)
Buhai, Ioan Sebastian; van der Leij, Marco
We develop a social network model of occupational segregation between different social groups, generated by the existence of positive inbreeding bias among individuals from the same group. If network referrals are important for job search, then expected homophily in the contact network structure...
Pareto distance for multi-layer network analysis
DEFF Research Database (Denmark)
Magnani, Matteo; Rossi, Luca
2013-01-01
services, e.g., Facebook, Twitter, LinkedIn and Foursquare. As a result, the analysis of on-line social networks requires a wider scope and, more technically speaking, models for the representation of this fragmented scenario. The recent introduction of more realistic layered models has however determined......Social Network Analysis has been historically applied to single networks, e.g., interaction networks between co-workers. However, the advent of on-line social network sites has emphasized the stratified structure of our social experience. Individuals usually spread their identities over multiple...
New knowledge network evaluation method for design rationale management
Jing, Shikai; Zhan, Hongfei; Liu, Jihong; Wang, Kuan; Jiang, Hao; Zhou, Jingtao
2015-01-01
Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process for future computer-aided DR applications, a prerequisite is to provide the measure for the DR knowledge. In this paper, a new knowledge network evaluation method for DR management is presented. The method characterizes the DR knowledge value from four perspectives, namely, the design rationale structure scale, association knowledge and reasoning ability, degree of design justification support and degree of knowledge representation conciseness. The DR knowledge comprehensive value is also measured by the proposed method. To validate the proposed method, different style of DR knowledge network and the performance of the proposed measure are discussed. The evaluation method has been applied in two realistic design cases and compared with the structural measures. The research proposes the DR knowledge evaluation method which can provide object metric and selection basis for the DR knowledge reuse during the product design process. In addition, the method is proved to be more effective guidance and support for the application and management of DR knowledge.
Flows method in global analysis
International Nuclear Information System (INIS)
Duong Minh Duc.
1994-12-01
We study the gradient flows method for W r,p (M,N) where M and N are Riemannian manifold and r may be less than m/p. We localize some global analysis problem by constructing gradient flows which only change the value of any u in W r,p (M,N) in a local chart of M. (author). 24 refs
Correlation and network analysis of global financial indices.
Kumar, Sunil; Deo, Nivedita
2012-08-01
Random matrix theory (RMT) and network methods are applied to investigate the correlation and network properties of 20 financial indices. The results are compared before and during the financial crisis of 2008. In the RMT method, the components of eigenvectors corresponding to the second largest eigenvalue form two clusters of indices in the positive and negative directions. The components of these two clusters switch in opposite directions during the crisis. The network analysis uses the Fruchterman-Reingold layout to find clusters in the network of indices at different thresholds. At a threshold of 0.6, before the crisis, financial indices corresponding to the Americas, Europe, and Asia-Pacific form separate clusters. On the other hand, during the crisis at the same threshold, the American and European indices combine together to form a strongly linked cluster while the Asia-Pacific indices form a separate weakly linked cluster. If the value of the threshold is further increased to 0.9 then the European indices (France, Germany, and the United Kingdom) are found to be the most tightly linked indices. The structure of the minimum spanning tree of financial indices is more starlike before the crisis and it changes to become more chainlike during the crisis. The average linkage hierarchical clustering algorithm is used to find a clearer cluster structure in the network of financial indices. The cophenetic correlation coefficients are calculated and found to increase significantly, which indicates that the hierarchy increases during the financial crisis. These results show that there is substantial change in the structure of the organization of financial indices during a financial crisis.
He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei
2012-06-25
Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the